Park Place at Westchester Airport

TOWN OF NORTH CASTLE

WESTCHESTER COUNTY, NEW YORK

Stormwater Pollution Prevention Plan

AKRF Project Number: 80202

Prepared for:

11 New King Street, LLC 11 New King Street White Plains, NY 10604

Prepared by:

AKRF Engineering, P.C. 440 Park Avenue South New York, NY 10016 212-696-0670

OCTOBER 2010 Revised January 2011 Revised November 26, 2014 Revised December 9, 2014

TABLE OF CONTENTS

TABLE OF CONTENTS	i
FIGURES	iii
APPENDICES	iii
1.0 OBJECTIVE	
2.0 OWNER/APPLICANT'S RESPONSIBILITIES	
3.0 CONTRACTOR'S RESPONSIBILITIES	
4.0 PRE-DEVELOPMENT CONDITIONS	
4.1 Existing Soil Conditions	
4.1.1 USDA Soil Description	
Woodbridge Loam (WdB)	3
Ridgebury Loam (RdB)	3
Udorthents, Smoothed (Ub)	4
4.1.2 Geotechnical Results	5
4.2 Existing Natural Resources	5
4.2.1 Watercourses	
4.2.2 Reservoir Stem	
4.2.3 Wetlands	
4.3 Existing Utilities	
 4.4 Existing Stormwater	
 5.0 PROPOSED PROJECT DESCRIPTION	
5.1.1 New York State Department of Environmental Conservation	
5.1.2 Westchester County Department of Health	
5.1.2 Vestelester County Department of Treatmental Protection	
5.1.4 Town of North Castle	
6.0 POST-CONSTRUCTION STORMWATER PRACTICES	
6.1 Regulations	
6.1.1 NYSDEC Sizing Criteria	
6.1.2 New York City Department of Environmental Protection Requirements	.12
6.1.3 Town	
6.2 Five-step process for site planning and stormwater management practice (SMP) selection	
6.2.1 Step 1: Site Planning to preserve natural features and reduce impervious cover	
Planning Practice 1: Preservation of Undisturbed Areas	.13
Planning Practice 2: Preservation of Buffers	.13
Planning Practice 3: Reduction of Clearing and Grading	. 13
Planning Practice 4: Locating Sites in Less Sensitive Areas	.14
Planning Practice 6: Soil Restoration	.14
Planning Practice 8: Roadway Reduction	. 14
6.2.2 Step 2: Determine Water Quality Volume	.14
6.2.3 Step 3: Runoff Reduction by Applying Green Infrastructure Techniques and Standard SM	
with RRv Capacity	
Infrastructure Technique 9: Stormwater Planters	. 15

Ir	Ifrastructure Technique 11: Permeable Pavement	15
6.2.4	Step 4: Apply Standard Stormwater Management Practices to Address Remaining Wa	iter
Quality	Volume	
6.2.5	Step 5: Apply Volume and Peak Rate Control Practices	.19
6.2.5.1. D	esign Analysis	.21
6.2.5.2	. Design Point 1	.22
6.2.5.3	. Design Point 2	.22
6.2.5.4	. Design Point 3	.23
6.3 P	ollutant Loading Analysis	.24
6.4 P	otential Pollutants	.24
6.5 S	ummary	.24
6.6 V	ariance	.25
7.0 TEN	IPORARY EROSION AND SEDIMENT CONTROLS	.25
7.1 E	rosion and Sediment Control Practices	.26
7.1.1	Stabilized Construction Entrance / Exit (SCE)	.26
7.1.2	Silt Fence	
7.1.3	Storm Drain Inlet Protection	.27
7.1.4	Stockpile Detail	.27
7.1.5	Dust Control	
7.1.6	Temporary Seeding and Stabilization	
7.1.7	Sump Pit	
7.1.8	Dewatering	
7.1.9	Perimeter Dike/Swale	
7.1.10		
7.1.11		
7.2 S	equence of Construction	
	PECTION AND MAINTENANCE	
	spections and Record Keeping During Construction	
8.1.1	Erosion and Sediment Control Inspection Report	
8.1.2	Inspections	
8.1.3	Erosion And Sediment Control Maintenance Measures	
8.1.4	Stabilized Construction Entrance/Exit	
8.1.5	Silt Fence	
8.1.6	Sump Pit	
8.1.7	Soil Stockpile Detail	
8.1.8	Storm Drain Inlet Protection	
8.1.9	Dust Control	
8.1.10	Soil Stabilization	
8.1.11	Perimeter Dike/Swale	
8.1.12	Temporary Sediment Basin	
	ost-Construction Operation and Maintenance	
	onstruction Operation and Maintenance	

FIGURES

FIGURE 5-1: Site Location Map

APPENDICES

- APPENDIX A: Certifications
- APPENDIX B: Pre- and Post- Development Stormwater Maps & WQv & RRv Drainage Area Maps
- APPENDIX C: Drawings
- APPENDIX D: Pre-Existing and Existing Hydrologic Routing Calculations
- APPENDIX E: Stormwater Calculations
- APPENDIX F: Post-Development Hydrologic Routing Calculations
- APPENDIX G: Erosion and Sediment Control Inspection Report
- APPENDIX H: Inspection and Maintenance Forms for Post-Construction Practices

1.0 OBJECTIVE

AKRF Engineering, P.C. (AKRF) prepared this Stormwater Pollution Prevention Plan (SWPPP) in accordance with the following applicable rules, regulations and guidance documents:

- New York State Department of Environmental Conservation (NYSDEC) Stormwater Pollutant Discharge Elimination System (SPDES) General Permit for Stormwater Discharges from Construction Activities Permit No. GP-0-10-001 (SPDES GP-0-10-001);
- New York State Stormwater Management Design Manual, dated August 2010 produced by the NYSDEC;
- New York State Standards and Specifications for Erosion and Sediment Control, dated August 2005 produced by NYSDEC;
- City of New York, Watershed Rules and Regulations for the Protection from Contamination, Degradation and Pollution of the New York City Water Supply and its Sources;
- Town of North Castle, Stormwater, Soil Erosion and Sediment Control (Town Code Chapter 173) Management Code

The objectives of this SWPPP are to:

- 1. Outline Owner and Contractor responsibilities to maintain compliance with SPDES GP-0-10-001, including required inspections, maintenance, forms, and certifications.
- 2. Outline measures to install, inspect, and maintain erosion and sediment control measures for the proposed project. The objective of these measures is to eliminate or significantly minimize pollutant discharges to the adjacent surface water bodies during construction activities.
- 3. Demonstrate that the post construction water quality treatment practices as proposed are designed to capture and treat the stormwater runoff from the proposed project.
- 4. Specify post construction stormwater management structures on-site such that the proposed peak flows do not exceed the pre-development peak flows, thus providing channel protection, overbank flood control, and control of the peak discharge control from the extreme storm event.
- 5. Incorporate green infrastructure techniques in order to replicate pre-development hydrology by maintaining pre-construction infiltration, peak runoff flow and discharge volume.
- 6. Provide a long term inspection and maintenance plan that will ensure the long term operation of the proposed practices.

2.0 OWNER/APPLICANT'S RESPONSIBILITIES

11 New King Street, LLC, the "Owner/Applicant", is responsible to ensure that the Contractor installs and maintains the erosion and sediment control measures in accordance with this SWPPP. The Owner/Applicant is also responsible to ensure that the appropriate forms and certifications contained herein are completed prior to and throughout the duration of demolition and construction activities. The Owner/Applicant shall keep a copy of this document, associated attachments, and any inspection reports generated on-site for the duration of the project and for a minimum of 5 years from the date that the site achieves final stabilization. During this time period it is the Owner/Applicant's responsibility to conform to any changes or updates to the current regulations as they apply to the project.

The Owner/Applicant should ensure that the provisions of the SWPPP are implemented from the commencement of construction activity until all areas of disturbance have achieved final stabilization and the Notice of Termination (NOT) has been submitted to the appropriate NYSDEC office.

The Owner/Applicant should maintain a copy of the General Permit (SPDES GP-0-10-001), Notice of Intent (NOI), NOI acknowledgement letter, SWPPP, MS4, and SWPPP Acceptance Form and Inspection Reports at the construction site until all disturbed areas have achieved final stabilization and the Notice of Termination has been submitted to the NYSDEC. The documents must be maintained in a secure location, such as a project trailer, on-site construction office, or mailbox with lock; that is accessible during normal working hours to an individual performing a compliance inspection.

3.0 CONTRACTOR'S RESPONSIBILITIES

The Contractor is responsible for implementing this SWPPP and related project specifications and reviewing all forms, certifications, and contract drawings, in order to become familiar with all aspects related to the SPDES GP-0-10-001. The Contractor shall retain a signed copy of this SWPPP and all associated attachments on-site from the initiation of demolition and proposed construction activities to the date of final stabilization. The Contractor is responsible for completing the certification contained herein Appendix A, prior to the commencement of demolition and proposed construction activities. Each of the Subcontractors involved in the implementation of erosion and sediment control measures must also complete a certification. The Contractor is responsible for each of the Subcontractors employed by the Contractor that are involved in the implementation of erosion and sediment controls or earthwork.

It is the duty of the Contractor to properly install and maintain all erosion and sediment control measures on the site as per this SWPPP. The Contractor shall also be responsible for the inspection of all erosion and sediment control measures for the proposed project by a "Trained Contractor" as per this SWPPP. Should the Owner, an owner's representative, or any local authority having jurisdiction deem that the SWPPP or the Contractor's implementation of the SWPPP proves to be ineffective in eliminating or significantly minimizing the pollutants or achieving the goals of the SPDES GP-0-10-001, the Contractor shall take any necessary action to conform to the objectives of the permit at no additional cost to the Owner.

It is the duty of the Contractor to properly inspect and maintain all erosion and sediment control measures installed on the site as per this SWPPP. Any revision to the SWPPP in design, demolition and construction activities, inspection, or maintenance shall be reflected by the Contractor in the on-site copy of the SWPPP in a timely manner. At the beginning of this work, the Contractor must designate a qualified inspector. The Contractor shall coordinate with the Resident Engineer to ensure that all of the inspection requirements are in conformance with this SWPPP and the requirements of the SPDES GP-0-10-001. On a monthly basis, copies of all inspection forms and maintenance records shall be organized and filed accordingly by the Contractor.

4.0 **PRE-DEVELOPMENT CONDITIONS**

The proposed project site is located at 11 New King Street in the Town of North Castle, New York. The site is situated to the east of New York State Route 120, north of Airport Road and to the west of New King Street. Further west of Route 120 is U.S. Highway 684 and Rye Lake. Rye Lake is part of Kensico Reservoir which is part of the New York City Department of Environmental Protection (NYCDEP) East

of Hudson (EOH) watershed. The NYCDEP water supply system provides drinking water to 9 million people within New York City and other municipalities.

The phosphorous load to the reservoirs from the contributing drainage basins results in exceedances of the phosphorous water quality values established by the NYSDEC and set forth in its Technical and Operational Guidance Series (TOGS) as determined by the NYCDEP. Therefore NYSDEC and NYCDEP have identified phosphorous as a pollutant of concern within the EOH watershed and have established specific design criteria as outlined in the NYSSDM "Enhanced Phosphorous Removal" standards.

The project development comprises of two tax map parcels within the Industrial AA (IND-AA) zoning district. The existing flag lot, designated as Block 4, Lot 14B, is approximately 2.47 acres and is currently developed with a one-story office building, associated parking area, and a two-way driveway which provides access from New King Street. The existing lot contains minimal slopes stretching from New King Street to the edge of the existing development but has moderate to steep slopes (15% or greater) beyond and extending to the western property line. A NYCDEP delineated watercourse traverses the eastern portion of the site through an existing 36-in. diameter culvert. This culvert is located beneath the existing driveway which connects the parking area to New King Street. A wetland, delineated by AKRF staff and to be confirmed by Town staff, also traverses the site along the southern and western boundary lines.

The proposed project will also involve the use of a portion of the adjoining property, designated as Block 4, Lot 13A, located to the northwest of Lot 14B. The portion of this property which is planned for drainage use is currently undeveloped and consists of trees and low-lying brush located within moderately to steep slopes. This area is bound by Town delineated wetlands to the west and a parking area to the east.

4.1 Existing Soil Conditions

The following soils are found on the property and adjacent sites based on the United States Department of Agriculture (USDA) Natural Resource Conservation Service Soil Survey of Putnam and Westchester Counties, New York.

4.1.1 USDA Soil Description

Below is a list of on-site soil types and associated descriptions as determined by United States Department of Agriculture "Soil Survey of Putnam and Westchester Counties, New York". (See Sheet No. D-1 Pre-Development Stormwater Map in Appendix B)

Woodbridge Loam (WdB)

This soil is gently sloping, very deep, and moderately well drained. It formed in compact glacial till derived from schist, gneiss, and granite and is located on the lower parts of hillsides in the uplands. Slope of the Woodbridge Loam soil ranges from 3 to 8 percent slope. The water table of this soil mapping unit is between 1.5 to 2.5 feet below the surface from November to May. Bedrock is at a depth of more than 60 inches. Included with this soil mapping are small areas of the poorly drained and very poorly drained Sun soils, areas of well drained Paxton soils, the somewhat poorly drained Ridgebury soils, bouldery or very stony areas, and areas of soils with a friable substratum.

Ridgebury Loam (RdB)

Ridgebury loam consists of gently sloping, very deep soil that is poorly drained to somewhat poorly drained. Slope of the Ridgebury loam ranges on the project site from 3 to 8 percent slope. The water table is perched from November to May and is located at a depth of 0 to 1.5 feet. Permeability is moderate or moderately rapid in the surface layer

and subsoil and slow or very slow in the substratum. Bedrock is at a depth of more than 60 inches. Ridgebury loam is present on along both the east and west boundary line.

Udorthents, Smoothed (Ub)

Udorthents, smoothed consists of very deep soil that is excessively drained to moderately well-drained. Slope of the Udorthents soil ranges from 0 to 25 percent slope. Many characteristics cannot be defined for this soil because there is a high variable composition. Fill material can be present at depths greater than 20 inches over the original soil. The Udorthents soil comprises the majority of the total soil on the site.

Symbol	Soil Series Name Hydrologic Soil Group		Drainage Characteristics		
WdB	Woodbridge loam 2 to 8 percent slopes	С	Moderately well drained. Permeability is moderate in the surface layer and subsoil and slow or very slow in the substratum. Erosion hazard is moderate, surface runoff medium, and water capacity moderate. "K" Factor: 0.24 to 0.32.		
RdB	Ridgebury loam, 3 to 8 percent slopes	С	Gently sloping, very deep and poorly drained soil located on lower parts of hillsides and along small drainage ways. Permeability is moderate or moderately rapid in the surface layer and subsoil and slow or very slow in the substratum. Erosion factor is slight, surface runoff medium and water capacity moderate. K factor: 0.24 to 0.32.		
Ub	Udorthents, smoothed		Very deep, excessively drained to moderately well- drained soil located near urban areas, highways, and borrow areas. It is comprised of alternating layers of material ranging from sand to silt loam. Properties are extremely variable and merit onsite investigation to determine properties for given site.		

Table 4-1Project Site Soil Types

Source: Soil Survey of Putnam and Westchester Counties, New York, USDA Soil Conservation Service.

Note: "K" Factor given indicates the erosion potential of each soil type. This indicates the susceptibility of a soil to sheet and rill erosion by water. Values of "K" range from 0.05 to 0.69. The higher the value the more susceptible the soil to erosion

4.1.2 Geotechnical Results

Test pits and soil borings were performed throughout the proposed development areas to help determine the feasibility of certain types of stormwater treatment practices and those that will offer the best performance, see Table 4-2 and 4-3. Test pits locations were survey located and can be found on the Pre-Development Drainage Map (Appendix B). NYCDEP and AKRF staff was present to witness the soil testing.

Deep test holes were performed in the northwest area of the project and generally indicated seasonal high groundwater varying from 3-foot 6 inches below grade to 8 feet below grade. Therefore, percolation testing was not performed in these areas. Borings were performed throughout the site, to provide information for the building foundation and pavement design. However, the information was also used to evaluate the potential for green infrastructure design.

Deep Test Hole Number	Description	
1	10' Total Depth, 6' Groundwater Seepage	
2	8' Total Depth, 6' Groundwater Seepage, 3'-6" Mottling Observed	
3	11' Total Depth, 7' Groundwater Seepage	
4	9' Total Depth, 8' Groundwater Seepage	

Table 4-2Project Site Deep Test Results

Table 4-3Project Site Boring Results

Boring Number	Description	
1	44' Total Depth, 25'-6" Groundwater Seepage	
2	51' Total Depth, 10.5' Groundwater Seepage	
3	36' Total Depth, 16' Groundwater Seepage	
4	45'-2" Total Depth, 26'-6" Groundwater Seepage	
5	30'-4" Total Depth, Water level not recorded	
6	31' Total Depth, 18' Groundwater Seepage	

4.2 Existing Natural Resources

Located within the project site are a Town designated wetland and a class "A" watercourse, as designated by NYSDEC. Approximately 18,680 square feet (sf) (0.428 acres) of the wetland is on Lot 14B, and approximately 3,200 sf (0.073 acres) of the wetland is on Lot 13A. The town designated wetland was delineated by a field survey conducted by AKRF. The wetland was found to be present within the undeveloped southern portion of the project site and outside the western borders of the property along Route 120. A wetland is mapped along the unnamed stream outside the eastern project boundary near New King Street. These designated wetland areas are protected

by town defined wetland setbacks. A reservoir stem is located at the outlet of the existing 60-in. diameter culvert on the west side of NYS Route 120. NYCDEP requires a 300 foot boundary line setback from a reservoir stem.

4.2.1 Watercourses

All state waters are assigned a class and standard designation based on existing or expected best usage. Streams that are designated as C(t) or higher (i.e., C(ts), B, or A) are collectively referred to as protected streams and are subject to the stream protection provisions of the Protection of Waters regulations.

The primary stream that traverses across the eastern portion of the project site flows through an existing 36-in. diameter culvert beneath the existing driveway. This perennial stream is listed as Class A by the NYSDEC and is therefore subject to the provisions of the Protection of Waters Program (6 NYCRR Part 608). The classification AA or A is assigned to waters used as a source of drinking water. The stream's proximity to the Kensico Reservoir, which is part of the NYCDEP water supply system, accounts for this designation. This stream is also subject to the Town of North Castle Code which regulates watercourses and disturbance activities within 100 feet of watercourses.

The secondary on-site drainage feature is identified as the Town designated wetland portion which stretches along the southern property line from east to west. This secondary drainage feature does not demonstrate perennial or intermittent flow and is more accurately termed an ephemeral drainageway, conveying surface runoff during or immediately following a rain event only. It is not mapped by NYSDEC and is therefore not regulated at the state level pursuant to the Protection of Waters Program.

Section 18-39(c)(6) of the Watershed Rules and Regulations prohibits impervious surfaces within 100 feet of a watercourse. NYCDEP staff members were present at the project site during the delineation of the watercourse. This information is shown on Sheet No. C-2 - Existing Conditions, see Appendix C.

4.2.2 Reservoir Stem

The NYCDEP regulates activities within a 300-foot radius of a reservoir stem. This setback helps to limit activities to areas within close proximity to downstream water supply reservoirs. The reservoir stem associated with this project is located to the northwest of the project site at the discharge point of the watercourse into Rye Lake, part of the Kensico Reservoir. The reservoir stem was determined using the elevation of the Kensico Dam, as provided by NYCDEP, and survey locating the elevation along the reservoir edge within the proximity of the tributary stream. The surveyor then delineated a 500-foot segment of the tributary stream. A 300-foot radius from the 500-foot segment was then drawn on the plans to show the reservoir stem setback. The project site is located within this reservoir stem setback however, the building and associated impervious surfaces has been situated outside of this required setback zone.

4.2.3 Wetlands

The project site contains wetlands located along the east, west, and south property lines. These two wetland areas were delineated by the Town of North Castle and survey located. The wetland area to the east of the property follows the delineation of the NYCDEP defined watercourse and stretches through the adjacent property to the north until it reaches an existing 60-in. diameter culvert located to the northwest of the site. This culvert conveys water beneath New York State Route 120 and towards Rye Lake.

The town delineated wetland area located along the south and west property lines conveys water to an existing 36-in. diameter culvert located off-site. This culvert conveys water beneath New York State Route 120 and towards Rye Lake

Wetlands are defined at the Federal level as "those areas that are inundated or saturated by surface or ground water at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions." Wetlands generally include "swamps, marshes, bogs, and similar areas" (Federal Register, 1982). Wetlands are regulated at the Federal level by the Army Corps of Engineers (ACOE) pursuant to Section 404 of the Clean Water Act and its implementing regulations. Wetlands are also regulated at the local level by the Town of North Castle, Town Code §209. The Town also regulates disturbance activities within a 100-foot buffer surrounding wetlands to protect their function and values.

4.3 Existing Utilities

Based on discussions with the Town of North Castle personnel there is no existing water service from New King Street, Route 120, or Airport Road. The project site is currently located outside of any existing water districts. An existing well is located on the slate patio in the rear of the existing building which currently provides potable water to the office building.

Sanitary sewage is discharged through a 3" PVC force main that runs under the driveway to the sanitary manhole located approximately 14 feet from the eastern most property line. At this point the sanitary flows are connected to the municipal sanitary system which runs beneath New King Street to the south.

There is an existing 1,000-gallon underground storage tank located along the southeast corner of the existing building. This fuel tank is used to provide heat and hot water to the existing facility.

4.4 Existing Stormwater

There are no existing stormwater management systems on-site and therefore, no existing treatment practices. The existing subwatersheds have been delineated in order to understand existing stormwater runoff flow conditions (See Sheet No. D-1 in Appendix B). Pre-development hydrologic routing calculations can be found in Appendix D of this report.

Therefore the majority of stormwater runoff is conveyed via overland flow from paved surfaces. Stormwater flows from rooftops, over paved areas and bare soil, and through sloped lawns collecting and transporting soil, animal waste, salt, pesticides, fertilizers, oil and grease, debris and other potential pollutants.

Potential Sources of Water Pollution

The existing subsurface sewage treatment systems are no longer functional and have been abandoned for several years and therefore are not a contributing source of pollution runoff. Roof leaders convey stormwater runoff from the office buildings to the lawn areas, where flow is spread out. Potential pollution sources within the watersheds include sand and salt from roadway and parking lot runoff, pesticide and fertilizers, and grass clippings.

Sand and salt is typically used for de-icing on the project site and adjacent paved surfaces. Since there is no existing stormwater management system, accumulated sediment could potentially be transported to the adjacent waterbodies. Many of the NYC Water Supply streams, lakes and reservoirs are impacted from intensifying land use. In addition to increased levels of phosphorous, chloride concentrations due to de-icing operations are increasingly found at higher levels in surface waters. Not only is chloride conveyed via surface water runoff, but it also infiltrates through the soil and intercepts the groundwater table, which is the contributing base flow of streams. In its annual report, New York City DEP has reported steady increases in conductivity of most reservoirs in the Croton Watershed since the early 1990s, most likely a result of increased development and associated pollutants (e.g., increased use of road salt).

Potential short-term and long-term impacts of runoff carrying fertilizers, pesticides, and other chemicals from lawns, roadways and other impervious surfaces and sedimentation is that it can be toxic to plants and animals.

Design Point 1

Design Point 1 is located along New York State Route 120 at the inlet of an existing 36-in. diameter culvert which is located within an existing stormwater wetland just beyond the southwest property line. This existing 36-in. diameter culvert conveys stormwater from a portion of the project site and the adjoining Westchester Airport property (located to the south) beneath NYS Route 120 towards Rye Lake which is part of the Kensico Reservoir. Stormwater flow across the south end of the property and a portion of the roof of the existing office building (Pre1) drains to the town designated wetland located along the western property line. From here, stormwater runoff is conveyed off-site to an existing 36-in. diameter culvert which directs stormwater under New York State Route 120.

The contributing drainage area consists of land use types varying from wooded areas, landscaped areas, and impervious surfaces from the existing buildings, surface drive and walkway areas. Currently stormwater runoff is conveyed via overland flow to this design point and at no point is runoff collected into on-site existing stormwater structures.

Design Point 2

Design Point 2 is located along New York State Route 120 at the inlet of an existing 60-in. diameter culvert which is located within an existing town designated wetland and NYCDEP designated watercourse. This existing 60-inch (in.) diameter culvert is located northwest of the property line just west of lot 13A.

The existing watercourse which traverses south to north at the existing driveway entrance for 11 New King Street is conveyed under the drive, via a 38 linear foot, 36-in. diameter culvert. This watercourse traverses through the adjoining property, crossing beneath the existing driveway through a stone culvert and over a concrete spillway, before eventually leading to a 60-in. diameter culvert downstream. This existing 60-in. diameter culvert conveys stormwater, from a portion of the project site and the adjoining properties to the north, beneath NYS Route 120 towards Rye Lake, a portion of the Kensico Reservoir.

The contributing drainage area consists of land use types varying from wooded areas, landscaped areas, and impervious surfaces from the existing buildings, surface drive and walkway areas. The stormwater flows contributing from the associated parking area and a portion of the existing building (Pre2), are directed northwest, overland towards the town designated wetland. A portion of the stormwater runoff is conveyed via overland sheet flow, before discharging into the watercourse at the stream edge, while the majority of the overland flow collects into a town designated wetland located to the west of Lot 13A. After ponding in this area, stormwater runoff

is conveyed to the north and discharges into the watercourse in the area of the existing 60-in. diameter culvert.

The existing watercourse appears to be in stable condition with minimal erosion issues, as a majority of the stream banks are rock-lined. In many cases the degree of stream movement is limited by these rock-lined banks allowing little opportunity to meander. These attributes are suggestive of a stream system with relatively low sensitivity to hydrologic changes.

Design Point 3

Design Point 3 is located in the eastern portion of the site adjacent to the watercourse. In the predevelopment condition, this drainage area consists of a portion of the existing one-story building, a portion of the associated parking area and driveway, and wooded/landscaped areas.

Stormwater runoff from the eastern portion of the project site, including the eastern portion of the associated parking and driveway leading towards New King Street (Pre3), is conveyed via overland flow to the NYCDEP watercourse located off-site. Runoff then flows within the watercourse through the existing 36-in. diameter culvert, beneath the existing driveway, and eventually to the existing 60-in. diameter culvert which conveys water under New York State Route 120. In the pre-development condition, stormwater runoff from the impervious surface is not collected or treated within a stormwater facility.

5.0 PROPOSED PROJECT DESCRIPTION

11 New King Street, LLC (the Applicant) proposes to construct a parking structure (proposed project) at 11 New King Street (project site) in the Town of North Castle, Westchester County to alleviate an existing parking shortage at Westchester County Airport.

The project site is located in the southern portion of the Town of North Castle, near the Connecticut state line and Westchester County Airport. (see Figure 5-1, Site Location Map). The proposed project would involve the construction of a multi-level parking structure with a building footprint of approximately 51,000 square feet. This project would also involve the construction of associated paved areas for on-site drive lanes and site access from New King Street. The site is currently developed with an approximately 9,700-square-foot one-story office building, an associated parking area, and a driveway which provides access from New King Street.

5.1 Anticipated Permits

The following is a list of anticipated permits for the construction activities associated with the proposed project.

5.1.1 New York State Department of Environmental Conservation

The project work will result in more than 5,000 square feet of disturbance within the New York City East of Hudson Watershed. This will require coverage under the SPDES General Permit for New Construction GP-0-10-001. This SWPPP is being prepared in compliance with the requirements of the New York State Stormwater Management Design Manual (NYSSMDM).

5.1.2 Westchester County Department of Health

The existing well is located within the footprint of the proposed building therefore a new well will be located on-site. Westchester County Department of Health approval will be required for the new on-site well.

5.1.3 New York City Department of Environmental Protection

In conformance with Section 18-37(d) of the Watershed Rules and Regulations (WRR), the applicant will be required to notify the Department of the modification to the existing sanitary sewer connection and submit associated engineering drawings. The proposed building will require a pump chamber and associated force main to pump sewage from the new building to the municipal sewer system located along New King Street. This connection will be made at an existing manhole located along the edge of the existing driveway, at the southeastern most property line.

NYCDEP review and approval of the SWPPP is required according to Section 18-39(b)(3)(iii) of the Watershed Rules and Regulations.

A variance will be necessary from Section 18-39(a)(4)(iii) of the Watershed Rules and Regulations. The proposed impervious surface will be increased within the limiting distance of 100 feet of a watercourse or wetland to meet the town requirements of driveway width of 24 ft. The 24 foot wide driveway is also necessary to address safety concerns.

5.1.4 Town of North Castle

The town is considered a regulated, land use control under the Municipal Separate Storm Sewer System (MS4) program and therefore the review and approval of the SWPPP is required prior to submission to NYSDEC.

The following table is a complete list of all permits required for the proposed project.

Approval/Permit/Review	Involved Agency		
Town of North Castle			
Site Plan Approval	Planning Board		
Wetland Permit	Planning Board		
Tree Removal Permit	Planning Board		
Zoning Text Amendment	Town Board		
Sanitary Sewer Connection	Building Department		
Westchester County			
Sanitary Sewer Connection	Department of Health (WCDOH)		
Water Supply Well	WCDOH		
Roadway/Signal Improvements	Department of Public Works (WCDPW)		
New York City			
SWPPP	Department of Environmental Protection (NYCDEP)		
Sanitary Sewer Connection	NYCDEP		
Limiting Distance Disturbance	NYCDEP		
New York State			
Roadway/Signal Improvements (NYS Route 120)	Department of Transportation (NYSDOT)		
SPDES Permit (GP-0-10-001)	Department of Environmental Conservation (NYSDEC)		
Federal			
Height Limitation	Federal Aviation Administration (FAA)		
Notice of Proposed Construction or Alteration	FAA		
Nationwide Permit, if applicable	U.S. Army Corps of Engineers (USACE)		

Table 5-1Required Permits, Approvals and Involved Agencies

6.0 POST-CONSTRUCTION STORMWATER PRACTICES

Post-construction stormwater practices that provide water quality and quantity control are required to meet pollutant removal goals, reduce runoff volume, reduce channel erosion, prevent overbank flooding, and control extreme floods. These controls help mitigate the effects of development by controlling suspended solids content and peak flows of runoff from developed sites. The NYSDEC has developed unified sizing criteria to size stormwater management measures. However, as previously mentioned, the project is located within the NYCDEP East of Hudson Watershed where the stormwater management design must also address specific NYCDEP requirements. The NYCDEP requirement for the treatment volume, also referred to as water quality volume (WQv), is to capture and treat the runoff generated from a 1-year, 24-hour storm event. The NYSDEC requirements for overbank flood and extreme storm are the same as NYCDEP requirements for attenuating the larger storm events.

The NYSDEC requirement for Water Quality Volume (WQv) for enhanced phosphorous removal is to capture the calculated runoff from the 1-year, 24-hour design storm. The method for calculating the runoff volume is based on the USDA NRCS Technical Release 20 and Technical Release 55. The stormwater treatment practices have been designed to meet the current WRR, including the requirement that the stormwater ponds be designed to capture and treat the runoff generated from the 1-year, 24-hour storm event from new impervious surfaces based on the requirements of Chapter 10 – Enhanced Phosphorous Removal Standards outlined in the NYSSMDM.

6.1 Regulations

6.1.1 NYSDEC Sizing Criteria

The following table is representative of the storm design criteria required within the New York State Stormwater Management Design Manual.

ATODIC CINOTI Sizing Criteriu			
Water Quality Volume (WQv)	WQv = Detention of the 1 year storm event		
Runoff Reduction Volume (RRv)	RRv = Reduction of the total WQv by application of green infrastructure techniques and SMPs to replicate pre-development hydrology.		
Channel Protection (Cpv)	Cpv = 24 hour extended detention of post-developed 1-year, 24-hour storm event.		
Overbank Flood (Qp)	Control the peak discharge from the 10-year storm to 10-year predevelopment rates.		
Extreme Storm (Qf)	Control the peak discharge from the 100-year storm to 100-year predevelopment rates. Safely pass the 100-year storm event.		

Table 6-1 NYSDEC Uniform Sizing Criteria

As the project is within the NYCDEP East of Hudson Watershed, the requirements and guidelines within the New York State Stormwater Management Design Manual Chapter 10 – Phosphorous Removal Enhancement was used to design the stormwater management system.

6.1.2 New York City Department of Environmental Protection Requirements

The project is located within the Kensico Reservoir watershed, which is part of New York City's surface water drinking water supply. NYCDEP is currently operating under a Memorandum of Agreement with the United States Environmental Protection Agency for filtration avoidance. Under this agreement certain provisions regarding impervious surface and stormwater runoff were incorporated within the City of New York, Rules and Regulations for the Protection from Contamination, Degradation and Pollution of the New York City Water Supply and its Sources (WRR) promulgated in 1997 and revised most recently in April 2010. The stormwater design criteria of the NYSSMDM are now referenced in the WRR. The WRR has additional criteria, such as the stormwater treatment practices must be designed to be in series. However, generally, the sizing and design criteria follow the state requirements.

6.1.3 Town

The Town of North Castle is a regulated, traditional land use control MS4, therefore the review and acknowledgement of the SWPPP is required.

6.2 Five-step process for site planning and stormwater management practice (SMP) selection

6.2.1 Step 1: Site Planning to preserve natural features and reduce impervious cover

The development of the stormwater management system for the proposed project site involves the use of green infrastructure practices, where feasible. The project area is 2.8 acres with approximately 33,447 square feet (sf) (0.77 acres) of existing impervious surface. The proposed automated parking garage design was a major factor in reducing the building footprint from the typical multi-level self-park system. The proposed project includes 55,924 sf (1.28 acres) of impervious surface, or 25,229 sf (0.64 acres) of new impervious surface. The proposed stormwater plan will also include approximately 10,786 (0.27 acre) of impervious surfaces from the existing office building roof runoff and associated parking area from adjacent Lot 13A.

The parking, drop-off, and traffic queuing areas are all located internal to the building. Therefore, runoff from the parking areas is not connected to the stormwater system and hence, decreasing the likelihood for oil and grease type pollutants to enter the storm system.

The following site planning practices were used to help determine the site plan and stormwater management system design.

Planning Practice 1: Preservation of Undisturbed Areas

The first approach to the overall design at Park Place is the preservation of undisturbed site area in order to maintain natural features and native vegetative areas. This technique coincides with Better Site Design (BSD) practice #1: preservation of undisturbed and BSD practice #3: reduction of clearing and grading. Both practices ensure that unnecessary earthwork is performed and instead help to limit overall site disturbance by developing in areas where disturbance has already occurred. Where possible the project has been designed to re-use existing impervious areas (i.e., driveway entrance, driveway) and has eliminated any disturbance of the presently undisturbed wetlands along the south and west property lines.

Planning Practice 2: Preservation of Buffers

The project site is situated in an area where Town delineated wetlands and NYCDEP designated wetlands greatly minimize the developable area on site. Currently, stormwater runoff from impervious surfaces located within wetland and watercourse buffers discharge directly to the waterbodies without any treatment. The project has been designed such that all runoff on impervious surfaces is treated by a series of water quality treatment methods before discharging downstream.

Planning Practice 3: Reduction of Clearing and Grading

The proposed building and associated impervious surfaces have been situated on the project site such that there will be no disturbance to existing wetland areas and hence, no clearing or grading is expected within these areas. The building has also been designed as

a tiered structure which will work most efficiently with the existing site topography and thus minimize clearing and grading areas to the greatest extent possible.

Planning Practice 4: Locating Sites in Less Sensitive Areas

By constructing the new development in an area already disturbed, the project has helped to maintain the site's natural character and existing habitat. Also, while the proposed project will increase impervious surface, the project will provide stormwater quality and quantity controls where there are presently none. By treating runoff through a series of stormwater treatment facilities the stormwater quality will be improved and will thus, improve the surrounding watercourse and wetland areas.

Planning Practice 6: Soil Restoration

Prior to final site stabilization the on-site soils will be modified or restored in order to reintroduce oxygen into compacted soils and improve the water storage within the soil. This process will subsequently help reduce runoff by allowing for a greater potential for infiltration and evapotranspiration.

Planning Practice 8: Roadway Reduction

The driveway travel lanes at the Park Place development have been designed to provide adequate safety and conveyance throughout the site. Originally four car exit lanes were designed to leave the building, however after evaluating the travel patterns the two lane exit was reduced to only one lane. Also, the fire access lane and maintenance path have both been designed to consist of permeable pavers in order to decrease impervious cover and increase site infiltration.

6.2.2 Step 2: Determine Water Quality Treatment Volume

Water quality volume has been calculated based upon the site layout and contributing drainage areas utilizing Chapter 9 – Redevelopment Project design criteria depicted in the NYSDEC Stormwater Management Design Manual. As the project is within the NYCDEP East of Hudson Watershed, the requirements and guidelines within the New York State Stormwater Management Design Manual Chapter 10 – Phosphorous Removal Enhancement was used to design the stormwater management system.

The project is located within the NYCDEP East of Hudson Watershed where the stormwater management design must also address specific NYCDEP requirements. The NYCDEP requirement for the treatment volume, also referred to as water quality volume (WQv), is to capture and treat the runoff generated from a 1-year, 24-hour storm event.

The calculated WQv required is derived from a summation of 100% WQv of the proposed impervious area from pervious area and 25% WQv of the proposed impervious area from existing impervious area. Appendix E provides the supporting calculations for WQv and RRv for the project.

6.2.3 Step 3: Runoff Reduction by Applying Green Infrastructure Techniques and Standard SMPs with RRv Capacity

In order to achieve the requirements for the Runoff Reduction Volume (RRv), the proposed project site must use green infrastructure techniques and practices to meet the required water quality volume (WQv) as determined in the NYSSMDM. The water quality volume required to be achieved for the Park Place development is 9,176 cubic feet (CF). By providing permeable pavement as an impervious area reduction practice,

the project was able to reduce the required water quality volume. By providing stormwater planter areas the project was able to treat 4,268 CF.

Green infrastructure practices or SMPs with runoff reduction capacity are required for the water quality volume associated with the new impervious area (pervious to impervious) of 6,391 CF. There are limiting site conditions that do not warrant the ability to reduce the runoff to pre-construction conditions, however the project has been designed to reduce a percentage of the runoff from impervious areas of the proposed development. Since this is not able to meet the required standard for RRv, the NYSSMDM allows for projects to reduce the required runoff reduction volume where additional efforts are not feasible. This reduction is based on a Hydrologic Soil Group(s) (HSG) of the site and is defined as the Specific Reduction Factor (S). The project site is located in HSG C soil, therefore the percent reduction factor is 0.30. The reduction factor for this site decreases the required RRv to 1,917 CF. According to the revised reduction factor the provided green infrastructure measures implemented on the site are sufficient to meet the allowable RRv. The comparison calculations for RRv and WQv can be found in Appendix E of this report.

Along with treating for water quality and quantity during the major storm events on the proposed project site, the NYSSMDM requires the applicant to achieve a runoff reduction volume. This volume is achieved through infiltration, groundwater recharge, reuse, recycle, evaporation/evapotranspiration of 100-percent of the post-development water quality volumes in order to replicate pre-development hydrology by maintaining pre-construction infiltration, peak runoff flow, discharge volume, as well as minimizing concentrated flow. This requirement can be accomplished by application of on-site green infrastructure techniques, standard stormwater management practices with runoff reduction capacity, and good operation and maintenance.

Infrastructure Technique 9: Stormwater Planters

The proposed development will be designed to have stormwater planter systems along the perimeter of the parking structure. These stormwater planters will be designed to treat the stormwater runoff from the roof of the proposed structure. The roof leaders will be routed to these areas for water quality treatment and nutrient intake before releasing into the proposed stormwater conveyance system.

Infrastructure Technique 11: Permeable Pavement

As discussed earlier, in the areas where high traffic is not expected (i.e. fire access lane, maintenance path), permeable pavers will be installed in place of conventional paving. This will help to reduce stormwater runoff from these areas and improve water quality and quantity downstream. The use of permeable pavers will reduce the amount of stormwater runoff through promoting infiltration.

Non-structural Stormwater Best Management Practices

Below is a list of nonstructural stormwater management practices that will be implemented throughout the project site:

• Long term soil stabilization through landscaping and maintenance in the developed areas. Prevention of soil loss, through establishment of vegetation and a landscape plan that will increase the amount of tree canopy and healthy ground cover. The

landscape plan will also maximize the travel time of stormwater runoff and minimize concentrated flows.

- The grounds maintenance program limits the potential for excessive nutrient loading, specifically controlling the application of phosphate-based fertilizers.
- There is a potential for an increase in pollutants associated with open parking areas such as petroleum, antifreeze, and refuse. These pollutants are picked up through stormwater flows and carried downstream, thus increasing pollutant loading in the stream and reducing water quality. This project however, is designed to provide multiple levels of parking within the building. By doing so, the impervious cover or impervious footprint will be decreased from a development of equal parking volumes. It will also allow for the pollutants, associated with parking areas, to be collected internally and discharged to the sanitary system rather than into the watershed.
- For those driving surfaces located at the entrance to the proposed building, a high level of maintenance and good housekeeping practices will be implemented at the site.

Catch basins with deep sump and hood will be installed at the downstream end of all proposed catch basins. This will trap floatables and debris within the catch basin. The deep sumps will trap the petroleum and antifreeze attached to sediment particles. The accumulated material will be cleaned out of the catch basins in accordance with the long term inspection and maintenance plan.

6.2.4 Step 4: Apply Standard Stormwater Management Practices to Address Remaining Water Quality Volume

The remainder of the WQv is achieved by Surface Sand Filter and Pocket Wetland. Each of these practices has been designed in accordance with NYSDEC standards. The practices are proposed in a series to increase the runoff treatment.

Proposed Surface Sand Filter (F-1 per the NYSSMDM)

The following parameters were used in designing and sizing the surface sand filter system:

- Off-Line System Stormwater runoff is conveyed via a storm pipe network, therefore the Sand Filter is designed off-line. A flow-splitter diversion structure has been designed to divert the runoff from the 1-year, 24 hour storm.
- Overflow An overflow structure has been provided to convey stormwater to Pocket Wetland W-4. A stabilized rip-rap spillway has also been provided to convey stormwater from the larger storm events.
- Underdrain A 6-inch diameter perforated pipe placed in a gravel layer, is proposed to collect stormwater that has filtered through the sand layer. Geotextile filter fabric will be placed between the gravel layer and sand layer.
- Groundwater Table A 2-ft. separation between the filter bottom and the seasonal high groundwater table has been provided.
- Pretreatment (Sedimentation Basin) A sedimentation basin will provide pretreatment at the inlet point. This will provide primary settling for the larger

particulates. The sedimentation basin will be sized to contain 25% of the WQv. The depth of the sedimentation basin is four feet. The outfall from the inlet pipe will be stabilized with rip rap to minimize erosion of the ponds' sideslopes. A fixed depth marker will be installed to assist in the long term inspection and maintenance plan. This will help determine the depth of sediment accumulation and when maintenance is required.

- Treatment Basin Sizing The complete system, including sedimentation basin, is designed to hold and treat at least 75% of the water quality volume and will consist of a surface sand filter which will have a coefficient of permeability of 3.5 ft/day.
- Filter Media The proposed filter media will consist of a medium sand meeting ASTM C-33 concrete sand.
- Side-Slopes The side slopes for the sedimentation basin and the surface sand filter are 3:1(H:1).
- Vegetation Landscape plans include various grass species for the sideslopes and bottom of the surface sand filter. The plant variety will provide treatment through filtering and nutrient uptake. See Landscape Plans.
- Geometry Both pretreatment and the surface sand filter have been designed with a length to width ratio of 1.5:1 as required by NYSSMDM.
- Energy Dissipater A rip rap velocity dissipater will be installed at the outlet that discharges into the sedimentation basin.
- Outlet control structure The pre-cast concrete structure is designed with a low flow orifice that will detain the 1-year, 24-hour storm event.
- Maintenance As specified in the Operation and Maintenance section of the SWPPP a legally binding and enforceable maintenance agreement shall be executed with the Town and the applicant/operator.

Proposed Pocket Wetland (W-4 per the NYSSMDM)

The following parameters were used in designing and sizing the pocket wetland (W-4):

- Water Quality Volume The WQv is equivalent to the runoff from the 1-year, 24-hour storm event. A detention time of 33 hours has been provided.
- Wetland The proposed pocket wetland is not located within NYSDEC jurisdictional waters, including wetlands.
- Pond Embankment The proposed pocket wetland would not consist of a dam as it is excavated system below the existing grading.
- Forebay A forebay is provided as the proposed pocket wetland to store a minimum of 10% of the WQv.
- Side-Slopes The side slopes for the pocket wetland are 4:1(H:1), therefore a pond safety bench is not required. However, an aquatic bench has been provided to help establish wetland vegetation.
- Micropool A micropool will be provided at the outlet in order to protect the low flow pipe from clogging and prevent sediment resuspension. This area will range from four to six feet in depth and will be able to store a minimum of 10% of the

WQv. The contributing drainage area from the proposed roof leader extension from the existing office building Lot 13B is less than 10% of the total design storm flow discharges directly to the micropool.

- Water Quality Volume At a minimum 25% of the water quality volume will be in deepwater zones with a depth greater than four feet.
- Vegetation Landscape plans include various grass species for the sideslopes and emergent wetland species. The plant variety will provide treatment through nutrient uptake. Minimum elements of a plan include: delineation of pondscaping zones, selection of corresponding plant species, planting plan, sequence for preparing the wetland bed and sources of plant material.
- Landscaping Native plants that promote phosphorous and nitrogen uptake will be specified in the final landscaping plans.
- Permanent pool 50% of the water quality volume will be provided in the permanent pool, as required for stormwater wetlands designed for extended detention. The seasonal groundwater table will be intercepted to provide a permanent pool.
- Geometry The pocket wetland has been designed with a length to width ratio of 2:1 as required by NYSSMDM. A minimum Surface Area: Drainage Area of 1:100 has been provided.
- Pond Buffer A pond buffer of at least 25 ft has been provided around the pond maximum water surface elevation.
- Energy Dissipater A rip rap velocity dissipater will be installed at the inlet and outlet of the lower pond. The lower pond discharges to the existing NYCDEP delineated watercourse where the banks are in stable condition. This will eliminate the potential for erosion of the stream bed.
- Emergency overflow Safe conveyance of the 100-year storm flow will be provided through a rip rap lined overflow spillway. The elevation is determined by the 100-yr flood elevation and located such that stormwater flows will not adversely impact surrounding properties.
- Maintenance access A 10-foot minimum width access path will be provided for long term maintenance of the stormwater ponds. The path will be constructed of grasspavers in order to decrease impervious surface and increase infiltration.
- Outlet control structure The pre-cast concrete structure is designed with a low flow orifice that will detain the 1-year, 24-hour storm event for a minimum of 24 hours, meeting the NYSDEC and NYCDEP requirements. The larger storm events will also be conveyed through an opening at the top of the outlet control structure designed to attenuate the larger storm events.
- The outlet control structure is located within the embankment, providing safe egress for maintenance.
- Freeboard 1-ft of freeboard above the 100-year storm elevation.
- Pond Drain A drain pipe would be part of the outlet control structure so that the pond could be completely drained for maintenance.

Table 6-1

• Maintenance Agreement – An Operation and Maintenance Plan as outlined in the SWPPP would be developed into a legally binding and enforceable agreement with Town as a condition of the site plan approval.

		Stormwater	<u>Management Practices</u>	
Water Qu	ality Volume Required	<u>9.176 cf</u>		
	Standard Practices for			
			Water Quality Volume	1
	Contributing Dra	inage Area (sf)	Provided	
Practice			<u>(cf)</u>	
Surface Sand Filter**	<u>86,3</u>	52	<u>12,775</u>	
Pocket Wetland***	<u>113,9</u>	<u>943</u>	<u>4,908</u>	
G	Green Infrastructure fo	r Water Quality Treat	<u>ment</u>	
				Runoff Reduction
			Water Quality Volume	Volume Provided
	Contributing Roof	Stormwater	Provided	<u>(45%WQv)</u>
Stormwater Planters	<u>Area (sf)</u>	Planter Size (sf)	<u>(cf)</u>	<u>(cf)</u>
North Planters	<u>8,979</u>	<u>665</u>	<u>592</u>	<u>266</u>
East Planters (A)	<u>8,979</u>	<u>727</u>	<u>647</u>	<u>291</u>
East Planters (B)	<u>8,979</u>	<u>510</u>	<u>454</u>	204
South Planters	<u>8,979</u>	<u>1,849</u>	<u>1,646</u>	<u>741</u>
West Planters	<u>8,979</u>	<u>1,044</u>	<u>929</u>	<u>418</u>
<u>Total</u>	<u>44,895</u>	<u>4,795</u>	<u>4,268</u>	<u>1,920</u>
	Other Green	<u>Infrastructure</u>		
Grass Pavers	<u>Drainage Area (sf)</u>	Surface Area (sf)		
Fire Truck Access Path	<u>4,040</u>	<u>3,576</u>		
Fire Truck Access Pull-Off	<u>1,060</u>	<u>315</u>		
Maintenance Path	8,000	<u>4,306</u> 11.427		
Total Gree	 			
	<u> </u>	otal WQv Provided	<u>21,951</u>	
<u>Notes:</u> * Includes driveway, building	n concrete pads			
** Includes Sedimentation B				
*** Includes extended deten				

6.2.5 Step 5: Apply Volume and Peak Rate Control Practices

The channel protection volume, overbank flood control and extreme flood control for the project have been satisfied via Surface Sand Filter and Pocket Wetland. The rainfall values in Table 6-2 have been utilized in the hydrologic analyses for the project. Summary Tables 6-3 provides a comparison of the peak flow rates that occur under existing and developed conditions.

Table 6-2 Rainfall Values

Rainfall Value (inches)	24-hour Storm Event (Year)
3.2	1
3.6	2
5.0	10
6.5	25
7.5	50
9.0	100

Table 6-3Runoff Flow Analysis

	Pre-Existing	Existing	Proposed	Change in Flow Rate		e	
	Conditions	Conditions	Project	Existi	ng to	Pre-Exis	sting to
Design Point	(cfs)	(cfs)	(cfs)	Prop	osed	Prope	osed
		1.	-year storm				
DP1	4.42	4.72	4.17	-0.55	-12%	-0.25	-6%
DP2	1.90	3.12	0.42	-2.7	-87%	-1.48	-78%
DP3	1.55	2.27	0.98	-1.29	-57%	-0.57	-37%
		10	-year storm				
DP1	10.95	11.38	10.22	-1.16	-10%	-0.73	-7%
DP2	4.57	6.15	2.68	-3.47	-56%	-1.89	-41%
DP3	3.61	4.58	2.14	-2.44	-53%	-1.47	-41%
		25	-year storm				
DP1	17.01	17.51	15.83	-1.68	-10%	-1.18	-7%
DP2	7.02	8.74	6.24	-2.5	-29%	-0.78	-11%
DP3	5.49	6.56	3.17	-3.39	-52%	-2.32	-42%
100-year storm							
DP1	27.60	28.16	25.66	-2.5	-9%	-1.94	-7%
DP2	11.27	13.06	9.87	-3.19	-24%	-1.4	-12%
DP3	8.81	9.87	4.93	-4.94	-50%	-3.88	-44%

Tables 6-4 and 6-5 provide the drainage areas for each design point for pre-developed and postdeveloped conditions, respectively.

<u>Table 6-4</u> Pre-Development Drainage Area

Design Point	Subcatchment	Total Area (square feet)
DP-1	PRE 1	261,194
DP-2	PRE 2	85,244
DP-3	PRE 3	61,828

Table 6-5

Post-Deve	<u>lopment Drainage Area</u>
	Total Area

Design Point	Subcatchment	<u>Total Area</u> (square feet)
<u>DP-1</u>	POST 1	248,549
<u>DP-2</u>	POST 2A	<u>4,907</u>
	POST 2B	14,630
	POST 2C	<u>44,895</u>
	POST 2D	<u>8,410</u>
	POST 2E	<u>13,510</u>
	POST 2F	<u>4,258</u>
	POST 2G	<u>23,333</u>
	POST 2H	<u>14,691</u>
<u>DP-3</u>	POST 3A	<u>33,605</u>
	POST 3B	<u>5,082</u>

6.2.5.1. Design Analysis

In order to evaluate the pre- and post-development drainage conditions, the site has been delineated into three (3) discharge analysis points based on pre-development hydrology; Design Points 1, 2, & 3. These points were analyzed to evaluate the effects of the proposed development on surface stormwater runoff. The design points and their pre- and post-development contributing subcatchment areas are shown on Pre- and Post-Development Stormwater Maps, Sheet Nos. D-1 and D-2 found in Appendix B.

To analyze the peak flow in pre-and post-development conditions HydroCAD[®], a computer aided design tool is used to evaluate and analyze the stormwater runoff from the site. The program also models the surface flow through the proposed stormwater practices determining the plug-flow and center-of-mass detention time within the ponds. A simultaneous routing process is used to evaluate the impacts associated with stormwater practices in series. The program is based on United State Department of Agriculture, Natural Resources Conservation Service (NRCS) Technical Releases TR20 and TR55. TR55 and TR20 are tools that were developed to calculate the volume and peak discharge rates of stormwater runoff generated in different rainfall events over a 24-hour period. Runoff volumes and rates are calculated by determining the curve numbers (CN) and calculating the time of concentration (Tc) for each subcatchment area depending on the given rainfall value. The CN values are based on the TR55 table and the hydrologic soil group, cover type, hydrologic condition and antecedent runoff condition. The Tc represents the time it takes for surface water to travel the hydraulically most distant point within the subcatchment area. The postdevelopment hydrologic analysis can be found in Appendix F.

The following rainfall values for Westchester County, shown in Table 6-2, were used in the analysis. For the purposes of the hydrologic analysis the runoff was based on Type III rainfall distribution for the northeast region. The following rainfall values are based on the 24-hour storm event. These values represent the rainfall distribution for various 24-hour storm frequencies.

6.2.5.2. Design Point 1

The proposed development area contributing to Design Point 1 includes the following proposed surfaces: a portion of the fire access lane, two concrete pads at building emergency access doors, landscaped areas, and wooded areas. Permeable pavers, such as TurfstoneTM are proposed in the fire access lane.

The existing and proposed drainage areas do differ in size because of the location of the proposed building and required treatment. The roof leaders for the proposed structure will collect and convey stormwater runoff to the north side of the building and discharge ultimately to Design Point 2. For this reason, the proposed impervious surface within the Design Point 1 drainage area is decreased in proposed conditions and stormwater flows are reduced from existing conditions.

Therefore, a stormwater treatment practice is not proposed for this drainage area. The results of the pre- and post-development flows demonstrate that the impact of the proposed permeable pavers is minimal. The proposed condition will improve the stormwater quality and quantity at Design Point 1.

6.2.5.3. Design Point 2

The proposed development area contributing to Design Point 2 includes the following proposed surfaces: the proposed building, the driveway and associated drive lanes, the maintenance access path, the fire access lane, multiple concrete pads for utilities, new landscaped areas, and the existing building on the adjoining property to the north. The location of the new building is such that there will be an increase in impervious surface coverage, total drainage area, and post stormwater flows conveyed to Design Point 2.

Increases in impervious surfaces associated with the proposed project will also indirectly reduce groundwater recharge. This reduction in groundwater recharge may, in turn, result in lower rates of base flow, that portion of a stream's flow not directly associated with storm events, upstream of the proposed outfall location.

The contributing drainage area to the proposed stormwater facilities (approximately. 2.7 acres), along with the high seasonal groundwater table makes the stormwater pocket wetland (W-4) the most suitable method for stormwater treatment. In accordance with Section 18-39(c)(6) of the Watershed Rules and Regulations, "If an activity requiring a stormwater pollution prevention plan will result in impervious surfaces covering twenty percent (20%) or more of the drainage area for which a stormwater management practice is designed, the stormwater pollution prevention plan shall provide for stormwater management practices in series". Therefore, to address the stormwater runoff from the proposed development, two stormwater facilities are proposed; a stormwater surface sand filter to treat the water quality volume and a stormwater wetland (W-4) which will treat water quality volume conveyed from the

surface sand filter and attenuate the flows from the larger storm events. These stormwater facilities are designed in series to capture and treat the stormwater runoff from the 1-year, 24-hour storm event in accordance with NYSDEC and NYCDEP requirements for treatment of phosphorous pollutants. These stormwater ponds also provide attenuation of peak flows from the larger storm events.

Due to the associated drive and building layout, and the existing topography, two stormwater ponds could not be placed on the project site; therefore the stormwater facilities were located on the adjoining property to the north. The ponds are referred to as Ponds W-4, and F-1 in the HydroCAD® analysis.

The stormwater ponds have been designed to capture and treat the stormwater runoff associated with the 1-year, 24-hour storm event and to meet the required elements of the NYSSMDM design criteria for stormwater ponds, specifically for surface sand filter design (F-1) and pocket wetland (W-4).

The stormwater runoff from post-development contributing drainage areas 2A, 2B, and 2C, a total of 1.5 acres, will collect and convey stormwater through a conventional stormwater collection system (i.e., pipes, manholes, catch basins) to a flow diversion structure (Structure # 6, see Sheet No. C-5 in Appendix C). The stormwater volume of a 1-year storm event will be diverted into a surface sand filter for water quality treatment of the stormwater runoff. Per the requirements of the NYSSMDM, the flow diversion structure is designed as an off-line device which will direct the water quality volume into the surface sand filter system.

The proposed project would disturb a portion of the steep slopes (>25%) on the western and northern sides of the project site. A majority of the existing steep slopes were created by soil filling during previous site development and do not include appropriate measures to minimize erosion and environmental impacts. The proposed development plan includes removal of the fill material comprising the steep slopes, and engineering measures to construct a new slope network that will minimize project-related and future environmental impacts.

The stormwater flows leaving the surface sand filter will then get discharged to the larger pocket wetland located slightly down gradient. Stormwater runoff volumes larger than the 1-year storm will by-pass the sedimentation basin and discharge directly into the pocket wetland. The post-development contributing drainage areas 2D and 2E, a total of 0.5 acres, will provide additional overland flows to the sedimentation basin and surface sand filter during all rain events. Also, post-development contributing drainage areas 2F and 2G, a total of 0.6 acres will provide additional stormwater runoff directly to the pocket wetland via piped roof leaders (from drainage area 2F) and overland flow (from drainage area 2G). The pocket wetland will serve as the second level of water quality and water quantity control before stormwater is discharged off-site and into the existing watercourse to the north.

6.2.5.4. Design Point 3

The proposed design area contributing to Design Point 3 will result in a reduction of the drainage area as well as eliminate the impervious surface runoff to this design point. The proposed condition will redirect the stormwater flows from the impervious surfaces into a conventional collection system and treat the runoff in the series of ponds discussed in Section 6.3.2. Therefore, a stormwater treatment practice is not proposed

for this drainage area. The results of the pre- and post-development flows demonstrate that the impact of the proposed condition will improve the stormwater quality and quantity at Design Point 3.

6.3 **Pollutant Loading Analysis**

The proposed stormwater management practices have been designed based on the NYSDEC stormwater sizing criteria to treat the full water quality volume and are capable of 80% TSS removal and 40% TP removal.

6.4 **Potential Pollutants**

De-icing Materials

There is a reduction of paved asphalt area from existing conditions therefore there would be a decrease in potential pollutant loading due to the reduce application area. The following guidance, based on guidance from the NYS Office of the Attorney General, would be observed with the primary duty to protect human life and safety.

1. Total Phosphorus Guidance:

Winter Road Maintenance Deicers:

- Endorsed Deicer products that contain 50 parts per million total phosphorus (ppm) or less.
- Discouraged Deicer products that contain more than 100 ppm total phosphorus.
- Avoid Any deicer that contains greater than 250 ppm total phosphorus should not be used or applied.
- 2. Reducing the use of sand as a treatment material should be a primary goal of environmentally responsible road maintenance because sand usage is responsible for much of the phosphorus introduced into the reservoirs from winter road maintenance. The use of sand also degrades aquatic habitat in streams, wetlands and rivers.

Herbicide, Pesticide, Fertilizer, and Fungicide

Fertilizer and pesticide application will be performed in accordance with NYSDEC application rates and be applied by a certified company. Fertilizer will be applied so that the vegetation can be quickly established; however, repeat use is not anticipated once vegetation has been sufficiently established. A more detailed plan for fertilization and pesticide application will be presented with the final landscaping plan. Fungicide and herbicides use are not anticipated. Manual weeding will be performed to avoid the use of chemicals that can potentially be harmful to water quality.

The proposed stormwater management system and non-structural practices will provide adequate mitigation of potential impacts including potential secondary impacts to the Kensico Reservoir and the reservoir stem.

6.5 Summary

The proposed stormwater management system has been designed to treat the Water Quality Volume (WQv) and attenuate the larger storm events to pre-development conditions. The project is designed based on Chapter 10 of the NYSSMDM.

The proposed project incorporates stormwater management practices as well as green infrastructure techniques that will treat runoff from the proposed project. These practices, designed in accordance with the regulations established by NYSDEC and NYCDEP, will include water quality treatment, peak flow attenuation, and temporary and permanent erosion and sediment control measures. The proposed facilities will be sufficient to mitigate the potential impacts of the proposed project related to the quantity and quality of stormwater runoff.

6.6 Variance

A variance from Section 28-39(a)(4)(iii) of the WRR is required for this project. The existing paved driveway is approximately 20 feet wide in the area of the existing 36 inch diameter culvert. However, to comply with the Town Code, the minimum width of an access driveway to a site with more than 21 parking spaces shall be 24 feet.

Article IX §213-44G of the Town Code states that access drives for ingress and egress to and from the parking areas for sites located in commercial districts shall be designed in conformance with the width standards, as well as the grade and surface standards provided in § 213-47. The driveway width requirement for a parking area with more than 21 parking spaces is 24 feet. The driveway surface shall be improved and suitably maintained to the extent deemed necessary by the Town Engineer to avoid nuisances of dust, erosion or excessive water flow across public ways or adjacent lands.

Therefore the applicant is requesting a variance so that the driveway will meet the Town Code and provide safe travel conditions for vehicular traffic. Shuttle busses will be used to transport passengers to and from Westchester County Airport. Various driveway alternatives were reviewed, including keeping the existing driveway width of 20.7 feet, however, 24 feet, or two 12-foot travel lanes, would meet the Town Code and provide a safe buffer width for passing vehicles. The 3.3-foot additional impervious surface is the minimum necessary to afford relief from the Town Code. There will be no disturbance to the water course or to the existing culvert for the proposed driveway widening.

Stormwater runoff currently flows across the asphalt driveway and directly discharges to the watercourse and wetland areas. With the proposed driveway widening, stormwater runoff would be directed to catch basins with deep sumps, rain garden, surface sand filter and a pocket wetland. The practices have been designed to treat 100% of the water quality volume from the entire existing and proposed asphalt pavement within the contributing drainage area. However, only 25% of the WQv from the existing impervious surfaces would be required. In addition to treating the larger WQv, the stormwater management system is designed to capture existing impervious surfaces from the adjacent Lot 13A. Stormwater runoff from the roof and paved surfaces currently flow overland towards the watercourse, causing erosive conditions in some areas of the lawn. Stormwater treatment practices do not exist at the site, therefore this would be a significant improvement over existing conditions and would go beyond the design requirements.

7.0 TEMPORARY EROSION AND SEDIMENT CONTROLS

The proposed new building will be arranged on the project site to maximize the use of the existing site topography and in order to utilize previously disturbed (cleared/regraded) areas for the new building and the proposed circulation network. The proposed 'Site Plan' and 'Paving, Grading and Drainage Plan' are shown on the large-scale plans (Sheet No. C-4 and C-5 in Appendix C).

The majority of the proposed development will be located within the existing developed area, which has moderate slopes of 25% or less. Disturbance to slopes greater than 25 percent would be minimized, totaling approximately 0.21 acres.

Table 7-1 indicates the acreage of disturbance by slope category.

Table 7-1Slope Disturbance

Slope Category	Acreage of Disturbance	
0-25 percent	2.55 acres	
25-35 percent	0.14 acres	
35 percent or greater	0.07 acres	

The proposed project will require excavation of soil and the grading of topography, which will result in the exposure of soil to natural forces. Several soil types located on the project site have moderate erosion potential, including the Charlton and Ridgebury loam. If not properly managed, the temporary exposure of bare soil accelerates the potential for erosion. This acceleration in soil erosion could potentially lead to siltation of the on- and off-site wetlands, ponds, and off-site watercourses. This may cause a reduction in surface water quality. Measures to avoid impacts from the proposed project are discussed below.

Section 213-17 (Hilltops, ridgelines and steep slopes) of the Town of North Castle Code requires that a building permit be attained prior to disturbing a slope category (25% or greater). The appropriate plans and permits will be submitted to the Town of North Castle for approval prior to initiating site development. The current engineering design plans include measures to minimize erosion and sedimentation, protect against possible slope failure and landslides, minimize stormwater runoff and flooding, and meet or exceed all applicable regulations for slope disturbance.

The proposed site plan for the Park Place project would result in the alteration of the geology, soils, and topography of a portion of the property. Specifically, the proposed area of disturbance will occur on approximately120,846 square feet (2.77 acres), of which approximately 86,767 square feet (1.99 acres) of the approximately 2.74 acres of land owned by the applicant.

The proposed project will require the excavation of approximately 25,475 cubic yards of earth material. Of the total excavated material, only 400 cubic yards will be used as fill in the regrading of the construction area. The net excess material of 25,076 cubic yards is to be disposed off-site.

7.1 Erosion and Sediment Control Practices

The following are specific erosion control measures as identified in the large scale drawings prepared for this project. Please refer to the large scale Erosion and Sediment Control drawing in Appendix C.

7.1.1 Stabilized Construction Entrance / Exit (SCE)

The construction entrance/exit shall have a stabilized aggregate pad underlain with filter cloth to prevent construction vehicles from tracking sediment off-site. Stabilized construction entrances are located at specific transition areas between concrete/asphalt to exposed earth.

7.1.2 Silt Fence

Silt fence shall be installed on the down gradient edge of disturbed areas parallel to existing or proposed contours or along the property line as perimeter control. Silt fence are to be used where stakes can be properly driven into the ground as per the Silt Fence detail in the New York State Standards and Specifications for Erosion and Sediment Control and as shown on the drawings (See large scale drawings Appendix C).

Silt fence controls sediment runoff where the soil has been disturbed by slowing the flow of water and encouraging the deposition of sediment before the water passes through the straw bale or silt fence. Built-up sediment shall be removed from silt fences when it has reached one-third the height of the bale/fence and properly disposed.

7.1.3 Storm Drain Inlet Protection

Inlet protection shall be installed at all inlets where the surrounding area has been disturbed. The inlet protection shall be constructed in accordance with NYSDEC Standards and Specifications for Erosion and Sediment Control. Typically they should be constructed to pass stormwater through, but prevent silt and sediment from entering the drainage system.

7.1.4 Stockpile Detail

Stockpiled soil is to be protected, stabilized, and sited in accordance with the Soil Stockpile Detail, as shown on the detail sheets in Appendix C. Soil stockpiles and exposed soil shall be stabilized by seed, mulch, or other appropriate measures, when activities temporarily cease during construction for 7 days or more in accordance with NYSDEC requirements.

7.1.5 Dust Control

During the demolition and construction process, debris and any disturbed earth shall be wet down with water, if necessary to control dust. After demolition and construction activities, all disturbed areas shall be covered and/or vegetated to provide for dust control on the site.

7.1.6 Temporary Seeding and Stabilization

In areas where demolition and construction activities, clearing, and grubbing have ceased, temporary seeding or permanent landscaping shall be performed to control sediment laden runoff and provide stabilization to control erosion during storm events. This temporary seeding/stabilization or permanent landscaping shall be in place no later than 14 days after demolition and construction activity has ceased.

7.1.7 Sump Pit

A temporary pit is constructed to trap and filter water for pumping to a suitable discharge area. The purpose is to remove excessive water from excavations. Sump pits are constructed when water collects during the excavation phase of construction.

7.1.8 Dewatering

Due to the depth of excavation for the building foundation and proximity to on-site watercourses and wetland areas, there may be areas of construction where the groundwater table will be intercepted and dewatering activities will take place. Sitespecific practices and appropriate filtering devices should be employed by the contractor so as to avoid discharging turbid water to the surface waters of the State of New York.

A sediment tank may be used in conjunction with other practices that will settle and filter the sediment from the stormwater runoff. The sediment tank is a compartmented tank container to which sediment laden water is pumped to trap and retain the sediment. The purpose of the tank is to trap and retain sediment prior to pumping the water to drainage ways, adjoining properties, and rights-of-way below the sediment tank site. In conjunction with the portable sediment tank, the mechanical filtering devices may be necessary to filter out the finer particulates. A permit may be required for such activities, therefore the contractor must coordinate with the resident engineer.

7.1.9 Perimeter Dike/Swale

The purpose of a perimeter dike/swale is to prevent off-site storm runoff from entering a disturbed area and to prevent sediment laden storm runoff from leaving the construction site or disturbed area. It can be used to convey stormwater runoff from the work area to a proposed sediment basin.

7.1.10 Temporary Sediment Basin

The purpose of a sediment basin is to intercept sediment-laden runoff and filter the sediment laden stormwater runoff leaving the disturbed area in order to protect drainage ways, properties, and rights-of-way below the sediment basin. The basin will be installed down gradient of construction operations which expose critical areas to soil erosion. The basin shall be maintained until the disturbed area is protected against erosion by permanent stabilization.

7.1.11 Materials Handling

The Contractor must store construction and waste materials as far as practical from any environmentally sensitive areas. Where possible, materials shall be stored in a covered area to minimize any potential runoff. The Contractor shall incorporate storage practices to minimize exposure of the materials to stormwater, and spill prevention and response where practicable. Prior to commencing any construction activities the contractor shall obtain all necessary permits or verify that all permits have been obtained.

7.2 Sequence of Construction

The phasing of the project is important for the construction of the proposed development. The protection of the natural resources, specifically the watercourse and wetland areas, have also been carefully factored into the development of the sequence of construction.

A pre-construction meeting shall be held with representatives of the Town, NYCDEP, the Resident Engineer, and the Contractor prior to any site disturbance. Any potential changes to the Erosion and Sediment Control Plan should be discussed at this time.

Sequence of Construction Activities

- 1. A pre-construction meeting shall be held with representatives of NYCDEP, certified professional trained contractor, the town, the resident engineer, and the contractor prior to any site disturbance.
- 2. Prior to clearing and grubbing activities the contractor shall install stabilized construction entrance/exit and construction access area as shown on the plan.

- 3. Install silt fence as indicated on the erosion and sediment control plan.
- 4. Disconnect all utility connections to existing one story building and remove building and associated appurtenances in accordance with demolition plan. Pavement demolition shall not be performed until Temporary Sediment Basin is installed.
- 5. Clear and grub in area of proposed temporary sediment basins. Any topsoil shall be stockpiled on-site as shown on drawing.
- 6. Rough grade proposed temporary sediment basin and associated stormwater structures. Install 6" of topsoil, seed, and stabilize with rolled erosion control product (RECP).
- 7. Soil stockpile should be located on grassy areas in accordance with detail.
- 8. Install perimeter dike/swale 1 and 2 starting at the temporary sediment basins as shown on plan.
- 9. Begin clearing and grubbing in the area of the proposed building footprint. Stockpile fill material in designated area as shown on plan.
- 10. Begin construction of building and associated driveway and stormwater infrastructure.
- 11. Install inlet protection.
- 12. Once building and paved surfaces are complete, complete final grading in adjacent areas. Stabilize with rolled erosion control product.
- 13. Complete final grading in basins and install vegetation in accordance with landscape plan.
- 14. Once final grade is achieved in proposed landscaped areas temporary seeding and mulching shall be done immediately.

8.0 INSPECTION AND MAINTENANCE

8.1 Inspections and Record Keeping During Construction

Once the contract has been let, the name, address, and phone number of responsible parties for maintenance will be provided to the NYSDEC. The following is a description of the maintenance and inspection practices that will be implemented as part of the project. Maintenance and inspection is important to ensure that the stabilization and structural practices that are part of the SWPPP continue to be effective in preventing sediment and other pollutants from entering the stormwater system. It is the responsibility of the owner or operator to ensure that inspections are completed in accordance with NYSDEC regulations.

8.1.1 Erosion and Sediment Control Inspection Report

As a part of the SWPPP inspection and maintenance activities during construction, the Erosion and Sediment Control Inspection Report shall be updated and kept on-site. A sample Erosion and Sediment Control Inspection Report is provided in Appendix H of this report.

Inspections would be conducted by the qualified inspector periodically according to the schedule required by the SPDES GP-0-10-001. During each inspection, the qualified inspector would record the areas of disturbance, deficiencies in erosion and sediment control practices, required maintenance, and areas of temporary or permanent

stabilization. The need for modifications to the Erosion and Sediment Control Plan should be identified and implemented immediately.

The Erosion and Sediment Control Inspection Report will be completed by a qualified inspector to fully document each inspection. A qualified inspector is a person knowledgeable in the principles and practices of erosion and sediment control, such as a licensed Professional Engineer, Certified Professional in Erosion and Sediment Control (CPESC), licensed Landscape Architect, or other NYSDEC endorsed individual(s). It also means someone working under the direct supervision of the licensed Professional Engineer or licensed Landscape Architect, provided the person has training in the principles and practices of erosion and sediment control. Training in the principles and practices of erosion and sediment control means that an individual performing the site inspection has received four hours of training, which has been endorsed by the NYSDEC, from a Soil and Water Conservation District, CPESC, Inc., or other NYSDEC endorsed entity, in proper erosion and sediment control principles no later than two years from the date SPDES GP-0-10-001 is issued. After receiving the initial training, an individual working under the direct supervision of the licensed Professional Engineer or licensed Landscape Architect shall receive four hours of training every three years.

8.1.2 Inspections

Inspections shall be conducted by the qualified inspector periodically according to the following schedule:

- 1. When construction activities are ongoing, the qualified inspector shall conduct a site inspection at least once every seven (7) calendar days.
- 2. When construction activities are ongoing and the owner or operator has received authorization in accordance with Part II.C.3 of GP-0-10-001 to disturb greater than five acres of soil at any one time, the qualified inspector shall conduct at least two site inspections every seven calendar days. When performing two inspections every seven calendar days, the inspections shall be separated by a minimum of two full calendar days.
- 3. If soil disturbance activities have been temporarily suspended (e.g. winter shutdown) and temporary stabilization measures have been applied to all disturbed areas, the qualified inspector shall conduct a site inspection at least once every thirty (30) calendar days. The owner or operator shall notify the Regional Office stormwater contact person in writing prior to reducing the frequency of inspections.
- 4. If soil disturbance activities have been shut down with partial project completion, the qualified inspector can stop conducting inspections if all areas disturbed as of the project shutdown date have achieved final stabilization and all post-construction stormwater management practices required for the completed portion of the project have been constructed in conformance with the SWPPP and are operational. The owner or operator shall notify the Regional Office stormwater contact person in writing prior to the shutdown. If soil disturbance activities have not resumed within 2 years from the date of shutdown, the owner or operator shall have the qualified inspector(s) perform a final inspection and certify that all disturbed areas have achieved final stabilization, and all temporary, structural erosion and sediment control measures have been removed, and that all post-construction stormwater management practices have been constructed in conformance with the SWPPP by

signing the "Final Stabilization" and "Post-Construction Stormwater Management Practice" certification statements on the Notice of Termination (NOT). The owner or operator shall then submit the completed NOT form in accordance with NYSDEC regulations.

During each inspection, the qualified inspector should fill out the Erosion and Sediment Control Inspection Report as directed below:

On the Erosion and Sediment Control Inspection Report site map show the following:

- Disturbed site areas and drainage pathways.
- Site areas that are expected to undergo initial disturbance or significant site work within the next 14-day period.
- Site areas that have undergone temporary or permanent stabilization.
- In areas where soil disturbance activity has been temporarily or permanently ceased, temporary and/or permanent soil stabilization measures shall be installed and/or implemented within seven (7) days from the date the soil disturbance activity ceased. The soil stabilization measures selected shall be in conformance with the most current version of the technical standard, New York State Standards and Specifications for Erosion and Sediment Control.
- Photographs, including date stamp, of any deficiencies and recommendations.
- As deficiencies are fixed by the contractor, a photograph, include date stamp, should be included in the report.
- Photograph of each outfall during a rain event.

Record the following information on the Erosion and Sediment Control Inspection Report:

- For each structural measure, circle YES, NO, or N/A (not applicable) to indicate if the pollutant control measure is in conformance with specifications.
- For each structural measure, circle YES, NO, or N/A to indicate whether the structural measure is performing effectively in minimizing stormwater pollution.
- Inspect all sediment control practices and record the approximate degree of sediment accumulation as a percentage of the sediment storage volume in the allocated location on the Inspection Form Chart (i.e., 10 percent, 20 percent, and 50 percent).
- A description of the condition of the runoff at all points of discharge from the construction site. This shall include identification of any discharges of sediment from the construction site. Include discharges from conveyance systems (i.e. pipes, culverts, ditches, etc.) and overland flow;
- A description of the condition of all natural surface waterbodies located within, or immediately adjacent to, the property boundaries of the construction site which receive runoff from disturbed areas. This shall include identification of any discharges of sediment to the surface waterbody;

The qualified inspector will give a brief explanation for all locations where he/she has noted that the structural practice was either not in conformance with specifications or in need of repair. This should be noted in the Erosion and Sediment Control Inspection Report. The qualified inspector will then give a brief recommendation for soil erosion and sediment control practices that were not installed properly or are not functioning as designed and need to be reinstalled or replaced.

8.1.3 Erosion And Sediment Control Maintenance Measures

All maintenance described below shall be completed in accordance with the New York State Standards and Specifications for Erosion and Sediment Control. Any material removed from erosion and sediment control measure shall be properly disposed.

All measures will be maintained in good working order; if repairs are found to be necessary, the qualified inspector shall notify the owner or operator and appropriate contractor (and subcontractor) of any corrective actions needed within one business day. The contractor (or subcontractor) shall begin implementing the corrective actions within one business day of this notification and shall complete the corrective actions in a reasonable time frame.

A maintenance inspection report, titled "Erosion and Sediment Control Inspection Report," will be made after each inspection conducted by a qualified inspector.

Disturbed areas and materials storage areas will be inspected for evidence of potential pollutants entering stormwater systems. Within one business day of the completion of the inspection, the qualified inspector shall notify the owner or operator and the appropriate contractor (or subcontractor) of any corrective actions that need to be taken. The contractor (or subcontractor) shall begin implementing the corrective actions within one business day of this notification and shall complete the corrective actions in a reasonable time frame.

A Monthly Summary of Site Inspection Activities will be prepared and kept on file with completed Erosion and Sediment Control Inspection Report. A Record of Stabilization and Construction Activities will be prepared and kept on file with the completed Construction Duration Inspection Forms.

The following are the maintenance requirements for each practice that will be implemented at the site.

8.1.4 Stabilized Construction Entrance/Exit

The stabilized construction entrance/exit shall be maintained in a condition that will prevent the tracking or flow of sediment onto public rights-of-way. All sediment spilled, dropped, washed or tracked onto public rights-of-way must be removed immediately; streets shall be swept as needed. The gravel pad shall be replaced as necessary. Sediment tracked onto public streets should be removed or cleaned on a daily basis.

8.1.5 Silt Fence

Maintenance of all silt fence shall be performed as needed. If a silt fence is knocked down, it shall be replaced immediately. When a silt fence appears deteriorated or ineffective and/or built up sediment reaches one-third the height of the bale or fence, the silt fence shall be replaced and/or cleaned accordingly. When "bulges" of material develop on the fence, they shall be removed.

Silt fence controls sediment runoff where the soil has been disturbed by slowing the flow of water and encouraging the deposition of sediment before the water passes through the silt fence. Built-up sediment shall be removed from silt fences when it has reached onethird the height of the fence and properly disposed.

8.1.6 Sump Pit

The sump pit will be inspected for proper control of runoff and sediment materials. Clean water should be pumped to a grassy area. If the contractor notices any visible contrast in the water, proper filtration shall be provided to release off site.

8.1.7 Soil Stockpile Detail

The silt fencing should be inspected for bulges and proper installation. The soil stockpile should be stabilized with grass or rolled erosion control blanket.

8.1.8 Storm Drain Inlet Protection

Maintenance and inspection of the filter fabric cloth beneath inlet grates in paved areas or the filter fabric drop inlet protection around the drop inlet shall be conducted. The filter fabric cloth shall be cleaned to allow water to pass and prevent clogging the drainage structure. The drainage inlet protection should be inspected for integrity and visible sediment buildup. Collected sediment should be removed from the drainage inlet protection and shall be disposed of properly in accordance with all applicable local, state, and federal requirements.

8.1.9 Dust Control

Maintain all dust control measures through dry weather periods until all disturbed areas are stabilized.

8.1.10 Soil Stabilization

To ensure that the site is properly seeded and stabilized, the Contractor must initiate stabilization measures as soon as practicable in areas of the site where construction activities have permanently ceased and in no case more than 14 days after the construction activity in that portion of the site has temporarily or permanently ceased. The Contractor will be responsible for the maintenance of the vegetated cover for the duration of construction activities. The areas shall be monitored to ensure that vegetation achieves good coverage over the entire disturbed section. Additional seeding shall be completed as needed.

In areas where soil disturbance activity has been temporarily or permanently ceased, temporary and/or permanent soil stabilization measures shall be installed and/or implemented within seven days from the date the soil disturbance activity ceased. The soil stabilization measures selected shall be in conformance with the most current version of the technical standard, New York State Standards and Specifications for Erosion and Sediment Control.

8.1.11 Perimeter Dike/Swale

The dike/swale should be properly stabilized with rolled erosion control blanket or other stabilization measures. Any rilling or areas of cutting should be immediately stabilized. Further investigation as to the cause should also be performed to determine if other upstream erosion and sediment control measures are needed. When accumulated sediment reached a depth of 1/3 of the total depth of the swale, this material shall be removed and properly disposed.

8.1.12 Temporary Sediment Basin

Any rilling and erosion of the basin sideslopes should be evaluated and adequate stabilization should be provided. Rolled erosion control blankets or other stabilization practices should be installed on the sideslopes. The outlet structure should be inspected for damages, accumulation of sediment, trash and debris, and overall performance. If sediment-laden stormwater is leaving the basin then additional erosion and sediment control practices may be required.

8.2 **Post-Construction Operation and Maintenance**

Following completion of construction, a long term inspection and maintenance program will be implemented to ensure the proper function of the stormwater management system. The program will be carried out by the facilities manager. A detailed checklist of pond inspection and maintenance is included in the Appendix I.

The stormwater conveyance system maintenance program will include the following:

- Litter and debris will be removed from catch basins, vegetated swales, ponds, and the outlet control structures.
- The stormwater management system should be inspected after each major storm event (greater than 1-year, 24-hour storm) to ensure the small orifices and inlets remain open.
- Silt will be cleaned from catch basins and other drainage structures when the depth exceeds half of the depth of the sump.
- Use of road salt for maintenance of driveway areas will be minimized.

In addition to inspection and maintenance of the stormwater management system, inspection of the overall site for areas of potential contamination will also be noted. Maintenance of existing landscaped areas is performed consistently throughout the year. Pest control would follow an Integrated Pest Management program in conjunction with guidance from the Cornell Cooperative Extension Agency, applicable regulations, and best practices. All potential pollutants, such as petroleum products, chemicals, etc, will be properly stored in designated areas that will minimize contact with precipitation.

Post-Construction Operation and Maintenance

Following completion of construction, a long term inspection and maintenance program would be implemented to ensure the proper function of the stormwater management system. The program would be carried out by the facilities manager. A detailed checklist of pond inspection and maintenance is included in Appendix I of the SWPPP.

Below is a breakdown of the maintenance programs designed for the different proposed stormwater facilities:

Surface Sand Filter (F-1)

Sedimentation Basin (Pretreatment)

• A fixed vertical sediment depth marker would be installed in the forebay to measure sediment deposition over time.

Surface Sand Filter

- Maintenance responsibility for the filtering system would be vested with a responsible authority by means of a legally binding and enforceable instrument that is executed as a condition of plan approval. A legally binding and enforceable maintenance agreement shall be executed between the facility owner and the local review authority to ensure the following:
 - a. Sediment shall be cleaned out of the sedimentation chamber when it accumulates to a depth of more than six inches. Vegetation within the sedimentation chamber shall be limited to a height of 18 inches. The sediment chamber outlet devices shall be cleaned/repaired when drawdown times exceed 36 hours. Trash and debris shall be removed as necessary.
 - b. Silt/sediment shall be removed from the filter bed when the accumulation exceeds one inch. When the filtering capacity of the filter diminishes substantially (i.e., when water ponds on the surface of the filter bed for more than 48 hours), the top few inches of discolored material shall be removed and shall be replaced with fresh material. The removed sediments shall be disposed in an acceptable manner (i.e., landfill).
- Surface sand filters that have a grass cover should be mowed a minimum of three times per growing season to maintain maximum grass heights less than 12 inches.
- Remove sediment/gross solids from sedimentation chamber and filter surface annually or when depth exceeds 3 inches.
- Sediment will be removed from stormwater ponds as needed, but at a minimum of every five years. A backhoe or excavator will be used to remove sediment accumulation from the bottom of the detention pond. However, vehicles shall be prevented from traversing the sideslopes to the extent possible to avoid damaging established vegetation. Repairs to the embankment should be done with hand tools to the extent practical.
- Provide stone drop (at least 6 inches) at the inlet.
- Eroded areas and gullies will be restored and re-seeded as soon as possible.

Pocket Wetland Pond (W-4)

- Maintenance responsibility for a pond and its buffer shall be vested with a responsible authority by means of a legally binding and enforceable maintenance agreement that is executed as a condition of plan approval.
- The principal spillway shall be equipped with a removable trash rack, and generally accessible from dry land.
- If a minimum coverage of 50% is not achieved in the planted wetland zones after the second growing season, a reinforcement planting is required. Eroded areas and gullies will be restored and re-seeded as soon as possible.
- Sediment removal at the inlets shall occur every 3 years or after 30% of pipe end section stone has been filled.
- Sediment removal from the main basin every 5 years or when the minimum water depth approaches 3 feet. More regular maintenance will help ensure that the system is achieving the highest removal of phosphorus. A backhoe or excavator will be used to remove sediment accumulation from the bottom of the detention pond. However, vehicles shall be prevented from traversing the sideslopes to the extent possible to avoid damaging established vegetation. Repairs to the embankment should be done with hand tools to the extent practical.

• The side slopes of the pond will be mowed at a minimum twice a year. If necessary, invasive woody vegetation around and in the pond will be removed to prevent it from becoming established within the pond.

Stormwater Planters

A regular and thorough inspection regime is vital to the proper and efficient function of stormwater

planters. The following operation and maintenance program would be implemented:

- Debris and trash removal should be conducted on a weekly or monthly basis, depending on likelihood of accumulation.
- Following construction, planters should be inspected after each storm event greater than 0.5 inches, and at least twice in the first six months. Subsequently, inspections should be conducted seasonally and after storm events equal to or greater than the 1-year storm event.
- Routine maintenance activities include pruning and replacing dead or dying vegetation, plant thinning, and erosion repair.
- The soil surface should be inspected for evidence of sediment build-up from the connected impervious surface and for surface ponding. Attention should be paid to additional seasonal maintenance needs as well as the first growing season.

Permeable Pavers

- Permeable pavements are highly susceptible to clogging and subject to owner neglect. Individual owners need to be educated to ensure that proper maintenance and winter operation activities will allow the system to function properly.
- The type of permeable paving and the location of the site dictate the required maintenance level and failure rate. Concrete grid pavers and plastic modular blocks require less maintenance because they are not clogged by sediment as easily as porous asphalt and concrete. Typical maintenance activities for permeable paving are summarized below.

Activity	Schedule
Ensure that paving area is clean of debris	Monthly
Ensure that paving dewaters between storms	Monthly and after storms >0.5 in.
Ensure that the area is clean of sediments	Monthly
Mow upland and adjacent areas, and seed bare areas	As needed
Vacuum sweep frequently to keep surface free of sediments	Typically 3 to 4 times a year
Inspect the surface for deterioration or spalling	Annual

When maintenance of permeable paving areas is required, the cause of the maintenance should be understood prior to commencing repairs so unnecessary difficulties and recurring costs can be avoided (Ferguson, 2005). Generally, routine vacuum sweeping and high-pressure washing (with proper disposal of removed material and washwater) can maintain infiltration rates when clogged or crusted material is removed. Signs can also be posted visibly within a permeable paving area to prevent such activities as resurfacing, the use of abrasives, and to restrict truck parking.

Rain Garden

Rain gardens are intended to be relatively low maintenance. However, these practices may be subject to

sedimentation and invasive plant species which could create maintenance problems. If the recharge ability is lost by accumulation of fine sediment, mosquito breeding may occur. Adequate arrangements for long-term maintenance of these systems and updated inventories of their location are essential for the long-term performance of these practices. Rain gardens should be treated as a component of the landscaping, with routine maintenance specified through a legally binding maintenance agreement.

- Routine maintenance would include the occasional replacement of plants, mulching, weeding and thinning to maintain the desired appearance. Weeding and watering are essential the first year, and would be minimized with the use of a weed-free mulch layer.
- The landscapers would be educated regarding the purpose and maintenance requirements of the rain garden, so the desirable aspects of ponded water are recognized and maintained.
- Keeping the garden weeded is one of the most important tasks, especially in the first couple of years while the native plants are establishing their root systems. Once the rain garden has matured, the garden area should be free of bare areas except where outlet structure is located. Keep plants pruned if they start to get "leggy" and floppy. Cut off old flower heads after a plant is done blooming.
- Inspect for sediment accumulations or heavy organic matter where runoff enters the garden and remove as necessary. The top few inches of planting soil should be removed and replaced when water ponds for more than 48 hours. Blockages may cause diversion of flow around the garden. Make sure all appropriate elevations have been maintained, no settlement has occurred and no low spots have been created.

WEST NILE VIRUS

Recent field observations conclude that constructed wetlands and stormwater management ponds actually pose a low risk in spreading the West Nile Virus since the mosquito species that are found in wetlands and stormwater management ponds tend not to be the variety that are known to carry the West Nile Virus. Within a healthy aquatic ecosystem, other aquatic invertebrates (dragonfly larvae and other species) prey on mosquito larvae thereby reducing mosquito populations. The SWPPP submitted to the NYSDEC and NYCDEP will include a regular maintenance schedule to be implemented at the completion of construction. This may include the stocking of the ponds with species to feed on potential mosquito larvae, and possible aeration systems to be exercised during periods of minimal flow through the ponds.

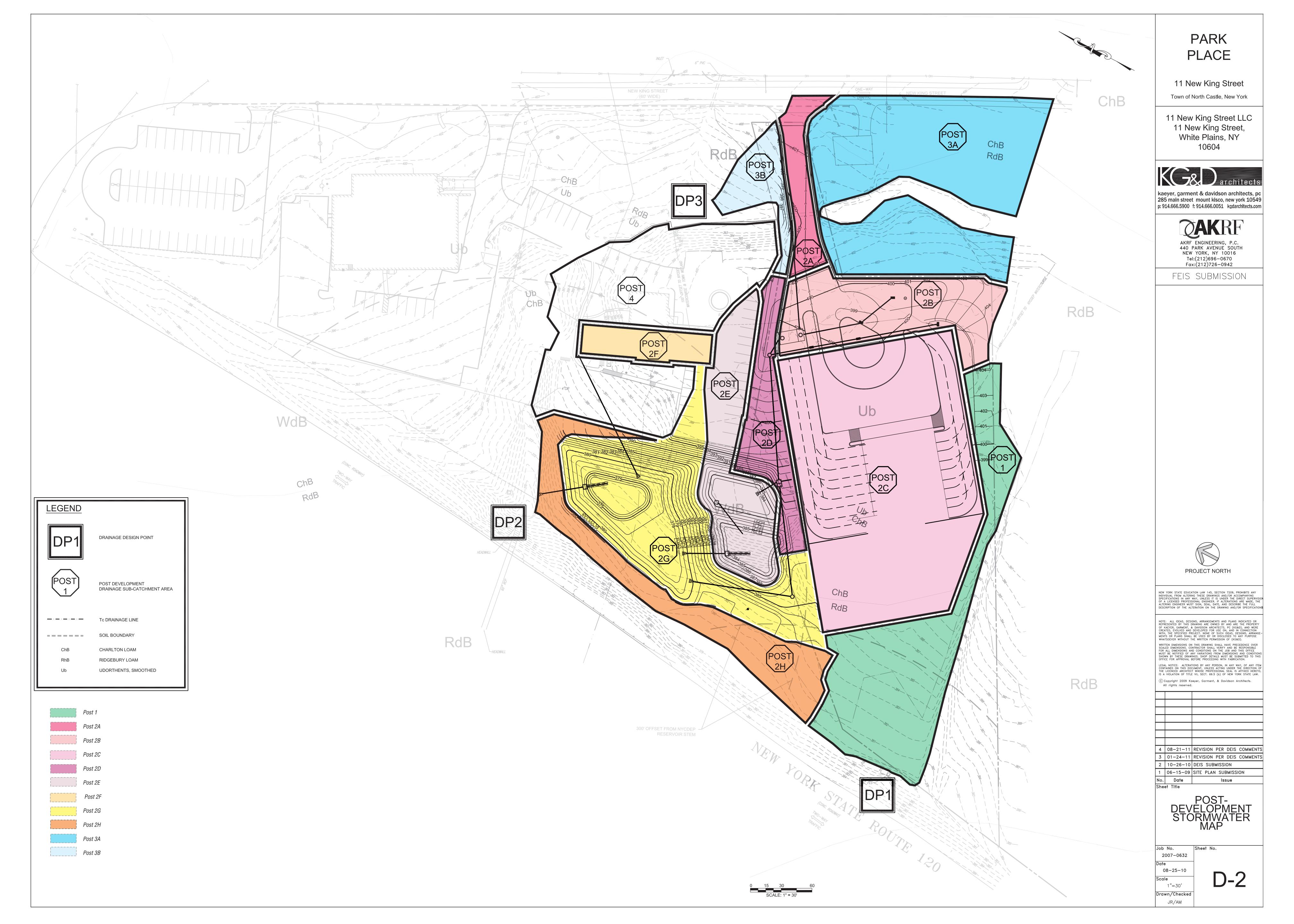
SWPPP APPENDIX A CONTRACTOR'S CERTIFICATION OWNER'S CERTIFICATION

CONTRACTOR'S CERTIFICATION

"I hereby certify that I understand and agree to comply with the terms and conditions of the SWPPP and agree to implement any corrective actions identified by the qualified inspector during a site inspection. I also understand that the owner or operator must comply with the terms and conditions of the most current version of the New York State Pollutant Discharge Elimination System ("SPDES") general permit for stormwater discharges from construction activities and that it is unlawful for any person to cause or contribute to a violation of water quality standards. Furthermore, I understand that certifying false, incorrect or inaccurate information is a violation of the referenced permit and the laws of the State of New York and could subject me to criminal, civil and/or administrative proceedings. "

SIGNED:	DATE:
NAME:	
FIRM:	
ADDRESS:	
PHONE:	
SITE:	
SWPPP IMPLEMENTER'S NAME:	
SWPPP IMPLEMETER'S TITLE:	
CONTRACTOR'S SCOPE:	
TRAINED CONTRACTOR'S NAME:	
TRAINED CONTRACTOR'S TITLE:	

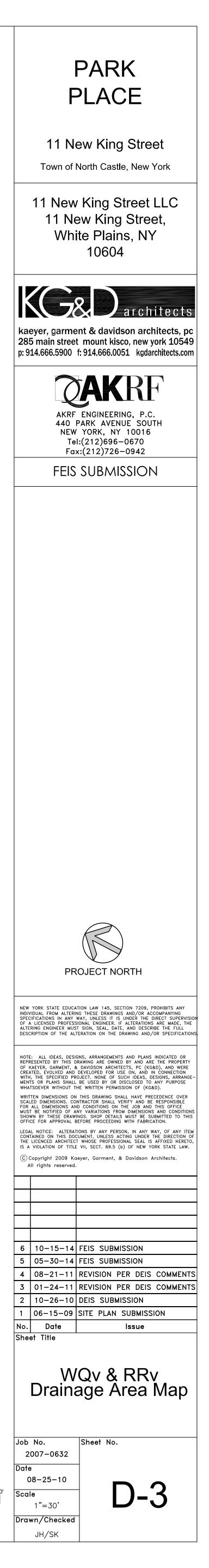
*The SWPPP Implementer must be a trained contractor responsible for SWPPP implementation, an employee of the firm who has received training in accordance with SPEDES GP-0-10-001.


OWNER'S CERTIFICATION

"I hereby certify that I understand and agree to comply with the terms and conditions of the SWPPP and agree to implement any corrective actions identified by the qualified inspector during a site inspection. I also understand that the owner or operator must comply with the terms and conditions of the New York State Pollutant Discharge Elimination System ("SPDES") general permit for stormwater discharges from construction activities and that it is unlawful for any person to cause or contribute to a violation of water quality standards. Furthermore, I understand that certifying false, incorrect or inaccurate information is a violation of the referenced permit and the laws of the State of New York and could subject me to criminal, civil and/or administrative proceedings."

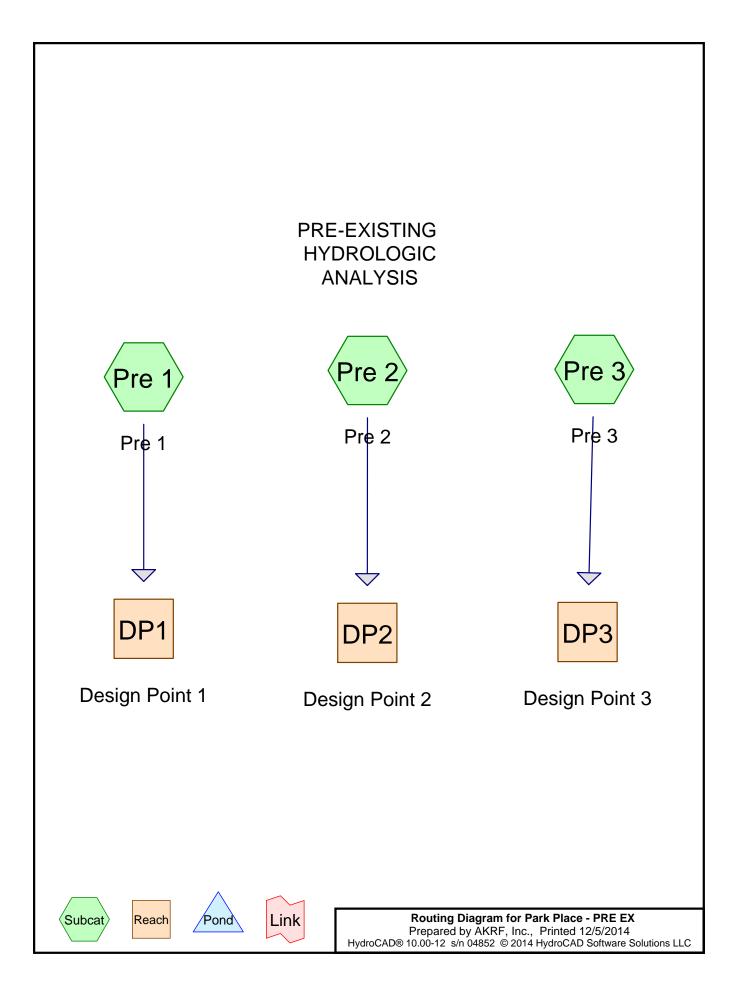
NAME:			
FIRM:			
ADDRESS:			
PHONE:			
SITE:			

SWPPP APPENDIX B PRE- AND POST-DEVELOPMENT STORMWATER MAPS WQV & RRV DRAINAGE AREA MAP



SURVEYOR'S LEGE	<u>ND</u>
— — 123 — —	EXISTING CONTOUR
X FF=123.45 X 123.45	FINISHED FLOOR ELEVATION EXISTING SPOT ELEVATION
X TC 123.45 X G 122.95	EXIST. TOP OF CURB ELEVATION
X TW 123.45	EXIST. GUTTER ELEVATION EXIST. TOP OF WALL ELEVATION
X BW 122.95	EXIST. BOTTOM OF WALL ELEVATION HYDRANT
wv >	WATER VALVE
GV	GAS VALVE
—— он —— —— т ——	OVERHEAD WIRES UNCONFIRMED LOC. UNDERGROUND TELE. LINE PER UTILITY MARKOUT (SEE NOTE #3)
C	UNCONFIRMED LOC. UNDERGROUND CABLE LINE PER UTILITY MARKOUT (SEE NOTE #3)
-0-	UTILITY POLE
	UTILITY POLE/LIGHT POLE GUY WIRE
	MONITORING WELL
G	GAS METER ELECTRIC METER
0	SIGN BOLLARD
E.O.P. C.L.F.	EDGE OF PAVEMENT CHAIN LINK FENCE
L.S.A. E.O.P.	LANDSCAPED AREA EDGE OF PAVEMENT
D.C. B.B.	DEPRESSED CURB BELGIAN BLOCK
DE CH	DEAD (NON-LIVING) CHERRY
MA LO	MAPLE LOCUST
TU GI	TULIP GINGKO
MAG LI TU	MAGNOLIA LILAC TULIP
N.P.V.	NO PIPES VISIBLE
<i>М.С.</i>	METAL COVER AREA LIGHT
C/0 °	LAMP POST CLEAN OUT
1.0'	DENOTES OFFSET OF STRUCTURE AT GROUND LEVEL RELATIVE TO PROPERTY LINE
12" T 15" MA	DENOTES UNKNOWN TREE SPECIES AND TRUNK DIAMETER DENOTES DECIDUOUS TREE SPECIES AND TRUNK DIAMETER
15" PINE	DENOTES CONIFEROUS TREE SPECIES AND TRUNK DIAMETER
DEP	DENOTES WATERCOURSE BOUNDARY FLAG AET BY NYCDEP (12.16.11) (SEE NOTE #11) DENOTES FEDERAL WETLAND BOUNDARY FLAG SET BY AKRF, JD CONFIRMED BY USACE (SEE NOTE #11)
<u> </u>	DELINEATION LINE
	UNKNOWN MANHOLE SANITARY MANHOLE
	STONE WALL AIR CONDITIONING UNIT
AC	DENOTES SOIL BORING/TEST PIT
	WELL BASKETBALL HOOP
<u></u>	DELINEATION LINE SET BY NYCDEP DATED DECEMBER 16, 2011 (SEE NOTE #11) FEDERAL WETLAND BOUNDARY - DELINEATED BY AKRF. CONFIRMED BY
	
P	NOTE #11) FEDERAL WETLAND BOUNDARY - DELINEATED BY AKRF, CONFIRMED BY USACE - JD ISSUED 2/1/12 (PERMIT APPLICATION #NAN-2011-0486-ESO) WETLAND DELINEATION LINE SET BY TOWN (SEE C1 GENERAL NOTE 13)
	NOTE #11) FEDERAL WETLAND BOUNDARY - DELINEATED BY AKRF, CONFIRMED BY USACE - JD ISSUED 2/1/12 (PERMIT APPLICATION #NAN-2011-0486-ESO) WETLAND DELINEATION LINE SET BY TOWN (SEE C1 GENERAL NOTE 13) 100' OFFSET FROM WETLAND DELINEATION LINE NYCDEP INTERMITTENT STREAM NYCDEP INTERMITTENT STREAM 50' BUFFER
	NOTE #11) FEDERAL WETLAND BOUNDARY - DELINEATED BY AKRF, CONFIRMED BY USACE - JD ISSUED 2/1/12 (PERMIT APPLICATION #NAN-2011-0486-ESO) WETLAND DELINEATION LINE SET BY TOWN (SEE C1 GENERAL NOTE 13) 100' OFFSET FROM WETLAND DELINEATION LINE NYCDEP INTERMITTENT STREAM NYCDEP INTERMITTENT STREAM 50' BUFFER 300' OFFSET FROM NYCDEP RESERVOIR STEM
	NOTE #11) FEDERAL WETLAND BOUNDARY - DELINEATED BY AKRF, CONFIRMED BY USACE - JD ISSUED 2/1/12 (PERMIT APPLICATION #NAN-2011-0486-ESO) WETLAND DELINEATION LINE SET BY TOWN (SEE C1 GENERAL NOTE 13) 100' OFFSET FROM WETLAND DELINEATION LINE NYCDEP INTERMITTENT STREAM NYCDEP INTERMITTENT STREAM 50' BUFFER 300' OFFSET FROM NYCDEP RESERVOIR STEM EXISTING PROPERTY LINE
	NOTE #11) FEDERAL WETLAND BOUNDARY - DELINEATED BY AKRF, CONFIRMED BY USACE - JD ISSUED 2/1/12 (PERMIT APPLICATION #NAN-2011-0486-ESO) WETLAND DELINEATION LINE SET BY TOWN (SEE C1 GENERAL NOTE 13) 100' OFFSET FROM WETLAND DELINEATION LINE NYCDEP INTERMITTENT STREAM NYCDEP INTERMITTENT STREAM 50' BUFFER 300' OFFSET FROM NYCDEP RESERVOIR STEM EXISTING PROPERTY LINE EXISTING PROPERTY LINE ADJACENT PROPERTY
	NOTE #11) FEDERAL WETLAND BOUNDARY - DELINEATED BY AKRF, CONFIRMED BY USACE - JD ISSUED 2/1/12 (PERMIT APPLICATION #NAN-2011-0486-ESO) WETLAND DELINEATION LINE SET BY TOWN (SEE C1 GENERAL NOTE 13) 100' OFFSET FROM WETLAND DELINEATION LINE NYCDEP INTERMITTENT STREAM NYCDEP INTERMITTENT STREAM 50' BUFFER 300' OFFSET FROM NYCDEP RESERVOIR STEM EXISTING PROPERTY LINE EXISTING PROPERTY LINE ADJACENT PROPERTY LIMIT OF DISTURBANCE
	NOTE #11) FEDERAL WETLAND BOUNDARY - DELINEATED BY AKRF, CONFIRMED BY USACE - JD ISSUED 2/1/12 (PERMIT APPLICATION #NAN-2011-0486-ESO) WETLAND DELINEATION LINE SET BY TOWN (SEE C1 GENERAL NOTE 13) 100' OFFSET FROM WETLAND DELINEATION LINE NYCDEP INTERMITTENT STREAM NYCDEP INTERMITTENT STREAM 50' BUFFER 300' OFFSET FROM NYCDEP RESERVOIR STEM EXISTING PROPERTY LINE EXISTING PROPERTY LINE ADJACENT PROPERTY
	NOTE #11) FEDERAL WETLAND BOUNDARY - DELINEATED BY AKRF, CONFIRMED BY USACE - JD ISSUED 2/1/12 (PERMIT APPLICATION #NAN-2011-0486-ESO) WETLAND DELINEATION LINE SET BY TOWN (SEE C1 GENERAL NOTE 13) 100' OFFSET FROM WETLAND DELINEATION LINE NYCDEP INTERMITTENT STREAM NYCDEP INTERMITTENT STREAM 50' BUFFER 300' OFFSET FROM NYCDEP RESERVOIR STEM EXISTING PROPERTY LINE EXISTING PROPERTY LINE ADJACENT PROPERTY LIMIT OF DISTURBANCE PROPOSED BUILDING ENVELOPE (BUILDING SETBACK LINE)
	NOTE #11) FEDERAL WETLAND BOUNDARY - DELINEATED BY AKRF, CONFIRMED BY USACE - JD ISSUED 2/1/12 (PERMIT APPLICATION #NAN-2011-0486-ESO) WETLAND DELINEATION LINE SET BY TOWN (SEE C1 GENERAL NOTE 13) 100' OFFSET FROM WETLAND DELINEATION LINE NYCDEP INTERMITTENT STREAM NYCDEP INTERMITTENT STREAM 50' BUFFER 300' OFFSET FROM NYCDEP RESERVOIR STEM EXISTING PROPERTY LINE EXISTING PROPERTY LINE ADJACENT PROPERTY LIMIT OF DISTURBANCE PROPOSED BUILDING ENVELOPE (BUILDING SETBACK LINE) PROPOSED MULTI-LEVEL PARKING FACILITY
	NOTE #11) FEDERAL WETLAND BOUNDARY - DELINEATED BY AKRF, CONFIRMED BY USACE - JD ISSUED 2/1/12 (PERMIT APPLICATION #NAN-2011-0486-ESO) WETLAND DELINEATION LINE SET BY TOWN (SEE C1 GENERAL NOTE 13) 100' OFFSET FROM WETLAND DELINEATION LINE NYCDEP INTERMITTENT STREAM NYCDEP INTERMITTENT STREAM 50' BUFFER 300' OFFSET FROM NYCDEP RESERVOIR STEM EXISTING PROPERTY LINE EXISTING PROPERTY LINE ADJACENT PROPERTY LIMIT OF DISTURBANCE PROPOSED BUILDING ENVELOPE (BUILDING SETBACK LINE) PROPOSED MULTI-LEVEL PARKING FACILITY PROPOSED BELGIAN BLOCK CURBING
	NOTE #11) FEDERAL WETLAND BOUNDARY - DELINEATED BY AKRF, CONFIRMED BY USACE - JD ISSUED 2/1/12 (PERMIT APPLICATION #NAN-2011-0486-ESO) WETLAND DELINEATION LINE SET BY TOWN (SEE C1 GENERAL NOTE 13) 100' OFFSET FROM WETLAND DELINEATION LINE NYCDEP INTERMITTENT STREAM NYCDEP INTERMITTENT STREAM 50' BUFFER 300' OFFSET FROM NYCDEP RESERVOIR STEM EXISTING PROPERTY LINE EXISTING PROPERTY LINE ILIMIT OF DISTURBANCE PROPOSED BUILDING ENVELOPE (BUILDING SETBACK LINE) PROPOSED BUILTI-LEVEL PARKING FACILITY PROPOSED BELGIAN BLOCK CURBING STORMWATER DRAINAGE EASEMENT
	NOTE #11) FEDERAL WETLAND BOUNDARY - DELINEATED BY AKRF, CONFIRMED BY USACE - JD ISSUED 2/1/12 (PERMIT APPLICATION #NAN-2011-0486-ESO) WETLAND DELINEATION LINE SET BY TOWN (SEE C1 GENERAL NOTE 13) 100' OFFSET FROM WETLAND DELINEATION LINE NYCDEP INTERMITTENT STREAM NYCDEP INTERMITTENT STREAM 50' BUFFER 300' OFFSET FROM NYCDEP RESERVOIR STEM EXISTING PROPERTY LINE EXISTING PROPERTY LINE ADJACENT PROPERTY LIMIT OF DISTURBANCE PROPOSED BUILDING ENVELOPE (BUILDING SETBACK LINE) PROPOSED BUILDING ENVELOPE (BUILDING SATBACK LINE) PROPOSED BUILDING ENVELOPE (BUILDING FACILITY PROPOSED BELGIAN BLOCK CURBING STORMWATER DRAINAGE EASEMENT PROPOSED DRAINAGE FLOW DIRECTION
	NOTE #11) FEDERAL WETLAND BOUNDARY - DELINEATED BY AKRF, CONFIRMED BY USACE - JD ISSUED 2/1/12 (PERMIT APPLICATION #NAN-2011-0486-ESO) WETLAND DELINEATION LINE SET BY TOWN (SEE C1 GENERAL NOTE 13) 100' OFFSET FROM WETLAND DELINEATION LINE NYCDEP INTERMITTENT STREAM NYCDEP INTERMITTENT STREAM NYCDEP INTERMITTENT STREAM 50' BUFFER 300' OFFSET FROM NYCDEP RESERVOIR STEM EXISTING PROPERTY LINE EXISTING PROPERTY LINE EXISTING PROPERTY LINE ADJACENT PROPERTY LIMIT OF DISTURBANCE PROPOSED BULDING ENVELOPE (BUILDING SETBACK LINE) PROPOSED DELGIAN BLOCK CURBING STORMWATER DRAINAGE FLOW DIRECTION PROPOSED TURFSTONE PAVERS
	NOTE #11) FEDERAL WETLAND BOUNDARY - DELINEATED BY AKRF, CONFIRMED BY USACE - JD ISSUED 2/1/12 (PERMIT APPLICATION #NAN-2011-0486-ESO) WETLAND DELINEATION LINE SET BY TOWN (SEE C1 GENERAL NOTE 13) 100' OFFSET FROM WETLAND DELINEATION LINE NYCDEP INTERMITTENT STREAM NYCDEP INTERMITTENT STREAM 50' BUFFER 300' OFFSET FROM NYCDEP RESERVOIR STEM EXISTING PROPERTY LINE EXISTING PROPERTY LINE ADJACENT PROPERTY LIMIT OF DISTURBANCE PROPOSED BUILDING ENVELOPE (BUILDING SETBACK LINE) PROPOSED BUILDING ENVELOPE (BUILDING SETBACK LINE) PROPOSED BELGIAN BLOCK CURBING STORMWATER DRAINAGE EASEMENT PROPOSED DAINAGE FLOW DIRECTION PROPOSED ASPHALT DRIVEWAY
	NOTE #11) FEDERAL WETLAND BOUNDARY - DELINEATED BY AKRF, CONFIRMED BY USACE - JD ISSUED 2/1/12 (PERMIT APPLICATION #NAN-2011-0486-ESO) WETLAND DELINEATION LINE SET BY TOWN (SEE C1 GENERAL NOTE 13) 100' OFFSET FROM WETLAND DELINEATION LINE NYCDEP INTERMITTENT STREAM NYCDEP INTERMITTENT STREAM 50' BUFFER 300' OFFSET FROM NYCDEP RESERVOIR STEM EXISTING PROPERTY LINE EXISTING PROPERTY LINE EXISTING PROPERTY LINE ADJACENT PROPERTY LIMIT OF DISTURBANCE PROPOSED BUILDING ENVELOPE (BUILDING SETBACK LINE) PROPOSED BUILTHEVEL PARKING FACILITY PROPOSED DRAINAGE FLOW DIRECTION PROPOSED DRAINAGE FLOW DIRECTION PROPOSED TURFSTONE PAVERS
	NOTE #11) FEDERAL WETLAND BOUNDARY - DELINEATED BY AKRF, CONFIRMED BY USACE - JD ISSUED 2/1/12 (PERMIT APPLICATION #NAN-2011-0486-ESO) WETLAND DELINEATION LINE SET BY TOWN (SEE C1 GENERAL NOTE 13) 100' OFFSET FROM WETLAND DELINEATION LINE NYCDEP INTERMITTENT STREAM NYCDEP INTERMITTENT STREAM 50' BUFFER 300' OFFSET FROM NYCDEP RESERVOIR STEM EXISTING PROPERTY LINE EXISTING PROPERTY LINE EXISTING PROPERTY LINE ADJACENT PROPERTY LIMIT OF DISTURBANCE PROPOSED BUILDING ENVELOPE (BUILDING SETBACK LINE) PROPOSED BULCIANA BLOCK CURBING STORMWATER DRAINAGE EASEMENT PROPOSED DRAINAGE FLOW DIRECTION PROPOSED TURFSTONE PAVERS PROPOSED TURFSTONE PAVERS PROPOSED GRASSPAVERS
	NOTE #11) FEDERAL WETLAND BOUNDARY - DELINEATED BY AKRF, CONFIRMED BY USACE - UD ISSUED 2/1/12 (PERMIT APPLICATION #NAN-2011-0486-ESO) WETLAND DELINEATION LINE SET BY TOWN (SEE C1 GENERAL NOTE 13) 100' OFFSET FROM WETLAND DELINEATION LINE NYCDEP INTERMITTENT STREAM NYCDEP INTERMITTENT STREAM 50' BUFFER 300' OFFSET FROM NYCDEP RESERVOIR STEM EXISTING PROPERTY LINE EXISTING PROPERTY LINE EXISTING PROPERTY LINE ADJACENT PROPERTY LIMIT OF DISTURBANCE PROPOSED BUILDING ENVELOPE (BUILDING SETBACK LINE) PROPOSED GRASSPAVERS PROPOSED TURFSTONE PAVERS PROPOSED STORMWATER PLANTERS
	NOTE #11) FEDERAL WETLAND BOUNDARY - DELINEATED BY AKRF, CONFIRMED BY USACE - UD ISSUED 21/12 (PERMIT APPLICATION #WAW-2011-0486-ESO) WETLAND DELINEATION LINE SET BY TOWN (SEE C1 GENERAL NOTE 13) 100' OFFSET FROM WETLAND DELINEATION LINE NYCOEP INTERMITTENT STREAM NYCOEP INTERMITTENT STREAM NYCOEP INTERMITTENT STREAM 50' BUFFER 300' OFFSET FROM NYCOEP RESERVOIR STEM EXISTING PROPERTY LINE EXISTING PROPERTY LINE ADJACENT PROPERTY LIMIT OF DISTURBANCE PROPOSED BUILDING ENVELOPE (BUILDING SETBACK LINE) PROPOSED DELIGIAN BLOCK CURBING STORMWATER DRAINAGE EASEMENT PROPOSED DRAINAGE FLOW DIRECTION PROPOSED TURFSTONE PAVERS PROPOSED TURFSTONE PAVERS PROPOSED GRASSPAVERS PROPOSED STORMWATER PLANTERS
	NOTE #11) FEDERAL WETLAND BOUNDARY - DELINEATED BY AKRF. CONFIRMED BY USACE - JO ISSUED 2/1/12 (FERMIT APPLICATION #NAR-2011-0480-ESO) WETLAND DELINEATION LINE SET BY TOWN (SEE C1 GENERAL NOTE 13) 100' OFFSET FROM WETLAND DELINEATION LINE NYCOEP INTERMITTENT STREAM NYCOEP INTERMITTENT STREAM 50' BUFFER 300' OFFSET FROM NYCOEP RESERVOIR STEM EXISTING PROPERTY LINE EXISTING PROPERTY LINE EXISTING PROPERTY LINE (BUILDING SETBACK LINE) PROPOSED BUILTILEVEL PARKING FACILITY PROPOSED BUILTILEVEL PARKING FACILITY PROPOSED BUILTILEVEL PARKING FACILITY PROPOSED BUILTILEVEL PARKING FACILITY PROPOSED DRAINAGE FLOW DIRECTION PROPOSED DRAINAGE FLOW DIRECTION PROPOSED DRAINAGE FLOW DIRECTION PROPOSED DRAINAGE FLOW DIRECTION PROPOSED TURFSTONE PAVERS PROPOSED TURFSTONE PAVERS PROPOSED STORMWATER PLANTERS PROPOSED STORMWATER PLANTERS PROPOSED CONCRETE PAVEMENT PROPOSED CONCRETE PAVEMENT PROPOSED CONCRETE PAVEMENT PROPOSED CONCRETE PAVEMENT PROPOSED CONCRETE PAVEMENT PROPOSED GUIDE RAIL PROPOSED CONCRETE PAVEMENT
	NOTE #11) FEDERAL WETLAND BOUNDARY - DELINEATED BY AKRF. CONFIRMED BY USAGE - JD ISSUED 2/1/12 (PERMIT APPLICATION #NAN-2011-0486-ESO) WETLAND DELINEATION LINE SET BY TOWN (SEE C1 GENERAL NOTE 13) 100' OFFSET FROM WETLAND DELINEATION LINE NYCOEP INTERMITTENT STREAM NYCOEP INTERMITTENT STREAM NYCOEP INTERMITTENT STREAM 50' BUFFER 300' OFFSET FROM NYCOEP RESERVOR STEM EXISTING PROPERTY LINE EXISTING PROPERTY LINE EXISTING PROPERTY LINE ADJACENT PROPERTY LIMIT OF DISTURBANCE PROPOSED BUILDING ENVELOPE (BUILDING SETBACK LINE) PROPOSED BUILDING SETBACK LINE) PROPOSED BUILDING ENVELOPE (BUILDING SETBACK LINE) PROPOSED BUILDING SETBACK LINE) PROPOSED BUILDING ENVELOPE (BUILDING SETBACK LINE) PROPOSED BUILDING SETBACK LINE) PROPOSED GRASSPAVERS PROPOSED GRASSPAVERS PROPOSED GRASSPAVERS PROPOSED GRASSPAVERS PROPOSED CONCRETE PAVEMENT PROPOSED GUIDE RAIL PROPOSED BUILDING COLUMN PROPOSED BUILDING COLUMN PROPOSED BUILDING COLUMN PROPOSED BUILDING COLUMN PROPOSED SIGN
	NOTE #11) FEDERAL WETLAND BOUNDARY - DELINEATED BY AKRF. CONFIRMED BY USAGE - JD ISSUED 2/1/12 (PERMIT APPLICATION #NAN-2011-0486-ES0) WETLAND DELINEATION LINE SET BY TOWN (SEE C1 GENERAL NOTE 13) 100' OFFSET FROM WETLAND DELINEATION LINE NYCOEP INTERMITTENT STREAM NYCOEP INTERMITTENT STREAM S0' BUFFER 300' OFFSET FROM NYCOEP RESERVOIR STEM EXISTING PROPERTY LINE EXISTING PROPERTY LINE EXISTING PROPERTY LINE ADJACENT PROPERTY LIMIT OF DISTURBANCE PROPOSED BUILDING ENVELOPE (BUILDING SETBACK LINE) PROPOSED BUILDING ENVELOPE (BUILDING SETBACK LINE) PROPOSED BUILDING ENVELOPE (BUILDING SETBACK LINE) PROPOSED BUILDING SAUCURBING STORMWATER DRAINAGE FLOW DIRECTION PROPOSED ASPHALT DRIVEWAY PROPOSED TURFSTONE PAVERS PROPOSED TURFSTONE PAVERS PROPOSED STORMWATER PLANTERS PROPOSED GUIDE RAL PROPOSED GUIDE RAL PROPOSED GUIDE RAL PROPOSED SIGN PROPOSED SIGN PROPOSED SIGN PROPOSED SIGN
	NOTE #11) FDEFRAL WETLAND BOUNDARY - DELINEATED BY AKRF. CONFIRMED BY USACE - JD ISSUED 21/172 (PERMIT APPLICATION IRNAN-2011-0486-ESO) WETLAND DELINEATION LINE SET BY TOWN (SEE C1 GENERAL NOTE 13) 100' OFFSET FROM WETLAND DELINEATION LINE NYCOEP INTERMITTENT STREAM NYCOEP INTERMITTENT STREAM NYCOEP INTERMITTENT STREAM SO' BUFFER 300' OFFSET FROM NYCOEP RESERVOIR STEM EXISTING PROPERTY LINE EXISTING PROPERTY LINE ADJACENT PROPERTY LIMIT OF DISTURBANCE PROPOSED BUILDING ENVELOPE (BUILDING SETBACK LINE) PROPOSED BUILDING DIRECTION PROPOSED DRAINAGE FLOW DIRECTION PROPOSED TURFSTONE PAVERS PROPOSED TURFSTONE PAVERS PROPOSED GRASSPAVERS PROPOSED GRASSPAVERS PROPOSED GUIDE RAIL PROPOSED GUIDE RAIL PROPOSED BUILDING COLUMN PROPOSED BUILDING COLUMN PROPOSED SIGNI PROPOSED BUILDING COLUMN PROPOSED SIGNI PROPOSED DRAINAGE MAHINELE PROPOSED BUILDING COLUMN PROPOSED BUILDING COLUMN PROPOSED BUILDING COLUMN PROPOSED DRAINAGE MAHINELE PROPOSED DRAINA
	NOTE 411) FEDERAL WETLAND BOUNDARY - DELINEATED BY AKRF. CONFIRMED BY USACE - JD ISSUED 21/12 (PERMIT APPLICATION JINAN-2011-0496-ESO) WETLAND DELINEATION LINE SET BY TOWN (SEE C1 GENERAL NOTE 13) 10° OFFSET FROM WETLAND DELINEATION LINE NYCOEP INTERMITTENT STREAM NYCOEP INTERMITTENT STREAM 50° BUFFER 30° OFFSET FROM NYCOEP RESERVOIR STEM EXISTING PROPERTY LINE EXISTING PROPERTY PROPOSED DRAINAGE FLOW DIRECTION PROPOSED STORMWATER PLANTERS PROPOSED STORMWATER PLAN
	NOTE 411) FPDEFAL WETLAND BOUNDARY - DELINEATED BY AKRF. CONFIRMED BY USACE - JD ISSUED 21112 (PERMIT APPLICATION INAN-2011-0486-ESO) WETLAND DELINEATION LINE SET BY TOWN (SEE C1 GENERAL NOTE 13) 100° OFFSET FROM WETLAND DELINEATION LINE NYCDEP INTERMITTENT STREAM NYCDEP INTERMITTENT STREAM 50° BUFFER 300° OFFSET FROM NYCDEP RESERVOIR STEM EXISTING PROPERTY LINE EXISTING PROPERTY LINE EXISTING PROPERTY LINE AUDIT OF DISTURBANCE PROPOSED BUILDING ENVELOPE (BUILDING SETBACK LINE) PROPOSED DRAINAGE FLOW DIRECTION PROPOSED DRAINAGE FLOW DIRECTION PROPOSED GRASSPAVERS PROPOSED GUIDE RAIL PROPOSED GUIDE RAIL PROPOSED GUIDE RAIL PROPOSED GUIDE RAIL PROPOSED SIGN PROPOSED SIGN PROP
	NOTE 41) FEDERAL WETLAND BOUNDARY - DELINEATED BY AKRE CONFIRMED BY USACE - JD ISSUED 21/12 (PERMIT APPLICATION WAAN-2011-0486-ESO) WETLAND DELINEATION LINE SET BY TOWN (SEE C1 GENERAL NOTE 13) 107 OFFSET FROM WETLAND DELINEATION LINE NYCDEP INTERMITTENT STREAM NYCDEP INTERMITTENT STREAM NYCDEP INTERMITTENT STREAM SUBJECT / LINE EXISTING PROPERTY LINE EXISTING PROPOSED BUILDING ENVELOPE (BUILDING SETBACK LINE) PROPOSED BUILDING ENVELOPE (BUILDING SETBACK LINE) PROPOSED BUILDING ENVELOPE (BUILDING SETBACK LINE) PROPOSED DAINAGE FLOW DIRECTION PROPOSED TORNIWATER PLANTERS PROPOSED STRIMWATER PLANTERS PROPOSED CONCRETE PAVEMENT PROPOSED GUIDE RAIL PROPOSED SIGN PROPOSED SIGN PROPOSE
	NOTE 41) FEDERAL WETLAND BOUNDARY - DELINEATED BY AKRE CONFIRMED BY USACE - JD ISSUED 21/12 (PERMIT APPLICATION WAAN-2011-0486-ESO) WETLAND DELINEATION LINE SET BY TOWN (SEE C1 GENERAL NOTE 13) 107 OFFSET FROM WETLAND DELINEATION LINE NYCDEP INTERMITTENT STREAM NYCDEP INTERMITTENT STREAM NYCDEP INTERMITTENT STREAM SUBJECT / LINE EXISTING PROPERTY LINE EXISTING PROPOSED BUILDING ENVELOPE (BUILDING SETBACK LINE) PROPOSED BUILDING ENVELOPE (BUILDING SETBACK LINE) PROPOSED BUILDING ENVELOPE (BUILDING SETBACK LINE) PROPOSED DAINAGE FLOW DIRECTION PROPOSED TORNIWATER PLANTERS PROPOSED STRIMWATER PLANTERS PROPOSED CONCRETE PAVEMENT PROPOSED GUIDE RAIL PROPOSED SIGN PROPOSED SIGN PROPOSE
	NOTE 11) FEDERAL WETLAND BOUNDARY- DELINEATED BY ARRF. CONFIRMED BY USAGE - JD ISSUED 2/11/2 (PERMIT APPLICATION #NAN-2011-0480-ESO) WETLAND DELINEATION LINE SET BY TOWN (SEE C1 GENERAL NOTE 13) 100 OFFSET FROM WETLAND DELINEATION LINE NYCOEP INTERMITTENT STREAM OF OFFSET FROM WETLAND DELINEATION LINE NYCOEP INTERMITTENT STREAM SO BUFFER EXISTING PROPERTY LINE EXISTING PROPERTY LINE ADJACENT PROPERTY LIMIT OF DISTURBANCE PROPOSED BUILDING ENVELOPE (BUILDING SETEACK LINE) PROPOSED BUILDING ENVELOPE (BUILDING FACILITY PROPOSED BUILDING ENVELOPE (BUILDING SETEACK LINE) PROPOSED DURANAGE EASEMENT PROPOSED DURANAGE FLOW DIRECTION PROPOSED DURANAGE FLOW DIRECTION PROPOSED DURANAGE FLOW DIRECTION PROPOSED GONCRETE PAVERS PROPOSED GONCRETE PAVERS PROPOSED GONCRETE PAVERS PROPOSED GONCRETE PAVERS PROPOSED GONCRETE PAVERS PROPOSED SIGN PROPOSED SIGN PROPOSED SIGN PROPOSED SIGN PROPOSED SIGN PROPOSED DIRING HORNN PROPOSED DIRING HORNN PROPOSED DIRECTION PROPOSED DIRING HORNN PROPOSED DIRECTION PROPOSED DIRECTION PROPOSED DIRECTION PROPOSED DIRECTION DIRAN PROPOSED DIRECTION DIRAN PROPOSED DIRECTION DIRAN PROPOSED DIRECTION PROPOSED DIRECTION DIRAN PROPOSED DIRECTION PROPOSED DIRECTION DIRAN PROPOSED DIRECTION DIRAN PROPOSED DIRECTION PROPOSED DIRECTION DIRAN PROPOSED DIRECTION DIRECTION P
	INTER 11 USAGE - UT ISSUED 21112 UPERATIT APPLICATION WAAR-2011 ARBAESOU WETLAND DELINEATION LINE SET BY TOWN (SEE 0' GENERAL NOTE 13) TOTOP THE INTERNATION LINE SET BY TOWN (SEE 0' GENERAL NOTE 13) TOTOP THE INTERNATION LINE SET BY TOWN (SEE 0' GENERAL NOTE 13) TOTOP THE INTERNATION SETLAN WURDEP RESERVOIR STEM SUI OFFICE TROM WUTDEP RESERVOIR STEM EXISTING PROPERTY LINE ADJACENT PROPERTY LINT OF DISTURBANCE PROPOSED BUILDING ENVELOPE (BUILDING SETBACK LINE) PROPOSED BUILDING COURSEI PROPOSED BUILDING COURSEI PROPOSE
	NOTE ITT USACE JO ISSUED 2112 (PERMIT APPLICATION WAN 2011-498-ESO) WETLAND BOUNDARY - DELINEATED BY AGY, COMPINED BY USACE JO ISSUED 2112 (PERMIT APPLICATION WAN 2011-498-ESO) WETLAND BOUNDARY - DELINEATED WAN WETLAND BOUNDARY - DELINEATED WAN 2011-498-ESO) WETLAND BOUNDARY - DELINEATED WAN WICCHP WITERWITTEN STREAM WICCHP WITERWITTEN STREAM WICHP BOUNDARY - DELINEATED WAN WICHPOSED DULING BOUNDARY - DELINEATED WICHPSED STORMWATER PLANTERS PROPOSED BOUNDARY - DELINEATED WICHOSED ONDER FAU WICHPOSED DURING E ANALONE WICHOSED DURING E MAINDLE WICHOSED DURING E MAINDLE
	NOTE 11) EDECRAM. WETLAND BOUNDARY - DELINEATED BY ARR, CONFIRMED BY USACE JO ISSUED 211/21 YOUR MIT APPLICATION WARASTI - MARKED BY USACE JO ISSUED 211/21 YOUR MIT APPLICATION WARASTI - MARKED BY USACE JUNC METLAND DELINEATION LINE NYCOEP INTERNITTENT STREAM NYCOEP INTERNITTENT STREAM NYCOEP INTERNITTENT STREAM SUT OFFISET FROM NYCOEP RESERVOIR STEM EXISTING PROPERTY LINE EXISTING PROPERTY LINE ADJACENT PROPERTY LINET OF DISTURBANCE PROPOSED BULLINNE ENVELOPE (BULLING SETBACK LINE) PROPOSED BULLINNE FRANKERE PROPOSED BULLINNE FRANKERE PROPOSED BULLINNE FRANKERE PROPOSED DRAMMARE FLOW DIRECTION PROPOSED DRAMMARE FLOW DIRECTION PROPOSED TURINSTONE PAVERS PROPOSED GURASSIFWERE PROPOSED GURASSIFWERE PROPOSED GURASSIFWERE PROPOSED BULLINNE ENVELOPE PROPOSED BUL
	NOTE ITT USACE JO ISSUED 2112 (PERMIT APPLICATION WAN 2011-498-ESO) WETLAND BOUNDARY - DELINEATED BY AGY, COMPINED BY USACE JO ISSUED 2112 (PERMIT APPLICATION WAN 2011-498-ESO) WETLAND BOUNDARY - DELINEATED WAN WETLAND BOUNDARY - DELINEATED WAN 2011-498-ESO) WETLAND BOUNDARY - DELINEATED WAN WICCHP WITERWITTEN STREAM WICCHP WITERWITTEN STREAM WICHP BOUNDARY - DELINEATED WAN WICHPOSED DULING BOUNDARY - DELINEATED WICHPSED STORMWATER PLANTERS PROPOSED BOUNDARY - DELINEATED WICHOSED ONDER FAU WICHPOSED DURING E ANALONE WICHOSED DURING E MAINDLE WICHOSED DURING E MAINDLE
VOV & RRV LEGEN SITE: E OFF-SITE:	NOTE 11) EDECRAM. WETLAND BOUNDARY - DELINEATED BY ARR, CONFIRMED BY USACE JO ISSUED 211/21 YOUR MIT APPLICATION WARASTI - MARKED BY USACE JO ISSUED 211/21 YOUR MIT APPLICATION WARASTI - MARKED BY USACE JUNC METLAND DELINEATION LINE NYCOEP INTERNITTENT STREAM NYCOEP INTERNITTENT STREAM NYCOEP INTERNITTENT STREAM SUT OFFISET FROM NYCOEP RESERVOIR STEM EXISTING PROPERTY LINE EXISTING PROPERTY LINE ADJACENT PROPERTY LINET OF DISTURBANCE PROPOSED BULLINNE ENVELOPE (BULLING SETBACK LINE) PROPOSED BULLINNE FRANKERE PROPOSED BULLINNE FRANKERE PROPOSED BULLINNE FRANKERE PROPOSED DRAMMARE FLOW DIRECTION PROPOSED DRAMMARE FLOW DIRECTION PROPOSED TURINSTONE PAVERS PROPOSED GURASSIFWERE PROPOSED GURASSIFWERE PROPOSED GURASSIFWERE PROPOSED BULLINNE ENVELOPE PROPOSED BUL

DRAINAGE AREA DELINEATION


SCALE: 1" = 30'

SWPPP APPENDIX C DRAWINGS

THE LARGE SCALE DRAWINGS ARE INCLUDED IN THE FEIS SUBMISSION AS A SEPARATE ATTACHMENT

SWPPP APPENDIX D PRE-EXISTING AND EXISTING HYDROLOGIC ROUTING CALCULATIONS

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.915	79	50-75% Grass cover, Fair, HSG C (Pre 2, Pre 3)
2.210	74	>75% Grass cover, Good, HSG C (Pre 1)
6.248	73	Woods, Fair, HSG C (Pre 1, Pre 2, Pre 3)
9.372	74	TOTAL AREA

Soil Listing (all nodes)

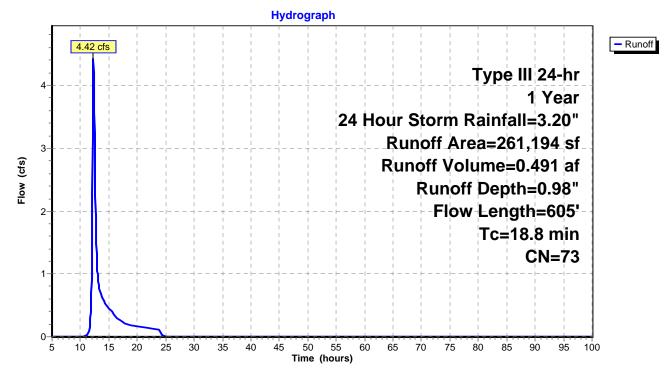
Soil	Subcatchment
Group	Numbers
HSG A	
HSG B	
HSG C	Pre 1, Pre 2, Pre 3
HSG D	
Other	
	TOTAL AREA
	Group HSG A HSG B HSG C HSG D

Park Place - PRE EX Prepared by AKRF, Inc.

Type III 24-hr 1 Year, 24 Hour Storm Rainfall=3.20" Printed 12/5/2014 HydroCAD® 10.00-12 s/n 04852 © 2014 HydroCAD Software Solutions LLC Page 4

> Time span=5.00-100.00 hrs, dt=0.05 hrs, 1901 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment Pre 1: Pre 1	Runoff Area=261,194 sf 0.00% Impervious Runoff Depth=0.98" Flow Length=605' Tc=18.8 min CN=73 Runoff=4.42 cfs 0.491 af
Subcatchment Pre 2: Pre 2	Runoff Area=85,244 sf 0.00% Impervious Runoff Depth=1.04" Flow Length=394' Tc=10.7 min CN=74 Runoff=1.90 cfs 0.169 af
Subcatchment Pre 3: Pre 3 Flow Length=1	Runoff Area=61,828 sf 0.00% Impervious Runoff Depth=1.09" 50' Slope=0.0530 '/' Tc=8.8 min CN=75 Runoff=1.55 cfs 0.129 af
Reach DP1: Design Point 1	Inflow=4.42 cfs 0.491 af
	Outflow=4.42 cfs 0.491 af
Reach DP2: Design Point 2	Inflow=1.90 cfs 0.169 af
	Outflow=1.90 cfs 0.169 af
Reach DP3: Design Point 3	Inflow=1.55 cfs 0.129 af
-	Outflow=1.55 cfs 0.129 af
Total Runoff Area = 9.372	ac Runoff Volume = 0.790 af Average Runoff Depth = 1.01" 100.00% Pervious = 9.372 ac 0.00% Impervious = 0.000 ac

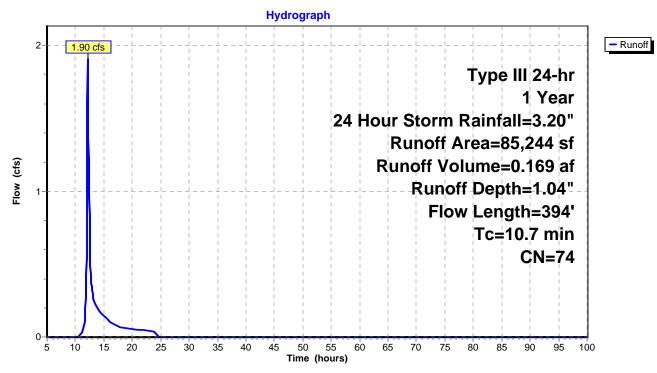

Summary for Subcatchment Pre 1: Pre 1

0.491 af, Depth= 0.98" Runoff 4.42 cfs @ 12.29 hrs, Volume= =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-100.00 hrs, dt= 0.05 hrs Type III 24-hr 1 Year, 24 Hour Storm Rainfall=3.20"

	Α	rea (sf)	CN E	Description		
	1	64,940	73 V	Voods, Fai	r, HSG C	
		96,254	74 >	75% Gras	s cover, Go	bod, HSG C
	2	61,194	73 V	Veighted A	verage	
	2	61,194	1	00.00% Pe	ervious Are	a
	Тс	Length	Slope	Velocity	Capacity	Description
(r	nin)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
1	4.8	250	0.0400	0.28		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.50"
	1.0	105	0.0667	1.81		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	3.0	250	0.0760	1.38		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
1	8.8	605	Total			

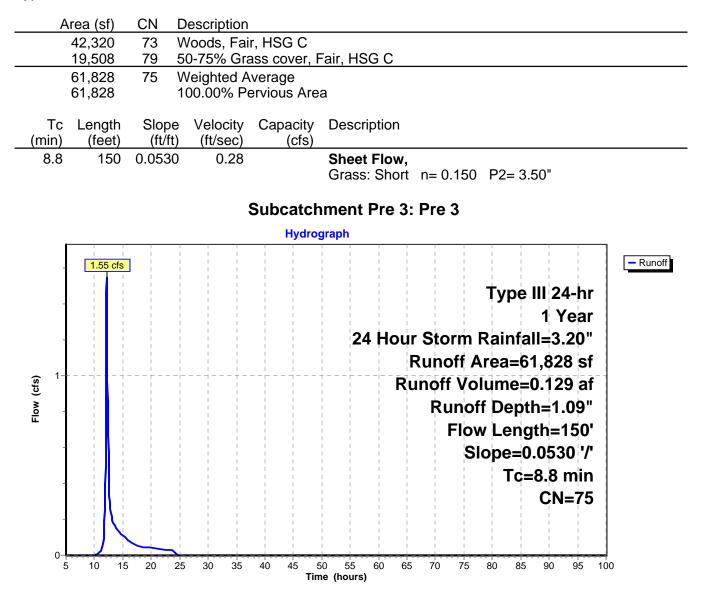
Subcatchment Pre 1: Pre 1


Summary for Subcatchment Pre 2: Pre 2

Runoff 1.90 cfs @ 12.16 hrs, Volume= 0.169 af, Depth= 1.04" =

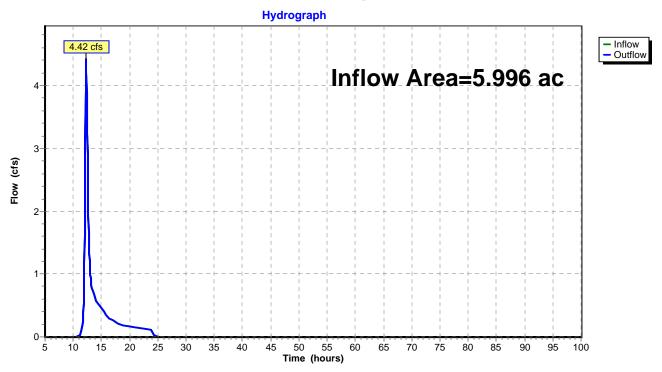
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-100.00 hrs, dt= 0.05 hrs Type III 24-hr 1 Year, 24 Hour Storm Rainfall=3.20"

_	A	rea (sf)	CN	Description		
		0	98	Paved park	ing, HSG C)
		64,912	73	Woods, Fai	r, HSG C	
_		20,332	79	50-75% Gra	ass cover, I	Fair, HSG C
		85,244	74	Weighted A	verage	
		85,244		100.00% Pe	ervious Are	a
	Тс	Length	Slope	e Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	9.0	150	0.0500	0.28		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.50"
	1.7	244	0.1200	2.42		Shallow Concentrated Flow,
_						Short Grass Pasture Kv= 7.0 fps
	10.7	394	Total			


Subcatchment Pre 2: Pre 2

Summary for Subcatchment Pre 3: Pre 3

Runoff 1.55 cfs @ 12.14 hrs, Volume= 0.129 af, Depth= 1.09" =

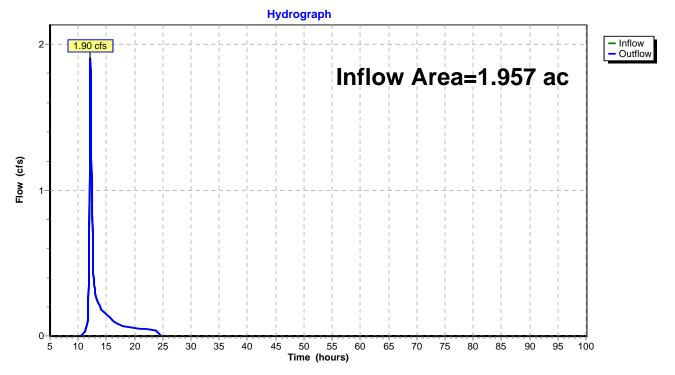

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-100.00 hrs, dt= 0.05 hrs Type III 24-hr 1 Year, 24 Hour Storm Rainfall=3.20"

Summary for Reach DP1: Design Point 1

Inflow Area	a =	5.996 ac,	0.00% Impervious, Inflow D	epth = 0.98"	for 1 Year, 24 Hour Storm event
Inflow	=	4.42 cfs @	12.29 hrs, Volume=	0.491 af	
Outflow	=	4.42 cfs @	12.29 hrs, Volume=	0.491 af, Att	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-100.00 hrs, dt= 0.05 hrs

Reach DP1: Design Point 1

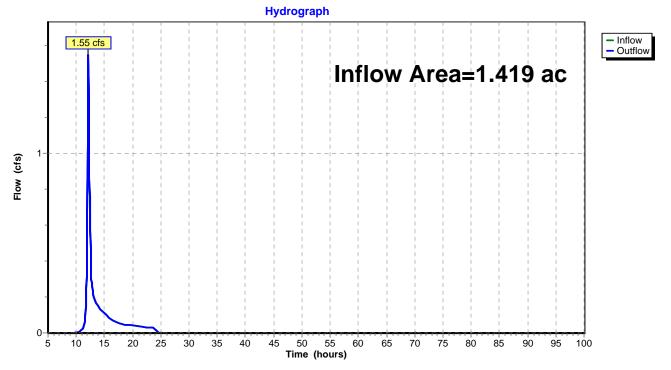

Summary for Reach DP2: Design Point 2

Page 9

Inflow Area	a =	1.957 ac,	0.00% Impervious, Inflow D	epth = 1.04"	for 1 Year, 24 Hour Storm event
Inflow	=	1.90 cfs @	12.16 hrs, Volume=	0.169 af	
Outflow	=	1.90 cfs @	12.16 hrs, Volume=	0.169 af, Att	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-100.00 hrs, dt= 0.05 hrs

Reach DP2: Design Point 2



Summary for Reach DP3: Design Point 3

Inflow Area	a =	1.419 ac,	0.00% Impervious, Inflow D	epth = 1.09"	for 1 Year, 24 Hour Storm event
Inflow	=	1.55 cfs @	12.14 hrs, Volume=	0.129 af	
Outflow	=	1.55 cfs @	12.14 hrs, Volume=	0.129 af, Att	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-100.00 hrs, dt= 0.05 hrs

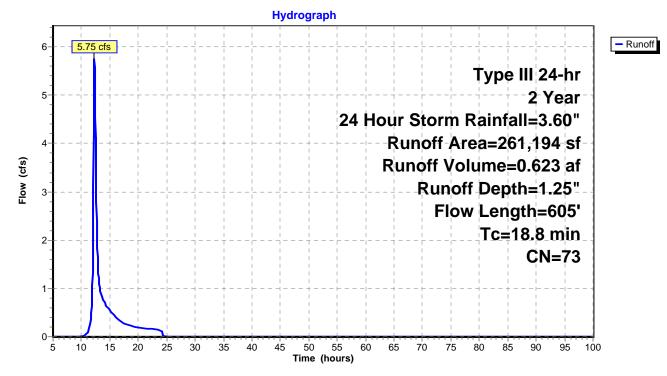
Reach DP3: Design Point 3

Park Place - PRE EX Prepared by AKRF, Inc.

Type III 24-hr 2 Year, 24 Hour Storm Rainfall=3.60" Printed 12/5/2014 HydroCAD® 10.00-12 s/n 04852 © 2014 HydroCAD Software Solutions LLC Page 11

> Time span=5.00-100.00 hrs, dt=0.05 hrs, 1901 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment Pre 1: Pre 1	Runoff Area=261,194 sf 0.00% Impervious Runoff Depth=1.25" Flow Length=605' Tc=18.8 min CN=73 Runoff=5.75 cfs 0.623 af
Subcatchment Pre 2: Pre 2	Runoff Area=85,244 sf 0.00% Impervious Runoff Depth=1.31" Flow Length=394' Tc=10.7 min CN=74 Runoff=2.46 cfs 0.214 af
Subcatchment Pre 3: Pre 3 Flow Length=1	Runoff Area=61,828 sf 0.00% Impervious Runoff Depth=1.37" 50' Slope=0.0530 '/' Tc=8.8 min CN=75 Runoff=1.98 cfs 0.162 af
Reach DP1: Design Point 1	Inflow=5.75 cfs 0.623 af
	Outflow=5.75 cfs 0.623 af
Reach DP2: Design Point 2	Inflow=2.46 cfs 0.214 af
	Outflow=2.46 cfs 0.214 af
Reach DP3: Design Point 3	Inflow=1.98 cfs 0.162 af
-	Outflow=1.98 cfs 0.162 af
Total Runoff Area = 9.372	2 ac Runoff Volume = 0.999 af Average Runoff Depth = 1.28" 100.00% Pervious = 9.372 ac 0.00% Impervious = 0.000 ac

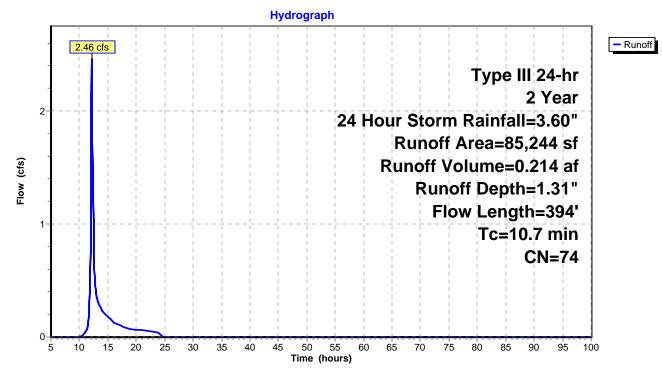

Summary for Subcatchment Pre 1: Pre 1

Runoff 5.75 cfs @ 12.28 hrs, Volume= 0.623 af, Depth= 1.25" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-100.00 hrs, dt= 0.05 hrs Type III 24-hr 2 Year, 24 Hour Storm Rainfall=3.60"

Α	rea (sf)	CN D	escription		
1	64,940	73 V	Voods, Fai	r, HSG C	
	96,254	74 >	75% Gras	s cover, Go	ood, HSG C
2	61,194	73 V	Veighted A	verage	
2	61,194	1	00.00% Pe	ervious Are	a
Tc	Length	Slope	Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
14.8	250	0.0400	0.28		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.50"
1.0	105	0.0667	1.81		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
3.0	250	0.0760	1.38		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
18.8	605	Total			

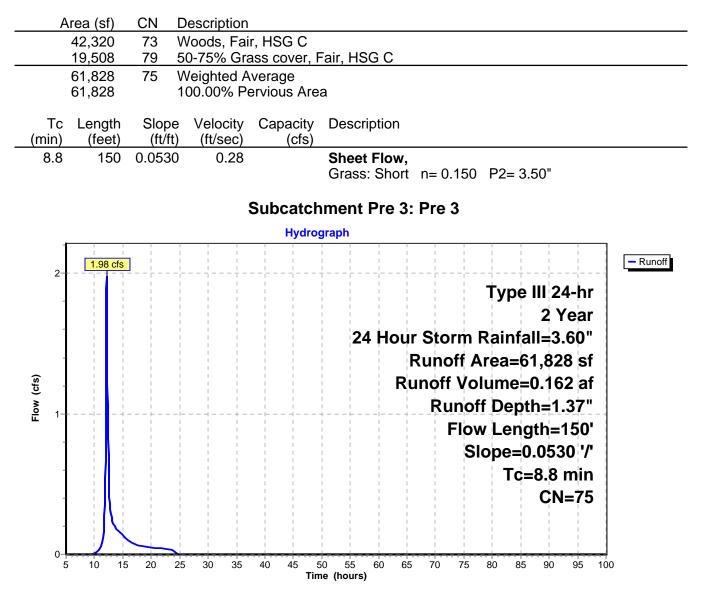
Subcatchment Pre 1: Pre 1


Summary for Subcatchment Pre 2: Pre 2

Runoff 2.46 cfs @ 12.16 hrs, Volume= 0.214 af, Depth= 1.31" =

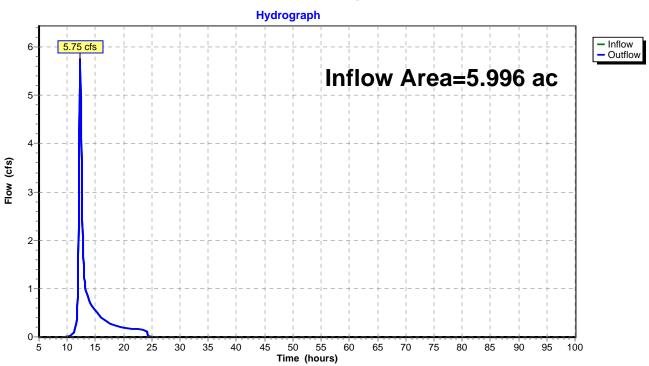
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-100.00 hrs, dt= 0.05 hrs Type III 24-hr 2 Year, 24 Hour Storm Rainfall=3.60"

_	A	rea (sf)	CN	Description		
		0	98	Paved park	ing, HSG C	;
		64,912	73	Woods, Fai	r, HSG C	
_		20,332	79	50-75% Gra	ass cover, F	Fair, HSG C
		85,244	74	Weighted A	verage	
		85,244		100.00% Pe	ervious Are	а
	Тс	Length	Slope		Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	9.0	150	0.0500	0.28		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.50"
	1.7	244	0.1200	2.42		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	10.7	394	Total			


Subcatchment Pre 2: Pre 2

Summary for Subcatchment Pre 3: Pre 3

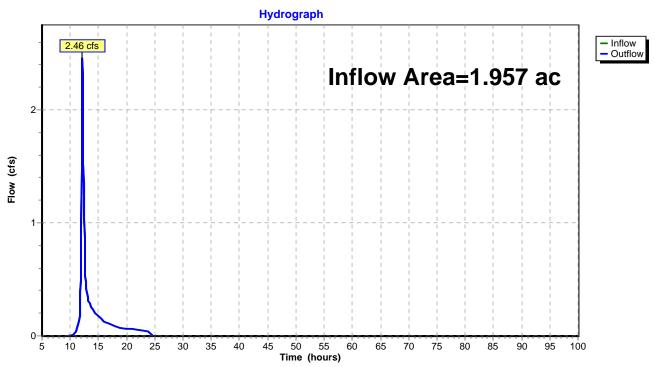
Runoff 1.98 cfs @ 12.13 hrs, Volume= 0.162 af, Depth= 1.37" =


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-100.00 hrs, dt= 0.05 hrs Type III 24-hr 2 Year, 24 Hour Storm Rainfall=3.60"

Summary for Reach DP1: Design Point 1

Inflow Are	a =	5.996 ac,	0.00% Impervious, Inflow D	epth = 1.25"	for 2 Year, 24 Hour Storm event
Inflow	=	5.75 cfs @	12.28 hrs, Volume=	0.623 af	
Outflow	=	5.75 cfs @	12.28 hrs, Volume=	0.623 af, Att	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-100.00 hrs, dt= 0.05 hrs

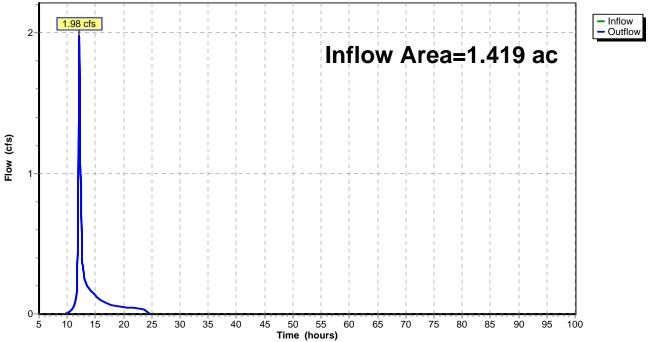


Reach DP1: Design Point 1

Summary for Reach DP2: Design Point 2

Inflow Area	a =	1.957 ac,	0.00% Impervious, Inflow D	epth = 1.31"	for 2 Year, 24 Hour Storm event
Inflow	=	2.46 cfs @	12.16 hrs, Volume=	0.214 af	
Outflow	=	2.46 cfs @	12.16 hrs, Volume=	0.214 af, Att	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-100.00 hrs, dt= 0.05 hrs


Reach DP2: Design Point 2

Summary for Reach DP3: Design Point 3

Inflow Area	a =	1.419 ac,	0.00% Impervious, Inflow D	epth = 1.37"	for 2 Year, 24 Hour Storm event
Inflow	=	1.98 cfs @	12.13 hrs, Volume=	0.162 af	
Outflow	=	1.98 cfs @	12.13 hrs, Volume=	0.162 af, Att	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-100.00 hrs, dt= 0.05 hrs

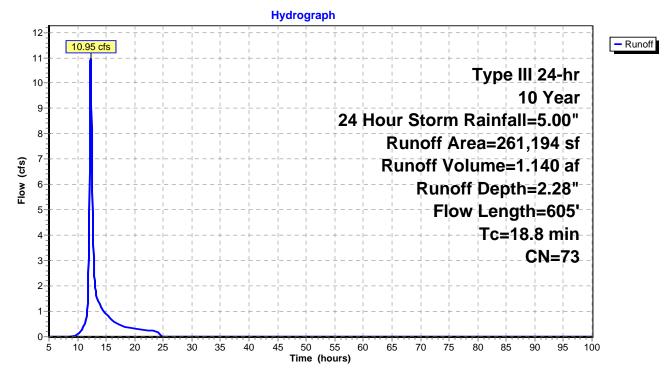
Reach DP3: Design Point 3 Hydrograph

Park Place - PRE EX Prepared by AKRF, Inc.

Type III 24-hr 10 Year, 24 Hour Storm Rainfall=5.00" Printed 12/5/2014 HydroCAD® 10.00-12 s/n 04852 © 2014 HydroCAD Software Solutions LLC Page 18

> Time span=5.00-100.00 hrs, dt=0.05 hrs, 1901 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment Pre 1: Pre 1	Runoff Area=261,194 sf 0.00% Impervious Runoff Depth=2.28" Flow Length=605' Tc=18.8 min CN=73 Runoff=10.95 cfs 1.140 af
Subcatchment Pre 2: Pre 2	Runoff Area=85,244 sf 0.00% Impervious Runoff Depth=2.36" Flow Length=394' Tc=10.7 min CN=74 Runoff=4.57 cfs 0.386 af
Subcatchment Pre 3: Pre 3 Flow Length=	Runoff Area=61,828 sf 0.00% Impervious Runoff Depth=2.45" 150' Slope=0.0530 '/' Tc=8.8 min CN=75 Runoff=3.61 cfs 0.290 af
Reach DP1: Design Point 1	Inflow=10.95 cfs 1.140 af
-	Outflow=10.95 cfs 1.140 af
Reach DP2: Design Point 2	Inflow=4.57 cfs 0.386 af
-	Outflow=4.57 cfs 0.386 af
Reach DP3: Design Point 3	Inflow=3.61 cfs 0.290 af
-	Outflow=3.61 cfs 0.290 af
Total Runoff Area = 9.37	72 ac Runoff Volume = 1.815 af Average Runoff Depth = 2.32" 100.00% Pervious = 9.372 ac 0.00% Impervious = 0.000 ac

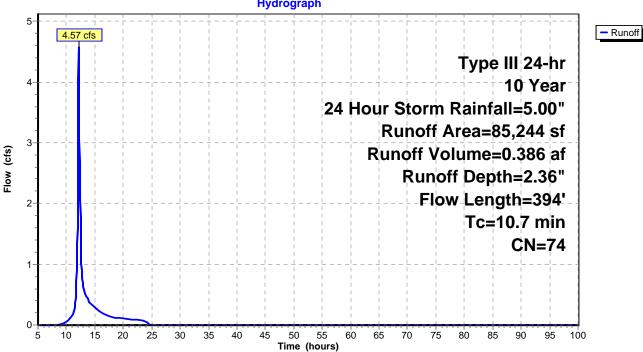

Summary for Subcatchment Pre 1: Pre 1

1.140 af, Depth= 2.28" Runoff 10.95 cfs @ 12.27 hrs, Volume= =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-100.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Year, 24 Hour Storm Rainfall=5.00"

Α	rea (sf)	CN D	escription		
1	64,940	73 V	Voods, Fai	r, HSG C	
	96,254	74 >	75% Gras	s cover, Go	ood, HSG C
2	61,194	73 V	Veighted A	verage	
2	61,194	1	00.00% Pe	ervious Are	a
Tc	Length	Slope	Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
14.8	250	0.0400	0.28		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.50"
1.0	105	0.0667	1.81		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
3.0	250	0.0760	1.38		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
18.8	605	Total			

Subcatchment Pre 1: Pre 1

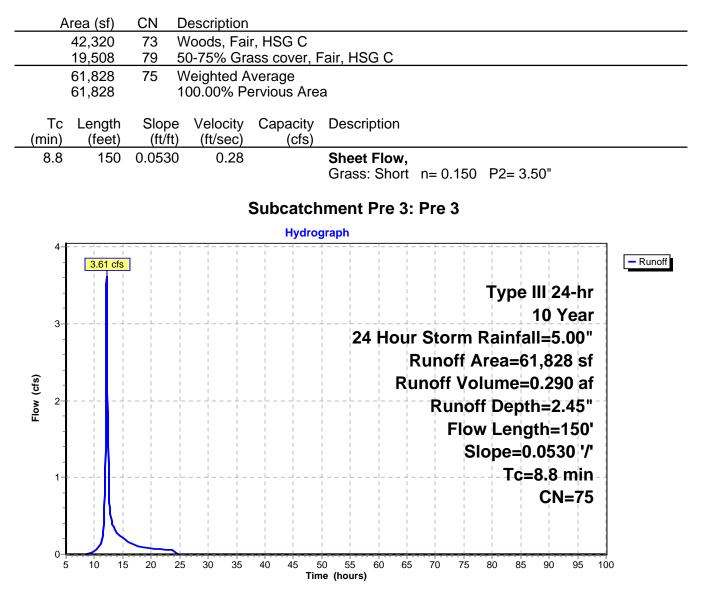

Summary for Subcatchment Pre 2: Pre 2

4.57 cfs @ 12.16 hrs, Volume= Runoff 0.386 af, Depth= 2.36" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-100.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Year, 24 Hour Storm Rainfall=5.00"

_	A	rea (sf)	CN	Description		
		0	98	Paved park	ing, HSG C)
		64,912	73	Woods, Fai	r, HSG C	
_		20,332	79	50-75% Gra	ass cover, I	Fair, HSG C
		85,244	74	Weighted A	verage	
		85,244		100.00% Pe	ervious Are	a
	Тс	Length	Slope	e Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	9.0	150	0.0500	0.28		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.50"
	1.7	244	0.1200	2.42		Shallow Concentrated Flow,
_						Short Grass Pasture Kv= 7.0 fps
	10.7	394	Total			

Subcatchment Pre 2: Pre 2

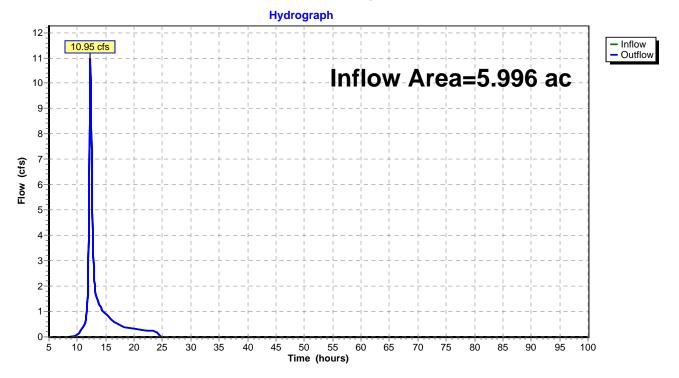


Hydrograph

Summary for Subcatchment Pre 3: Pre 3

Runoff 3.61 cfs @ 12.13 hrs, Volume= 0.290 af, Depth= 2.45" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-100.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Year, 24 Hour Storm Rainfall=5.00"



Summary for Reach DP1: Design Point 1

Inflow Area	a =	5.996 ac,	0.00% Impervious, Inflow D	Depth = 2.28" for 10 Year, 24 Hour Storm event
Inflow	=	10.95 cfs @	12.27 hrs, Volume=	1.140 af
Outflow	=	10.95 cfs @	12.27 hrs, Volume=	1.140 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-100.00 hrs, dt= 0.05 hrs

Reach DP1: Design Point 1

Summary for Reach DP2: Design Point 2

Inflow Area	=	1.957 ac,	0.00% Impervious, Inflow D	Depth = 2.36" for 10 Year, 24 Hour Storm event
Inflow	=	4.57 cfs @	12.16 hrs, Volume=	0.386 af
Outflow	=	4.57 cfs @	12.16 hrs, Volume=	0.386 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-100.00 hrs, dt= 0.05 hrs

Hydrograph 5- Inflow Outflow 4.57 cfs Inflow Area=1.957 ac 4 3 Flow (cfs) 2-1 0 15 20 25 30 35 40 65 70 75 5 10 45 50 55 60 80 85 90 95 100 Time (hours)

Reach DP2: Design Point 2

Summary for Reach DP3: Design Point 3

Inflow Are	a =	1.419 ac,	0.00% Impervious, Inflow D	epth = 2.45" for 10 Year, 24 Hour Storm event
Inflow	=	3.61 cfs @	12.13 hrs, Volume=	0.290 af
Outflow	=	3.61 cfs @	12.13 hrs, Volume=	0.290 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-100.00 hrs, dt= 0.05 hrs

Hydrograph Inflow Outflow 3.61 cfs Inflow Area=1.419 ac Flow (cfs) Time (hours)

Reach DP3: Design Point 3

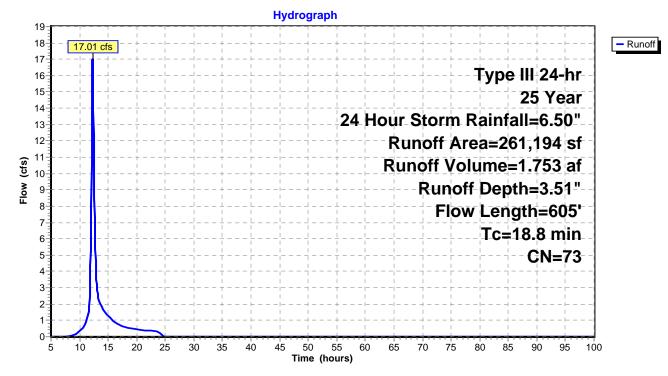
Park Place - PRE EX Prepared by AKRF, Inc.

Type III 24-hr 25 Year, 24 Hour Storm Rainfall=6.50" Printed 12/5/2014 HydroCAD® 10.00-12 s/n 04852 © 2014 HydroCAD Software Solutions LLC Page 25

> Time span=5.00-100.00 hrs, dt=0.05 hrs, 1901 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment Pre 1: Pre 1	Runoff Area=261,194 sf 0.00% Impervious Runoff Depth=3.51" Flow Length=605' Tc=18.8 min CN=73 Runoff=17.01 cfs 1.753 af
Subcatchment Pre 2: Pre 2	Runoff Area=85,244 sf 0.00% Impervious Runoff Depth=3.61" Flow Length=394' Tc=10.7 min CN=74 Runoff=7.02 cfs 0.589 af
Subcatchment Pre 3: Pre 3 Flow Length=	Runoff Area=61,828 sf 0.00% Impervious Runoff Depth=3.71" 150' Slope=0.0530 '/' Tc=8.8 min CN=75 Runoff=5.49 cfs 0.439 af
Reach DP1: Design Point 1	Inflow=17.01 cfs 1.753 af Outflow=17.01 cfs 1.753 af
Reach DP2: Design Point 2	Inflow=7.02 cfs 0.589 af Outflow=7.02 cfs 0.589 af
Reach DP3: Design Point 3	Inflow=5.49 cfs 0.439 af Outflow=5.49 cfs 0.439 af
Total Runoff Area = 9.37	2 ac Runoff Volume = 2.781 af Average Runoff Depth = 3.56"

... 100.00% Pervious = 9.372 ac 0.00% Impervious = 0.000 ac

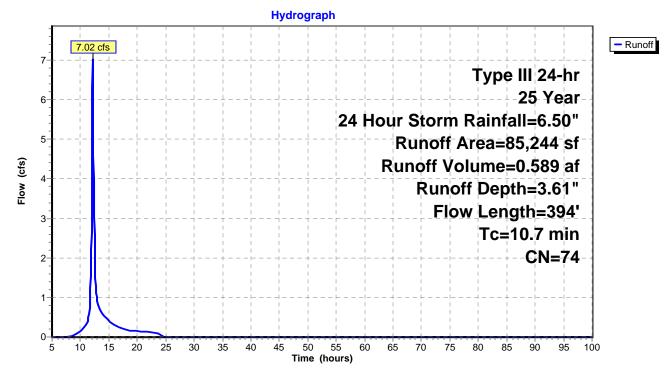

Summary for Subcatchment Pre 1: Pre 1

17.01 cfs @ 12.26 hrs, Volume= 1.753 af, Depth= 3.51" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-100.00 hrs, dt= 0.05 hrs Type III 24-hr 25 Year, 24 Hour Storm Rainfall=6.50"

_	A	rea (sf)	CN E	Description		
164,940 73 Woods, Fair, HSG C						
_		96,254	74 >	75% Gras	s cover, Go	ood, HSG C
	2	61,194	73 V	Veighted A	verage	
	2	61,194	1	00.00% Pe	ervious Are	а
	_				•	- · · · ·
	Tc	Length	Slope	Velocity	Capacity	Description
-	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	14.8	250	0.0400	0.28		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.50"
	1.0	105	0.0667	1.81		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	3.0	250	0.0760	1.38		Shallow Concentrated Flow,
_						Woodland Kv= 5.0 fps
	18.8	605	Total			

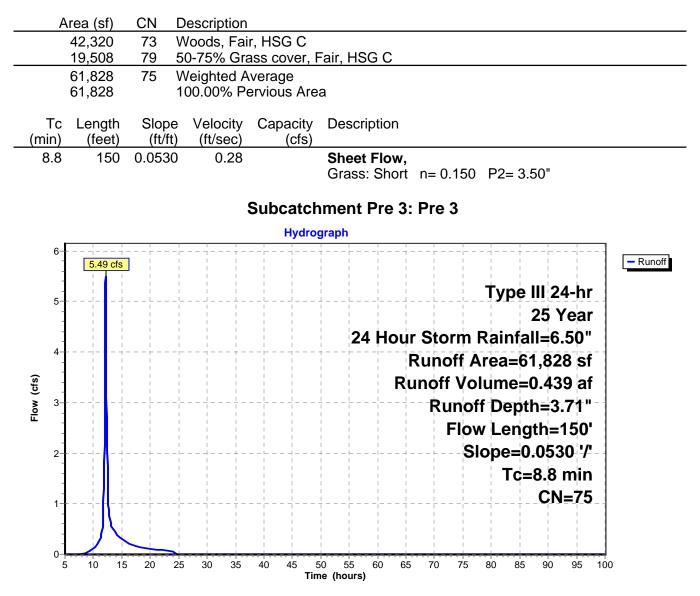
Subcatchment Pre 1: Pre 1


Summary for Subcatchment Pre 2: Pre 2

7.02 cfs @ 12.15 hrs, Volume= Runoff 0.589 af, Depth= 3.61" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-100.00 hrs, dt= 0.05 hrs Type III 24-hr 25 Year, 24 Hour Storm Rainfall=6.50"

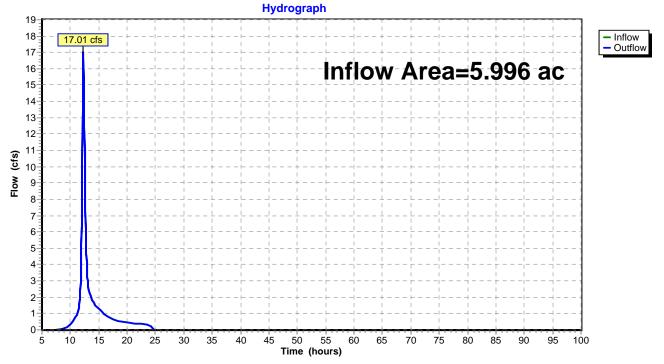
	Α	rea (sf)	CN	Description		
		0	98	Paved park	ing, HSG C	
		64,912	73	Woods, Fai	r, HSG C	
		20,332	79	50-75% Gra	ass cover, I	Fair, HSG C
		85,244	74	Weighted A	verage	
		85,244		100.00% Pe	ervious Are	a
	Тс	Length	Slope		Capacity	Description
(n	nin)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	9.0	150	0.0500	0.28		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.50"
	1.7	244	0.1200	2.42		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
1	0.7	394	Total			


Subcatchment Pre 2: Pre 2

Summary for Subcatchment Pre 3: Pre 3

Runoff 5.49 cfs @ 12.13 hrs, Volume= 0.439 af, Depth= 3.71" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-100.00 hrs, dt= 0.05 hrs Type III 24-hr 25 Year, 24 Hour Storm Rainfall=6.50"



Summary for Reach DP1: Design Point 1

Inflow Area	a =	5.996 ac,	0.00% Impervious, Inflow D	Pepth = 3.51" for 25 Year, 24 Hour Storm event
Inflow	=	17.01 cfs @	12.26 hrs, Volume=	1.753 af
Outflow	=	17.01 cfs @	12.26 hrs, Volume=	1.753 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-100.00 hrs, dt= 0.05 hrs

Reach DP1: Design Point 1

Summary for Reach DP2: Design Point 2

Inflow Area	a =	1.957 ac,	0.00% Impervious, Inflow D	Depth = 3.61" for 25 Year, 24 Hour Storm event	t
Inflow	=	7.02 cfs @	12.15 hrs, Volume=	0.589 af	
Outflow	=	7.02 cfs @	12.15 hrs, Volume=	0.589 af, Atten= 0%, Lag= 0.0 min	

Routing by Stor-Ind+Trans method, Time Span= 5.00-100.00 hrs, dt= 0.05 hrs

Hydrograph Inflow Outflow 7.02 cfs 7-Inflow Area=1.957 ac 6-5-Flow (cfs) 4-3-2-1 0-15 20 25 30 35 40 45 60 65 70 75 80 85 90 95 100 5 10 50 55 Time (hours)

Reach DP2: Design Point 2

Summary for Reach DP3: Design Point 3

Inflow Area	a =	1.419 ac,	0.00% Impervious, Inflow D	epth = 3.71" for 25 Year, 24 Hour Storm event
Inflow	=	5.49 cfs @	12.13 hrs, Volume=	0.439 af
Outflow	=	5.49 cfs @	12.13 hrs, Volume=	0.439 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-100.00 hrs, dt= 0.05 hrs

Hydrograph 6- Inflow Outflow 5.49 cfs Inflow Area=1.419 ac 5 4 Flow (cfs) 3-2 1 0 15 25 30 35 40 65 70 75 5 10 20 45 50 55 60 80 85 90 95 100 Time (hours)

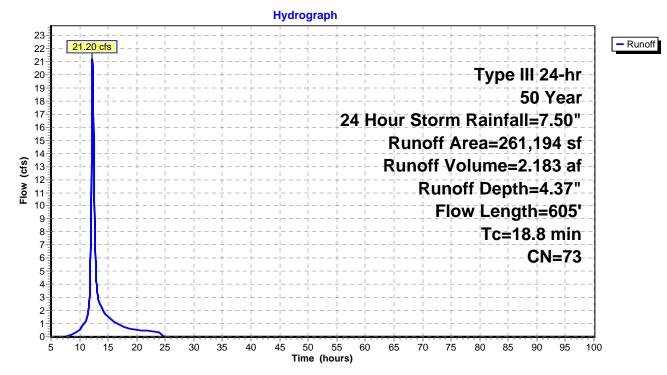
Reach DP3: Design Point 3

Park Place - PRE EX Prepared by AKRF, Inc.

Type III 24-hr 50 Year, 24 Hour Storm Rainfall=7.50" Printed 12/5/2014 HydroCAD® 10.00-12 s/n 04852 © 2014 HydroCAD Software Solutions LLC Page 32

> Time span=5.00-100.00 hrs, dt=0.05 hrs, 1901 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment Pre 1: Pre 1	Runoff Area=261,194 sf 0.00% Impervious Runoff Depth=4.37" Flow Length=605' Tc=18.8 min CN=73 Runoff=21.20 cfs 2.183 af
Subcatchment Pre 2: Pre 2	Runoff Area=85,244 sf 0.00% Impervious Runoff Depth=4.48" Flow Length=394' Tc=10.7 min CN=74 Runoff=8.71 cfs 0.731 af
Subcatchment Pre 3: Pre 3 Flow Length=	Runoff Area=61,828 sf 0.00% Impervious Runoff Depth=4.59" 150' Slope=0.0530 '/' Tc=8.8 min CN=75 Runoff=6.83 cfs 0.543 af
Reach DP1: Design Point 1	Inflow=21.20 cfs 2.183 af Outflow=21.20 cfs 2.183 af
Reach DP2: Design Point 2	Inflow=8.71 cfs 0.731 af Outflow=8.71 cfs 0.731 af
Reach DP3: Design Point 3	Inflow=6.83 cfs 0.543 af Outflow=6.83 cfs 0.543 af
Total Runoff Area = 9.37	2 ac Runoff Volume = 3.457 af Average Runoff Depth = 4.43" 100.00% Pervious = 9.372 ac 0.00% Impervious = 0.000 ac

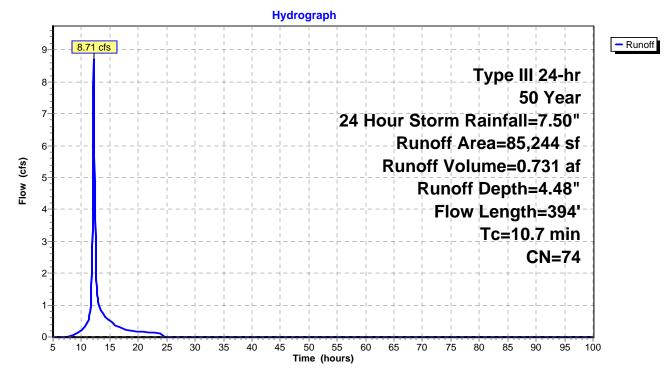

Summary for Subcatchment Pre 1: Pre 1

2.183 af, Depth= 4.37" Runoff 21.20 cfs @ 12.26 hrs, Volume= =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-100.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Year, 24 Hour Storm Rainfall=7.50"

_	A	rea (sf)	CN [Description		
164,940 73 Woods, Fair, HSG C						
		96,254	74 >	-75% Gras	s cover, Go	bod, HSG C
	2	61,194	73 V	Veighted A	verage	
	2	61,194	1	00.00% Pe	ervious Are	a
	-		<u></u>		o	
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	14.8	250	0.0400	0.28		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.50"
	1.0	105	0.0667	1.81		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	3.0	250	0.0760	1.38		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	18.8	605	Total			

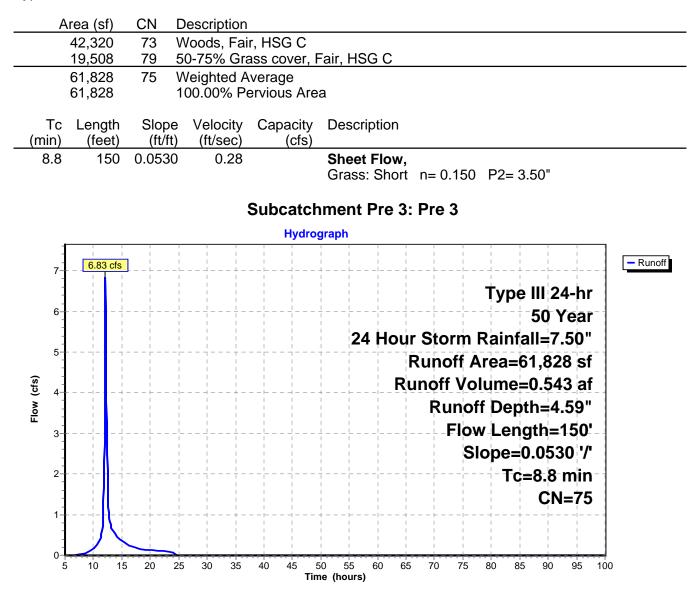
Subcatchment Pre 1: Pre 1


Summary for Subcatchment Pre 2: Pre 2

8.71 cfs @ 12.15 hrs, Volume= 0.731 af, Depth= 4.48" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-100.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Year, 24 Hour Storm Rainfall=7.50"

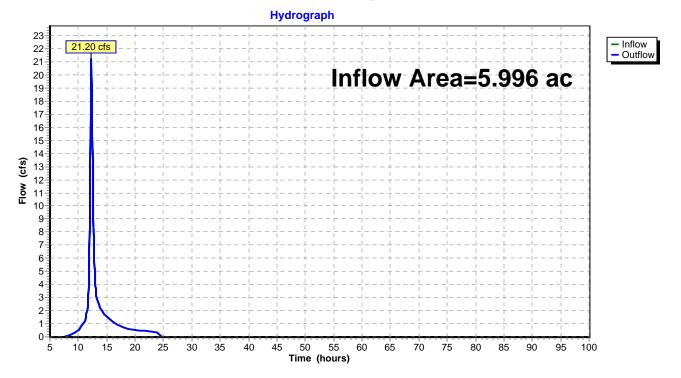
_	A	rea (sf)	CN	Description		
		0	98	Paved park	ing, HSG C	;
		64,912	73	Woods, Fai	r, HSG C	
_		20,332	79	50-75% Gra	ass cover, F	Fair, HSG C
	85,244 74 Weighted Average					
		85,244		100.00% Pe	ervious Are	а
	Тс	Length	Slope		Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	9.0	150	0.0500	0.28		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.50"
	1.7	244	0.1200	2.42		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	10.7	394	Total			


Subcatchment Pre 2: Pre 2

Summary for Subcatchment Pre 3: Pre 3

Runoff 6.83 cfs @ 12.12 hrs, Volume= 0.543 af, Depth= 4.59" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-100.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Year, 24 Hour Storm Rainfall=7.50"



Summary for Reach DP1: Design Point 1

Inflow Are	a =	5.996 ac,	0.00% Impervious, Inflow D	epth = 4.37" for	50 Year, 24 Hour Storm event
Inflow	=	21.20 cfs @	12.26 hrs, Volume=	2.183 af	
Outflow	=	21.20 cfs @	12.26 hrs, Volume=	2.183 af, Atten= 0	9%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-100.00 hrs, dt= 0.05 hrs

Reach DP1: Design Point 1

Summary for Reach DP2: Design Point 2

Inflow Area	a =	1.957 ac,	0.00% Impervious, Inflow D	epth = 4.48" for 50 Year, 24 Hour Storm event
Inflow	=	8.71 cfs @	12.15 hrs, Volume=	0.731 af
Outflow	=	8.71 cfs @	12.15 hrs, Volume=	0.731 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-100.00 hrs, dt= 0.05 hrs

Hydrograph Inflow Outflow 8.71 cfs 9-Inflow Area=1.957 ac 8-7-6-Flow (cfs) 5-4-3-2-1. 0-10 15 20 25 30 35 40 45 60 65 70 75 80 85 90 95 100 5 50 55 Time (hours)

Reach DP2: Design Point 2

Summary for Reach DP3: Design Point 3

Inflow Are	a =	1.419 ac,	0.00% Impervious, Inflow D	epth = 4.59" for 50 Year, 24 Hour Storm event
Inflow	=	6.83 cfs @	12.12 hrs, Volume=	0.543 af
Outflow	=	6.83 cfs @	12.12 hrs, Volume=	0.543 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-100.00 hrs, dt= 0.05 hrs

Hydrograph Inflow Outflow 6.83 cfs 7-Inflow Area=1.419 ac 6-5-Flow (cfs) 4-3-2-1-0-15 20 25 30 35 40 45 60 65 70 75 80 85 90 95 100 5 10 50 55 Time (hours)

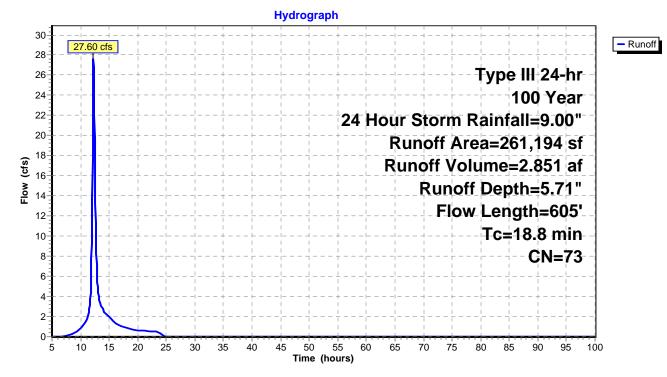
Reach DP3: Design Point 3

Park Place - PRE EX Prepared by AKRF, Inc.

Type III 24-hr 100 Year, 24 Hour Storm Rainfall=9.00" Printed 12/5/2014 HydroCAD® 10.00-12 s/n 04852 © 2014 HydroCAD Software Solutions LLC Page 39

> Time span=5.00-100.00 hrs, dt=0.05 hrs, 1901 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment Pre 1: Pre 1	Runoff Area=261,194 sf 0.00% Impervious Runoff Depth=5.71" Flow Length=605' Tc=18.8 min CN=73 Runoff=27.60 cfs 2.851 af
Subcatchment Pre 2: Pre 2	Runoff Area=85,244 sf 0.00% Impervious Runoff Depth=5.83" Flow Length=394' Tc=10.7 min CN=74 Runoff=11.27 cfs 0.951 af
Subcatchment Pre 3: Pre 3 Flow Length=	Runoff Area=61,828 sf 0.00% Impervious Runoff Depth=5.95" 150' Slope=0.0530 '/' Tc=8.8 min CN=75 Runoff=8.81 cfs 0.704 af
Reach DP1: Design Point 1	Inflow=27.60 cfs 2.851 af Outflow=27.60 cfs 2.851 af
Reach DP2: Design Point 2	Inflow=11.27 cfs 0.951 af Outflow=11.27 cfs 0.951 af
Reach DP3: Design Point 3	Inflow=8.81 cfs 0.704 af Outflow=8.81 cfs 0.704 af
Total Runoff Area = 9.37	72 ac Runoff Volume = 4.506 af Average Runoff Depth = 5.77" 100.00% Pervious = 9.372 ac 0.00% Impervious = 0.000 ac

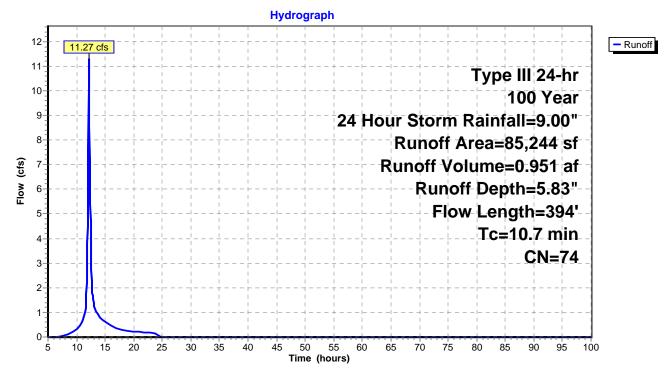

Summary for Subcatchment Pre 1: Pre 1

2.851 af, Depth= 5.71" Runoff 27.60 cfs @ 12.26 hrs, Volume= =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-100.00 hrs, dt= 0.05 hrs Type III 24-hr 100 Year, 24 Hour Storm Rainfall=9.00"

Α	rea (sf)	CN D	escription				
1	64,940	73 V	Woods, Fair, HSG C				
	96,254	74 >	75% Gras	s cover, Go	ood, HSG C		
2	61,194	73 V	Veighted A	verage			
2	61,194	1	00.00% Pe	ervious Are	a		
Tc	Length	Slope	Velocity	Capacity	Description		
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)			
14.8	250	0.0400	0.28		Sheet Flow,		
					Grass: Short n= 0.150 P2= 3.50"		
1.0	105	0.0667	1.81		Shallow Concentrated Flow,		
					Short Grass Pasture Kv= 7.0 fps		
3.0	250	0.0760	1.38		Shallow Concentrated Flow,		
					Woodland Kv= 5.0 fps		
18.8	605	Total					

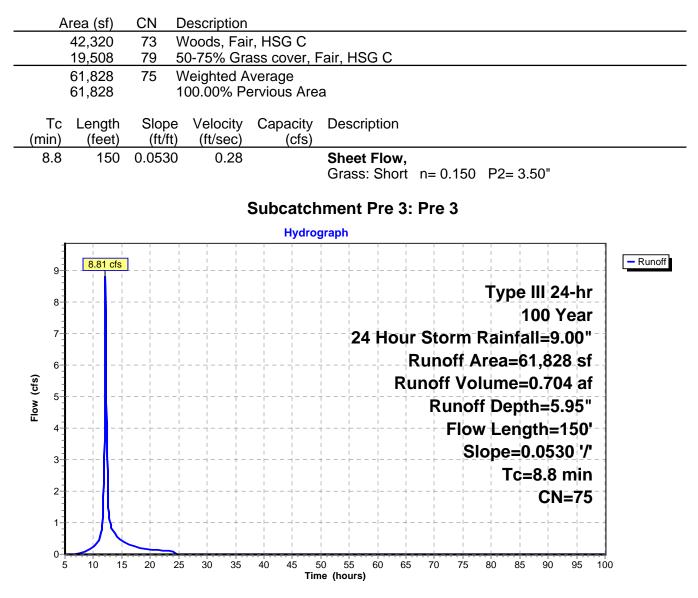
Subcatchment Pre 1: Pre 1


Summary for Subcatchment Pre 2: Pre 2

11.27 cfs @ 12.15 hrs, Volume= 0.951 af, Depth= 5.83" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-100.00 hrs, dt= 0.05 hrs Type III 24-hr 100 Year, 24 Hour Storm Rainfall=9.00"

_	A	rea (sf)	CN	Description		
		0	98	Paved park	ing, HSG C	;
		64,912	73	Woods, Fai	r, HSG C	
_		20,332	79	50-75% Gra	ass cover, F	Fair, HSG C
		85,244	74	Weighted A	verage	
		85,244		100.00% Pe	ervious Are	а
	Тс	Length	Slope		Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	9.0	150	0.0500	0.28		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.50"
	1.7	244	0.1200	2.42		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	10.7	394	Total			


Subcatchment Pre 2: Pre 2

Summary for Subcatchment Pre 3: Pre 3

Runoff 8.81 cfs @ 12.12 hrs, Volume= 0.704 af, Depth= 5.95" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-100.00 hrs, dt= 0.05 hrs Type III 24-hr 100 Year, 24 Hour Storm Rainfall=9.00"

Summary for Reach DP1: Design Point 1

Inflow Area	a =	5.996 ac,	0.00% Impervious, Inflow D	epth = 5.71"	for 100 Year, 24 Hour Storm event
Inflow	=	27.60 cfs @	12.26 hrs, Volume=	2.851 af	
Outflow	=	27.60 cfs @	12.26 hrs, Volume=	2.851 af, Att	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-100.00 hrs, dt= 0.05 hrs

6-4-2-0-

5

10

15

20

25

30

35

40

45

50

55

Time (hours)

65

60

70

75

80

90

95

100

85

Hydrograph 30 Inflow Outflow 27.60 cfs 28 Inflow Area=5.996 ac 26 24 22 20-18 (classification) (class **№** 14 12-10 8-

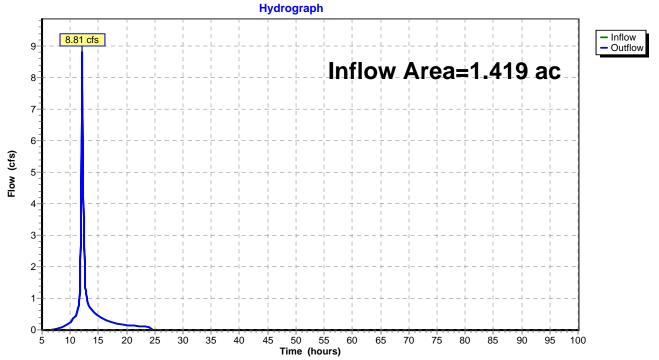
Reach DP1: Design Point 1

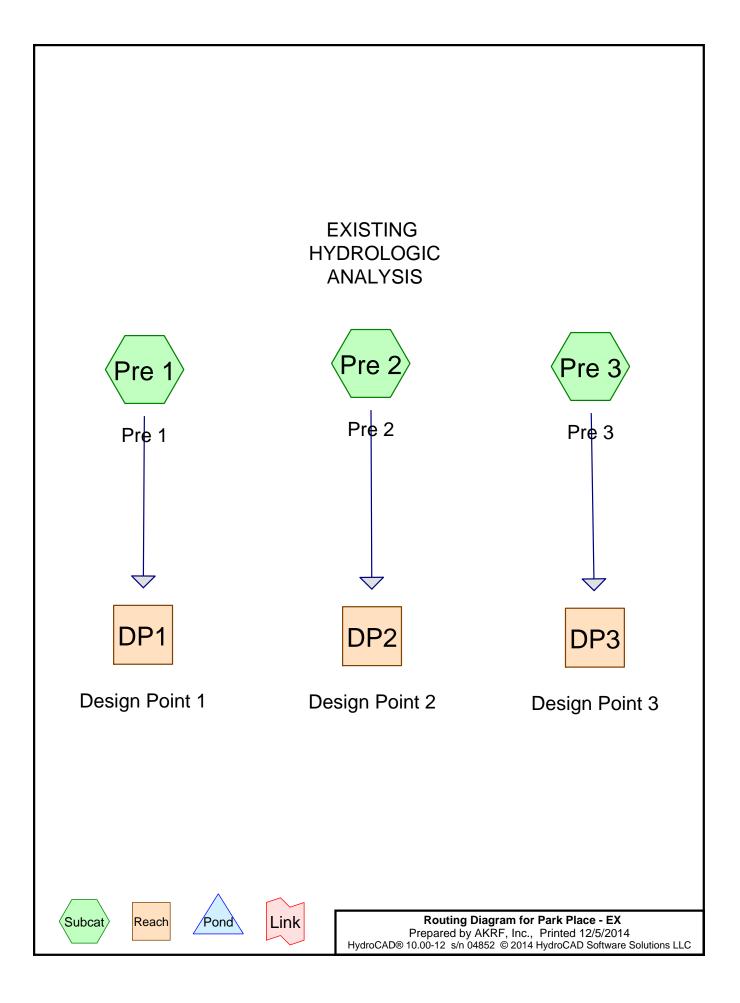
Summary for Reach DP2: Design Point 2

Inflow Are	a =	1.957 ac,	0.00% Impervious, Inflow D	epth = 5.83"	for 100 Year, 24 Hour Storm event
Inflow	=	11.27 cfs @	12.15 hrs, Volume=	0.951 af	
Outflow	=	11.27 cfs @	12.15 hrs, Volume=	0.951 af, Att	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-100.00 hrs, dt= 0.05 hrs

Hydrograph 12 Inflow Outflow 11.27 cfs 11 Inflow Area=1.957 ac 10 9-8 7-Flow (cfs) 6-5-4 3-2-1 0-10 15 20 25 30 35 40 45 60 65 70 75 80 85 90 95 100 50 55 5 Time (hours)


Reach DP2: Design Point 2


Summary for Reach DP3: Design Point 3

Inflow Are	a =	1.419 ac,	0.00% Impervious, Inflow D	epth = 5.95"	for 100 Year, 24 Hour Storm event
Inflow	=	8.81 cfs @	12.12 hrs, Volume=	0.704 af	
Outflow	=	8.81 cfs @	12.12 hrs, Volume=	0.704 af, Att	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-100.00 hrs, dt= 0.05 hrs

Reach DP3: Design Point 3

Area Listing (all nodes)

Area	CN	Description
(sq-ft)		(subcatchment-numbers)
39,840	79	50-75% Grass cover, Fair, HSG C (Pre 2, Pre 3)
96,254	74	>75% Grass cover, Good, HSG C (Pre 1)
51,412	98	Paved parking, HSG C (Pre 1, Pre 2, Pre 3)
220,760	73	Woods, Fair, HSG C (Pre 1, Pre 2, Pre 3)
408,266	77	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(sq-ft)	Group	Numbers
0	HSG A	
0	HSG B	
408,266	HSG C	Pre 1, Pre 2, Pre 3
0	HSG D	
0	Other	
408,266		TOTAL AREA

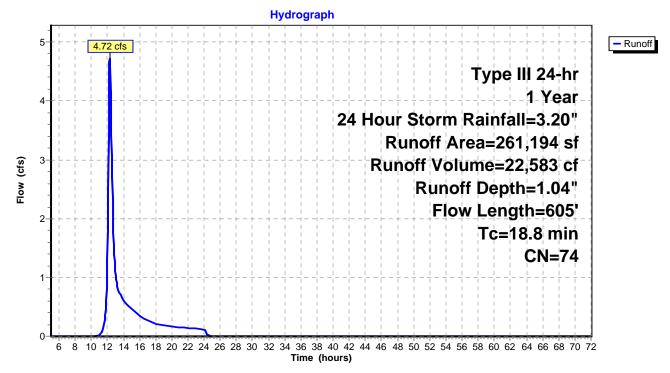
Park Place - EX	Type III 24-hr 1 Year, 24 Hour Storm Rainfall=3.	.20"
Prepared by AKRF, Inc.	Printed 12/5/2	014
HydroCAD® 10.00-12 s/n 04852 © 201	4 HydroCAD Software Solutions LLC Pac	ge 4

Time span=5.00-72.00 hrs, dt=0.05 hrs, 1341 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment Pre 1: Pre 1 Flo	Runoff Area=261,194 sf 1.36% Impervious Runoff Depth=1.04" w Length=605' Tc=18.8 min CN=74 Runoff=4.72 cfs 22,583 cf
Subcatchment Pre 2: Pre 2 Flo	Runoff Area=85,244 sf 36.20% Impervious Runoff Depth=1.61" w Length=394' Tc=10.7 min CN=83 Runoff=3.12 cfs 11,431 cf
Subcatchment Pre 3: Pre 3 Flow Length=150'	Runoff Area=61,828 sf 27.47% Impervious Runoff Depth=1.54" Slope=0.0530 '/' Tc=8.8 min CN=82 Runoff=2.27 cfs 7,925 cf
Reach DP1: Design Point 1	Inflow=4.72 cfs 22,583 cf
	Outflow=4.72 cfs 22,583 cf
Reach DP2: Design Point 2	Inflow=3.12 cfs 11,431 cf
-	Outflow=3.12 cfs 11,431 cf
Reach DP3: Design Point 3	Inflow=2.27 cfs 7,925 cf
-	Outflow=2.27 cfs 7,925 cf
Total Runoff Area = 408,266 sf	Runoff Volume = 41,939 cf Average Runoff Depth = 1.23

Fotal Runoff Area = 408,266 sf Runoff Volume = 41,939 cf Average Runoff Depth = 1.23"87.41% Pervious = 356,854 sf 12.59% Impervious = 51,412 sf

Summary for Subcatchment Pre 1: Pre 1

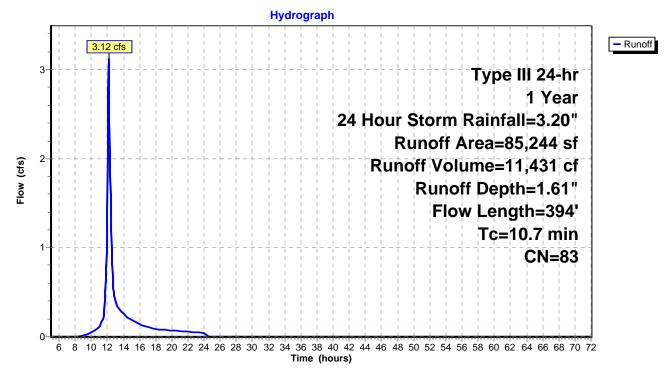

Runoff = 4.72 cfs @ 12.28 hrs, Volume= 22,583 cf, Depth= 1.04"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 1 Year, 24 Hour Storm Rainfall=3.20"

_	A	rea (sf)	CN	Description		
		3,564	98	Paved park	ing, HSG C	2
	1	61,376	73	Woods, Fai	r, HSG C	
_		96,254	74	>75% Gras	s cover, Go	bod, HSG C
	2	61,194	74	Weighted A	verage	
	2	57,630	1	98.64% Pe	vious Area	l
		3,564		1.36% Impe	ervious Are	a
	_					
	Tc	Length	Slope		Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	14.8	250	0.0400	0.28		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.50"
	1.0	105	0.0667	1.81		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	3.0	250	0.0760	1.38		Shallow Concentrated Flow,
_						Woodland Kv= 5.0 fps
	10 0	605	Total			

18.8 605 Total

Subcatchment Pre 1: Pre 1

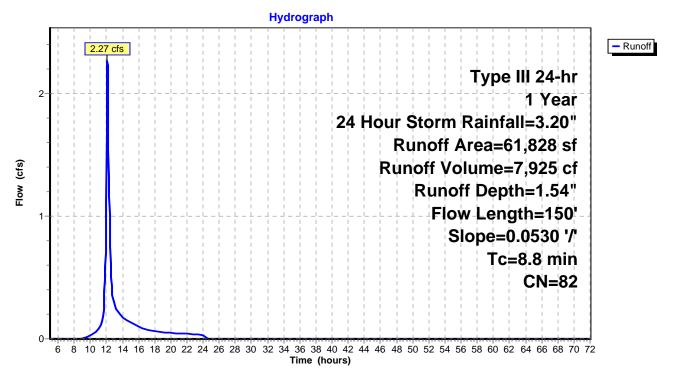

Summary for Subcatchment Pre 2: Pre 2

Runoff = 3.12 cfs @ 12.15 hrs, Volume= 11,431 cf, Depth= 1.61"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 1 Year, 24 Hour Storm Rainfall=3.20"

	Area (sf)	CN [Description		
	30,862	98 F	Paved park	ing, HSG C)
	34,050	73 \	Noods, Fai	r, HSG C	
	20,332	79 5	50-75% Gra	ass cover, l	Fair, HSG C
	85,244	83 \	Veighted A	verage	
	54,382	6	63.80% Pei	vious Area	
	30,862	3	36.20% Imp	pervious Ar	ea
Тс	c Length	Slope	Velocity	Capacity	Description
(min) (feet)	(ft/ft)	(ft/sec)	(cfs)	
9.0) 150	0.0500	0.28		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.50"
1.7	' 244	0.1200	2.42		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
10.7	' 394	Total			

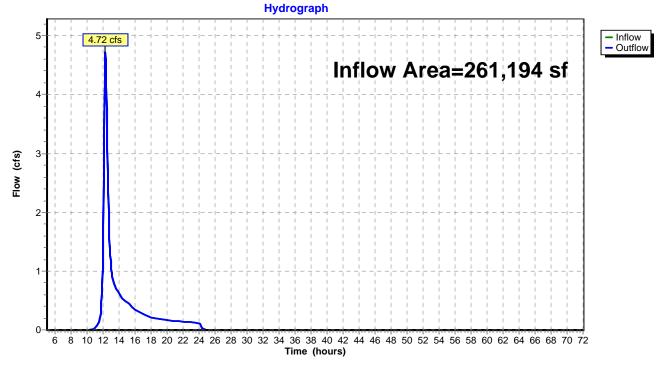
Subcatchment Pre 2: Pre 2


Summary for Subcatchment Pre 3: Pre 3

Runoff = 2.27 cfs @ 12.13 hrs, Volume= 7,925 cf, Depth= 1.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 1 Year, 24 Hour Storm Rainfall=3.20"

_	A	rea (sf)	CN	Description					
		16,986	98	Paved park	ing, HSG C	,			
		25,334	73	Noods, Fai	r, HSG C				
		19,508	79	50-75% Gra	ass cover, F	Fair, HSG C			
		61,828	82	Weighted Average					
		44,842	-	72.53% Pei	vious Area				
		16,986		27.47% Imp	pervious Ar	ea			
	Тс	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	8.8	150	0.0530	0.28		Sheet Flow,			
						Grass: Short	n= 0.150	P2= 3.50"	

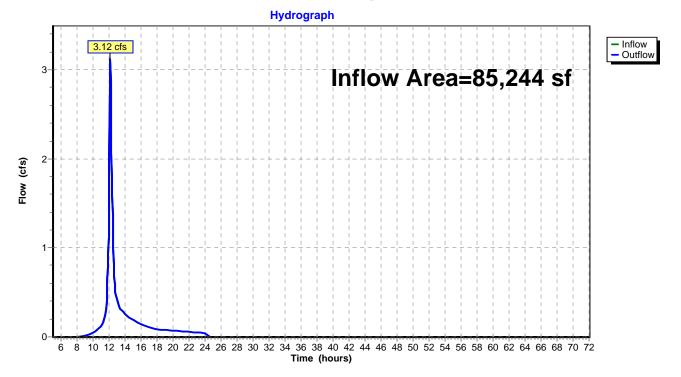


Summary for Reach DP1: Design Point 1

Inflow Are	a =	261,194 sf, 1.36% Impervious	, Inflow Depth = 1.04" for 1 Year, 24 Hour Storm event	
Inflow	=	4.72 cfs @ 12.28 hrs, Volume=	22,583 cf	
Outflow	=	4.72 cfs @ 12.28 hrs, Volume=	22,583 cf, Atten= 0%, Lag= 0.0 min	

Routing by Stor-Ind+Trans method, Time Span= 5.00-72.00 hrs, dt= 0.05 hrs

Reach DP1: Design Point 1

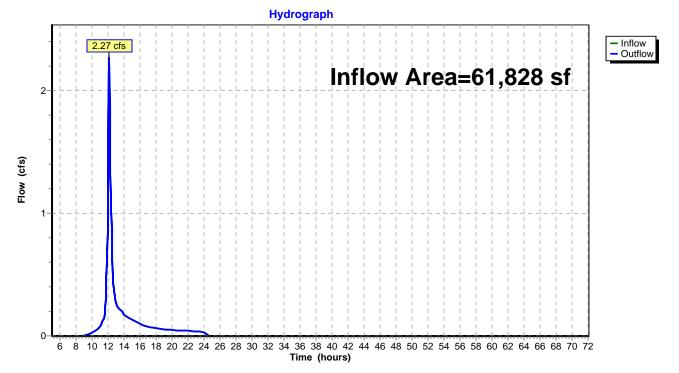


Summary for Reach DP2: Design Point 2

Inflow Are	a =	85,244 sf,	36.20% Impervious,	Inflow Depth = 1.61"	for 1 Year, 24 Hour Storm event
Inflow	=	3.12 cfs @	12.15 hrs, Volume=	11,431 cf	
Outflow	=	3.12 cfs @	12.15 hrs, Volume=	11,431 cf, Atter	n= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-72.00 hrs, dt= 0.05 hrs

Reach DP2: Design Point 2



Summary for Reach DP3: Design Point 3

Inflow Are	a =	61,828 sf, 27.47% Impervious, Inflow Depth = 1.54" for 1 Year, 24 Hour Storm	i event
Inflow	=	2.27 cfs @ 12.13 hrs, Volume= 7,925 cf	
Outflow	=	2.27 cfs @ 12.13 hrs, Volume= 7,925 cf, Atten= 0%, Lag= 0.0 min	

Routing by Stor-Ind+Trans method, Time Span= 5.00-72.00 hrs, dt= 0.05 hrs

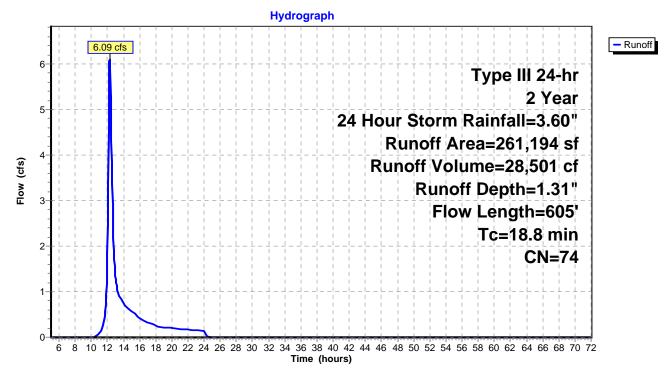
Reach DP3: Design Point 3

Park Place - EX	Type III 24-hr 2 Year, 24 Ho	our Storm Rainfall=3.60"
Prepared by AKRF, Inc.		Printed 12/5/2014
HydroCAD® 10.00-12 s/n 04852 © 2014 HydroCAI	D Software Solutions LLC	Page 11

Time span=5.00-72.00 hrs, dt=0.05 hrs, 1341 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment Pre 1: Pre 1	Runoff Area=261,194 sf 1.36% Impervious Runoff Depth=1.31" Flow Length=605' Tc=18.8 min CN=74 Runoff=6.09 cfs 28,501 cf
Subcatchment Pre 2: Pre 2	Runoff Area=85,244 sf 36.20% Impervious Runoff Depth=1.94" Flow Length=394' Tc=10.7 min CN=83 Runoff=3.78 cfs 13,802 cf
Subcatchment Pre 3: Pre 3 Flow Length=15	Runoff Area=61,828 sf 27.47% Impervious Runoff Depth=1.87" 50' Slope=0.0530 '/' Tc=8.8 min CN=82 Runoff=2.76 cfs 9,612 cf
Reach DP1: Design Point 1	Inflow=6.09 cfs 28,501 cf Outflow=6.09 cfs 28,501 cf
Reach DP2: Design Point 2	Inflow=3.78 cfs 13,802 cf Outflow=3.78 cfs 13,802 cf
Reach DP3: Design Point 3	Inflow=2.76 cfs 9,612 cf Outflow=2.76 cfs 9,612 cf
Total Runoff Area = 408,266	sf Runoff Volume = 51,915 cf Average Runoff Depth = 1.53

3" 87.41% Pervious = 356,854 sf 12.59% Impervious = 51,412 sf

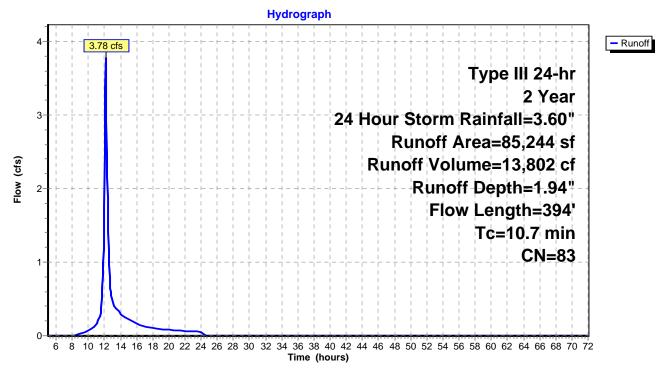

Summary for Subcatchment Pre 1: Pre 1

Runoff = 6.09 cfs @ 12.28 hrs, Volume= 28,501 cf, Depth= 1.31"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2 Year, 24 Hour Storm Rainfall=3.60"

_	A	rea (sf)	CN [Description					
		3,564	98 F	Paved park	ing, HSG C	<u>}</u>			
	1	61,376	73 V	Voods, Fai	r, HSG C				
_		96,254	74 >	>75% Grass cover, Good, HSG C					
	2	61,194	74 V	Veighted A	verage				
	2	57,630	ç	8.64% Per	vious Area				
		3,564	1	.36% Impe	ervious Area	a			
	_								
	Tc	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	14.8	250	0.0400	0.28		Sheet Flow,			
						Grass: Short n= 0.150 P2= 3.50"			
	1.0	105	0.0667	1.81		Shallow Concentrated Flow,			
						Short Grass Pasture Kv= 7.0 fps			
	3.0	250	0.0760	1.38		Shallow Concentrated Flow,			
_						Woodland Kv= 5.0 fps			
	18.8	605	Total						

Subcatchment Pre 1: Pre 1

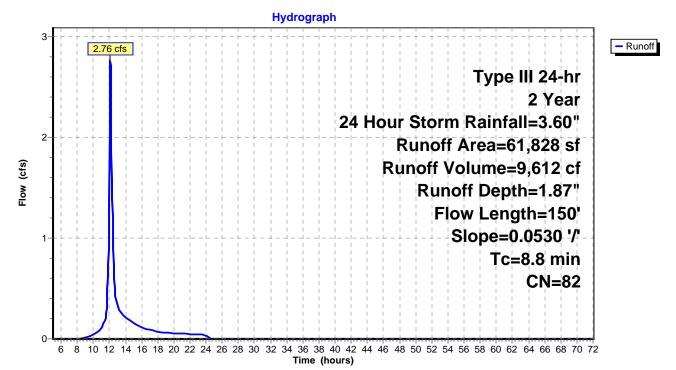

Summary for Subcatchment Pre 2: Pre 2

Runoff = 3.78 cfs @ 12.15 hrs, Volume= 13,802 cf, Depth= 1.94"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2 Year, 24 Hour Storm Rainfall=3.60"

	A	rea (sf)	CN I	Description		
		30,862	98 I	Paved park	ing, HSG C	2
		34,050	73 \	Noods, Fai	r, HSG C	
		20,332	79 క	50-75% Gra	ass cover, I	Fair, HSG C
		85,244	83 \	Neighted A	verage	
		54,382	6	63.80% Pei	vious Area	
		30,862	3	36.20% Imp	pervious Ar	ea
	Тс	Length	Slope	Velocity	Capacity	Description
(mi	in)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
g	0.0	150	0.0500	0.28		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.50"
1	.7	244	0.1200	2.42		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
10).7	394	Total			

Subcatchment Pre 2: Pre 2

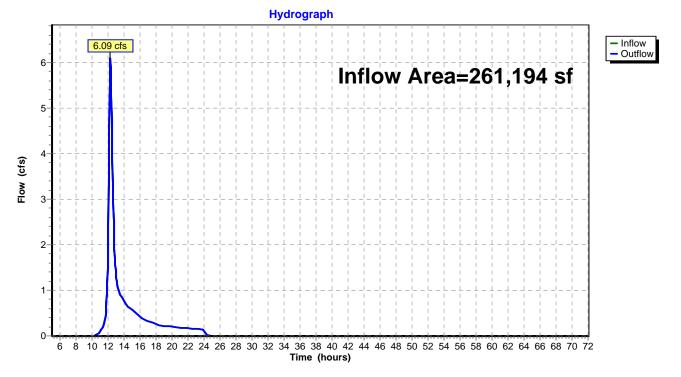

Summary for Subcatchment Pre 3: Pre 3

Runoff = 2.76 cfs @ 12.13 hrs, Volume= 9,612 cf, Depth= 1.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2 Year, 24 Hour Storm Rainfall=3.60"

A	rea (sf)	CN [Description					
	16,986	98 F	Paved park	ing, HSG C	;			
	25,334	73 \	Noods, Fai	r, HSG C				
	19,508	79 5	50-75% Gra	ass cover, F	Fair, HSG C			
	61,828	82 \	Neighted A	verage				
	44,842	7	72.53% Per	vious Area				
	16,986	2	27.47% Imp	ervious Ar	ea			
Тс	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
8.8	150	0.0530	0.28		Sheet Flow,			
					Grass: Short	n= 0.150	P2= 3.50"	

Subcatchment Pre 3: Pre 3

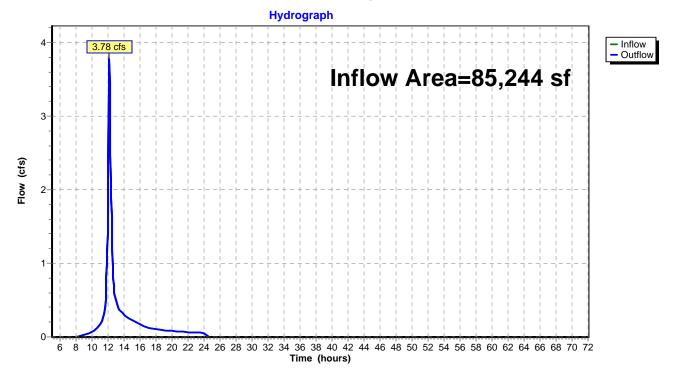


Summary for Reach DP1: Design Point 1

Inflow Are	a =	261,194 sf,	1.36% Impervious,	Inflow Depth = 1.31"	for 2 Year, 24 Hour Storm event
Inflow	=	6.09 cfs @	12.28 hrs, Volume=	28,501 cf	
Outflow	=	6.09 cfs @	12.28 hrs, Volume=	28,501 cf, Atter	n= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-72.00 hrs, dt= 0.05 hrs

Reach DP1: Design Point 1

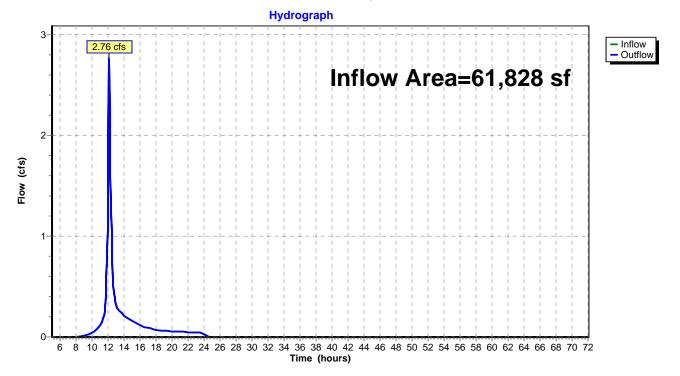


Summary for Reach DP2: Design Point 2

Inflow Are	a =	85,244 sf, 36.20% Impervious, Inflow Depth = 1.94" for 2 Year, 24 Hour Storm ev	ent /
Inflow	=	3.78 cfs @ 12.15 hrs, Volume= 13,802 cf	
Outflow	=	3.78 cfs @ 12.15 hrs, Volume= 13,802 cf, Atten= 0%, Lag= 0.0 min	

Routing by Stor-Ind+Trans method, Time Span= 5.00-72.00 hrs, dt= 0.05 hrs

Reach DP2: Design Point 2



Summary for Reach DP3: Design Point 3

Inflow Are	a =	61,828 sf, 27.47% Impervious, Inflow	Depth = 1.87" for 2 Year, 24 Hour Storm event
Inflow	=	2.76 cfs @ 12.13 hrs, Volume=	9,612 cf
Outflow	=	2.76 cfs @ 12.13 hrs, Volume=	9,612 cf, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-72.00 hrs, dt= 0.05 hrs

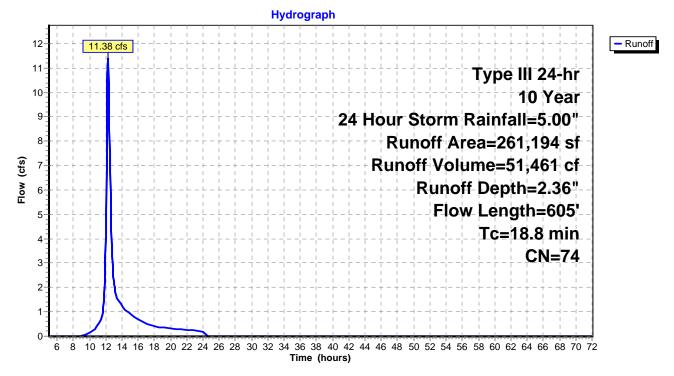
Reach DP3: Design Point 3

Park Place - EX	Type III 24-hr 10 Year, 24 Hour Storm Rainfall=5.00"
Prepared by AKRF, Inc.	Printed 12/5/2014
HydroCAD® 10.00-12 s/n 04852 © 2014	HydroCAD Software Solutions LLC Page 18

Time span=5.00-72.00 hrs, dt=0.05 hrs, 1341 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment Pre 1: Pre 1 Flow	Runoff Area=261,194 sf 1.36% Impervious Runoff Depth=2.36" v Length=605' Tc=18.8 min CN=74 Runoff=11.38 cfs 51,461 cf
Subcatchment Pre 2: Pre 2 Flo	Runoff Area=85,244 sf 36.20% Impervious Runoff Depth=3.17" w Length=394' Tc=10.7 min CN=83 Runoff=6.15 cfs 22,548 cf
Subcatchment Pre 3: Pre 3 Flow Length=150'	Runoff Area=61,828 sf 27.47% Impervious Runoff Depth=3.08" Slope=0.0530 '/' Tc=8.8 min CN=82 Runoff=4.58 cfs 15,864 cf
Reach DP1: Design Point 1	Inflow=11.38 cfs 51,461 cf Outflow=11.38 cfs 51,461 cf
Reach DP2: Design Point 2	Inflow=6.15 cfs 22,548 cf Outflow=6.15 cfs 22,548 cf
Reach DP3: Design Point 3	Inflow=4.58 cfs 15,864 cf Outflow=4.58 cfs 15,864 cf
Total Runoff Area = 408,266 sf	Runoff Volume = 89,873 cf Average Runoff Depth = 2.64

Total Runoff Area = 408,266 sf Runoff Volume = 89,873 cf Average Runoff Depth = 2.64" 87.41% Pervious = 356,854 sf 12.59% Impervious = 51,412 sf

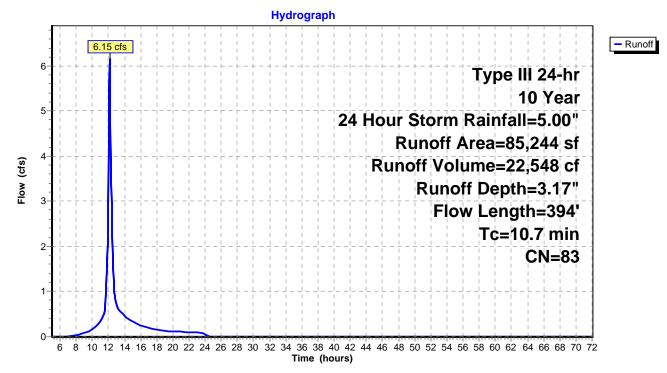

Summary for Subcatchment Pre 1: Pre 1

Runoff = 11.38 cfs @ 12.27 hrs, Volume= 51,461 cf, Depth= 2.36"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Year, 24 Hour Storm Rainfall=5.00"

_	A	rea (sf)	CN [Description		
		3,564	98 F	Paved park	ing, HSG C	
	1	61,376	73 V	Voods, Fai	r, HSG C	
_		96,254	74 >	-75% Gras	s cover, Go	ood, HSG C
	2	61,194	74 V	Veighted A	verage	
	2	57,630	ç	8.64% Per	vious Area	
		3,564	1	.36% Impe	ervious Area	a
	_					
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	14.8	250	0.0400	0.28		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.50"
	1.0	105	0.0667	1.81		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	3.0	250	0.0760	1.38		Shallow Concentrated Flow,
_						Woodland Kv= 5.0 fps
	18.8	605	Total			

Subcatchment Pre 1: Pre 1

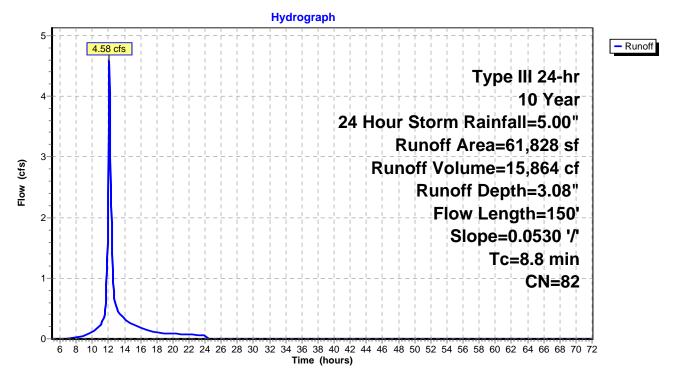

Summary for Subcatchment Pre 2: Pre 2

Runoff = 6.15 cfs @ 12.15 hrs, Volume= 22,548 cf, Depth= 3.17"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Year, 24 Hour Storm Rainfall=5.00"

	A	rea (sf)	CN I	Description		
		30,862	98 I	Paved park	ing, HSG C	
		34,050	73	Noods, Fai	r, HSG C	
		20,332	79 :	50-75% Gra	ass cover, I	Fair, HSG C
		85,244	83	Neighted A	verage	
		54,382	(53.80% Pei	vious Area	
		30,862		36.20% Imp	pervious Ar	ea
	Тс	Length	Slope		Capacity	Description
(n	nin)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	9.0	150	0.0500	0.28		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.50"
	1.7	244	0.1200	2.42		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
1	0.7	394	Total			

Subcatchment Pre 2: Pre 2

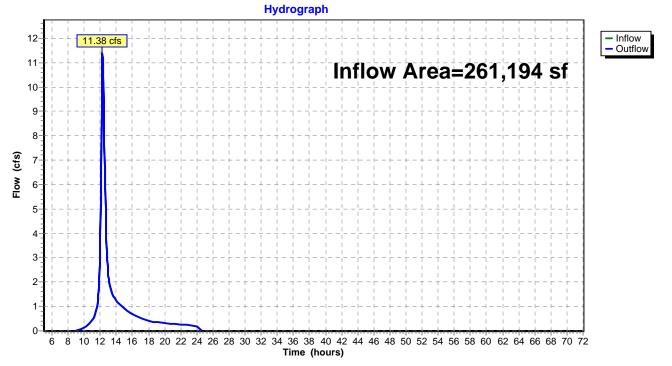

Summary for Subcatchment Pre 3: Pre 3

Runoff = 4.58 cfs @ 12.12 hrs, Volume= 15,864 cf, Depth= 3.08"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10 Year, 24 Hour Storm Rainfall=5.00"

 A	rea (sf)	CN	Description					
	16,986	98	Paved park	ing, HSG C	;			
	25,334	73	Woods, Fai	r, HSG C				
	19,508	79	50-75% Gra	ass cover, I	Fair, HSG C			
	61,828	82	Weighted A	verage				
	44,842		72.53% Pei	vious Area				
	16,986		27.47% Imp	pervious Ar	ea			
Тс	Length	Slope	Velocity	Capacity	Description			
 (min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
8.8	150	0.0530	0.28		Sheet Flow,			
					Grass: Short	n= 0.150	P2= 3.50"	

Subcatchment Pre 3: Pre 3

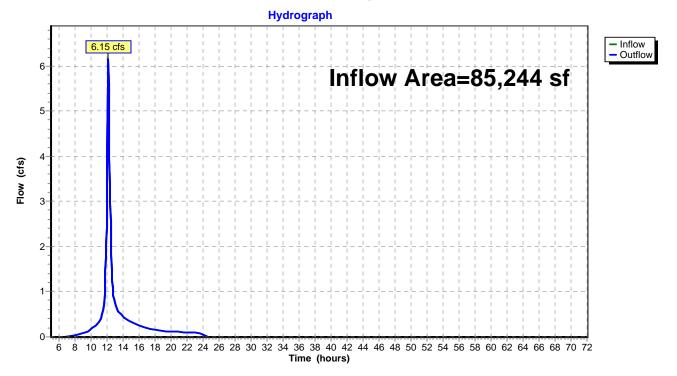


Summary for Reach DP1: Design Point 1

Inflow Are	a =	261,194 sf,	1.36% Impervious,	Inflow Depth = 2.36"	for 10 Year, 24 Hour Storm event
Inflow	=	11.38 cfs @	12.27 hrs, Volume=	51,461 cf	
Outflow	=	11.38 cfs @ 1	12.27 hrs, Volume=	51,461 cf, Atter	n= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-72.00 hrs, dt= 0.05 hrs

Reach DP1: Design Point 1

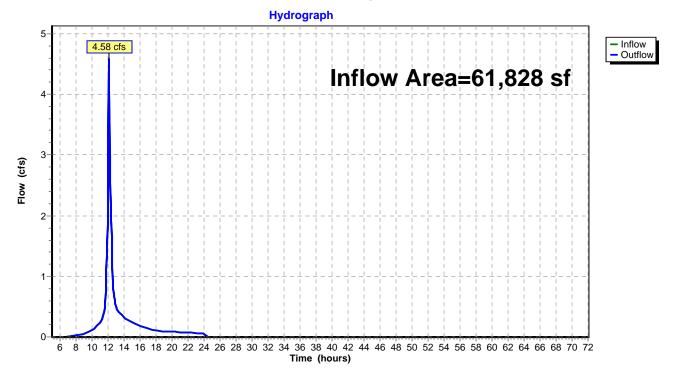


Summary for Reach DP2: Design Point 2

Inflow Are	a =	85,244 sf, 36.20% Impervious, Inflow Dep	pth = 3.17" for 10 Year, 24 Hour Storm event
Inflow	=	6.15 cfs @ 12.15 hrs, Volume= 22,	,548 cf
Outflow	=	6.15 cfs @ 12.15 hrs, Volume= 22,	,548 cf, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-72.00 hrs, dt= 0.05 hrs

Reach DP2: Design Point 2



Summary for Reach DP3: Design Point 3

Inflow Are	a =	61,828 sf, 27.47% Impervious,	Inflow Depth = 3.08" for 10 Year, 24 Hour Storm	n event
Inflow	=	4.58 cfs @ 12.12 hrs, Volume=	15,864 cf	
Outflow	=	4.58 cfs @ 12.12 hrs, Volume=	15,864 cf, Atten= 0%, Lag= 0.0 min	

Routing by Stor-Ind+Trans method, Time Span= 5.00-72.00 hrs, dt= 0.05 hrs

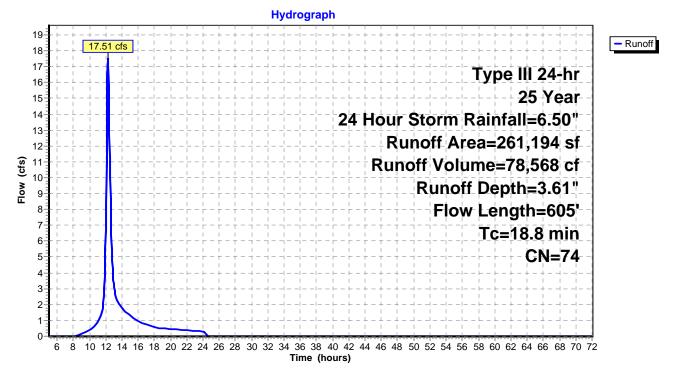
Reach DP3: Design Point 3

Park Place - EX	Type III 24-hr 25 Year, 24 Hour Storm Rainfall=6.50"
Prepared by AKRF, Inc.	Printed 12/5/2014
HydroCAD® 10.00-12 s/n 04852 © 2	014 HydroCAD Software Solutions LLC Page 25

Time span=5.00-72.00 hrs, dt=0.05 hrs, 1341 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment Pre 1: Pre 1	Runoff Area=261,194 sf 1.36% Impervious Runoff Depth=3.61" Flow Length=605' Tc=18.8 min CN=74 Runoff=17.51 cfs 78,568 cf
Subcatchment Pre 2: Pre 2	Runoff Area=85,244 sf 36.20% Impervious Runoff Depth=4.56" Flow Length=394' Tc=10.7 min CN=83 Runoff=8.74 cfs 32,376 cf
Subcatchment Pre 3: Pre 3 Flow Length=150	Runoff Area=61,828 sf 27.47% Impervious Runoff Depth=4.45" 0' Slope=0.0530 '/' Tc=8.8 min CN=82 Runoff=6.56 cfs 22,925 cf
Reach DP1: Design Point 1	Inflow=17.51 cfs 78,568 cf Outflow=17.51 cfs 78,568 cf
Reach DP2: Design Point 2	Inflow=8.74 cfs 32,376 cf Outflow=8.74 cfs 32,376 cf
Reach DP3: Design Point 3	Inflow=6.56 cfs 22,925 cf Outflow=6.56 cfs 22,925 cf
Total Runoff Area = 408,266 s	f Runoff Volume = 133,869 cf Average Runoff Depth = 3.93

Total Runoff Area = 408,266 sf Runoff Volume = 133,869 cf Average Runoff Depth = 3.93" 87.41% Pervious = 356,854 sf 12.59% Impervious = 51,412 sf

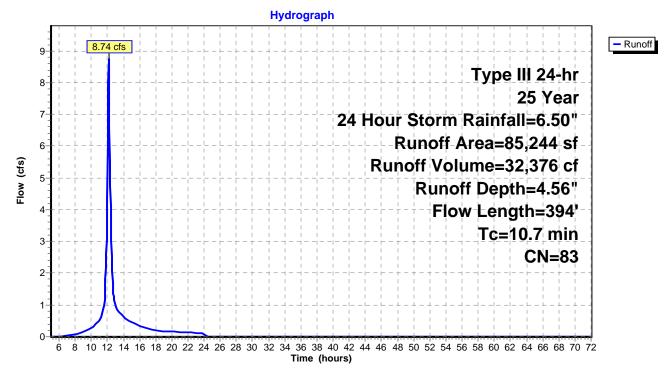

Summary for Subcatchment Pre 1: Pre 1

Runoff = 17.51 cfs @ 12.26 hrs, Volume= 78,568 cf, Depth= 3.61"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25 Year, 24 Hour Storm Rainfall=6.50"

_	A	rea (sf)	CN [Description					
		3,564	98 F	Paved park	ing, HSG C				
	1	61,376	73 V	Voods, Fai	oods, Fair, HSG C				
_		96,254	74 >	75% Grass cover, Good, HSG C					
	2	61,194	74 V	Veighted A	verage				
	2	57,630	ç	8.64% Per	vious Area				
		3,564	1	.36% Impe	ervious Area	a			
	_								
	Tc	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	14.8	250	0.0400	0.28		Sheet Flow,			
						Grass: Short n= 0.150 P2= 3.50"			
	1.0	105	0.0667	1.81		Shallow Concentrated Flow,			
						Short Grass Pasture Kv= 7.0 fps			
	3.0	250	0.0760	1.38		Shallow Concentrated Flow,			
_						Woodland Kv= 5.0 fps			
	18.8	605	Total						

Subcatchment Pre 1: Pre 1

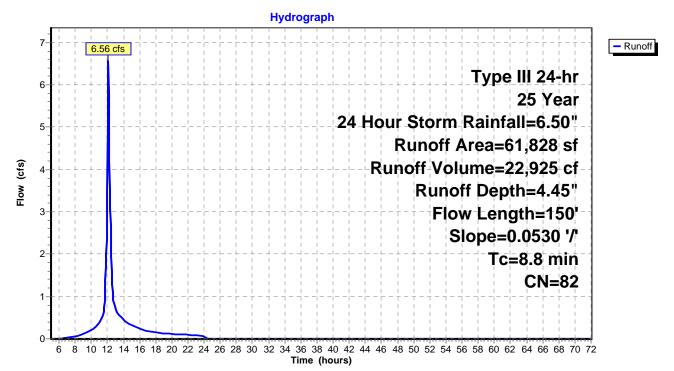

Summary for Subcatchment Pre 2: Pre 2

Runoff = 8.74 cfs @ 12.15 hrs, Volume= 32,376 cf, Depth= 4.56"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25 Year, 24 Hour Storm Rainfall=6.50"

	A	rea (sf)	CN I	Description					
		30,862	98 I	Paved parking, HSG C					
		34,050	73	Noods, Fai	r, HSG C				
		20,332	79 :	50-75% Gra	ass cover, I	Fair, HSG C			
		85,244	83	Neighted A	verage				
		54,382	(53.80% Pei	vious Area				
		30,862		36.20% Imp	pervious Ar	ea			
	Тс	Length	Slope		Capacity	Description			
(n	nin)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	9.0	150	0.0500	0.28		Sheet Flow,			
						Grass: Short n= 0.150 P2= 3.50"			
	1.7	244	0.1200	2.42		Shallow Concentrated Flow,			
						Short Grass Pasture Kv= 7.0 fps			
1	0.7	394	Total						

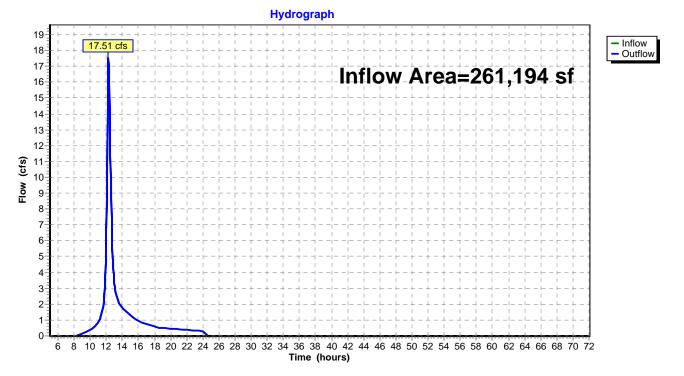
Subcatchment Pre 2: Pre 2


Summary for Subcatchment Pre 3: Pre 3

Runoff = 6.56 cfs @ 12.12 hrs, Volume= 22,925 cf, Depth= 4.45"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25 Year, 24 Hour Storm Rainfall=6.50"

_	A	rea (sf)	CN	Description					
		16,986	98	Paved park	ing, HSG C	,			
		25,334	73	Woods, Fai	r, HSG C				
		19,508	79	50-75% Grass cover, Fair, HSG C					
		61,828	82	Weighted A	verage				
		44,842	-	72.53% Pei	vious Area				
		16,986		27.47% Imp	pervious Ar	ea			
	Тс	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	8.8	150	0.0530	0.28		Sheet Flow,			
						Grass: Short	n= 0.150	P2= 3.50"	

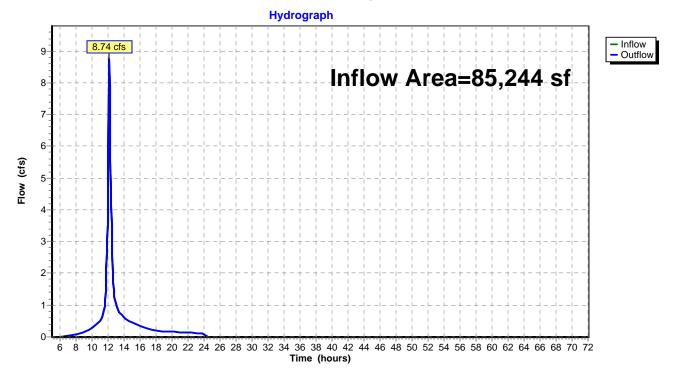


Summary for Reach DP1: Design Point 1

Inflow Are	a =	261,194 sf, 1.36% Impervious	, Inflow Depth = 3.61 "	for 25 Year, 24 Hour Storm event
Inflow	=	17.51 cfs @ 12.26 hrs, Volume=	78,568 cf	
Outflow	=	17.51 cfs @ 12.26 hrs, Volume=	78,568 cf, Atter	n= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-72.00 hrs, dt= 0.05 hrs

Reach DP1: Design Point 1



Summary for Reach DP2: Design Point 2

Inflow Are	a =	85,244 sf, 36.20% Impervious, I	nflow Depth = 4.56"	for 25 Year, 24 Hour Storm event
Inflow	=	8.74 cfs @ 12.15 hrs, Volume=	32,376 cf	
Outflow	=	8.74 cfs @ 12.15 hrs, Volume=	32,376 cf, Atten	= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-72.00 hrs, dt= 0.05 hrs

Reach DP2: Design Point 2

Summary for Reach DP3: Design Point 3

Inflow Are	a =	61,828 sf, 27.47% Impervious, Infl	ow Depth = 4.45" for 25 Year, 24 Hour Storm event	
Inflow	=	6.56 cfs @ 12.12 hrs, Volume=	22,925 cf	
Outflow	=	6.56 cfs @ 12.12 hrs, Volume=	22,925 cf, Atten= 0%, Lag= 0.0 min	

Routing by Stor-Ind+Trans method, Time Span= 5.00-72.00 hrs, dt= 0.05 hrs

Hydrograph 7- Inflow Outflow 6.56 cfs Inflow Area=61,828 sf 6-5-Flow (cfs) 4 3-2-1 0 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 6 Time (hours)

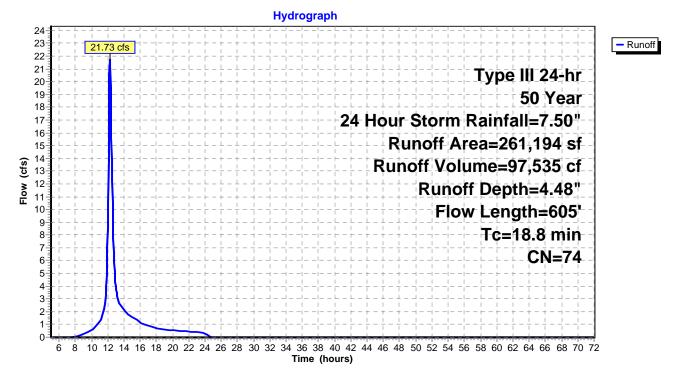
Reach DP3: Design Point 3

Park Place - EX	Type III 24-hr 50 Year, 24 Hour Storm Rainfall=7.50"
Prepared by AKRF, Inc.	Printed 12/5/2014
HydroCAD® 10.00-12 s/n 04852 ©	2014 HydroCAD Software Solutions LLC Page 32

Time span=5.00-72.00 hrs, dt=0.05 hrs, 1341 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment Pre 1: Pre 1 Flo	Runoff Area=261,194 sf 1.36% Impervious Runoff Depth=4.48" w Length=605' Tc=18.8 min CN=74 Runoff=21.73 cfs 97,535 cf
Subcatchment Pre 2: Pre 2 Flo	Runoff Area=85,244 sf 36.20% Impervious Runoff Depth>5.50" w Length=394' Tc=10.7 min CN=83 Runoff=10.47 cfs 39,079 cf
Subcatchment Pre 3: Pre 3 Flow Length=150'	Runoff Area=61,828 sf 27.47% Impervious Runoff Depth=5.39" Slope=0.0530 '/' Tc=8.8 min CN=82 Runoff=7.89 cfs 27,753 cf
Reach DP1: Design Point 1	Inflow=21.73 cfs 97,535 cf Outflow=21.73 cfs 97,535 cf
Reach DP2: Design Point 2	Inflow=10.47 cfs 39,079 cf Outflow=10.47 cfs 39,079 cf
Reach DP3: Design Point 3	Inflow=7.89 cfs 27,753 cf Outflow=7.89 cfs 27,753 cf
Total Runoff Area = 408,266 sf	Runoff Volume = 164,367 cf Average Runoff Depth = 4.83

Total Runoff Area = 408,266 sf Runoff Volume = 164,367 cf Average Runoff Depth = 4.83" 87.41% Pervious = 356,854 sf 12.59% Impervious = 51,412 sf

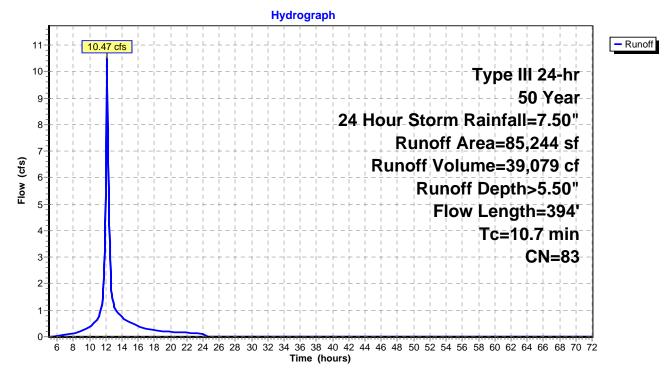

Summary for Subcatchment Pre 1: Pre 1

Runoff = 21.73 cfs @ 12.26 hrs, Volume= 97,535 cf, Depth= 4.48"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Year, 24 Hour Storm Rainfall=7.50"

_	A	rea (sf)	CN [Description					
		3,564	98 F	Paved park	ing, HSG C				
	1	61,376	73 V	Voods, Fai	oods, Fair, HSG C				
_		96,254	74 >	75% Grass cover, Good, HSG C					
	2	61,194	74 V	Veighted A	verage				
	2	57,630	ç	8.64% Per	vious Area				
		3,564	1	.36% Impe	ervious Area	a			
	_								
	Tc	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	14.8	250	0.0400	0.28		Sheet Flow,			
						Grass: Short n= 0.150 P2= 3.50"			
	1.0	105	0.0667	1.81		Shallow Concentrated Flow,			
						Short Grass Pasture Kv= 7.0 fps			
	3.0	250	0.0760	1.38		Shallow Concentrated Flow,			
_						Woodland Kv= 5.0 fps			
	18.8	605	Total						

Subcatchment Pre 1: Pre 1

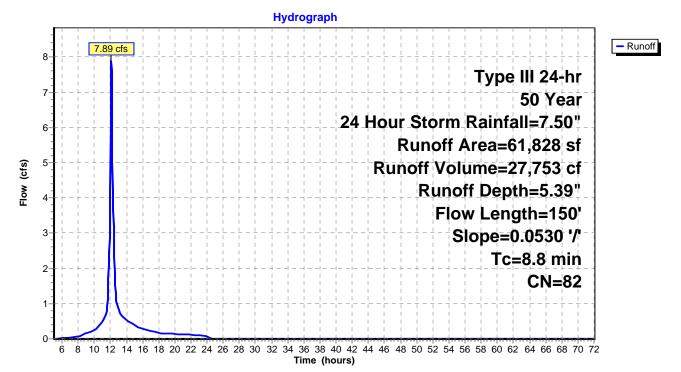

Summary for Subcatchment Pre 2: Pre 2

Runoff = 10.47 cfs @ 12.15 hrs, Volume= 39,079 cf, Depth> 5.50"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Year, 24 Hour Storm Rainfall=7.50"

	A	rea (sf)	CN [Description		
		30,862	98 F	Paved park	ing, HSG C	
		34,050	73 \	Voods, Fai	r, HSG C	
		20,332	79 5	50-75% Gra	ass cover, F	Fair, HSG C
		85,244	83 \	Veighted A	verage	
		54,382	6	63.80% Per	vious Area	
		30,862	3	36.20% Imp	pervious Ar	ea
	Тс	Length	Slope	Velocity	Capacity	Description
(r	min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	9.0	150	0.0500	0.28		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.50"
	1.7	244	0.1200	2.42		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	10.7	394	Total			

Subcatchment Pre 2: Pre 2

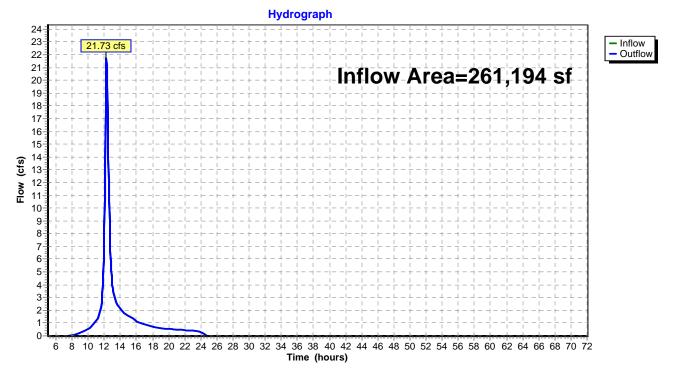

Summary for Subcatchment Pre 3: Pre 3

Runoff = 7.89 cfs @ 12.12 hrs, Volume= 27,753 cf, Depth= 5.39"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Year, 24 Hour Storm Rainfall=7.50"

A	vrea (sf)	CN [Description					
	16,986	98 F	Paved park	ing, HSG C	;			
	25,334	73 \	Voods, Fai	r, HSG C				
	19,508	79 5	50-75% Gra	ass cover, F	Fair, HSG C			
	61,828	82 \	Veighted A	verage				
	44,842	7	72.53% Per	vious Area				
	16,986	2	27.47% Imp	ervious Ar	ea			
Tc	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
8.8	150	0.0530	0.28		Sheet Flow,			
					Grass: Short	n= 0.150	P2= 3.50"	

Subcatchment Pre 3: Pre 3

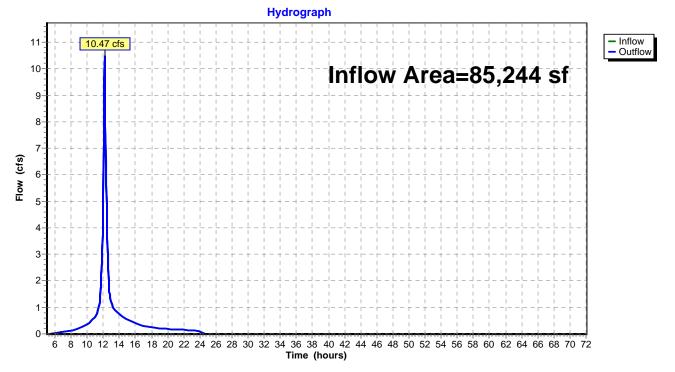


Summary for Reach DP1: Design Point 1

Inflow Are	a =	261,194 sf,	1.36% Impervious,	Inflow Depth = 4.48"	for 50 Year, 24 Hour Storm event
Inflow	=	21.73 cfs @	12.26 hrs, Volume=	97,535 cf	
Outflow	=	21.73 cfs @	12.26 hrs, Volume=	97,535 cf, Atter	n= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-72.00 hrs, dt= 0.05 hrs

Reach DP1: Design Point 1

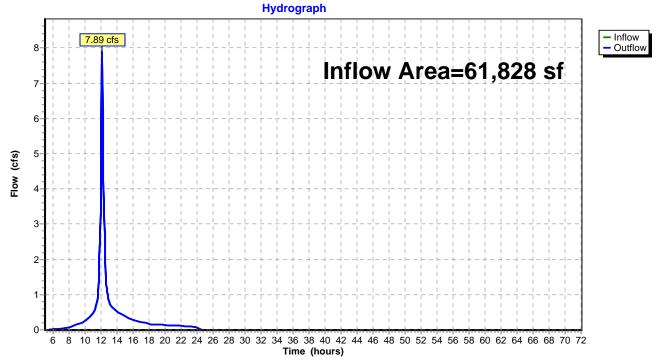


Summary for Reach DP2: Design Point 2

Inflow Are	a =	85,244 sf	, 36.20% Impervious	Inflow Depth > 5.50"	for 50 Year, 24 Hour Storm event
Inflow	=	10.47 cfs @	12.15 hrs, Volume=	39,079 cf	
Outflow	=	10.47 cfs @	12.15 hrs, Volume=	39,079 cf, Atte	n= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-72.00 hrs, dt= 0.05 hrs

Reach DP2: Design Point 2



Summary for Reach DP3: Design Point 3

Inflow Are	a =	61,828 sf, 27.47% Impervious, Infl	ow Depth = 5.39" for 50 Year, 24 Hour Storm e	vent
Inflow	=	7.89 cfs @ 12.12 hrs, Volume=	27,753 cf	
Outflow	=	7.89 cfs @ 12.12 hrs, Volume=	27,753 cf, Atten= 0%, Lag= 0.0 min	

Routing by Stor-Ind+Trans method, Time Span= 5.00-72.00 hrs, dt= 0.05 hrs

Reach DP3: Design Point 3

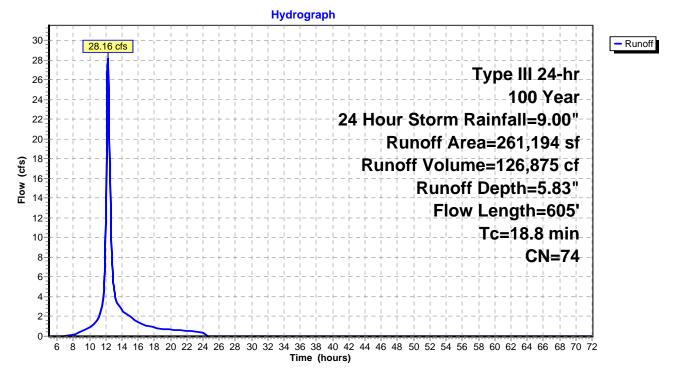
Park Place - EX	Type III 24-hr 100 Year, 24 H	our Storm Rainfall=9.00"
Prepared by AKRF, Inc.		Printed 12/5/2014
HydroCAD® 10.00-12 s/n 04852 © 2014 H	lydroCAD Software Solutions LLC	Page 39

Time span=5.00-72.00 hrs, dt=0.05 hrs, 1341 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment Pre 1: Pre 1 F	Runoff Area=261,194 sf 1.36% Impervious Runoff Depth=5.83" low Length=605' Tc=18.8 min CN=74 Runoff=28.16 cfs 126,875 cf
Subcatchment Pre 2: Pre 2	Runoff Area=85,244 sf 36.20% Impervious Runoff Depth>6.93" Flow Length=394' Tc=10.7 min CN=83 Runoff=13.06 cfs 49,255 cf
Subcatchment Pre 3: Pre 3 Flow Length=15	Runoff Area=61,828 sf 27.47% Impervious Runoff Depth>6.81" 0' Slope=0.0530 '/' Tc=8.8 min CN=82 Runoff=9.87 cfs 35,101 cf
Reach DP1: Design Point 1	Inflow=28.16 cfs 126,875 cf Outflow=28.16 cfs 126,875 cf
Reach DP2: Design Point 2	Inflow=13.06 cfs 49,255 cf Outflow=13.06 cfs 49,255 cf
Reach DP3: Design Point 3	Inflow=9.87 cfs 35,101 cf Outflow=9.87 cfs 35,101 cf
Total Runoff Area = 408,266	sf Runoff Volume = 211,231 cf Average Runoff Depth = 6.21

" 87.41% Pervious = 356,854 sf 12.59% Impervious = 51,412 sf

Summary for Subcatchment Pre 1: Pre 1

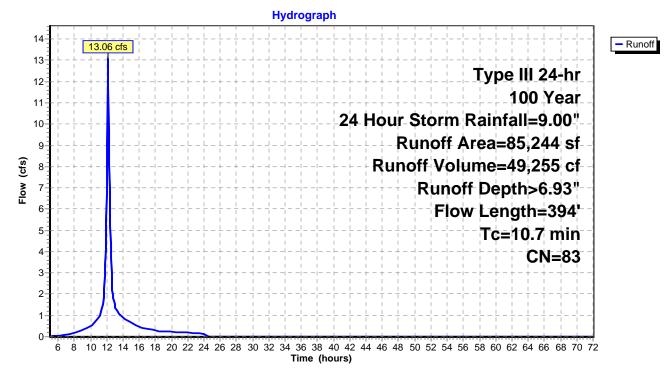

Runoff = 28.16 cfs @ 12.26 hrs, Volume= 126,875 cf, Depth= 5.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100 Year, 24 Hour Storm Rainfall=9.00"

_	A	rea (sf)	CN I	Description		
		3,564	98 I	Paved park	ing, HSG C)
	1	61,376		Noods, Fai		
_		96,254	74 >	>75% Gras	s cover, Go	bod, HSG C
	2	61,194	74 \	Neighted A	verage	
	2	57,630	ę	98.64% Per	vious Area	l
		3,564		1.36% Impe	ervious Are	а
	т.	1	01	Mala alt	0	Description.
	Tc	Length	Slope		Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	14.8	250	0.0400	0.28		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.50"
	1.0	105	0.0667	1.81		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	3.0	250	0.0760	1.38		Shallow Concentrated Flow,
_						Woodland Kv= 5.0 fps
	10.0	605	Total			

18.8 605 Total

Subcatchment Pre 1: Pre 1

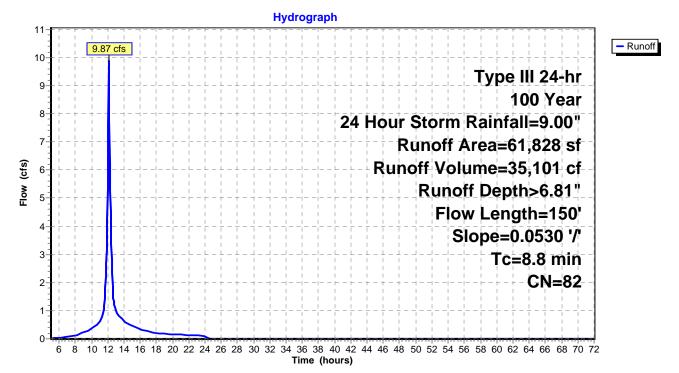

Summary for Subcatchment Pre 2: Pre 2

Runoff = 13.06 cfs @ 12.15 hrs, Volume= 49,255 cf, Depth> 6.93"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100 Year, 24 Hour Storm Rainfall=9.00"

	A	rea (sf)	CN I	Description		
		30,862	98 I	Paved park	ing, HSG C	
		34,050	73 \	Noods, Fai	r, HSG C	
		20,332	79 క	50-75% Gra	ass cover, I	Fair, HSG C
		85,244	83 \	Neighted A	verage	
		54,382	e	63.80% Pei	vious Area	
		30,862	3	36.20% Imp	pervious Ar	ea
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	9.0	150	0.0500	0.28		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.50"
	1.7	244	0.1200	2.42		Shallow Concentrated Flow,
_						Short Grass Pasture Kv= 7.0 fps
	10.7	394	Total			

Subcatchment Pre 2: Pre 2


Summary for Subcatchment Pre 3: Pre 3

Runoff = 9.87 cfs @ 12.12 hrs, Volume= 35,101 cf, Depth> 6.81"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100 Year, 24 Hour Storm Rainfall=9.00"

	A	rea (sf)	CN	Description					
		16,986	98	Paved park	ing, HSG C)			
		25,334	73	Woods, Fai	r, HSG C				
		19,508	79	50-75% Gra	ass cover, l	Fair, HSG C			
		61,828	82	Weighted A	verage				
		44,842		72.53% Pe	rvious Area	l			
		16,986		27.47% Imp	pervious Ar	ea			
	Тс	Length	Slope	e Velocity	Capacity	Description			
(m	in)	(feet)	(ft/ft) (ft/sec)	(cfs)				
8	8.8	150	0.0530	0.28		Sheet Flow,			
						Grass: Short	n= 0.150	P2= 3.50"	

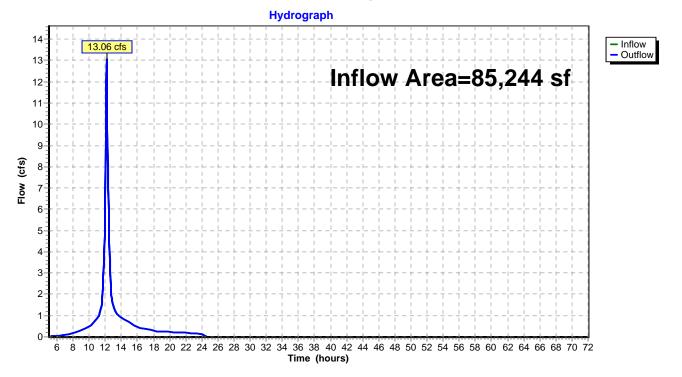
Subcatchment Pre 3: Pre 3

Summary for Reach DP1: Design Point 1

Inflow Are	a =	261,194 sf, 1	.36% Impervious, Inflo	w Depth = 5.83"	for 100 Year, 24 Hour Storm event
Inflow	=	28.16 cfs @ 12.2	26 hrs, Volume=	126,875 cf	
Outflow	=	28.16 cfs @ 12.2	26 hrs, Volume=	126,875 cf, Atter	n= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-72.00 hrs, dt= 0.05 hrs

Hydrograph 30 Inflow Outflow 28.16 cfs 28 Inflow Area=261,194 sf 26 24 22 20 (cfs) 18 16 Flow 14 12 10 8 6 4 2 0 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)

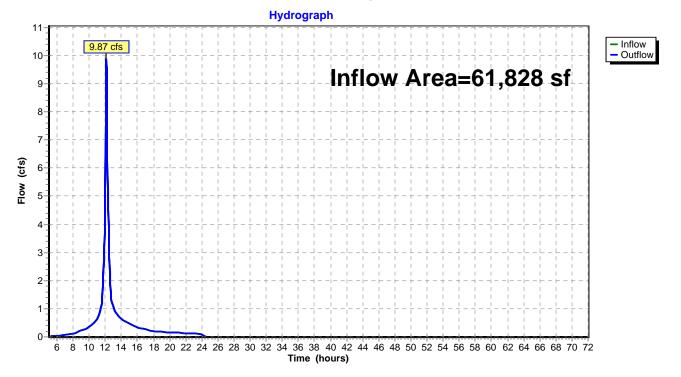

Reach DP1: Design Point 1

Summary for Reach DP2: Design Point 2

Inflow Are	a =	85,244 sf, 36.20	% Impervious,	Inflow Depth >	6.93"	for 100 \	ear, 24 Hour Storm event
Inflow	=	13.06 cfs @ 12.15	hrs, Volume=	49,255 cf	f		
Outflow	=	13.06 cfs @ 12.15	hrs, Volume=	49,255 cf	f, Atten	= 0%, La	g= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-72.00 hrs, dt= 0.05 hrs

Reach DP2: Design Point 2



Summary for Reach DP3: Design Point 3

Inflow Are	a =	61,828 sf, 27.47% Impervious, Inflow Depth > 6.81" for 100 Year, 24 Hour Storm event	
Inflow	=	9.87 cfs @ 12.12 hrs, Volume= 35,101 cf	
Outflow	=	9.87 cfs @ 12.12 hrs, Volume= 35,101 cf, Atten= 0%, Lag= 0.0 min	

Routing by Stor-Ind+Trans method, Time Span= 5.00-72.00 hrs, dt= 0.05 hrs

Reach DP3: Design Point 3

SWPPP APPENDIX E STORMWATER CALCULATIONS

REQUIRED WQv & RRv CALCULATIONS:

					Breakdown of	subcatchments					
¹ Catchment Number	Total Area (ft ²) [1]	New Impervious Area (ft ²) [2]	WQv For New Impervious Area (ft ³) [3] = (3.2")*0.95*[2]/12	Redeveloped Area (ft ²) [4] = [1] - [2]	Redeveloped Impervious Area (ft ²) [5]	Percent Impervious for Redeveloped % [6] = 100*[5]/[4]	Rv For Redeveloped Area [7] = 0.009*[6] + .05	² WQv For Redeveloped Area (ft ³) [8] = 0.25*(3.2")*[7]*[4]/12	Required WQv (ft ³) [9] = [3] + [8]	³ Required RRv <i>(ft</i> ³ <i>)</i> [10] = [3]	⁴ Required minRRv (<i>ft</i> ³) [11] = S*[10]
2A	4,907	580	147	4,327	4,327	100.0	0.95	274	421	147	44
2B	14,630	2,660	674	11,970	3,462	28.9	0.31	248	921	674	202
2C	44,895	21,989	5,571	22,906	22,906	100.0	0.95	1,451	7,021	5,571	1,671
2D	8,410	0	0	8,410	0	0.0	0.05	28	28	0	0
2E	13,510	0	0	13,510	5,415	40.1	0.41	370	370	0	0
2F	4,258	0	0	4,258	4,258	100.0	0.95	270	270	0	0
2G	23,333	0	0	23,333	1,113	4.8	0.09	145	145	0	0
TOTAL	113,943	25,229	6,391	88,714	41,481	-	-	2,785	9,176	6,391	1,917

¹ - Refer to enclosed "D-3 - WQv & RRv Drainage Area Map" for a depiction of catchment areas and new/redeveloped impervious areas within each catchment.

 $^{\rm 2}$ - Required WQv for redeveloped area is 25% of the WQv per Section 9.3.2.B.II of the NYSSMDM.

³ - RRV is only required for new impervious area.

 $^{\rm 4}$ - S=0.30 as the site is located in HSG C soils.

Post-Development Drainage Areas

	Subcatcment Area				
Stormwater Practice	Subcatchment	Area (sq ft)			
	2A	4,907			
	2B	14,630			
	2C	44,895			
Conference and Filters	2D	8,410			
Surface Sand Filter	2E	13,510			
	TOTAL	86,352			
	2A	4,907			
	2B	14,630			
	2C	44,895			
Pocket Wetland	2D	8,410			
POCKEL WELIAND	2E	13,510			
	2F	4,258			
	2G	23,333			
	TOTAL	113,943			
North Planters	Contributing Roof Area	8,979			
East Planters (A)	Contributing Roof Area	8,979			
East Planters (B)	Contributing Roof Area	8,979			
South Planters	Contributing Roof Area	8,979			
West Planters	Contributing Roof Area	8,979			
	Total	44,895			

STORMWATER PLANTER SIZING CALCULATIONS

 $\label{eq:Af} Af = WQv^*(df) \ / \ [k^*(hf+df) \ (tf)] \qquad \mbox{Where } df=1.5 \ ft, \ k=4 \ ft/day, \ hf=0.5 \ ft, \ tf=0.167 \ days \ WQv = 0.89^*Af$

Stormwater	Contributing	Stormwater	Water Quality	Runoff Reduction Volume Provided	
Planters	Roof Area	Planter Size	Volume Provided		
	(sf)	(sf)	(cf)	(cf)	
North Planters	8,979	665	592	266	
East Planters (A)	8,979	727	647	291	
East Planters (B)	8,979	510	454	204	
South Planters	8,979	1,849	1,646	741	
West Planters	8,979	1,044	929	418	
Total	44,895	4,795	4,268	1,920	

RRv Provided by Stormwater Planters = 1,920 cf 1,920 cf > 1,917 cf (minRrv)

SURFACE SAND FILTER SIZING CALCULATIONS

Sand Filter treats runoff from Drainage Areas 2A, 2B, 2C, 2D, & 2E WQv for Drainage Areas 2A, 2B, 2C, 2D, & 2E = 8,761 cf Total Required WQv for Sand Filter: 8,761 cf - 4,268 (WQv Provided by Stormwater Planters) = **4,493 cf**

Sedimentation Basin:

Required As = 0.0081*WQv, I > 75% As = 0.0081*4,493 = 37 sf Provided As = 1,219 sf > 37 sf

Calculate Required WQv Provided in Sedimentation Basin:

Required 25% WQv Pretreatment: 0.25*4,493 = 1,124 cf

Chart : Sedimentati				1	2	1-2=3		
Contour Elevation	Contou Proposed	ir Area Average	Depth	Total Volume	Cumulative Total Volume	Required Sedimentation Basin Volme	Net Volume Provided	
(ft)	(ft ²)	(ft ²)	(ft)	(ft ³)	(ft ³)	(ft ³)	(ft ³)	
384	1,219							
		1,475	1	1,475	1,475	1,124	351	
385	1,730							
		2,022	1	2,022	3,496	1,124	2,372	
386	2,313							
		2,632	1	2,632	6,128	1,124	5,004	
387	2,951							
				6,128				

Provided Volume = 6,128 cf > 1,124 cf

Surface Sand Filter:

 $\begin{array}{l} \mbox{Af} = WQv^*(df) \mbox{ / } [k^*(hf + df) (tf)] & \mbox{Where } df = 1.5 \mbox{ ft}, k = 3.5 \mbox{ ft}/day, hf = 1.5 \mbox{ ft}, tf = 1.67 \mbox{ days} \\ \mbox{Required } Af = 0.086^*WQv \mbox{ = } 0.086^*4, 493 \mbox{ cf} = 387 \mbox{ sf} \end{array}$

Provided Af = 1,386 sf > 387 sf

Calculate Required WQv Provided in Sand Filter:

Required 75% WQv Including Pretreatment: 0.75*4,493 cf = 3,370 cf

	Contour Area				Sediment Basin	(1)Cumulative Total	Required Sand	Net Volume
Contour Elevation	Proposed	Average	Depth	Total Volume	Volume Provided	Volume	Filter Volume	Provided
(ft)	(ft ²)	(ft ²)	(ft)	(ft ³)	(ft ³)	(ft ³)	(ft ³)	(ft ³)
384	1,386							
		1,645	1	1,645	1,475	3,119	3,370	-251
385	1,903							
		2,193	1	2,193	2,022	7,334	3,370	3,964
386	2,483							
		2,809	1	2,809	2,632	12,775	3,370	9,405
387	3,135							

NOTE: (1) Cumulative total volume = Sediment Basin Volume + Surface Sand Filter Volume

Provided Volume = 12,775cf > 3,370 cf

POCKET WETLAND SIZING CALCULATIONS

Pocket Wetland treats runoff from Drainage Areas 2A, 2B, 2C, 2D, 2E, 2F, & 2G WQv for Drainage Areas 2A, 2B, 2C, 2D, 2E, 2F, & 2G = 9,176 cf Total Required WQv for Sand Filter: 9,176 cf - 4,268 (WQv Provided by Stormwater Planters) = **4,908 cf**

Calculate Required WQv Provided in Forebay:

Required forebay volume = 10% WQv = 0.10*4,908cf = 491 cf

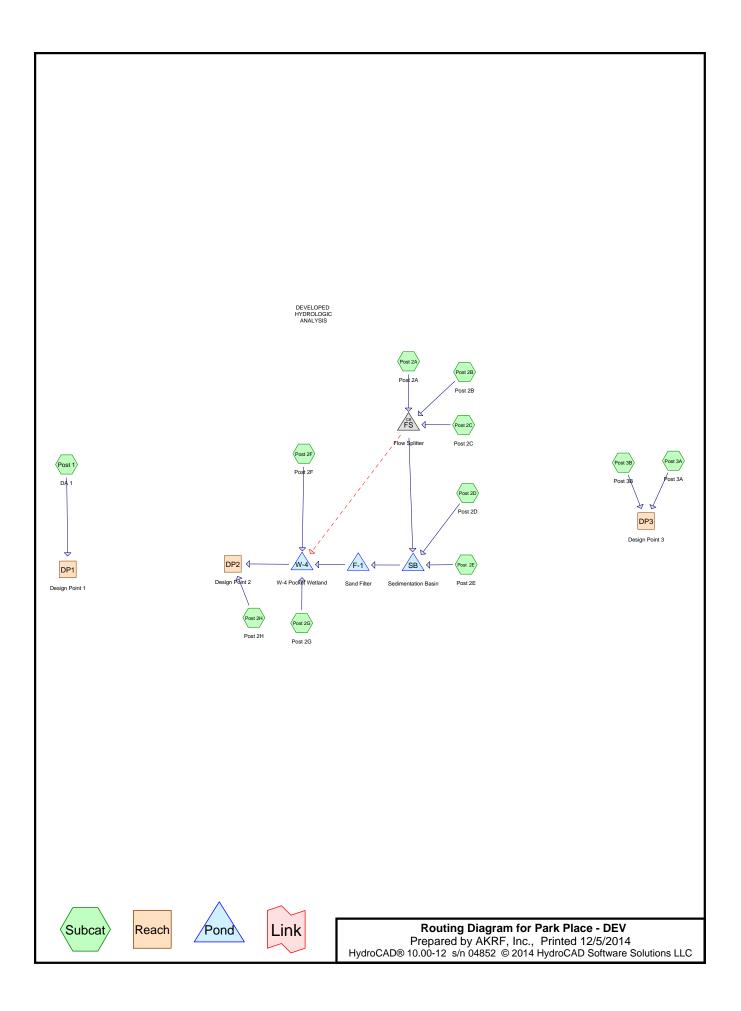
Chart : Forebay Storage Volume:

Contour	Contour Contour Area		Depth	Total Volume	Cumulative Total	Required Forebay	Net Volume
Elev.	Proposed	Average	Depth	rotal volume	Volume	Volume	Provided
(ft)	(ft ²)	(ft ²)	(ft)	(ft ³)	(ft ³)	(ft ³)	(ft ³)
374	2						
		64	1	64	64	491	-428
375	125						
		279	1	279	342	491	-149
376	432						
		637	1	637	979	491	488
377	842						
		1,109	1	1,109	2,088	491	1,597
378	1,376						
				2,088			

Provided Forebay Storage volume = 2,088 cf > 491 cf

Calculate Required WQv Provided in Permanent Pools:

Required Permanent Pool Storage Volume = 50%WQV = 0.50*4,908 cf = 2,454 cf


Chart : Permanent Pool Storage Volume

Contour	Contour Contou				Total Volume	Cumulative Total	Required	Net Volume
Elev.	Proposed	Average	Depth	Total Volume	Total Volume Forebay Provided		Permanent Pool Volume	Provided
(ft)	(ft ²)	(ft ²)	(ft)	(ft ³)	(ft ³)	(ft ³)	(ft ³)	(ac-ft)
374	2							
		53	1	53	64	116	2,454	-2,338
375	103							
		243	1	243	279	637	2,454	-1,817
376	382							
		604	1	604	637	1,878	2,454	-577
377	825							
		1,084	1	1,084	1,109	4,071	2,454	1,617
378	1,343							
				1,983				

Provided Permanent Pool Storage Volume = Forebay Storage Volume + Micropool Storage Volume = 2,088 cf + 1,983 cf = 4,071 cf > 2,454 cf

Breakdown of Marsh

Total Marsh Area Provided = **2,086** sf Low Marsh Area = **1,338 sf** (65% of Total Marsh Area) High Marsh Area = **748 sf** (35% of Total Marsh Area) SWPPP APPENDIX F POST-DEVELOPMENT HYDROLOGIC ROUTING CALCULATIONS

Area Listing (all nodes)

Area	CN	Description
(sq-ft)		(subcatchment-numbers)
46,053	79	50-75% Grass cover, Fair, HSG C (Post 2E, Post 2D, Post 2G, Post 3A, Post 3B)
93,499	74	>75% Grass cover, Good, HSG C (Post 1, Post 2B)
8,150	89	Gravel roads, HSG C (Post 1, Post 2B, Post 2D, Post 2G)
6,122	98	Paved parking (Post 2B)
60,172	98	Paved parking, HSG C (Post 2E, Post 2A, Post 2C, Post 2G, Post 3A)
4,258	98	Roofs, HSG C (Post 2F)
197,616	73	Woods, Fair, HSG C (Post 1, Post 2H, Post 3A, Post 3B)
415,870	78	TOTAL AREA

Soil Listing (all nodes)

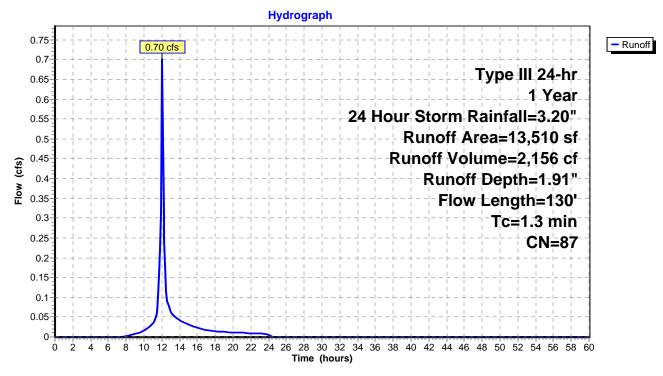
Area (sq-ft)	Soil Group	Subcatchment Numbers
0	HSG A	
0	HSG B	
409,748	HSG C	Post 2E, Post 1, Post 2A, Post 2B, Post 2C, Post 2D, Post 2F, Post 2G, Post 2H, Post 3A, Post 3B
0	HSG D	
6,122 415,870	Other	Post 2B TOTAL AREA

Park Place - DEV	Type III 24-hr 1 Year, 24 Hour Storm Rainfall=3.20"
Prepared by AKRF, Inc.	Printed 12/5/2014
HydroCAD® 10.00-12 s/n 04852 © 201	HydroCAD Software Solutions LLC Page 4

Time span=0.00-60.00 hrs, dt=0.10 hrs, 601 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPost 2E: Post 2E	Runoff Area=13,510 sf 40.08% Impervious Runoff Depth=1.91" Flow Length=130' Tc=1.3 min CN=87 Runoff=0.70 cfs 2,156 cf
Subcatchment Post 1: DA 1	Runoff Area=248,549 sf 0.00% Impervious Runoff Depth=0.98" Flow Length=605' Tc=18.8 min CN=73 Runoff=4.17 cfs 20,356 cf
Subcatchment Post 2A: Post 2A Flow Length=1	Runoff Area=4,907 sf 100.00% Impervious Runoff Depth=2.97" 50' Slope=0.0100 '/' Tc=1.9 min CN=98 Runoff=0.34 cfs 1,213 cf
Subcatchment Post 2B: Post 2B	Runoff Area=14,630 sf 41.85% Impervious Runoff Depth=1.84" Flow Length=346' Tc=11.0 min CN=86 Runoff=0.57 cfs 2,237 cf
Subcatchment Post 2C: Post 2C Flow Length=10	Runoff Area=44,895 sf 100.00% Impervious Runoff Depth=2.97" 0' Slope=0.1350 '/' Tc=0.5 min CN=98 Runoff=3.34 cfs 11,102 cf
Subcatchment Post 2D: Post 2D	Runoff Area=8,410 sf 0.00% Impervious Runoff Depth=1.54" Flow Length=200' Tc=4.5 min CN=82 Runoff=0.33 cfs 1,078 cf
Subcatchment Post 2F: Post 2F Flow Length=1	Runoff Area=4,258 sf 100.00% Impervious Runoff Depth=2.97" 19' Slope=0.1687 '/' Tc=0.1 min CN=98 Runoff=0.32 cfs 1,053 cf
Subcatchment Post 2G: Post 2G	Runoff Area=23,333 sf 4.77% Impervious Runoff Depth=1.47" Flow Length=112' Tc=0.9 min CN=81 Runoff=0.94 cfs 2,856 cf
Subcatchment Post 2H: Post 2H	Runoff Area=14,691 sf 0.00% Impervious Runoff Depth=0.98" Flow Length=353' Tc=10.5 min CN=73 Runoff=0.29 cfs 1,203 cf
Subcatchment Post 3A: Post 3A	Runoff Area=33,605 sf 11.43% Impervious Runoff Depth=1.27" Flow Length=110' Tc=11.9 min CN=78 Runoff=0.89 cfs 3,566 cf
Subcatchment Post 3B: Post 3B Flow Length=	Runoff Area=5,082 sf 0.00% Impervious Runoff Depth=1.09" =100' Slope=0.0850 '/' Tc=5.3 min CN=75 Runoff=0.14 cfs 463 cf
Reach DP1: Design Point 1	Inflow=4.17 cfs 20,356 cf Outflow=4.17 cfs 20,356 cf
Reach DP2: Design Point 2	Inflow=0.42 cfs 21,495 cf Outflow=0.42 cfs 21,495 cf
Reach DP3: Design Point 3	Inflow=0.98 cfs 4,029 cf Outflow=0.98 cfs 4,029 cf
Pond F-1: Sand Filter	Peak Elev=387.00' Storage=6,656 cf Inflow=2.62 cfs 17,227 cf Outflow=0.13 cfs 17,224 cf
Pond FS: Flow Splitter Primary=3.99	Peak Elev=387.72' Inflow=3.99 cfs 14,553 cf cfs 14,553 cf Secondary=0.00 cfs 0 cf Outflow=3.99 cfs 14,553 cf

Park Place - DEV Prepared by AKRF, Inc.	Type III 24-hr 1 Year, 24 Hour	Printed 12/5/2014
HydroCAD® 10.00-12 s/n 04852 © 2014 Hyd	rocad Software Solutions LLC	Page 5
Pond SB: Sedimentation Basin	Peak Elev=387.38' Storage=7,287 cf Ir Ou	nflow=4.94 cfs 17,787 cf tflow=2.62 cfs 17,227 cf
Pond W-4: W-4 Pocket Wetland	Peak Elev=378.60' Storage=3,109 cf Ir Ou	nflow=1.31 cfs 21,133 cf tflow=0.16 cfs 20,292 cf
		ge Runoff Depth = 1.36" Impervious = 70,552 sf


Summary for Subcatchment Post 2E: Post 2E

Runoff = 0.70 cfs @ 12.02 hrs, Volume= 2,156 cf, Depth= 1.91"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 1 Year, 24 Hour Storm Rainfall=3.20"

_	A	rea (sf)	CN [Description						
		5,415	98 F	Paved park	ing, HSG C	;				
_		8,095	79 5	50-75% Gra	ass cover, l	Fair, HSG C				
		13,510	87 V	Veighted A	verage					
		8,095	5	59.92% Pervious Area						
		5,415	4	40.08% Impervious Area						
	_		-							
	Tc	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	1.2	100	0.0200	1.44		Sheet Flow,				
						Smooth surfaces n= 0.011 P2= 3.50"				
	0.1	30	0.3800	9.92		Shallow Concentrated Flow, Pavement				
_						Unpaved Kv= 16.1 fps				
	1.3	130	Total							

Subcatchment Post 2E: Post 2E

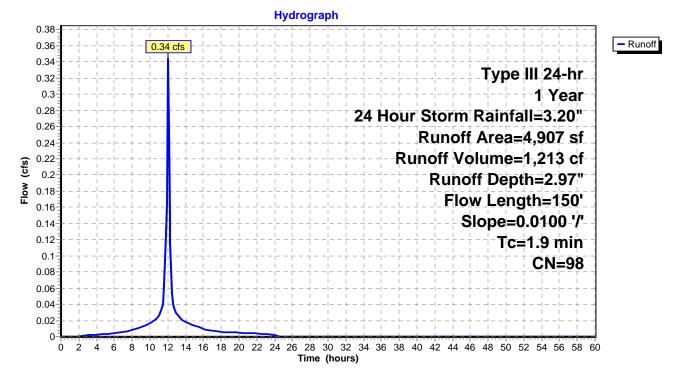
Summary for Subcatchment Post 1: DA 1

Runoff = 4.17 cfs @ 12.30 hrs, Volume= 20,356 cf, Depth= 0.98"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 1 Year, 24 Hour Storm Rainfall=3.20"

A	Area (sf)	CN [Description							
	159,708	73 V	Noods, Fair, HSG C							
	1,496	89 (Gravel road	s, HSG C						
	87,345	74 >	-75% Gras	75% Grass cover, Good, HSG C						
	248,549	73 V	Veighted A	verage						
	248,549	1	100.00% Pe	ervious Are	а					
Tc	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
14.8	250	0.0400	0.28		Sheet Flow,					
					Grass: Short n= 0.150 P2= 3.50"					
1.0	105	0.0667	1.81		Shallow Concentrated Flow,					
					Short Grass Pasture Kv= 7.0 fps					
3.0	250	0.0760	1.38		Shallow Concentrated Flow,					
					Woodland Kv= 5.0 fps					
18.8	605	Total								

Subcatchment Post 1: DA 1

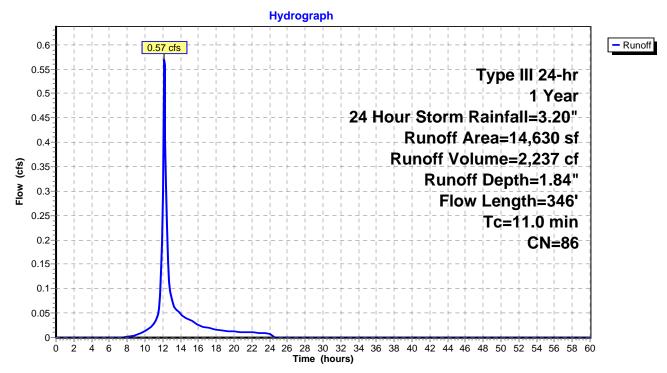

Summary for Subcatchment Post 2A: Post 2A

Runoff = 0.34 cfs @ 12.02 hrs, Volume= 1,213 cf, Depth= 2.97"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 1 Year, 24 Hour Storm Rainfall=3.20"

Α	rea (sf)	CN D	escription						
	4,907	98 F	98 Paved parking, HSG C						
	4,907	1	100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
1.5	100	0.0100	1.09		Sheet Flow, Pavement				
0.4	50	0.0100	2.03		Smooth surfaces n= 0.011 P2= 3.50" Shallow Concentrated Flow, Pavement Paved Kv= 20.3 fps				
1.9	150	Total							

Subcatchment Post 2A: Post 2A


Summary for Subcatchment Post 2B: Post 2B

Runoff = 0.57 cfs @ 12.17 hrs, Volume= 2,237 cf, Depth= 1.84"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 1 Year, 24 Hour Storm Rainfall=3.20"

Α	rea (sf)	CN E	Description						
	6,122	98 F	aved park	ing					
	6,154	74 >	75% Gras	s cover, Go	ood, HSG C				
	2,354	89 0	Gravel road	ls, HSG C					
	14,630	86 V	Veighted A	verage					
	8,508	5	58.15% Pervious Area						
	6,122	4	41.85% Impervious Area						
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
10.3	100	0.0400	0.16		Sheet Flow, Landscaped area				
					Grass: Dense n= 0.240 P2= 3.50"				
0.7	246	0.0100	5.90	4.63	Pipe Channel, Pipe				
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'				
					n= 0.010 PVC, smooth interior				
11.0	346	Total							

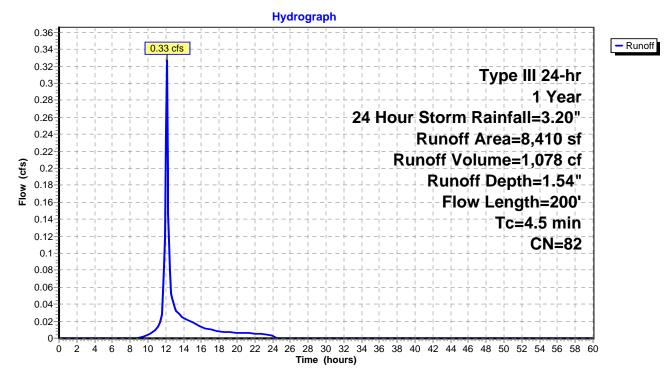
Subcatchment Post 2B: Post 2B

Summary for Subcatchment Post 2C: Post 2C

Runoff = 3.34 cfs @ 12.00 hrs, Volume= 11,102 cf, Depth= 2.97"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 1 Year, 24 Hour Storm Rainfall=3.20"

	rea (sf)		escription		
	44,895			ing, HSG C	
	44,895	1	00.00% In	npervious A	rea
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
0.5	100	0.1350	3.09		Sheet Flow, Smooth surfaces n= 0.011 P2= 3.50"
			Su	bcatchme	ent Post 2C: Post 2C
_				Hydrog	graph
-		3.34 cf	S		Type III 24-hr
3+ ; ; ;					1 Year 24 Hour Storm Rainfall=3.20" Runoff Area=44,895 sf Runoff Volume=11,102 cf
- 2					Runoff Depth=2.97" Flow Length=100' Slope=0.1350 '/'
1 - - -					Tc=0.5 min CN=98
0	246	8 10 12	14 16 18 20		8 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 ne (hours)


Summary for Subcatchment Post 2D: Post 2D

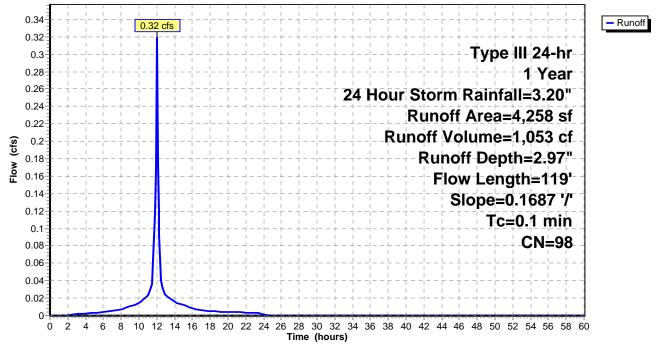
Runoff = 0.33 cfs @ 12.09 hrs, Volume= 1,078 cf, Depth= 1.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 1 Year, 24 Hour Storm Rainfall=3.20"

A	Area (sf)	CN	Description					
	6,293	79	50-75% Gra	ass cover, l	Fair, HSG C			
	2,117	89	Gravel road	ls, HSG C				
	8,410	82	82 Weighted Average					
	8,410		100.00% P	ervious Are	a			
Tc	Length	Slope		Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
4.1	50	0.1000	0.20		Sheet Flow, Landscaped			
					Grass: Dense n= 0.240 P2= 3.50"			
0.4	150	0.0860	5.95		Shallow Concentrated Flow, Maintenance Drive			
					Paved Kv= 20.3 fps			
4.5	200	Total						

Subcatchment Post 2D: Post 2D

Summary for Subcatchment Post 2F: Post 2F

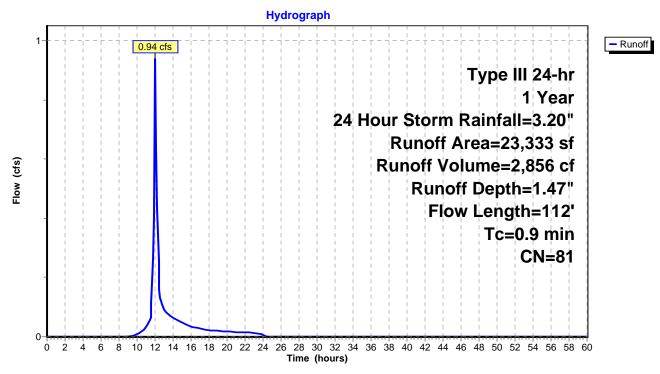

Runoff = 0.32 cfs @ 12.00 hrs, Volume= 1,053 cf, Depth= 2.97"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 1 Year, 24 Hour Storm Rainfall=3.20"

A	rea (sf)	CN	Description		
	4,258	98	Roofs, HSG	G C	
	4,258		100.00% In	npervious A	rea
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description
0.1	119	0.1687	14.22	4.96	Pipe Channel, Roof Leader 8.0" Round Area= 0.3 sf Perim= 2.1' r= 0.17' n= 0.013 Corrugated PE, smooth interior

Subcatchment Post 2F: Post 2F

Hydrograph


Summary for Subcatchment Post 2G: Post 2G

Runoff = 0.94 cfs @ 12.01 hrs, Volume= 2,856 cf, Depth= 1.47"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 1 Year, 24 Hour Storm Rainfall=3.20"

A	rea (sf)	CN D	escription		
	1,113	98 F	aved park	ing, HSG C	:
	20,037	79 5	0-75% Gra	ass cover, F	Fair, HSG C
	2,183	89 0	Gravel road	ls, HSG C	
	23,333	81 V	Veighted A	verage	
	22,220	9	5.23% Per	vious Area	
	1,113	4	.77% Impe	ervious Area	а
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
0.9	80	0.0250	1.50		Sheet Flow, Pavement
					Smooth surfaces n= 0.011 P2= 3.50"
0.0	32	0.4600	10.92		Shallow Concentrated Flow, Landscaped
					Unpaved Kv= 16.1 fps
0.9	112	Total			

Subcatchment Post 2G: Post 2G

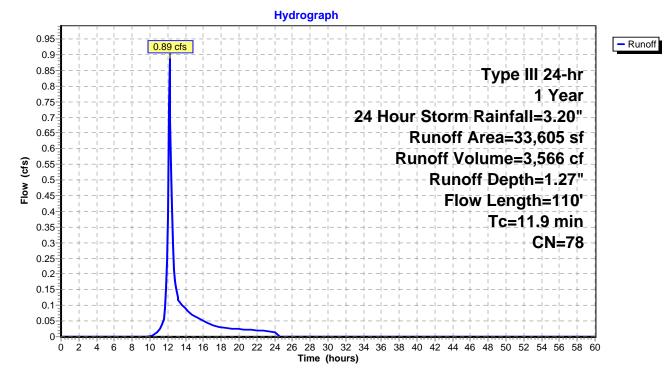
Summary for Subcatchment Post 2H: Post 2H

Runoff = 0.29 cfs @ 12.18 hrs, Volume= 1,203 cf, Depth= 0.98"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 1 Year, 24 Hour Storm Rainfall=3.20"

_	A	rea (sf)	CN I	Description		
_		14,691	73 \	Woods, Fai	r, HSG C	
		14,691		100.00% Pe	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	8.8	100	0.0600			Sheet Flow, Landscaped Grass: Dense n= 0.240 P2= 3.50"
	1.7	253	0.0260	2.42		Shallow Concentrated Flow, Grassed waterway Grassed Waterway Kv= 15.0 fps
_	10.5	353	Total			

Subcatchment Post 2H: Post 2H


Summary for Subcatchment Post 3A: Post 3A

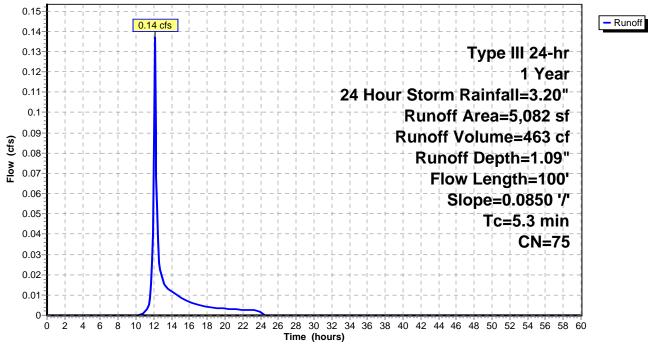
Runoff = 0.89 cfs @ 12.19 hrs, Volume= 3,566 cf, Depth= 1.27"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 1 Year, 24 Hour Storm Rainfall=3.20"

Α	rea (sf)	CN E	Description		
	3,842	98 F	aved park	ing, HSG C)
	20,173	73 V	Voods, Fai	r, HSG C	
	9,590	79 5	0-75% Gra	ass cover, I	Fair, HSG C
	33,605	78 V	Veighted A	verage	
	29,763	8	8.57% Per	vious Area	
	3,842	1	1.43% Imp	pervious Ar	ea
Tc	Length	Slope	Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
4.4	67	0.0600	0.25		Sheet Flow, Landscaped
					Grass: Short n= 0.150 P2= 3.50"
7.5	43	0.0460	0.10		Sheet Flow, Wooded
					Woods: Light underbrush n= 0.400 P2= 3.50"
11.9	110	Total			

Subcatchment Post 3A: Post 3A

Summary for Subcatchment Post 3B: Post 3B


Runoff = 0.14 cfs @ 12.10 hrs, Volume= 463 cf, Depth= 1.09"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 1 Year, 24 Hour Storm Rainfall=3.20"

/	Area (sf)	CN	Description					
	3,044	73	Woods, Fai	r, HSG C				
	2,038	79	50-75% Gra	ass cover, l	Fair, HSG C			
	5,082	75	Weighted A	verage				
	5,082		100.00% Pe	ervious Are	a			
Tc	- 3	Slope		Capacity	Description			
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
5.3	100	0.0850	0.32		Sheet Flow,			
					Grass: Short	n= 0.150	P2= 3.50"	

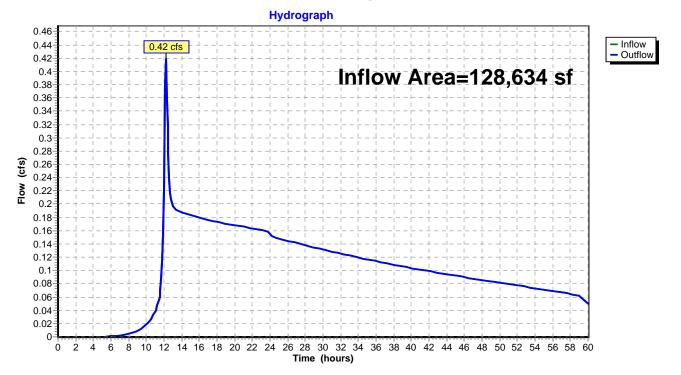
Subcatchment Post 3B: Post 3B

Hydrograph

Summary for Reach DP1: Design Point 1

Inflow Are	a =	248,549 sf,	0.00% Impervious,	Inflow Depth = 0.98"	for 1 Year, 24 Hour Storm event
Inflow	=	4.17 cfs @ 1	12.30 hrs, Volume=	20,356 cf	
Outflow	=	4.17 cfs @ 1	12.30 hrs, Volume=	20,356 cf, Atter	n= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs / 3

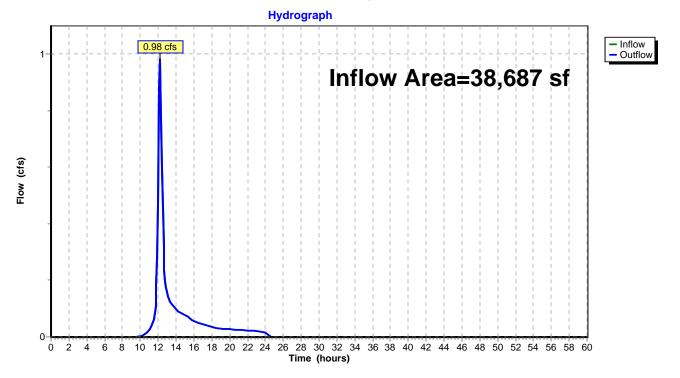

Reach DP1: Design Point 1

Summary for Reach DP2: Design Point 2

Inflow Are	a =	128,634 sf, 51.86% In	npervious, Inflow Depth	> 2.01"	for 1 Year, 24 Hour Storm event
Inflow	=	0.42 cfs @ 12.19 hrs,	Volume= 21,49	5 cf	
Outflow	=	0.42 cfs @ 12.19 hrs,	Volume= 21,49	5 cf, Atter	n= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs / 3

Reach DP2: Design Point 2



Summary for Reach DP3: Design Point 3

Inflow Are	a =	38,687 sf,	9.93% Impervious,	Inflow Depth = 1.25"	for 1 Year, 24 Hour Storm event
Inflow	=	0.98 cfs @	12.18 hrs, Volume=	4,029 cf	
Outflow	=	0.98 cfs @	12.18 hrs, Volume=	4,029 cf, Atter	n= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs / 3

Reach DP3: Design Point 3

Summary for Pond F-1: Sand Filter

Inflow Area =	:	86,352 sf	, 71.03% Impervious,	Inflow Depth > 2.39	for 1 Year, 24 Hour Storm event
Inflow =		2.62 cfs @	12.23 hrs, Volume=	17,227 cf	
Outflow =		0.13 cfs @	17.00 hrs, Volume=	17,224 cf, Att	en= 95%, Lag= 286.6 min
Primary =		0.13 cfs @	17.00 hrs, Volume=	17,224 cf	-

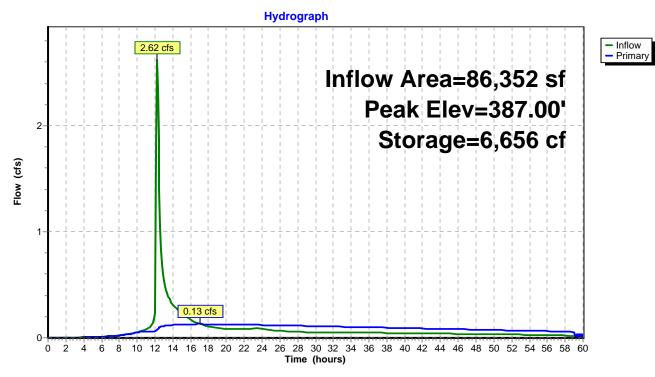
Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs / 3 Peak Elev= 387.00' @ 17.00 hrs Surf.Area= 3,137 sf Storage= 6,656 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 581.0 min (1,896.9 - 1,315.8)

Volume	Inve	ert Avail.Sto	rage Storage	Description	
#1	384.0	0' 10,07	72 cf Custom	n Stage Data (P	rismatic)Listed below (Recalc)
Elevatio		Surf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
384.0	00	1,386	0	0	
385.0	00	1,903	1,645	1,645	
386.0	00	2,483	2,193	3,838	
387.0	00	3,135	2,809	6,647	
388.0	00	3,716	3,426	10,072	
Device	Routing	Invert	Outlet Device	S	
#1	Primary	381.50'	10.0" Round	l Culvert	
#2 #3	Device 1 Device 1	384.00' 387.00'	Inlet / Outlet I n= 0.013 Cor 1.750 in/hr S 24.0" x 24.0"	nvert= 381.50' / rrugated PE, sm and Filter Bed	b headwall, Ke= 0.900 377.00' S= 0.1184 '/' Cc= 0.900 ooth interior, Flow Area= 0.55 sf over Surface area w Grate C= 0.600 ads

Primary OutFlow Max=0.13 cfs @ 17.00 hrs HW=387.00' TW=378.60' (Dynamic Tailwater)

1=Culvert (Passes 0.13 cfs of 4.68 cfs potential flow)


2=Sand Filter Bed (Exfiltration Controls 0.13 cfs)

-3=Overflow Grate (Weir Controls 0.00 cfs @ 0.18 fps)

Park Place - DEV

Prepared by AKRF, Inc. HydroCAD® 10.00-12 s/n 04852 © 2014 HydroCAD Software Solutions LLC

Pond F-1: Sand Filter

Park Place - DEV Prepared by AKRF, Inc.

386.55

386.60

2,842

2,874

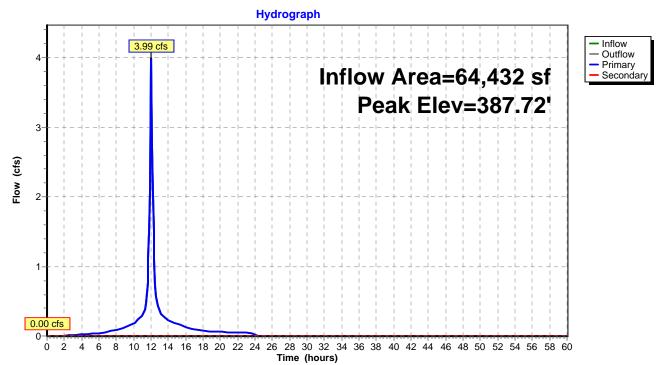
5,302

5,445

		-	-		
Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
384.00	1,386	0	386.65	2,907	5,589
384.05	1,412	70	386.70	2,939	5,735
384.10	1,438	141	386.75	2,972	5,883
384.15	1,464	214	386.80	3,005	6,033
384.20	1,489	288	386.85	3,037	6,184
384.25	1,515	363	386.90	3,070	6,336
384.30	1,541	439	386.95	3,102	6,491
384.35	1,567	517	387.00	3,135	6,647
384.40	1,593	596	387.05	3,164	6,804
384.45	1,619	676	387.10	3,193	6,963
384.50	1,645	758	387.15	3,222	7,123
384.55	1,670	840	387.20	3,251	7,285
384.60	1,696	925	387.25	3,280	7,448
384.65	1,722	1,010	387.30	3,309	7,613
384.70	1,748	1,097	387.35	3,338	7,779
384.75	1,774	1,185	387.40	3,367	7,947
384.80	1,800	1,274	387.45	3,396	8,116
384.85	1,825	1,365	387.50	3,426	8,287
384.90	1,851	1,457	387.55	3,455	8,459
384.95	1,877	1,550	387.60	3,484	8,632
385.00	1,903	1,645	387.65	3,513	8,807
385.05	1,932	1,740	387.70	3,542	8,983
385.10	1,961	1,838	387.75	3,571	9,161
385.15	1,990	1,936	387.80	3,600	9,340
385.20	2,019	2,037	387.85	3,629	9,521
385.25	2,048	2,138	387.90	3,658	9,703
385.30	2,077	2,242	387.95	3,687	9,887
385.35	2,106	2,346	388.00	3,716	10,072
385.40	2,135	2,452			
385.45	2,164	2,560			
385.50	2,193	2,669			
385.55	2,222	2,779			
385.60	2,251	2,891			
385.65	2,280	3,004			
385.70	2,309	3,119			
385.75	2,338	3,235			
385.80	2,367	3,353			
385.85	2,396	3,472			
385.90	2,425	3,592			
385.95	2,454	3,714			
386.00	2,483	3,838			
386.05	2,516	3,962			
386.10	2,548	4,089			
386.15	2,581	4,217			
386.20	2,613	4,347			
386.25	2,646	4,479			
386.30	2,679	4,612			
386.35	2,711	4,746			
386.40	2,744	4,883			
386.45	2,776	5,021			
386.50	2,809	5,161			
296 55	2,000	5 202			

Stage-Area-Storage for Pond F-1: Sand Filter

Summary for Pond FS: Flow Splitter


Inflow Area = 64,432 sf, 86.80% Impervious, Inflow Depth = 2.71" for 1 Year, 24 Hour Storm event Inflow 3.99 cfs @ 12.01 hrs. Volume= 14.553 cf = 3.99 cfs @ 12.01 hrs, Volume= Outflow 14,553 cf, Atten= 0%, Lag= 0.0 min = 3.99 cfs @ 12.01 hrs, Volume= Primary = 14,553 cf Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs / 3 Peak Elev= 387.72' @ 12.05 hrs Flood Elev= 392.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	386.00'	15.0" Round Culvert to Sed Basin L= 20.0' Ke= 0.900
			Inlet / Outlet Invert= 386.00' / 384.00' S= 0.1000 '/' Cc= 0.900
			n= 0.013, Flow Area= 1.23 sf
#2	Secondary	387.80'	24.0" Round Culvert L= 106.0' Ke= 0.900
			Inlet / Outlet Invert= 387.80' / 381.00' S= 0.0642 '/' Cc= 0.900
			n= 0.013, Flow Area= 3.14 sf
			Inlet / Outlet Invert= 386.00' / 384.00' S= 0.1000 '/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf 24.0" Round Culvert L= 106.0' Ke= 0.900 Inlet / Outlet Invert= 387.80' / 381.00' S= 0.0642 '/' Cc= 0.900

Primary OutFlow Max=3.87 cfs @ 12.01 hrs HW=387.62' TW=386.93' (Dynamic Tailwater) -1=Culvert to Sed Basin (Inlet Controls 3.87 cfs @ 3.15 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=386.00' TW=378.00' (Dynamic Tailwater) —2=Culvert (Controls 0.00 cfs)

Pond FS: Flow Splitter

Elevation	Storage	Elevation	Storage	Elevation	Storage
(feet)	(cubic-feet)	(feet)	(cubic-feet)	(feet)	(cubic-feet)
386.00	0	388.12	0	390.24	0
386.04	0	388.16	0	390.28	0
386.08	0	388.20	0	390.32	0
386.12	0	388.24	0	390.36	0
386.16	0	388.28	0	390.40	0
386.20	0	388.32	Ő	390.44	0 0
386.24	0	388.36	Ő	390.48	0 0
386.28	0	388.40	0 0	390.52	ů 0
386.32	0	388.44	0 0	390.56	0
386.36	0	388.48	0	390.60	0
386.40	0	388.52	0	390.64	0
386.44	0	388.56	0	390.68	0
386.48	0	388.60	0	390.72	0
	0		0		0
386.52		388.64		390.76	
386.56	0	388.68	0	390.80	0
386.60	0	388.72	0	390.84	0
386.64	0	388.76	0	390.88	0
386.68	0	388.80	0	390.92	0
386.72	0	388.84	0	390.96	0
386.76	0	388.88	0	391.00	0
386.80	0	388.92	0	391.04	0
386.84	0	388.96	0	391.08	0
386.88	0	389.00	0	391.12	0
386.92	0	389.04	0	391.16	0
386.96	0	389.08	0	391.20	0
387.00	0	389.12	0	391.24	0
387.04	0	389.16	0	391.28	0
387.08	0	389.20	0	391.32	0
387.12	0	389.24	0	391.36	0
387.16	0	389.28	0	391.40	0
387.20	0	389.32	0	391.44	0
387.24	0	389.36	0	391.48	0
387.28	0	389.40	0	391.52	0
387.32	0	389.44	0	391.56	0
387.36	0	389.48	0	391.60	0
387.40	0	389.52	0	391.64	0
387.44	0	389.56	0	391.68	0
387.48	0	389.60	0	391.72	0
387.52	0	389.64	0	391.76	0
387.56	0	389.68	0 0	391.80	0
387.60	0 0	389.72	Ő	391.84	0 0
387.64	0	389.76	Ő	391.88	0 0
387.68	0	389.80	0 0	391.92	ů 0
387.72	0	389.84	0 0	391.96	ů 0
387.76	0	389.88	0 0	392.00	ů 0
387.80	0	389.92	0	002.00	0
387.84	0	389.96	0		
387.88	0	390.00	0		
387.92	0	390.00	0		
387.92	0		0		
		390.08			
388.00	0	390.12	0		
388.04	0	390.16	0		
388.08	0	390.20	0		
		•		•	

Stage-Area-Storage for Pond FS: Flow Splitter

Summary for Pond SB: Sedimentation Basin

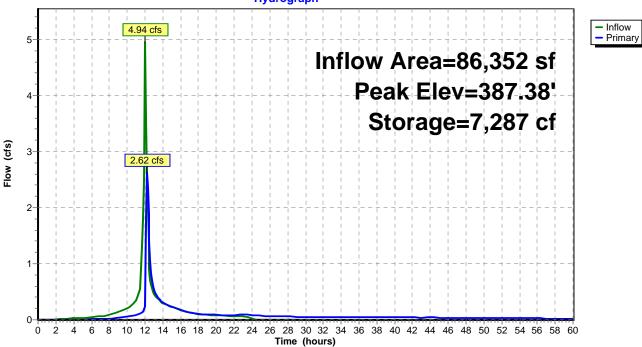
Inflow Area =	86,352 sf, 71.03% Impervious,	Inflow Depth = 2.47" for 1 Year, 24 Hour Storm event
Inflow $=$ 4.	1.94 cfs @ 12.01 hrs, Volume=	17,787 cf
Outflow = 2	2.62 cfs @ 12.23 hrs, Volume=	17,227 cf, Atten= 47%, Lag= 12.8 min
Primary = 2.	2.62 cfs @ 12.23 hrs, Volume=	17,227 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs / 3 Peak Elev= 387.38' @ 12.23 hrs Surf.Area= 3,164 sf Storage= 7,287 cf

Plug-Flow detention time= 561.2 min calculated for 17,227 cf (97% of inflow) Center-of-Mass det. time= 542.2 min (1,315.8 - 773.7)

Volume	Invert	t Avail.Sto	prage Storage Description			
#1	384.00	9,30	61 cf Custon	n Stage Data (Pr	ismatic)Listed below (Recalc)	
Et a d'a				0		
Elevation Surf.Area		Inc.Store	Cum.Store			
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)		
384.00 1,219		1,219	0	0		
385.00 1,7		1,730	1,475	1,475		
386.0	00	2,313	2,022	3,496		
387.00		2,951	2,632	6,128		
		3,514	3,233	9,361		
				,		
Device	Routing	Invert	Outlet Device	S		
#1	Primary	382.00'	10.0" Round	d Culvert		
			L= 38.0' CPP, projecting, no headwall, Ke= 0.900			
		Inlet / Outlet Invert= 382.00' / 377.00' S= 0.1316 '/' Cc= 0.900				
		n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.55 sf				
#2	#2 Device 1 384.00'		0.4" Vert. Standpipe Perforations X 4.00 columns			
		X 12 rows with 3.0" cc spacing $C = 0.600$				
#3	#3 Device 1 387.00'		12.0" Horiz. Standpipe Riser Opening C= 0.600			
				ir flow at low hea		
#4	Primary	387.50'			2 End Contraction(s)	
		201100	0.5' Crest He		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
				.9		

Primary OutFlow Max=2.55 cfs @ 12.23 hrs HW=387.37' TW=384.96' (Dynamic Tailwater)


2=Standpipe Perforations (Orifice Controls 0.26 cfs @ 6.31 fps)

-3=Standpipe Riser Opening (Weir Controls 2.28 cfs @ 1.98 fps)

-4=Overflow Spillway (Controls 0.00 cfs)

Prepared by AKRF, Inc. HydroCAD® 10.00-12 s/n 04852 © 2014 HydroCAD Software Solutions LLC

386.60

2,696

4,999

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
384.00	1,219	0	386.65	2,728	5,134
384.05	1,245	62	386.70	2,760	5,271
384.10				2,792	
	1,270	124	386.75		5,410
384.15	1,296	189	386.80	2,823	5,551
384.20	1,321	254	386.85	2,855	5,693
384.25	1,347	321	386.90	2,887	5,836
384.30	1,372	389	386.95	2,919	5,981
384.35	1,398	458	387.00	2,951	6,128
384.40	1,423	528	387.05	2,979	6,276
384.45	1,449	600	387.10	3,007	6,426
384.50	1,475	673	387.15	3,035	6,577
384.55	1,500	748	387.20	3,064	6,729
384.60	1,526	823	387.25	3,092	6,883
384.65	1,551	900	387.30	3,120	7,039
384.70	1,577	978	387.35	3,148	7,195
384.75	1,602	1,058	387.40	3,176	7,353
384.80	1,628	1,139	387.45	3,204	7,513
384.85	1,653	1,221	387.50	3,233	7,674
384.90	1,679	1,304	387.55	3,261	7,836
384.95	1,704	1,389	387.60	3,289	8,000
385.00	1,730	1,475	387.65	3,317	8,165
385.05	1,759	1,562	387.70	3,345	8,332
385.10			387.75	3,373	
	1,788	1,650			8,500
385.15	1,817	1,741	387.80	3,401	8,669
385.20	1,847	1,832	387.85	3,430	8,840
385.25	1,876	1,925	387.90	3,458	9,012
385.30	1,905	2,020	387.95	3,486	9,186
385.35	1,934	2,116	388.00	3,514	9,361
385.40	1,963	2,213			
385.45	1,992	2,312			
385.50	2,022	2,412			
385.55	2,051	2,514			
385.60	2,080	2,617			
385.65	2,109	2,722			
385.70	2,138	2,828			
385.75	2,167	2,936			
385.80	2,196	3,045			
385.85	2,226	3,156			
385.90	2,255	3,268			
385.95	2,284	3,381			
386.00	2,313	3,496			
386.05	2,345	3,612			
386.10	2,377	3,730			
386.15	2,409	3,850			
386.20	2,441	3,971			
386.25	2,473	4,094			
386.30	2,504	4,219			
386.35	2,536	4,345			
386.40	2,568	4,472			
386.45	2,600	4,601			
386.50	2,632	4,732			
386.55	2,664	4,865			
386 60	2,606	1 000			

Stage-Area-Storage for Pond SB: Sedimentation Basin

Summary for Pond W-4: W-4 Pocket Wetland

Inflow Are	a =	113,943 sf, 58.55% Impervious	s, Inflow Depth > 2.23" for 1 Year, 24 Hour Storm event
Inflow	=	1.31 cfs @ 12.01 hrs, Volume=	= 21,133 cf
Outflow	=	0.16 cfs @ 17.26 hrs, Volume=	= 20,292 cf, Atten= 88%, Lag= 314.9 min
Primary	=	0.16 cfs @ 17.26 hrs, Volume=	= 20,292 cf

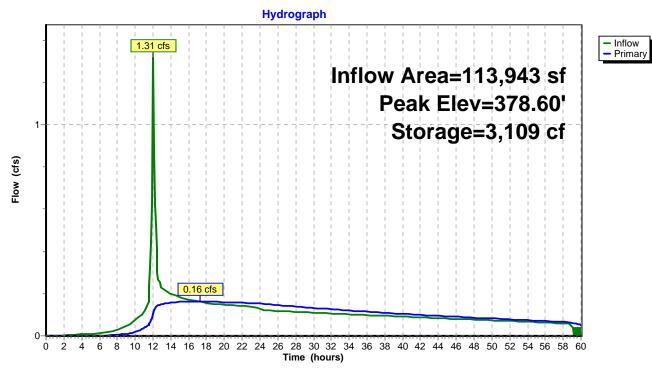
Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs / 3 Peak Elev= 378.60' @ 17.26 hrs Surf.Area= 5,581 sf Storage= 3,109 cf

Plug-Flow detention time= 278.2 min calculated for 20,258 cf (96% of inflow) Center-of-Mass det. time= 206.0 min (1,902.2 - 1,696.2)

#1 378.00' 20,808 cf Custom Stage Data (Prismatic)Listed below (Recalc) Elevation (feet) Surf.Area (sq-ft) Inc.Store (cubic-feet) Cum.Store (cubic-feet) 378.00 4,855 0 0 379.00 6,074 5,465 5,465 380.00 7,618 6,846 12,311 381.00 9,377 8,498 20,808	Volume	Invert	t Avail.Stor	rage Stora	e Storage Description	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	#1	#1 378.00' 20,80		08 cf Cust	om Stage Data (P	rismatic)Listed below (Recalc)
379.006,0745,4655,465380.007,6186,84612,311381.009,3778,49820,808						
380.007,6186,84612,311381.009,3778,49820,808	378.0	378.00 4,855		0	0	
381.00 9,377 8,498 20,808	379.00	379.00		5,465	5,465	
	380.00	0	7,618	6,846	12,311	
	381.00	0	9,377	8,498	20,808	
Device Routing Invert Outlet Devices	Device Routing Invert		Outlet Dev	rices		
#1 Primary 373.00' 12.0" Round Culvert	#1	#1 Primary 373.00'		12.0" Rou	und Culvert	
#2 Device 1 378.00' 378.70' 36.0" W x 6.0" H Vert. High Flow Orifice (36Wx6H) C= 0.600 #3 Device 1 378.70' 36.0" W x 6.0" H Vert. High Flow Orifice (36Wx6H) C= 0.600	L= 40.0' CPP, square Inlet / Outlet Invert= 37 n= 0.013, Flow Area= #2 Device 1 378.00' 3.0" Vert. Low Flow O		et Invert= 373.00' / Flow Area= 0.79 s Low Flow Orifice	372.60' S= 0.0100 '/' Cc= 0.900 f C= 0.600		

Primary OutFlow Max=0.16 cfs @ 17.26 hrs HW=378.60' TW=0.00' (Dynamic Tailwater)

-1=Culvert (Passes 0.16 cfs of 8.49 cfs potential flow)


-2=Low Flow Orifice (Orifice Controls 0.16 cfs @ 3.30 fps)

-3=High Flow Orifice (36Wx6H) (Controls 0.00 cfs)

Park Place - DEV

Prepared by AKRF, Inc. HydroCAD® 10.00-12 s/n 04852 © 2014 HydroCAD Software Solutions LLC

Prepared by AKRF, Inc.

Elevation Surface Storage Elevation Surface Storage (feet) (cubic-feet) (feet) (sq-ft) (cubic-feet) (sq-ft) 378.00 4,855 380.65 8,761 17,634 0 378.05 4,916 244 380.70 8,849 18,074 4,977 492 8,937 18,519 378.10 380.75 378.15 5,038 742 380.80 9,025 18,968 378.20 5,099 995 380.85 9,113 19,421 378.25 5,160 1,252 380.90 9,201 19,879 378.30 5,221 1,511 380.95 9,289 20,341 378.35 5,282 1,774 381.00 9,377 20,808 378.40 5,343 2,040 378.45 5,404 2,308 378.50 5,465 2,580 378.55 5,525 2,855 378.60 5,586 3,132 378.65 5,647 3,413 378.70 5,708 3,697 3,984 378.75 5,769 378.80 5,830 4,274 378.85 5,891 4,567 378.90 5,952 4,863 378.95 6,013 5,162 379.00 6,074 5,465 379.05 6,151 5,770 6,080 379.10 6,228 379.15 6,306 6,393 6,710 379.20 6,383 379.25 6,460 7,031 379.30 7,356 6,537 7,685 379.35 6,614 379.40 6,692 8,018 379.45 6,769 8,354 379.50 6,846 8,695 6,923 9,039 379.55 7,000 9,387 379.60 379.65 7,078 9,739 7,155 10,095 379.70 10,454 379.75 7,232 379.80 7,309 10,818 11,185 379.85 7,386 379.90 7,464 11,556 379.95 7,541 11,932 12,311 380.00 7,618 12,694 380.05 7,706 13,081 380.10 7,794 13,473 380.15 7,882 7,970 13,869 380.20 380.25 8,058 14,270 14,675 380.30 8,146 15,085 380.35 8,234 15,498 380.40 8,322 15,917 380.45 8,410 380.50 8,498 16,339 380.55 8,585 16,766 380.60 8,673 17,198

Stage-Area-Storage for Pond W-4: W-4 Pocket Wetland

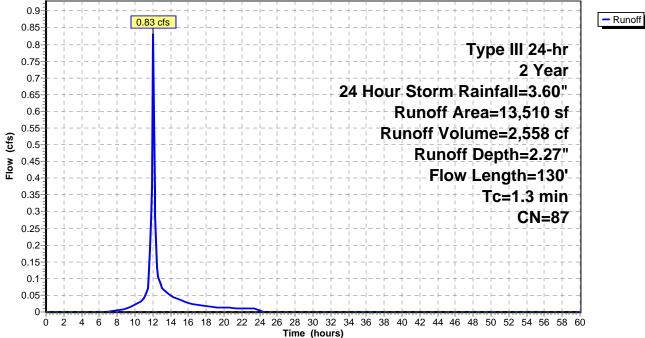
Park Place - DEV	Type III 24-hr 2 Year, 24 Hour Storm Rainfall=3.60"
Prepared by AKRF, Inc.	Printed 12/5/2014
HydroCAD® 10.00-12 s/n 04852 © 2	014 HydroCAD Software Solutions LLC Page 31

Time span=0.00-60.00 hrs, dt=0.10 hrs, 601 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPost 2E: Post 2E	Runoff Area=13,510 sf 40.08% Impervious Runoff Depth=2.27" Flow Length=130' Tc=1.3 min CN=87 Runoff=0.83 cfs 2,558 cf
Subcatchment Post 1: DA 1	Runoff Area=248,549 sf 0.00% Impervious Runoff Depth=1.25" Flow Length=605' Tc=18.8 min CN=73 Runoff=5.41 cfs 25,835 cf
Subcatchment Post 2A: Post 2A Flow Length=1	Runoff Area=4,907 sf 100.00% Impervious Runoff Depth=3.37" 50' Slope=0.0100 '/' Tc=1.9 min CN=98 Runoff=0.39 cfs 1,376 cf
Subcatchment Post 2B: Post 2B	Runoff Area=14,630 sf 41.85% Impervious Runoff Depth=2.19" Flow Length=346' Tc=11.0 min CN=86 Runoff=0.68 cfs 2,666 cf
Subcatchment Post 2C: Post 2C Flow Length=100	Runoff Area=44,895 sf 100.00% Impervious Runoff Depth=3.37" 0' Slope=0.1350 '/' Tc=0.5 min CN=98 Runoff=3.77 cfs 12,594 cf
Subcatchment Post 2D: Post 2D	Runoff Area=8,410 sf 0.00% Impervious Runoff Depth=1.87" Flow Length=200' Tc=4.5 min CN=82 Runoff=0.40 cfs 1,307 cf
Subcatchment Post 2F: Post 2F Flow Length=1	Runoff Area=4,258 sf 100.00% Impervious Runoff Depth=3.37" 19' Slope=0.1687 '/' Tc=0.1 min CN=98 Runoff=0.36 cfs 1,194 cf
Subcatchment Post 2G: Post 2G	Runoff Area=23,333 sf 4.77% Impervious Runoff Depth=1.79" Flow Length=112' Tc=0.9 min CN=81 Runoff=1.15 cfs 3,480 cf
Subcatchment Post 2H: Post 2H	Runoff Area=14,691 sf 0.00% Impervious Runoff Depth=1.25" Flow Length=353' Tc=10.5 min CN=73 Runoff=0.38 cfs 1,527 cf
Subcatchment Post 3A: Post 3A	Runoff Area=33,605 sf 11.43% Impervious Runoff Depth=1.57" Flow Length=110' Tc=11.9 min CN=78 Runoff=1.10 cfs 4,407 cf
Subcatchment Post 3B: Post 3B Flow Length=	Runoff Area=5,082 sf 0.00% Impervious Runoff Depth=1.37" 100' Slope=0.0850 '/' Tc=5.3 min CN=75 Runoff=0.17 cfs 581 cf
Reach DP1: Design Point 1	Inflow=5.41 cfs 25,835 cf Outflow=5.41 cfs 25,835 cf
Reach DP2: Design Point 2	Inflow=0.52 cfs 25,195 cf Outflow=0.52 cfs 25,195 cf
Reach DP3: Design Point 3	Inflow=1.22 cfs 4,989 cf Outflow=1.22 cfs 4,989 cf
Pond F-1: Sand Filter	Peak Elev=387.05' Storage=6,806 cf Inflow=3.20 cfs 19,812 cf Outflow=0.42 cfs 19,815 cf
Pond FS: Flow Splitter Primary=4.32 c	Peak Elev=388.09' Inflow=4.53 cfs 16,637 cf fs 16,541 cf Secondary=0.21 cfs 95 cf Outflow=4.53 cfs 16,637 cf

Park Place - DEV Prepared by AKRF, Inc.		Printed 12/5/2014
HydroCAD® 10.00-12 s/n 04852 © 2014 Hyd	rocad Software Solutions LLC	Page 32
Pond SB: Sedimentation Basin	Peak Elev=387.52' Storage=7,754 cf Inflow Outflow	r=5.46 cfs 20,407 cf r=3.20 cfs 19,812 cf
Pond W-4: W-4 Pocket Wetland	Peak Elev=378.78' Storage=4,163 cf Inflow Outflow	v=1.78 cfs 24,585 cf v=0.41 cfs 23,668 cf
•		unoff Depth = 1.66" ervious = 70,552 sf

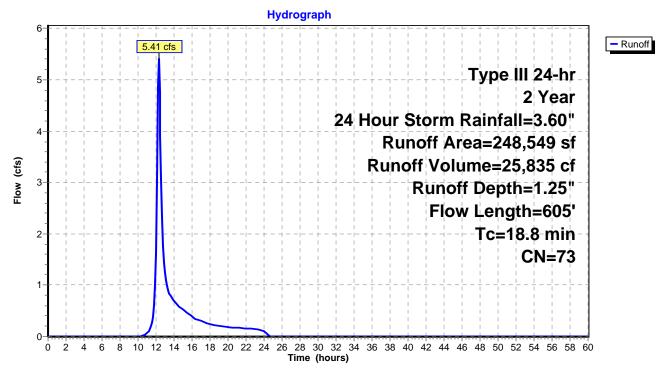
Summary for Subcatchment Post 2E: Post 2E


Runoff = 0.83 cfs @ 12.01 hrs, Volume= 2,558 cf, Depth= 2.27"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 2 Year, 24 Hour Storm Rainfall=3.60"

_	A	rea (sf)	CN E	Description		
		5,415	98 F	aved park	ing, HSG C	;
_	8,095 79 50-75% Grass cover, F					Fair, HSG C
13,510 87 Weighted Average				Veighted A	verage	
8,095 59.92% Pervious Area				9.92% Per	vious Area	
		5,415	4	0.08% Imp	pervious Are	ea
	_		<u>.</u>			- · · ·
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	1.2	100	0.0200	1.44		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.50"
	0.1	30	0.3800	9.92		Shallow Concentrated Flow, Pavement
_						Unpaved Kv= 16.1 fps
	1.3	130	Total			

Subcatchment Post 2E: Post 2E


Summary for Subcatchment Post 1: DA 1

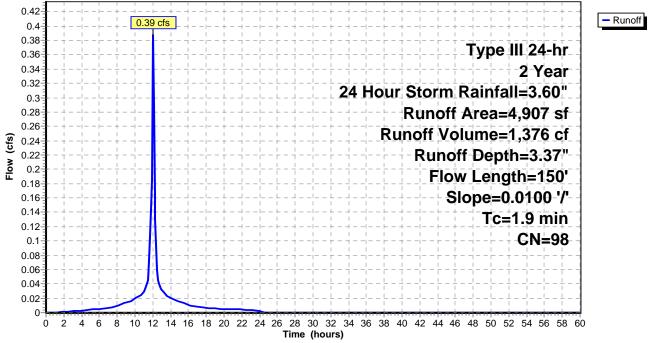
Runoff = 5.41 cfs @ 12.29 hrs, Volume= 25,835 cf, Depth= 1.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 2 Year, 24 Hour Storm Rainfall=3.60"

	A	rea (sf)	CN [Description					
	1	59,708	73 \	Voods, Fai	r, HSG C				
		1,496	89 (Gravel road	ls, HSG C				
		87,345	74 >	75% Gras	75% Grass cover, Good, HSG C				
	2	248,549 73 Weighted Average							
	248,549 100.00% Pervious Area			00.00% Pe	ervious Are	a			
	Тс	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	14.8	250	0.0400	0.28		Sheet Flow,			
						Grass: Short n= 0.150 P2= 3.50"			
	1.0	105	0.0667	1.81		Shallow Concentrated Flow,			
						Short Grass Pasture Kv= 7.0 fps			
	3.0	250	0.0760	1.38		Shallow Concentrated Flow,			
_						Woodland Kv= 5.0 fps			
	18.8	605	Total						

Subcatchment Post 1: DA 1

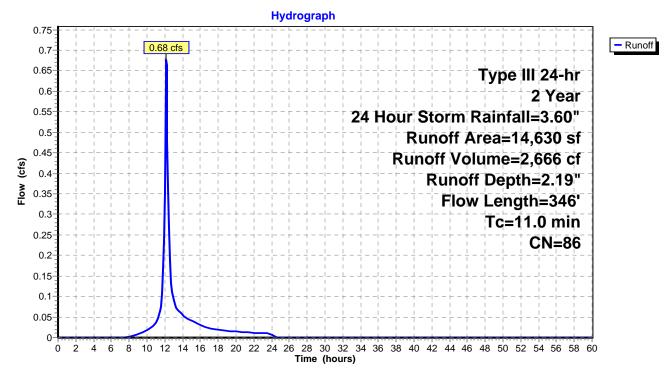
Summary for Subcatchment Post 2A: Post 2A


Runoff = 0.39 cfs @ 12.02 hrs, Volume= 1,376 cf, Depth= 3.37"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 2 Year, 24 Hour Storm Rainfall=3.60"

_	A	rea (sf)	CN [Description		
_		4,907	98 F	Paved park	ing, HSG C	
		4,907	1	00.00% In	npervious A	vrea
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
-	1.5	100	0.0100	1.09		Sheet Flow, Pavement
_	0.4	50	0.0100	2.03		Smooth surfaces n= 0.011 P2= 3.50" Shallow Concentrated Flow, Pavement Paved Kv= 20.3 fps
_	1.9	150	Total			

Subcatchment Post 2A: Post 2A


Summary for Subcatchment Post 2B: Post 2B

Runoff = 0.68 cfs @ 12.16 hrs, Volume= 2,666 cf, Depth= 2.19"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 2 Year, 24 Hour Storm Rainfall=3.60"

Ar	ea (sf)	CN D	escription						
	6,122	98 F	8 Paved parking						
	6,154	74 >	75% Gras	s cover, Go	ood, HSG C				
	2,354	89 0	Gravel road	ls, HSG C					
	14,630	86 V	Veighted A	verage					
	8,508	5	8.15% Per	vious Area					
	6,122	4	1.85% Imp	pervious Are	ea				
Tc	Length	Slope	Velocity	Capacity	Description				
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)					
10.3	100	0.0400	0.16		Sheet Flow, Landscaped area				
					Grass: Dense n= 0.240 P2= 3.50"				
0.7	246	0.0100	5.90	4.63	Pipe Channel, Pipe				
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'				
					n= 0.010 PVC, smooth interior				
11.0	346	Total							

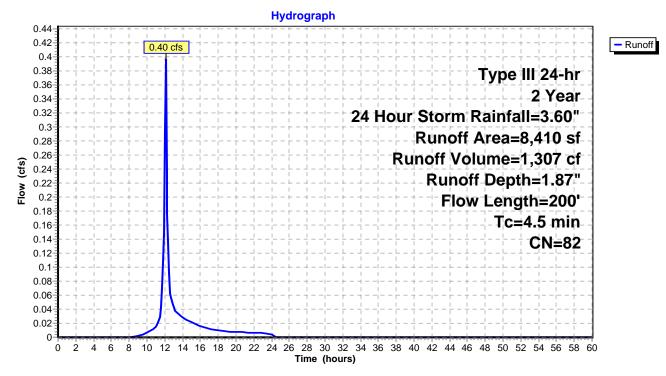
Subcatchment Post 2B: Post 2B

Summary for Subcatchment Post 2C: Post 2C

Runoff = 3.77 cfs @ 12.00 hrs, Volume= 12,594 cf, Depth= 3.37"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 2 Year, 24 Hour Storm Rainfall=3.60"

А	rea (sf)	CN D	escription						
	44,895 98 Paved parking, HSG C								
	44,895 100.00% Impervious Area								
Tc (min)									
0.5	100	0.1350	3.09		Sheet Flow, Smooth surfaces n= 0.011 P2= 3.50"				
			Su	bcatchme	ent Post 2C: Post 2C				
_				Hydrog	graph				
4 4 		- - - - - 3.77 cl - - - <td>I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I<td></td><td>Type III 24-hr 2 Year 24 Hour Storm Rainfall=3.60" Runoff Area=44,895 sf Runoff Volume=12,594 cf Runoff Depth=3.37" Flow Length=100' Slope=0.1350 '/' Tc=0.5 min CN=98</td></td>	I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I <td></td> <td>Type III 24-hr 2 Year 24 Hour Storm Rainfall=3.60" Runoff Area=44,895 sf Runoff Volume=12,594 cf Runoff Depth=3.37" Flow Length=100' Slope=0.1350 '/' Tc=0.5 min CN=98</td>		Type III 24-hr 2 Year 24 Hour Storm Rainfall=3.60" Runoff Area=44,895 sf Runoff Volume=12,594 cf Runoff Depth=3.37" Flow Length=100' Slope=0.1350 '/' Tc=0.5 min CN=98				
0 - 0	246	8 10 12	14 16 18 20		8 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 ne (hours)				


Summary for Subcatchment Post 2D: Post 2D

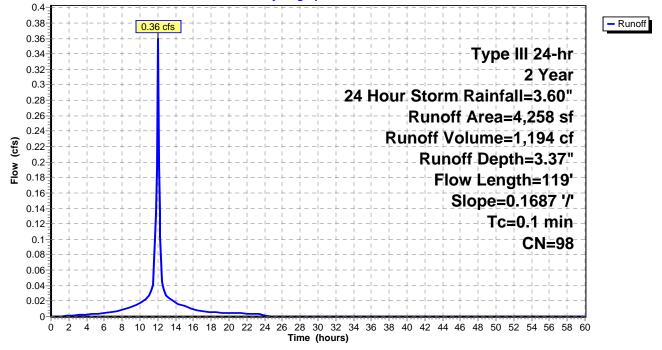
Runoff = 0.40 cfs @ 12.09 hrs, Volume= 1,307 cf, Depth= 1.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 2 Year, 24 Hour Storm Rainfall=3.60"

	A	rea (sf)	CN	Description							
		6,293	79	79 50-75% Grass cover, Fair, HSG C							
		2,117	89	Gravel road	ls, HSG C						
		8,410	82	82 Weighted Average							
		8,410		100.00% Pe	ervious Are	a					
	Τc	Length	Slope		Capacity	Description					
(min)	(feet)	(ft/ft	(ft/sec)	(cfs)						
	4.1	50	0.1000	0.20		Sheet Flow, Landscaped					
						Grass: Dense n= 0.240 P2= 3.50"					
	0.4	150	0.0860	5.95		Shallow Concentrated Flow, Maintenance Drive					
						Paved Kv= 20.3 fps					
	4.5	200	Total								

Subcatchment Post 2D: Post 2D

Summary for Subcatchment Post 2F: Post 2F

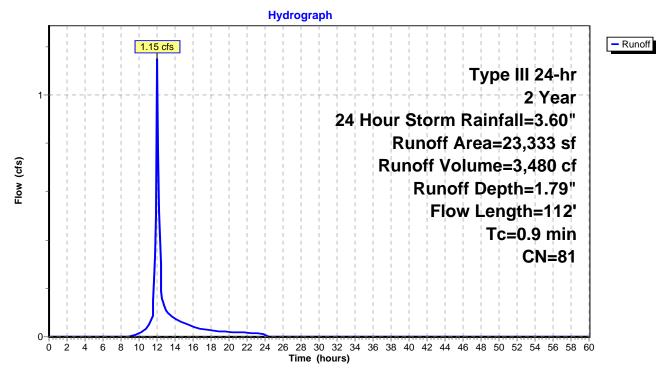

Runoff = 0.36 cfs @ 12.00 hrs, Volume= 1,194 cf, Depth= 3.37"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 2 Year, 24 Hour Storm Rainfall=3.60"

_	A	rea (sf)	CN	Description				
_		4,258	98	98 Roofs, HSG C				
		4,258		100.00% In	npervious A	rea		
	Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	Description		
_	0.1	119	0.1687	7 14.22	4.96	Pipe Channel, Roof Leader 8.0" Round Area= 0.3 sf Perim= 2.1' r= 0.17' n= 0.013 Corrugated PE, smooth interior		

Subcatchment Post 2F: Post 2F

Hydrograph

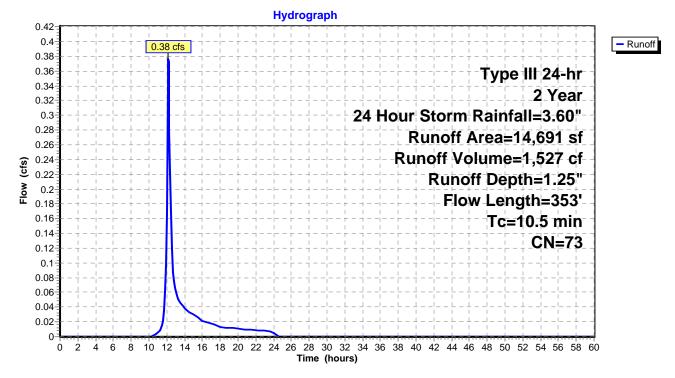

Summary for Subcatchment Post 2G: Post 2G

Runoff = 1.15 cfs @ 12.01 hrs, Volume= 3,480 cf, Depth= 1.79"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 2 Year, 24 Hour Storm Rainfall=3.60"

A	rea (sf)	CN E	Description						
	1,113	98 F	8 Paved parking, HSG C						
	20,037	79 5	0-75% Gra	ass cover, F	Fair, HSG C				
	2,183	89 0	Gravel road	ls, HSG C					
	23,333	81 V	Veighted A	verage					
	22,220	9	5.23% Per	vious Area					
	1,113	4	.77% Impe	ervious Area	а				
Тс	Length	Slope	Velocity	Capacity	Description				
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)					
0.9	80	0 0050	4 = 0						
0.5	00	0.0250	1.50		Sheet Flow, Pavement				
0.3	80	0.0250	1.50		Sheet Flow, Pavement Smooth surfaces n= 0.011 P2= 3.50"				
0.0	32	0.0250	1.50 10.92		•				
					Smooth surfaces n= 0.011 P2= 3.50"				

Subcatchment Post 2G: Post 2G

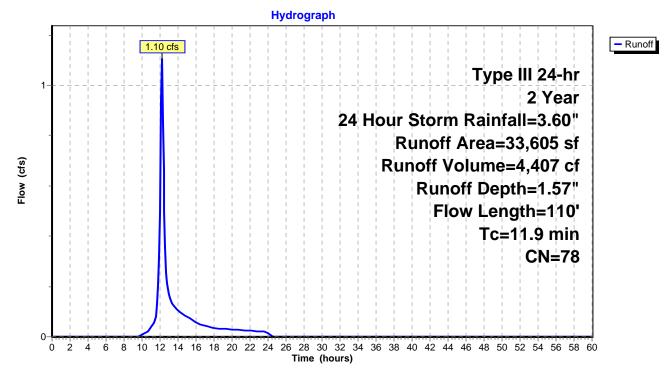

Summary for Subcatchment Post 2H: Post 2H

Runoff = 0.38 cfs @ 12.18 hrs, Volume= 1,527 cf, Depth= 1.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 2 Year, 24 Hour Storm Rainfall=3.60"

A	rea (sf)	CN [Description		
	14,691	73 \	Noods, Fai	r, HSG C	
	14,691	100.00% Pervic		ervious Are	a
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
8.8	100	0.0600	0.19		Sheet Flow, Landscaped Grass: Dense n= 0.240 P2= 3.50"
1.7	253	0.0260	2.42		Shallow Concentrated Flow, Grassed waterway Grassed Waterway Kv= 15.0 fps
10.5	353	Total			· ·

Subcatchment Post 2H: Post 2H


Summary for Subcatchment Post 3A: Post 3A

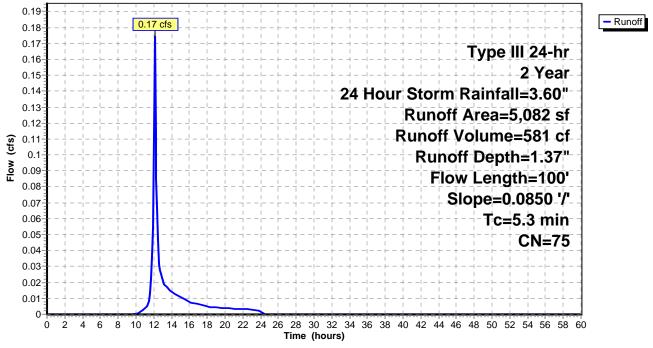
Runoff = 1.10 cfs @ 12.19 hrs, Volume= 4,407 cf, Depth= 1.57"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 2 Year, 24 Hour Storm Rainfall=3.60"

Α	rea (sf)	CN E	Description						
	3,842	98 F	98 Paved parking, HSG C						
	20,173	73 V	Voods, Fai	r, HSG C					
	9,590	79 5	0-75% Gra	ass cover, I	Fair, HSG C				
	33,605	78 V	Veighted A	verage					
	29,763	8	8.57% Per	vious Area					
	3,842	1	1.43% Imp	pervious Ar	ea				
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
4.4	67	0.0600	0.25		Sheet Flow, Landscaped				
					Grass: Short n= 0.150 P2= 3.50"				
7.5	43	0.0460	0.10		Sheet Flow, Wooded				
					Woods: Light underbrush n= 0.400 P2= 3.50"				
11.9	110	Total							

Subcatchment Post 3A: Post 3A

Summary for Subcatchment Post 3B: Post 3B


Runoff = 0.17 cfs @ 12.10 hrs, Volume= 581 cf, Depth= 1.37"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 2 Year, 24 Hour Storm Rainfall=3.60"

Α	rea (sf)	CN	Description					
	3,044	73	Woods, Fai	r, HSG C				
	2,038	79	50-75% Gra	ass cover, l	Fair, HSG C			
	5,082	75	Weighted A	verage				
	5,082		100.00% Pe	ervious Are	a			
Тс	Length	Slope		Capacity	Description			
<u>(min)</u>	(feet)	(ft/ft)) (ft/sec)	(cfs)				
5.3	100	0.0850	0.32		Sheet Flow,			
					Grass: Short	n= 0.150	P2= 3.50"	

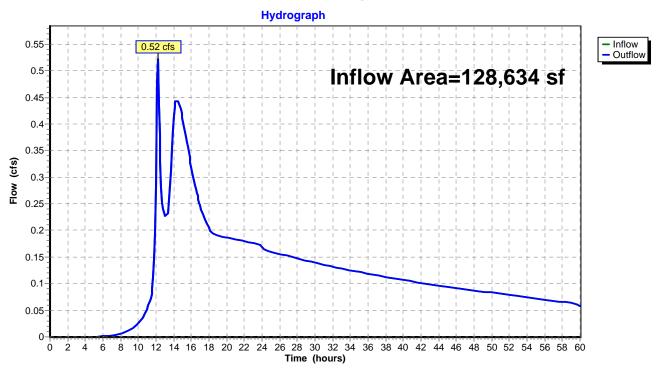
Subcatchment Post 3B: Post 3B

Hydrograph

Summary for Reach DP1: Design Point 1

Inflow Are	a =	248,549 sf,	0.00% Impervious,	Inflow Depth = 1.25"	for 2 Year, 24 Hour Storm event
Inflow	=	5.41 cfs @ 1	12.29 hrs, Volume=	25,835 cf	
Outflow	=	5.41 cfs @ 1	12.29 hrs, Volume=	25,835 cf, Atter	n= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs / 3


Hydrograph 6 Inflow Outflow 5.41 cfs Inflow Area=248,549 sf 5 4-Flow (cfs) 3 2 1 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 Ó Time (hours)

Reach DP1: Design Point 1

Summary for Reach DP2: Design Point 2

Inflow Are	a =	128,634 sf, 51.8	36% Impervious,	Inflow Depth > 2.3	5" for 2 Year, 24 Hour Storm event
Inflow	=	0.52 cfs @ 12.18	8 hrs, Volume=	25,195 cf	
Outflow	=	0.52 cfs @ 12.18	8 hrs, Volume=	25,195 cf, A	otten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs / 3

Reach DP2: Design Point 2

Summary for Reach DP3: Design Point 3

Inflow Are	a =	38,687 sf,	9.93% Impervious,	Inflow Depth = 1.55"	for 2 Year, 24 Hour Storm event
Inflow	=	1.22 cfs @	12.18 hrs, Volume=	4,989 cf	
Outflow	=	1.22 cfs @	12.18 hrs, Volume=	4,989 cf, Atter	n= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs / 3

2 4 6

ò

Hydrograph

8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

Time (hours)

Reach DP3: Design Point 3

Summary for Pond F-1: Sand Filter

Inflow Area =	86,35	2 sf, 71.03% Impervious	, Inflow Depth > 2.3	75" for 2 Year, 24 Hour Storm event
Inflow =	3.20 cfs	@ 12.19 hrs, Volume=	19,812 cf	
Outflow =	0.42 cfs	@ 13.53 hrs, Volume=	19,815 cf, /	Atten= 87%, Lag= 80.4 min
Primary =	0.42 cfs	@ 13.53 hrs, Volume=	19,815 cf	

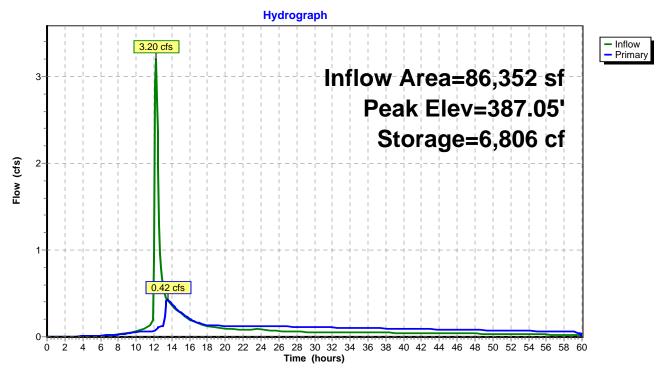
Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs / 3 Peak Elev= 387.05' @ 13.53 hrs Surf.Area= 3,164 sf Storage= 6,806 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 529.2 min (1,783.1 - 1,253.9)

Volume	Inve	ert Avail.Sto	rage Storage	Description		
#1	384.0	0' 10,07	72 cf Custom	n Stage Data (P	rismatic)Listed below (Recalc)	
Elevatio		Surf.Area	Inc.Store	Cum.Store		
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)		
384.0	00	1,386	0	0		
385.0	00	1,903	1,645	1,645		
386.0	00	2,483	2,193	3,838		
387.0	00	3,135	2,809	6,647		
388.0	00	3,716	3,426	10,072		
Device	Routing	Invert	Outlet Device	S		
#1	Primary	381.50'	10.0" Round	d Culvert		
#2 #3	Device 1 Device 1	384.00' 387.00'	L= 38.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 381.50' / 377.00' S= 0.1184 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.55 sf 1.750 in/hr Sand Filter Bed over Surface area 24.0" x 24.0" Horiz. Overflow Grate C= 0.600 Limited to weir flow at low heads			

Primary OutFlow Max=0.42 cfs @ 13.53 hrs HW=387.05' TW=378.71' (Dynamic Tailwater)

1=Culvert (Passes 0.42 cfs of 4.70 cfs potential flow)


2=Sand Filter Bed (Exfiltration Controls 0.13 cfs)

-3=Overflow Grate (Weir Controls 0.30 cfs @ 0.73 fps)

Park Place - DEV

Prepared by AKRF, Inc. HydroCAD® 10.00-12 s/n 04852 © 2014 HydroCAD Software Solutions LLC

Pond F-1: Sand Filter

Park Place - DEV Prepared by AKRF, Inc.

386.55

386.60

2,842

2,874

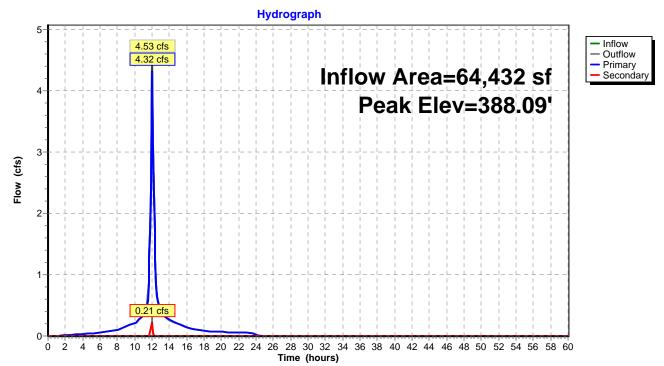
5,302

5,445

	0	0		0	0
Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)
384.00	1,386	0	386.65	2,907	5,589
384.05	1,412	70	386.70	2,939	5,735
384.10	1,438	141	386.75	2,972	5,883
384.15	1,464	214	386.80	3,005	6,033
384.20	1,489	288	386.85	3,037	6,184
384.25	1,515	363	386.90	3,070	6,336
384.30	1,541	439	386.95	3,102	6,491
384.35	1,567	517	387.00	3,135	6,647
384.40	1,593	596	387.05	3,164	6,804
384.45	1,619	676	387.10	3,193	6,963
384.50	1,645	758	387.15	3,222	7,123
384.55	1,670	840	387.20	3,251	7,285
384.60	1,696	925	387.25	3,280	7,448
384.65	1,722	1,010	387.30	3,309	7,613
384.70	1,748	1,097	387.35	3,338	7,779
384.75	1,774	1,185	387.40	3,367	7,947
384.80	1,800	1,274	387.45	3,396	8,116
384.85	1,825	1,365	387.50	3,426	8,287
384.90	1,851	1,457	387.55	3,455	8,459
384.95 385.00	1,877 1,903	1,550 1,645	387.60 387.65	3,484 3,513	8,632 8,807
385.05	1,903	1,645	387.70	3,542	8,983
385.10	1,961	1,838	387.75	3,571	9,161
385.15	1,990	1,936	387.80	3,600	9,340
385.20	2,019	2,037	387.85	3,629	9,521
385.25	2,048	2,138	387.90	3,658	9,703
385.30	2,077	2,242	387.95	3,687	9,887
385.35	2,106	2,346	388.00	3,716	10,072
385.40	2,135	2,452		-, -	- / -
385.45	2,164	2,560			
385.50	2,193	2,669			
385.55	2,222	2,779			
385.60	2,251	2,891			
385.65	2,280	3,004			
385.70	2,309	3,119			
385.75	2,338	3,235			
385.80	2,367	3,353			
385.85	2,396	3,472			
385.90	2,425	3,592			
385.95	2,454	3,714			
386.00 386.05	2,483 2,516	3,838 3,962			
386.10	2,548	4,089			
386.15	2,581	4,009			
386.20	2,613	4,347			
386.25	2,646	4,479			
386.30	2,679	4,612			
386.35	2,711	4,746			
386.40	2,744	4,883			
386.45	2,776	5,021			
386.50	2,809	5,161			
206 55	2042	F 202			

Stage-Area-Storage for Pond F-1: Sand Filter

Summary for Pond FS: Flow Splitter


Inflow Area = 64,432 sf, 86.80% Impervious, Inflow Depth = 3.10" for 2 Year, 24 Hour Storm event Inflow 4.53 cfs @ 12.01 hrs. Volume= 16,637 cf = 4.53 cfs @ 12.01 hrs, Volume= Outflow 16,637 cf, Atten= 0%, Lag= 0.0 min = 16,541 cf 4.32 cfs @ 12.01 hrs, Volume= Primary = Secondary = 0.21 cfs @ 12.01 hrs, Volume= 95 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs / 3 Peak Elev= 388.09' @ 12.04 hrs Flood Elev= 392.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	386.00'	15.0" Round Culvert to Sed Basin L= 20.0' Ke= 0.900
			Inlet / Outlet Invert= 386.00' / 384.00' S= 0.1000 '/' Cc= 0.900
			n= 0.013, Flow Area= 1.23 sf
#2	Secondary	387.80'	24.0" Round Culvert L= 106.0' Ke= 0.900
			Inlet / Outlet Invert= 387.80' / 381.00' S= 0.0642 '/' Cc= 0.900
			n= 0.013, Flow Area= 3.14 sf

Primary OutFlow Max=4.18 cfs @ 12.01 hrs HW=388.00' TW=387.19' (Dynamic Tailwater) -1=Culvert to Sed Basin (Inlet Controls 4.18 cfs @ 3.41 fps)

Secondary OutFlow Max=0.19 cfs @ 12.01 hrs HW=388.00' TW=378.38' (Dynamic Tailwater) 2=Culvert (Inlet Controls 0.19 cfs @ 1.20 fps)

Pond FS: Flow Splitter

Elevation	Storage	Elevation	Storage	Elevation	Storage
(feet)	(cubic-feet)	(feet)	(cubic-feet)	(feet)	(cubic-feet)
386.00	0	388.12	0	390.24	0
386.04	0	388.16	0	390.28	0
386.08	0	388.20	0	390.32	0
386.12	0	388.24	0	390.36	0
386.16	0	388.28	0	390.40	0
386.20	0	388.32	0	390.44	0
386.24	0	388.36	0	390.48	0
386.28	0	388.40	0	390.52	0
386.32	0	388.44	0	390.56	0
386.36	0	388.48	0	390.60	0
386.40	0	388.52	0	390.64	0
386.44	0	388.56	0	390.68	0
386.48	0	388.60	0	390.72	0
386.52	0	388.64	0	390.76	0
386.56	0	388.68	0	390.80	0
386.60	0	388.72	0	390.84	0
386.64	0	388.76	0	390.88	0
386.68	0	388.80	0	390.92	0
386.72	0	388.84	0	390.96	0
386.76	0	388.88	0	391.00	0
386.80	0	388.92	0	391.04	0
386.84	0	388.96	0	391.08	0
386.88	0	389.00	0	391.12	0
386.92	0	389.04	0	391.16	0
386.96	0	389.08	0	391.20	0
387.00	0	389.12	0	391.24	0
387.04	0	389.16	0	391.28	0
387.08	0	389.20	0	391.32	0
387.12	0	389.24	0	391.36	0
387.16	0	389.28	0	391.40	0
387.20	0	389.32	0	391.44	0
387.24	0	389.36	0	391.48	0
387.28	0	389.40	0	391.52	0
387.32	0	389.44	0	391.56	0
387.36	0	389.48	0	391.60	0
387.40	0	389.52	0	391.64	0
387.44	0	389.56	0	391.68	0
387.48	0	389.60	0	391.72	0
387.52	0	389.64	0	391.76	0
387.56	0	389.68	0	391.80	0
387.60	0	389.72	0	391.84	0
387.64	0	389.76	0	391.88	0
387.68	0	389.80	0	391.92	0
387.72	0	389.84	0	391.96	0
387.76	0	389.88	0	392.00	0
387.80	0	389.92	0		
387.84	0	389.96	0		
387.88	0	390.00	0		
387.92	0	390.04	0		
387.96	0	390.08	0		
388.00	0	390.12	0		
388.04	0	390.16	0		
388.08	0	390.20	0		
		I		I	

Stage-Area-Storage for Pond FS: Flow Splitter

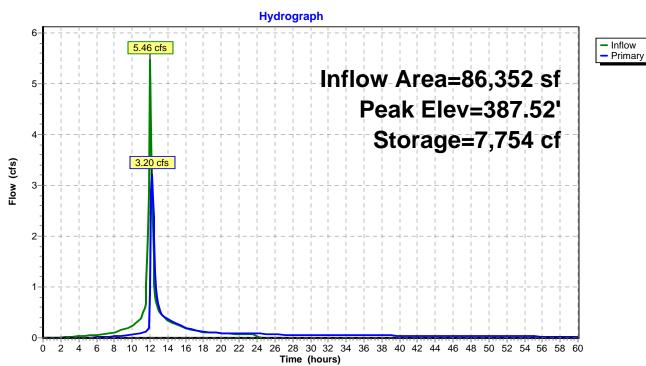
Summary for Pond SB: Sedimentation Basin

Inflow Area =	86,352 sf, 71.03% Impervious,	Inflow Depth = 2.84" for 2 Year, 24 Hour Storm event
Inflow =	5.46 cfs @ 12.01 hrs, Volume=	20,407 cf
Outflow =	3.20 cfs @ 12.19 hrs, Volume=	19,812 cf, Atten= 41%, Lag= 10.4 min
Primary =	3.20 cfs @ 12.19 hrs, Volume=	19,812 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs / 3 Peak Elev= 387.52' @ 12.20 hrs Surf.Area= 3,246 sf Storage= 7,754 cf

Plug-Flow detention time= 500.3 min calculated for 19,812 cf (97% of inflow) Center-of-Mass det. time= 482.5 min (1,253.9 - 771.4)

Volume	Inver	t Avail.Sto	rage Storage	Description			
#1	384.00	9,30	61 cf Custom	n Stage Data (Pr	ismatic)Listed below (Recalc)		
- 1 (1	-						
Elevatio		Surf.Area	Inc.Store	Cum.Store			
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)			
384.0	00	1,219	0	0			
385.0	00	1,730	1,475	1,475			
386.0	00	2,313	2,022	3,496			
387.0	00	2,951	2,632	6,128			
388.0	00	3,514	3,233	9,361			
Device	Routing	Invert	Outlet Device	S			
#1	Primary	382.00'	10.0" Round	d Culvert			
	,		L= 38.0' CP	P, projecting, no	headwall, Ke= 0.900		
					377.00' S= 0.1316 '/' Cc= 0.900		
			n= 0.013 Co	rrugated PE. smg	ooth interior, Flow Area= 0.55 sf		
#2	Device 1	384.00'	0.4" Vert. Standpipe Perforations X 4.00 columns				
			X 12 rows with 3.0" cc spacing $C = 0.600$				
#3	Device 1	387.00'			Opening $C= 0.600$		
				Limited to weir flow at low heads			
#4	Primary	387.50'			2 End Contraction(s)		
	····· ,		0.5' Crest He				


Primary OutFlow Max=3.13 cfs @ 12.19 hrs HW=387.52' TW=385.22' (Dynamic Tailwater)

__1=Culvert (Passes 3.00 cfs of 3.14 cfs potential flow)

2=Standpipe Perforations (Orifice Controls 0.27 cfs @ 6.43 fps)

-3=Standpipe Riser Opening (Orifice Controls 2.73 cfs @ 3.47 fps)

-4=Overflow Spillway (Weir Controls 0.14 cfs @ 0.46 fps)

Pond SB: Sedimentation Basin

386.55

386.60

2,664

2,696

4,865

4,999

		-			_
Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
384.00	1,219	0	386.65	2,728	5,134
384.05	1,245	62	386.70	2,760	5,271
384.10	1,270	124	386.75	2,792	5,410
384.15	1,296	189	386.80	2,823	5,551
384.20	1,321	254 321	386.85	2,855	5,693
384.25 384.30	1,347 1,372	389	386.90 386.95	2,887 2,919	5,836 5 081
384.35	1,398	458	387.00	2,919	5,981 6,128
384.40	1,423	528	387.05	2,979	6,276
384.45	1,449	600	387.10	3,007	6,426
384.50	1,475	673	387.15	3,035	6,577
384.55	1,500	748	387.20	3,064	6,729
384.60	1,526	823	387.25	3,092	6,883
384.65	1,551	900	387.30	3,120	7,039
384.70	1,577	978	387.35	3,148	7,195
384.75	1,602	1,058	387.40	3,176	7,353
384.80	1,628	1,139	387.45	3,204	7,513
384.85	1,653	1,221	387.50	3,233	7,674
384.90	1,679	1,304	387.55	3,261	7,836
384.95	1,704	1,389	387.60	3,289	8,000
385.00	1,730	1,475	387.65	3,317	8,165
385.05	1,759	1,562	387.70	3,345	8,332
385.10	1,788	1,650	387.75	3,373	8,500
385.15	1,817	1,741	387.80	3,401	8,669
385.20	1,847	1,832	387.85	3,430	8,840
385.25	1,876	1,925	387.90	3,458	9,012
385.30	1,905	2,020	387.95	3,486	9,186
385.35	1,934	2,116	388.00	3,514	9,361
385.40	1,963	2,213			
385.45	1,992	2,312			
385.50 385.55	2,022 2,051	2,412 2,514			
385.60	2,080	2,617			
385.65	2,109	2,722			
385.70	2,138	2,828			
385.75	2,167	2,936			
385.80	2,196	3,045			
385.85	2,226	3,156			
385.90	2,255	3,268			
385.95	2,284	3,381			
386.00	2,313	3,496			
386.05	2,345	3,612			
386.10	2,377	3,730			
386.15	2,409	3,850			
386.20	2,441	3,971			
386.25	2,473	4,094			
386.30	2,504	4,219			
386.35	2,536	4,345			
386.40	2,568	4,472			
386.45	2,600	4,601			
386.50 386.55	2,632	4,732 4 865			

Stage-Area-Storage for Pond SB: Sedimentation Basin

Summary for Pond W-4: W-4 Pocket Wetland

Inflow Area =	113,943 sf, 58.55% Impervious,	Inflow Depth > 2.59" for 2 Year, 24 Hour Storm event
Inflow =	1.78 cfs @ 12.01 hrs, Volume=	24,585 cf
Outflow =	0.41 cfs @ 14.39 hrs, Volume=	23,668 cf, Atten= 77%, Lag= 142.8 min
Primary =	0.41 cfs @ 14.39 hrs, Volume=	23,668 cf

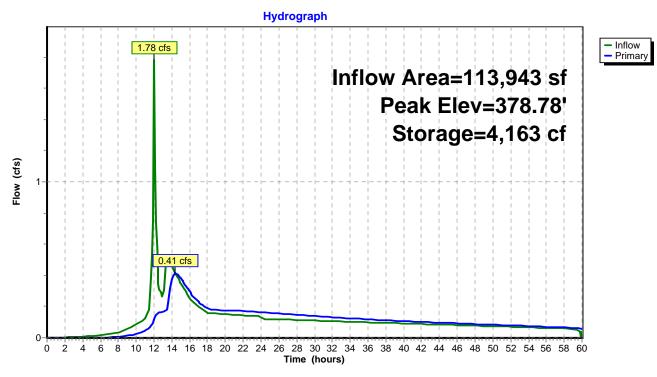
Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs / 3 Peak Elev= 378.78' @ 14.39 hrs Surf.Area= 5,807 sf Storage= 4,163 cf

Plug-Flow detention time= 269.5 min calculated for 23,668 cf (96% of inflow) Center-of-Mass det. time= 197.5 min (1,791.1 - 1,593.6)

Volume	Inver	rt Avail.Sto	rage	Storage	Description		
#1	378.00)' 20,80	08 cf	Custom	Stage Data (P	rismatic)Listed below (Recalc)	
Elevatio		Surf.Area (sq-ft)		.Store c-feet)	Cum.Store (cubic-feet)		
378.0	00	4,855		0	0		
379.0	00	6,074		5,465	5,465		
380.0	00	7,618		6,846	12,311		
381.0	00	9,377		8,498	20,808		
Device	Routing	Invert	Outle	et Devices	6		
#1	Primary	373.00'	12.0	" Round	Culvert		
#2 #3	Device 1 Device 1	378.00' 378.70'	L= 40.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 373.00' / 372.60' S= 0.0100 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf 3.0" Vert. Low Flow Orifice C= 0.600 36.0" W x 6.0" H Vert. High Flow Orifice (36Wx6H) C= 0.600				
			~				

Primary OutFlow Max=0.41 cfs @ 14.39 hrs HW=378.78' TW=0.00' (Dynamic Tailwater)

-1=Culvert (Passes 0.41 cfs of 8.64 cfs potential flow)


-2=Low Flow Orifice (Orifice Controls 0.19 cfs @ 3.90 fps)

-3=High Flow Orifice (36Wx6H) (Orifice Controls 0.22 cfs @ 0.91 fps)

Park Place - DEV

Prepared by AKRF, Inc. HydroCAD® 10.00-12 s/n 04852 © 2014 HydroCAD Software Solutions LLC

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
378.00	4,855	0	380.65	8,761	17,634
378.05	4,916	244	380.70	8,849	18,074
378.10	4,977	492	380.75	8,937	18,519
378.15	5,038	742	380.80	9,025	18,968
378.20	5,099	995	380.85	9,113	19,421
378.25	5,160	1,252	380.90	9,201	19,879
378.30	5,221	1,511	380.95	9,289	20,341
378.35	5,282	1,774	381.00	9,377	20,808
378.40	5,343	2,040			
378.45 378.50	5,404 5,465	2,308 2,580			
378.55	5,525	2,855			
378.60	5,586	3,132			
378.65	5,647	3,413			
378.70	5,708	3,697			
378.75	5,769	3,984			
378.80	5,830	4,274			
378.85	5,891	4,567			
378.90	5,952	4,863			
378.95	6,013	5,162			
379.00	6,074	5,465			
379.05	6,151	5,770			
379.10	6,228	6,080			
379.15	6,306	6,393			
379.20	6,383	6,710			
379.25	6,460	7,031			
379.30 379.35	6,537	7,356			
379.35	6,614 6,692	7,685 8,018			
379.45	6,769	8,354			
379.50	6,846	8,695			
379.55	6,923	9,039			
379.60	7,000	9,387			
379.65	7,078	9,739			
379.70	7,155	10,095			
379.75	7,232	10,454			
379.80	7,309	10,818			
379.85	7,386	11,185			
379.90	7,464	11,556			
379.95	7,541	11,932			
380.00	7,618	12,311			
380.05 380.10	7,706 7,794	12,694 13,081			
380.15	7,794	13,473			
380.20	7,970	13,869			
380.25	8,058	14,270			
380.30	8,146	14,675			
380.35	8,234	15,085			
380.40	8,322	15,498			
380.45	8,410	15,917			
380.50	8,498	16,339			
380.55	8,585	16,766			
380.60	8,673	17,198			
			•		

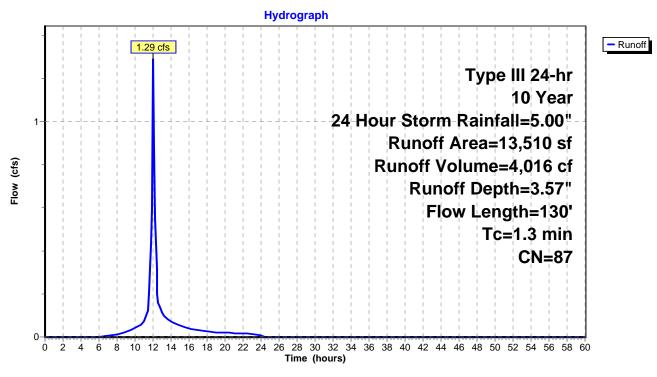
Stage-Area-Storage for Pond W-4: W-4 Pocket Wetland

Park Place - DEV	Type III 24-hr 10 Year, 24	Hour Storm Rainfall=5.00"
Prepared by AKRF, Inc.		Printed 12/5/2014
HydroCAD® 10.00-12 s/n 04852 © 2014 HydroC	CAD Software Solutions LLC	Page 58

Time span=0.00-60.00 hrs, dt=0.10 hrs, 601 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPost 2E: Post 2E	Runoff Area=13,510 sf 40.08% Impervious Runoff Depth=3.57" Flow Length=130' Tc=1.3 min CN=87 Runoff=1.29 cfs 4,016 cf
Subcatchment Post 1: DA 1	Runoff Area=248,549 sf 0.00% Impervious Runoff Depth=2.28" ow Length=605' Tc=18.8 min CN=73 Runoff=10.22 cfs 47,234 cf
Subcatchment Post 2A: Post 2A Flow Length=150	Runoff Area=4,907 sf 100.00% Impervious Runoff Depth=4.76" D' Slope=0.0100 '/' Tc=1.9 min CN=98 Runoff=0.54 cfs 1,948 cf
Subcatchment Post 2B: Post 2B	Runoff Area=14,630 sf 41.85% Impervious Runoff Depth=3.47" Flow Length=346' Tc=11.0 min CN=86 Runoff=1.06 cfs 4,227 cf
Subcatchment Post 2C: Post 2C Flow Length=100'	Runoff Area=44,895 sf 100.00% Impervious Runoff Depth=4.76" Slope=0.1350 '/' Tc=0.5 min CN=98 Runoff=5.27 cfs 17,820 cf
Subcatchment Post 2D: Post 2D	Runoff Area=8,410 sf 0.00% Impervious Runoff Depth=3.08" Flow Length=200' Tc=4.5 min CN=82 Runoff=0.65 cfs 2,158 cf
Subcatchment Post 2F: Post 2F Flow Length=119	Runoff Area=4,258 sf 100.00% Impervious Runoff Depth=4.76" 9' Slope=0.1687 '/' Tc=0.1 min CN=98 Runoff=0.50 cfs 1,690 cf
Subcatchment Post 2G: Post 2G	Runoff Area=23,333 sf 4.77% Impervious Runoff Depth=2.99" Flow Length=112' Tc=0.9 min CN=81 Runoff=1.92 cfs 5,805 cf
Subcatchment Post 2H: Post 2H	Runoff Area=14,691 sf 0.00% Impervious Runoff Depth=2.28" Flow Length=353' Tc=10.5 min CN=73 Runoff=0.71 cfs 2,792 cf
Subcatchment Post 3A: Post 3A	Runoff Area=33,605 sf 11.43% Impervious Runoff Depth=2.71" Flow Length=110' Tc=11.9 min CN=78 Runoff=1.92 cfs 7,594 cf
Subcatchment Post 3B: Post 3B Flow Length=100	Runoff Area=5,082 sf 0.00% Impervious Runoff Depth=2.45" D' Slope=0.0850 '/' Tc=5.3 min CN=75 Runoff=0.32 cfs 1,037 cf
Reach DP1: Design Point 1	Inflow=10.22 cfs 47,234 cf Outflow=10.22 cfs 47,234 cf
Reach DP2: Design Point 2	Inflow=2.68 cfs 38,641 cf Outflow=2.68 cfs 38,641 cf
Reach DP3: Design Point 3	Inflow=2.14 cfs 8,631 cf Outflow=2.14 cfs 8,631 cf
Pond F-1: Sand Filter	Peak Elev=387.23' Storage=7,367 cf Inflow=5.67 cfs 28,314 cf Outflow=2.92 cfs 28,186 cf
Pond FS: Flow Splitter Primary=4.38 cfs 22	Peak Elev=388.48' Inflow=6.40 cfs 23,995 cf 2,828 cf Secondary=2.03 cfs 1,167 cf Outflow=6.40 cfs 23,995 cf

Park Place - DEV Prepared by AKRF, Inc.	Type III 24-hr 10 Year, 24 Hour Storm Rainfall=5.0 Printed 12/5/20	14
HydroCAD® 10.00-12 s/n 04852 © 2014 Hydro	CAD Software Solutions LLC Page :	<u>59</u>
Pond SB: Sedimentation Basin	Peak Elev=387.66' Storage=8,196 cf Inflow=6.19 cfs 29,002 Outflow=5.67 cfs 28,314	
Pond W-4: W-4 Pocket Wetland	Peak Elev=379.07' Storage=5,909 cf Inflow=4.54 cfs 36,848 Outflow=2.42 cfs 35,849	
Total Runoff Area = 415,870 sf 83.	Runoff Volume = 96,321 cf Average Runoff Depth = 2 04% Pervious = 345,318 sf 16.96% Impervious = 70,55	

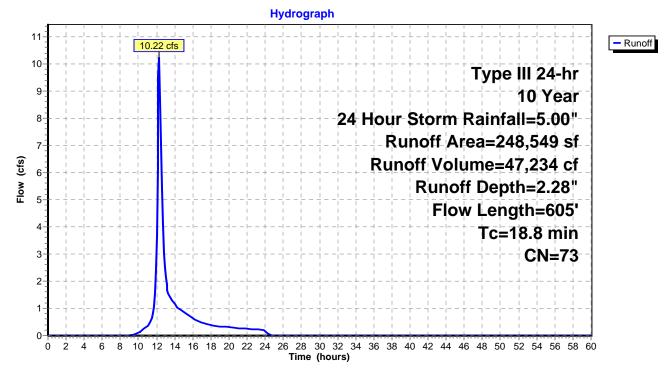

Summary for Subcatchment Post 2E: Post 2E

Runoff = 1.29 cfs @ 12.01 hrs, Volume= 4,016 cf, Depth= 3.57"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 10 Year, 24 Hour Storm Rainfall=5.00"

_	A	rea (sf)	CN E	Description						
		5,415	98 F	8 Paved parking, HSG C						
_		8,095	79 5	0-75% Gra	ass cover, F	Fair, HSG C				
		13,510	87 V	Veighted A	verage					
		8,095	5	9.92% Per	vious Area					
		5,415	4	0.08% Imp	pervious Ar	ea				
	_				a 1.	- · · ·				
	Tc	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	1.2	100	0.0200	1.44		Sheet Flow,				
						Smooth surfaces n= 0.011 P2= 3.50"				
	0.1	30	0.3800	9.92		Shallow Concentrated Flow, Pavement				
_						Unpaved Kv= 16.1 fps				
	1.3	130	Total							

Subcatchment Post 2E: Post 2E

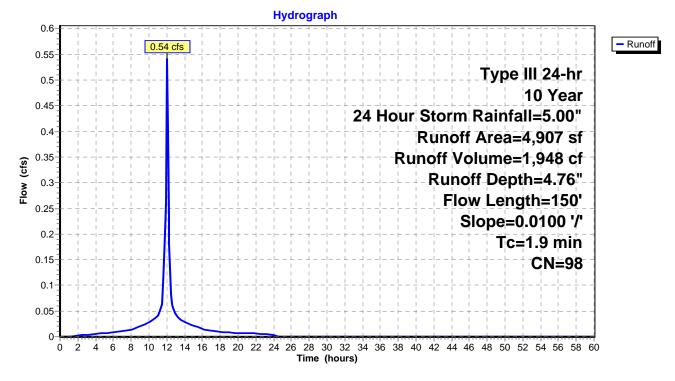

Summary for Subcatchment Post 1: DA 1

Runoff = 10.22 cfs @ 12.28 hrs, Volume= 47,234 cf, Depth= 2.28"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 10 Year, 24 Hour Storm Rainfall=5.00"

	A	rea (sf)	CN [Description		
	1	59,708	73 V	Voods, Fai	r, HSG C	
		1,496	89 (Gravel road	s, HSG C	
		87,345	74 >	-75% Gras	s cover, Go	bod, HSG C
	2	48,549	73 N	Veighted A	verage	
	2	48,549	1	00.00% Pe	ervious Are	a
	_					
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	14.8	250	0.0400	0.28		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.50"
	1.0	105	0.0667	1.81		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	3.0	250	0.0760	1.38		Shallow Concentrated Flow,
_						Woodland Kv= 5.0 fps
	18.8	605	Total			

Subcatchment Post 1: DA 1

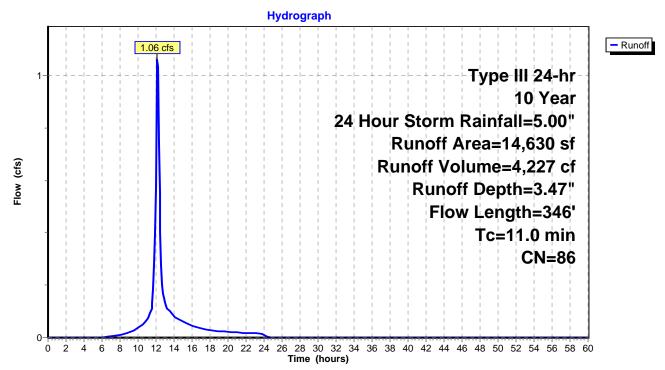

Summary for Subcatchment Post 2A: Post 2A

Runoff = 0.54 cfs @ 12.02 hrs, Volume= 1,948 cf, Depth= 4.76"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 10 Year, 24 Hour Storm Rainfall=5.00"

_	A	rea (sf)	CN [Description							
		4,907	98 F	98 Paved parking, HSG C							
		4,907	1	00.00% In	npervious A	rea					
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
-	1.5	100	0.0100	1.09		Sheet Flow, Pavement					
	0.4	50	0.0100	2.03		Smooth surfaces n= 0.011 P2= 3.50" Shallow Concentrated Flow, Pavement Paved Kv= 20.3 fps					
	1.9	150	Total								

Subcatchment Post 2A: Post 2A


Summary for Subcatchment Post 2B: Post 2B

Runoff = 1.06 cfs @ 12.16 hrs, Volume= 4,227 cf, Depth= 3.47"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 10 Year, 24 Hour Storm Rainfall=5.00"

Area	(sf) CN	Descriptio	n				
6,1	22 98	98 Paved parking					
6,1	54 74	>75% Gra	ass cover, Go	bod, HSG C			
2,3	54 89	Gravel ro	ads, HSG C				
14,6	30 86	Weighted	Average				
8,5	808	58.15% F	ervious Area	a de la constante de			
6,1	22	41.85% lı	npervious Ar	ea			
	•	ope Velocit		Description			
<u>(min)</u> (f	eet) (f	t/ft) (ft/sec) (cfs)				
10.3	100 0.04	100 0.1	6	Sheet Flow, Landscaped area			
				Grass: Dense n= 0.240 P2= 3.50"			
0.7	246 0.01	00 5.9	0 4.63				
				12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'			
				n= 0.010 PVC, smooth interior			
11.0	346 Tota	al					

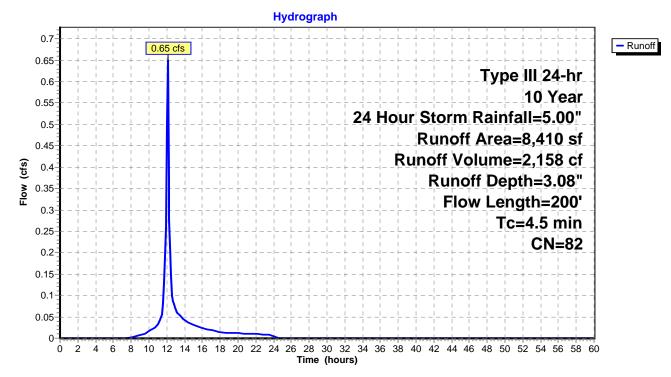
Subcatchment Post 2B: Post 2B

Summary for Subcatchment Post 2C: Post 2C

Runoff = 5.27 cfs @ 12.00 hrs, Volume= 17,820 cf, Depth= 4.76"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 10 Year, 24 Hour Storm Rainfall=5.00"

Α	rea (sf)		Description		<u></u>			
44,895 98 Paved parking, HSG C 44,895 100.00% Impervious Area								
	44,895	1	00.00% In	ipervious A	Irea			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
0.5	100	0.1350	3.09		Sheet Flow, Smooth surfaces n= 0.011 P2= 3.50"			
			Su	bcatchme	ent Post 2C: Post 2C			
_				Hydrog	graph			
Flow (cfs)		5.27 ct	Image: state		Type III 24-hr 10 Year 24 Hour Storm Rainfall=5.00" Runoff Area=44,895 sf Runoff Volume=17,820 cf Runoff Depth=4.76" Flow Length=100'			
2-	$ \frac{1}{1} \frac{1}{1} \frac{1}{1}$		$-\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}$		Slope=0.1350 '/'			
- - - 1					Tc=0.5 min CN=98			
' - - - - 0								
0	2 4 6	8 10 12	14 16 18 20		8 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 ne (hours)			

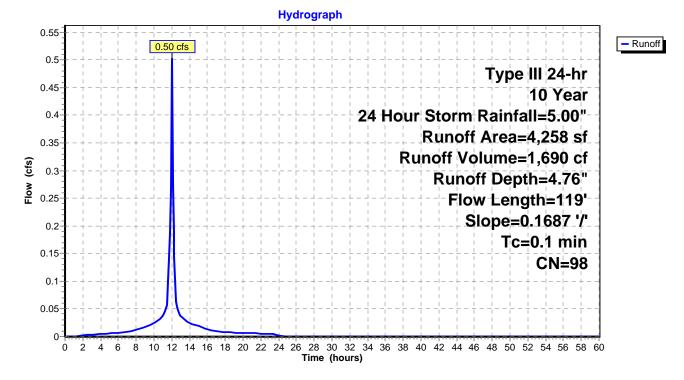

Summary for Subcatchment Post 2D: Post 2D

Runoff = 0.65 cfs @ 12.08 hrs, Volume= 2,158 cf, Depth= 3.08"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 10 Year, 24 Hour Storm Rainfall=5.00"

_	A	rea (sf)	CN	Description						
		6,293	79	79 50-75% Grass cover, Fair, HSG C						
_		2,117	89	Gravel road	ls, HSG C					
		8,410	82	82 Weighted Average						
		8,410		100.00% Pe	ervious Are	a				
	Тс	Length	Slope		Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	4.1	50	0.1000	0.20		Sheet Flow, Landscaped				
						Grass: Dense n= 0.240 P2= 3.50"				
	0.4	150	0.0860	5.95		Shallow Concentrated Flow, Maintenance Drive				
_						Paved Kv= 20.3 fps				
	4.5	200	Total							

Subcatchment Post 2D: Post 2D

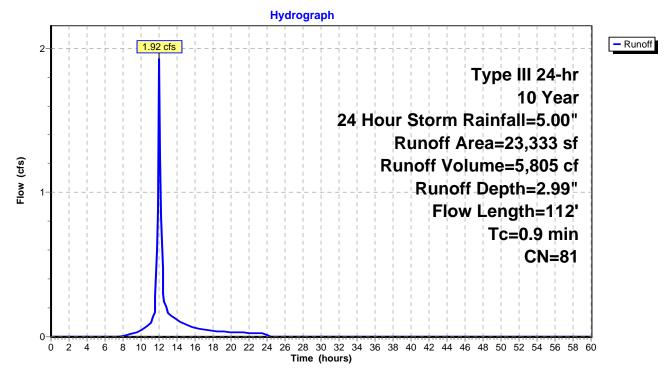

Summary for Subcatchment Post 2F: Post 2F

Runoff = 0.50 cfs @ 12.00 hrs, Volume= 1,690 cf, Depth= 4.76"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 10 Year, 24 Hour Storm Rainfall=5.00"

	A	rea (sf)	CN	Description		
		4,258	98	Roofs, HSC	G C	
		4,258		100.00% In	npervious A	vrea
	Tc in)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	Description
(D.1	119	0.168	7 14.22	4.96	Pipe Channel, Roof Leader 8.0" Round Area= 0.3 sf Perim= 2.1' r= 0.17' n= 0.013 Corrugated PE, smooth interior

Subcatchment Post 2F: Post 2F

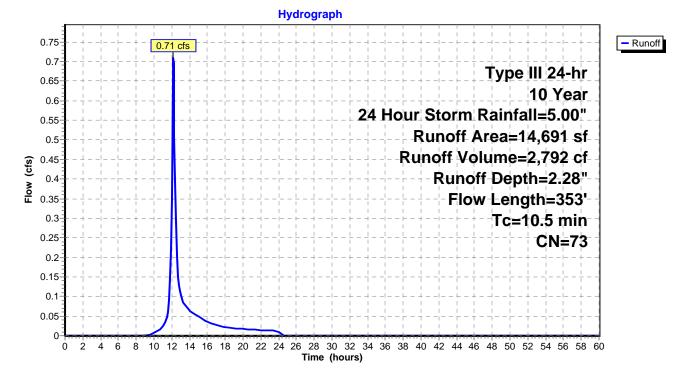

Summary for Subcatchment Post 2G: Post 2G

Runoff = 1.92 cfs @ 12.01 hrs, Volume= 5,805 cf, Depth= 2.99"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 10 Year, 24 Hour Storm Rainfall=5.00"

	A	rea (sf)	CN E	Description		
		1,113	98 F	aved park	ing, HSG C	
		20,037	79 5	0-75% Gra	ass cover, F	Fair, HSG C
		2,183	89 C	Gravel road	ls, HSG C	
		23,333	81 V	Veighted A	verage	
		22,220	g	5.23% Per	vious Area	
		1,113	4	.77% Impe	ervious Area	a
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	0.9	80	0.0250	1.50		Sheet Flow, Pavement
						Smooth surfaces n= 0.011 P2= 3.50"
	0.0	32	0.4600	10.92		Shallow Concentrated Flow, Landscaped
_						Unpaved Kv= 16.1 fps
	0.9	112	Total			

Subcatchment Post 2G: Post 2G

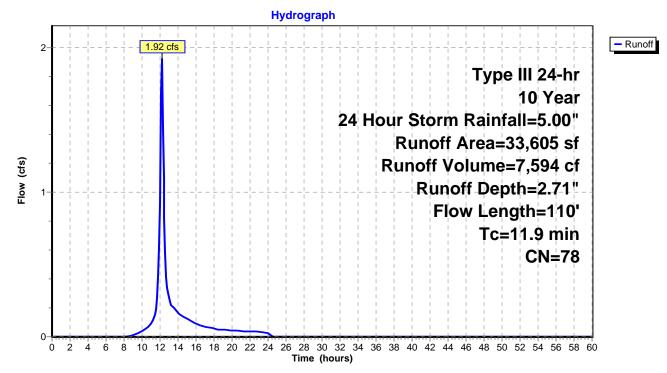

Summary for Subcatchment Post 2H: Post 2H

Runoff = 0.71 cfs @ 12.16 hrs, Volume= 2,792 cf, Depth= 2.28"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 10 Year, 24 Hour Storm Rainfall=5.00"

	A	rea (sf)	CN E	Description		
14,691 73 Woods, Fair, HSG C						
	14,691 100.00% Pervious Area					a
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	8.8	100	0.0600	0.19		Sheet Flow, Landscaped
						Grass: Dense n= 0.240 P2= 3.50"
	1.7	253	0.0260	2.42		Shallow Concentrated Flow, Grassed waterway
						Grassed Waterway Kv= 15.0 fps
	10.5	353	Total			

Subcatchment Post 2H: Post 2H


Summary for Subcatchment Post 3A: Post 3A

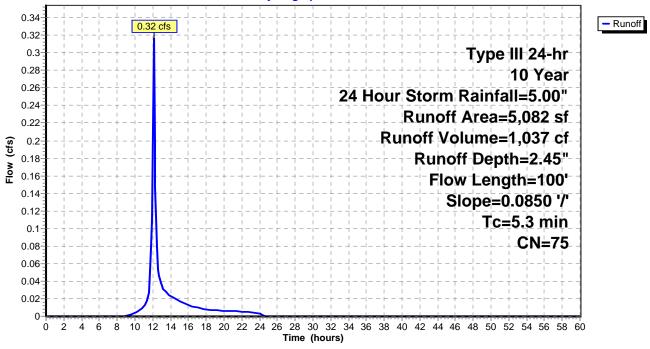
Runoff = 1.92 cfs @ 12.18 hrs, Volume= 7,594 cf, Depth= 2.71"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 10 Year, 24 Hour Storm Rainfall=5.00"

A	rea (sf)	CN E	Description		
	3,842	98 F	aved park	ing, HSG C)
	20,173	73 V	Voods, Fai	r, HSG C	
	9,590	79 5	0-75% Gra	ass cover, I	Fair, HSG C
	33,605	78 V	Veighted A	verage	
	29,763	8	8.57% Per	vious Area	
	3,842	1	1.43% Imp	ervious Ar	ea
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
4.4	67	0.0600	0.25		Sheet Flow, Landscaped
					Grass: Short n= 0.150 P2= 3.50"
7.5	43	0.0460	0.10		Sheet Flow, Wooded
					Woods: Light underbrush n= 0.400 P2= 3.50"
11.9	110	Total			

Subcatchment Post 3A: Post 3A

Summary for Subcatchment Post 3B: Post 3B


Runoff = 0.32 cfs @ 12.10 hrs, Volume= 1,037 cf, Depth= 2.45"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 10 Year, 24 Hour Storm Rainfall=5.00"

A	rea (sf)	CN	Description						
	3,044	73	Woods, Fai	r, HSG C					
	2,038	79	50-75% Gra	ass cover, I	Fair, HSG C				
	5,082	75	Weighted A	verage					
	5,082		100.00% Pervious Area						
Тс	Length	Slope		Capacity	Description				
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)					
5.3	100	0.0850	0.32		Sheet Flow,				
					Grass: Short	n= 0.150	P2= 3.50"		

Subcatchment Post 3B: Post 3B

Hydrograph

Summary for Reach DP1: Design Point 1

Inflow Are	a =	248,549 sf,	0.00% Impervious,	Inflow Depth = 2.28"	for 10 Year, 24 Hour Storm event
Inflow	=	10.22 cfs @	12.28 hrs, Volume=	47,234 cf	
Outflow	=	10.22 cfs @	12.28 hrs, Volume=	47,234 cf, Atter	n= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs / 3

Hydrograph 11 Inflow Outflow 10.22 cfs 10-Inflow Area=248,549 sf 9-8 7. (cfs) 6 Flow 5 4 3-2-1 0-8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 Time (hours) 2 4 6 Ó

Reach DP1: Design Point 1

Summary for Reach DP2: Design Point 2

Inflow Are	a =	128,634 sf, 51.86% Impervious, Inflow Dep	(h > 3.60"	for 10 Year, 24 Hour Storm event
Inflow	=	2.68 cfs @ 12.52 hrs, Volume= 38,6	641 cf	
Outflow	=	2.68 cfs @ 12.52 hrs, Volume= 38,6	341 cf, Atter	n= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs / 3

Reach DP2: Design Point 2

Summary for Reach DP3: Design Point 3

Inflow Are	a =	38,687 sf, 9.93% Imperviou	s, Inflow Depth = 2.68 "	for 10 Year, 24 Hour Storm event
Inflow	=	2.14 cfs @ 12.17 hrs, Volume	= 8,631 cf	
Outflow	=	2.14 cfs @ 12.17 hrs, Volume	= 8,631 cf, Atter	n= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs / 3

Hydrograph Inflow Outflow 2.14 cfs Inflow Area=38,687 sf 2 Flow (cfs) 0 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 Time (hours) 2 4 6 ò

Reach DP3: Design Point 3

Summary for Pond F-1: Sand Filter

Inflow Area =	86,352 sf, 71.03% Impervious,	Inflow Depth > 3.93" for 10 Year, 24 Hour Storm event
Inflow =	5.67 cfs @ 12.10 hrs, Volume=	28,314 cf
Outflow =	2.92 cfs @ 12.42 hrs, Volume=	28,186 cf, Atten= 48%, Lag= 19.2 min
Primary =	2.92 cfs @ 12.42 hrs, Volume=	28,186 cf

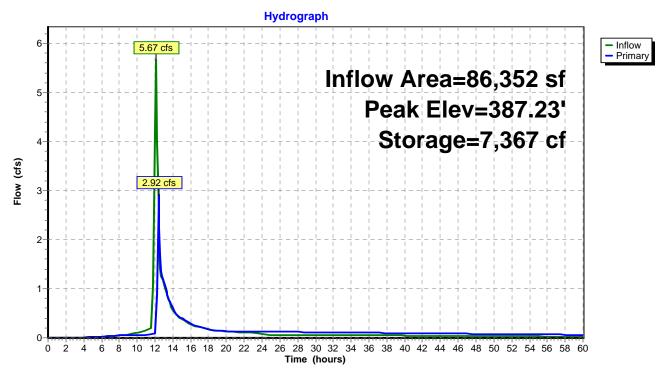
Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs / 3 Peak Elev= 387.23' @ 12.42 hrs Surf.Area= 3,266 sf Storage= 7,367 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 389.5 min (1,515.0 - 1,125.6)

Volume	Inve	ert Avail.Sto	rage Storage	Description	
#1	384.0	0' 10,07	72 cf Custom	n Stage Data (P	rismatic)Listed below (Recalc)
Elevatio	on .	Surf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
384.0	00	1,386	0	0	
385.0	00	1,903	1,645	1,645	
386.0	00	2,483	2,193	3,838	
387.0	00	3,135	2,809	6,647	
388.0	00	3,716	3,426	10,072	
Device	Routing	Invert	Outlet Device	S	
#1	Primary	381.50'	10.0" Round	l Culvert	
#2 #3	Device 1 Device 1	384.00' 387.00'	Inlet / Outlet I n= 0.013 Cor 1.750 in/hr S 24.0" x 24.0"	nvert= 381.50' / rrugated PE, sm and Filter Bed	b headwall, Ke= 0.900 377.00' S= 0.1184 '/' Cc= 0.900 booth interior, Flow Area= 0.55 sf over Surface area w Grate C= 0.600 ads

Primary OutFlow Max=2.78 cfs @ 12.42 hrs HW=387.22' TW=379.02' (Dynamic Tailwater)

1=Culvert (Passes 2.78 cfs of 4.77 cfs potential flow)


2=Sand Filter Bed (Exfiltration Controls 0.13 cfs)

-3=Overflow Grate (Weir Controls 2.65 cfs @ 1.52 fps)

Park Place - DEV

Prepared by AKRF, Inc. HydroCAD® 10.00-12 s/n 04852 © 2014 HydroCAD Software Solutions LLC

Pond F-1: Sand Filter

Park Place - DEV Prepared by AKRF, Inc.

386.60

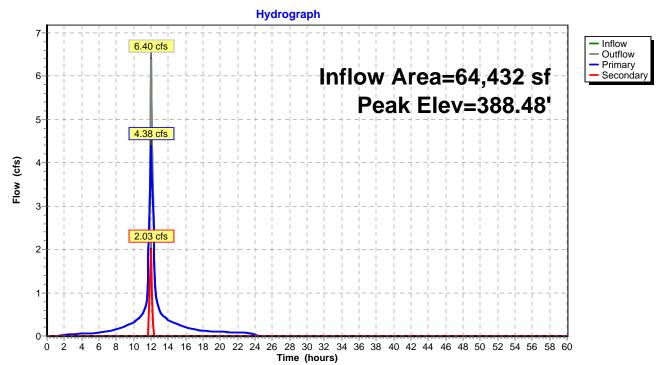
2,874

5,445

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
384.00	1,386	0	386.65	2,907	5,589
384.05	1,412	70	386.70	2,939	5,735
384.10	1,438	141	386.75	2,972	5,883
384.15	1,464	214	386.80	3,005	6,033
384.20	1,489	288	386.85	3,037	6,184
384.25	1,515	363	386.90	3,070	6,336
384.30	1,541	439	386.95	3,102	6,491
384.35	1,567	517	387.00	3,135	6,647
384.40	1,593	596	387.05	3,164	6,804
384.45	1,619	676	387.10	3,193	6,963
384.50	1,645	758	387.15	3,222	7,123
		840			
384.55	1,670		387.20	3,251	7,285
384.60	1,696	925	387.25	3,280	7,448
384.65	1,722	1,010	387.30	3,309	7,613
384.70	1,748	1,097	387.35	3,338	7,779
384.75	1,774	1,185	387.40	3,367	7,947
384.80	1,800	1,274	387.45	3,396	8,116
384.85	1,825	1,365	387.50	3,426	8,287
384.90	1,851	1,457	387.55	3,455	8,459
384.95	1,877	1,550	387.60	3,484	8,632
385.00	1,903	1,645	387.65	3,513	8,807
385.05	1,932	1,740	387.70	3,542	8,983
385.10	1,961	1,838	387.75	3,571	9,161
385.15	1,990	1,936	387.80	3,600	9,340
385.20	2,019	2,037	387.85	3,629	9,521
385.25	2,048	2,138	387.90	3,658	9,703
385.30	2,077	2,242	387.95	3,687	9,887
385.35	2,106	2,346	388.00	3,716	10,072
385.40	2,135	2,452			
385.45	2,164	2,560			
385.50	2,193	2,669			
385.55	2,222	2,779			
385.60	2,251	2,891			
385.65	2,280	3,004			
385.70	2,309	3,119			
385.75	2,338	3,235			
385.80	2,367	3,353			
385.85	2,396	3,472			
385.90	2,425	3,592			
385.95	2,454	3,714			
386.00	2,483	3,838			
386.05	2,516	3,962			
386.10	2,548	4,089			
386.15	2,581	4,217			
386.20	2,613	4,347			
386.25	2,646	4,479			
386.30	2,679	4,612			
386.35	2,079	4,012			
386.40	2,744	4,883			
386.45	2,776	5,021			
386.50	2,809	5,161			
386.55	2,842	5,302			

Stage-Area-Storage for Pond F-1: Sand Filter

Summary for Pond FS: Flow Splitter


Inflow Area = 64,432 sf, 86.80% Impervious, Inflow Depth = 4.47" for 10 Year, 24 Hour Storm event Inflow 6.40 cfs @ 12.01 hrs. Volume= 23,995 cf = 6.40 cfs @ 12.01 hrs, Volume= Outflow 23,995 cf, Atten= 0%, Lag= 0.0 min = 4.38 cfs @ 12.01 hrs, Volume= Primary = 22,828 cf Secondary = 2.03 cfs @ 12.01 hrs, Volume= 1,167 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs / 3 Peak Elev= 388.48' @ 12.02 hrs Flood Elev= 392.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	386.00'	15.0" Round Culvert to Sed Basin L= 20.0' Ke= 0.900
			Inlet / Outlet Invert= 386.00' / 384.00' S= 0.1000 '/' Cc= 0.900
			n= 0.013, Flow Area= 1.23 sf
#2	Secondary	387.80'	24.0" Round Culvert L= 106.0' Ke= 0.900
			Inlet / Outlet Invert= 387.80' / 381.00' S= 0.0642 '/' Cc= 0.900
			n= 0.013, Flow Area= 3.14 sf

Primary OutFlow Max=4.33 cfs @ 12.01 hrs HW=388.45' TW=387.59' (Dynamic Tailwater)

Secondary OutFlow Max=1.82 cfs @ 12.01 hrs HW=388.43' TW=378.65' (Dynamic Tailwater) 2=Culvert (Inlet Controls 1.82 cfs @ 2.14 fps)

Pond FS: Flow Splitter

Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
386.00		388.12		390.24	
386.04	0 0	388.16	0 0	390.24	0
					0
386.08	0	388.20	0	390.32	0
386.12	0	388.24	0	390.36	0
386.16	0	388.28	0	390.40	0
386.20	0	388.32	0	390.44	0
386.24	0	388.36	0	390.48	0
386.28	0	388.40	0	390.52	0
386.32	0	388.44	0	390.56	0
386.36	0	388.48	0	390.60	0
386.40	0	388.52	0	390.64	0
386.44	0	388.56	0	390.68	0
386.48	0	388.60	0	390.72	0
386.52	0	388.64	0	390.76	0
386.56	0	388.68	0	390.80	0
386.60	0	388.72	0	390.84	0
386.64	0	388.76	0	390.88	0
386.68	0	388.80	0	390.92	0
386.72	0	388.84	0	390.96	0
386.76	0	388.88	0	391.00	0
386.80	0	388.92	0	391.04	0
386.84	0	388.96	0	391.08	0
386.88	0	389.00	0	391.12	0
386.92	0	389.04	0	391.16	0
386.96	0	389.08	0	391.20	0
387.00	0	389.12	0	391.24	0
387.04	0	389.16	0	391.28	0
387.08	0	389.20	0	391.32	0
387.12	0	389.24	0	391.36	0
387.16	0	389.28	0	391.40	0
387.20	0	389.32	0	391.44	0
387.24	0	389.36	0	391.48	0
387.28	0	389.40	0	391.52	0
387.32	0	389.44	0	391.56	0
387.36	0	389.48	0	391.60	0
387.40	0	389.52	0	391.64	0
387.44	0	389.56	0	391.68	0
387.48	0	389.60	0	391.72	0
387.52	0	389.64	0	391.76	0
387.56	0	389.68	0	391.80	0
387.60	0	389.72	0	391.84	0
387.64	0	389.76	0	391.88	0
387.68	0	389.80	0	391.92	0
387.72	0	389.84	0	391.96	0
387.76	0	389.88	0	392.00	0
387.80	0	389.92	0		
387.84	0	389.96	0		
387.88	0	390.00	0		
387.92	0	390.04	0		
387.96	0	390.08	0		
388.00	0	390.12	0		
388.04	0	390.16	0		
388.08	0	390.20	0		

Stage-Area-Storage for Pond FS: Flow Splitter

Summary for Pond SB: Sedimentation Basin

Inflow Area =	86,352 sf, 71.03% Impervious,	Inflow Depth = 4.03" for 10 Year, 24 Hour Storm event
Inflow =	6.19 cfs @ 12.01 hrs, Volume=	29,002 cf
Outflow =	5.67 cfs @ 12.10 hrs, Volume=	28,314 cf, Atten= 8%, Lag= 4.9 min
Primary =	5.67 cfs @ 12.10 hrs, Volume=	28,314 cf

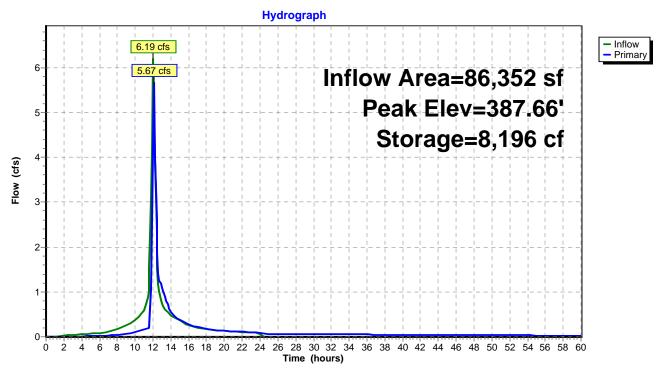
Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs / 3 Peak Elev= 387.66' @ 12.12 hrs Surf.Area= 3,322 sf Storage= 8,196 cf

Plug-Flow detention time= 374.1 min calculated for 28,314 cf (98% of inflow) Center-of-Mass det. time= 359.3 min (1,125.6 - 766.3)

Volume	Invert	Avail.Sto	rage Storage	Description	
#1	384.00'	9,3	61 cf Custom	n Stage Data (Pri	ismatic)Listed below (Recalc)
Elevatio (fee		urf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
	1			<u>`</u>	
384.0		1,219	0	0	
385.0		1,730	1,475	1,475	
386.0		2,313	2,022	3,496	
387.0		2,951	2,632	6,128	
388.0	00	3,514	3,233	9,361	
Device	Routing	Invert	Outlet Device	S	
#1	Primary	382.00'	10.0" Round	l Culvert	
			Inlet / Outlet I	nvert= 382.00' / 3	headwall, Ke= 0.900 377.00' S= 0.1316 '/' Cc= 0.900 ooth interior, Flow Area= 0.55 sf
#2	Device 1	384.00'	0.4" Vert. Standpipe Perforations X 4.00 columns X 12 rows with 3.0" cc spacing C= 0.600		
#3	Device 1	387.00'	12.0" Horiz. \$		Opening C= 0.600
#4	Primary	387.50'		verflow Spillway	2 End Contraction(s)

Primary OutFlow Max=5.61 cfs @ 12.10 hrs HW=387.66' TW=386.21' (Dynamic Tailwater)

-1=Culvert (Inlet Controls 2.50 cfs @ 4.58 fps)


2=Standpipe Perforations (Passes < 0.24 cfs potential flow)

3=Standpipe Riser Opening (Passes < 3.06 cfs potential flow)

-4=Overflow Spillway (Weir Controls 3.11 cfs @ 1.34 fps)

Prepared by AKRF, Inc. HydroCAD® 10.00-12 s/n 04852 © 2014 HydroCAD Software Solutions LLC

ElevationSurfaceStorage $(feet)$ (sq-ft)(cubic-feet)384.001.2190386.652.7285.134384.101.270124386.702.7605.271384.121.321254386.802.8235.551384.251.347321386.902.8875.836384.301.372389386.902.9516.128384.451.449600387.103.0076.426384.451.449600387.103.0076.426384.451.449600387.303.1207.039384.551.5007.48387.253.0926.883384.651.551900387.303.1207.039384.701.577978387.353.1487.195384.851.6621.139387.453.2047.613384.851.6531.221387.503.2337.674384.851.6531.221387.553.2617.836384.851.6531.221387.553.2617.836384.851.6531.221387.553.2617.836384.851.6531.221387.653.3378.600385.051.7591.562387.753.3338.600385.051.7591.562387.903.4589.001385.552.0512.020387.953.4669.861385.652.1672	-	<i>. . .</i>			<i>. .</i>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
384.10 1.270 124 386.75 2.792 5.410 384.15 1.321 254 386.80 2.823 5.551 384.20 1.321 254 386.80 2.887 5.836 384.30 1.372 389 386.95 2.919 5.981 384.35 1.338 458 387.00 2.951 6.128 384.45 1.449 600 387.10 3.007 6.426 384.45 1.449 600 387.10 3.007 6.426 384.50 1.475 673 387.15 3.035 6.677 384.55 1.500 748 387.25 3.092 6.883 384.60 1.526 823 387.25 3.092 6.883 384.60 1.577 978 387.35 3.148 7.195 384.75 1.602 1.058 387.40 3.176 7.553 384.85 1.653 1.221 387.55 3.204 7.513 384.95 1.704 1.389 387.65 3.233 7.674 384.95 1.779 1.562 387.75 3.373 8.500 385.10 1.788 1.660 387.75 3.373 8.500 385.50 1.995 2.268 387.90 3.458 9.012 385.51 1.817 1.741 387.80 3.401 8.69 385.50 2.020 2.722 387.90 3.458 9.012 385.50 2						
384.15 1,296 189 386.80 2.823 5,551 384.20 1,321 254 386.85 2.885 5,693 384.25 1,347 321 386.90 2,887 5,836 384.30 1,372 389 386.95 2,919 5,981 384.45 1,449 600 387.10 3,007 6,426 384.50 1,475 673 387.15 3,007 6,426 384.50 1,475 673 387.15 3,002 6,883 384.65 1,551 900 387.30 3,120 7,039 384.65 1,652 1,053 387.40 3,176 7,353 384.75 1,602 1,058 387.40 3,176 7,353 384.85 1,653 1,221 387.50 3,233 7,674 384.90 1,679 1,304 387.55 3,261 7.836 384.90 1,679 1,304 387.55 3,233 7,674 384.90 1,679 1,304 387.55 3,261 7.836						
384.20 1.321 254 386.85 2.887 5.836 384.25 1.347 321 386.95 2.919 5.981 384.30 1.372 389 386.95 2.919 5.981 384.40 1.423 528 387.00 2.951 6.128 384.40 1.423 528 387.05 2.979 6.276 384.45 1.4475 673 387.15 3.035 6.577 384.55 1.500 748 387.25 3.064 6.729 384.60 1.526 823 387.25 3.064 6.729 384.70 1.577 978 387.35 3.148 7.195 384.70 1.577 978 387.35 3.148 7.195 384.70 1.679 1.304 387.55 3.204 7.513 384.85 1.653 1.221 387.60 3.239 7.674 384.95 1.704 1.389 387.60 3.289 8.000 385.00 1.739 1.475 387.55 3.261 7.86 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
384.25 1,347 321 386.90 2.887 5.836 384.30 1,372 389 386.95 2.919 5.981 384.40 1,423 528 387.00 2.951 6.128 384.40 1,423 528 387.05 2.979 6.276 384.45 1,449 600 387.10 3.007 6.426 384.50 1,475 673 387.15 3.0035 6.577 384.65 1,551 900 387.30 3.120 7.039 384.75 1,602 1,058 387.40 3.176 7.353 384.80 1,628 1,139 387.45 3.204 7.513 384.80 1,653 1.221 387.50 3.233 7.674 384.80 1,679 1,304 387.55 3.261 7.836 384.90 1,679 1,304 387.55 3.261 7.836 384.90 1,679 1,304 387.75 3.345 8.332 385.05 1,759 1,562 387.70 3.345 8.332						
384.30 1.372 389 386.95 2.919 5.981 384.40 1.423 528 387.05 2.979 6.276 384.40 1.423 528 387.05 2.979 6.276 384.45 1.449 600 387.10 3.007 6.426 384.50 1.475 673 387.15 3.035 6.577 384.60 1.526 823 387.25 3.064 6.729 384.60 1.551 900 387.30 3.120 7.039 384.70 1.577 978 387.35 3.148 7.195 384.75 1.602 1.058 387.40 3.176 7.353 384.85 1.653 1.221 387.55 3.204 7.513 384.85 1.653 1.221 387.60 3.229 8.000 385.00 1.759 1.562 387.75 3.373 8.500 385.01 1.788 1.663 387.75 3.373 8.500 385.15 1.817 1.741 387.85 3.440 8.60						
384.35 1,398 458 387.00 2.951 6,128 384.40 1,423 528 387.05 2.979 6,276 384.45 1,449 600 387.10 3.007 6,426 384.50 1,475 673 387.15 3.035 6,577 384.55 1,500 748 387.20 3.064 6,729 384.60 1,526 823 387.30 3.120 7.039 384.75 1,602 1,058 387.40 3.176 7.353 384.75 1,602 1,058 387.40 3.176 7.353 384.85 1,653 1,221 387.50 3.233 7.674 384.90 1.679 1.304 387.65 3.261 7.836 384.95 1,704 1.389 387.60 3.289 8.000 385.05 1,759 1,562 387.70 3.345 8.332 385.10 1,788 1,663 37.75 3.373 8.500 385.25 1,877 1,741 387.85 3.430 8.840						
384.40 1.423 528 387.05 2.979 6.276 384.45 1.449 600 387.10 3.007 6.426 384.50 1.475 673 387.15 3.035 6.577 384.55 1.500 748 387.25 3.092 6.883 384.65 1.526 823 387.35 3.148 7.193 384.70 1.577 978 387.35 3.148 7.195 384.75 1.602 1.058 387.40 3.176 7.353 384.80 1.628 1.139 387.45 3.204 7.513 384.80 1.653 1.221 387.55 3.261 7.836 384.95 1.704 1.389 387.60 3.289 8.000 385.05 1.759 1.562 387.70 3.345 8.332 385.10 1.788 1.650 387.75 3.373 8.500 385.25 1.877 1.822 387.85 3.430 8.840 385.25 1.876 1.925 387.95 3.486 9.162 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
384.45 1,449 600 387.10 3,007 6,426 384.50 1,475 673 387.15 3,005 6,577 384.55 1,500 748 387.20 3,064 6,729 384.60 1,526 823 387.25 3,092 6,883 384.70 1,577 978 387.35 3,148 7,195 384.75 1,602 1,058 387.40 3,176 7,353 384.80 1,628 1,139 387.55 3,204 7,513 384.85 1,653 1,221 387.50 3,233 7,674 384.90 1,679 1,304 387.60 3,289 8,000 385.00 1,730 1,475 387.65 3,317 8,165 385.05 1,759 1,562 387.70 3,345 8,332 385.15 1,847 1,822 387.85 3,430 8,840 385.20 1,847 1,822 387.90 3,458 9,012 385.15 1,876 1,925 387.90 3,458 9,012 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
384.50 1.475 673 387.15 3.035 6.577 384.55 1.500 748 387.20 3.064 6.729 384.60 1.526 823 387.25 3.092 6.883 384.65 1.551 900 387.30 3.120 7.039 384.75 1.602 1.058 387.40 3.176 7.353 384.80 1.628 1.139 387.45 3.204 7.513 384.85 1.653 1.221 387.55 3.261 7.674 384.90 1.679 1.304 387.55 3.261 7.836 384.95 1.704 1.389 387.60 3.289 8.000 385.05 1.759 1.562 387.70 3.345 8.332 385.10 1.788 1.650 387.75 3.373 8.500 385.20 1.847 1.832 387.85 3.401 8.649 385.31 1.934 2.116 388.00 3.514 9.186 385.45 1.932 2.312 387.95 3.486 9.186						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
384.65 1,551 900 387.30 3,120 7,039 384.70 1,577 978 387.35 3,148 7,195 384.75 1,602 1,058 387.40 3,176 7,353 384.80 1,628 1,139 387.45 3,204 7,513 384.85 1,653 1,221 387.55 3,261 7,836 384.90 1,679 1,304 387.55 3,261 7,836 384.95 1,704 1,389 387.60 3,289 8,000 385.00 1,759 1,562 387.70 3,345 8,332 385.10 1,788 1,650 387.75 3,373 8,500 385.20 1,847 1,832 387.85 3,430 8,840 385.25 1,876 1,925 387.95 3,486 9,112 385.30 1,905 2,020 387.95 3,486 9,186 385.45 1,992 2,213 385.65 2,051 2,						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
384.80 1,628 1,139 387.45 3,204 7,513 384.85 1,653 1,221 387.55 3,233 7,674 384.90 1,679 1,304 387.55 3,261 7,836 384.95 1,704 1,389 387.60 3,289 8,000 385.00 1,730 1,475 387.65 3,317 8,165 385.05 1,759 1,662 387.70 3,345 8,332 385.10 1,784 1,650 387.75 3,373 8,500 385.15 1,817 1,741 387.80 3,401 8,669 385.20 1,847 1,832 387.95 3,430 8,840 385.35 1,934 2,116 387.95 3,486 9,122 385.40 1,963 2,213 387.95 3,486 9,361 385.45 1,932 2,312 385.65 2,022 2,412 385.55 2,051 2,514 385.65 2,109 2,722 385.75 2,167 2,936 385.85 2,226 3,156 <						
384.85 1,653 1,221 387.50 3,233 7,674 384.90 1,679 1,304 387.55 3,261 7,836 384.95 1,704 1,389 387.60 3,289 8,000 385.00 1,730 1,475 387.65 3,317 8,165 385.00 1,759 1,562 387.70 3,345 8,332 385.10 1,788 1,660 387.75 3,373 8,500 385.20 1,847 1,832 387.85 3,430 8,840 385.25 1,876 1,925 387.90 3,458 9,012 385.30 1,905 2,020 387.95 3,486 9,186 385.35 1,934 2,116 388.00 3,514 9,361 385.50 2,022 2,412 385.55 2,051 2,514 385.60 2,109 2,722 385.70 2,138 2,828 385.75 2,167 2,936 385.85 2,226 3,156 385.85 2,284 3,381 386.00 2,313						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1.304			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.704				
385.05 1,759 1,562 387.70 3,345 8,332 385.10 1,788 1,650 387.75 3,373 8,500 385.15 1,817 1,741 387.80 3,401 8,669 385.20 1,847 1,832 387.85 3,430 8,840 385.25 1,876 1,925 387.90 3,458 9,012 385.30 1,905 2,020 387.95 3,486 9,186 385.45 1,934 2,116 388.00 3,514 9,361 385.45 1,992 2,312 385.65 2,022 2,412 385.65 2,109 2,722 385.70 2,138 2,828 385.75 2,167 2,936 3,456 3,456 3,456 385.80 2,196 3,045 3,458 3,457 3,457 385.85 2,226 3,156 3,458 3,457 3,458 386.10 2,377 3,730 3,612 3,456 3,612 386.10 2,504 4,219 3,86,30 2,504						
385.10 1,788 1,650 387.75 3,373 8,500 385.15 1,817 1,741 387.80 3,401 8,669 385.20 1,847 1,832 387.85 3,430 8,840 385.25 1,876 1,925 387.90 3,458 9,012 385.30 1,905 2,020 387.95 3,486 9,186 385.35 1,934 2,116 388.00 3,514 9,361 385.45 1,992 2,312 385.50 2,022 2,412 385.55 2,051 2,514 385.60 2,080 2,617 385.66 2,109 2,722 385.75 2,167 2,936 385.75 2,167 2,936 3,848 385.95 2,284 3,381 386.00 2,313 3,496 386.05 2,345 3,612 386.15 2,409 3,850 386.15 2,409 3,850 386.20 2,441 3,971 386.35 2,536 4,345 386.40 2,568 4,472 386.45						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
385.20 1,847 1,832 387.85 3,430 8,840 385.25 1,876 1,925 387.90 3,458 9,012 385.30 1,905 2,020 387.95 3,486 9,186 385.35 1,934 2,116 388.00 3,514 9,361 385.40 1,963 2,213 385.55 2,022 2,412 385.45 1,992 2,312 385.55 2,051 2,514 385.65 2,009 2,617 385.65 2,109 2,722 385.70 2,138 2,828 385.75 2,167 2,936 385.85 2,226 3,156 385.90 2,255 3,268 385.95 2,284 3,381 386.00 2,313 3,496 386.00 2,313 3,496 386.15 2,409 3,850 386.15 2,409 3,850 386.20 2,441 3,971 386.25 2,473 4,094 386.35 2,536 4,345 386.45 2,600 4,601 386.45 2,600 <						
385.25 1,876 1,925 387.90 3,458 9,012 385.30 1,905 2,020 387.95 3,486 9,186 385.35 1,934 2,116 388.00 3,514 9,361 385.40 1,963 2,213 385.45 1,992 2,312 385.45 1,992 2,412 385.50 2,022 2,412 385.50 2,022 2,412 385.60 2,080 2,617 385.60 2,080 2,617 385.75 2,167 2,936 385.75 2,167 2,936 3,045 385.80 2,196 3,045 385.80 2,196 3,045 385.85 2,226 3,156 385.90 2,255 3,268 385.95 2,284 3,381 386.00 2,313 3,496 386.10 2,377 3,730 386.15 2,409 3,850 386.15 2,409 3,850 386.20 2,441 3,971 386.25 2,473 4,094 386.35 2,536 4,345 386.40 <						
385.35 1,934 2,116 388.00 3,514 9,361 385.40 1,963 2,213 385.45 1,992 2,312 385.50 2,022 2,412						
385.35 1,934 2,116 388.00 3,514 9,361 385.40 1,963 2,213 385.45 1,992 2,312 385.50 2,022 2,412						
385.45 1,992 2,312 385.50 2,022 2,412 385.55 2,051 2,514 385.60 2,080 2,617 385.65 2,109 2,722 385.70 2,138 2,828 385.75 2,167 2,936 385.80 2,196 3,045 385.85 2,226 3,156 385.90 2,255 3,268 385.95 2,844 3,381 386.00 2,313 3,496 386.10 2,377 3,730 386.15 2,409 3,850 386.20 2,441 3,971 386.30 2,504 4,219 386.35 2,536 4,345 386.40 2,568 4,472 386.45 2,600 4,601 386.50 2,632 4,732	385.35	1,934	2,116	388.00	3,514	9,361
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	385.40	1,963	2,213			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
386.15 2,409 3,850 386.20 2,441 3,971 386.25 2,473 4,094 386.30 2,504 4,219 386.35 2,536 4,345 386.40 2,568 4,472 386.45 2,600 4,601 386.50 2,632 4,732						
386.20 2,441 3,971 386.25 2,473 4,094 386.30 2,504 4,219 386.35 2,536 4,345 386.40 2,568 4,472 386.45 2,600 4,601 386.50 2,632 4,732						
386.25 2,473 4,094 386.30 2,504 4,219 386.35 2,536 4,345 386.40 2,568 4,472 386.45 2,600 4,601 386.50 2,632 4,732						
386.30 2,504 4,219 386.35 2,536 4,345 386.40 2,568 4,472 386.45 2,600 4,601 386.50 2,632 4,732						
386.35 2,536 4,345 386.40 2,568 4,472 386.45 2,600 4,601 386.50 2,632 4,732						
386.40 2,568 4,472 386.45 2,600 4,601 386.50 2,632 4,732						
386.45 2,600 4,601 386.50 2,632 4,732						
386.50 2,632 4,732						

2,696

4,999

386.60

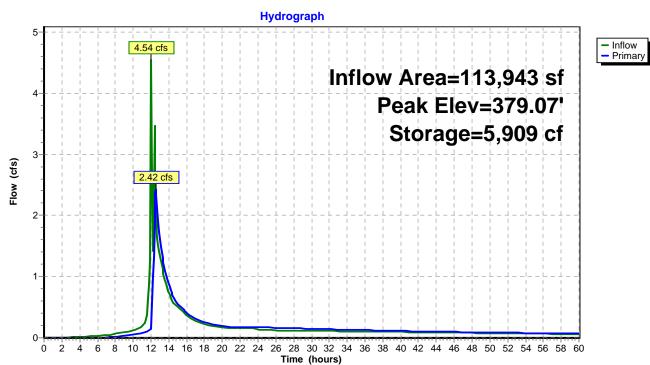
Stage-Area-Storage for Pond SB: Sedimentation Basin

Summary for Pond W-4: W-4 Pocket Wetland

Inflow Area =	113,943 sf, 58.55% Impervious,	Inflow Depth > 3.88" for 10 Year, 24 Hour Storm event
Inflow =	4.54 cfs @ 12.01 hrs, Volume=	36,848 cf
Outflow =	2.42 cfs @ 12.54 hrs, Volume=	35,849 cf, Atten= 47%, Lag= 31.8 min
Primary =	2.42 cfs @ 12.54 hrs, Volume=	35,849 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs / 3 Peak Elev= 379.07' @ 12.54 hrs Surf.Area= 6,186 sf Storage= 5,909 cf

Plug-Flow detention time= 196.3 min calculated for 35,849 cf (97% of inflow) Center-of-Mass det. time= 137.3 min (1,481.5 - 1,344.1)


Volume	Invert	nvert Avail.Sto		age Storage Description				
#1	#1 378.00' 20,80)8 cf	8 cf Custom Stage Data (Prismatic)Listed below (Recalc)				
		rf.Area (sq-ft)	Inc.Store (cubic-feet)		Cum.Store (cubic-feet)			
378.0		4,855		0	0			
379.0	00	6,074		5,465	5,465			
380.0	00	7,618	6,846		12,311			
381.0	00	9,377	8,498		20,808			
Device			Outle	et Devices	6			
#1 Primary		373.00'	L= 4 Inlet	/ Outlet Ir	P, square edge l	neadwall, Ke= 0.500 372.60' S= 0.0100 '/' Cc= 0.900		
#2	Device 1	evice 1 378.00'		3.0" Vert. Low Flow Orifice C= 0.600				
#3	Device 1	evice 1 378.70'		36.0" W x 6.0" H Vert. High Flow Orifice (36Wx6H) C= 0.600				
. .								

Primary OutFlow Max=2.36 cfs @ 12.54 hrs HW=379.07' TW=0.00' (Dynamic Tailwater)

-1=Culvert (Passes 2.36 cfs of 8.88 cfs potential flow)

2=Low Flow Orifice (Orifice Controls 0.23 cfs @ 4.67 fps)

-3=High Flow Orifice (36Wx6H) (Orifice Controls 2.13 cfs @ 1.94 fps)

Pond W-4: W-4 Pocket Wetland

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	534 574 519 968 421 879 341
378.054,916244380.708,84918,0378.104,977492380.758,93718,5378.155,038742380.809,02518,5378.205,099995380.859,11319,4378.255,1601,252380.909,20119,6378.305,2211,511380.959,28920,3378.355,2821,774381.009,37720,4378.405,3432,040378.455,4042,308378.505,4652,580111	074 519 968 421 879 341
378.10 4,977 492 380.75 8,937 18,5 378.15 5,038 742 380.80 9,025 18,5 378.20 5,099 995 380.85 9,113 19,4 378.25 5,160 1,252 380.90 9,201 19,6 378.30 5,221 1,511 380.95 9,289 20,3 378.35 5,282 1,774 381.00 9,377 20,4 378.40 5,343 2,040 378.45 5,404 2,308 378.50 5,465 2,580	519 968 421 879 341
378.15 5,038 742 380.80 9,025 18,5 378.20 5,099 995 380.85 9,113 19,2 378.25 5,160 1,252 380.90 9,201 19,8 378.30 5,221 1,511 380.95 9,289 20,3 378.35 5,282 1,774 381.00 9,377 20,4 378.40 5,343 2,040 378.45 5,404 2,308 378.50 5,465 2,580	968 421 379 341
378.20 5,099 995 380.85 9,113 19,2 378.25 5,160 1,252 380.90 9,201 19,8 378.30 5,221 1,511 380.95 9,289 20,3 378.35 5,282 1,774 381.00 9,377 20,4 378.40 5,343 2,040 378.45 5,404 2,308 378.50 5,465 2,580	421 379 341
378.25 5,160 1,252 380.90 9,201 19,8 378.30 5,221 1,511 380.95 9,289 20,3 378.35 5,282 1,774 381.00 9,377 20,4 378.40 5,343 2,040 378.45 5,404 2,308 378.50 5,465 2,580	379 341
378.30 5,221 1,511 380.95 9,289 20,3 378.35 5,282 1,774 381.00 9,377 20,4 378.40 5,343 2,040 378.45 5,404 2,308 378.50 5,465 2,580 9,289 20,3	341
378.35 5,282 1,774 381.00 9,377 20,4 378.40 5,343 2,040 378.45 5,404 2,308 378.50 5,465 2,580 378.50	
378.40 5,343 2,040 378.45 5,404 2,308 378.50 5,465 2,580	808
378.45 5,404 2,308 378.50 5,465 2,580	
378.50 5,465 2,580	
378.55 5,525 2,855	
378.60 5,586 3,132	
378.65 5,647 3,413	
378.70 5,708 3,697	
378.75 5,769 3,984	
378.80 5,830 4,274	
378.85 5,891 4,567	
378.90 5,952 4,863	
378.95 6,013 5,162	
379.00 6,074 5,465	
379.05 6,151 5,770	
379.10 6,228 6,080	
379.15 6,306 6,393	
379.20 6,383 6,710	
379.25 6,460 7,031	
379.30 6,537 7,356	
379.35 6,614 7,685	
379.40 6,692 8,018	
379.45 6,769 8,354	
379.50 6,846 8,695	
379.55 6,923 9,039	
379.60 7,000 9,387	
379.65 7,078 9,739	
379.70 7,155 10,095	
379.75 7,232 10,454	
379.80 7,309 10,818	
379.85 7,386 11,185	
379.90 7,464 11,556	
379.95 7,541 11,932	
380.00 7,618 12,311	
380.05 7,706 12,694 380.10 7,794 13,081	
380.15 7,882 13,473 380.20 7,970 13,869	
380.25 8,058 14,270	
380.25 6,056 14,270 380.30 8,146 14,675	
380.35 8,234 15,085	
380.40 8,322 15,498	
380.45 8,410 15,917	
380.50 8,498 16,339	
380.55 8,585 16,766	
380.60 8,673 17,198	

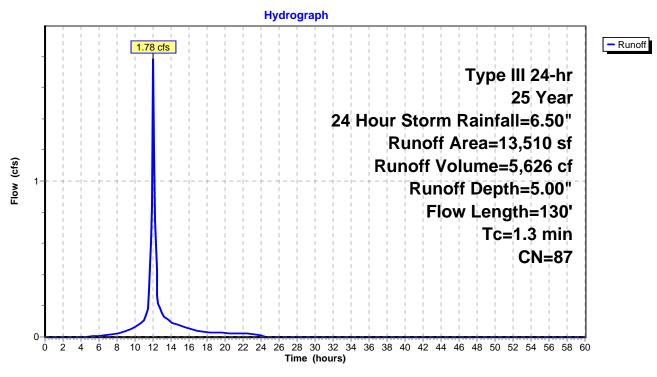
Stage-Area-Storage for Pond W-4: W-4 Pocket Wetland

Park Place - DEV	Type III 24-hr 25 Year, 24 Hour St	orm Rainfall=6.50"
Prepared by AKRF, Inc.		Printed 12/5/2014
HydroCAD® 10.00-12 s/n 04852 © 2014 I	HydroCAD Software Solutions LLC	Page 85

Time span=0.00-60.00 hrs, dt=0.10 hrs, 601 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPost 2E: Post 2E	Runoff Area=13,510 sf 40.08% Impervious Runoff Depth=5.00" Flow Length=130' Tc=1.3 min CN=87 Runoff=1.78 cfs 5,626 cf
Subcatchment Post 1: DA 1	Runoff Area=248,549 sf 0.00% Impervious Runoff Depth=3.51" ow Length=605' Tc=18.8 min CN=73 Runoff=15.83 cfs 72,657 cf
Subcatchment Post 2A: Post 2A Flow Length=150	Runoff Area=4,907 sf 100.00% Impervious Runoff Depth=6.26" D' Slope=0.0100 '/' Tc=1.9 min CN=98 Runoff=0.71 cfs 2,560 cf
Subcatchment Post 2B: Post 2B	Runoff Area=14,630 sf 41.85% Impervious Runoff Depth=4.89" Flow Length=346' Tc=11.0 min CN=86 Runoff=1.47 cfs 5,957 cf
Subcatchment Post 2C: Post 2C Flow Length=100'	Runoff Area=44,895 sf 100.00% Impervious Runoff Depth=6.26" Slope=0.1350 '/' Tc=0.5 min CN=98 Runoff=6.86 cfs 23,425 cf
Subcatchment Post 2D: Post 2D	Runoff Area=8,410 sf 0.00% Impervious Runoff Depth=4.45" Flow Length=200' Tc=4.5 min CN=82 Runoff=0.93 cfs 3,118 cf
Subcatchment Post 2F: Post 2F Flow Length=119	Runoff Area=4,258 sf 100.00% Impervious Runoff Depth=6.26" 9' Slope=0.1687 '/' Tc=0.1 min CN=98 Runoff=0.65 cfs 2,222 cf
Subcatchment Post 2G: Post 2G	Runoff Area=23,333 sf 4.77% Impervious Runoff Depth=4.34" Flow Length=112' Tc=0.9 min CN=81 Runoff=2.78 cfs 8,443 cf
Subcatchment Post 2H: Post 2H	Runoff Area=14,691 sf 0.00% Impervious Runoff Depth=3.51" Flow Length=353' Tc=10.5 min CN=73 Runoff=1.10 cfs 4,295 cf
Subcatchment Post 3A: Post 3A F	Runoff Area=33,605 sf 11.43% Impervious Runoff Depth=4.02" Flow Length=110' Tc=11.9 min CN=78 Runoff=2.84 cfs 11,269 cf
Subcatchment Post 3B: Post 3B Flow Length=100	Runoff Area=5,082 sf 0.00% Impervious Runoff Depth=3.71" D' Slope=0.0850 '/' Tc=5.3 min CN=75 Runoff=0.48 cfs 1,572 cf
Reach DP1: Design Point 1	Inflow=15.83 cfs 72,657 cf Outflow=15.83 cfs 72,657 cf
Reach DP2: Design Point 2	Inflow=6.24 cfs 53,689 cf Outflow=6.24 cfs 53,689 cf
Reach DP3: Design Point 3	Inflow=3.17 cfs 12,841 cf Outflow=3.17 cfs 12,841 cf
Pond F-1: Sand Filter	Peak Elev=387.43' Storage=8,036 cf Inflow=6.68 cfs 37,218 cf Outflow=4.92 cfs 37,007 cf
Pond FS: Flow Splitter Primary=4.73 cfs 2	Peak Elev=388.73' Inflow=8.41 cfs 31,943 cf 9,207 cf Secondary=3.68 cfs 2,736 cf Outflow=8.41 cfs 31,943 cf

Park Place - DEV Prepared by AKRF, Inc.		Printed 12/5/2014
HydroCAD® 10.00-12 s/n 04852 © 2014 Hy	Valocad Soliware Solutions LLC	Page 86
Pond SB: Sedimentation Basin	Peak Elev=387.72' Storage=8,390 cf Inflow	
	Outriow	=6.68 cfs 37,218 cf
Pond W-4: W-4 Pocket Wetland	Peak Elev=379.49' Storage=8,657 cf Inflow	
	Outflow	=5.56 cfs 49,394 cf
		unoff Depth = 4.07" ervious = 70,552 sf

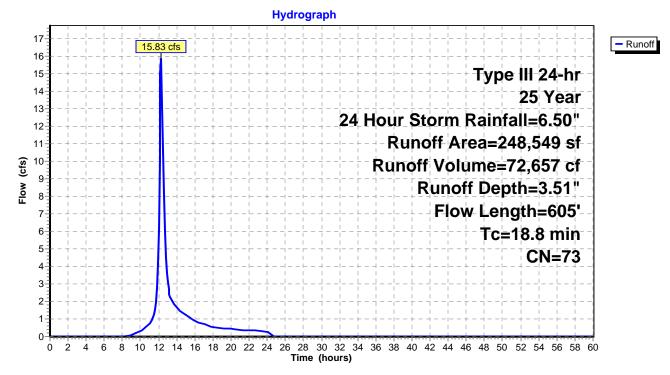

Summary for Subcatchment Post 2E: Post 2E

Runoff = 1.78 cfs @ 12.01 hrs, Volume= 5,626 cf, Depth= 5.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 25 Year, 24 Hour Storm Rainfall=6.50"

_	A	rea (sf)	CN [Description							
		5,415	98 F	8 Paved parking, HSG C							
_		8,095	79 5	50-75% Grass cover, Fair, HSG C							
		13,510	0 0								
		8,095	5	59.92% Per	vious Area						
		5,415	2	10.08% Imp	pervious Ar	ea					
	_		-								
	Tc	Length	Slope	Velocity	Capacity	Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	1.2	100	0.0200	1.44		Sheet Flow,					
						Smooth surfaces n= 0.011 P2= 3.50"					
	0.1	30	0.3800	9.92		Shallow Concentrated Flow, Pavement					
_						Unpaved Kv= 16.1 fps					
	1.3	130	Total								

Subcatchment Post 2E: Post 2E

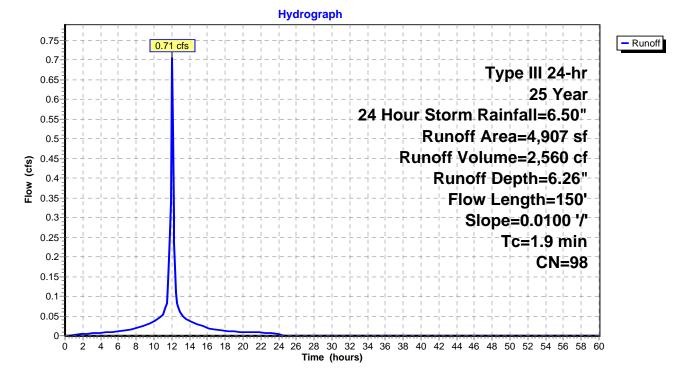

Summary for Subcatchment Post 1: DA 1

Runoff = 15.83 cfs @ 12.27 hrs, Volume= 72,657 cf, Depth= 3.51"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 25 Year, 24 Hour Storm Rainfall=6.50"

	A	rea (sf)	CN [Description						
	1	59,708	73 V	Woods, Fair, HSG C						
		1,496	89 (Gravel road	s, HSG C					
		87,345	74 >	-75% Gras	s cover, Go	bod, HSG C				
	2	48,549	73 N	Veighted A	verage					
	2	48,549	1	00.00% Pe	ervious Are	a				
	_									
	Tc	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	14.8	250	0.0400	0.28		Sheet Flow,				
						Grass: Short n= 0.150 P2= 3.50"				
	1.0	105	0.0667	1.81		Shallow Concentrated Flow,				
						Short Grass Pasture Kv= 7.0 fps				
	3.0	250	0.0760	1.38		Shallow Concentrated Flow,				
_						Woodland Kv= 5.0 fps				
	18.8	605	Total							

Subcatchment Post 1: DA 1


Summary for Subcatchment Post 2A: Post 2A

Runoff = 0.71 cfs @ 12.02 hrs, Volume= 2,560 cf, Depth= 6.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 25 Year, 24 Hour Storm Rainfall=6.50"

Α	rea (sf)	CN D	escription						
	4,907	98 F	98 Paved parking, HSG C						
	4,907	1	100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
1.5	100	0.0100	1.09		Sheet Flow, Pavement				
0.4	50	0.0100	2.03		Smooth surfaces n= 0.011 P2= 3.50" Shallow Concentrated Flow, Pavement Paved Kv= 20.3 fps				
1.9	150	Total							

Subcatchment Post 2A: Post 2A

Summary for Subcatchment Post 2B: Post 2B

Runoff = 1.47 cfs @ 12.16 hrs, Volume= 5,957 cf, Depth= 4.89"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 25 Year, 24 Hour Storm Rainfall=6.50"

Ar	ea (sf)	CN D	escription						
	6,122	98 P							
	6,154	74 >							
	2,354	<u>89</u> G	Gravel roads, HSG C						
14,630 86 Weighted Average									
	8,508	5	8.15% Per	vious Area					
	6,122	4	1.85% Imp	pervious Ar	ea				
_									
	Length	Slope	Velocity	Capacity	Description				
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)					
10.3	100	0.0400	0.16		Sheet Flow, Landscaped area				
					Grass: Dense n= 0.240 P2= 3.50"				
0.7	246	0.0100	5.90	4.63	Pipe Channel, Pipe				
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'				
					n= 0.010 PVC, smooth interior				
11.0	346	Total							

Subcatchment Post 2B: Post 2B

Summary for Subcatchment Post 2C: Post 2C

Runoff 6.86 cfs @ 12.00 hrs, Volume= 23,425 cf, Depth= 6.26" =

2

1

0-

Ó ż 4 6

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 25 Year, 24 Hour Storm Rainfall=6.50"

A	vrea (sf)	CN E	escription			
	44,895	98 F	aved park	ing, HSG C		
	44,895	1	00.00% In	npervious A	rea	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
0.5	100	0.1350	3.09		Sheet Flow, Smooth surfaces n= 0.011 P2= 3.50"	
			Su	bcatchme	ent Post 2C: Post 2C	
				Hydrog	araph	
1						
7-		6.86 c	is			- Runoff
-					Type III 24-hr	
6-			·	¦ ¦¦¦-	25 Year	
-					24 Hour Storm Rainfall=6.50"	
5-			· + + + 	+ - 	Runoff Area=44,895 sf	
cfs)					Runoff Volume=23,425 cf	
Flow (cfs)					Runoff Depth=6.26"	
⊑ <u>-</u> 3-				!!!!	Flow Length=100'	

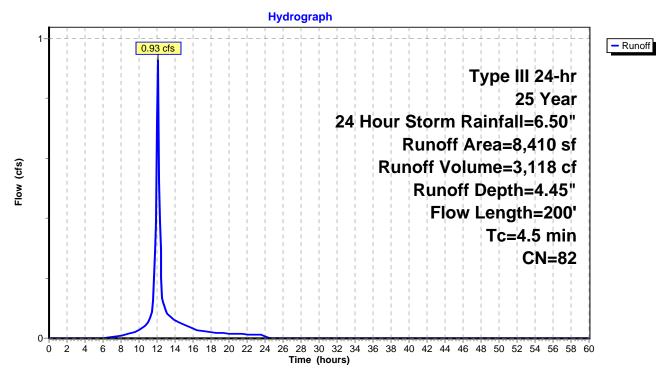
8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

Time (hours)

Slope=0.1350 '/'

Tc=0.5 min

CN=98

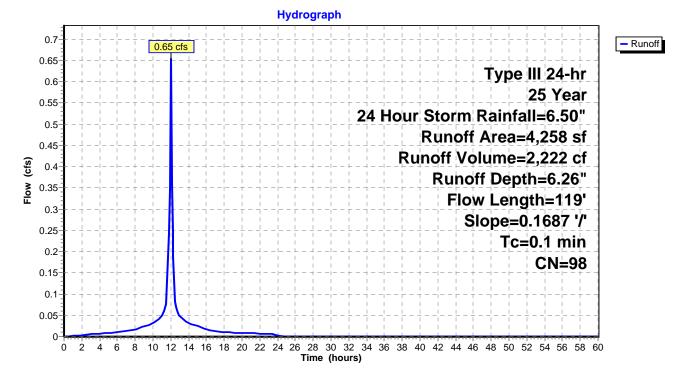

Summary for Subcatchment Post 2D: Post 2D

Runoff = 0.93 cfs @ 12.08 hrs, Volume= 3,118 cf, Depth= 4.45"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 25 Year, 24 Hour Storm Rainfall=6.50"

A	vrea (sf)	CN	Description						
	6,293	79	79 50-75% Grass cover, Fair, HSG C						
	2,117	89	Gravel roads, HSG C						
	8,410								
	8,410		100.00% Pe	ervious Are	a				
Tc	Length	Slope		Capacity	Description				
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)					
4.1	50	0.1000	0.20		Sheet Flow, Landscaped				
					Grass: Dense n= 0.240 P2= 3.50"				
0.4	150	0.0860	5.95		Shallow Concentrated Flow, Maintenance Drive				
					Paved Kv= 20.3 fps				
4.5	200	Total							

Subcatchment Post 2D: Post 2D

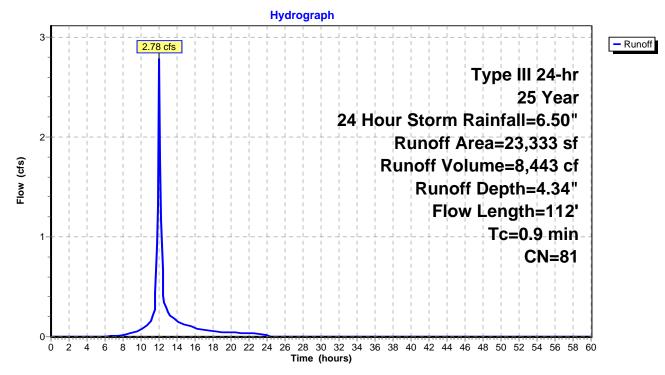

Summary for Subcatchment Post 2F: Post 2F

Runoff = 0.65 cfs @ 12.00 hrs, Volume= 2,222 cf, Depth= 6.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 25 Year, 24 Hour Storm Rainfall=6.50"

_	A	rea (sf)	CN	Description		
_		4,258	98	Roofs, HSG	G C	
		4,258		100.00% In	npervious A	rea
	Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	Description
_	0.1	119	0.1687	7 14.22	4.96	Pipe Channel, Roof Leader 8.0" Round Area= 0.3 sf Perim= 2.1' r= 0.17' n= 0.013 Corrugated PE, smooth interior

Subcatchment Post 2F: Post 2F

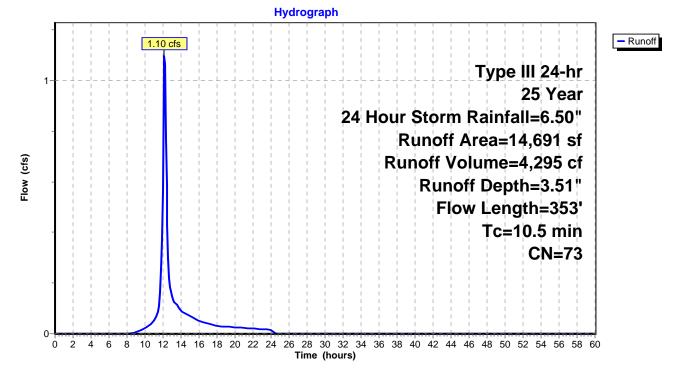

Summary for Subcatchment Post 2G: Post 2G

Runoff = 2.78 cfs @ 12.01 hrs, Volume= 8,443 cf, Depth= 4.34"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 25 Year, 24 Hour Storm Rainfall=6.50"

	A	rea (sf)	CN [Description		
		1,113	98 F	Paved park	ing, HSG C	;
		20,037	79 5	50-75% Gra	ass cover, F	Fair, HSG C
_		2,183	89 (Gravel road	ls, HSG C	
		23,333	81 V	Veighted A	verage	
	22,220 95.23% Pervious Area			5.23% Pei	vious Area	
		1,113	2	1.77% Impe	ervious Area	а
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	0.9	80	0.0250	1.50		Sheet Flow, Pavement
						Smooth surfaces n= 0.011 P2= 3.50"
	0.0	32	0.4600	10.92		Shallow Concentrated Flow, Landscaped
_						Unpaved Kv= 16.1 fps
	0.9	112	Total			

Subcatchment Post 2G: Post 2G

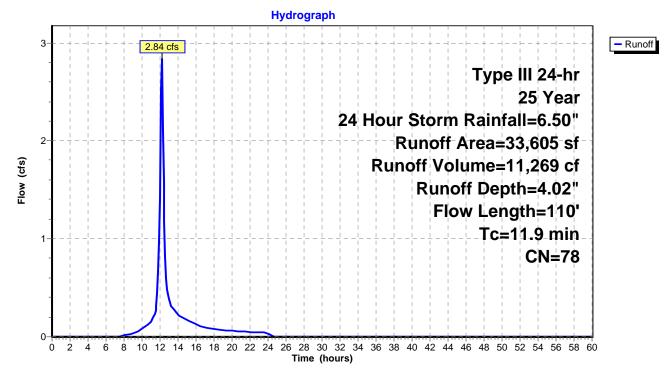

Summary for Subcatchment Post 2H: Post 2H

Runoff = 1.10 cfs @ 12.16 hrs, Volume= 4,295 cf, Depth= 3.51"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 25 Year, 24 Hour Storm Rainfall=6.50"

A	rea (sf)	CN D	escription		
	14,691	73 V	Voods, Fai	r, HSG C	
	14,691		100.00% Pervious Area		a
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
8.8	100	0.0600	0.19	(0.0)	Sheet Flow, Landscaped
1.7	253	0.0260	2.42		Grass: Dense n= 0.240 P2= 3.50" Shallow Concentrated Flow, Grassed waterway Grassed Waterway Kv= 15.0 fps
10.5	353	Total			

Subcatchment Post 2H: Post 2H


Summary for Subcatchment Post 3A: Post 3A

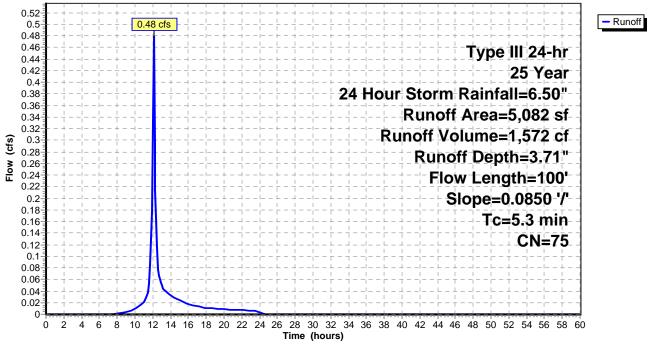
Runoff = 2.84 cfs @ 12.18 hrs, Volume= 11,269 cf, Depth= 4.02"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 25 Year, 24 Hour Storm Rainfall=6.50"

Α	rea (sf)	CN E	Description		
	3,842	98 F	aved park	ing, HSG C)
	20,173	73 V	Voods, Fai	r, HSG C	
	9,590	79 5	0-75% Gra	ass cover, I	Fair, HSG C
	33,605 78 Weighted Average				
	29,763 88.57% Pervious Area			vious Area	
	3,842	1	1.43% Imp	ervious Ar	ea
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
4.4	67	0.0600	0.25		Sheet Flow, Landscaped
					Grass: Short n= 0.150 P2= 3.50"
7.5	43	0.0460	0.10		Sheet Flow, Wooded
					Woods: Light underbrush n= 0.400 P2= 3.50"
11.9	110	Total			

Subcatchment Post 3A: Post 3A

Summary for Subcatchment Post 3B: Post 3B

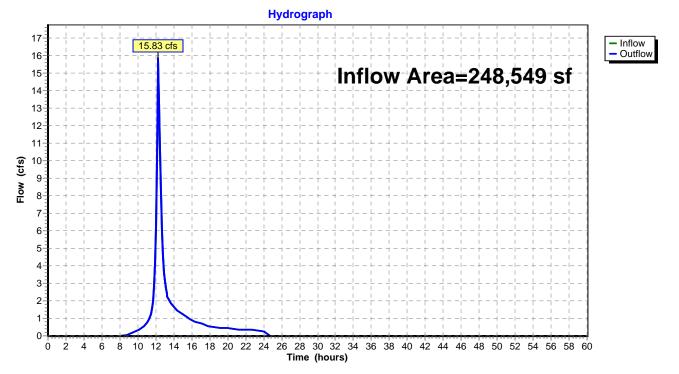

Runoff = 0.48 cfs @ 12.09 hrs, Volume= 1,572 cf, Depth= 3.71"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 25 Year, 24 Hour Storm Rainfall=6.50"

A	rea (sf)	CN	Description					
	3,044	73	Woods, Fai	r, HSG C				
	2,038	79	50-75% Grass cover, Fair, HSG C					
	5,082	75	Weighted A	verage				
	5,082		100.00% Pe	ervious Are	a			
Тс	Length	Slope		Capacity	Description			
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
5.3	100	0.0850	0.32		Sheet Flow,			
					Grass: Short	n= 0.150	P2= 3.50"	

Subcatchment Post 3B: Post 3B

Hydrograph



Summary for Reach DP1: Design Point 1

Inflow Are	a =	248,549 sf,	0.00% Impervious,	Inflow Depth = 3.51"	for 25 Year, 24 Hour Storm event
Inflow	=	15.83 cfs @	12.27 hrs, Volume=	72,657 cf	
Outflow	=	15.83 cfs @	12.27 hrs, Volume=	72,657 cf, Atter	n= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs / 3

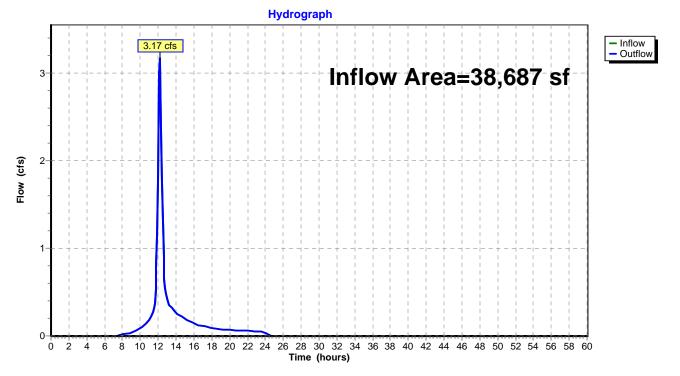
Reach DP1: Design Point 1

Summary for Reach DP2: Design Point 2

Inflow Are	a =	128,634 sf, 51.8	6% Impervious,	Inflow Depth > 5.01"	for 25 Year, 24 Hour Storm event
Inflow	=	6.24 cfs @ 12.30	hrs, Volume=	53,689 cf	
Outflow	=	6.24 cfs @ 12.30	hrs, Volume=	53,689 cf, Atte	n= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs / 3

Hydrograph Inflow Outflow 6.24 cfs 6 Inflow Area=128,634 sf 5-4 Flow (cfs) 3-2 1 0 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 Time (hours) 2 4 6 Ó


Reach DP2: Design Point 2

Summary for Reach DP3: Design Point 3

Inflow Are	a =	38,687 sf, 9.93% Impervious,	Inflow Depth = 3.98"	for 25 Year, 24 Hour Storm event
Inflow	=	3.17 cfs @ 12.16 hrs, Volume=	12,841 cf	
Outflow	=	3.17 cfs @ 12.16 hrs, Volume=	12,841 cf, Atter	n= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs / 3

Reach DP3: Design Point 3

Summary for Pond F-1: Sand Filter

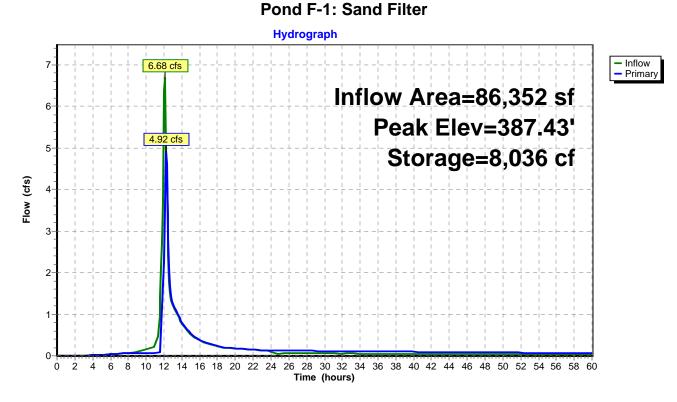
Inflow Area	ι =	86,352 sf, 71.03% Impervious	, Inflow Depth > 5.17" for 25 Year, 24 Hour Storm event
Inflow	=	6.68 cfs @ 12.06 hrs, Volume=	37,218 cf
Outflow	=	4.92 cfs @ 12.25 hrs, Volume=	37,007 cf, Atten= 26%, Lag= 11.2 min
Primary	=	4.92 cfs @ 12.25 hrs, Volume=	37,007 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs / 3 Peak Elev= 387.43' @ 12.23 hrs Surf.Area= 3,383 sf Storage= 8,036 cf

Plug-Flow detention time= 316.5 min calculated for 37,007 cf (99% of inflow) Center-of-Mass det. time= 302.4 min (1,350.9 - 1,048.5)

Volume	Inve	rt Avail.Sto	rage Storage	e Description	
#1	384.00	D' 10,07	72 cf Custor	m Stage Data (P	rismatic)Listed below (Recalc)
Elevatio	on s	Surf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
384.0	00	1,386	0	0	
385.0	00	1,903	1,645	1,645	
386.0	00	2,483	2,193	3,838	
387.0	00	3,135	2,809	6,647	
388.0)0	3,716	3,426	10,072	
Device	Routing	Invert	Outlet Devic	es	
#1	Primary	381.50'	10.0" Roun		
#2 Device 1 #3 Device 1		384.00' 387.00'	Inlet / Outlet n= 0.013 Cc 1.750 in/hr \$ 24.0" x 24.0	Invert= 381.50' / prrugated PE, sm Sand Filter Bed	headwall, Ke= 0.900 377.00' S= 0.1184 '/' Cc= 0.900 ooth interior, Flow Area= 0.55 sf over Surface area w Grate C= 0.600 ads

Primary OutFlow Max=4.86 cfs @ 12.25 hrs HW=387.41' TW=379.44' (Dynamic Tailwater)


-1=Culvert (Inlet Controls 4.86 cfs @ 8.91 fps)

2=Sand Filter Bed (Passes < 0.14 cfs potential flow)

-3=Overflow Grate (Passes < 6.75 cfs potential flow)

Park Place - DEV

Prepared by AKRF, Inc.

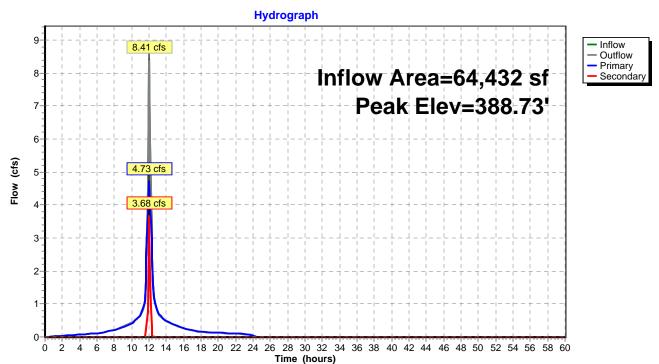
Park Place - DEV

		1 y p 0 m 2		,	
Prepared by	AKRF, Inc.				
HydroCAD® 10	0.00-12 s/n 048	852 © 2014 Hydi	oCAD Software	Solutions LLC	
		Stage-Area-S	torage for Po	nd F-1: Sand	d Filte
Elevation	Surface	Storage	Elevation	Surface	S
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cub
384.00	1,386	0	386.65	2,907	
384.05	1,412	70	386.70	2,939	
384.10	1,438	141	386.75	2,972	

er

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
384.00	1,386	0	386.65	2,907	5,589
384.05	1,412	70	386.70	2,939	5,735
384.10	1,438	141	386.75	2,972	5,883
384.15	1,464	214	386.80	3,005	6,033
384.20	1,489	288	386.85	3,037	6,184
384.25	1,515	363	386.90	3,070	6,336
384.30	1,541	439	386.95	3,102	6,491
384.35	1,567	517	387.00	3,135	6,647
384.40	1,593	596	387.05	3,164	6,804
384.45	1,619	676	387.10	3,193	6,963
384.50	1,645	758	387.15	3,222	7,123
384.55	1,670	840	387.20	3,251	7,285
384.60	1,696	925	387.25	3,280	7,448
384.65	1,722	1,010	387.30	3,309	7,613
384.70	1,748	1,097	387.35	3,338	7,779
384.75	1,774	1,185	387.40	3,367	7,947
384.80	1,800	1,274	387.45	3,396	8,116
384.85	1,825	1,365	387.50	3,426	8,287
384.90	1,851	1,457	387.55	3,455	8,459
384.95	1,877	1,550	387.60 387.65	3,484	8,632
385.00 385.05	1,903 1,932	1,645 1,740	387.70	3,513 3,542	8,807
385.10	1,961	1,838	387.75	3,542	8,983 9,161
385.15	1,990	1,936	387.80	3,600	9,340
385.20	2,019	2,037	387.85	3,629	9,521
385.25	2,013	2,037	387.90	3,658	9,703
385.30	2,077	2,242	387.95	3,687	9,887
385.35	2,106	2,346	388.00	3,716	10,072
385.40	2,135	2,452		-,	
385.45	2,164	2,560			
385.50	2,193	2,669			
385.55	2,222	2,779			
385.60	2,251	2,891			
385.65	2,280	3,004			
385.70	2,309	3,119			
385.75	2,338	3,235			
385.80	2,367	3,353			
385.85	2,396	3,472			
385.90	2,425	3,592			
385.95	2,454	3,714			
386.00	2,483	3,838			
386.05	2,516	3,962			
386.10	2,548	4,089			
386.15 386.20	2,581 2,613	4,217 4,347			
386.25	2,646	4,479			
386.30	2,679	4,479			
386.35	2,711	4,746			
386.40	2,744	4,883			
386.45	2,776	5,021			
386.50	2,809	5,161			
386.55	2,842	5,302			
386.60	2,874	5,445			
			l		

Summary for Pond FS: Flow Splitter


Inflow Area = 64,432 sf, 86.80% Impervious, Inflow Depth = 5.95" for 25 Year, 24 Hour Storm event Inflow 8.41 cfs @ 12.01 hrs. Volume= 31.943 cf = 8.41 cfs @ 12.01 hrs, Volume= Outflow 31,943 cf, Atten= 0%, Lag= 0.0 min = 4.73 cfs @ 12.01 hrs, Volume= Primary = 29,207 cf Secondary = 3.68 cfs @ 12.01 hrs, Volume= 2,736 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs / 3 Peak Elev= 388.73' @ 12.02 hrs Flood Elev= 392.00'

Routing	Invert	Outlet Devices
Primary	386.00'	15.0" Round Culvert to Sed Basin L= 20.0' Ke= 0.900
		Inlet / Outlet Invert= 386.00' / 384.00' S= 0.1000 '/' Cc= 0.900
		n= 0.013, Flow Area= 1.23 sf
Secondary	387.80'	24.0" Round Culvert L= 106.0' Ke= 0.900
		Inlet / Outlet Invert= 387.80' / 381.00' S= 0.0642 '/' Cc= 0.900
		n= 0.013, Flow Area= 3.14 sf
	Primary	Primary 386.00'

Primary OutFlow Max=4.66 cfs @ 12.01 hrs HW=388.70' TW=387.70' (Dynamic Tailwater) -1=Culvert to Sed Basin (Inlet Controls 4.66 cfs @ 3.80 fps)

Secondary OutFlow Max=3.41 cfs @ 12.01 hrs HW=388.69' TW=378.94' (Dynamic Tailwater) 2=Culvert (Inlet Controls 3.41 cfs @ 2.53 fps)

Pond FS: Flow Splitter

Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
386.00	0	388.12	0	390.24	0
386.04	0	388.16	0	390.24	0
386.08	0	388.20	0	390.32	0
386.12	0	388.24	0	390.32	0
386.16	0	388.28	0	390.40	0
386.20 386.24	0	388.32	0 0	390.44	0
386.24 386.28	0	388.36		390.48	0
	0	388.40 388.44	0	390.52	0
386.32	0	388.48	0	390.56	0
386.36	0 0		0 0	390.60	0
386.40	0	388.52	0	390.64	0
386.44		388.56		390.68	0
386.48	0	388.60	0	390.72	0
386.52	0	388.64	0	390.76	0
386.56	0	388.68	0	390.80	0
386.60	0	388.72	0	390.84	0
386.64	0	388.76	0	390.88	0
386.68	0	388.80	0	390.92	0
386.72	0	388.84	0	390.96	0
386.76	0	388.88	0	391.00	0
386.80	0	388.92	0	391.04	0
386.84	0	388.96	0	391.08	0
386.88	0	389.00	0	391.12	0
386.92	0	389.04	0	391.16	0
386.96	0	389.08	0	391.20	0
387.00	0	389.12	0	391.24	0
387.04	0	389.16	0	391.28	0
387.08 387.12	0 0	389.20 389.24	0 0	391.32 391.36	0 0
	0		0		
387.16 387.20	0	389.28 389.32	0	391.40 391.44	0 0
387.20	0	389.36	0	391.44	0
387.24	0	389.40	0	391.40	0
387.32	0	389.40	0	391.52	0
387.36	0	389.44	0	391.60	0
387.40	0	389.52	0	391.60	0
	0		0		0
387.44	0	389.56		391.68	
387.48		389.60	0	391.72	0
387.52	0	389.64	0	391.76 391.80	0
387.56	0 0	389.68	0		0
387.60 387.64		389.72 389.76	0	391.84	0
387.68	0 0	389.80	0 0	391.88 391.92	0 0
387.72	0	389.84	0	391.92	0
387.76	0	389.88	0	392.00	0
387.80	0	389.92	0	392.00	0
387.84	0	389.92	0		
387.88	0	390.00	0		
387.92	0	390.00 390.04	0		
387.96	0	390.04	0		
388.00	0	390.08	0		
388.04	0	390.12	0		
388.08	0	390.20	0		
000.00	U	000.20	v		

Stage-Area-Storage for Pond FS: Flow Splitter

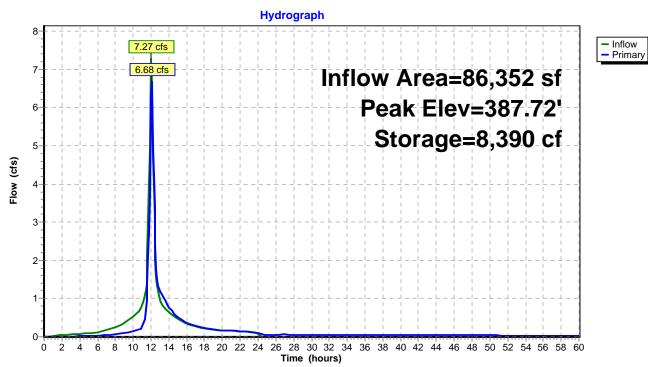
Summary for Pond SB: Sedimentation Basin

Inflow Area =	86,352 sf, 71.03% Impervious,	Inflow Depth = 5.27" for 25 Year, 24 Hour Storm event
Inflow =	7.27 cfs @ 12.02 hrs, Volume=	37,951 cf
Outflow =	6.68 cfs @ 12.06 hrs, Volume=	37,218 cf, Atten= 8%, Lag= 2.6 min
Primary =	6.68 cfs @ 12.06 hrs, Volume=	37,218 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs / 3 Peak Elev= 387.72' @ 12.09 hrs Surf.Area= 3,355 sf Storage= 8,390 cf

Plug-Flow detention time= 295.4 min calculated for 37,156 cf (98% of inflow) Center-of-Mass det. time= 286.3 min (1,048.5 - 762.2)

Volume	Invert	Avail.Sto	rage Storage Description				
#1	384.00'	9,30	61 cf Custom	n Stage Data (Pri	ismatic)Listed below (Recalc)		
Elevatio (fee		urf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)			
	1			<u>`</u>			
384.0		1,219	0	0			
385.0		1,730	1,475	1,475			
386.0		2,313	2,022	3,496			
387.0		2,951	2,632	6,128			
388.0	00	3,514	3,233	9,361			
Device	Routing	Invert	Outlet Device	S			
#1	Primary	382.00'	10.0" Round	l Culvert			
			L= 38.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 382.00' / 377.00' S= 0.1316 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.55 sf				
#2	Device 1	384.00'	0.4" Vert. Standpipe Perforations X 4.00 columns X 12 rows with 3.0" cc spacing C= 0.600				
#3	Device 1	387.00'	12.0" Horiz. Standpipe Riser Opening C= 0.600 Limited to weir flow at low heads				
#4	Primary	387.50'	15.0' long Overflow Spillway 2 End Contraction(s) 0.5' Crest Height				


Primary OutFlow Max=6.49 cfs @ 12.06 hrs HW=387.71' TW=387.11' (Dynamic Tailwater)

-1=Culvert (Inlet Controls 1.61 cfs @ 2.94 fps)

2=Standpipe Perforations (Passes < 0.16 cfs potential flow)

3=Standpipe Riser Opening (Passes < 2.93 cfs potential flow)

-4=Overflow Spillway (Weir Controls 4.89 cfs @ 1.57 fps)

Pond SB: Sedimentation Basin

Prepared by AKRF, Inc.	
HydroCAD® 10.00-12 s/n 04852	© 2014 HydroCAD Software Solutions LLC

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
384.00	1,219	0	386.65	2,728	5,134
384.05	1,245	62	386.70	2,760	5,271
384.10	1,270	124	386.75	2,792	5,410
384.15	1,296	189	386.80	2,823	5,551
384.20	1,321	254	386.85	2,855	5,693
384.25	1,347	321	386.90	2,887	5,836
384.30	1,372	389	386.95	2,919	5,981
384.35	1,398	458	387.00	2,951	6,128
384.40 384.45	1,423 1,449	528 600	387.05 387.10	2,979	6,276
384.50	1,475	673	387.10	3,007 3,035	6,426 6,577
384.55	1,500	748	387.20	3,064	6,729
384.60	1,526	823	387.25	3,092	6,883
384.65	1,551	900	387.30	3,120	7,039
384.70	1,577	978	387.35	3,148	7,195
384.75	1,602	1,058	387.40	3,176	7,353
384.80	1,628	1,139	387.45	3,204	7,513
384.85	1,653	1,221	387.50	3,233	7,674
384.90	1,679	1,304	387.55	3,261	7,836
384.95	1,704	1,389	387.60	3,289	8,000
385.00	1,730	1,475	387.65	3,317	8,165
385.05 385.10	1,759	1,562	387.70 387.75	3,345 3,373	8,332
385.15	1,788 1,817	1,650 1,741	387.80	3,401	8,500 8,669
385.20	1,847	1,832	387.85	3,430	8,840
385.25	1,876	1,925	387.90	3,458	9,012
385.30	1,905	2,020	387.95	3,486	9,186
385.35	1,934	2,116	388.00	3,514	9,361
385.40	1,963	2,213			
385.45	1,992	2,312			
385.50	2,022	2,412			
385.55	2,051	2,514			
385.60	2,080	2,617			
385.65	2,109	2,722			
385.70 385.75	2,138 2,167	2,828 2,936			
385.80	2,196	3,045			
385.85	2,226	3,156			
385.90	2,255	3,268			
385.95	2,284	3,381			
386.00	2,313	3,496			
386.05	2,345	3,612			
386.10	2,377	3,730			
386.15	2,409	3,850			
386.20	2,441	3,971			
386.25 386.30	2,473 2,504	4,094 4,219			
386.35	2,536	4,219			
386.40	2,568	4,472			
386.45	2,600	4,601			
386.50	2,632	4,732			
386.55	2,664	4,865			
386.60	2,696	4,999			
			l		

Stage-Area-Storage for Pond SB: Sedimentation Basin

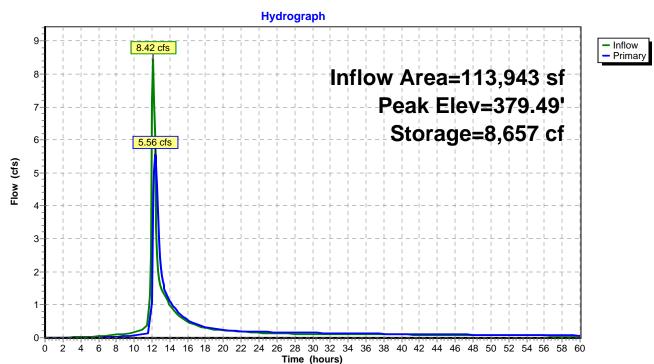
Summary for Pond W-4: W-4 Pocket Wetland

Inflow Area =	113,943 sf, 58.55% Impervious,	Inflow Depth > 5.31" for 25 Year, 24 Hour Storm event
Inflow =	8.42 cfs @ 12.10 hrs, Volume=	50,407 cf
Outflow =	5.56 cfs @ 12.37 hrs, Volume=	49,394 cf, Atten= 34%, Lag= 16.1 min
Primary =	5.56 cfs @ 12.37 hrs, Volume=	49,394 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs / 3 Peak Elev= 379.49' @ 12.37 hrs Surf.Area= 6,838 sf Storage= 8,657 cf

Plug-Flow detention time= 152.2 min calculated for 49,394 cf (98% of inflow) Center-of-Mass det. time= 105.9 min (1,304.1 - 1,198.2)

Volume	Inver	rt Avail.Sto	rage	age Storage Description		
#1	378.00)' 20,80	20,808 cf		Stage Data (P	rismatic)Listed below (Recalc)
Elevatio		Surf.Area (sq-ft)		.Store c-feet)	Cum.Store (cubic-feet)	
378.0	00	4,855		0	0	
379.0	00	6,074		5,465	5,465	
380.0	380.00 7,618			6,846	12,311	
381.0	381.00 9,377			8,498	20,808	
Device	Routing	Invert	Outle	et Devices	5	
#1	Primary	373.00'	12.0	" Round	Culvert	
#2 #3	Device 1 Device 1	378.00' 378.70'	L= 40.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 373.00' / 372.60' S= 0.0100 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf 3.0" Vert. Low Flow Orifice C= 0.600 36.0" W x 6.0" H Vert. High Flow Orifice (36Wx6H) C= 0.600			
			~			


Primary OutFlow Max=5.52 cfs @ 12.37 hrs HW=379.49' TW=0.00' (Dynamic Tailwater)

-1=Culvert (Passes 5.52 cfs of 9.21 cfs potential flow)

2=Low Flow Orifice (Orifice Controls 0.28 cfs @ 5.62 fps)

-3=High Flow Orifice (36Wx6H) (Orifice Controls 5.24 cfs @ 3.49 fps)

Prepared by AKRF, Inc.

Pond W-4: W-4 Pocket Wetland

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
378.00	4,855	0	380.65	8,761	17,634
378.05	4,916	244	380.70	8,849	18,074
378.10	4,977	492	380.75	8,937	18,519
378.15	5,038	742	380.80	9,025	18,968
378.20	5,099	995	380.85	9,113	19,421
378.25	5,160	1,252	380.90	9,201	19,879
378.30	5,221	1,511	380.95	9,289	20,341
378.35	5,282	1,774	381.00	9,377	20,808
378.40	5,343	2,040			
378.45	5,404	2,308			
378.50	5,465	2,580			
378.55	5,525	2,855			
378.60	5,586	3,132			
378.65	5,647	3,413			
378.70	5,708	3,697			
378.75	5,769	3,984			
378.80	5,830	4,274			
378.85	5,891	4,567			
378.90	5,952	4,863			
378.95	6,013	5,162			
379.00	6,074	5,465			
379.05	6,151	5,770			
379.10	6,228	6,080			
379.15	6,306	6,393			
379.20	6,383	6,710			
379.25	6,460	7,031			
379.30	6,537	7,356			
379.35	6,614	7,685			
379.40	6,692	8,018			
379.45	6,769	8,354			
379.50	6,846	8,695			
379.55	6,923	9,039			
379.60	7,000	9,387			
379.65	7,078	9,739			
379.70	7,155	10,095			
379.75	7,232	10,454			
379.80	7,309	10,818			
379.85	7,386	11,185			
379.90	7,464	11,556			
379.95	7,541	11,932			
380.00	7,618	12,311			
380.05	7,706	12,694			
380.10	7,794	13,081			
380.15	7,882	13,473			
380.20	7,970	13,869			
380.25	8,058	14,270			
380.30	8,146	14,675			
380.35	8,234	15,085			
380.40	8,322	15,498			
380.45	8,410	15,917			
380.50	8,498	16,339			
380.55	8,585	16,766			
380.60	8,673	17,198			
			l		

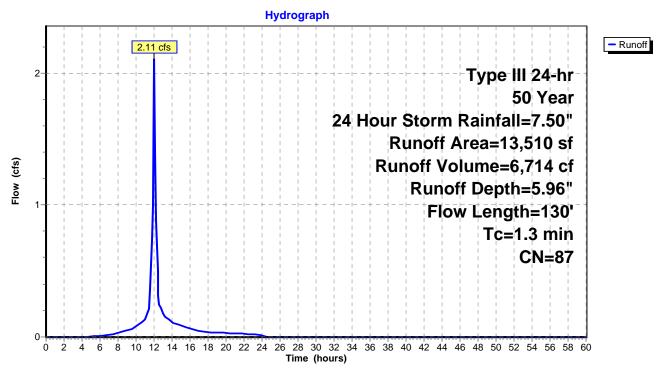
Stage-Area-Storage for Pond W-4: W-4 Pocket Wetland

Park Place - DEV	Type III 24-hr 50 Year, 24 H	our Storm Rainfall=7.50"
Prepared by AKRF, Inc.		Printed 12/5/2014
HydroCAD® 10.00-12 s/n 04852 © 2014 Hydro	droCAD Software Solutions LLC	Page 112

Time span=0.00-60.00 hrs, dt=0.10 hrs, 601 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPost 2E: Post 2E	Runoff Area=13,510 sf 40.08% Impervious Runoff Depth=5.96" Flow Length=130' Tc=1.3 min CN=87 Runoff=2.11 cfs 6,714 cf
Subcatchment Post 1: DA 1	Runoff Area=248,549 sf 0.00% Impervious Runoff Depth=4.37" Flow Length=605' Tc=18.8 min CN=73 Runoff=19.72 cfs 90,505 cf
Subcatchment Post 2A: Post 2A Flow Length=1	Runoff Area=4,907 sf 100.00% Impervious Runoff Depth=7.26" 50' Slope=0.0100 '/' Tc=1.9 min CN=98 Runoff=0.81 cfs 2,969 cf
Subcatchment Post 2B: Post 2B	Runoff Area=14,630 sf 41.85% Impervious Runoff Depth=5.85" Flow Length=346' Tc=11.0 min CN=86 Runoff=1.74 cfs 7,129 cf
Subcatchment Post 2C: Post 2C Flow Length=10	Runoff Area=44,895 sf 100.00% Impervious Runoff Depth=7.26" 00' Slope=0.1350 '/' Tc=0.5 min CN=98 Runoff=7.93 cfs 27,163 cf
Subcatchment Post 2D: Post 2D	Runoff Area=8,410 sf 0.00% Impervious Runoff Depth=5.39" Flow Length=200' Tc=4.5 min CN=82 Runoff=1.11 cfs 3,775 cf
Subcatchment Post 2F: Post 2F Flow Length=1	Runoff Area=4,258 sf 100.00% Impervious Runoff Depth=7.26" 19' Slope=0.1687 '/' Tc=0.1 min CN=98 Runoff=0.76 cfs 2,576 cf
Subcatchment Post 2G: Post 2G	Runoff Area=23,333 sf 4.77% Impervious Runoff Depth=5.27" Flow Length=112' Tc=0.9 min CN=81 Runoff=3.36 cfs 10,251 cf
Subcatchment Post 2H: Post 2H	Runoff Area=14,691 sf 0.00% Impervious Runoff Depth=4.37" Flow Length=353' Tc=10.5 min CN=73 Runoff=1.37 cfs 5,349 cf
Subcatchment Post 3A: Post 3A	Runoff Area=33,605 sf 11.43% Impervious Runoff Depth=4.93" Flow Length=110' Tc=11.9 min CN=78 Runoff=3.46 cfs 13,808 cf
Subcatchment Post 3B: Post 3B Flow Length=1	Runoff Area=5,082 sf 0.00% Impervious Runoff Depth=4.59" 00' Slope=0.0850 '/' Tc=5.3 min CN=75 Runoff=0.59 cfs 1,945 cf
Reach DP1: Design Point 1	Inflow=19.72 cfs 90,505 cf Outflow=19.72 cfs 90,505 cf
Reach DP2: Design Point 2	Inflow=7.91 cfs 63,945 cf Outflow=7.91 cfs 63,945 cf
Reach DP3: Design Point 3	Inflow=3.87 cfs 15,753 cf Outflow=3.87 cfs 15,753 cf
Pond F-1: Sand Filter	Peak Elev=387.68' Storage=8,915 cf Inflow=7.45 cfs 42,942 cf Outflow=4.98 cfs 42,715 cf
Pond FS: Flow Splitter Primary=4.99 cfs	Peak Elev=388.87' Inflow=9.75 cfs 37,262 cf 33,195 cf Secondary=4.77 cfs 4,068 cf Outflow=9.75 cfs 37,262 cf

Park Place - DEV Prepared by AKRF, Inc.	Type III 24-hr 50 Year, 24 Ho	our Storm Rainfall=7.50" Printed 12/5/2014
HydroCAD® 10.00-12 s/n 04852 © 2014 Hydr	roCAD Software Solutions LLC	Page 113
Pond SB: Sedimentation Basin	Peak Elev=387.75' Storage=8,509 cf	f Inflow=8.01 cfs 43,684 cf Outflow=7.45 cfs 42,942 cf
Pond W-4: W-4 Pocket Wetland	Peak Elev=379.75' Storage=10,483 cf	Inflow=13.91 cfs 59,610 cf Outflow=6.75 cfs 58,595 cf
Total Runoff Area = 415,870 st 83		rage Runoff Depth = 4.97" 5% Impervious = 70,552 sf

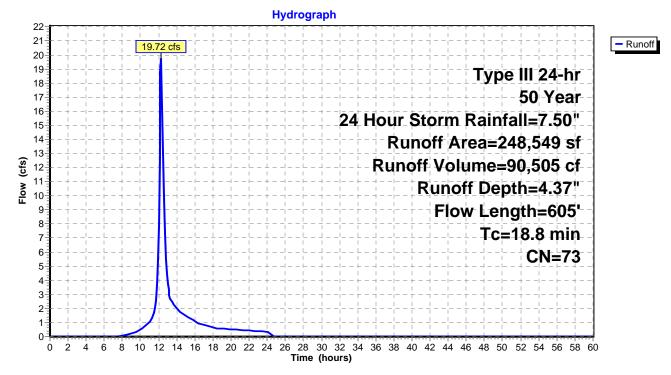

Summary for Subcatchment Post 2E: Post 2E

Runoff = 2.11 cfs @ 12.01 hrs, Volume= 6,714 cf, Depth= 5.96"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 50 Year, 24 Hour Storm Rainfall=7.50"

_	A	rea (sf)	CN D	Description		
		5,415	98 F	aved park	ing, HSG C)
_		8,095	79 5	0-75% Gra	ass cover, F	Fair, HSG C
		13,510	87 V	Veighted A	verage	
		8,095	5	9.92% Per	vious Area	
		5,415	4	0.08% Imp	pervious Ar	ea
	_					
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	1.2	100	0.0200	1.44		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.50"
	0.1	30	0.3800	9.92		Shallow Concentrated Flow, Pavement
_						Unpaved Kv= 16.1 fps
	1.3	130	Total			

Subcatchment Post 2E: Post 2E

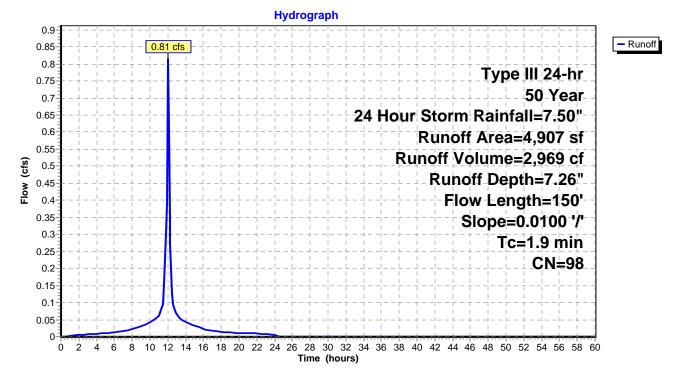

Summary for Subcatchment Post 1: DA 1

Runoff = 19.72 cfs @ 12.27 hrs, Volume= 90,505 cf, Depth= 4.37"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 50 Year, 24 Hour Storm Rainfall=7.50"

	Area (sf)	CN [Description		
	159,708	73 V	Voods, Fai	r, HSG C	
	1,496	89 (Gravel road	ls, HSG C	
	87,345	74 >	-75% Gras	s cover, Go	bod, HSG C
	248,549	73 V	Veighted A	verage	
	248,549	1	00.00% Pe	ervious Are	a
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
14.8	250	0.0400	0.28		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.50"
1.0	105	0.0667	1.81		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
3.0	250	0.0760	1.38		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
18.8	605	Total			

Subcatchment Post 1: DA 1

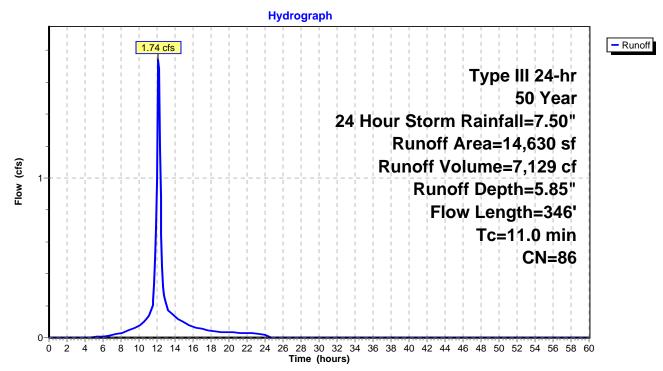

Summary for Subcatchment Post 2A: Post 2A

Runoff = 0.81 cfs @ 12.02 hrs, Volume= 2,969 cf, Depth= 7.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 50 Year, 24 Hour Storm Rainfall=7.50"

_	A	rea (sf)	CN [Description		
		4,907	98 F	Paved park	ing, HSG C	2
		4,907	1	00.00% In	npervious A	vrea
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
-	1.5	100	0.0100	1.09		Sheet Flow, Pavement
	0.4	50	0.0100	2.03		Smooth surfaces n= 0.011 P2= 3.50" Shallow Concentrated Flow, Pavement Paved Kv= 20.3 fps
_	1.9	150	Total			

Subcatchment Post 2A: Post 2A


Summary for Subcatchment Post 2B: Post 2B

Runoff = 1.74 cfs @ 12.16 hrs, Volume= 7,129 cf, Depth= 5.85"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 50 Year, 24 Hour Storm Rainfall=7.50"

Area	(sf) CN	Descriptio	n	
6,1	22 98	Paved pa	rking	
6,1	54 74	>75% Gra	ass cover, Go	bod, HSG C
2,3	54 89	Gravel ro	ads, HSG C	
14,6	30 86	Weighted	Average	
8,5	808	58.15% F	ervious Area	a de la constante de
6,1	22	41.85% lı	npervious Ar	ea
	•	ope Velocit		Description
<u>(min)</u> (f	eet) (f	t/ft) (ft/sec) (cfs)	
10.3	100 0.04	100 0.1	6	Sheet Flow, Landscaped area
				Grass: Dense n= 0.240 P2= 3.50"
0.7	246 0.01	00 5.9	0 4.63	
				12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
				n= 0.010 PVC, smooth interior
11.0	346 Tota	al		

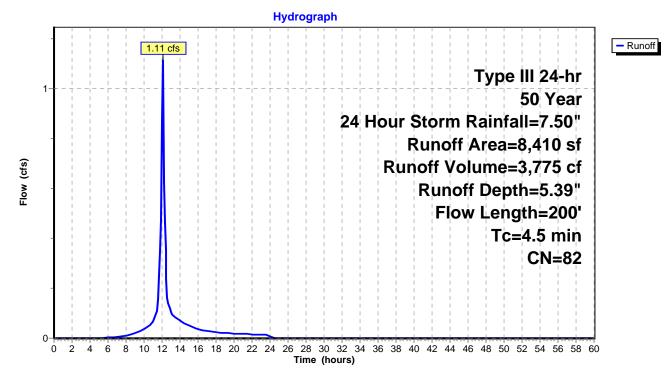
Subcatchment Post 2B: Post 2B

Summary for Subcatchment Post 2C: Post 2C

Runoff = 7.93 cfs @ 12.00 hrs, Volume= 27,163 cf, Depth= 7.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 50 Year, 24 Hour Storm Rainfall=7.50"

	rea (sf)		Description		
	44,895	98 F	Paved park	ng, HSG C	
	44,895	1	00.00% Im	pervious A	rea
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
0.5	100	0.1350	3.09		Sheet Flow, Smooth surfaces n= 0.011 P2= 3.50"
			Sul	bcatchme	ent Post 2C: Post 2C
F				Hydrog	graph
- - 8		7.93 c	fs		- Runof
7-					Type III 24-hr
-					50 Year 24 Hour Storm Rainfall=7.50"
6		- +			Runoff Area=44,895 sf
	$-\frac{1}{1} - \frac{1}{1} - \frac{1}{1}$				Runoff Volume=27,163 cf
64 4 1					Runoff Depth=7.26" Flow Length=100'
3-					Slope=0.1350 '/'
2		i i i 			Tc=0.5 min
- - 1					CN=98
0- 0	246	8 10 12	14 16 18 20	22 24 26 28	8 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 ie (hours)


Summary for Subcatchment Post 2D: Post 2D

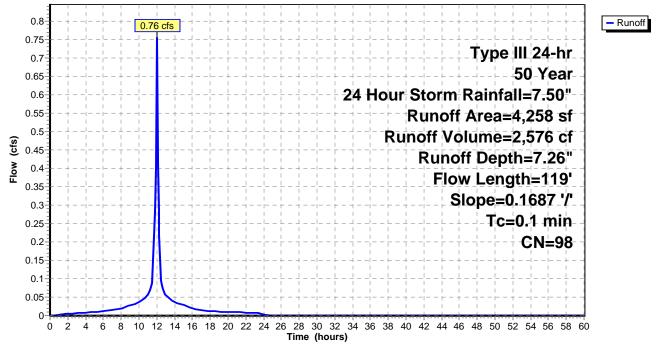
Runoff = 1.11 cfs @ 12.08 hrs, Volume= 3,775 cf, Depth= 5.39"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 50 Year, 24 Hour Storm Rainfall=7.50"

A	vrea (sf)	CN	Description					
	6,293	79	50-75% Grass cover, Fair, HSG C					
	2,117	89	Gravel road	ls, HSG C				
	8,410		Weighted A					
	8,410		100.00% Pe	ervious Are	a			
Tc	Length	Slope		Capacity	Description			
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)				
4.1	50	0.1000	0.20		Sheet Flow, Landscaped			
					Grass: Dense n= 0.240 P2= 3.50"			
0.4	150	0.0860	5.95		Shallow Concentrated Flow, Maintenance Drive			
					Paved Kv= 20.3 fps			
4.5	200	Total						

Subcatchment Post 2D: Post 2D

Summary for Subcatchment Post 2F: Post 2F

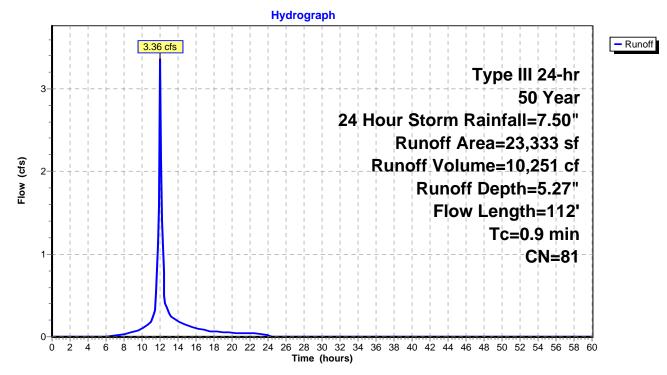

Runoff = 0.76 cfs @ 12.00 hrs, Volume= 2,576 cf, Depth= 7.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 50 Year, 24 Hour Storm Rainfall=7.50"

_	A	rea (sf)	CN	Description		
_		4,258	98	Roofs, HSG	G C	
		4,258		100.00% In	npervious A	vrea
_	Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description
	0.1	119	0.1687	7 14.22	4.96	Pipe Channel, Roof Leader 8.0" Round Area= 0.3 sf Perim= 2.1' r= 0.17' n= 0.013 Corrugated PE, smooth interior

Subcatchment Post 2F: Post 2F

Hydrograph

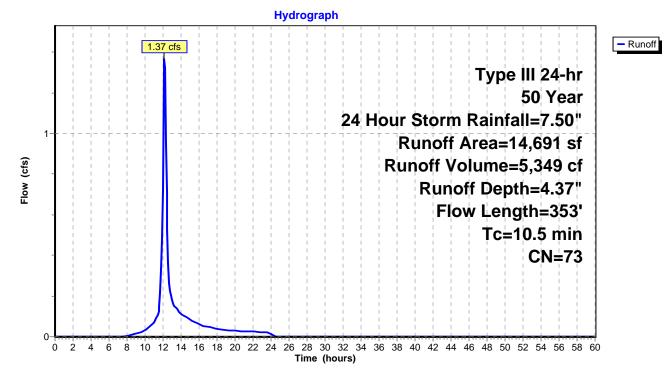

Summary for Subcatchment Post 2G: Post 2G

Runoff = 3.36 cfs @ 12.01 hrs, Volume= 10,251 cf, Depth= 5.27"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 50 Year, 24 Hour Storm Rainfall=7.50"

Α	rea (sf)	CN E	escription		
	1,113	98 F	aved park	ing, HSG C)
	20,037	79 5	0-75% Gra	ass cover, F	Fair, HSG C
	2,183	89 0	Gravel road	s, HSG C	
	23,333	81 V	Veighted A	verage	
	22,220	9	5.23% Per	vious Area	
	1,113	4	.77% Impe	ervious Area	a
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
0.9	80	0.0250	1.50		Sheet Flow, Pavement
					Smooth surfaces n= 0.011 P2= 3.50"
0.0	32	0.4600	10.92		Shallow Concentrated Flow, Landscaped
					Unpaved Kv= 16.1 fps
0.9	112	Total			

Subcatchment Post 2G: Post 2G

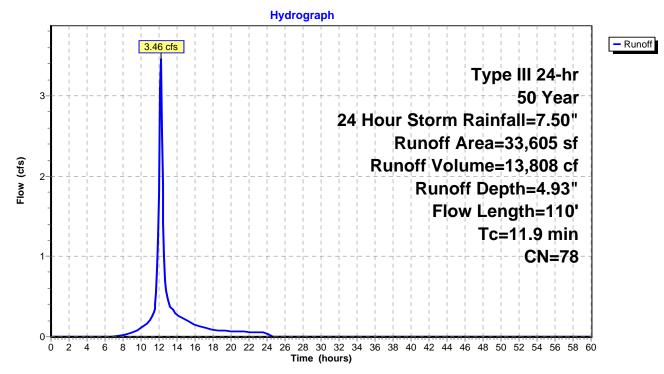

Summary for Subcatchment Post 2H: Post 2H

Runoff = 1.37 cfs @ 12.15 hrs, Volume= 5,349 cf, Depth= 4.37"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 50 Year, 24 Hour Storm Rainfall=7.50"

A	rea (sf)	CN E	Description		
	14,691	73 V	Voods, Fai	r, HSG C	
	14,691	691 100.00% Pervious Area			a
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
8.8	100	0.0600	0.19	· · · ·	Sheet Flow, Landscaped
1.7	253	0.0260	2.42		Grass: Dense n= 0.240 P2= 3.50" Shallow Concentrated Flow, Grassed waterway Grassed Waterway Kv= 15.0 fps
10.5	353	Total			

Subcatchment Post 2H: Post 2H

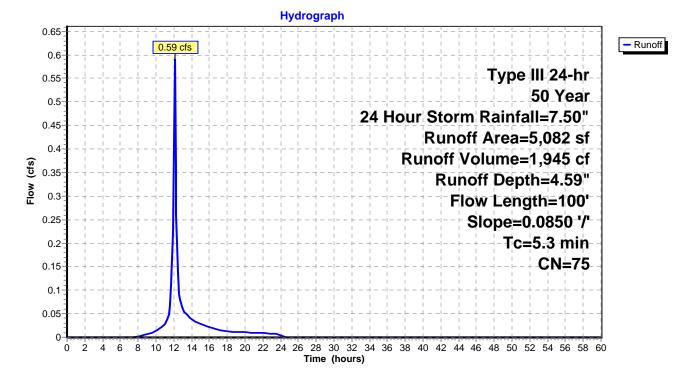

Summary for Subcatchment Post 3A: Post 3A

Runoff = 3.46 cfs @ 12.18 hrs, Volume= 13,808 cf, Depth= 4.93"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 50 Year, 24 Hour Storm Rainfall=7.50"

Α	rea (sf)	CN E	Description		
	3,842	98 F	aved park	ing, HSG C)
	20,173	73 V	Voods, Fai	r, HSG C	
	9,590	79 5	0-75% Gra	ass cover, I	Fair, HSG C
	33,605	78 V	Veighted A	verage	
	29,763	8	8.57% Per	vious Area	
	3,842	1	1.43% Imp	ervious Ar	ea
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
4.4	67	0.0600	0.25		Sheet Flow, Landscaped
					Grass: Short n= 0.150 P2= 3.50"
7.5	43	0.0460	0.10		Sheet Flow, Wooded
					Woods: Light underbrush n= 0.400 P2= 3.50"
11.9	110	Total			

Subcatchment Post 3A: Post 3A

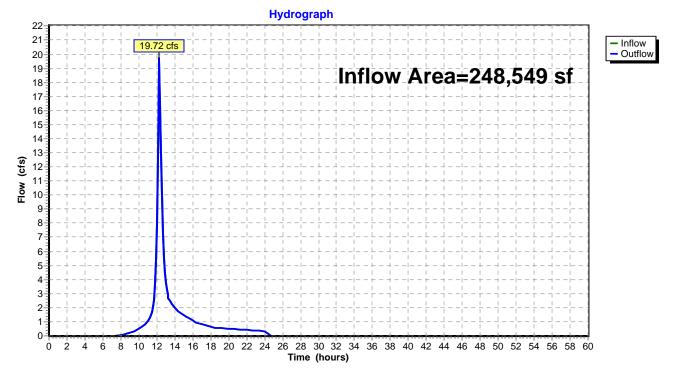

Summary for Subcatchment Post 3B: Post 3B

Runoff = 0.59 cfs @ 12.09 hrs, Volume= 1,945 cf, Depth= 4.59"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 50 Year, 24 Hour Storm Rainfall=7.50"

Α	rea (sf)	CN	Description					
	3,044	73	Woods, Fai	r, HSG C				
	2,038	79	50-75% Gra	ass cover, l	Fair, HSG C			
	5,082	75	Weighted A	verage				
	5,082		100.00% Pe	ervious Are	a			
Тс	Length	Slope		Capacity	Description			
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
5.3	100	0.0850	0.32		Sheet Flow,			
					Grass: Short	n= 0.150	P2= 3.50"	

Subcatchment Post 3B: Post 3B



Summary for Reach DP1: Design Point 1

Inflow Are	a =	248,549 sf,	0.00% Impervious,	Inflow Depth = 4.37"	for 50 Year, 24 Hour Storm event
Inflow	=	19.72 cfs @	12.27 hrs, Volume=	90,505 cf	
Outflow	=	19.72 cfs @	12.27 hrs, Volume=	90,505 cf, Atter	n= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs / 3

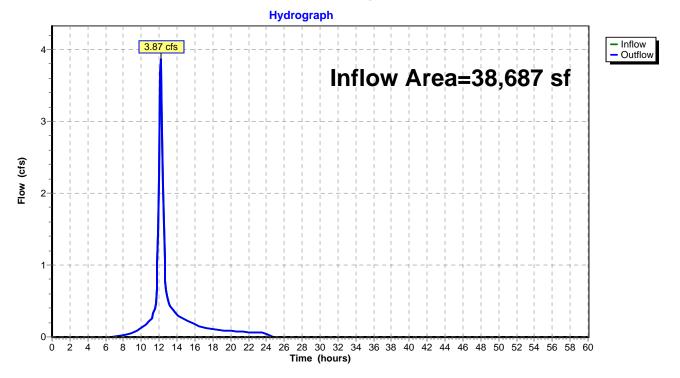
Reach DP1: Design Point 1

Summary for Reach DP2: Design Point 2

Inflow Are	a =	128,634 sf, 51.86% Impervious, Inflow Depth >	5.97"	for 50 Year, 24 Hour Storm event
Inflow	=	7.91 cfs @ 12.23 hrs, Volume= 63,945 d	of	
Outflow	=	7.91 cfs @ 12.23 hrs, Volume= 63,945 c	cf, Atter	n= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs / 3

Hydrograph Inflow Outflow 7.91 cfs 8-Inflow Area=128,634 sf 7-6-5 Flow (cfs) 4 3-2 1-0 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 Time (hours) 2 4 6 Ó


Reach DP2: Design Point 2

Summary for Reach DP3: Design Point 3

Inflow Are	a =	38,687 sf, 9.93% Imperviou	s, Inflow Depth = 4.89 "	for 50 Year, 24 Hour Storm event
Inflow	=	3.87 cfs @ 12.16 hrs, Volume	= 15,753 cf	
Outflow	=	3.87 cfs @ 12.16 hrs, Volume	= 15,753 cf, Atte	n= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs / 3

Reach DP3: Design Point 3

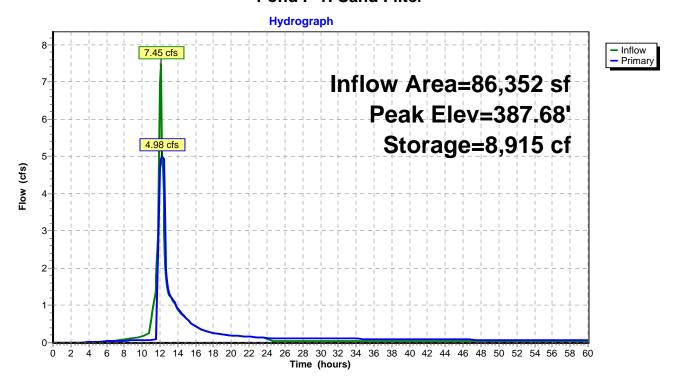
Summary for Pond F-1: Sand Filter

Inflow Area =	86,352 sf, 71.03% Impervious,	Inflow Depth > 5.97" for 50 Year, 24 Hour Storm event
Inflow =	7.45 cfs @ 12.06 hrs, Volume=	42,942 cf
Outflow =	4.98 cfs @ 12.24 hrs, Volume=	42,715 cf, Atten= 33%, Lag= 10.5 min
Primary =	4.98 cfs @ 12.24 hrs, Volume=	42,715 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs / 3 Peak Elev= 387.68' @ 12.24 hrs Surf.Area= 3,530 sf Storage= 8,915 cf

Plug-Flow detention time= 279.0 min calculated for 42,715 cf (99% of inflow) Center-of-Mass det. time= 265.7 min (1,280.2 - 1,014.5)

Volume	Inve	rt Avail.Sto	rage Storage	Description	
#1	384.00	D' 10,07	72 cf Custom	n Stage Data (Pi	rismatic)Listed below (Recalc)
Elevatio		Surf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
384.0	00	1,386	0	0	
385.0	00	1,903	1,645	1,645	
386.0	00	2,483	2,193	3,838	
387.0	00	3,135	2,809	6,647	
388.0	00	3,716	3,426	10,072	
Device	Routing	Invert	Outlet Device	S	
#1	Primary	381.50'	10.0" Round	I Culvert	
#2 #3			Inlet / Outlet I n= 0.013 Cor 1.750 in/hr Sa 24.0" x 24.0"	nvert= 381.50' / rugated PE, sm and Filter Bed o	headwall, Ke= 0.900 377.00' S= 0.1184 '/' Cc= 0.900 ooth interior, Flow Area= 0.55 sf over Surface area w Grate C= 0.600 ads


Primary OutFlow Max=4.97 cfs @ 12.24 hrs HW=387.66' TW=379.72' (Dynamic Tailwater)

-1=Culvert (Inlet Controls 4.97 cfs @ 9.11 fps)

2=Sand Filter Bed (Passes < 0.14 cfs potential flow)

-3=Overflow Grate (Passes < 14.19 cfs potential flow)

Pond F-1: Sand Filter

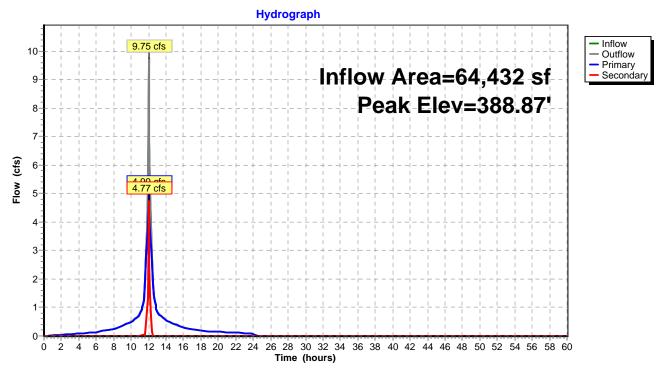
Park Place - DEV

Faik Flace - DEV	Type III 24-III 50 Teal, 2
Prepared by AKRF, Inc.	
HydroCAD® 10.00-12 s/n 04852	© 2014 HydroCAD Software Solutions LLC

Elevation Surface Storage Elevation Surface Storage (cubic-feet) (feet) (cubic-feet) (feet) (sq-ft) (sq-ft) 384.00 1,386 386.65 2,907 5,589 0 384.05 1,412 70 386.70 2,939 5,735 1,438 141 2,972 5,883 384.10 386.75 1,464 214 3,005 6,033 384.15 386.80 6,184 384.20 1,489 288 386.85 3,037 384.25 1,515 363 386.90 3,070 6,336 384.30 1,541 439 386.95 3,102 6,491 384.35 1,567 517 387.00 3,135 6,647 384.40 1,593 596 387.05 6,804 3,164 384.45 1,619 676 387.10 3,193 6,963 384.50 387.15 7,123 1,645 758 3,222 384.55 1,670 840 387.20 3,251 7,285 384.60 1,696 925 387.25 3,280 7,448 384.65 1,722 1,010 387.30 3,309 7,613 7,779 384.70 1,748 1,097 387.35 3,338 1,774 387.40 384.75 1,185 3,367 7,947 384.80 1,800 1,274 387.45 3,396 8,116 3,426 384.85 1,825 1,365 387.50 8,287 384.90 1,851 1,457 387.55 3,455 8,459 384.95 1,877 1,550 387.60 3,484 8,632 385.00 1,903 1,645 387.65 3,513 8,807 1,932 1,740 387.70 3,542 8,983 385.05 1,838 385.10 1,961 387.75 3,571 9,161 385.15 1,990 1,936 387.80 3,600 9,340 9,521 385.20 2,019 2,037 387.85 3,629 2,138 387.90 9,703 385.25 2,048 3,658 2,242 387.95 385.30 9,887 2,077 3,687 385.35 2,346 2,106 388.00 3,716 10,072 385.40 2,135 2,452 2,560 385.45 2,164 385.50 2,193 2,669 385.55 2,222 2,779 385.60 2,251 2,891 385.65 2,280 3,004 385.70 2,309 3,119 385.75 2,338 3,235 385.80 2,367 3,353 385.85 2,396 3,472 385.90 3,592 2,425 385.95 3,714 2,454 386.00 2,483 3,838 386.05 2,516 3,962 386.10 2,548 4,089 386.15 2,581 4,217 4,347 386.20 2,613 386.25 2,646 4,479 4,612 2,679 386.30 4,746 386.35 2,711 4,883 386.40 2,744 386.45 2,776 5,021 386.50 2,809 5,161 386.55 2,842 5,302 386.60 2,874 5,445

Stage-Area-Storage for Pond F-1: Sand Filter

Summary for Pond FS: Flow Splitter


Inflow Area = 64,432 sf, 86.80% Impervious, Inflow Depth = 6.94" for 50 Year, 24 Hour Storm event Inflow 9.75 cfs @ 12.01 hrs. Volume= 37.262 cf = 9.75 cfs @ 12.01 hrs, Volume= Outflow 37,262 cf, Atten= 0%, Lag= 0.0 min = 4.99 cfs @ 12.01 hrs, Volume= Primary 33,195 cf = Secondary = 4.77 cfs @ 12.01 hrs, Volume= 4,068 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs / 3 Peak Elev= 388.87' @ 12.01 hrs Flood Elev= 392.00'

900
900

Primary OutFlow Max=4.91 cfs @ 12.01 hrs HW=388.84' TW=387.73' (Dynamic Tailwater) -1=Culvert to Sed Basin (Inlet Controls 4.91 cfs @ 4.00 fps)

Secondary OutFlow Max=4.46 cfs @ 12.01 hrs HW=388.83' TW=379.22' (Dynamic Tailwater) 2=Culvert (Inlet Controls 4.46 cfs @ 2.73 fps)

Pond FS: Flow Splitter

Elevation	Storage	Elevation	Storage	Elevation	Storage
(feet)	(cubic-feet)	(feet)	(cubic-feet)	(feet)	(cubic-feet)
386.00	0	388.12	0	390.24	0
386.04	0	388.16	0	390.28	0
386.08	0	388.20	0	390.32	0
386.12	0	388.24	0	390.36	0
386.16	0	388.28	0	390.40	0
386.20	0	388.32	0	390.44	0
386.24	0	388.36	0	390.48	0
386.28	0	388.40	0	390.52	0
386.32	0	388.44	0	390.56	0
386.36	0	388.48	0	390.60	0
386.40	0	388.52	0	390.64	0
386.44	0	388.56	0	390.68	0
386.48	0	388.60	0	390.72	0
386.52	0	388.64	0	390.76	0
386.56	0	388.68	0	390.80	0
386.60	0	388.72	0	390.84	0
386.64	0	388.76	0	390.88	0
386.68	0	388.80	0	390.92	0
386.72	0	388.84	0	390.96	0
386.76	0	388.88	0	391.00	0
386.80	0	388.92	0	391.04	0
386.84	0	388.96	0	391.08	0
386.88	0	389.00	0	391.12	0
386.92	0	389.04	0	391.16	0
386.96	0	389.08	0	391.20	0
387.00	0	389.12	0	391.24	0
387.04	0	389.16	0	391.28	0
387.08	0	389.20	0	391.32	0
387.12	0	389.24	0	391.36	0
387.16	0	389.28	0	391.40	0
387.20	0	389.32	0	391.44	0
387.24	0	389.36	0	391.48	0
387.28	0	389.40	0	391.52	0
387.32	0	389.44	0	391.56	0
387.36	0	389.48	0	391.60	0
387.40	0	389.52	0	391.64	0
387.44	0	389.56	0	391.68	0
387.48	0	389.60	0	391.72	0
387.52	0	389.64	0	391.76	0
387.56	0	389.68	0	391.80	0
387.60 387.64	0 0	389.72 389.76	0	391.84 391.88	0
387.68	0	389.80	0 0	391.88	0
	0	389.80	0	391.92	0 0
387.72 387.76	0	389.88	0	392.00	0
387.80	0	389.92	0	392.00	0
387.84	0	389.92	0		
387.88	0	390.00	0		
387.92	0	390.00	0		
387.96	0	390.04	0		
388.00	0	390.12	0		
388.04	0	390.12	0		
388.08	0	390.20	0		
000.00	5	000.20	5		

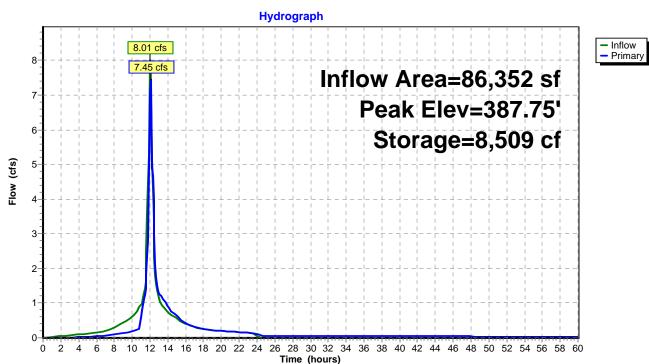
Stage-Area-Storage for Pond FS: Flow Splitter

Summary for Pond SB: Sedimentation Basin

Inflow Area =	86,352 sf, 71.03% Impervious,	Inflow Depth = 6.07" for 50 Year, 24 Hour Storm event
Inflow =	8.01 cfs @ 12.02 hrs, Volume=	43,684 cf
Outflow =	7.45 cfs @ 12.06 hrs, Volume=	42,942 cf, Atten= 7%, Lag= 2.6 min
Primary =	7.45 cfs @ 12.06 hrs, Volume=	42,942 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs / 3 Peak Elev= 387.75' @ 12.11 hrs Surf.Area= 3,375 sf Storage= 8,509 cf

Plug-Flow detention time= 265.4 min calculated for 42,942 cf (98% of inflow) Center-of-Mass det. time= 254.4 min (1,014.5 - 760.1)


Volume	Inve	rt Avail.Sto	rage Storage	e Description		
#1	384.00)' 9,36	61 cf Custor	n Stage Data (Pi	ismatic)Listed below (Recalc)	
Elevatio		Surf.Area	Inc.Store	Cum.Store		
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)		
384.0	00	1,219	0	0		
385.0	00	1,730	1,475	1,475		
386.0	00	2,313	2,022	3,496		
387.0	00	2,951	2,632	6,128		
388.0	00	3,514	3,233	9,361		
Device	Routing	Invert	Outlet Device	es		
#1	Primary	382.00'	10.0" Roun	d Culvert		
			L= 38.0' CP	P, projecting, no	headwall, Ke= 0.900	
			Inlet / Outlet Invert= 382.00' / 377.00' S= 0.1316 '/' Cc= 0.900			
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.55 sf			
#2	Device 1	384.00'			tions X 4.00 columns	
				th 3.0" cc spacing	5	
#3	Device 1	387.00'			r Opening C= 0.600	
				eir flow at low hea		
#4	Primary	387.50'			2 End Contraction(s)	
			0.5' Crest He	eight		

Primary OutFlow Max=7.30 cfs @ 12.06 hrs HW=387.74' TW=387.46' (Dynamic Tailwater)

2=Standpipe Perforations (Passes < 0.11 cfs potential flow)

-3=Standpipe Riser Opening (Passes < 2.01 cfs potential flow)

-4=Overflow Spillway (Weir Controls 6.20 cfs @ 1.71 fps)

Pond SB: Sedimentation Basin

	-		-		
Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
384.00	1,219	0	386.65	2,728	5,134
384.05	1,245	62	386.70	2,760	5,271
384.10	1,270	124	386.75	2,792	5,410
384.15	1,296	189	386.80	2,823	5,551
384.20	1,321	254	386.85	2,855	5,693
384.25	1,347	321	386.90	2,887	5,836
384.30	1,372	389	386.95	2,919	5,981
384.35	1,398	458	387.00	2,951	6,128
384.40	1,423	528	387.05	2,979	6,276
384.45	1,449	600	387.10	3,007	6,426
384.50	1,475	673	387.15	3,035	6,577
384.55	1,500	748	387.20	3,064	6,729
384.60	1,526	823	387.25	3,092	6,883
384.65	1,551	900	387.30	3,120	7,039
384.70	1,577	978	387.35	3,148	7,195
384.75	1,602	1,058	387.40	3,176	7,353
384.80	1,628	1,139	387.45	3,204	7,513
384.85	1,653	1,221	387.50	3,233	7,674
384.90	1,679	1,304	387.55	3,261	7,836
384.95	1,704	1,389	387.60	3,289	8,000
385.00	1,730	1,475	387.65	3,317	8,165
385.05	1,759	1,562	387.70	3,345	8,332
385.10	1,788	1,650	387.75	3,373	8,500
385.15	1,817	1,741	387.80	3,401	8,669
385.20	1,847	1,832	387.85	3,430	8,840
385.25	1,876	1,925	387.90	3,458	9,012
385.30	1,905 1,934	2,020	387.95	3,486 2 51 4	9,186
385.35 385.40	1,963	2,116 2,213	388.00	3,514	9,361
385.45	1,992	2,213			
385.50	2,022	2,312			
385.55	2,051	2,514			
385.60	2,080	2,617			
385.65	2,000	2,722			
385.70	2,138	2,828			
385.75	2,167	2,936			
385.80	2,196	3,045			
385.85	2,226	3,156			
385.90	2,255	3,268			
385.95	2,284	3,381			
386.00	2,313	3,496			
386.05	2,345	3,612			
386.10	2,377	3,730			
386.15	2,409	3,850			
386.20	2,441	3,971			
386.25	2,473	4,094			
386.30	2,504	4,219			
386.35	2,536	4,345			
386.40	2,568	4,472			
386.45	2,600	4,601			
000 =0	~ ~ ~ ~	4 700			

2,632

2,664

2,696

386.50

386.55

386.60

4,732

4,865

4,999

Stage-Area-Storage for Pond SB: Sedimentation Basin

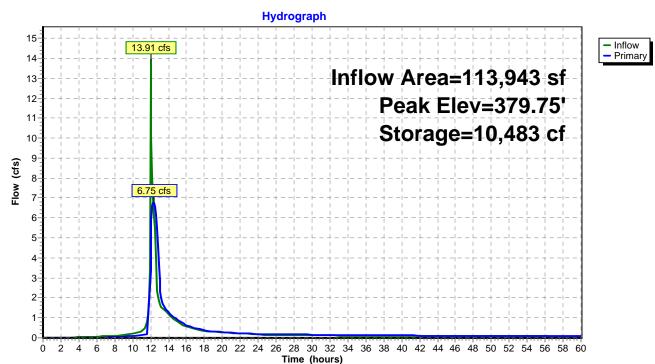
Summary for Pond W-4: W-4 Pocket Wetland

Inflow = 13.91 cfs @ 12.02 hrs, Volume= 59,610 cf	
Outflow = 6.75 cfs @ 12.33 hrs, Volume= 58,595 cf, Atten= 51%, Lag= 18.3 min	
Primary = 6.75 cfs @ 12.33 hrs, Volume= 58,595 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs / 3 Peak Elev= 379.75' @ 12.33 hrs Surf.Area= 7,238 sf Storage= 10,483 cf

Plug-Flow detention time= 133.4 min calculated for 58,595 cf (98% of inflow) Center-of-Mass det. time= 93.1 min (1,228.9 - 1,135.8)

Volume	Inve	rt Avail.Sto	rage	Storage	Description	
#1	378.00	0' 20,80	08 cf	Custom	Stage Data (P	rismatic)Listed below (Recalc)
Elevatio		Surf.Area (sq-ft)		:.Store c-feet)	Cum.Store (cubic-feet)	
378.0	00	4,855		0	0	
379.0	00	6,074		5,465	5,465	
380.0	00	7,618		6,846	12,311	
381.0	00	9,377		8,498	20,808	
Device	Routing	Invert	Outle	et Devices	6	
#1	Primary	373.00'	12.0	" Round	Culvert	
#2 #3	Device 1 Device 1	378.00' 378.70'				
			• • • •		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·


Primary OutFlow Max=6.73 cfs @ 12.33 hrs HW=379.75' TW=0.00' (Dynamic Tailwater)

-1=Culvert (Passes 6.73 cfs of 9.41 cfs potential flow)

2=Low Flow Orifice (Orifice Controls 0.30 cfs @ 6.13 fps)

-3=High Flow Orifice (36Wx6H) (Orifice Controls 6.43 cfs @ 4.28 fps)

Prepared by AKRF, Inc.

Pond W-4: W-4 Pocket Wetland

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
378.00	4,855	0	380.65	8,761	17,634
378.05	4,916	244	380.70	8,849	18,074
378.10	4,977	492	380.75	8,937	18,519
378.15	5,038	742	380.80	9,025	18,968
378.20	5,099	995	380.85	9,113	19,421
378.25	5,160	1,252	380.90	9,201	19,879
378.30	5,221	1,511	380.95	9,289	20,341
378.35	5,282	1,774	381.00	9,377	20,808
378.40	5,343	2,040		•,••	_0,000
378.45	5,404	2,308			
378.50	5,465	2,580			
378.55	5,525	2,855			
378.60	5,586	3,132			
378.65	5,647	3,413			
378.70	5,708	3,697			
378.75	5,769	3,984			
378.80	5,830	4,274			
378.85	5,891	4,567			
378.90	5,952	4,863			
378.95	6,013	5,162			
379.00	6,074	5,465			
379.05	6,151	5,770			
379.10	6,228	6,080			
379.15	6,306	6,393			
379.20	6,383	6,710			
379.25	6,460	7,031			
379.30	6,537	7,356			
379.35	6,614	7,685			
379.40	6,692	8,018			
379.45	6,769	8,354			
379.50	6,846	8,695			
379.55	6,923	9,039			
379.60	7,000	9,387			
379.65	7,078	9,739			
379.70	7,155	10,095			
379.75	7,232	10,454			
379.80	7,309	10,818			
379.85	7,386	11,185			
379.90	7,464	11,556			
379.95	7,541	11,932			
380.00	7,618	12,311			
380.05	7,706	12,694			
380.10	7,794	13,081			
380.15	7,882	13,473			
380.20	7,970	13,869			
380.25	8,058	14,270			
380.30	8,146	14,675			
380.35	8,234	15,085			
380.40	8,322	15,498			
380.45	8,410	15,917			
380.50	8,498	16,339			
380.55	8,585	16,766			
380.60	8,673	17,198			

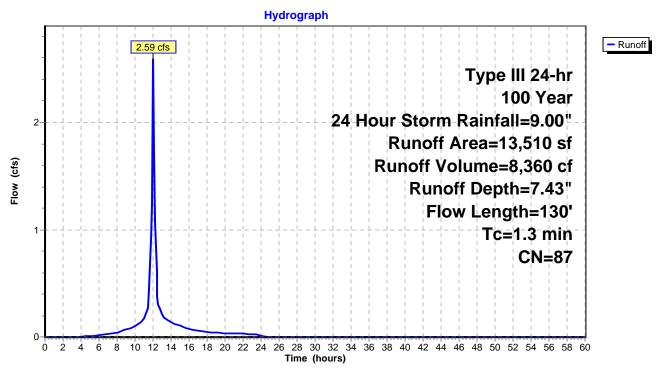
Stage-Area-Storage for Pond W-4: W-4 Pocket Wetland

Park Place - DEV	Type III 24-hr 100 Year, 24 Hour Stor	rm Rainfall=9.00"
Prepared by AKRF, Inc.		Printed 12/5/2014
HydroCAD® 10.00-12 s/n 04852 © 2014 HydroC	AD Software Solutions LLC	Page 139

Time span=0.00-60.00 hrs, dt=0.10 hrs, 601 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPost 2E: Post 2E	Runoff Area=13,510 sf 40.08% Impervious Runoff Depth=7.43" Flow Length=130' Tc=1.3 min CN=87 Runoff=2.59 cfs 8,360 cf
Subcatchment Post 1: DA 1 Flow	Runoff Area=248,549 sf 0.00% Impervious Runoff Depth=5.71" Length=605' Tc=18.8 min CN=73 Runoff=25.66 cfs 118,176 cf
Subcatchment Post 2A: Post 2A Flow Length=150'	Runoff Area=4,907 sf 100.00% Impervious Runoff Depth=8.76" Slope=0.0100 '/' Tc=1.9 min CN=98 Runoff=0.98 cfs 3,582 cf
Subcatchment Post 2B: Post 2B	Runoff Area=14,630 sf 41.85% Impervious Runoff Depth=7.30" Flow Length=346' Tc=11.0 min CN=86 Runoff=2.15 cfs 8,904 cf
Subcatchment Post 2C: Post 2C Flow Length=100'	Runoff Area=44,895 sf 100.00% Impervious Runoff Depth=8.76" Slope=0.1350 '/' Tc=0.5 min CN=98 Runoff=9.52 cfs 32,772 cf
Subcatchment Post 2D: Post 2D	Runoff Area=8,410 sf 0.00% Impervious Runoff Depth=6.81" Flow Length=200' Tc=4.5 min CN=82 Runoff=1.39 cfs 4,775 cf
Subcatchment Post 2F: Post 2F Flow Length=119'	Runoff Area=4,258 sf 100.00% Impervious Runoff Depth=8.76" Slope=0.1687 '/' Tc=0.1 min CN=98 Runoff=0.91 cfs 3,108 cf
Subcatchment Post 2G: Post 2G F	Runoff Area=23,333 sf 4.77% Impervious Runoff Depth=6.69" Tow Length=112' Tc=0.9 min CN=81 Runoff=4.22 cfs 13,010 cf
Subcatchment Post 2H: Post 2H	Runoff Area=14,691 sf 0.00% Impervious Runoff Depth=5.71" Flow Length=353' Tc=10.5 min CN=73 Runoff=1.78 cfs 6,985 cf
Subcatchment Post 3A: Post 3A	Runoff Area=33,605 sf 11.43% Impervious Runoff Depth=6.32" ow Length=110' Tc=11.9 min CN=78 Runoff=4.39 cfs 17,705 cf
Subcatchment Post 3B: Post 3B Flow Length=100'	Runoff Area=5,082 sf 0.00% Impervious Runoff Depth=5.95" Slope=0.0850 '/' Tc=5.3 min CN=75 Runoff=0.76 cfs 2,521 cf
Reach DP1: Design Point 1	Inflow=25.66 cfs 118,176 cf Outflow=25.66 cfs 118,176 cf
Reach DP2: Design Point 2	Inflow=9.87 cfs 79,502 cf Outflow=9.87 cfs 79,502 cf
Reach DP3: Design Point 3	Inflow=4.93 cfs 20,225 cf Outflow=4.93 cfs 20,225 cf
Pond F-1: Sand Filter	Peak Elev=387.93' Storage=9,799 cf Inflow=8.06 cfs 51,063 cf Outflow=5.08 cfs 50,825 cf
Pond FS: Flow Splitter Primary=5.31 cfs 38,6	Peak Elev=389.08' Inflow=11.76 cfs 45,258 cf 376 cf Secondary=6.45 cfs 6,591 cf Outflow=11.76 cfs 45,258 cf

Park Place - DEV Prepared by AKRF, Inc. HydroCAD® 10.00-12 s/n 04852 © 2014 Hydr	Type III 24-hr 100 Year, 24 Hou	ur Storm Rainfall=9.00" Printed 12/5/2014 Page 140
Pond SB: Sedimentation Basin	Peak Elev=387.92' Storage=9,069 cf	Inflow=9.05 cfs 51,812 cf
	(Outflow=8.06 cfs 51,063 cf
Pond W-4: W-4 Pocket Wetland	Peak Elev=380.16' Storage=13,531 cf	Inflow=16.51 cfs 73,535 cf
	(Outflow=8.26 cfs 72,517 cf
Total Runoff Area = 415,870 sf 83		age Runoff Depth = 6.35" % Impervious = 70,552 sf

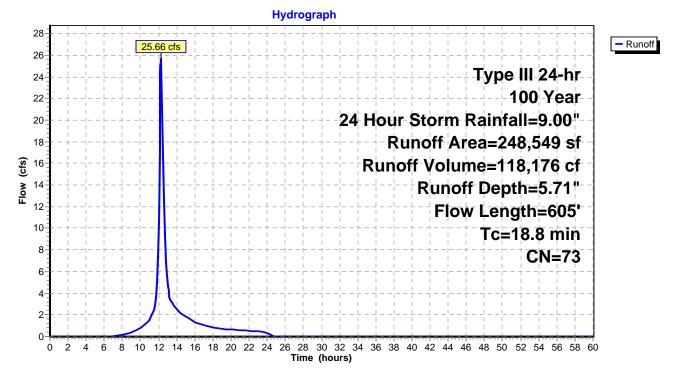

Summary for Subcatchment Post 2E: Post 2E

Runoff = 2.59 cfs @ 12.01 hrs, Volume= 8,360 cf, Depth= 7.43"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 100 Year, 24 Hour Storm Rainfall=9.00"

_	A	rea (sf)	CN Description						
	5,415 98 Paved parking, HSG C								
_	8,095 79 50-75% Grass cover, Fair, HSG C								
	13,510 87 Weighted Average								
	8,095 59.92% Pervious Area								
	5,415 40.08% Impervious Area								
	_		~		•	- · · ·			
	Tc	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	1.2	100	0.0200	1.44		Sheet Flow,			
						Smooth surfaces n= 0.011 P2= 3.50"			
	0.1	30	0.3800	9.92		Shallow Concentrated Flow, Pavement			
_						Unpaved Kv= 16.1 fps			
	1.3	130	Total						

Subcatchment Post 2E: Post 2E

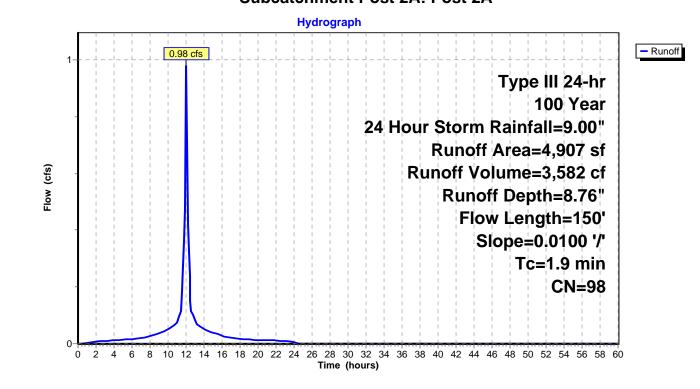

Summary for Subcatchment Post 1: DA 1

Runoff = 25.66 cfs @ 12.27 hrs, Volume= 118,176 cf, Depth= 5.71"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 100 Year, 24 Hour Storm Rainfall=9.00"

	Area (sf)	CN [Description					
	159,708	73 V	Voods, Fai	r, HSG C				
	1,496	 73 Woods, Fair, HSG C 89 Gravel roads, HSG C 74 >75% Grass cover, Good, HSG C 73 Weighted Average 100.00% Pervious Area Slope Velocity Capacity Description 						
	87,345	74 >	-75% Gras	s cover, Go	bod, HSG C			
	248,549		Weighted Average					
	248,549	1	100.00% Pervious Area					
Tc	Length	Slope		Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
14.8	250	0.0400	0.28		Sheet Flow,			
					Grass: Short n= 0.150 P2= 3.50"			
1.0	105	0.0667	1.81		Shallow Concentrated Flow,			
					Short Grass Pasture Kv= 7.0 fps			
3.0	250	0.0760	1.38		Shallow Concentrated Flow,			
					Woodland Kv= 5.0 fps			
18.8	605	Total						

Subcatchment Post 1: DA 1

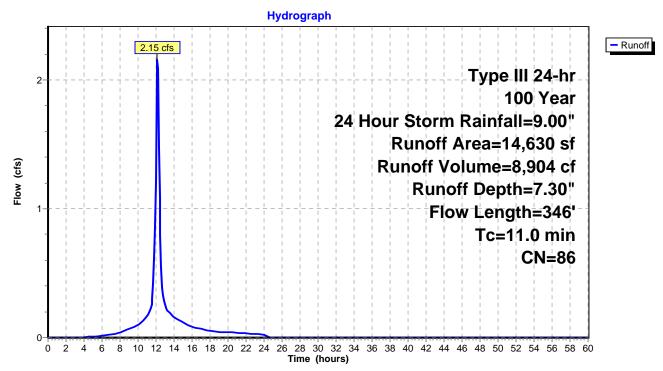

Summary for Subcatchment Post 2A: Post 2A

Runoff = 0.98 cfs @ 12.02 hrs, Volume= 3,582 cf, Depth= 8.76"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 100 Year, 24 Hour Storm Rainfall=9.00"

Α	rea (sf)	CN D	escription		
	4,907	98 F	aved park	ing, HSG C	;
	4,907	1	00.00% In	pervious A	rea
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
1.5	100	0.0100	1.09		Sheet Flow, Pavement
0.4	50	0.0100	2.03		Smooth surfaces n= 0.011 P2= 3.50" Shallow Concentrated Flow, Pavement Paved Kv= 20.3 fps
1.9	150	Total			

Subcatchment Post 2A: Post 2A

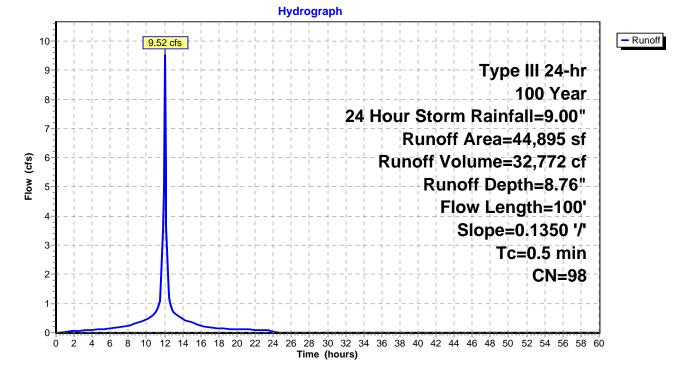

Summary for Subcatchment Post 2B: Post 2B

Runoff = 2.15 cfs @ 12.15 hrs, Volume= 8,904 cf, Depth= 7.30"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 100 Year, 24 Hour Storm Rainfall=9.00"

Ar	ea (sf)	CN D	escription		
	6,122	98 P	aved park	ing	
	6,154	74 >	75% Grass	s cover, Go	ood, HSG C
	2,354	89 G	Gravel road	ls, HSG C	
	14,630	86 V	Veighted A	verage	
	8,508	5	8.15% Per	vious Area	
	6,122	4	1.85% Imp	pervious Are	ea
Tc	Length	Slope	Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
10.3	100	0.0400	0.16		Sheet Flow, Landscaped area
					Grass: Dense n= 0.240 P2= 3.50"
0.7	246	0.0100	5.90	4.63	Pipe Channel, Pipe
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
					n= 0.010 PVC, smooth interior
11.0	346	Total			

Subcatchment Post 2B: Post 2B

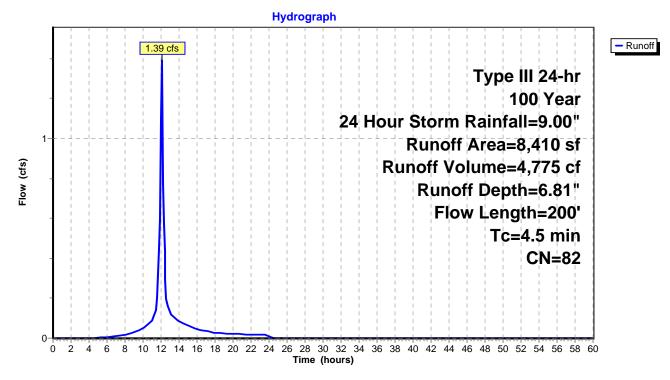

Summary for Subcatchment Post 2C: Post 2C

Runoff = 9.52 cfs @ 12.00 hrs, Volume= 32,772 cf, Depth= 8.76"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 100 Year, 24 Hour Storm Rainfall=9.00"

A	rea (sf)	CN	Description					
	44,895	98	Paved park	ing, HSG C				
	44,895		100.00% In	npervious A	rea			
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description			
0.5	100	0.1350) 3.09		Sheet Flow, Smooth surfaces	n= 0.011	P2= 3.50"	

Subcatchment Post 2C: Post 2C


Summary for Subcatchment Post 2D: Post 2D

Runoff = 1.39 cfs @ 12.08 hrs, Volume= 4,775 cf, Depth= 6.81"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 100 Year, 24 Hour Storm Rainfall=9.00"

<i>H</i>	Area (sf)	CN	Description					
	6,293	79	50-75% Gra	ass cover, F	Fair, HSG C			
	2,117	89	Gravel road	ls, HSG C				
	8,410	82	82 Weighted Average					
	8,410		100.00% Pe	ervious Are	а			
Тс	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)		(cfs)	Description			
4.1	50	0.1000	0.20		Sheet Flow, Landscaped			
					Grass: Dense n= 0.240 P2= 3.50"			
0.4	150	0.0860	5.95		Shallow Concentrated Flow, Maintenance Drive			
					Paved Kv= 20.3 fps			
4.5	200	Total						

Subcatchment Post 2D: Post 2D

Summary for Subcatchment Post 2F: Post 2F

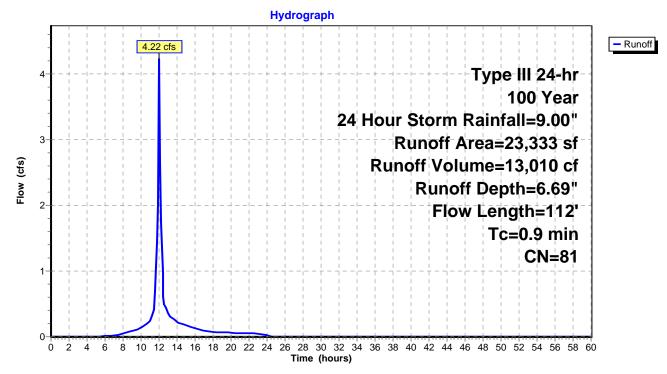
Runoff = 0.91 cfs @ 12.00 hrs, Volume= 3,108 cf, Depth= 8.76"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 100 Year, 24 Hour Storm Rainfall=9.00"

_	A	rea (sf)	CN	Description		
		4,258	98	Roofs, HSG	G C	
		4,258		100.00% In	npervious A	vrea
_	Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description
_	0.1	119	0.1687	14.22	4.96	Pipe Channel, Roof Leader 8.0" Round Area= 0.3 sf Perim= 2.1' r= 0.17' n= 0.013 Corrugated PE, smooth interior

Subcatchment Post 2F: Post 2F

Hydrograph - Runoff 0.91 cfs Type III 24-hr 100 Year 24 Hour Storm Rainfall=9.00" Runoff Area=4,258 sf Flow (cfs) Runoff Volume=3,108 cf Runoff Depth=8.76" Flow Length=119' Slope=0.1687 '/' Tc=0.1 min **CN=98** ż 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 0 Time (hours)


Summary for Subcatchment Post 2G: Post 2G

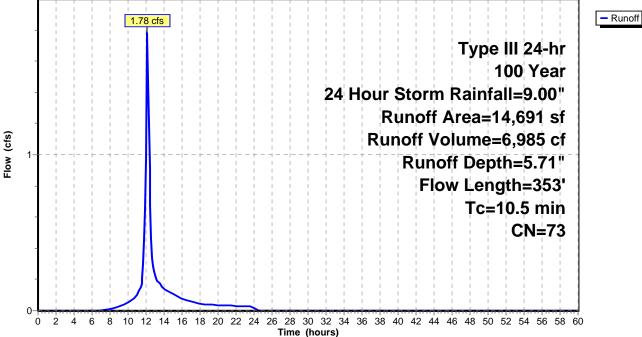
Runoff = 4.22 cfs @ 12.01 hrs, Volume= 13,010 cf, Depth= 6.69"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 100 Year, 24 Hour Storm Rainfall=9.00"

	A	rea (sf)	CN E	Description		
		1,113	98 F	aved park	ing, HSG C	
		20,037	79 5	0-75% Gra	ass cover, F	Fair, HSG C
		2,183	89 C	Gravel road	ls, HSG C	
		23,333	81 V	Veighted A	verage	
		22,220	g	5.23% Per	vious Area	
		1,113	4	.77% Impe	ervious Area	a
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	0.9	80	0.0250	1.50		Sheet Flow, Pavement
						Smooth surfaces n= 0.011 P2= 3.50"
	0.0	32	0.4600	10.92		Shallow Concentrated Flow, Landscaped
_						Unpaved Kv= 16.1 fps
	0.9	112	Total			

Subcatchment Post 2G: Post 2G

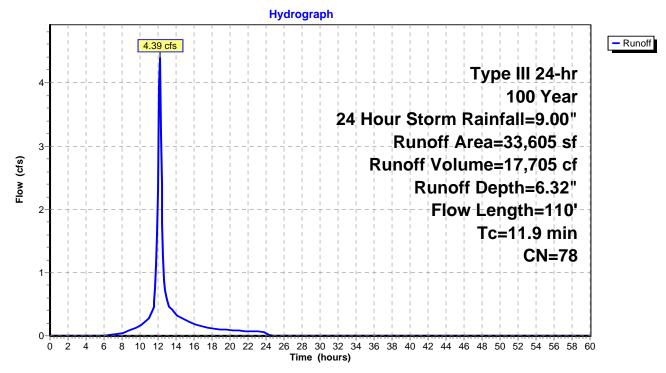
Summary for Subcatchment Post 2H: Post 2H


Runoff = 1.78 cfs @ 12.15 hrs, Volume= 6,985 cf, Depth= 5.71"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 100 Year, 24 Hour Storm Rainfall=9.00"

A	rea (sf)	CN E	Description		
	14,691	73 V	Voods, Fai	r, HSG C	
	14,691	1	00.00% Pe	ervious Are	a
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
8.8	100	0.0600	0.19	, <i>i</i>	Sheet Flow, Landscaped
1.7	253	0.0260	2.42		Grass: Dense n= 0.240 P2= 3.50" Shallow Concentrated Flow, Grassed waterway Grassed Waterway Kv= 15.0 fps
10.5	353	Total			

Subcatchment Post 2H: Post 2H


Summary for Subcatchment Post 3A: Post 3A

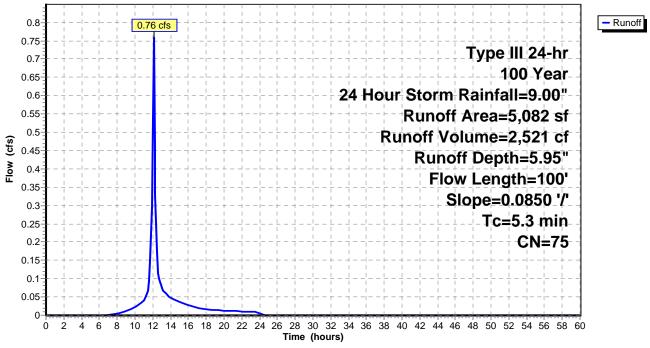
Runoff = 4.39 cfs @ 12.18 hrs, Volume= 17,705 cf, Depth= 6.32"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 100 Year, 24 Hour Storm Rainfall=9.00"

Α	rea (sf)	CN E	Description		
	3,842	98 F	aved park	ing, HSG C)
	20,173	73 V	Voods, Fai	r, HSG C	
	9,590	79 5	0-75% Gra	ass cover, I	Fair, HSG C
	33,605	78 V	Veighted A	verage	
	29,763	8	8.57% Per	vious Area	
	3,842	1	1.43% Imp	ervious Ar	ea
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
4.4	67	0.0600	0.25		Sheet Flow, Landscaped
					Grass: Short n= 0.150 P2= 3.50"
7.5	43	0.0460	0.10		Sheet Flow, Wooded
					Woods: Light underbrush n= 0.400 P2= 3.50"
11.9	110	Total			

Subcatchment Post 3A: Post 3A

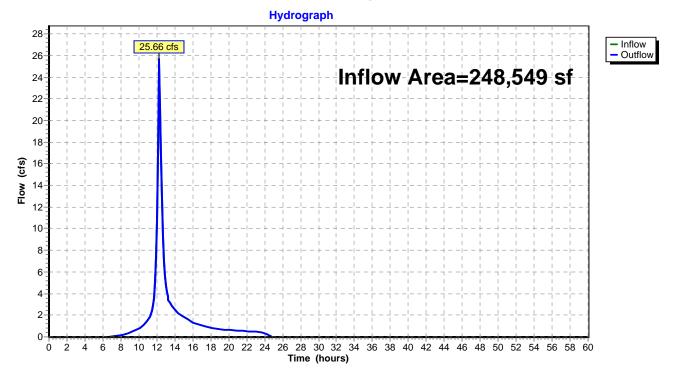
Summary for Subcatchment Post 3B: Post 3B


Runoff = 0.76 cfs @ 12.09 hrs, Volume= 2,521 cf, Depth= 5.95"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs Type III 24-hr 100 Year, 24 Hour Storm Rainfall=9.00"

A	rea (sf)	CN	Description					
	3,044	73	Woods, Fai	r, HSG C				
	2,038	79	50-75% Gra	ass cover, F	Fair, HSG C			
	5,082	75	Weighted A	verage				
	5,082		100.00% Pe	ervious Are	a			
Тс	Length	Slope		Capacity	Description			
<u>(min)</u>	(feet)	(ft/ft) (ft/sec)	(cfs)				
5.3	100	0.0850	0.32		Sheet Flow,			
					Grass: Short	n= 0.150	P2= 3.50"	

Subcatchment Post 3B: Post 3B

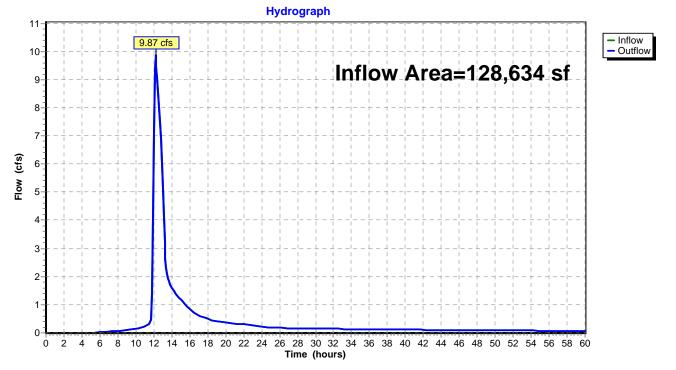


Summary for Reach DP1: Design Point 1

Inflow Are	a =	248,549 sf,	0.00% Impervious, I	nflow Depth = 5.71"	for 100 Year, 24 Hour Storm event
Inflow	=	25.66 cfs @ 12	2.27 hrs, Volume=	118,176 cf	
Outflow	=	25.66 cfs @ 12	2.27 hrs, Volume=	118,176 cf, Atter	n= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs / 3

Reach DP1: Design Point 1

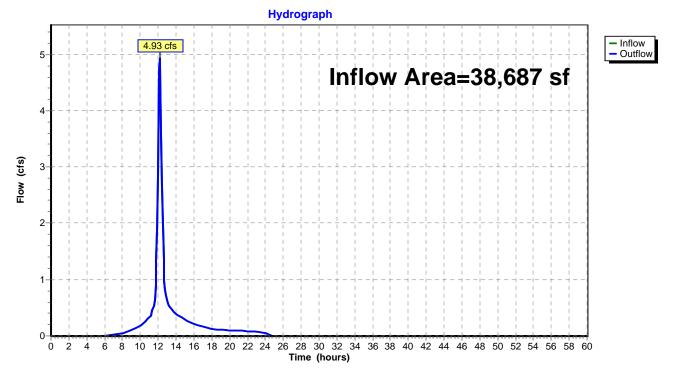


Summary for Reach DP2: Design Point 2

Inflow Are	a =	128,634 sf, 51.86% Impervious, Inflow Depth > 7.42" for 100 Year, 24 Hour Storm event	
Inflow	=	9.87 cfs @ 12.21 hrs, Volume= 79,502 cf	
Outflow	=	9.87 cfs @ 12.21 hrs, Volume= 79,502 cf, Atten= 0%, Lag= 0.0 min	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs / 3

Reach DP2: Design Point 2



Summary for Reach DP3: Design Point 3

Inflow Area	a =	38,687 sf, 9.93% Impervious, Inflow Depth = 6.27" for 100 Year, 24 Hour Storm event
Inflow	=	4.93 cfs @ 12.16 hrs, Volume= 20,225 cf
Outflow	=	4.93 cfs @ 12.16 hrs, Volume= 20,225 cf, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs / 3

Reach DP3: Design Point 3

Summary for Pond F-1: Sand Filter

Inflow Area =	86,352 sf, 71.03% Impervious,	Inflow Depth > 7.10" for 100 Year, 24 Hour Storm event
Inflow =	8.06 cfs @ 12.02 hrs, Volume=	51,063 cf
Outflow =	5.08 cfs @ 12.22 hrs, Volume=	50,825 cf, Atten= 37%, Lag= 11.8 min
Primary =	5.08 cfs @ 12.22 hrs, Volume=	50,825 cf

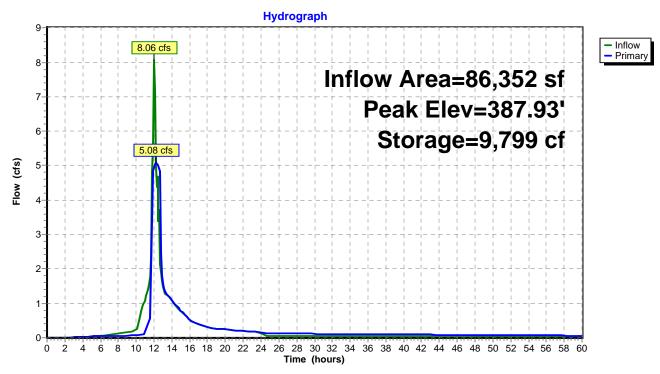
Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs / 3 Peak Elev= 387.93' @ 12.22 hrs Surf.Area= 3,673 sf Storage= 9,799 cf

Plug-Flow detention time= 240.5 min calculated for 50,825 cf (100% of inflow) Center-of-Mass det. time= 228.6 min (1,207.3 - 978.7)

Volume	Inve	rt Avail.Sto	rage Storage	e Description	
#1	384.00	D' 10,07	72 cf Custor	m Stage Data (P	rismatic)Listed below (Recalc)
Elevatio		Surf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
384.0	00	1,386	0	0	
385.0	00	1,903	1,645	1,645	
386.0	00	2,483	2,193	3,838	
387.0	00	3,135	2,809	6,647	
388.0	00	3,716	3,426	10,072	
Device	Routing	Invert	Outlet Devic	es	
#1	Primary	381.50'	Inlet / Outlet	PP, projecting, no Invert= 381.50' /	headwall, Ke= 0.900 377.00' S= 0.1184 '/' Cc= 0.900 ooth interior, Flow Area= 0.55 sf
#2 #3	Device 1 Device 1	384.00' 387.00'	1.750 in/hr \$ 24.0" x 24.0	Sand Filter Bed	over Surface area w Grate C= 0.600

Primary OutFlow Max=5.08 cfs @ 12.22 hrs HW=387.91' TW=380.13' (Dynamic Tailwater)

-1=Culvert (Inlet Controls 5.08 cfs @ 9.31 fps)


2=Sand Filter Bed (Passes < 0.15 cfs potential flow)

-3=Overflow Grate (Passes < 18.42 cfs potential flow)

Park Place - DEV

Prepared by AKRF, Inc. HydroCAD® 10.00-12 s/n 04852 © 2014 HydroCAD Software Solutions LLC

Pond F-1: Sand Filter

Park Place - DEV Prepared by AKRF, Inc.

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
384.00	1,386	0	386.65	2,907	5,589
384.05	1,412	70	386.70	2,939	5,735
384.10	1,438	141	386.75	2,972	5,883
384.15	1,464	214	386.80	3,005	6,033
384.20	1,489	288	386.85	3,037	6,184
384.25	1,515	363	386.90	3,070	6,336
384.30	1,541	439	386.95	3,102	6,491
384.35	1,567	517	387.00	3,135	6,647
384.40	1,593	596	387.05	3,164	6,804
384.45	1,619	676	387.10	3,193	6,963
384.50	1,645	758	387.15	3,222	7,123
384.55	1,670	840	387.20	3,251	7,285
384.60	1,696	925	387.25	3,280	7,448
384.65	1,722	1,010	387.30	3,309	7,613
384.70	1,748	1,010	387.35	3,338	7,779
384.75	1,774	1,185	387.40	3,367	7,947
				,	
384.80	1,800	1,274	387.45	3,396	8,116
384.85	1,825	1,365	387.50	3,426	8,287
384.90	1,851	1,457	387.55	3,455	8,459
384.95	1,877	1,550	387.60	3,484	8,632
385.00	1,903	1,645	387.65	3,513	8,807
385.05	1,932	1,740	387.70	3,542	8,983
385.10	1,961	1,838	387.75	3,571	9,161
385.15	1,990	1,936	387.80	3,600	9,340
385.20	2,019	2,037	387.85	3,629	9,521
385.25	2,048	2,138	387.90	3,658	9,703
385.30	2,077	2,242	387.95	3,687	9,887
385.35	2,106	2,346	388.00	3,716	10,072
385.40	2,135	2,452			
385.45	2,164	2,560			
385.50	2,193	2,669			
385.55	2,222	2,779			
385.60	2,251	2,891			
385.65	2,280	3,004			
385.70	2,309	3,119			
385.75	2,338	3,235			
385.80	2,367	3,353			
385.85	2,396	3,472			
385.90	2,425	3,592			
385.95	2,454	3,714			
386.00	2,483	3,838			
386.05	2,516	3,962			
386.10	2,548	4,089			
386.15	2,581	4,217			
386.20	2,613	4,347			
386.25	2,646	4,479			
386.30	2,679	4,612			
386.35	2,711	4,746			
386.40	2,744	4,883			
386.45	2,776	5,021			
386.50	2,809	5,161			
000 55	_,000	5,101			

2,842

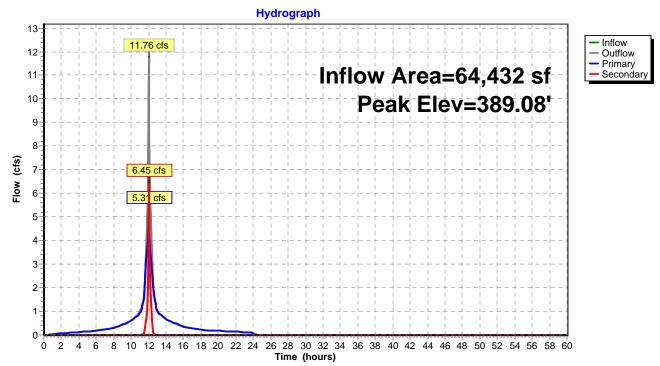
2,874

386.55 386.60 5,302

5,445

Stage-Area-Storage for Pond F-1: Sand Filter

Summary for Pond FS: Flow Splitter


Inflow Area = 64,432 sf, 86.80% Impervious, Inflow Depth = 8.43" for 100 Year, 24 Hour Storm event Inflow 11.76 cfs @ 12.01 hrs. Volume= 45.258 cf = 11.76 cfs @ 12.01 hrs, Volume= Outflow 45,258 cf, Atten= 0%, Lag= 0.0 min = 5.31 cfs @ 12.00 hrs, Volume= Primary 38,676 cf = Secondary = 6.45 cfs @ 12.01 hrs, Volume= 6,591 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs / 3 Peak Elev= 389.08' @ 12.02 hrs Flood Elev= 392.00'

Routing	Invert	Outlet Devices
Primary	386.00'	15.0" Round Culvert to Sed Basin L= 20.0' Ke= 0.900
		Inlet / Outlet Invert= 386.00' / 384.00' S= 0.1000 '/' Cc= 0.900
		n= 0.013, Flow Area= 1.23 sf
Secondary	387.80'	24.0" Round Culvert L= 106.0' Ke= 0.900
		Inlet / Outlet Invert= 387.80' / 381.00' S= 0.0642 '/' Cc= 0.900
		n= 0.013, Flow Area= 3.14 sf
	Primary	Primary 386.00'

Primary OutFlow Max=5.29 cfs @ 12.00 hrs HW=389.06' TW=387.77' (Dynamic Tailwater) -1=Culvert to Sed Basin (Inlet Controls 5.29 cfs @ 4.31 fps)

Secondary OutFlow Max=6.03 cfs @ 12.01 hrs HW=389.03' TW=379.67' (Dynamic Tailwater) —2=Culvert (Inlet Controls 6.03 cfs @ 2.98 fps)

Pond FS: Flow Splitter

Elevation	Storage	Elevation	Storage	Elevation	Storage
(feet)	(cubic-feet)	(feet)	(cubic-feet)	(feet)	(cubic-feet)
386.00	0	388.12	0	390.24	0
386.04	0	388.16	0	390.28	0
386.08	0	388.20	0	390.32	0
386.12	0	388.24	0	390.36	0
386.16	0	388.28	0	390.40	0
386.20	0	388.32	0	390.44	0
386.24	0	388.36	0	390.48	0
386.28	0	388.40	0	390.52	0
386.32	0	388.44	0	390.56	0
386.36	0	388.48	0	390.60	0
386.40	0	388.52	0	390.64	0
386.44	0	388.56	0	390.68	0
386.48	0	388.60	0	390.72	0
386.52	0	388.64	0	390.76	0
386.56	0	388.68	0	390.80	0
386.60	0	388.72	0	390.84	0
386.64	0	388.76	0 0	390.88	Ő
386.68	0	388.80	0 0	390.92	0
386.72	0 0	388.84	Ő	390.96	Ő
386.76	0 0	388.88	Ő	391.00	Ő
386.80	0	388.92	0	391.04	ů 0
386.84	0	388.96	0	391.08	0
386.88	0	389.00	0	391.12	0
386.92	0	389.04	0	391.12	0
386.96	0	389.08	0	391.20	0
387.00	0	389.12	0	391.20	0
387.04	0	389.16	0	391.24	0
387.04	0	389.20	0	391.32	0
387.12	0	389.24	0	391.32	0
387.12	0	389.28	0	391.40	0
387.20	0	389.32	0	391.40	
387.20	0	389.36	0	391.44	0 0
387.24	0	389.40	0	391.48	0
387.32	0	389.40	0	391.52	0
387.36	0	389.48	0	391.60	0
387.40	0	389.52	0	391.60	0
387.40	0	389.56	0	391.68	0
387.48	0	389.60	0	391.08	0
387.52	0	389.64	0	391.72	0
				391.80	
387.56 387.60	0 0	389.68 389.72	0	391.80	0
387.64	0	389.72	0 0	391.84	0
					0
387.68	0	389.80	0	391.92 391.96	0
387.72	0	389.84	0	391.96	0
387.76	0	389.88	0	392.00	0
387.80	0	389.92	0		
387.84	0	389.96	0		
387.88	0	390.00	0		
387.92	0	390.04	0		
387.96	0	390.08	0		
388.00	0	390.12	0		
388.04	0	390.16	0		
388.08	0	390.20	0		
				•	

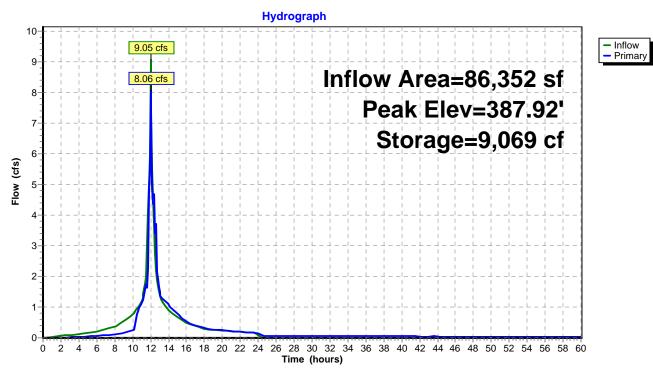
Stage-Area-Storage for Pond FS: Flow Splitter

Summary for Pond SB: Sedimentation Basin

Inflow Area =	86,352 sf, 71.03% Impervious,	Inflow Depth = 7.20" for 100 Year, 24 Hour Storm event
Inflow =	9.05 cfs @ 12.02 hrs, Volume=	51,812 cf
Outflow =	8.06 cfs @ 12.02 hrs, Volume=	51,063 cf, Atten= 11%, Lag= 0.5 min
Primary =	8.06 cfs @ 12.02 hrs, Volume=	51,063 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs / 3 Peak Elev= 387.92' @ 12.30 hrs Surf.Area= 3,467 sf Storage= 9,069 cf

Plug-Flow detention time= 227.3 min calculated for 50,978 cf (98% of inflow) Center-of-Mass det. time= 221.2 min (978.7 - 757.6)


Volume	Invert	Avail.Sto	rage Storage	Description	
#1	384.00'	9,30	61 cf Custom	Stage Data (Pr	ismatic)Listed below (Recalc)
Elevatio (fee		urf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
384.0	1	1,219	0	0	
385.0		1,730	1,475	1,475	
386.0		2,313	2,022	3,496	
387.0		2,951	2,632	6,128	
388.0	00	3,514	3,233	9,361	
Device	Routing	Invert	Outlet Device	S	
#1	Primary	382.00'	10.0" Round	Culvert	
			Inlet / Outlet I	nvert= 382.00' /	headwall, Ke= 0.900 377.00' S= 0.1316 '/' Cc= 0.900 both interior, Flow Area= 0.55 sf
#2	Device 1	384.00'	0.4" Vert. Sta	•	tions X 4.00 columns
#3	Device 1	387.00'	12.0" Horiz. S		Opening C= 0.600
#4	Primary	387.50'		verflow Spillway	2 End Contraction(s)

Primary OutFlow Max=7.86 cfs @ 12.02 hrs HW=387.79' TW=387.63' (Dynamic Tailwater)

2=Standpipe Perforations (Passes < 0.08 cfs potential flow)

3=Standpipe Riser Opening (Passes < 1.51 cfs potential flow)

-4=Overflow Spillway (Weir Controls 7.03 cfs @ 1.64 fps)

Pond SB: Sedimentation Basin

386.60

2,696

4,999

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
384.00	1,219	0	386.65	2,728	5,134
384.05	1,245	62	386.70	2,760	5,271
384.10	1,270	124	386.75	2,792	5,410
384.15	1,296	189	386.80	2,823	5,551
384.20	1,321	254	386.85	2,855	5,693
384.25	1,347	321	386.90	2,887	5,836
384.30	1,372	389	386.95	2,919	5,981
384.35	1,398	458	387.00	2,951	6,128
384.40	1,423	528	387.05	2,979	6,276
384.45	1,449	600	387.10	3,007	6,426
384.50		673	387.15		
	1,475			3,035	6,577
384.55	1,500	748	387.20	3,064	6,729
384.60	1,526	823	387.25	3,092	6,883
384.65	1,551	900	387.30	3,120	7,039
384.70	1,577	978	387.35	3,148	7,195
384.75	1,602	1,058	387.40	3,176	7,353
384.80	1,628	1,139	387.45	3,204	7,513
384.85	1,653	1,221	387.50	3,233	7,674
384.90	1,679	1,304	387.55	3,261	7,836
384.95	1,704	1,389	387.60	3,289	8,000
385.00	1,730	1,475	387.65	3,317	8,165
385.05	1,759	1,562	387.70	3,345	8,332
385.10	1,788	1,650	387.75	3,373	8,500
385.15	1,817	1,741	387.80	3,401	8,669
385.20	1,847	1,832	387.85	3,430	8,840
385.25	1,876	1,925	387.90	3,458	9,012
385.30	1,905	2,020	387.95	3,486	9,186
385.35	1,934	2,116	388.00	3,514	9,361
385.40	1,963	2,213	000.00	0,014	0,001
385.45	1,992	2,210			
	1,992				
385.50	2,022	2,412			
385.55	2,051	2,514			
385.60	2,080	2,617			
385.65	2,109	2,722			
385.70	2,138	2,828			
385.75	2,167	2,936			
385.80	2,196	3,045			
385.85	2,226	3,156			
385.90	2,255	3,268			
385.95	2,284	3,381			
	2,313	3,496			
386.00					
386.05	2,345	3,612			
386.10	2,377	3,730			
386.15	2,409	3,850			
386.20	2,441	3,971			
386.25	2,473	4,094			
386.30	2,504	4,219			
386.35	2,536	4,345			
386.40	2,568	4,472			
386.45	2,600	4,601			
386.50	2,632	4,732			
386.55	2,664	4,865			
386 60	2,004	4,800			

Stage-Area-Storage for Pond SB: Sedimentation Basin

Summary for Pond W-4: W-4 Pocket Wetland

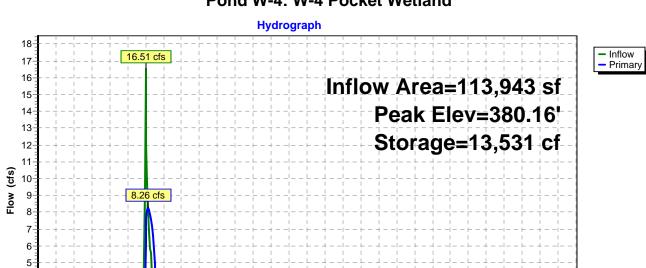
Inflow Area =	113,943 sf, 58.55% Impervious,	Inflow Depth > 7.74" for 100 Year, 24 Hour Storm event
Inflow =	16.51 cfs @ 12.01 hrs, Volume=	73,535 cf
Outflow =	8.26 cfs @ 12.30 hrs, Volume=	72,517 cf, Atten= 50%, Lag= 17.2 min
Primary =	8.26 cfs @ 12.30 hrs, Volume=	72,517 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.10 hrs / 3 Peak Elev= 380.16' @ 12.30 hrs Surf.Area= 7,895 sf Storage= 13,531 cf

Plug-Flow detention time= 113.8 min calculated for 72,517 cf (99% of inflow) Center-of-Mass det. time= 80.4 min (1,150.8 - 1,070.4)

Volume	Inve	ert Avail.Sto	rage St	orage	Description	
#1	378.0	00' 20,8	08 cf CI	ustom	Stage Data (P	rismatic)Listed below (Recalc)
Elevatio	et)	Surf.Area (sq-ft)	Inc.Sto (cubic-fe		Cum.Store (cubic-feet)	
378.0	00	4,855		0	0	
379.0	00	6,074	5,4	165	5,465	
380.0	00	7,618	6,8	346	12,311	
381.0)0	9,377	8,4	198	20,808	
Device	Routing	Invert	Outlet D	Devices	6	
#1	Primary	373.00'	12.0" F	Round	Culvert	
#2 #3	Device 1 Device 1	378.00' 378.70'	Inlet / O n= 0.01 3.0" Ve	outlet Ir 3, Flo [.] rt. Lov	nvert= 373.00' / w Area= 0.79 si v Flow Orifice	

Primary OutFlow Max=8.26 cfs @ 12.30 hrs HW=380.16' TW=0.00' (Dynamic Tailwater)


-1=Culvert (Passes 8.26 cfs of 9.72 cfs potential flow)

-2=Low Flow Orifice (Orifice Controls 0.34 cfs @ 6.86 fps)

-3=High Flow Orifice (36Wx6H) (Orifice Controls 7.92 cfs @ 5.28 fps)

4-3 2 1 0-

Ó

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

Time (hours)

Pond W-4: W-4 Pocket Wetland

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
378.00	4,855	0	380.65	8,761	17,634
378.05	4,916	244	380.70	8,849	18,074
378.10	4,977	492	380.75	8,937	18,519
378.15	5,038	742	380.80	9,025	18,968
378.20	5,099	995	380.85	9,113	19,421
378.25	5,160	1,252	380.90	9,201	19,879
378.30	5,221	1,511	380.95	9,289	20,341
378.35	5,282	1,774	381.00	9,377	20,808
378.40	5,343	2,040			
378.45	5,404	2,308			
378.50	5,465	2,580			
378.55	5,525	2,855			
378.60	5,586	3,132			
378.65	5,647	3,413			
378.70	5,708	3,697			
378.75	5,769	3,984			
378.80	5,830	4,274			
378.85	5,891	4,567			
378.90	5,952	4,863			
378.95 379.00	6,013 6,074	5,162 5,465			
379.00	6,151	5,465 5,770			
379.00	6,228	5,770 6,080			
379.15	6,306	6,393			
379.20	6,383	6,710			
379.25	6,460	7,031			
379.30	6,537	7,356			
379.35	6,614	7,685			
379.40	6,692	8,018			
379.45	6,769	8,354			
379.50	6,846	8,695			
379.55	6,923	9,039			
379.60	7,000	9,387			
379.65	7,078	9,739			
379.70	7,155	10,095			
379.75	7,232	10,454			
379.80	7,309	10,818			
379.85	7,386	11,185			
379.90	7,464	11,556			
379.95	7,541	11,932			
380.00	7,618	12,311			
380.05	7,706	12,694			
380.10	7,794	13,081			
380.15	7,882	13,473			
380.20	7,970	13,869			
380.25	8,058	14,270			
380.30	8,146	14,675			
380.35	8,234	15,085			
380.40	8,322	15,498			
380.45	8,410	15,917 16 330			
380.50 380.55	8,498 8,585	16,339 16,766			
380.60	8,673	17,198			
500.00	0,075	17,130			

Stage-Area-Storage for Pond W-4: W-4 Pocket Wetland

SWPPP APPENDIX H EROSION AND SEDIMENT CONTROL INSPECTION REPORT

Project Name:	Date:	
Project Number:	Logged by:	
Weather:		

SITE PLAN/SKETCH

Provide a concise sketch indicating construction activities, location and description of stormwater runoff from the site, stabilization activities, and soil erosion and sediment control BMPs. Indicate BMPs improperly installed or in need of repair. The inspector shall notify the contractor(s) and subcontractor(s) of necessary repairs of BMPs required within one business day of this inspection.

Maintain Water Quality

Yes	No	NA	
[]	[]	[]	Is there an increase in turbidity causing a substantial visible contrast to natural conditions?
[]	[]	[]	Is there residue from oil and floating substances, visible oil film, or globules or grease?
[]	[]	[]	All disturbance is within the limits of the approved plans.
[]	[]	[]	Have receiving lake/bay, stream, and/or wetland been impacted by silt from project?

Housekeeping

1. General Site Conditions

Yes	No	NA	
[]	[]	[]	Is construction site litter and debris appropriately managed?
[]	[]	[]	Are facilities and equipment necessary for implementation of erosion and sediment control in working order and/or properly maintained?
[]	[]	[]	Is construction impacting the adjacent property?
[]	[]	[]	Is dust adequately controlled?

2. Temporary Stream Crossing

Yes	No	NA	
[]	[]	[]	Maximum diameter pipes necessary to span creek without dredging are installed.
[]	[]	[]	Installed non-woven geotextile fabric beneath approaches.
[]	[]	[]	Is fill composed of aggregate (no earth or soil)?
[]	[]	[]	Rock on approaches is clean enough to remove mud from vehicles & prevent sediment from entering stream during high flow.

Runoff Control Practices

1. Excavation Dewatering

Yes	No	NA	
[]	[]	[]	Upstream and downstream berms (sandbags, inflatable dams, etc.) are installed per plan.
[]	[]	[]	Clean water from upstream pool is being pumped to the downstream pool.
[]	[]	[]	Sediment laden water from work area is being discharged to a silt-trapping device.
[]	[]	[]	Constructed upstream berm with one-foot minimum freeboard.
2. Lev	vel Spre	eader	
Yes	No	NA	
[]	[]	[]	Installed per plan.
[]	[]	[]	Constructed on undisturbed soil, not on fill, receiving only clear, non-sediment laden flow.
[]	[]	[]	Flow sheets out of level spreader without erosion on downstream edge.
3. Inte	ercepto	r Dikes ar	nd Swales
Yes	No	NA	
[]	[]	[]	Installed per plan with minimum side slopes 2H:1V or flatter.
[]	[]		
	LJ	[]	Stabilized by geotextile fabric, seed, or mulch with no erosion occurring.
[]	[]	[]	Stabilized by geotextile fabric, seed, or mulch with no erosion occurring. Sediment-laden runoff directed to sediment trapping structure.
	[]		
	[]	[]	
4. Sto	[] ne Che	[] ck Dam	
4. Sto Yes	[] ne Che No	[] ck Dam NA	Sediment-laden runoff directed to sediment trapping structure. Is channel stable (the flow is not eroding soil underneath or around the

5. Rock Outlet Protection

Yes	No	NA	
[]	[]	[]	Installed per plan.
[]	[]	[]	Installed concurrently with pipe installation.

Soil Stabilization

1. Topsoil and Spoil Stockpiles

Yes	No	NA	
[]	[]	[]	Stockpiles are stabilized with vegetation and/or mulch.
[]	[]	[]	Sediment control is installed at the toe of the slope.

2. Revegetation

Yes	No	NA	
[]	[]	[]	Temporary seeding and mulch have been applied to idle areas.
[]	[]	[]	4 inches minimum of topsoil has been applied under permanent seeding.

Sediment Control

1. Stabilized Construction Entrance

Yes	No	NA	
[]	[]	[]	Stone is clean enough to effectively remove mud from vehicles.
[]	[]	[]	Installed per standards and specifications?
[]	[]	[]	Does all traffic use the stabilized entrance to enter and leave site?
[]	[]	[]	Is adequate drainage provided to prevent ponding at entrance?

2. Silt Fence

Yes	No	NA	
[]	[]	[]	Installed on Contour, 10 feet from toe of slope (not across conveyance channels).
[]	[]	[]	Joints constructed by wrapping the two ends together for continuous support.
[]	[]	[]	Fabric buried 6 inches minimum.
[]	[]	[]	Posts are stable, fabric is tight and without rips or frayed areas.

Sediment accumulation is % of design capacity.

3. Storm Drain Inlet Protection (Use for Stone & Block; Filter Fabric; Curb; or, Excavated practices)

Yes	No	NA	
[]	[]	[]	Installed concrete blocks lengthwise so open ends face outward, not upward.
[]	[]	[]	Placed wire screen between No. 3 crushed stone and concrete blocks.
[]	[]	[]	Drainage area is 1acre or less.
[]	[]	[]	Excavated area is 900 cubic feet.
[]	[]	[]	Excavated side slopes should be 2:1.
[]	[]	[]	2" x 4" frame is constructed and structurally sound.
[]	[]	[]	Posts 3-foot maximum spacing between posts.
[]	[]	[]	Fabric is embedded 1 to 1.5 feet below ground and secured to frame/posts with staples at max 8-inch spacing.
[]	[]	[]	Posts are stable, fabric is tight and without rips or frayed areas.Sediment accumulation% of design capacity.
4. Ter	nporary	y Sedimer	nt Trap
Yes	No	NA	•
[]	[]	[]	Outlet structure is constructed per the approved plan or drawing.
[]	[]	[]	Geotextile fabric has been placed beneath rock fill. Sediment accumulation is % of design capacity.
5. Ter	nporary	y Sedimer	nt Basin
Yes	No	NA	
[]	[]	[]	Basin and outlet structure constructed per the approved plan.

[]	[]	[]	Basin side slopes are stabilized with seed/mulch.
----	----	----	---

 []
 []
 Drainage structure flushed and basin surface restored upon removal of sediment basin facility.

Sediment accumulation is % of design capacity.

Note: Not all erosion and sediment control practices are included in this listing. Add additional pages to this list as required by site specific design.

Construction inspection checklists for post-development stormwater management practices can be found in the SWPPP.

-

RECOMMENDATIONS

b. Modifications to the SWPPP (To be completed as described below)

The Operator shall amend the SWPPP whenever:

- 1. There is a significant change in design, construction, operation, or maintenance which may have a significant effect on the potential for the discharge of pollutants to the waters of the United States and which has not otherwise been addressed in the SWPPP; or
- 2. The SWPPP proves to be ineffective in:

a. Eliminating or significantly minimizing pollutants from sources identified in the SWPPP and as required by this permit; or

b. Achieving the general objectives of controlling pollutants in stormwater discharges from permitted construction activity; and

3. Additionally, the SWPPP shall be amended to identify any new contractor or subcontractor that will implement any measure of the SWPPP.

-

MODIFICATION & REASON:

Qualified Inspector (print name)

Qualified Professional (print name)

Qualified Professional Signature

Date of Inspection

X.

The above signed acknowledges that, to the best of his/her knowledge, all information provided on the forms is accurate and complete.

SWPPP APPENDIX H INSPECTION AND MAINTENANCE FORMS FOR POST-CONSTRUCTION PRACTICES

> STORMWATER PLANTER SURFACE SAND FILTER STORMWATER POCKET WETLAND POND

Stormwater Planter Operation, Maintenance and Management Inspection Checklist

Project:	
Project: Location:	
Site Status:	
Date:	
Time:	
Inspector:	

MAINTENANCE ITEM	SATISFACTORY / UNSATISFACTORY	COMMENTS
1. Debris / Trash Cleanout (Monthly)		
Stormwater planter clean of debris		
No dumping of yard wastes into practice		
Litter (branches, etc.) have been removed		
2. Vegetation (Monthly)		
Pruning and replacing dead or dying		
vegetation, plant thinning, and erosion repair		
Fertilized per specifications		
Plant composition according to approved		
plans		
No placement of inappropriate plants		
No evidence of erosion		
3. Dewatering (Monthly, After Major Storms)		
Dewaters between storms		
Planters should be inspected after each		
storm event greater than 0.5 inches, and at		
least twice in the first six months		
No evidence of standing water		
4. Sediment Deposition (Annual)		
Stormwater planter clean of sediments		
5. Outlet/Overflow Spillway (Annual, After Major Storms)		
Good condition, no need for repair		
No evidence of erosion		
No evidence of any blockages		
6. Integrity of Filter Bed (Annual)		
Filter bed has not been blocked or filled		
inappropriately		

Comments:

Actions to be Taken:

Sand/Organic Filter Operation, Maintenance and Management Inspection Checklist

Project: Location: Site Status: Date: Time:

Inspector:

MAINTENANCE ITEM	SATISFACTORY / UNSATISFACTORY	COMMENTS
1. Debris Cleanout (Monthly)		
Contributing areas clean of debris		
Filtration facility clean of debris		
Inlet and outlets clear of debris		
2. Oil and Grease (Monthly)		
No evidence of filter surface clogging		
Activities in drainage area minimize oil and		
grease entry		
3. Vegetation (Monthly)		
Contributing drainage area stabilized		
No evidence of erosion		
Area mowed and clipping removed		
4. Water Retention Where Required (Monthly)		
Water holding chambers at normal pool		
No evidence of leakage		
5. Sediment Deposition (Annual)		
Filter chamber free of sediments		
Sedimentation chamber not more than		
half full of sediments		
6. Structural Components (Annual)		
No evidence of structural deterioration		
Any grates are in good condition		
No evidence of spalling or cracking of		
structural parts		
7. Outlet/Overflow Spillway (Annual)		
Good condtion, no need for repairs		
No evidence of erosion (if draining into a		
natural channel)		
8. Overflow Function of Facility (Annual)		
Evidence of flow bypassing facility		
No noticeable odors outside of facility		

Comments:

Actions to be Taken:

STORMWATER POCKET WETLAND			
Project Name:	Location:		
Site Status:	Weather Condition:		
Inspector: Date:	Time:		
Maintenance Item	Satisfactory/ Unsatisfactory	Comments	
Embankment and emergency spillway (Ann	ual, After Major Storms)		
1. Vegetation and ground cover adequate			
2. Embankment erosion			
3. Animal burrows			
4. Unauthorized planting			
5. Cracking, bulging, or sliding of dam			
a. Upstream face			
b. Downstream face			
c. At or beyond toe downstream/downstream			
d. Emergency spillway			
6. Pond, toe & chimney drains clear and functioning			
7. Seeps/leaks on downstream face			
8. Slope protection or riprap failure			
9. Vertical/horizontal alignment of top of dam As-Built			
10. Emergency spillway clear of obstructions and debris			
Riser and principal spillway (Annual)			
Type: Reinforced concrete			
Corrugated pipe			
1. Low flow orifice obstructed			
2. Low flow trash rack.			

STORMWATER POCKET WETLAND			
Project Name:	Location:		
Site Status:	Weather Condition:		
Inspector: Date:	Time:		
Maintenance Item	Satisfactory/ Unsatisfactory	Comments	
a. Debris removal necessary			
b. Corrosion control			
3. Weir trash rack maintenance			
a. Debris removal necessary			
b. corrosion control			
4. Excessive sediment accumulation insider riser			
5. Concrete/masonry condition riser and barrels			
a. cracks or displacement			
b. Minor spalling (<1")			
c. Major spalling (exposed rebar)			
d. Joint failures			
e. Water tightness			
6. Metal pipe condition			
7. Control valve			
a. Operational/exercised			
b. Chained and locked			
8. Pond drain valve			
a. Operational/exercised			
b. Chained and locked			
9. Outfall channels functioning			

STORMWATER POCKET WETLAND			
Project Name:	ne: Location:		
Site Status:	Weather Condition:		
Inspector: Date:	Time:		
Maintenance Item	Satisfactory/Unsatisfactory	Comments	
Permanent Pool (monthly)			
1. Undesirable vegetative growth			
2. Floating or floatable debris removal required			
3. Visible pollution			
4. Shoreline problem			
Sediment Forebay			
1.Sedimentation noted			
2. Sediment cleanout when depth < 50% design depth			
Dry Pond Areas			
1. Vegetation adequate			
2. Undesirable vegetative growth			
3. Undesirable woody vegetation			
4. Low flow channels clear of obstructions			
5. Standing water or wet spots			
6. Sediment and / or trash accumulation			
Condition of Outfalls (Annual, After Major Storms)			
1. Riprap failures			
2. Slope erosion			
3. Storm drain pipes			
4. Endwalls / Headwalls			

STORMWATER POCKET WETLAND			
Project Name:	Location:		
Site Status:	Weather Condition:		
Inspector: Date:	Time:		
Maintenance Item	Satisfactory/ Unsatisfactory	Comments	
Other (monthly)			
1. Encroachment on pond, wetland or easement area	r		
2. Complaints from residents			
3.Aesthetics			
a. Grass growing required			
b. Graffiti removal needed			
4. Conditions of maintenance access routes.			
5. Signs of hydrocarbon build-up			
6. Any public hazards (specify)			
Wetland Vegetation (Annual)			
1. Vegetation healthy and growing			
Wetland maintaining 50% surface area coverage of wetland plants after the second growing season. (It unsatisfactory, reinforcemen plantings needed)	e f		
2. Dominant wetland plants:			
Survival of desired wetland plan species	t		
Distribution according to landscaping plan?	7		
3. Evidence of invasive species			
4. Maintenance of adequate water depths for desired wetland plant species	r		
5. Harvesting of emergent plantings needed			

STORMWATER POCKET WETLAND			
Project Name:	Project Name: Location:		
Site Status:	Weather Site Status: Condition:		
Inspector:	Date: Time:		
Maintena	ince Item	Satisfactory/ Unsatisfactory	Comments
6. Have sediment accur volume significantly or sediment?	mulations reduced pool are plants choked with		
7. Eutrophication level	of the wetland.		

Comments:

Actions to be Taken: