Appendix G-1 Traffic Impact Study

Eng

Traffic Impact Study

Airport Campus (113 King Street)
Town of North Castle, Westchester County, New York

January 21, 2020

Revised: September 4, 2020

Revised: March 5, 2021

Prepared For

Mr. Geoff Ringler Roeco, LLC 46 Westchester Avenue Pound Ridge, NY 10576

Prepared By

Maser Consulting P.A. 400 Columbus Avenue – Suite 180E Valhalla, NY 10595 914.347.7500

> John T. Collins, Ph.D., P.E. Executive Principal License No. 46029

Ronald P. Rieman, Associate/Project Manager

MC Project No. 18002018A

TABLE O	F CONTENTS	PAGE No.
A.	INTRODUCTION	1
B.	PROJECT DESCRIPTION AND LOCATION (FIGURES No. 1, 1A)	1
C.	DESCRIPTION OF EXISTING ROADWAY NETWORK	1
D.	PUBLIC TRANSPORTATION	4
E.	YEAR 2019 EXISTING TRAFFIC VOLUMES (FIGURES No. 2, 2A, 3, 3A, 4)	, <i>4A</i>)4
F.	YEAR 2024 NO-BUILD TRAFFIC VOLUMES (FIGURES No. 5, 5A – 23, 23	<i>A</i>)5
G.	SITE GENERATED TRAFFIC VOLUMES (TABLES NO. 1 AND 2)	6
Н.	ARRIVAL/DEPARTURE DISTRIBUTION (FIGURES No. 24, 24A – 31, 31A)8
I.	YEAR 2024 BUILD TRAFFIC VOLUMES (FIGURES NO. 32, 32A – 43, 43A))8
J.	DESCRIPTION OF ANALYSIS PROCEDURES	9
K.	RESULTS OF ANALYSIS (TABLES NO. 3 AND 4)	9
L.	STOPPING SIGHT DISTANCE (SSD) ANALYSIS	
M.	ACCIDENT SUMMARY (TABLES NO. 5 AND 6)	24
N.	PARKING IN THE DOWNTOWN AREA	24
O.	SUMMARY AND CONCLUSION	25
APPENDI	<u>CES</u>	
Appendix	A	FIGURES
Appendix	B	TABLES
Appendix	CLEVEL OF SERVICE	E STANDARDS
	DSYNCH	
	ETRAFFIC	
A PPENDIX	F WESTCHESTER BEE LINE BUS SCHEDULES AND	ROUTE MAPS
	GAc	
	HTRAFFIC SIGNAL 7	
APPENDIX	IOTHER DEVELOPMENT TRAI	FFIC VOLUMES

A. <u>INTRODUCTION</u>

The Traffic Impact Study was prepared to evaluate the potential traffic impacts of the proposed redevelopment of 113 King Street located in the Town of North Castle on the surrounding roadway network in accordance with the adopted Scope. The following sections provide a description of the proposed development and the tasks undertaken in completing our evaluation.

B. PROJECT DESCRIPTION AND LOCATION (Figures No. 1, 1A)

The Applicant is proposing to redevelop 113 King Street (Site) which is located in the Town of North Castle and currently consists of two office buildings with a total of 261,000 s.f. of office space (100, 000 s.f. building and 161,000 s.f. building). Access to the Site is currently proved via a signalized intersection with King Street (NYS Route 120) opposite American Lane (Greenwich American Centre).

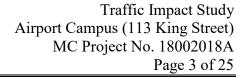
The proposed Project, herein referred to as Airport Campus, calls for the re-use the northernmost existing office as a 125 room hotel, construct a new 149 unit multi-family building, construct 22 townhouse units, and the re-occupy the southernmost existing office building (100,000 s.f.). Access to the Hotel, Multi-Family Units and Office Building will continue to be provided via the existing signalized driveway. While not proposed, there is the potential for a right turn/right turn exit only driveway to King Street. However to be conservative all traffic was assigned to the signalized driveway for analysis purpose. Access to the Townhouses will be provided via a driveway connection to Cooney Hill Road.

The Site Location and Study Area Intersections are shown on Figures No. 1 and 1A.

C. <u>DESCRIPTION OF EXISTING ROADWAY NETWORK</u>

As discussed in Section B, access to the Hotel, Multi-Family Units and Office Building will continue to be provided via the existing signalized driveway and access to the Townhouses will be provided via a driveway connection to Cooney Hill Road. The following is a description of the NYS Route 120 (King Street) Corridor and other key roadways in the vicinity of the Site.

1. NYS Route 120 (King Street)


In the vicinity of the Site (Study Area), NYS Route 120 (King Street) is a State roadway that travels in a generally north/south direction throughout southern Westchester County. North of the Site, NYS Route 120 (King Street) intersects with NYS Route 22 with its northerly leg providing access to the NYS Route 22 Corridor and downtown Armonk hamlet area (to the east) and at a "Y" type signalized intersection and its southerly leg providing access to the NYS Route 22 Corridor to the west. NYS Route 120 (King Street) continues in a southerly direction providing access to Swiss Re, IBM Corporate Headquarters, Greenwich American Centre, 133 King Street (Site) and other roadways such as Cooney Hill Road, Gateway Lane, NYS Route 120A, New King Street, I-684 (approximately 1.0 miles from the Site) and Airport Road/Westchester County Airport. There are no sidewalks provided and has a NYS Route 120 has a posted speed limit of 55 mph with an advisory speed limit of 35 mph in the vicinity of Cooney Hill Road due to the existing horizontal and vertical curves. Pavement condition along NYS Route 120 (King Street) are fair to good.

2. NYS Route 22

NYS Route 22 is a State roadway that travels throughout Westchester County. North of the Site, NYS Route 120 (King Street) intersects with NYS Route 22 with its southerly leg providing access to the NYS Route 22 Corridor to the west at a "Y" type, signalized intersection and its northerly leg providing access to the NYS Route 22 Corridor and downtown Armonk hamlet area (to the east) also at a "Y" type signalized intersection. NYS Route 22 consists of two travel lanes with shoulders in each direction, To the east, NYS Route 22 provides access to the downtown Armonk hamlet area (NYS Route 128) at a signalized intersection opposite North castle Drive (approximately 2.8 miles from the Site) and provides access to the I-684 Southbound and Northbound On/Off Ramps at signalized intersections (approximately 3.0 miles from the Site). No sidewalks are provided along NYS Route 22 within the study area. NYS Route 22 has a speed limit of 55 mph. Pavement conditions along NYS Route 22 are generally good.

3. NYS Route 128 (Main Street)

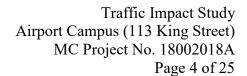
NYS Route 128 (Main Street) is a two-lane, generally north/south State roadway that originates at NYS Route 22 opposite North Castle Drive at a signalized intersection and provides access to the downtown Armonk hamlet area. NYS Route 128 (Main Street) continues in a northerly direction with shoulders on both sides, intersecting with Old Route 22 at an unsignalized intersection. Continuing north, a sidewalk is

provided on the west side of Route 128 with a sidewalk provided on the eastside approaching the Kent Placed/Bedford Road unsignalized intersection. Continuing north, there are sidewalks and crosswalks along NYS Route 128 (Main Street) with 1 hour parking provided along both sides of the street approaching the Whippoorwill Road/Maple Avenue signalized intersection. NYS Route 128 (Main Street) has a posted speed limit of 30 mph. Pavement conditions along NYS Route 128 (Main Street) are generally good.

4. Cooney Hill Road

Cooney Hill Road intersects NYS Route 120 (King Street) north of the Site, at a "T" type, unsignalized intersection and is a "Dead End" road. Cooney Hill Road is a two-lane, Town road with no shoulders or sidewalks. Cooney Hill Road is a low volumes road which currently provides access to one single family home and has a gated access to the DEC watershed. Access to the Airport Campus townhouses will be provided via a driveway connection to Cooney Hill Road. Cooney Hill Road has a posted speed limit of 30 mph. The pavement along Cooney Road is in fair condition.

5. Gateway Lane


Gateway Lane is a Town road which intersects NYS Route 120 (King Street) south of the Site, at a "T" type, signalized intersection. Gateway Lane acts as a connector road intersecting NYS Route 120A at a "T" type, unsignalized intersection. Pavement conditions along Gateway Lane are generally good.

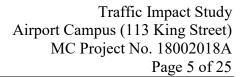
6. New King Street

New King Street is a one way southbound Town road which connects Airport Road and NYS Route 120 (King Street) south of the Site, at a "T" type, signalized intersection. New King Street has shoulders, no sidewalks and has a posted speed limit of 30 mph. New King Street provides access to various commercial uses. Pavement conditions along New King Street are generally good.

7. Airport Road (C.R. 135)

Airport Road (C.R. 135) is a County road which intersects NYS Route 120 (King Street) opposite the I-684 northbound and southbound on-off ramps, south of the Site at a signalized intersection. At NYS Route 120 (King Street), Airport Road continues as a one way roadway eastbound until it intersects with New King Street and becomes a two-way roadway. Airport Road provides access to the Westchester County Airport and NYS Route 120A. Airport Road has shoulders, no sidewalk and has a posted speed limit of 35 mph. Pavement conditions along Airport Road are generally good.

In addition, Section K provides a description of the existing geometrics, traffic control and a summary of the existing and future Levels of Service for each of the Study Area Intersections. The capacity analysis (Appendix D) also shows the existing geometry including lane widths, traffic control including signal phasing/timing (where appropriate), pedestrians, roadway grades, truck percentages as well as the results of the analysis.


D. PUBLIC TRANSPORTATION

The Westchester Bee Line provides local bus service via the Route 12 Bus along the NYS Route 120 (King Street) Corridor including the Shuttle Loop H Bus. Route 12 Bus and Shuttle Loop H Bus operates Monday – Friday between the White Plains Trans Center, Harrison, Purchase including the Westchester County Airport and Armonk. Bus stops are located at the intersection of NYS Route 120 (King Street)/American Lane (S)/Site Driveway. The Shuttle Loop H Bus A copy of the Westchester Bee Line Route 12 schedule and route map is contained in Appendix F. It is anticipated that the Proposed Project will not have a significant impact on the existing ridership of the Bee Line Bus service.

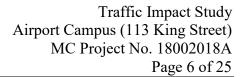
E. YEAR 2019 EXISTING TRAFFIC VOLUMES (Figures No. 2, 2A, 3, 3A, 4, 4A)

In order to establish existing traffic conditions in the vicinity of the Site, turning movement traffic counts were conducted on Tuesday, April 2, 2019 between the hours of 6:30 AM – 9:30 AM to determine the Weekday Peak AM Hour, 11:30 AM – 1:30 PM to determine the Weekday Midday Peak Hour and 4:00 PM – 6:30 PM to determine the Weekday Peak PM Hour. The following intersections were analyzed as per the Scope.

- 1. NYS Route 22 (Armonk-Bedford Road) & NYS Route 120 (King Street) (1)
- 2. NYS Route 22 (Mt Kisco Road)/Old Post Road & NYS Route 120 (King Street) (1)
- 3. King Street and Old Post Road (1)
- 4. NYS Route 120 (King Street) & IBM/Swiss Re
- 5. NYS Route 120 (King Street) & American Lane
- 6. NYS Route 120 (King Street) & Cooney Hill Road
- 7. NYS Route 120 (King Street) & American Lane/113 King Street Driveway
- 8. NYS Route 120 (King Street/Purchase Street) & Gateway Lane
- 9. NYS Route 120 (Purchase Street) & New King Street
- 10. NYS Route 120 (Purchase Street) & Airport Road
- 11. Airport Road & I-684 NB On/Off Ramps
- 12. Airport Road & I-684 SB On/Off Ramps (2)
- 13. NYS Route 22 & NYS Route 128/IBM Main Driveway
- 14. NYS Route 22 & North Broadway & Sir John's Plaza
- 15. NYS Route 22 & Central Westchester Parkway & Reservoir Road/Church Street

A copy of the traffic count data including the NYSDOT historical traffic counts data is contained in Appendix "E" of this Study. ⁽¹⁾ These traffic counts were compared with the existing traffic volumes used in the Eagle Ridge Traffic Impact Study. Based on a comparison of these traffic counts, the Eagle Ridge traffic counts were utilized at these three locations. ⁽²⁾ Since the I-684 SB On/Off Ramps only consists of two movements, the I-684 SB On-Ramp and SB Off-Ramp were able to be balanced with the I-684 NB Ramp Counts.

Based upon a review of above turning movement traffic counts and a review of NYSDOT historical traffic count data, the peak hours were identified as follows.


•	Weekday Peak AM Hour	8:00 AM – 9:00 AM
•	Weekday Peak Midday Hour	12:30 PM – 1:30 PM
•	Weekday Peak PM Hour	5:00 PM - 6:00 PM

Based on the above, the resulting Year 2019 Existing Traffic Volumes are shown on Figures No. 2, 2A, 3, 3A and 4, 4A for each of the Peak Hours, respectively.

F. YEAR 2024 NO-BUILD TRAFFIC VOLUMES (Figures No. 5, 5A – 23, 23A)

For the purpose of analysis, a Design Year of 2024 has been utilized in the completing the traffic analysis.

In order to account for normal background traffic growth in the area, the Year 2019 Existing Traffic Volumes were increased by a growth factor of 1.0% per year for a total compounded background growth of 5% based on NYSDOT historical data. The resulting Year 2024 Projected Traffic Volumes are shown on Figures No. 5, 5A, 6, 6A and 7, 7A for each of the Peak Hours, respectively. In addition to the background growth factor, traffic generated for other potential developments in the area was also accounted for. These include Brynwood (88 units), Mariani Gardens (50 units), Madonna Senior Housing (16 units). Wampus Mills (6 single family), 162 Bedford Road – Former Armonk Lumber Yard (36 units), 470 Main Street (16 units), Eagle Ridge (91 room Hotel, 70 Apartments, 94 Townhouses) as contained in the Eagle Ridge Traffic Impact Study and Swiss Re which is approximately 50% unoccupied (additional traffic based on existing Swiss Re driveway counts). The resulting other development traffic volumes for these developments are shown on Figures No. 8, 8A, 9, 9A and 10, 10A for each of the Peak Hours respectively.

It should be noted that the IBM Expansion is accounted in the existing traffic volumes. [A Table and associated figures for the above other developments site generation are included in Appendix I].

In addition, traffic for the re-occupancy of 113 King Street was also included. As discussed in Section B, the Site (113 King Street) currently consists of two office buildings consisting of a total of 261,000 s.f. of office space (100, 000 s.f. building and 161,000 s.f. building). The Hourly Trips Rates and anticipated Site Generated Traffic Volumes for the reoccupancy of two office buildings were developed based on information contained in the Institute of Transportation Engineers (ITE) "Trip Generation Handbook", 10th Edition, 2017 and are summarized in Table No. 1 (Appendix B). As shown on Table No. 1, reoccupancy of the two existing office buildings would generate a total of 303 trips (261 entering trips and 42 exiting trips) during the Weekday Peak AM Hour, a total of 152 trips (76 entering trips and 76 exiting trips) during the Weekday Peak Midday Hour and a total of 300 trips (47 entering trips and 253 exiting trips) during the Weekday Peak PM Hour. The Office arrival/departure distributions Weekday Peak AM/PM Hours are shown on Figures No. 11 11A, 12, 12A and on Figures No. 13, 13A, 14, 14A for the Weekday Peak Midday Hour. The resulting Office re-occupancy traffic volumes are shown on Figures No. 15, 15A, 16, 16A, 17, 17A for the 100,000 s.f. Building and Figures No. 18, 18A, 19, 19A, 20, 20A for the 161,000 s.f. Building, for each of the Peak Hours, respectively.

The resulting Year 2024 No-Build Traffic Volumes are shown on Figures No. 21, 21A, 22, 22A and 23, 23A for each of the Peak Hours, respectively.

G. SITE GENERATED TRAFFIC VOLUMES (Tables No. 1 and 2)

As discussed in Section B, the proposed Project will re-occupy the southernmost existing office building (100,000 s.f.), re-use the northernmost existing office as a 125 room hotel, construct a new 149 unit multi-family building and 22 townhouse units.

In order to estimate the amount of traffic to be generated by the proposed Project, the Hourly Trip Generation Rates and Anticipated Site Generated Traffic Volumes were developed based on information contained in the Institute of Transportation Engineers (ITE) "Trip Generation Handbook", 10th Edition, 2017. Table No. 2 summarizes the Hourly Trip Generation Rates and the anticipated Site Generated Traffic Volumes for the proposed Project.

As discussed in Section F above, the No-Build Condition accounts for the re-occupancy of the two existing office buildings. To calculate the number of trips that would occur in the Future with the Proposed Project, the Traffic Impact Study:

- Added to the No-Build Condition trips associated with the Proposed Project's hotel and residential uses. A total of 137 trips (53 entering trips and 84 exiting trips) during the Weekday Peak AM Hour, total of 78 trips (39 entering trips and 39 exiting trips) during the Weekday Peak Midday Hour and a total of 170 trips (99 entering trips and 71 exiting trips) during the Weekday Peak PM Hour.
- Retained the trips associated with the existing southern office building, which is proposed to remain an office use with the Proposed Project. A total of 116 trips (100 entering trips and 16 exiting trips) during the Weekday Peak AM Hour, total of 58 trips (29 entering trips and 29 exiting trips) during the Weekday Peak Midday Hour and a total of 115 trips (18 entering trips and 97 exiting trips) during the Weekday Peak PM Hour.
- Subtract the trips associated with the existing northern office building's office use, as the Proposed project proposed to-re-use that building as a hotel use. A total of 187 trips (161 entering trips and 26 exiting trips) during the Weekday Peak AM Hour, total of 94 trips (47 entering trips and 47 exiting trips) during the Weekday Peak Midday Hour and a total of 185 trips (29 entering trips and 156 exiting trips) during the Weekday Peak PM Hour.

	Future without Proposed Project			Future with Proposed Project			
	(No-	(No-Build Conditions)			(Build Condition)		
PEAK	ENTRY	EXIT	TOTAL	ENTRY	EXIT	TOTAL	
HOUR	VOLUME	VOLUME	VOLUME	VOLUME	VOLUME	VOLUME	
WEEKDAY	261	42	303	153	100	253	
PEAK AM							
WEEKDAY	76	76	152	68	68	136	
PEAK							
MIDDAY							
WEEKDAY	47	253	300	117	168	285	
PEAK PM							

See Trip Generation Tables No. 1 and 2 in Appendix B

As shown in the Table above, the Proposed Project's future uses of the property would not be all "new" traffic to the roadway network and would result in a total of 50 fewer trips (103 fewer trips entering trips and 58 additional exiting trips) during the Weekday Peak AM Hour, a total of 16 fewer trips (8 fewer entering trips and 8 fewer exiting trips) during the Weekday Peak Midday Hour and a total of 15 fewer trips (70 additional entering trips and 85 exiting trips) during the Weekday Peak PM Hour than would the re-occupancy of both existing on-Site office buildings.

H. ARRIVAL/DEPARTURE DISTRIBUTION (Figures No. 24, 24A – 31, 31A)

Arrival and departure distributions were developed to assign the site generated traffic volumes to the Study Area intersections. The distributions were based on a review of existing traffic volumes and expected travel patterns. The resulting arrival/departure distributions for the Hotel/Apartments are shown on Figures No. 24, 24A, 25, 25A and the resulting arrival/departure distributions for the Townhouses are shown on Figures No. 26, 26A, 27, 27A for the Weekday Peak AM/PM Hour. The resulting arrival/departure distributions for the Weekday Peak Midday Hour are shown on Figures No. 28, 28A, 29, 29A for the Hotel/Apartments and Figures No. 30, 30A, 31, 31A for the Townhouses.

I. YEAR 2024 BUILD TRAFFIC VOLUMES (Figures No. 32, 32A – 43, 43A)

As discussed in Section B, the proposed Project calls for the re-use the northernmost existing office as a 125 room hotel, construct a new 149 unit multi-family building, construct 22 townhouse units, and the re-occupy the southernmost existing office building (100,000 s.f.). The traffic associated with the remaining office building are shown on Figures No. 15, 15A, 16, 16A, 17, 17A (as discussed in Section F).

The "New" Site Generated Traffic Volumes (Table No. 2) were assigned to the roadway network based on the arrival/departure distributions discussed in Section H. The resulting "New" Site Generated Traffic Volumes are shown on Figures No. 32, 32A, 33, 33A, 34, 34A (Hotel), Figures No. 35, 35A, 36, 36A, 37, 37A (Apartments), Figures No. 38, 38A, 39, 39A, 40, 40A (Townhouses) for each of the Peak Hours, respectively. The resulting Year 2024 Build Traffic Volumes are shown on Figures No. 41, 41A, 42, 42A and 43, 43A for each of the Peak Hours, respectively.

J. DESCRIPTION OF ANALYSIS PROCEDURES

In order to determine existing and future traffic operating conditions at the Study Area Intersections, it was necessary to perform capacity analyses. The following is a brief description of the analysis method utilized in this report:

Signalized Intersection Capacity Analysis

The capacity analysis for signalized intersections were performed in accordance with the procedures described in the in the 6th Edition Highway Capacity Manual published by the Transportation Research Board. The terminology used in identifying traffic flow conditions is Levels of Service. A Level of Service "A" represents the best condition and a Level of Service "F" represents the worst condition. A Level of Service "C" is generally used as a design standard while a Level of Service "D" is acceptable during peak periods. A Level of Service "E" represents an operation near capacity. In order to identify an intersection's Level of Service, the average amount of vehicle delay is computed for each approach to the intersection as well as for the overall intersection.

Unsignalized Intersection Capacity Analysis

The unsignalized intersection capacity analysis method utilized in this report was also performed in accordance with the procedures described in the in the 6th Edition Highway Capacity Manual. The procedure is based on total elapsed time from when a vehicle stops at the end of the queue until the vehicle departs from the stop line. The average total delay for any particular critical movement is a function of the service rate or capacity of the approach and the degree of saturation. In order to identify the Level of Service, the average amount of vehicle delay is computed for each critical movement (major street left turns and minor street movements) to the intersection.

Additional information concerning signalized and unsignalized Levels of Service can be found in Appendix C of this Study.

K. RESULTS OF ANALYSIS (Tables No. 3 and 4)

In order to evaluate current and future traffic operating conditions at each of the Study Area Intersections, a SYNCHRO analysis was conducted utilizing the procedures described above. Summarized below is a description of the existing geometrics, traffic control and a summary of the existing and future Levels of Service.

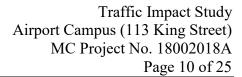


Table No. 3 summarizes the results of the capacity analysis (Levels of Service, Delays and Volume-to-Capacity (v/c) Ratios) and Table No. 4 summarizes the queues for the Year 2019 Existing, Year 2024 No-Build and Year 2024 Build Conditions. Copies of the SYNCHRO analysis are contained in Appendix "D" of this Study. [The existing traffic signals evaluated in the Study have detection which permits the signal to operate under various phases and signal lengths depending on demand. For the purpose of analysis, all conditions use the same phasing/cycle lengths and maximum/minimums. As part of the permit process each signal may require minor signal timing changes.] A copy of the NYSDOT Traffic Signal Timing Plans are contained in Appendix H.

1. NYS Route 22 and NYS Route 120 North (King Street)

NYS Route 22 and NYS Route 120 North (King Street) at a "Y" type, signalized intersection. The NYS Route 22 northbound approach consists of three lanes in the form of a separate left turn lane and two through lanes and the NYS Route 22 southbound approach consists of three lanes in the form of two through lanes and a channelized right turn lane. The NYS Route 120 North (King Street) eastbound approach consists of two lanes in the form of a separate left turn lane and a channelized right turn lane. [The storage for the existing NYS Route 22 northbound left turns is exceeded during the Weekday Peak PM Hour, therefore interfering with one of the northbound through lanes. It is recommended that a force-off detector be installed in the northbound left turn lane to reduce queuing into the mainline during the Weekday Peak PM Hour].

Year 2019 Existing Traffic Volumes

Capacity analysis conducted utilizing the Year 2019 Existing Traffic Volumes indicates that the intersection is currently operating at an overall Level of Service "C" during the Weekday Peak AM Hour, is currently operating at an overall Level of Service "B" during the Weekday Peak Midday Hour and is currently operating at an overall Level of Service "D" during the Weekday Peak PM Hour.

Year 2024 No-Build Traffic Volumes

Capacity analysis conducted utilizing the Year 2024 No-Build Traffic Volumes indicates that the intersection is projected to operate at an overall Level of Service "C" during the Weekday Peak AM Hour, is projected to operate at an overall Level of Service "B" during the Weekday peak Midday Hour and is projected to operate at an overall Level of Service "E" during the Weekday Peak PM Hour.

Year 2024 Build Traffic Volumes with the Proposed Project

Capacity analysis conducted utilizing the Year 2024 Build Traffic Volumes with the proposed Project indicates that the intersection is projected to continue to operate at an overall Level of Service "C" during the Weekday Peak AM Hour, is projected to continue to operate at an overall Level of Service "B" during the Weekday peak Midday Hour and is projected to continue to operate at an overall Level of Service "E" during the Weekday Peak PM Hour.

With Traffic Signal Timing Changes

As shown on Table No. 2, improved Levels of Service can be experienced with minor traffic signal timing changes (Weekday AM/PM Peak Hours) for both the No-Build and Build Conditions.

2. NYS Route 22 and NYS Route 120 South (King Street)

NYS Route 22 and NYS Route 120 South (King Street) at a "Y" type, signalized intersection. The NYS Route 22 northbound approach consists of three lanes in the form of two through lanes and a separate right turn lane and the NYS Route 22 southbound approach consists of four lanes in the form of two left turn lanes and two through lanes. The NYS Route 120 South (King Street) westbound approach consists of one lane for left and right movements.

Year 2019 Existing Traffic Volumes

Capacity analysis conducted utilizing the Year 2019 Existing Traffic Volumes indicates that the intersection is currently operating at an overall Level of Service "B" during the Weekday Peak AM Hour, is currently operating at an overall Level of Service "B" during the Weekday peak Midday Hour and is currently operating at an overall Level of Service "C" during the Weekday Peak PM Hour.

Year 2024 No-Build Traffic Volumes

Capacity analysis conducted utilizing the Year 2024 No-Build Traffic Volumes indicates that the intersection is projected to operate at an overall Level of Service "C" during the Weekday Peak AM Hour, is projected to operate at an overall Level of Service "B" during the Weekday peak Midday Hour and is projected to operate at an overall Level of Service "C" during the Weekday Peak PM Hour.

Year 2024 Build Traffic Volumes with the Proposed Project

Capacity analysis conducted utilizing the Year 2024 Build Traffic Volumes with the proposed Project indicates that the intersection is projected to continue to operate at an overall Level of Service "C" during the Weekday Peak AM Hour, is projected to continue to operate at an overall Level of Service "B" during the Weekday peak Midday Hour and is projected to continue to operate at an overall Level of Service "C" during the Weekday Peak PM Hour.

3. NYS Route 120 (King Street) and Old Post Road

Old Post Road intersects NYS Route 120 (King Street) at an unsignalized intersection. The NYS Route 120 (King Street) northbound approach consists of one lane for left, through and right turn movements and the Old Post Road westbound approach consist of one lane for through and right turn movements. Old Post Road provides access to Bright Horizons at TimberRidge and the IBM Learning Center.

Year 2019 Existing Traffic Volumes

Capacity analysis conducted utilizing the Year 2019 Existing Traffic Volumes indicates that the intersection is currently operating at a Level of Service "A" during both the Weekday Peak AM and Weekday Peak Midday Hours and is currently operating at a Level of Service "C" during the Weekday Peak PM Hour.

Year 2024 No-Build Traffic Volumes

Capacity analysis conducted utilizing the Year 2024 No-Build Traffic Volumes indicates that the intersection is projected to operate at a Level of Service "A" during both the Weekday Peak AM and Weekday Peak Midday Hours and is projected to operate at a Level of Service "C" during the Weekday Peak PM Hour.

Year 2024 Build Traffic Volumes with the Proposed Project

Capacity analysis conducted utilizing the Year 2024 Build Traffic Volumes with the proposed Project indicates that the intersection is projected to continue to operate at a Level of Service "A" during both the Weekday Peak AM and Weekday Peak Midday Hours and is projected to continue to operate at a Level of Service "C" during the Weekday Peak PM Hour.

4. NYS Route 120 (King Street) and Swiss Re Driveway/IBM Driveway

The Swiss Re Driveway intersects NYS Route 120 (King Street) opposite the IBM Driveway at a full movement, signalized intersection. The NYS Route 120 (King Street) northbound approach consists of three lanes in the form of a separate left turn lane, separate through lane and separate right turn lane and the NYS Route 120 (King Street) southbound approach consists of three lanes in the form of a separate left turn lane, separate through lane and a channelized right turn lane. The Swiss Re Driveway (eastbound approach) consists of two lanes in the form of a shared left/through lane and a separate right turn lane and the IBM Driveway (westbound approach) approach consists of two lanes in the form of a shared left/through lane and a separate right turn lane.

Year 2019 Existing Traffic Volumes

Capacity analysis conducted utilizing the Year 2019 Existing Traffic Volumes indicates that the intersection is currently operating at an overall Level of Service "A" during the Weekday Peak AM Hour, is currently operating at an overall Level of service "A" during the Weekday Peak Midday Hour and is currently operating at an overall Level of Service "C" during the Weekday Peak PM Hour.

Year 2024 No-Build Traffic Volumes

Capacity analysis conducted utilizing the Year 2024 No-Build Traffic Volumes indicates that the intersection is projected to operate at an overall Level of Service "B" during the Weekday Peak AM Hour, is projected to operate at an overall Level of Service "A" during the Weekday Peak Midday Hour and is projected to operate at an overall Level of Service "E" during the Weekday Peak PM Hour.

Year 2024 Build Traffic Volumes with the Proposed Project

Capacity analysis conducted utilizing the Year 2024 Build Traffic Volumes with the proposed Project indicates that the intersection is projected to operate at an overall Level of Service "A" during the Weekday Peak AM Hour, is projected to continue to operate at an overall Level of Service "A" during the Weekday Peak Midday Hour and is projected to continue to operate at an overall Level of Service "E" during the Weekday Peak PM Hour.

With Traffic Signal Timing Changes

As shown on Table No. 2, improved Levels of Service "D" can be experienced with minor traffic signal timing changes (Weekday Peak PM Hour) for both the No-Build and Build Conditions.

5. NYS Route 120 (King Street) and American Lane (N)

The north leg of American Lane (Greenwich American Centre) intersects NYS Route 120 (King Street) at a "T" type, unsignalized intersection. The NYS Route 120 (King Street) northbound approach consists of one lane for through and right turn movements and the NYS Route 120 (King Street) southbound approach consist of two lanes in the form of a separate left turn lane and a separate through lane. The American Lane westbound approach consist of two lanes in the form of a separate left turn lane (under "stop" sign control) and a channelized right turn lane (under "yield" control).

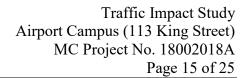
Year 2019 Existing Traffic Volumes

Capacity analysis conducted utilizing the Year 2019 Existing Traffic Volumes indicates that all movements to the intersection are currently operating at a Level of Service "C" or better during each of the Peak Hours.

Year 2024 No-Build Traffic Volumes

Capacity analysis conducted utilizing the Year 2024 No-Build Traffic Volumes indicates that all movements to the intersection all approached to the intersection are projected to operate at a Level of Service "D" or better during each of the Peak Hours.

Year 2024 Build Traffic Volumes with the Proposed Project


Capacity analysis conducted utilizing the Year 2024 Build Traffic Volumes with the proposed Project indicates that all movements to the intersection are projected to continue to operate at a Level of Service "D" or better during each of the Peak Hours.

6. NYS Route 120 (King Street) and Cooney Hill Road

The Cooney Hill Road intersects NYS Route 120 (King Street) at a "T" type, unsignalized intersection. The NYS Route 120 (King Street) northbound approach consists of one lane for left and through movements and the NYS Route 120 (King Street) southbound approach consist of one lane for through and right turn movements. The Cooney Hill Road eastbound approach consist of one lane for left and right turn movements and is "stop" sign controlled.

Year 2019 Existing Traffic Volumes

Capacity analysis conducted utilizing the Year 2019 Existing Traffic Volumes indicates that the Cooney Hill Road eastbound approach (minor approach) is currently operating at a Level of Service "C" during the Weekday Peak AM Hour, is currently operating at a Level of Service "B" during the Weekday Peak Midday Hour and is currently operating at a Level of Service "D" during the Weekday Peak PM Hour.

Year 2024 No-Build Traffic Volumes

Capacity analysis conducted utilizing the Year 2024 No-Build Traffic Volumes indicates that the Cooney Hill Road eastbound approach (minor approach) is projected to operate at a Level of Service "D" during the Weekday Peak AM Hour, is projected to operate at a Level of Service "B" during the Weekday Peak Midday Hour and is projected to operate at Level of Service "F" during the Weekday Peak PM Hour.

Year 2024 Build Traffic Volumes with the Proposed Project

Capacity analysis conducted utilizing the Year 2024 Build Traffic Volumes with the proposed Project indicates that the Cooney Hill Road eastbound approach (minor approach) is projected to operate at an improved Level of Service "C" during the Weekday Peak AM Hour, is projected continue to operate at a Level of Service "B" during the Weekday Peak Midday Hour and is projected to operate at an improved Level of Service "D" during the Weekday Peak PM Hour.

7. NYS Route 120 (King Street) and 113 King Street Driveway/American Lane (S)

The 113 King Street Driveway intersects NYS Route 120 (King Street) opposite the south leg of American Lane (Greenwich American Centre) at a full movement, signalized intersection. The NYS Route 120 (King Street) northbound approach consists of three lanes in the form of a separate left turn lane, separate through lane and separate right turn lane and the NYS Route 120 (King Street) southbound approach consists of one lane for left, through and right turn movements. The 113 King Street Driveway (eastbound approach) consists of two lanes in the form of a shared left/through lane and a separate right turn lane and the American Lane westbound approach consist of two lanes in the form of a separate left/through lane and a channelized right turn lane.

Year 2019 Existing Traffic Volumes

Capacity analysis conducted utilizing the Year 2019 Existing Traffic Volumes indicates that the intersection is currently operating at an overall Level of Service "A" during the Weekday Peak AM Hour, is currently operating at an overall Level of service "A" during the Weekday Peak Midday Hour and is currently operating at an overall Level of Service "B" during the Weekday Peak PM Hour.

Year 2024 No-Build Traffic Volumes

Capacity analysis conducted utilizing the Year 2024 No-Build Traffic Volumes indicates that the intersection is projected to operate at an overall Level of Service "B" during the Weekday Peak AM Hour, is projected to operate at an overall Level of Service "A" during the Weekday peak Midday Hour and is projected to operate at an overall Level of Service "C" during the Weekday Peak PM Hour.

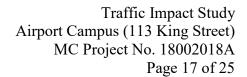
Year 2024 Build Traffic Volumes with the Proposed Project

Capacity analysis conducted utilizing the Year 2024 Build Traffic Volumes with the proposed Project indicates that the intersection is projected to continue to operate at an overall Level of Service "B" during the Weekday Peak AM Hour, is projected to continue to operate at an overall Level of Service "A" during the Weekday Peak Midday Hour and is projected to operate at an overall Level of Service "B" during the Weekday Peak PM Hour.

8. NYS Route 120 North (King Street) and Gateway Lane

Gateway Lane intersects NYS Route 120 North (King Street) at a "T" type, signalized intersection. The NYS Route 120 (King Street) northbound approach consists of one lane for through/right turn movements and the NYS Route 120 (King Street) southbound approach consists of one lane for left/through movements. The Gateway Lane westbound approach consists of one lane for left/right turn movements.

Year 2019 Existing Traffic Volumes


Capacity analysis conducted utilizing the Year 2019 Existing Traffic Volumes indicates that the intersection is currently operating at an overall Level of Service "A" during the Weekday Peak AM Hour, is currently operating at an overall Level of Service "A" during the Weekday Peak Midday Hour and is currently operating at an overall Level of Service "B" during the Weekday Peak PM Hour.

Year 2024 No-Build Traffic Volumes

Capacity analysis conducted utilizing the Year 2024 No-Build Traffic Volumes indicates that the intersection is projected to operate at an overall Level of Service "B" during the Weekday Peak AM Hour, is projected to operate at an overall Level of Service "A" during the Weekday peak Midday Hour and is projected to operate at an overall Level of Service "F" during the Weekday Peak PM Hour.

Year 2024 Build Traffic Volumes with the Proposed Project

Capacity analysis conducted utilizing the Year 2024 Build Traffic Volumes with the proposed Project indicates that the intersection is projected to continue to operate at an overall Level of Service "B" during the Weekday Peak AM Hour, is projected to continue to operate at an overall Level of Service "A" during the Weekday peak Midday Hour and is projected to continue to operate at an overall Level of Service "F" during the Weekday Peak PM Hour.

With Traffic Signal Timing Changes

As shown on Table No. 2, improved Levels of Service "D" can be experienced with minor traffic signal timing changes (Weekday PM Peak Hour for both the No-Build and Build Conditions.

To further improve the operation of this intersection, a separate southbound left turn lane would be beneficial under No-Build and Build Conditions. However, given the location of the reservoir, it is unlikely that this improvement could be made given the approvals required.

9. NYS Route 120 North (King Street) and New King Street

New King Street intersects NYS Route 120 North (King Street) at a "T" type, signalized intersection. The NYS Route 120 (King Street) northbound approach consists of one lane for through movements and the NYS Route 120 (King Street) southbound approach consists of one lane for through movements. The New King Street westbound approach consists of two lanes in the form of a separate left turn lane and a separate right turn lane. New King Street is one-way for westbound traffic.

Year 2019 Existing Traffic Volumes

Capacity analysis conducted utilizing the Year 2019 Existing Traffic Volumes indicates that the intersection is currently operating at an overall Level of Service "B" during the Weekday Peak AM Hour, is currently operating at an overall Level of Service "B" during the Weekday Peak Midday Hour and is currently operating at an overall Level of Service "C" during the Weekday Peak PM Hour.

Year 2024 No-Build Traffic Volumes

Capacity analysis conducted utilizing the Year 2024 No-Build Traffic Volumes indicates that the intersection is projected to operate at an overall Level of Service "B" during the Weekday Peak AM Hour, is projected to operate at an overall Level of Service "B" during the Weekday peak Midday Hour and is projected to operate at an overall Level of Service "C" during the Weekday Peak PM Hour.

Year 2024 Build Traffic Volumes with the Proposed Project

Capacity analysis conducted utilizing the Year 2024 Build Traffic Volumes with the proposed Project indicates that the intersection is projected to continue to operate at an overall Level of Service "B" during the Weekday Peak AM Hour, is projected to continue to operate at an overall Level of Service "B" during the Weekday peak Midday Hour and is projected to continue to operate at an overall Level of Service "C" during the Weekday Peak PM Hour.

10. NYS Route 120 North (King Street) and Airport Road

Airport Road intersects NYS Route 120 North (King Street) at a signalized intersection. The NYS Route 120 (King Street) northbound approach consists of three lanes in the form of a separate left turn lane, separate through lane and a shared through/right turn lane and the NYS Route 120 (King Street) southbound approach consists of three lanes in the form of a separate left turn lane, separate through lane and a separate right turn lane. The Airport Road eastbound approach consists of two lanes in the form of a separate left turn lane and a shared left/through/right turn lane. Airport Road is one-way for eastbound traffic.

Year 2019 Existing Traffic Volumes

Capacity analysis conducted utilizing the Year 2019 Existing Traffic Volumes indicates that the intersection is currently operating at an overall Level of Service "C" during the Weekday Peak AM Hour, is currently operating at an overall Level of Service "B" during the Weekday Peak Midday Hour and is currently operating at an overall Level of Service "C" during the Weekday Peak PM Hour.

Year 2024 No-Build Traffic Volumes

Capacity analysis conducted utilizing the Year 2024 No-Build Traffic Volumes indicates that the intersection is projected to operate at an overall Level of Service "D" during the Weekday Peak AM Hour, is projected to operate at an overall Level of Service "B" during the Weekday peak Midday Hour and is projected to operate at an overall Level of Service "C" during the Weekday Peak PM Hour.

Year 2024 Build Traffic Volumes with the Proposed Project

Capacity analysis conducted utilizing the Year 2024 Build Traffic Volumes with the proposed Project indicates that the intersection is projected to continue to operate at an overall Level of Service "D" during the Weekday Peak AM Hour, is projected to continue to operate at an overall Level of Service "B" during the Weekday peak Midday Hour and is projected to continue to operate at an overall Level of Service "C" during the Weekday Peak PM Hour.

With Traffic Signal Timing Changes

As shown on Table No. 2, improved Levels of Service "C" can be experienced with minor traffic signal timing changes (Weekday Peak AM Hour) for both the No-Build and Build Conditions.

11. Airport Road and I-684 NB On/Off Ramp

The I-684 Northbound On/Off Ramp intersects Airport Road at an unsignalized intersection. The Airport Road eastbound approach consists of one lane for left and through movements and the Airport Road westbound approach consist of one lane for through and right turn movements. The I-684 Northbound Off Ramp approach consist of one lane for right turn movements and is "stop" sign controlled.

Year 2019 Existing Traffic Volumes

Capacity analysis conducted utilizing the Year 2019 Existing Traffic Volumes indicates that the I-684 Northbound Off Ramp (minor approach) is currently operating at a Level of Service "E" during the Weekday Peak AM Hour, is currently operating at a Level of Service "B" during the Weekday Peak Midday Hour and is currently operating at a Level of Service "C" during the Weekday Peak PM Hour.

Year 2024 No-Build Traffic Volumes

Capacity analysis conducted utilizing the Year 2024 No-Build Traffic Volumes indicates that the I-684 Northbound Off Ramp (minor approach) is projected to operate at a Level of Service "F" during the Weekday Peak AM Hour, is projected to operate at a Level of Service "B" during the Weekday Peak Midday Hour and is projected to operate at Level of Service "C" during the Weekday Peak PM Hour.

Year 2024 Build Traffic Volumes with the Proposed Project

Capacity analysis conducted utilizing the Year 2024 Build Traffic Volumes with the proposed Project indicates that I-684 Northbound Off Ramp (minor approach) is projected to continue to operate at a Level of Service "F" during the Weekday Peak AM Hour, is projected continue to operate at a Level of Service "B" during the Weekday Peak Midday Hour and is projected to continue to operate at a Level of Service "C" during the Weekday Peak PM Hour.

[It should be noted that for unsignalized intersections, it is not uncommon for the side road approach (minor approach) to operate with delays while the major road operates at better Levels of Service].

12. Airport Road and I-684 SB On/Off Ramp

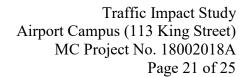
The I-684 Southbound On/Off Ramp intersects Airport Road at an unsignalized intersection. The Airport Road westbound approach consists of one lane for left turn movements and the Airport Road westbound approach consist of one lane for through and right turn movements. The I-684 Northbound Off Ramp approach consist of one lane for right turn movements and is "stop" sign controlled.

Year 2019 Existing Traffic Volumes

Capacity analysis conducted utilizing the Year 2019 Existing Traffic Volumes indicates that the I-684 Northbound Off Ramp (minor approach) is currently operating at a Level of Service "E" during the Weekday Peak AM Hour, is currently operating at a Level of Service "B" during the Weekday Peak Midday Hour and is currently operating at a Level of Service "C" during the Weekday Peak PM Hour.

Year 2024 No-Build Traffic Volumes

Capacity analysis conducted utilizing the Year 2024 No-Build Traffic Volumes indicates that the I-684 Northbound Off Ramp (minor approach) is projected to operate at a Level of Service "F" during the Weekday Peak AM Hour, is projected to operate at a Level of Service "B" during the Weekday Peak Midday Hour and is projected to operate at Level of Service "C" during the Weekday Peak PM Hour.


Year 2024 Build Traffic Volumes with the Proposed Project

Capacity analysis conducted utilizing the Year 2024 Build Traffic Volumes with the proposed Project indicates that I-684 Northbound Off Ramp (minor approach) is projected to continue to operate at a Level of Service "F" during the Weekday Peak AM Hour, is projected continue to operate at a Level of Service "B" during the Weekday Peak Midday Hour and is projected to continue to operate at a Level of Service "C" during the Weekday Peak PM Hour.

[It should be noted that for unsignalized intersections, it is not uncommon for the side road approach (minor approach) to operate with delays while the major road operates at better Levels of Service].

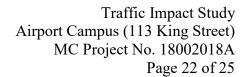
13. NYS Route 22 and NYS Route 128/North Castle Drive (IBM)

NYS Route 128 intersects NYS Route 22 opposite North Castle Drive (IBM) at a full movement, signalized intersection. The NYS Route 22 northbound approach consists of four lanes in the form of a separate left turn lane, two through lanes and a channelized right turn lane and the NYS Route 22 southbound approach consists of four lanes in the form of a separate left turn lane, two through lanes and separate right turn lane. The NYS Route 128 eastbound approach consists of two lanes in the form of a shared left/through lane and a channelized right turn lane and the North Castle Drive (IBM) westbound approach consists of three lanes in the form of a separate left turn lane, separate through lane and a channelized right turn lane.

Year 2019 Existing Traffic Volumes

Capacity analysis conducted utilizing the Year 2019 Existing Traffic Volumes indicates that the intersection is currently operating at an overall Level of Service "C" during the Weekday Peak AM Hour, is currently operating at a Level of Service "B" during the Weekday Peak Midday Hour and is currently operating at an overall Level of Service "C" during the Weekday Peak PM Hour.

Year 2024 No-Build Traffic Volumes


Capacity analysis conducted utilizing the Year 2024 No-Build Traffic Volumes indicates that the intersection is projected to operate at an overall Level of Service "C" during the Weekday Peak AM Hour, is projected to operate at a Level of Service "C" during the Weekday Peak Midday Hour and is projected to operate at an overall Level of Service "C" during the Weekday Peak PM Hour.

Year 2024 Build Traffic Volumes

Capacity analysis conducted utilizing the Year 2024 Build Traffic Volumes indicates that the intersection is projected to continue to operate at an overall Level of Service "C" during the Weekday Peak AM Hour, is projected to continue to operate at a Level of Service "C" during the Weekday Peak Midday Hour and is projected to continue to operate at an overall Level of Service "C" during the Weekday Peak PM Hour.

14. NYS Route 22/North Broadway/Sir John's Plaza

NYS Route 22, North Broadway and Sir Johns Plaza intersects at a signalized intersection. The NYS Route 22 northbound approach consists of two lanes in the form of a shared left/through lane and a separate through lane, the NYS Route 22 southbound approach consists of two lanes in the form of a separate through lane and a shared through/right turn lane, and the North Broadway southbound approach consist of one lane for] through/right turn movements. The Sir John's Plaza eastbound approach consists of two lanes in the form of a separate left turn lane and a separate right turn lane. The New York City Department of Environmental Protection (DEP) is currently improving the intersection of NYS Route 22 and North Broadway/Sir Johns Plaza to include an additional southbound through lane to North Broadway, improved striping, roadway signs, and upgraded traffic signal. The NYCDEP is currently updating these plans to address NYSDOT comments. The future No-Build and Build analyses contained in the TIS (summarized below) have been analyzed with the proposed lane improvements, improved signing and upgraded traffic signal. The signal timings used in the analysis were optimized based on the projected future traffic volumes.

Year 2019 Existing Traffic Volumes

Capacity analysis conducted utilizing the Year 2019 Existing Traffic Volumes indicates that the intersection is currently operating at an overall Level of Service "C" during the Weekday Peak AM Hour, is currently operating at a Level of Service "A" during the Weekday Peak Midday Hour and is currently operating at an overall Level of Service "C" during the Weekday Peak PM Hour.

Year 2024 No-Build Traffic Volumes

Capacity analysis conducted utilizing the Year 2024 No-Build Traffic Volumes indicates that the intersection is projected to operate at an overall Level of Service "C" during the Weekday Peak AM Hour, is projected to operate at a Level of Service "B" during the Weekday Peak Midday Hour and is projected to operate at an overall Level of Service "C" during the Weekday Peak PM Hour.

Year 2024 Build Traffic Volumes

Capacity analysis conducted utilizing the Year 2024 Build Traffic Volumes indicates that the intersection is projected to continue to operate at an overall Level of Service "C" during the Weekday Peak AM Hour, is projected to continue to operate at a Level of Service "B" during the Weekday Peak Midday Hour and is projected to continue to operate at an overall Level of Service "C" during the Weekday Peak PM Hour.

15. NYS Route 22/Central Westchester Expressway/Reservoir Road/Church Street

NYS Route 22, Central Westchester Expressway, Reservoir Road and Church Street intersects at a signalized intersection. The NYS Route 22 northbound approach consists of two lanes in the form of a separate left turn lane and a shared through/right turn lane, the NYS Route 22 southbound approach consists of three lanes in the form of a separate left turn lane, separate through lane and a shared through/right turn lane, the Westchester Expressway northbound approach consist of three lanes in the form of two through lanes and a separate right turn lane and the Reservoir Road westbound approach consists of two lanes in the form of a shared left/through lane and a separate right turn lane. The Church Street approach is one-way westbound.

Year 2019 Existing Traffic Volumes

Capacity analysis conducted utilizing the Year 2019 Existing Traffic Volumes indicates that the intersection is currently operating at an overall Level of Service "F" during the Weekday Peak AM Hour, is currently operating at a Level of Service "D" during the Weekday Peak Midday Hour and is currently operating at an overall Level of Service "F" during the Weekday Peak PM Hour.

Year 2024 No-Build Traffic Volumes

Capacity analysis conducted utilizing the Year 2024 No-Build Traffic Volumes indicates that the intersection is projected to operate at an overall Level of Service "F" during the Weekday Peak AM Hour, is projected to operate at a Level of Service "E" during the Weekday Peak Midday Hour and is projected to operate at an overall Level of Service "F" during the Weekday Peak PM Hour.

Year 2024 Build Traffic Volumes

Capacity analysis conducted utilizing the Year 2024 Build Traffic Volumes indicates that the intersection is projected to continue to operate at an overall Level of Service "F" during the Weekday Peak AM Hour, is projected to continue to operate at a Level of Service "E" during the Weekday Peak Midday Hour and is projected to continue to operate at an overall Level of Service "F" during the Weekday Peak PM Hour

With Traffic Signal Timing Changes

As shown on Table No. 2, improved Levels of Service "E" can be experienced with minor traffic signal timing changes (Weekday Peak AM/PM Hours) for both the No-Build and Build Conditions. [Note that the intersection is currently operating at an unusually high cycle length due to its configuration and phasing].

L. STOPPING SIGHT DISTANCE (SSD) ANALYSIS

Since Cooney Hill Road is a low volume road and access to the Project Site's townhomes will only be provided to Cooney Hill Road, a stopping sight distance plan with profiles for the posted speed limit of 30 mph was prepared and is included in DEIS Section 10.D.7 as Figure 10-2. Based on AASHTO Standards as contained in "A Policy on Geometric Design of Highways and Streets – 2018, 7th Edition" the recommended Stopping Sight Distance (SSD) is 200 feet for the posted speed limit of 30 mph. As depicted on this figure, with the modifications proposed as part of the project, including removal of select trees and relocation of portions of the existing stone wall, the required SSD of 200 feet will be provided, and adequate sight distance would be achieved along Cooney Hill Road.

M. ACCIDENT SUMMARY (Tables No. 5 and 6)

Accident information was obtained for the Study Area Intersections from the NYSDOT Records Access Office for the most recent four full year period (January 1, 2015 to December 31, 2018). This data is summarized in Table No. 5 for the NYS Route 120 (King Street) Corridor and Table No. 6 for the NYS Route 22/NYS Route 128/North Castle Drive, NYS Route 22/North Broadway/Sir John's Plaza and NYS Route 22/Cross Westchester Expressway/Reservoir Road/Church Street intersections by location, date, time, traffic control, severity, number of vehicles/injuries, light conditions, road surface condition, weather, manner of collision and apparent contributing factors.

As summarized on Table No. 5, there were 0 reportable accidents in 2015, 2 reportable accidents in 2016, 3 reportable accidents in 2017 and 2 reportable accidents in 2018 at NYS Route 120 (King Street)/American Lane (S)/Site Access (NYS Reference marker 120 8701 2076) and 0 reportable accidents in 2015, 1 reportable accident in 2016, 1 reportable accident in 2017 and 0 reportable accidents in 2018 at NYS Route 120 (King Street)/Cooney Hill Road (NYS Reference Markers 120 8701 2079 – 120 8701 2080).

A review of the accident data indicates typical type of accidents which includes rear-end accidents with apparent contributing factors such as failure to yield right of way, following too closely and driver inattention. Appendix G also contains a copy of the NYSDOT Accident Severity Summary and Verbal Description Reports.

Based on a review of the accident data and based on the anticipated generation for the proposed Airport Campus, it is expected that the Proposed Project will not have a significant impact on the accident rates on the area roadways.

N. PARKING IN THE DOWNTOWN AREA

The Town has conducted a parking study of the downtown area "Armonk Parking Study – Town of North Castle – Final Report – April 2020" by Nelson\Nygaard Consulting Associates, Inc. This study included "four upcoming and potential developments within or near to Central Armonk". These developments included Marini Gardens, 162 Bedford Road (Armonk Lumber Yard), 470 Main Street and Eagle Ridge which is located approximately one-quarter mile south of downtown Armonk along N. Castle Road. The

Airport Campus (113 King Street)
MC Project No. 18002018A
Page 25 of 25

study noted "a senior housing development with 16 units, is also under construction, but far outside of the downtown Armonk area, and is unlikely to have any substantive impact on typical parking demand and patterns, and was therefore excluded from the analysis." This would also be true for both the 113 King Street Site and Brynwood Site which are 2.8 miles and 3.3 miles, respectively from the downtown Armonk area and would also be expected to not have any substantive impact on typical parking demand and patterns.

The Lead Agency is not expressing an opinion on the Applicant's conclusion as to its impact on the Hamlet. The Proposed Action, along with other proposed projects near the Hamlet, may result in traffic, parking and congestion impacts within the Hamlet. The parking study indicates that if additional development is to be approved in the vicinity of the Armonk Hamlet, the Town should explore opportunities to expand the supply of public parking in the Hamlet. It is the Applicant's understanding that the Lead Agency may establish a Community Benefit Agreement, or other mechanism, to financially assist the Town in implementing long-term parking solutions. Should subsequent analyses indicate the need for off-site improvements resulting from impacts related to the Proposed Project and/or other projects, the Applicant would contribute its fair share to those improvements.

O. SUMMARY AND CONCLUSION

As summarized in this Study and as shown on the Level of Service Summary Table (Table No. 2), similar Levels of Service and delays will be experiences under future No-Build and future Build Conditions. Thus, the proposed Airport Campus (113 King Street) development is not expected to significantly affect the area roadways.

AIRPORT CAMPUS (113 KING STREET)

APPENDIX A FIGURES

Customer Loyalty through Client Satisfaction www.maserconsulting.com Engineers # Planners # Surveyors scape Architects # Environmental Scientists

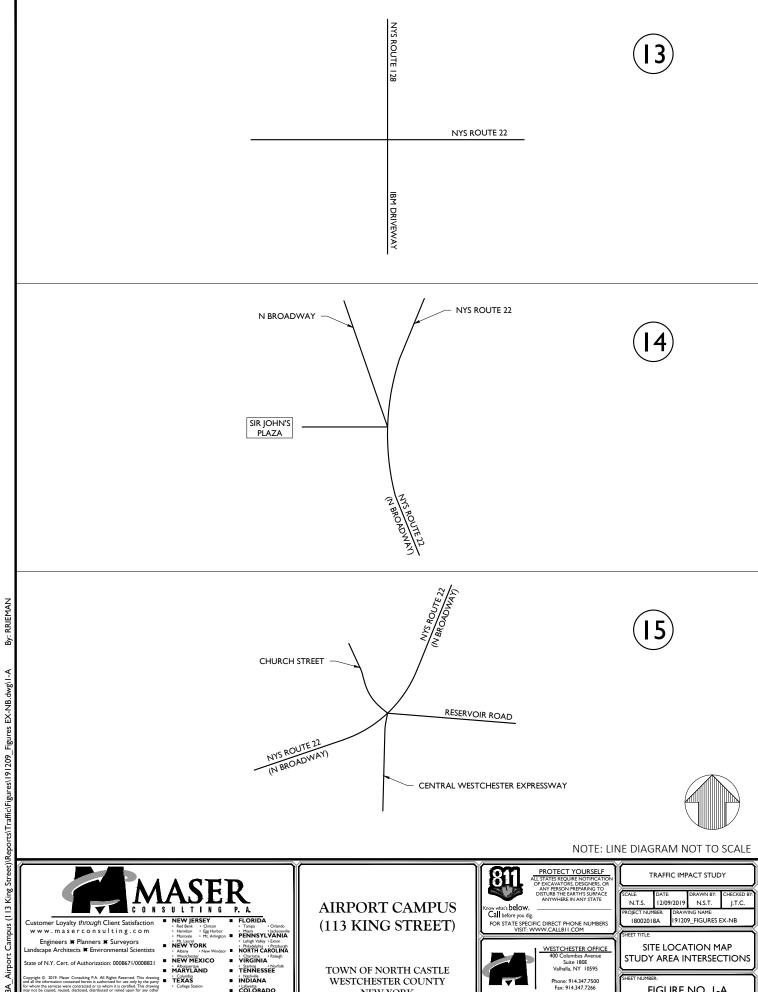
of N.Y. Cert. of Authorization: 0008671/0008821

NEW YORK Philadelphia Pittsburgh
 NORTH CAROLINA

> TENNESSEE Nashville INDIANA · Lafayette COLORADO

AIRPORT CAMPUS (113 KING STREET)

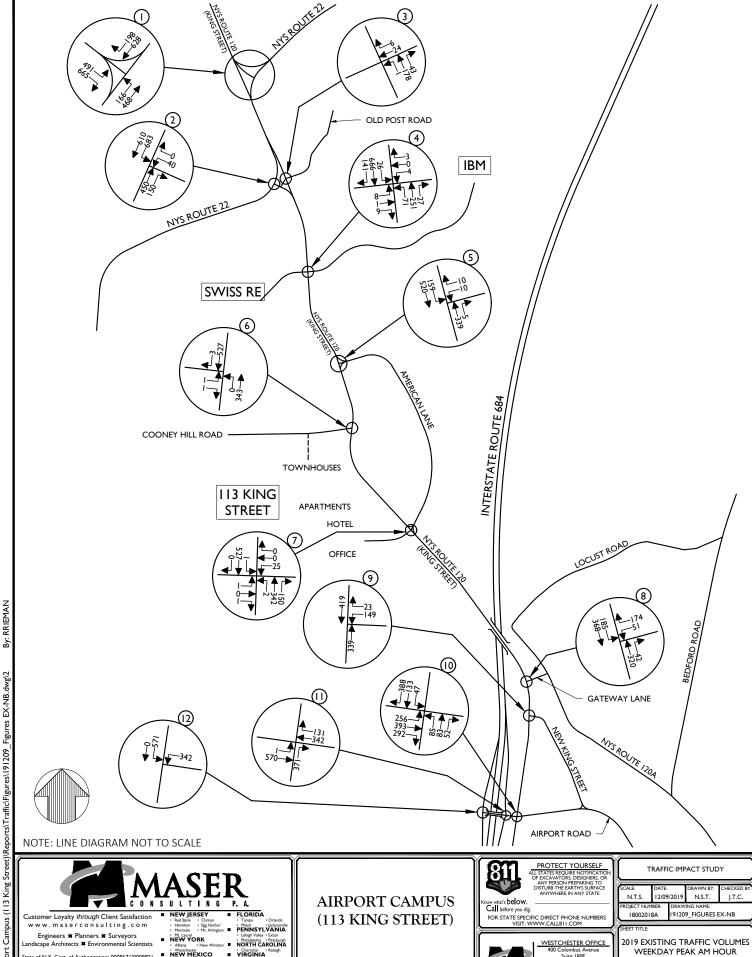
TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK



WESTCHESTER OFFICE Suite 180E Valhalla, NY 10595 Phone: 914.347.7500 Fax: 914.347.7266

12/09/2019 N.S.T. DRAWING NAME: 191209_FIGURES EX-NB 18002018A

SITE LOCATION MAP STUDY AREA INTERSECTIONS


FIGURE NO. I

NEW YORK

COLORADO

FIGURE NO. I-A

TOWN OF NORTH CASTLE

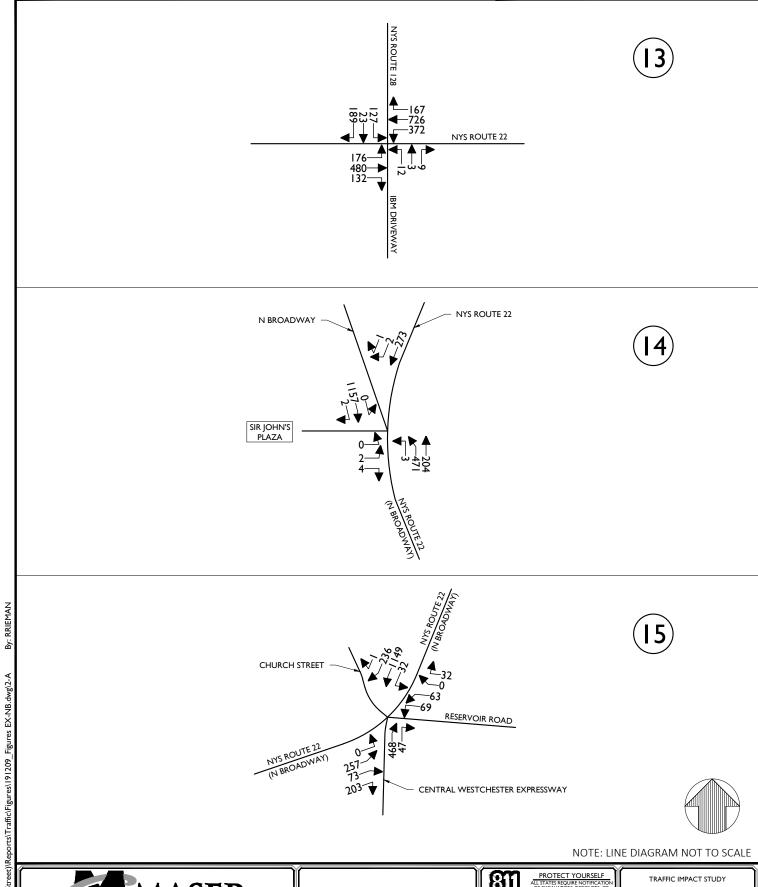
WESTCHESTER COUNTY

NEW YORK

Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266

FIGURE NO. 2


_Airport Campus (113 King Street)\Reports\Traffic\Figures\191209_Figures EX-NB.dwg\2

of N.Y. Cert. of Authorization: 0008671/0008821

· Sterling · Norfoll TENNESSEE

Nashville INDIANA

· Lafayette COLORADO

Customer Loyalty through Client Satisfaction www.maserconsulting.com Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821

NEW YORK Philadelphia Pittsburgh
 NORTH CAROLINA NEW MEXICO

■ MARYLAND TENNESSEE Nashville INDIANA · Lafayette COLORADO

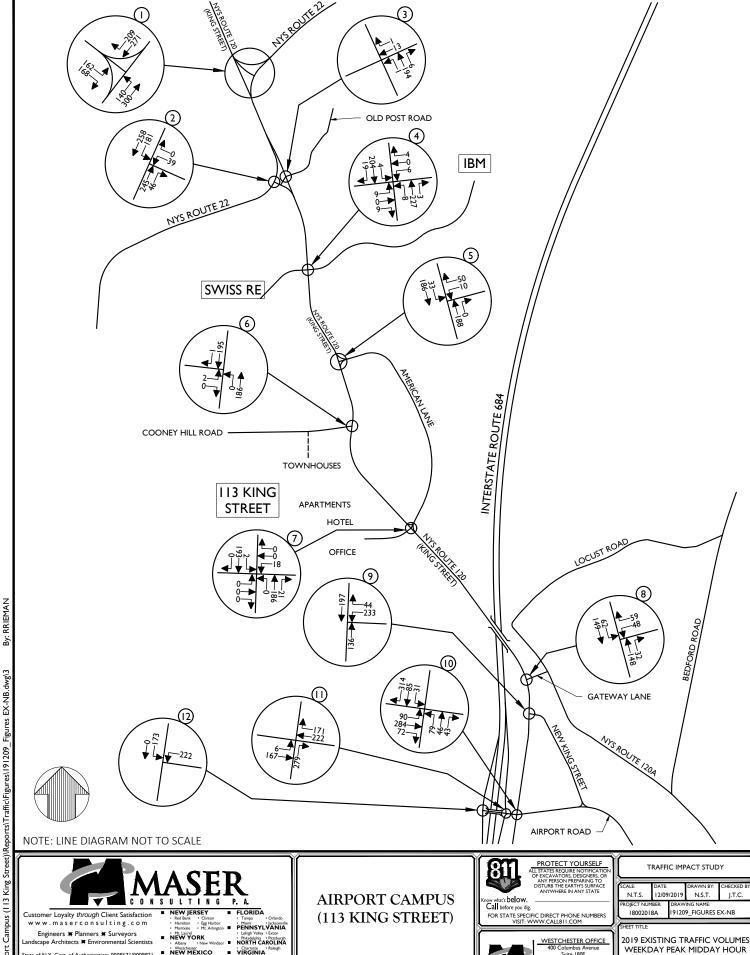
AIRPORT CAMPUS (113 KING STREET)

TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK

Call before you dig.
FOR STATE SPECIFIC DIRECT PHONE NUMBERS
VISIT: WWW.CALLBII.COM

WESTCHESTER OFFICE Suite 180E Valhalla, NY 10595 Phone: 914.347.7500 Fax: 914.347.7266

191209_FIGURES EX-NB 18002018A


12/09/2019

2019 EXISTING TRAFFIC VOLUMES WEEKDAY PEAK AM HOUR

N.S.T.

FIGURE NO. 2-A

2018A_Airport Campus (113 King Street)\Reports\Traffic\Figures\191209_Figures EX-NB.dwg\2-A

TOWN OF NORTH CASTLE

WESTCHESTER COUNTY

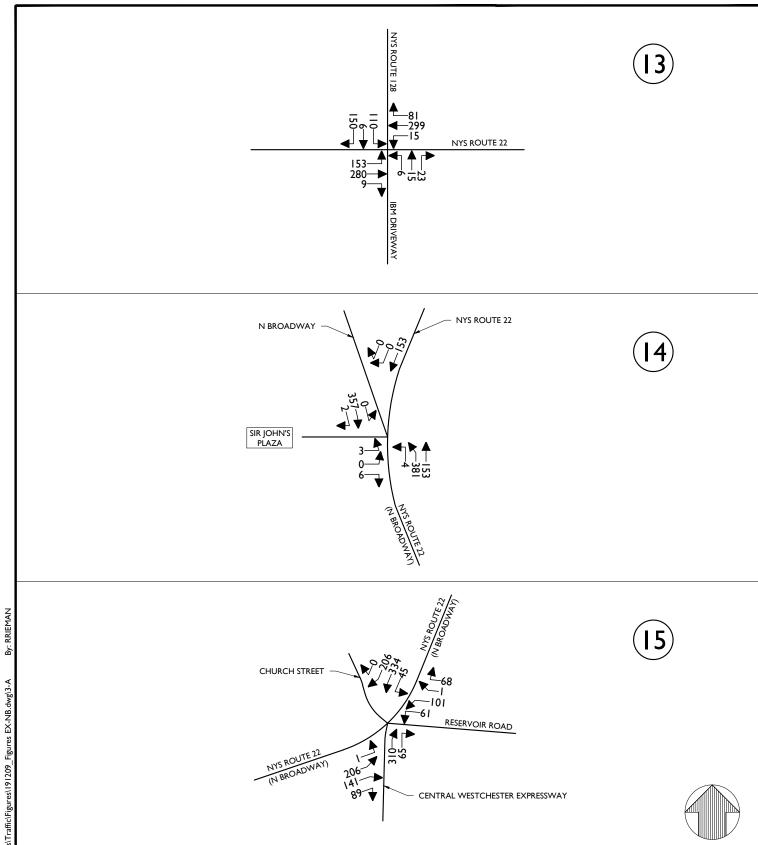
NEW YORK

Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266

FIGURE NO. 3

Philadelphia Pittsburgh
 NORTH CAROLINA


· Sterling · Norfoll TENNESSEE

Nashville INDIANA

· Lafayette COLORADO

_Airport Campus (113 King Street)\Reports\Traffic\Figures\191209_Figures EX-NB.dwg\3

of N.Y. Cert. of Authorization: 0008671/0008821

NOTE: LINE DIAGRAM NOT TO SCALE

Customer Loyalty through Client Satisfaction www.maserconsulting.com Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821

NEW YORK Philadelphia Pittsburgh
 NORTH CAROLINA NEW MEXICO

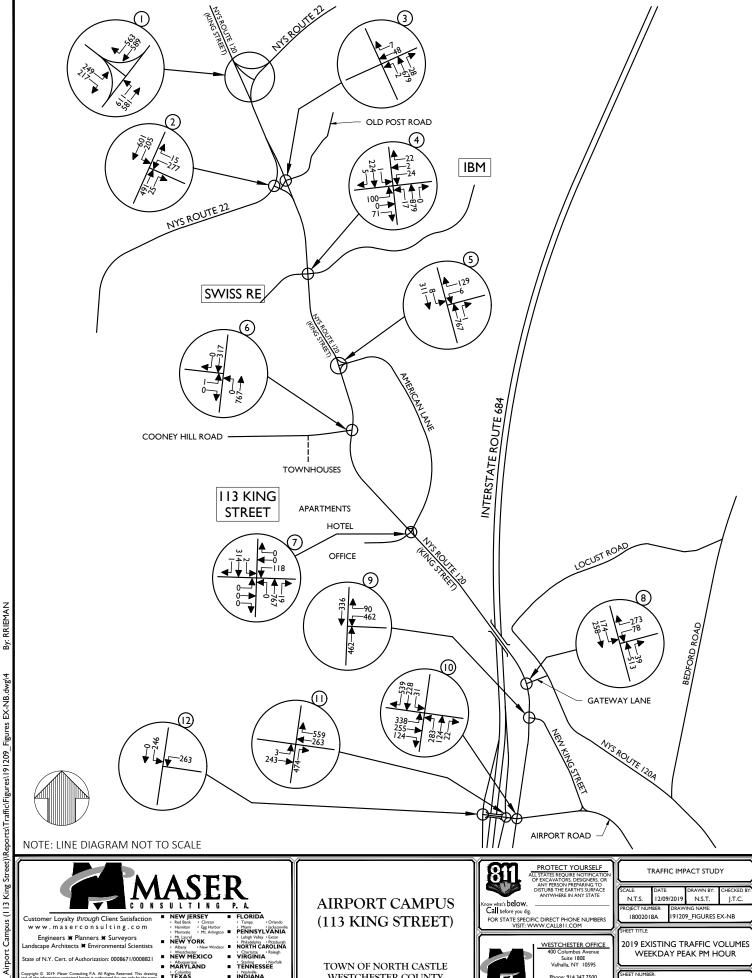
■ MARYLAND TENNESSEE Nashville INDIANA · Lafayette COLORADO

AIRPORT CAMPUS (113 KING STREET)

TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK

Call before you dig.
FOR STATE SPECIFIC DIRECT PHONE NUMBERS
VISIT: WWW.CALLBII.COM

Suite 180E Valhalla, NY 10595 Phone: 914.347.7500 Fax: 914.347.7266


12/09/2019 N.S.T. 191209_FIGURES EX-NB 18002018A

TRAFFIC IMPACT STUDY

2019 EXISTING TRAFFIC VOLUMES WEEKDAY PEAK MIDDAY HOUR

FIGURE NO. 3-A

2018A_Airport Campus (113 King Street)\Reports\Traffic\Figures\191209_Figures EX-NB.dwg\3-A

WESTCHESTER COUNTY

NEW YORK

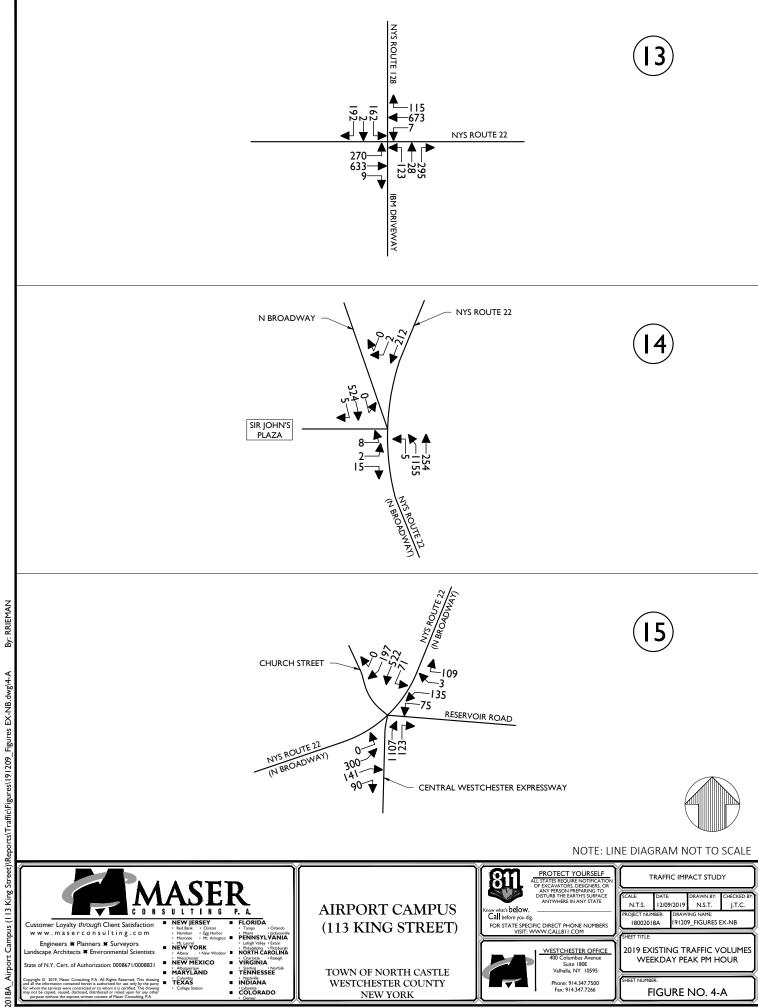

Phone: 914.347.7500 Fax: 914.347.7266

FIGURE NO. 4

Sterling Norfolk
TENNESSEE

Nashville INDIANA

· Lafayette COLORADO

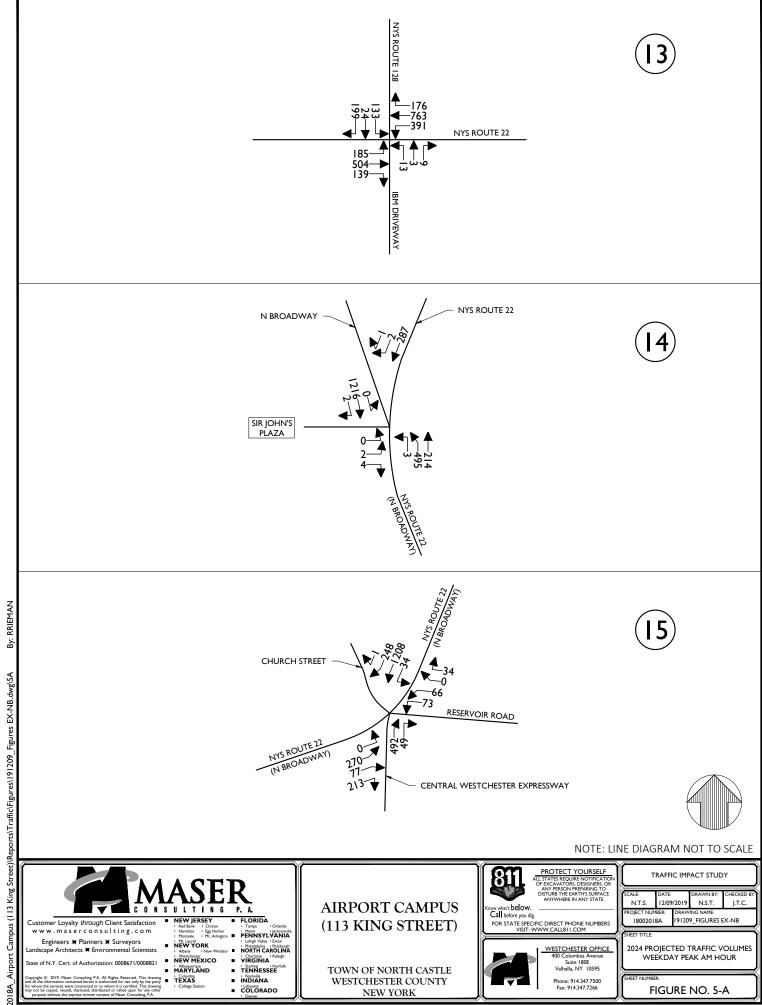
Philadelphia Pittsburgh
 NORTH CAROLINA

NEW YORK NEW MEXICO of N.Y. Cert. of Authorization: 0008671/0008821

■ MARYLAND TENNESSEE Nashville INDIANA · Lafayette COLORADO TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK

Suite 180E Valhalla, NY 10595 Phone: 914.347.7500 Fax: 914.347.7266 2019 EXISTING TRAFFIC VOLUMES WEEKDAY PEAK PM HOUR

FIGURE NO. 4-A


of N.Y. Cert. of Authorization: 0008671/0008821

Sterling Norfolk
TENNESSEE Nashville INDIANA · Lafayette COLORADO

TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK

Suite 180E Valhalla, NY 10595 Phone: 914.347.7500 Fax: 914.347.7266

WESTCHESTER COUNTY

NEW YORK

WESTCHESTER OFFICE

Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266

2024 PROJECTED TRAFFIC VOLUMES WEEKDAY PEAK AM HOUR

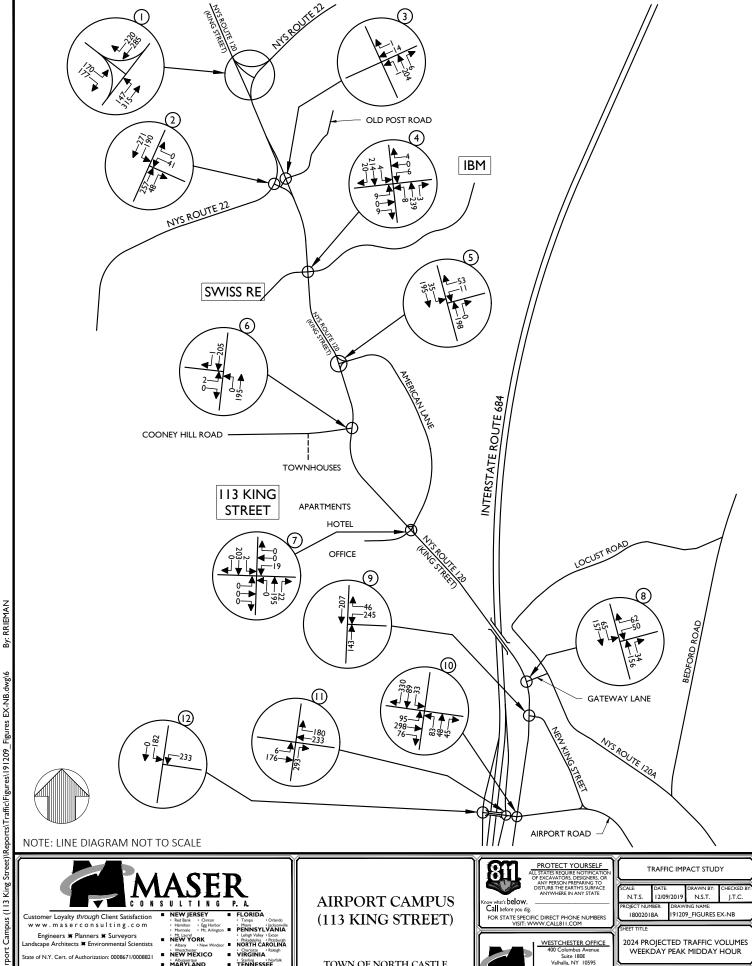
FIGURE NO. 5-A

Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821

NEW YORK

■ MARYLAND


NEW MEXICO

Philadelphia Pittsburgh
 NORTH CAROLINA

TENNESSEE

· Lafayette COLORADO

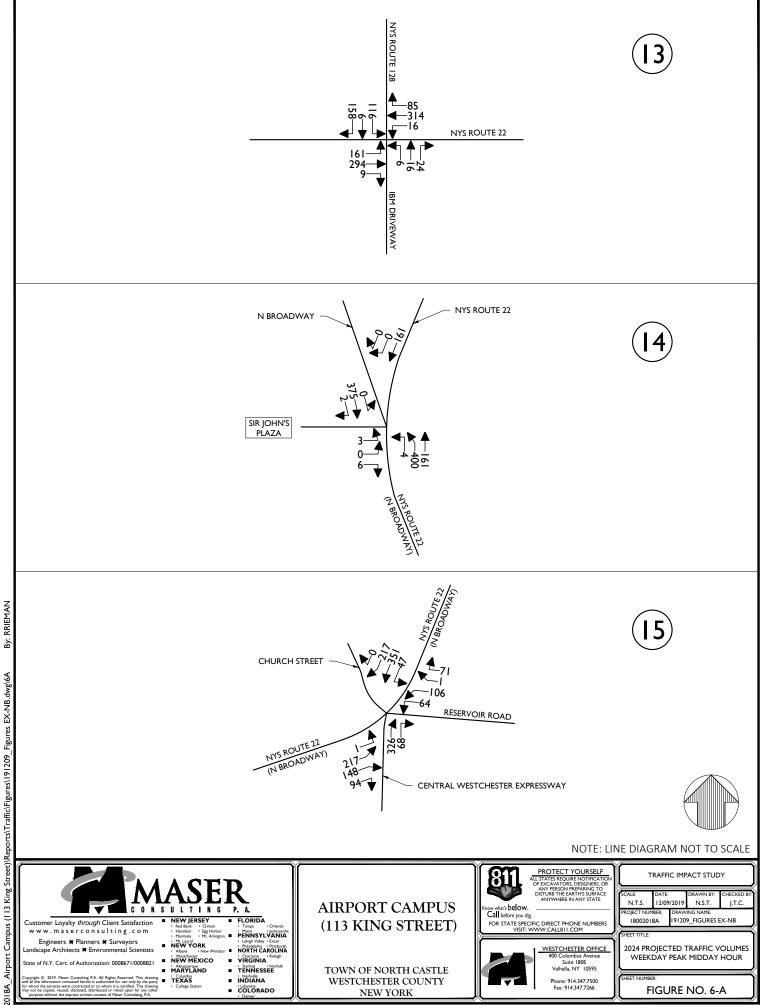
Nashville INDIANA

WESTCHESTER COUNTY

NEW YORK

Sterling Norfolk
TENNESSEE

Nashville INDIANA


· Lafayette COLORADO

Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266

FIGURE NO. 6

_Airport Campus (113 King Street)\Reports\Traffic\Figures\191209_Figures EX-NB.dwg\6

(113 KING STREET)

TOWN OF NORTH CASTLE

WESTCHESTER COUNTY

NEW YORK

WESTCHESTER OFFICE

Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266

2024 PROJECTED TRAFFIC VOLUMES WEEKDAY PEAK MIDDAY HOUR

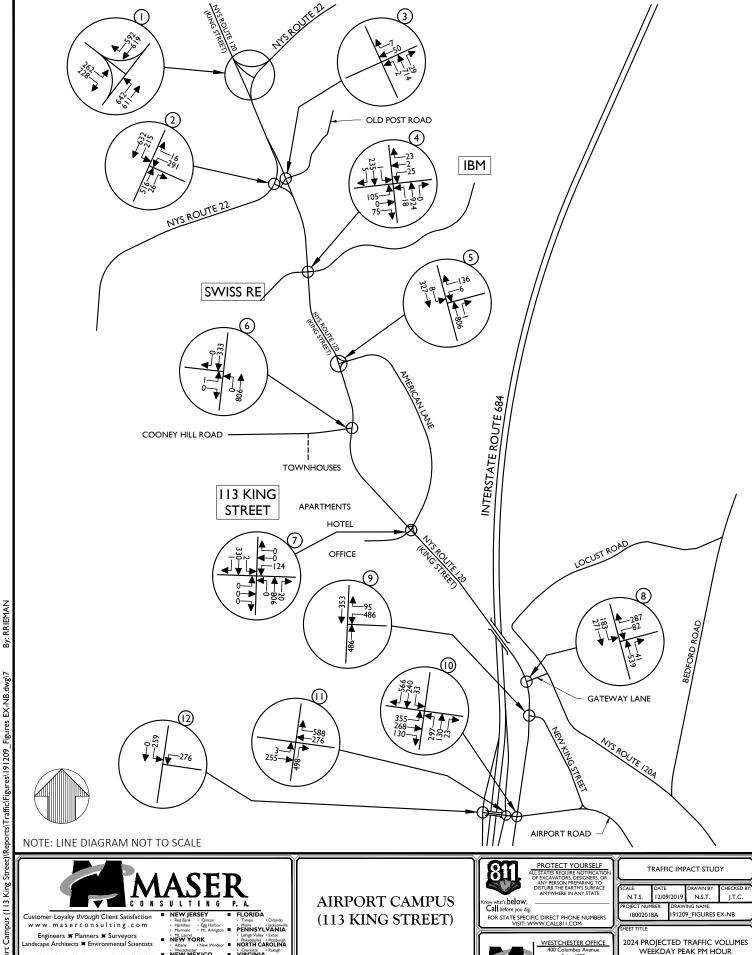
FIGURE NO. 6-A

www.maserconsulting.com Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821

NEW YORK

■ MARYLAND


NEW MEXICO

Philadelphia Pittsburgh
 NORTH CAROLINA

TENNESSEE

· Lafayette COLORADO

Nashville INDIANA

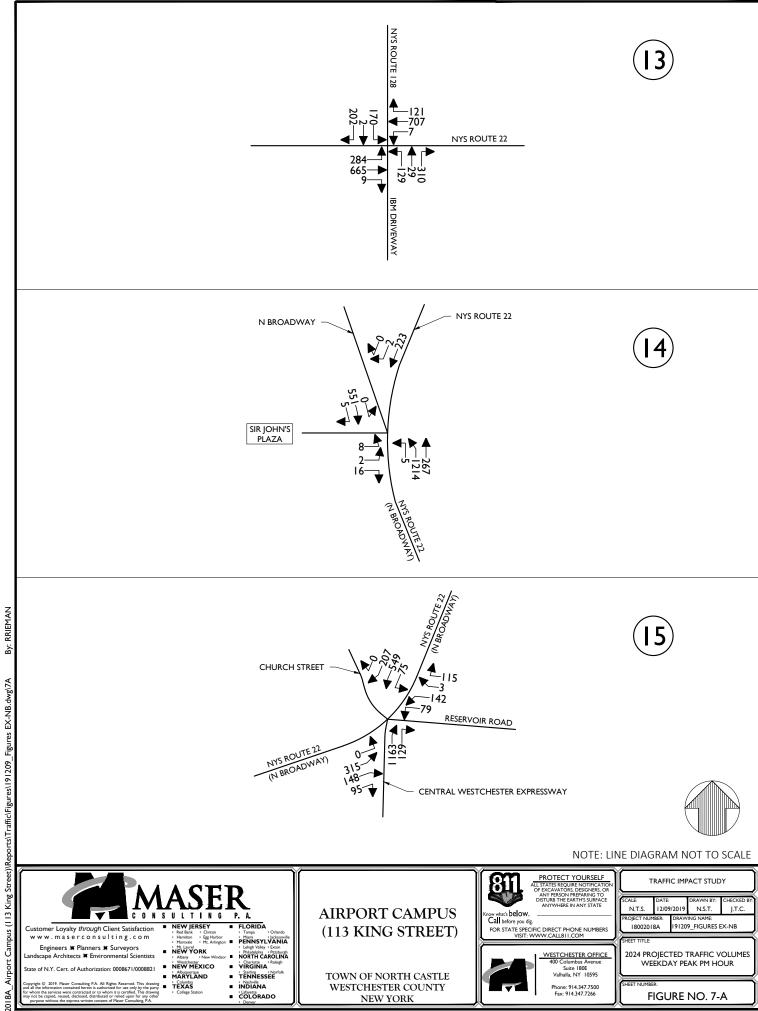
WESTCHESTER COUNTY

NEW YORK

Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266

FIGURE NO. 7


_Airport Campus (113 King Street)\Reports\Traffic\Figures\191209_Figures EX-NB.dwg\7

of N.Y. Cert. of Authorization: 0008671/0008821

· Sterling · Norfoll TENNESSEE

Nashville INDIANA

· Lafayette COLORADO

Customer Loyalty through Client Satisfaction www.maserconsulting.com Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821

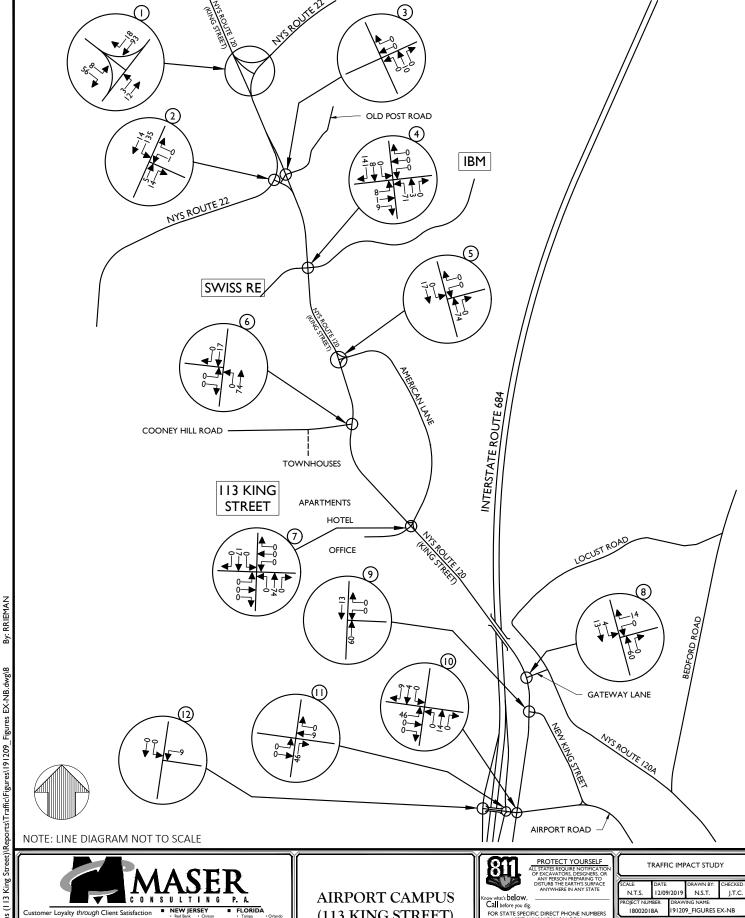
NEW YORK Philadelphia Pittsburgh
 NORTH CAROLINA NEW MEXICO

■ MARYLAND TENNESSEE Nashville INDIANA · Lafayette COLORADO

AIRPORT CAMPUS (113 KING STREET)

TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK

Call before you dig.
FOR STATE SPECIFIC DIRECT PHONE NUMBERS
VISIT: WWW.CALLBII.COM


WESTCHESTER OFFICE Suite 180E Valhalla, NY 10595 Phone: 914.347.7500 Fax: 914.347.7266

12/09/2019 N.S.T.

191209_FIGURES EX-NB 18002018A

2024 PROJECTED TRAFFIC VOLUMES WEEKDAY PEAK PM HOUR

FIGURE NO. 7-A

of N.Y. Cert. of Authorization: 0008671/0008821

www.maserconsulting.com

Engineers # Planners # Surveyors scape Architects # Environmental Scientists ■ NEW YORK

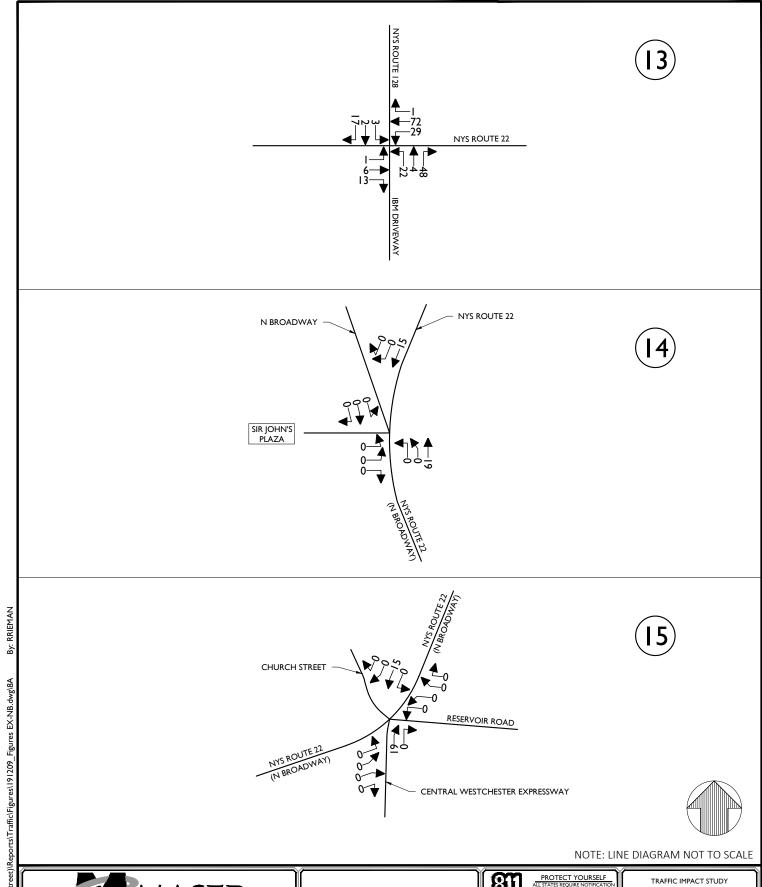
Sterling Norfolk
TENNESSEE Nashville INDIANA · Lafayette COLORADO

PENNSYLVANIA

Philadelphia Pittsburgh
 NORTH CAROLINA

(113 KING STREET)

TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK



Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266

191209_FIGURES EX-NB 18002018A

OTHER DEVELOPMENT TRAFFIC VOLUMES WEEKDAY PEAK AM HOUR

Customer Loyalty through Client Satisfaction www.maserconsulting.com Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821

NEW YORK Philadelphia Pittsburgh
 NORTH CAROLINA NEW MEXICO

■ MARYLAND TENNESSEE Nashville INDIANA · Lafayette COLORADO

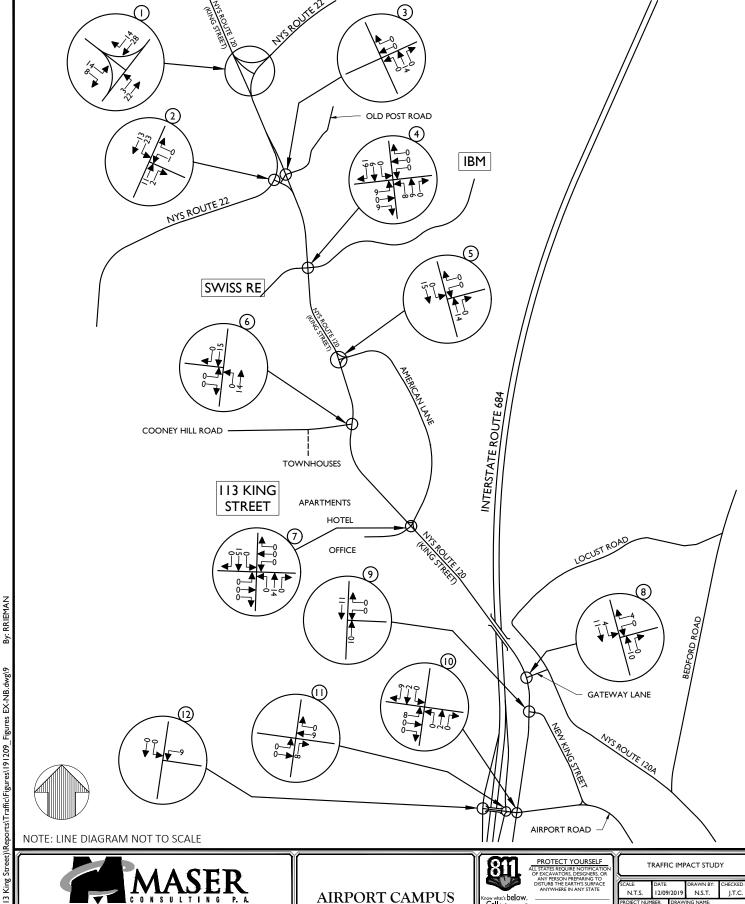
AIRPORT CAMPUS (113 KING STREET)

TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK

Call before you dig.
FOR STATE SPECIFIC DIRECT PHONE NUMBERS
VISIT: WWW.CALLBII.COM

WESTCHESTER OFFICE Suite 180E Valhalla, NY 10595 Phone: 914.347.7500 Fax: 914.347.7266

OTHER DEVELOPMENT TRAFFIC VOLUMES WEEKDAY PEAK AM HOUR


N.S.T.

191209_FIGURES EX-NB

12/09/2019

18002018A

FIGURE NO. 8-A

of N.Y. Cert. of Authorization: 0008671/0008821

Customer Loyalty through Client Satisfaction

www.maserconsulting.com

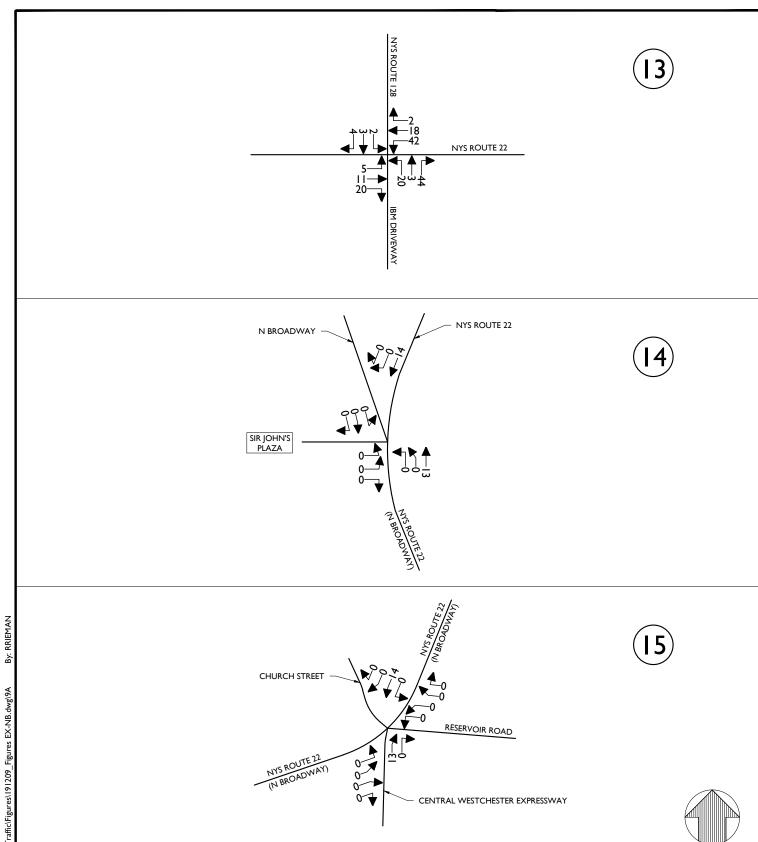
Engineers # Planners # Surveyors scape Architects # Environmental Scientists

■ NEW YORK

PENNSYLVANIA Philadelphia Pittsburgh
 NORTH CAROLINA

> Sterling Norfolk
> TENNESSEE Nashville INDIANA · Lafayette COLORADO

AIRPORT CAMPUS (113 KING STREET)


TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK

Suite 180E Valhalla, NY 10595 Phone: 914.347.7500 Fax: 914.347.7266

191209_FIGURES EX-NB 18002018A

OTHER DEVELOPMENT TRAFFIC VOLUMES
WEEKDAY PEAK MIDDAY HOUR

Customer Loyalty through Client Satisfaction www.maserconsulting.com Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821

NEW YORK Philadelphia Pittsburgh
 NORTH CAROLINA NEW MEXICO

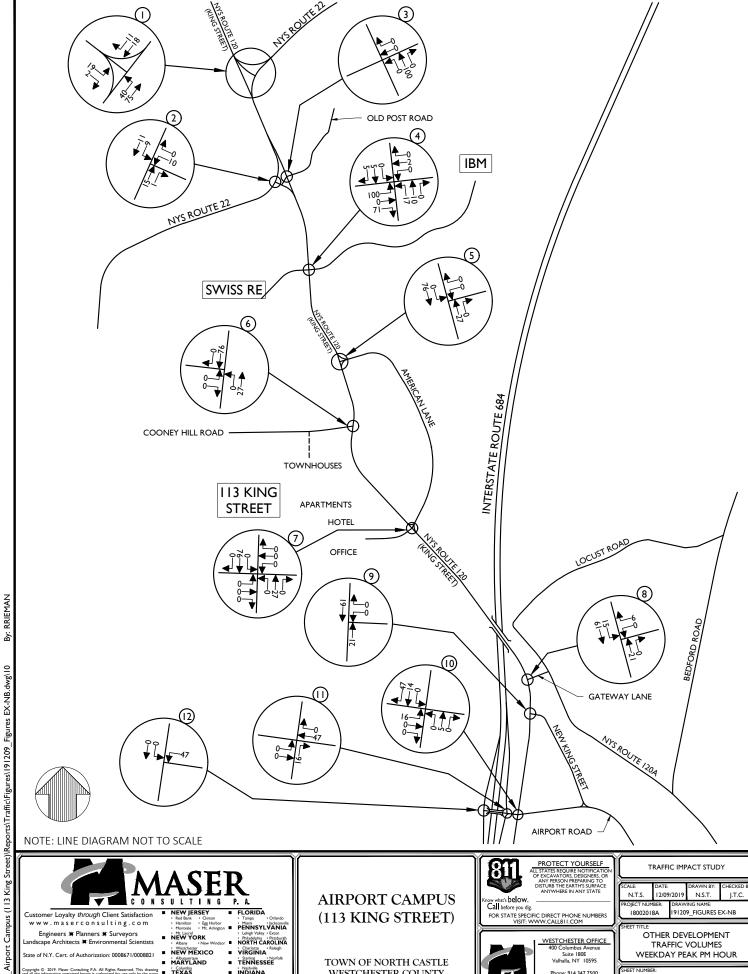
■ MARYLAND TENNESSEE Nashville INDIANA · Lafayette COLORADO

AIRPORT CAMPUS (113 KING STREET)

TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK

Call before you dig.
FOR STATE SPECIFIC DIRECT PHONE NUMBERS
VISIT: WWW.CALLBII.COM

WESTCHESTER OFFICE Suite 180E Valhalla, NY 10595 Phone: 914.347.7500 Fax: 914.347.7266


TRAFFIC IMPACT STUDY 12/09/2019 N.S.T.

191209_FIGURES EX-NB 18002018A OTHER DEVELOPMENT

TRAFFIC VOLUMES WEEKDAY PEAK MIDDAY HOUR

FIGURE NO. 9-A

2018A_Airport Campus (113 King Street)\Reports\Traffic\Figures\191209_Figures EX-NB.dwg\9A

WESTCHESTER COUNTY

NEW YORK

OTHER DEVELOPMENT

TRAFFIC VOLUMES
WEEKDAY PEAK PM HOUR

FIGURE NO. 10

Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266

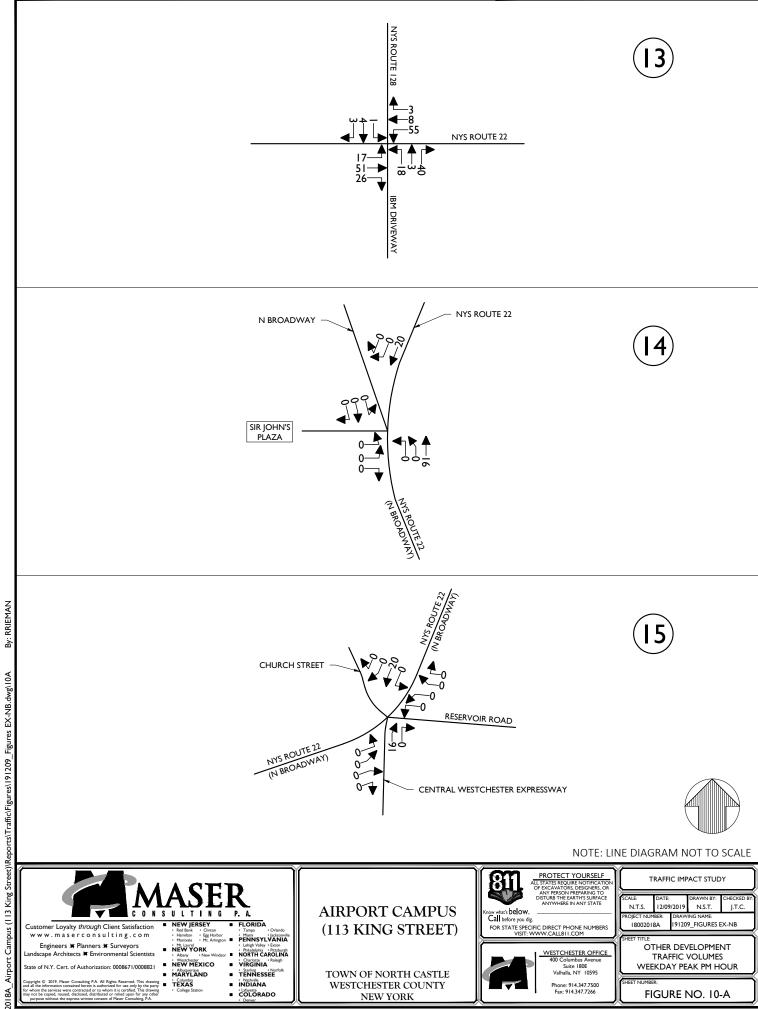
of N.Y. Cert. of Authorization: 0008671/0008821

www.maserconsulting.com

Engineers # Planners # Surveyors scape Architects # Environmental Scientists

PENNSYLVANIA

Philadelphia Pittsburgh
 NORTH CAROLINA


Sterling Norfolk
TENNESSEE

VIRGINIA

Nashville INDIANA

· Lafayette COLORADO

■ NEW YORK

(113 KING STREET)

TOWN OF NORTH CASTLE

WESTCHESTER COUNTY

NEW YORK

191209_FIGURES EX-NB

OTHER DEVELOPMENT

TRAFFIC VOLUMES
WEEKDAY PEAK PM HOUR

FIGURE NO. 10-A

18002018A

WESTCHESTER OFFICE

Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266

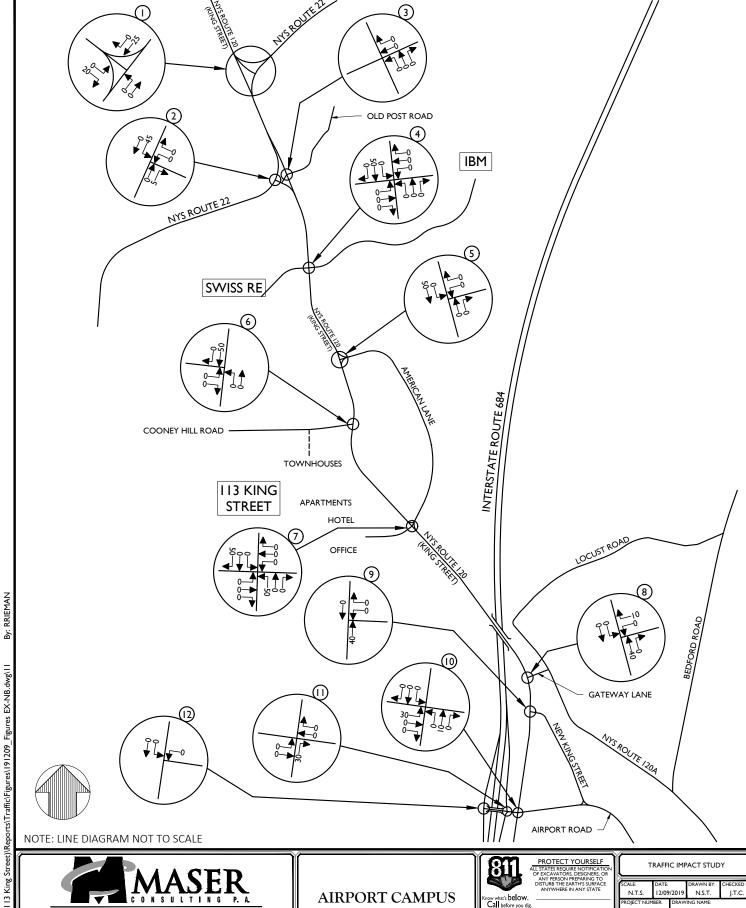
Customer Loyalty through Client Satisfaction

www.maserconsulting.com Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821

NEW YORK

■ MARYLAND


NEW MEXICO

Philadelphia Pittsburgh
 NORTH CAROLINA

TENNESSEE

· Lafayette COLORADO

Nashville INDIANA

www.maserconsulting.com Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821

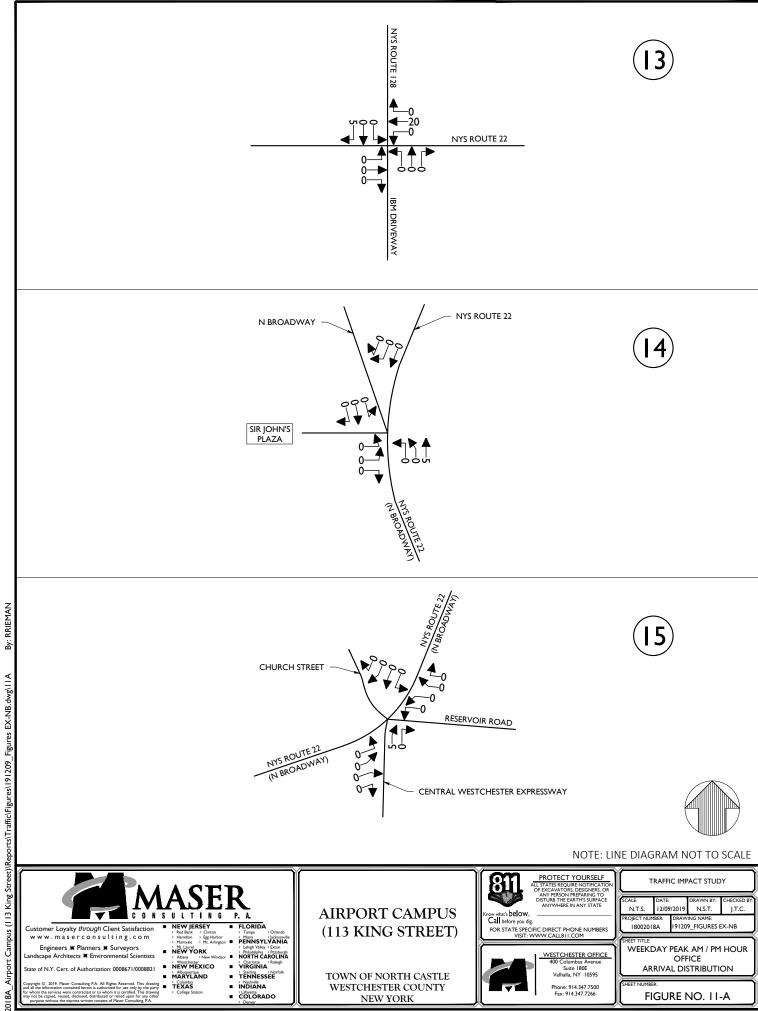
■ NEW YORK Philadelphia Pittsburgh
 NORTH CAROLINA

Sterling Norfolk
TENNESSEE

Nashville INDIANA

· Lafayette COLORADO

(113 KING STREET) PENNSYLVANIA


> TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK

Suite 180E Valhalla, NY 10595 Phone: 914.347.7500 Fax: 914.347.7266

191209_FIGURES EX-NB 18002018A WEEKDAY PEAK AM / PM HOUR

OFFICE ARRIVAL DISTRIBUTION

(113 KING STREET)

TOWN OF NORTH CASTLE

WESTCHESTER COUNTY

NEW YORK

191209_FIGURES EX-NB

WEEKDAY PEAK AM / PM HOUR

OFFICE

ARRIVAL DISTRIBUTION

FIGURE NO. 11-A

18002018A

Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266

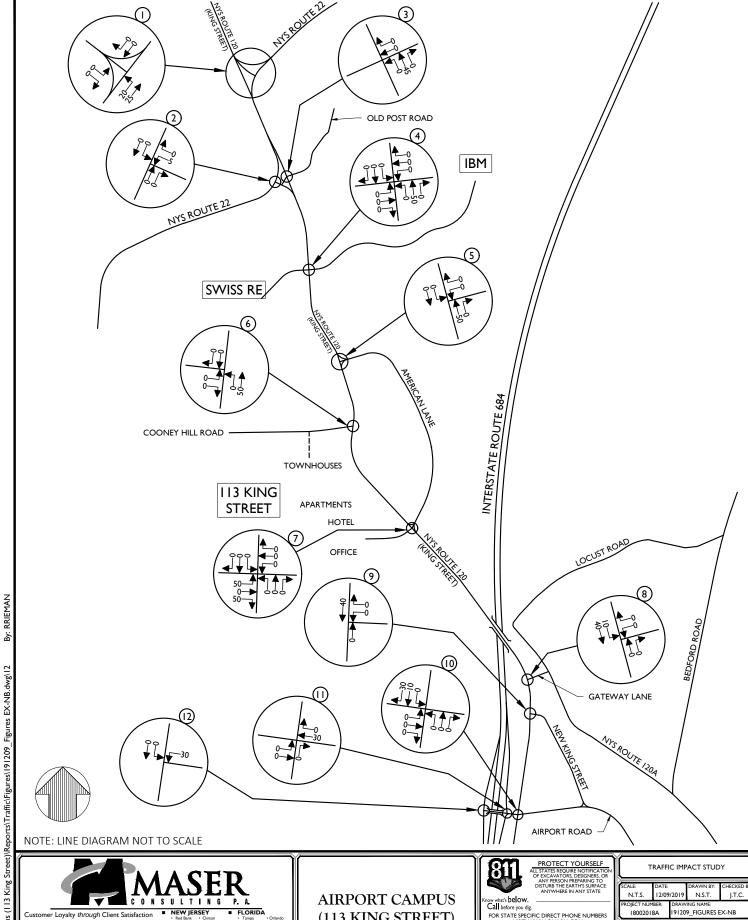
Customer Loyalty through Client Satisfaction

www.maserconsulting.com Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821

NEW YORK

■ MARYLAND


NEW MEXICO

Philadelphia Pittsburgh
 NORTH CAROLINA

TENNESSEE

· Lafayette COLORADO

Nashville INDIANA

www.maserconsulting.com

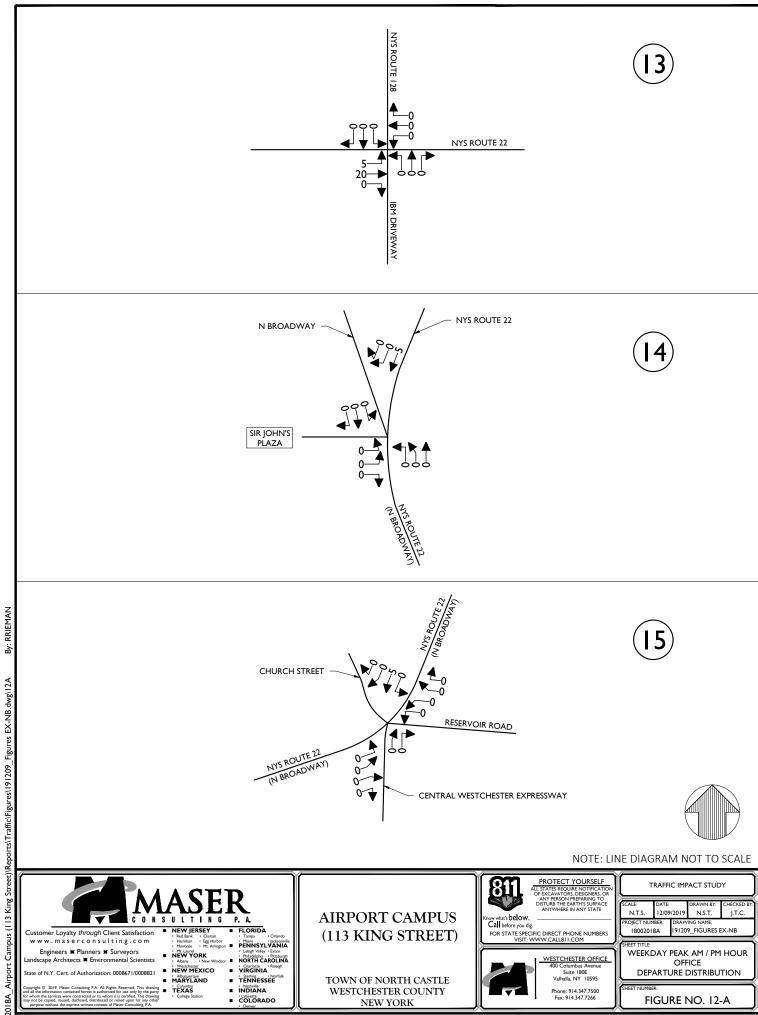
Engineers # Planners # Surveyors scape Architects # Environmental Scientists

■ NEW YORK of N.Y. Cert. of Authorization: 0008671/0008821

PENNSYLVANIA Philadelphia Pittsburgh
 NORTH CAROLINA

Sterling Norfolk
TENNESSEE Nashville INDIANA · Lafayette COLORADO

(113 KING STREET)


TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK

Suite 180E Valhalla, NY 10595 Phone: 914.347.7500 Fax: 914.347.7266

191209_FIGURES EX-NB 18002018A

WEEKDAY PEAK AM / PM HOUR DEPARTURE DISTRIBUTION

Customer Loyalty through Client Satisfaction www.maserconsulting.com Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821

■ MARYLAND

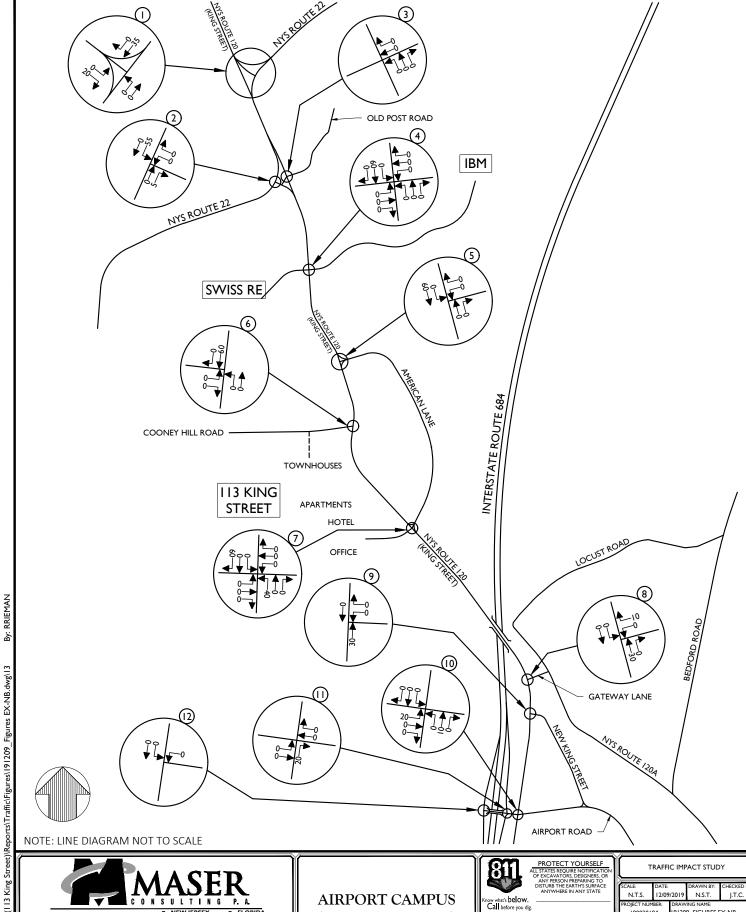
NEW YORK Philadelphia Pittsburgh
 NORTH CAROLINA NEW MEXICO

TENNESSEE Nashville INDIANA · Lafayette COLORADO

AIRPORT CAMPUS (113 KING STREET)

TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK

Call before you dig.
FOR STATE SPECIFIC DIRECT PHONE NUMBERS
VISIT: WWW.CALLBII.COM


WESTCHESTER OFFICE Suite 180E Valhalla, NY 10595 Phone: 914.347.7500 Fax: 914.347.7266

12/09/2019 N.S.T.

191209_FIGURES EX-NB 18002018A WEEKDAY PEAK AM / PM HOUR

OFFICE DEPARTURE DISTRIBUTION

FIGURE NO. 12-A

www.maserconsulting.com Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821

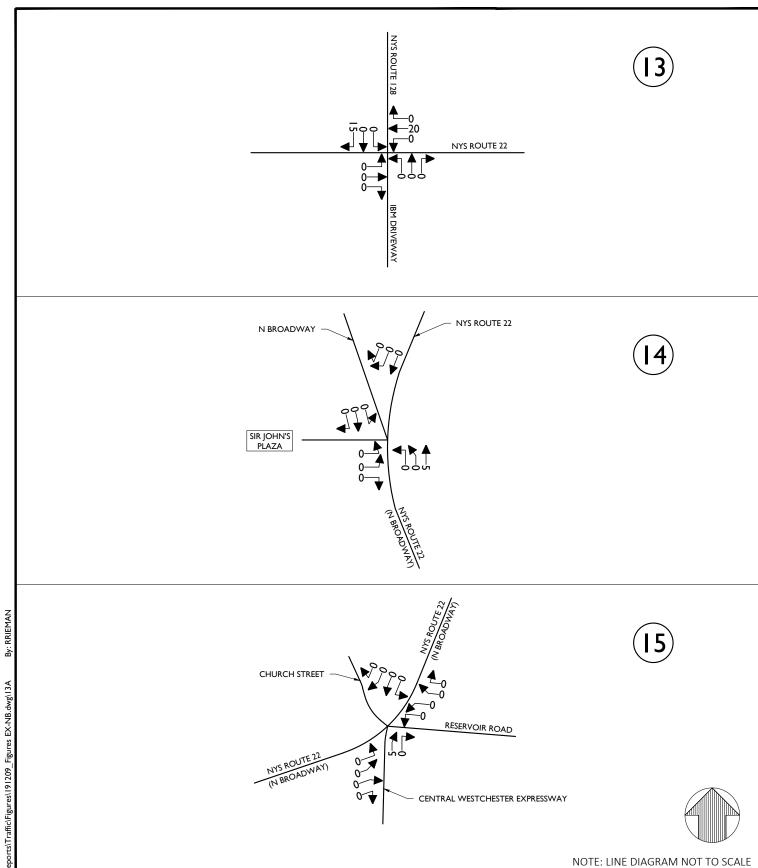
■ NEW YORK

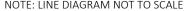
PENNSYLVANIA

Philadelphia Pittsburgh
 NORTH CAROLINA

Sterling Norfolk
TENNESSEE Nashville INDIANA · Lafayette COLORADO

(113 KING STREET)


TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK



Suite 180E Valhalla, NY 10595 Phone: 914.347.7500 Fax: 914.347.7266

191209_FIGURES EX-NB 18002018A

WEEKDAY PEAK MIDDAY HOUR OFFICE ARRIVAL DISTRIBUTION

Customer Loyalty through Client Satisfaction www.maserconsulting.com Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821 ■ MARYLAND

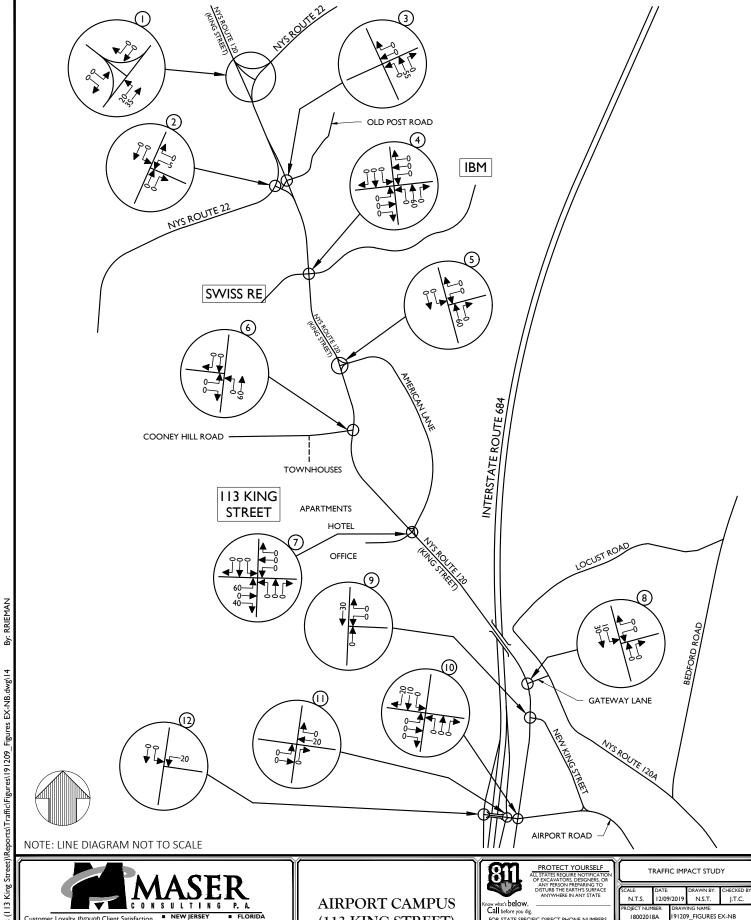
Mt. Laurel
NEW YORK Philadelphia Pittsburgh
 NORTH CAROLINA NEW MEXICO

TENNESSEE Nashville INDIANA · Lafayette COLORADO

AIRPORT CAMPUS (113 KING STREET)

TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK

Call before you dig.
FOR STATE SPECIFIC DIRECT PHONE NUMBERS
VISIT: WWW.CALLBII.COM



Suite 180E Valhalla, NY 10595 Phone: 914.347.7500 Fax: 914.347.7266 TRAFFIC IMPACT STUDY 12/09/2019 N.S.T.

191209_FIGURES EX-NB 18002018A

WEEKDAY PEAK MIDDAY HOUR OFFICE ARRIVAL DISTRIBUTION

FIGURE NO. 13-A

Customer Loyalty through Client Satisfaction www.maserconsulting.com

Engineers # Planners # Surveyors scape Architects # Environmental Scientists

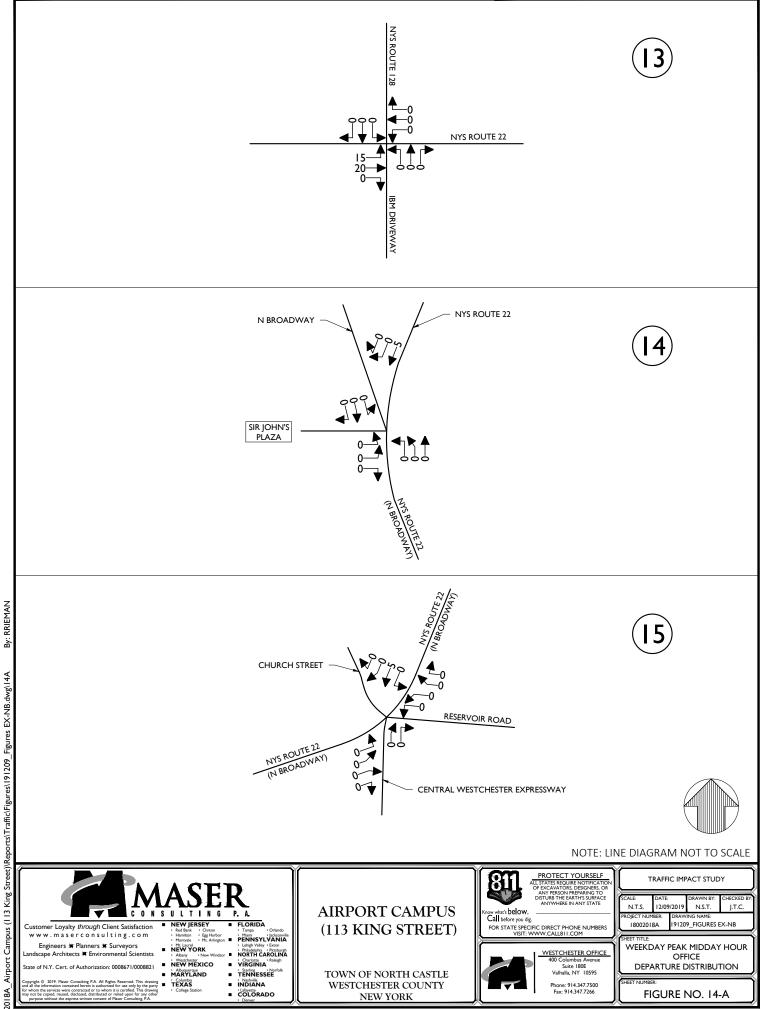
of N.Y. Cert. of Authorization: 0008671/0008821

PENNSYLVANIA

■ NEW YORK Philadelphia Pittsburgh
 NORTH CAROLINA

> Sterling Norfolk
> TENNESSEE Nashville INDIANA · Lafayette COLORADO

(113 KING STREET)


TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK

Suite 180E Valhalla, NY 10595 Phone: 914.347.7500 Fax: 914.347.7266

191209_FIGURES EX-NB 18002018A WEEKDAY PEAK MIDDAY HOUR

OFFICE DEPARTURE DISTRIBUTION

www.maserconsulting.com

Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821 ■ MARYLAND

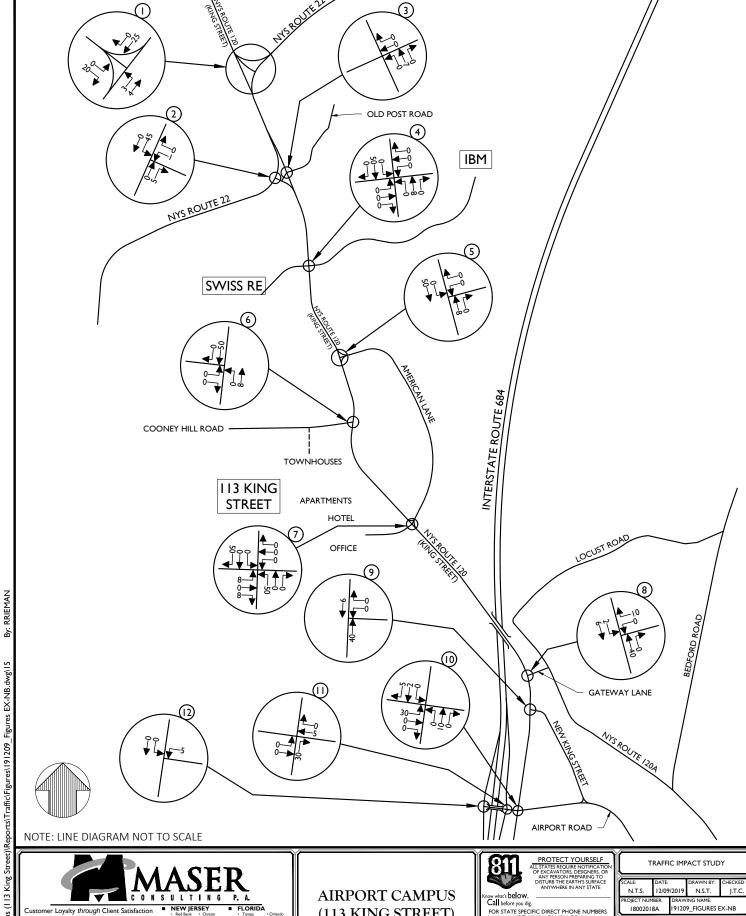
NEW YORK Philadelphia Pittsburgh
 NORTH CAROLINA NEW MEXICO

TENNESSEE Nashville INDIANA · Lafayette COLORADO

AIRPORT CAMPUS (113 KING STREET)

TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK

Call before you dig.
FOR STATE SPECIFIC DIRECT PHONE NUMBERS
VISIT: WWW.CALLBII.COM



WESTCHESTER OFFICE Suite 180E Valhalla, NY 10595 Phone: 914.347.7500 Fax: 914.347.7266

191209_FIGURES EX-NB 18002018A WEEKDAY PEAK MIDDAY HOUR

OFFICE DEPARTURE DISTRIBUTION

FIGURE NO. 14-A

www.maserconsulting.com Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821

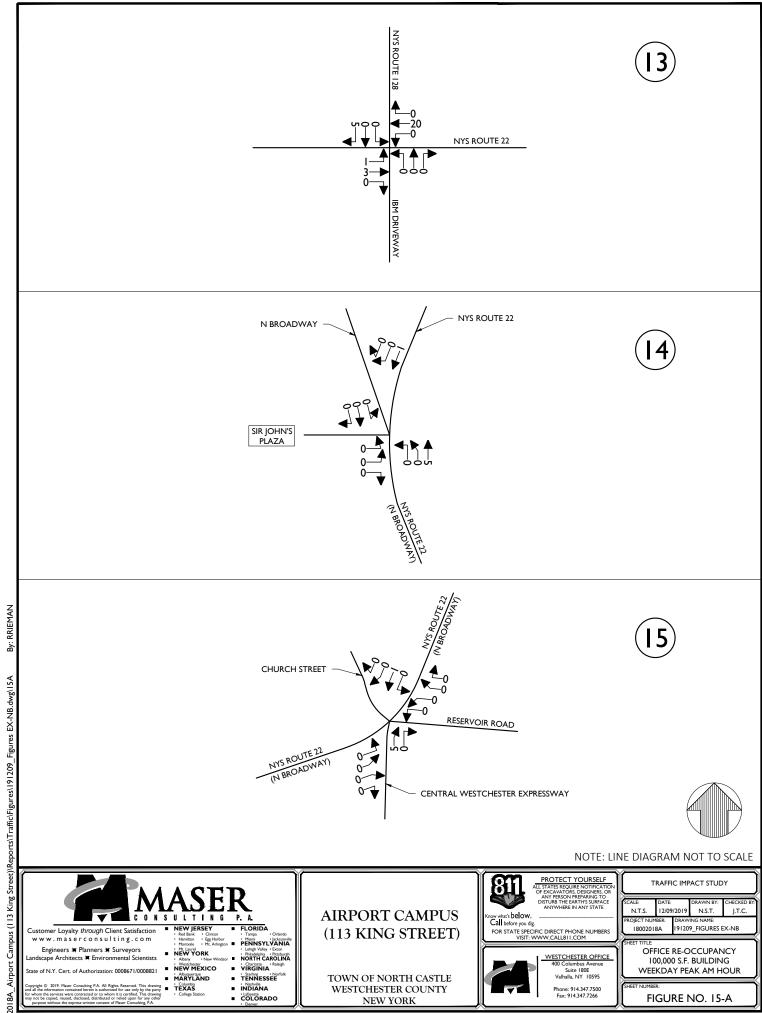
■ NEW YORK

PENNSYLVANIA

 Philadelphia Pittsburgh
 NORTH CAROLINA VIRGINIA

Sterling Norfolk
TENNESSEE Nashville INDIANA · Lafayette COLORADO

(113 KING STREET)


TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK

WESTCHESTER OFFICE Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266

OFFICE RE-OCCUPANCY 100,000 S.F. BUILDING WEEKDAK PEAK AM HOUR

Customer Loyalty through Client Satisfaction www.maserconsulting.com Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821 ■ MARYLAND

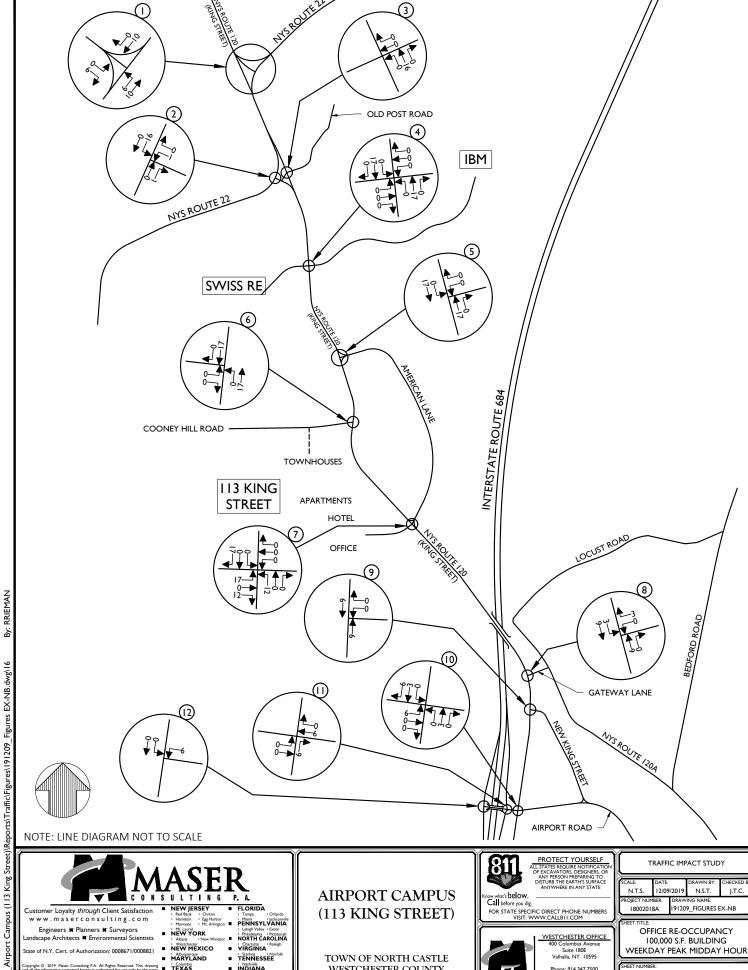
NEW YORK Philadelphia Pittsburgh
 NORTH CAROLINA NEW MEXICO

TENNESSEE Nashville INDIANA COLORADO

AIRPORT CAMPUS (113 KING STREET)

TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK

Call before you dig.
FOR STATE SPECIFIC DIRECT PHONE NUMBERS
VISIT: WWW.CALLBII.COM


WESTCHESTER OFFICE Suite 180E Valhalla, NY 10595 Phone: 914.347.7500 Fax: 914.347.7266

OFFICE RE-OCCUPANCY 100,000 S.F. BUILDING WEEKDAY PEAK AM HOUR

191209_FIGURES EX-NB

18002018A

FIGURE NO. 15-A

of N.Y. Cert. of Authorization: 0008671/0008821

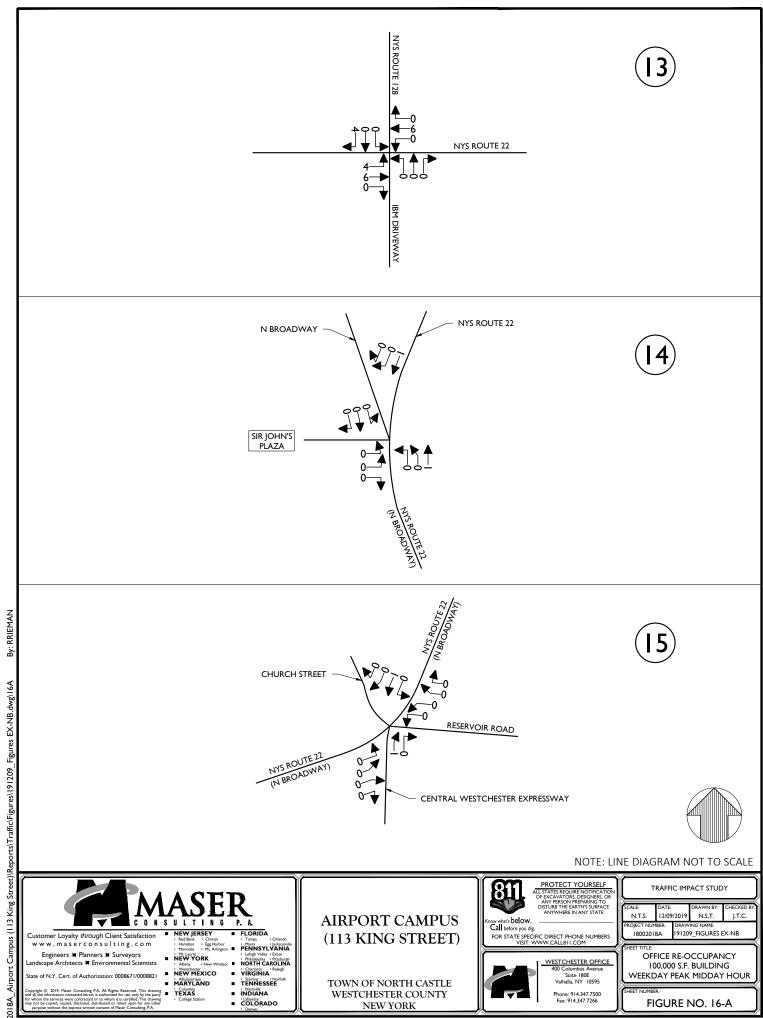
■ NEW YORK

Engineers # Planners # Surveyors scape Architects # Environmental Scientists

PENNSYLVANIA

 Philadelphia Pittsburgh
 NORTH CAROLINA VIRGINIA

Sterling Norfolk
TENNESSEE Nashville INDIANA · Lafayette COLORADO


(113 KING STREET)

TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK

Suite 180E Valhalla, NY 10595 Phone: 914.347.7500 Fax: 914.347.7266 OFFICE RE-OCCUPANCY

100,000 S.F. BUILDING WEEKDAY PEAK MIDDAY HOUR

www.maserconsulting.com Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821 ■ MARYLAND

Mt. Laurel
NEW YORK NEW MEXICO

TENNESSEE Nashville INDIANA COLORADO

Philadelphia Pittsburgh
 NORTH CAROLINA

WESTCHESTER COUNTY NEW YORK

Call before you dig.
FOR STATE SPECIFIC DIRECT PHONE NUMBERS
VISIT: WWW.CALLBII.COM

WESTCHESTER OFFICE Suite 180E Valhalla, NY 10595 Phone: 914.347.7500 Fax: 914.347.7266

TRAFFIC IMPACT STUDY 12/09/2019 N.S.T.

191209_FIGURES EX-NB 18002018A

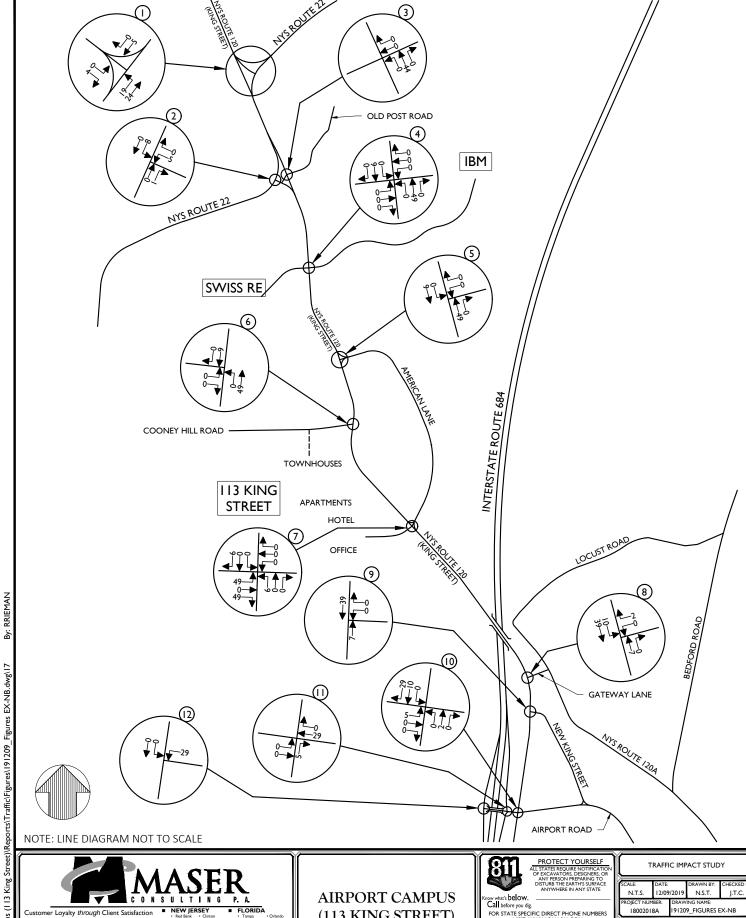

OFFICE RE-OCCUPANCY 100,000 S.F. BUILDING WEEKDAY PEAK MIDDAY HOUR

FIGURE NO. 16-A

AIRPORT CAMPUS (113 KING STREET)

TOWN OF NORTH CASTLE

of N.Y. Cert. of Authorization: 0008671/0008821

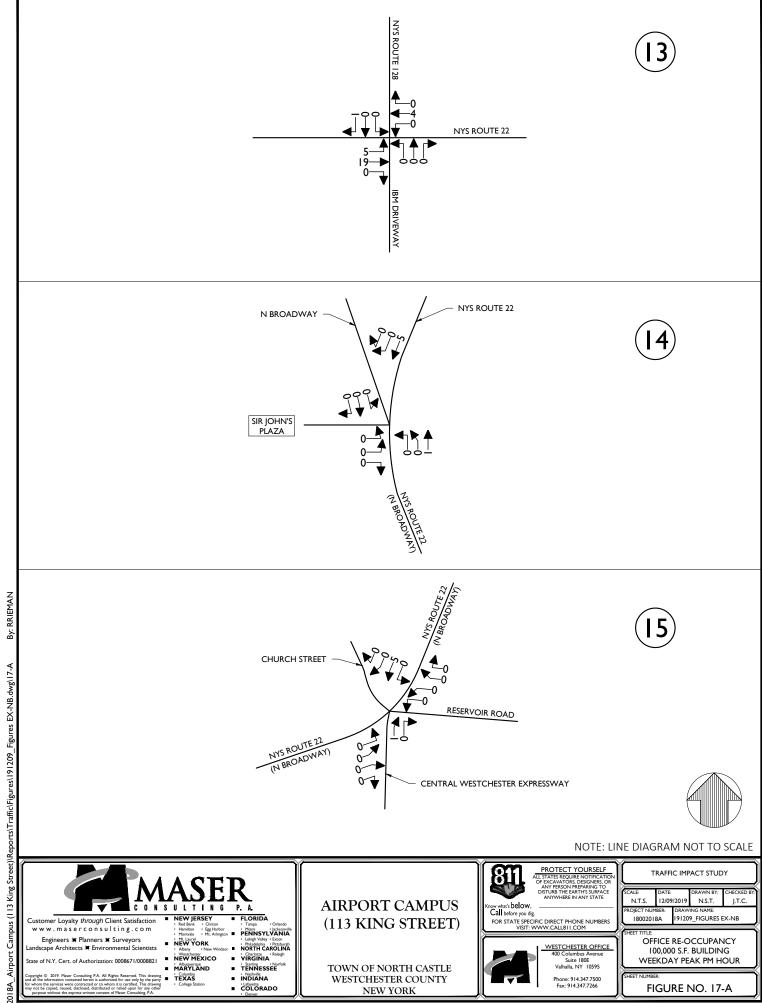
www.maserconsulting.com

Engineers # Planners # Surveyors scape Architects # Environmental Scientists

■ NEW YORK

PENNSYLVANIA Philadelphia Pittsburgh
 NORTH CAROLINA VIRGINIA

Sterling Norfolk
TENNESSEE Nashville INDIANA · Lafayette COLORADO

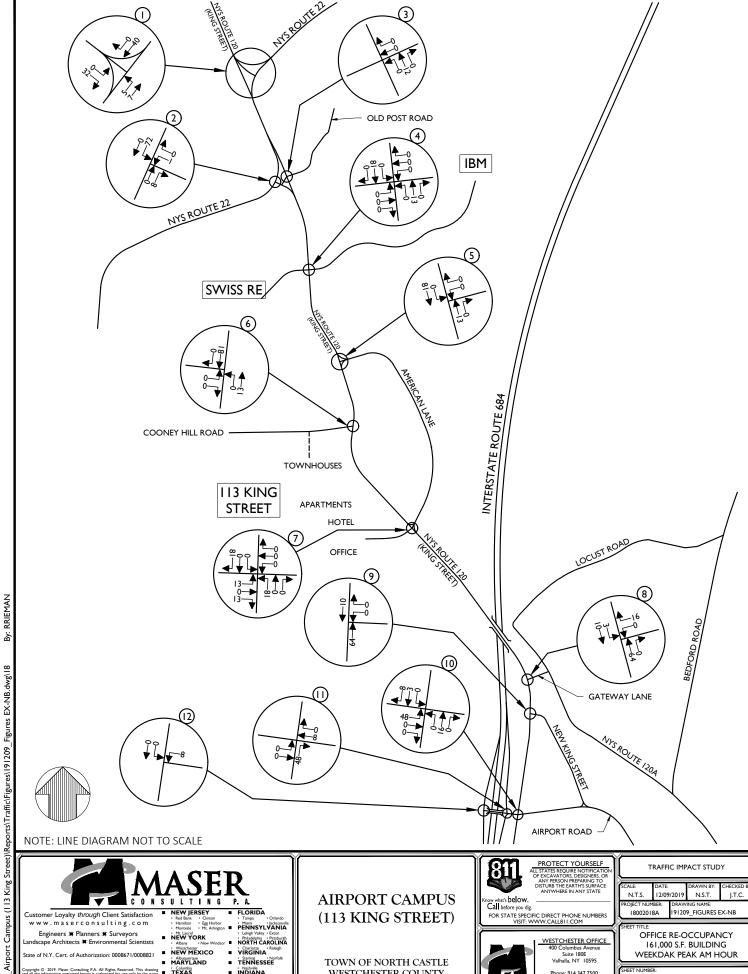

(113 KING STREET)

TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK

Suite 180E Valhalla, NY 10595 Phone: 914.347.7500 Fax: 914.347.7266

OFFICE RE-OCCUPANCY 100,000 S.F. BUILDING WEEKDAY PEAK PM HOUR

WESTCHESTER COUNTY


NEW YORK

Phone: 914.347.7500 Fax: 914.347.7266

FIGURE NO. 17-A

Nashville INDIANA

· Lafayette COLORADO

WESTCHESTER COUNTY

NEW YORK

OFFICE RE-OCCUPANCY

161,000 S.F. BUILDING

WEEKDAK PEAK AM HOUR

FIGURE NO. 18

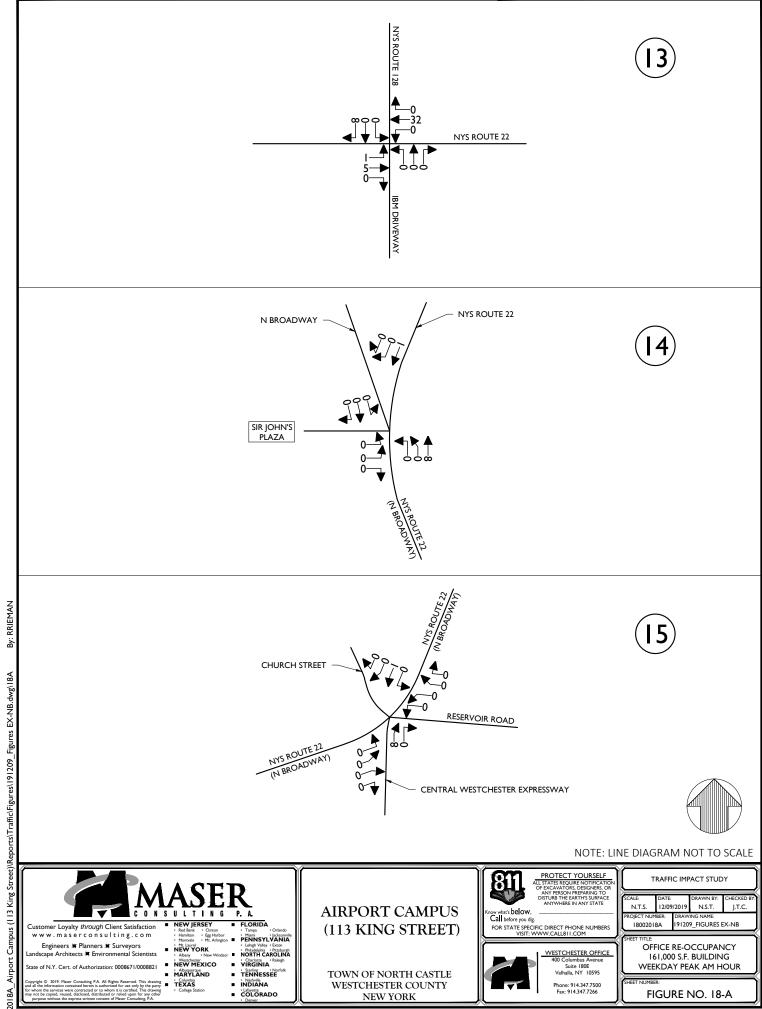
Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266

Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821

■ NEW YORK


Philadelphia Pittsburgh
 NORTH CAROLINA

Sterling Norfolk
TENNESSEE

VIRGINIA

Nashville INDIANA

· Lafayette COLORADO

of N.Y. Cert. of Authorization: 0008671/0008821

www.maserconsulting.com Engineers # Planners # Surveyors scape Architects # Environmental Scientists

NEW YORK

NEW MEXICO

■ MARYLAND

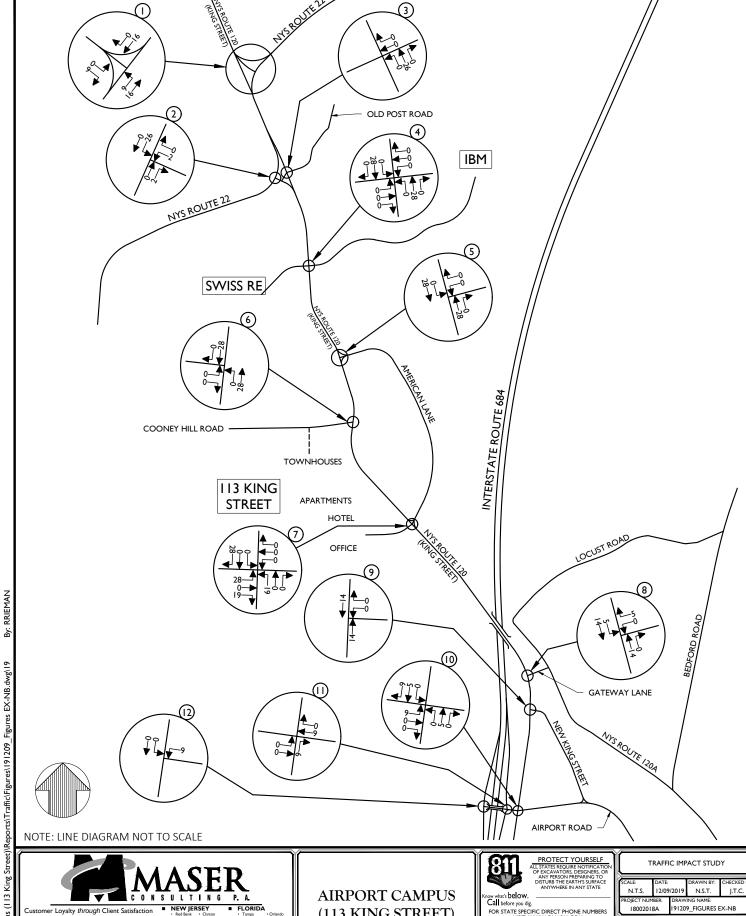
TENNESSEE

Nashville INDIANA COLORADO

Philadelphia Pittsburgh
 NORTH CAROLINA

(113 KING STREET)

TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK


WESTCHESTER OFFICE Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266

191209_FIGURES EX-NB 18002018A

OFFICE RE-OCCUPANCY 161,000 S.F. BUILDING WEEKDAY PEAK AM HOUR

FIGURE NO. 18-A

www.maserconsulting.com Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821

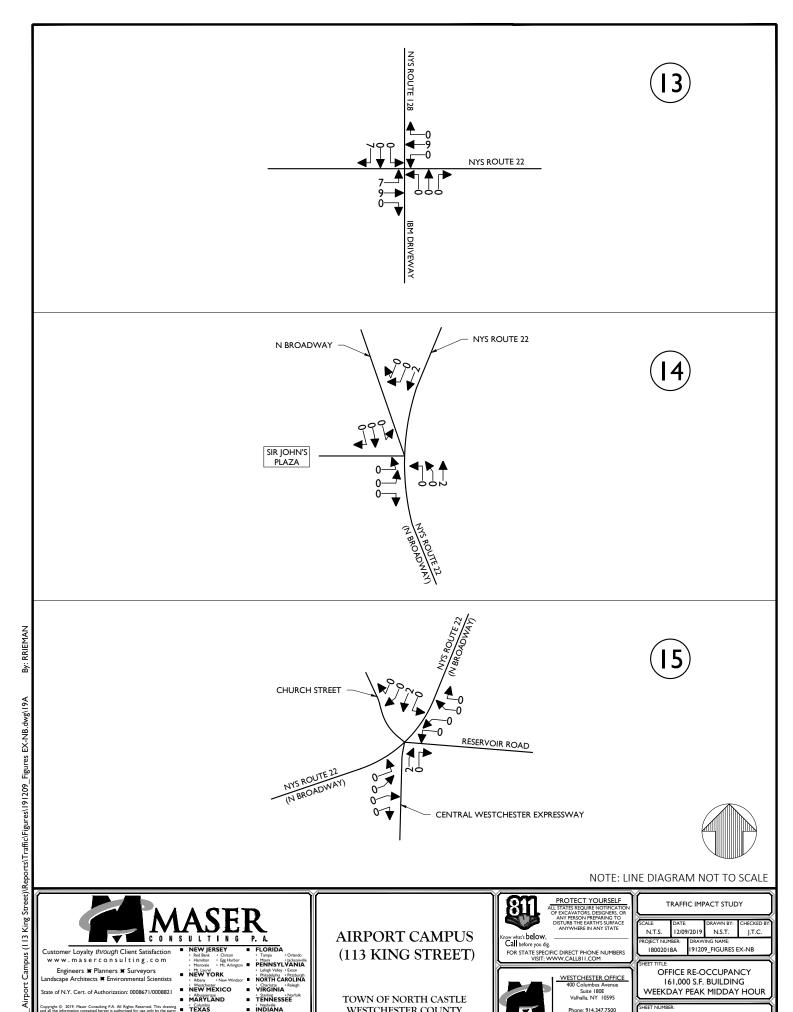
■ NEW YORK

PENNSYLVANIA

 Philadelphia Pittsburgh
 NORTH CAROLINA VIRGINIA

Sterling Norfolk
TENNESSEE Nashville INDIANA · Lafayette COLORADO

(113 KING STREET)


TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK



Suite 180E Valhalla, NY 10595 Phone: 914.347.7500 Fax: 914.347.7266

191209_FIGURES EX-NB 18002018A OFFICE RE-OCCUPANCY 161,000 S.F. BUILDING

WEEKDAY PEAK MIDDAY HOUR

12/09/2019

Customer Loyalty through Client Satisfaction www.maserconsulting.com Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821 ■ MARYLAND

NEW YORK Philadelphia Pittsburgh
 NORTH CAROLINA NEW MEXICO

TENNESSEE Nashville INDIANA COLORADO

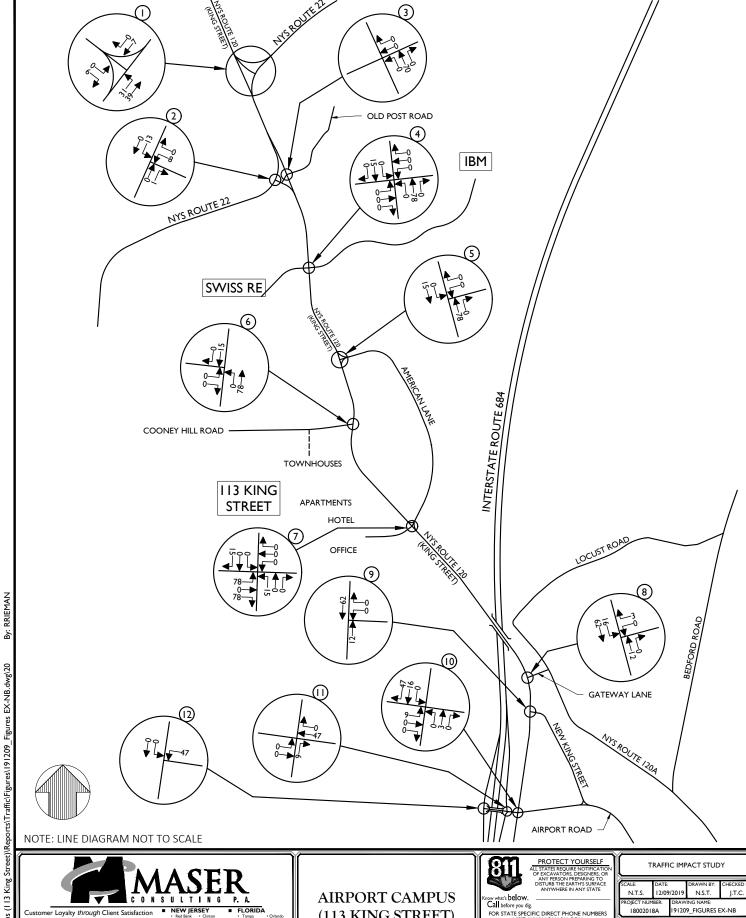
AIRPORT CAMPUS (113 KING STREET)

TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK

Call before you dig.
FOR STATE SPECIFIC DIRECT PHONE NUMBERS
VISIT: WWW.CALLBII.COM

WESTCHESTER OFFICE Suite 180E Valhalla, NY 10595 Phone: 914.347.7500 Fax: 914.347.7266

OFFICE RE-OCCUPANCY 161,000 S.F. BUILDING WEEKDAY PEAK MIDDAY HOUR


TRAFFIC IMPACT STUDY

N.S.T.

191209_FIGURES EX-NB

18002018A

FIGURE NO. 19-A

of N.Y. Cert. of Authorization: 0008671/0008821

www.maserconsulting.com

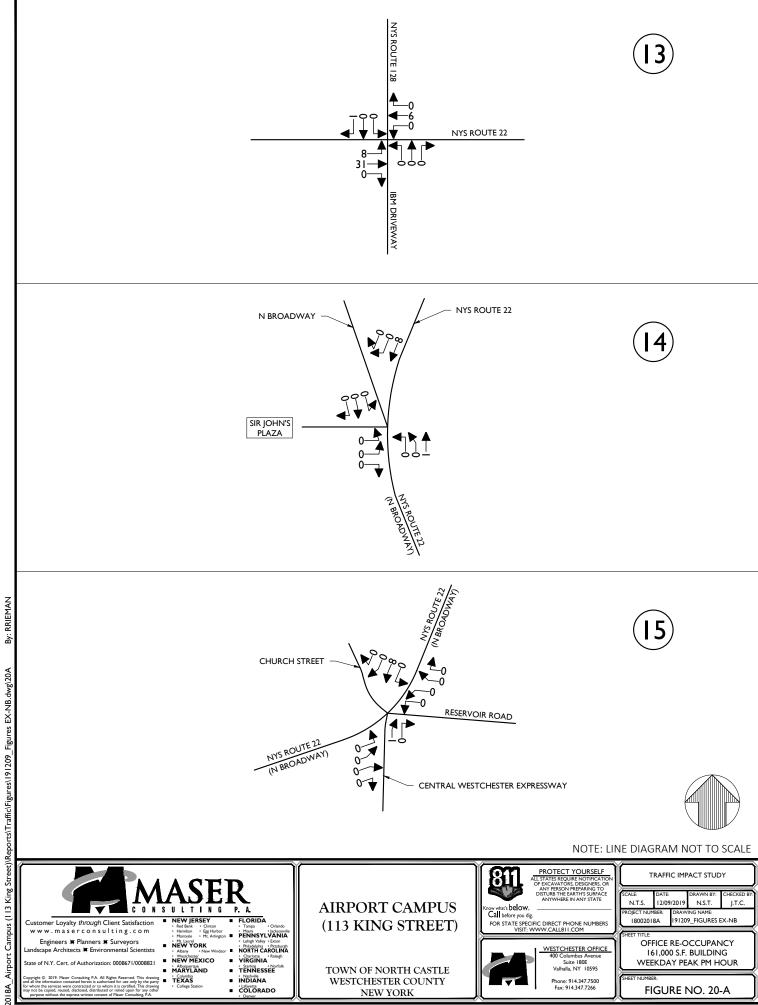
Engineers # Planners # Surveyors scape Architects # Environmental Scientists

■ NEW YORK

PENNSYLVANIA

 Philadelphia Pittsburgh
 NORTH CAROLINA VIRGINIA

Sterling Norfolk
TENNESSEE Nashville INDIANA · Lafayette COLORADO


(113 KING STREET)

TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK

WESTCHESTER OFFICE Suite 180E Valhalla, NY 10595 Phone: 914.347.7500 Fax: 914.347.7266

OFFICE RE-OCCUPANCY 161,000 S.F. BUILDING WEEKDAY PEAK PM HOUR

WESTCHESTER COUNTY

NEW YORK

OFFICE RE-OCCUPANCY

161,000 S.F. BUILDING

WEEKDAY PEAK PM HOUR

FIGURE NO. 20-A

WESTCHESTER OFFICE

Suite 180E Valhalla, NY 10595

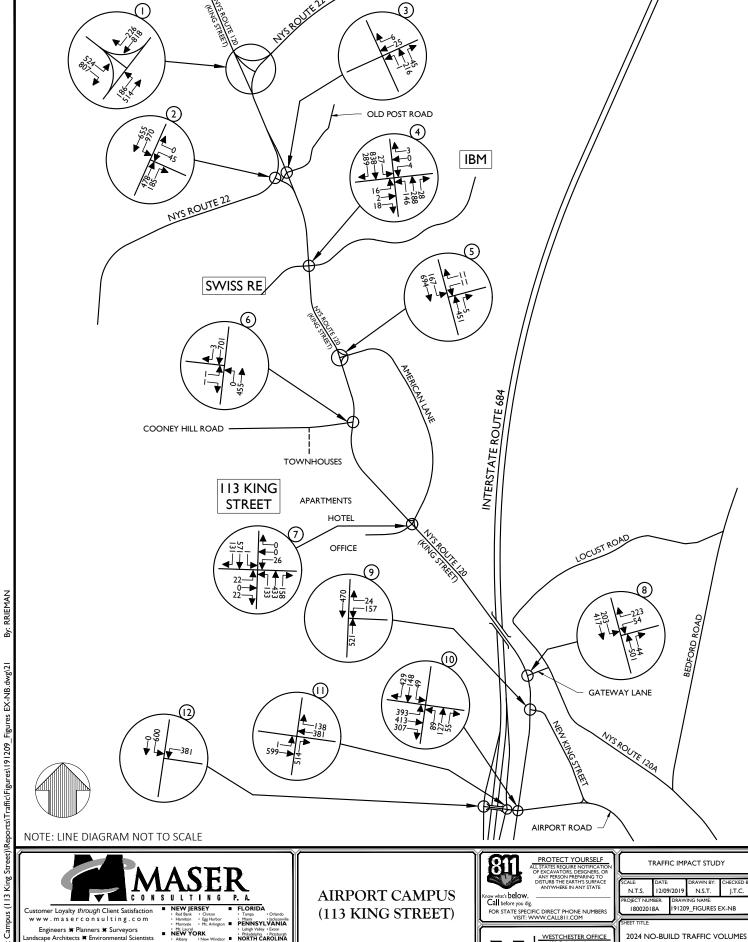
Phone: 914.347.7500 Fax: 914.347.7266

Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821

NEW YORK

■ MARYLAND


NEW MEXICO

Philadelphia Pittsburgh
 NORTH CAROLINA

TENNESSEE

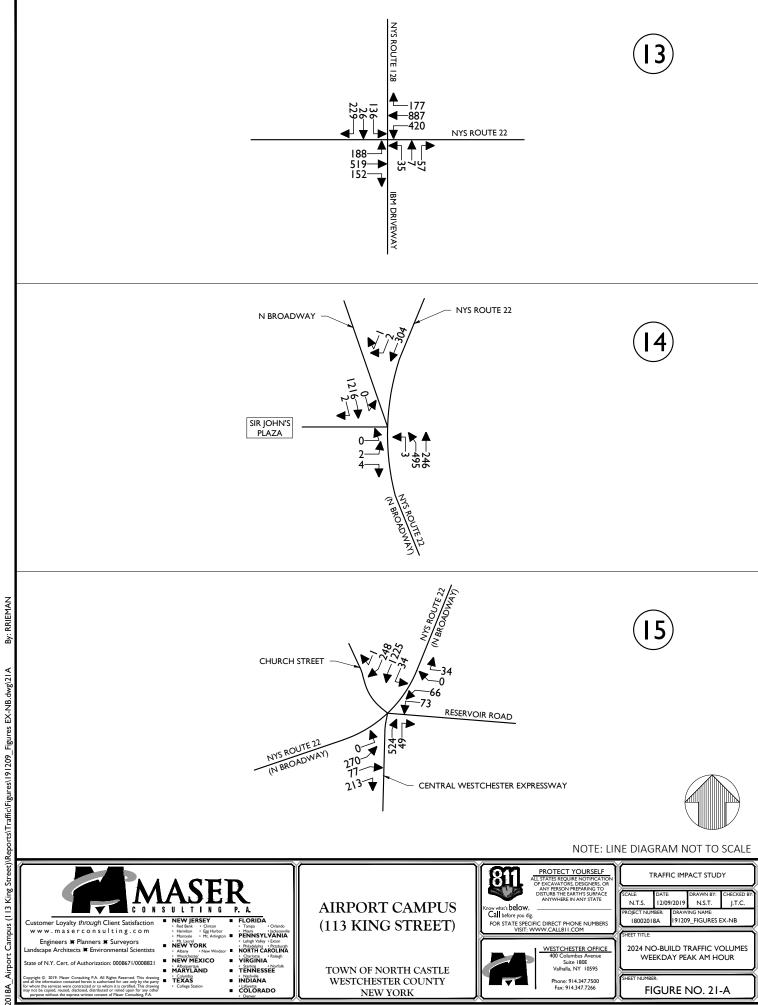
· Lafayette COLORADO

Nashville INDIANA

of N.Y. Cert. of Authorization: 0008671/0008821

■ NEW YORK

Philadelphia Pittsburgh
 NORTH CAROLINA


· Sterling · Norfoll TENNESSEE Nashville INDIANA · Lafayette COLORADO

TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK

Suite 180E Valhalla, NY 10595 Phone: 914.347.7500 Fax: 914.347.7266

2024 NO-BUILD TRAFFIC VOLUMES WEEKDAY PEAK AM HOUR

WESTCHESTER COUNTY

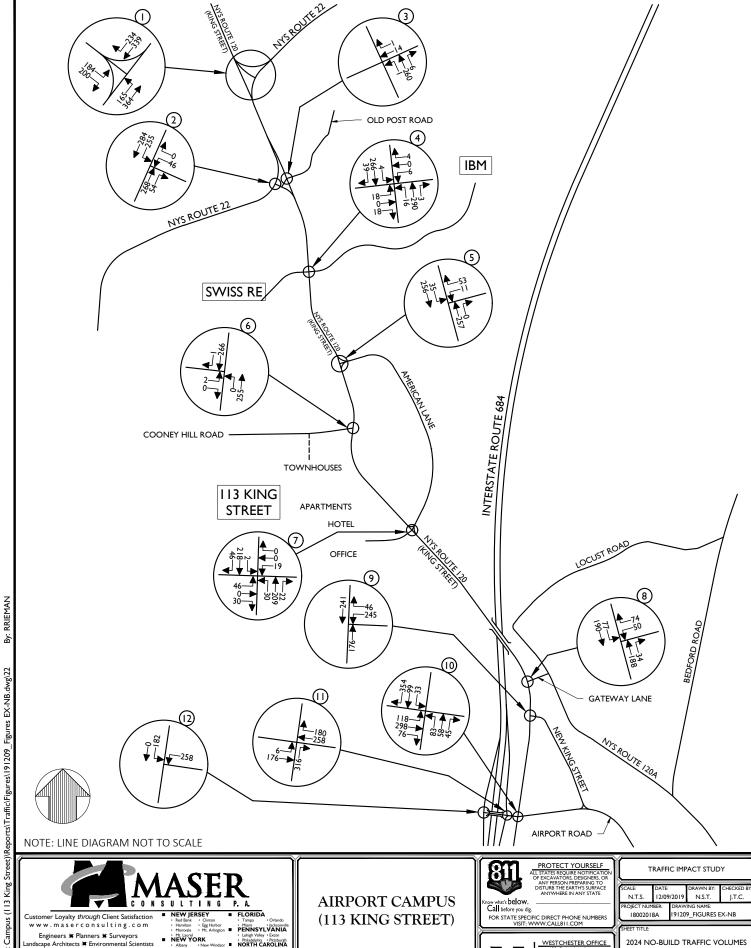
NEW YORK

Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266

FIGURE NO. 21-A

NEW MEXICO


TENNESSEE

· Lafayette COLORADO

Nashville INDIANA

■ MARYLAND

of N.Y. Cert. of Authorization: 0008671/0008821

WESTCHESTER COUNTY

NEW YORK

Philadelphia Pittsburgh
 NORTH CAROLINA

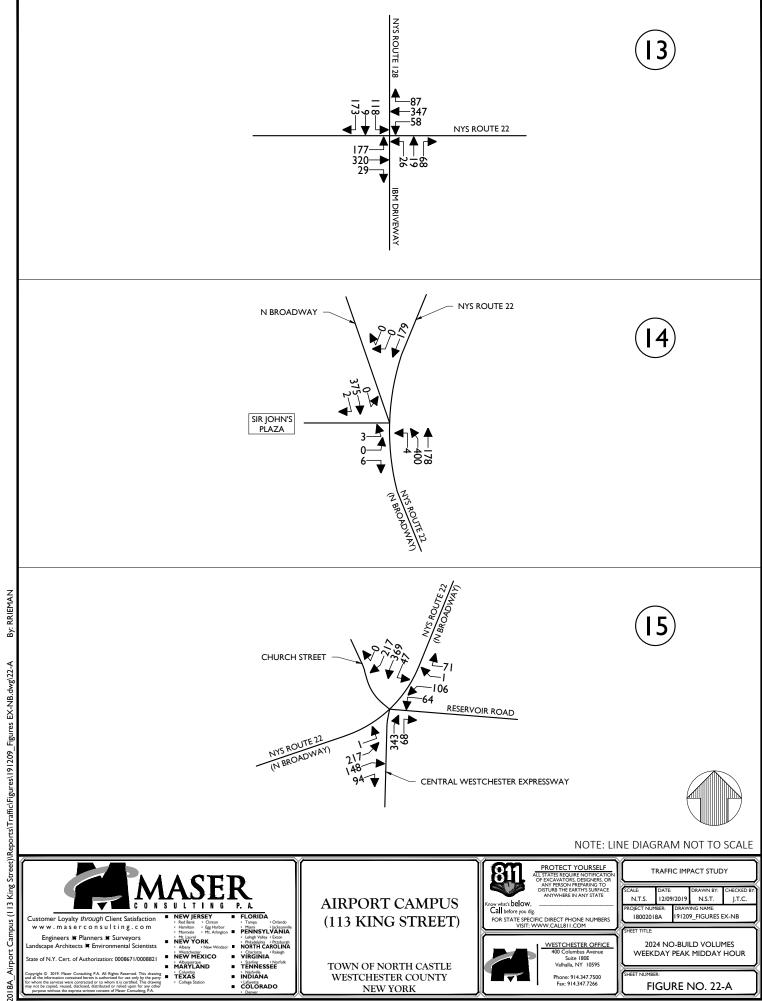
Sterling Norfolk
TENNESSEE

Nashville INDIANA

· Lafayette COLORADO

WESTCHESTER OFFICE

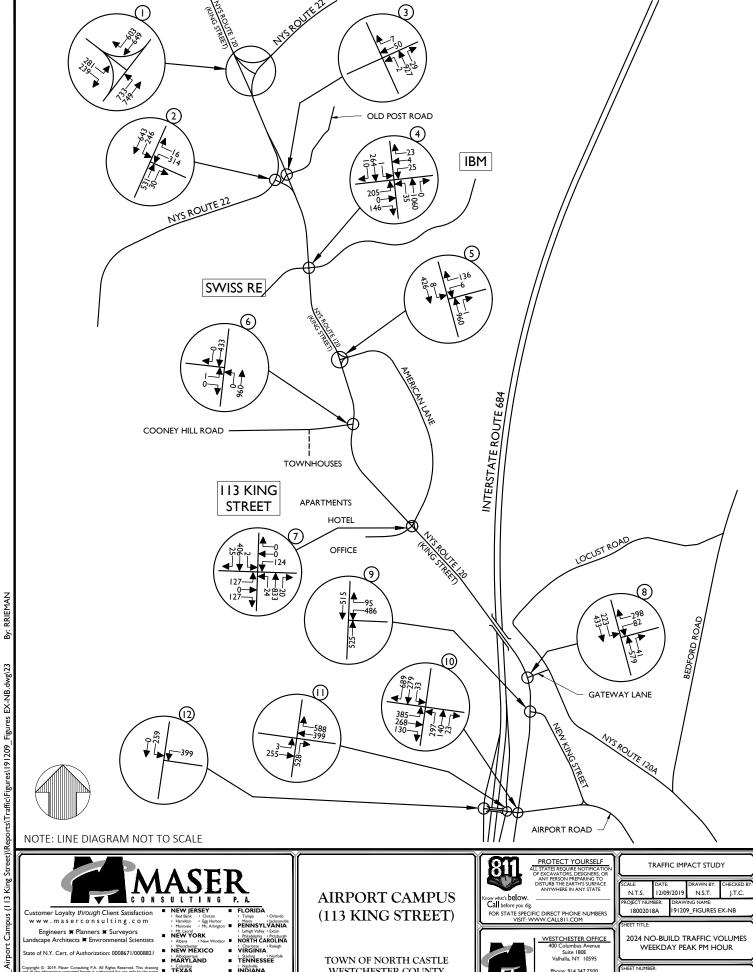
Suite 180E Valhalla, NY 10595


Phone: 914.347.7500 Fax: 914.347.7266

2024 NO-BUILD TRAFFIC VOLUMES WEEKDAY PEAK MIDDAY HOUR

FIGURE NO. 22

_Airport Campus (113 King Street)\Reports\Traffic\Figures\191209_Figures EX-NB.dwg\22


of N.Y. Cert. of Authorization: 0008671/0008821

NEW YORK

FIGURE NO. 22-A

· Lafayette COLORADO

WESTCHESTER COUNTY

NEW YORK

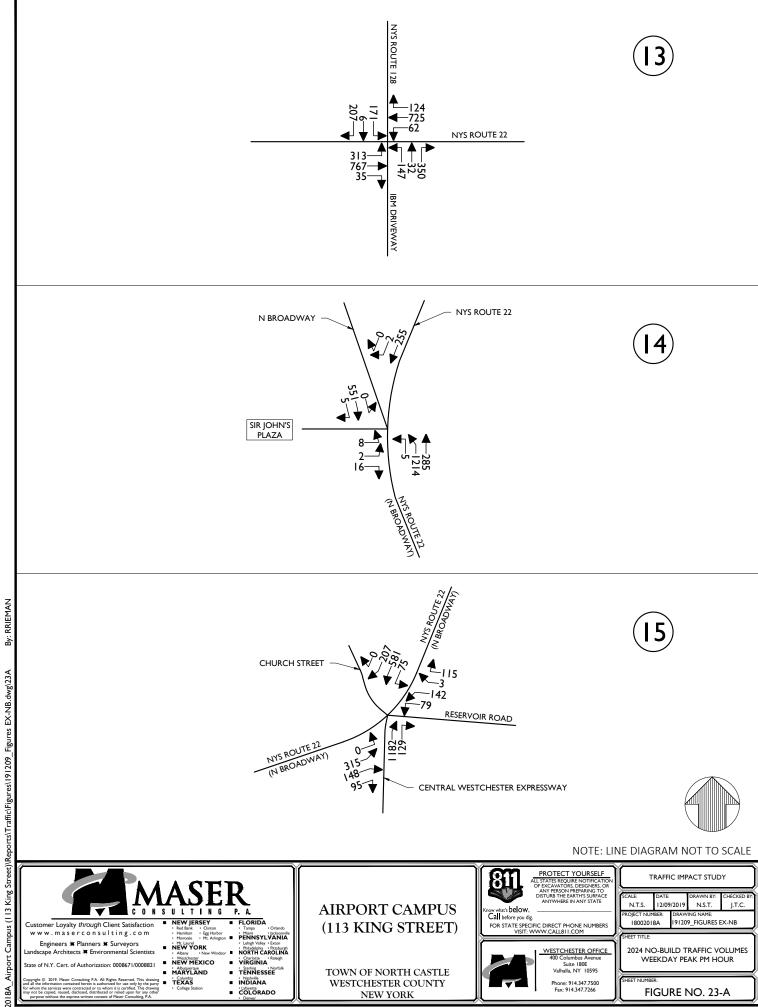

Phone: 914.347.7500 Fax: 914.347.7266

FIGURE NO. 23

· Sterling · Norfoll TENNESSEE

Nashville INDIANA

· Lafayette COLORADO

WESTCHESTER COUNTY

NEW YORK

WESTCHESTER OFFICE

Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266

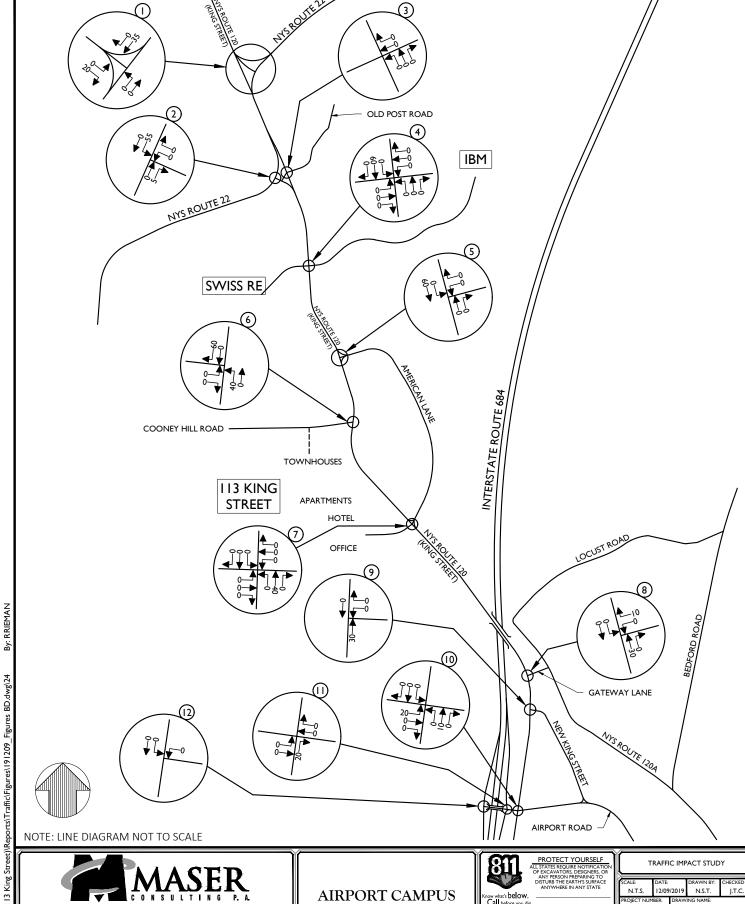
2024 NO-BUILD TRAFFIC VOLUMES WEEKDAY PEAK PM HOUR

FIGURE NO. 23-A

www.maserconsulting.com Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821

NEW YORK


■ MARYLAND

NEW MEXICO

Philadelphia Pittsburgh
 NORTH CAROLINA

TENNESSEE

· Lafayette COLORADO

Customer Loyalty through Client Satisfaction www.maserconsulting.com Engineers # Planners # Surveyors scape Architects # Environmental Scientists

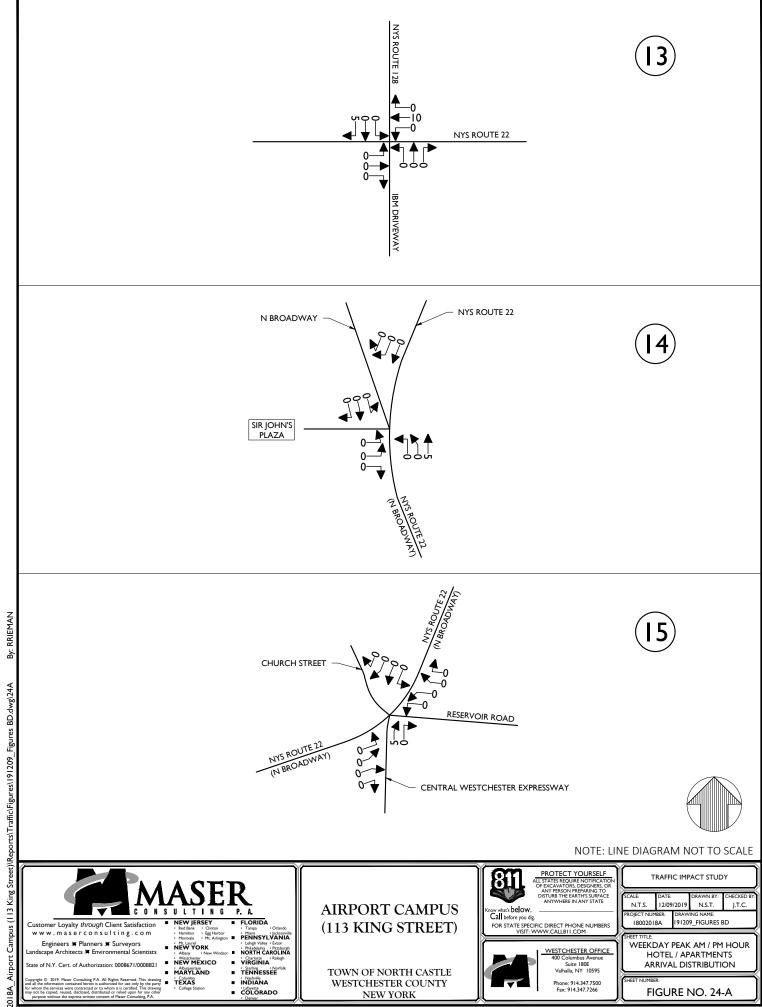
of N.Y. Cert. of Authorization: 0008671/0008821

PENNSYLVANIA

■ NEW YORK

 Philadelphia Pittsburgh
 NORTH CAROLINA VIRGINIA

Sterling Norfolk
TENNESSEE Nashville INDIANA · Lafayette COLORADO


(113 KING STREET)

TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK

WESTCHESTER OFFICE Suite 180E Valhalla, NY 10595 Phone: 914.347.7500 Fax: 914.347.7266

191209_FIGURES BD 18002018A WEEKDAY PEAK AM / PM HOUR HOTEL / APARTMENTS ARRIVAL DISTRIBUTION

WESTCHESTER COUNTY

NEW YORK

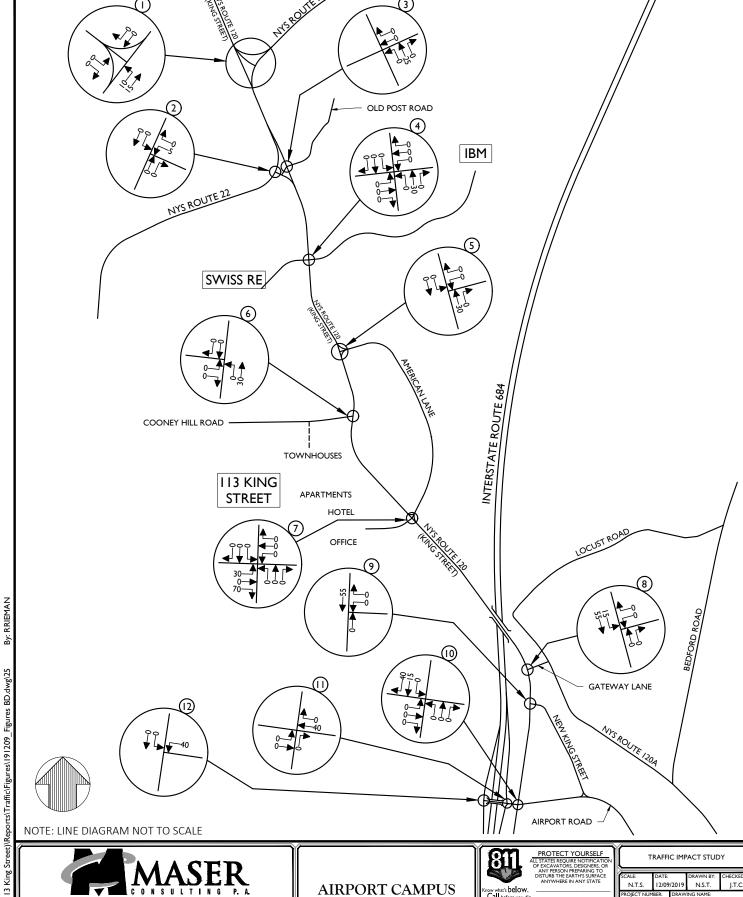

Phone: 914.347.7500 Fax: 914.347.7266

FIGURE NO. 24-A

■ MARYLAND

TENNESSEE

· Lafayette COLORADO

(113 KING STREET)

TOWN OF NORTH CASTLE

WESTCHESTER COUNTY

NEW YORK

PENNSYLVANIA

Philadelphia Pittsburgh
 NORTH CAROLINA

Sterling Norfolk
TENNESSEE

VIRGINIA

Nashville INDIANA

· Lafayette COLORADO

■ NEW YORK

191209_FIGURES BD

WEEKDAY PEAK AM / PM HOUR

HOTEL / APARTMENTS

DEPARTURE DISTRIBUTION

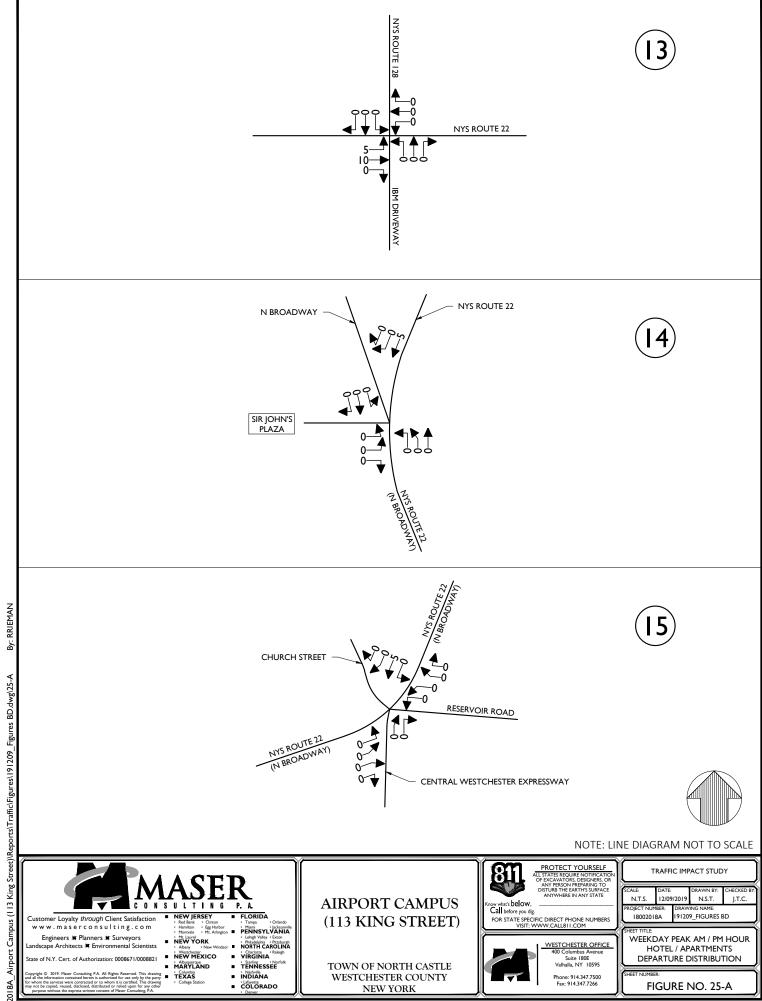
FIGURE NO. 25

18002018A

WESTCHESTER OFFICE

Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266


_Airport Campus (113 King Street)\Reports\Traffic\Figures\191209_Figures BD.dwg\25

Customer Loyalty through Client Satisfaction

www.maserconsulting.com

Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821

WESTCHESTER COUNTY

NEW YORK

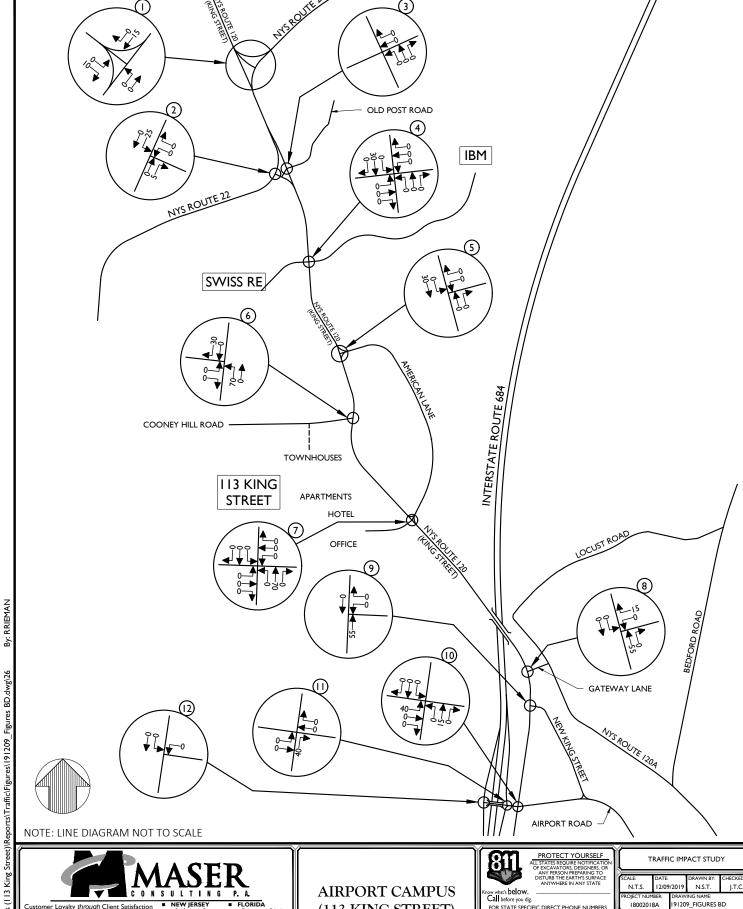

Phone: 914.347.7500 Fax: 914.347.7266

FIGURE NO. 25-A

■ MARYLAND

TENNESSEE

COLORADO

Customer Loyalty through Client Satisfaction www.maserconsulting.com

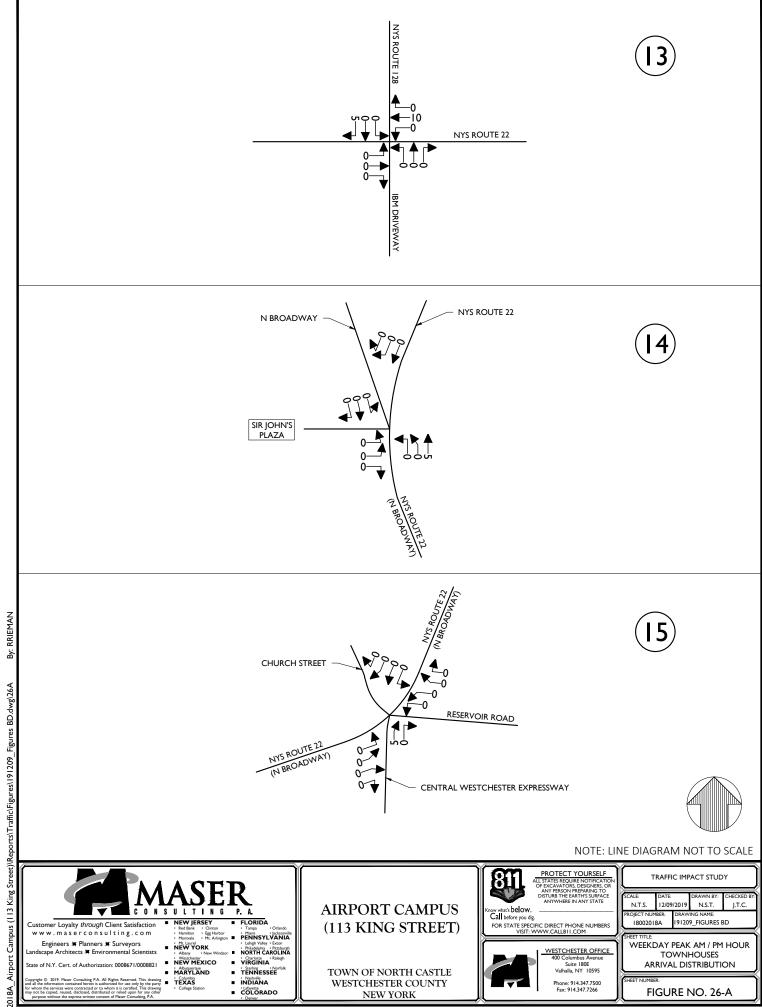
Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821

■ NEW YORK

PENNSYLVANIA Philadelphia Pittsburgh
 NORTH CAROLINA

Sterling Norfolk
TENNESSEE Nashville INDIANA · Lafayette COLORADO


(113 KING STREET)

TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK

WESTCHESTER OFFICE Suite 180E Valhalla, NY 10595 Phone: 914.347.7500 Fax: 914.347.7266

WEEKDAY PEAK AM / PM HOUR TOWNHOUSES ARRIVAL DISTRIBUTION

WESTCHESTER COUNTY

NEW YORK

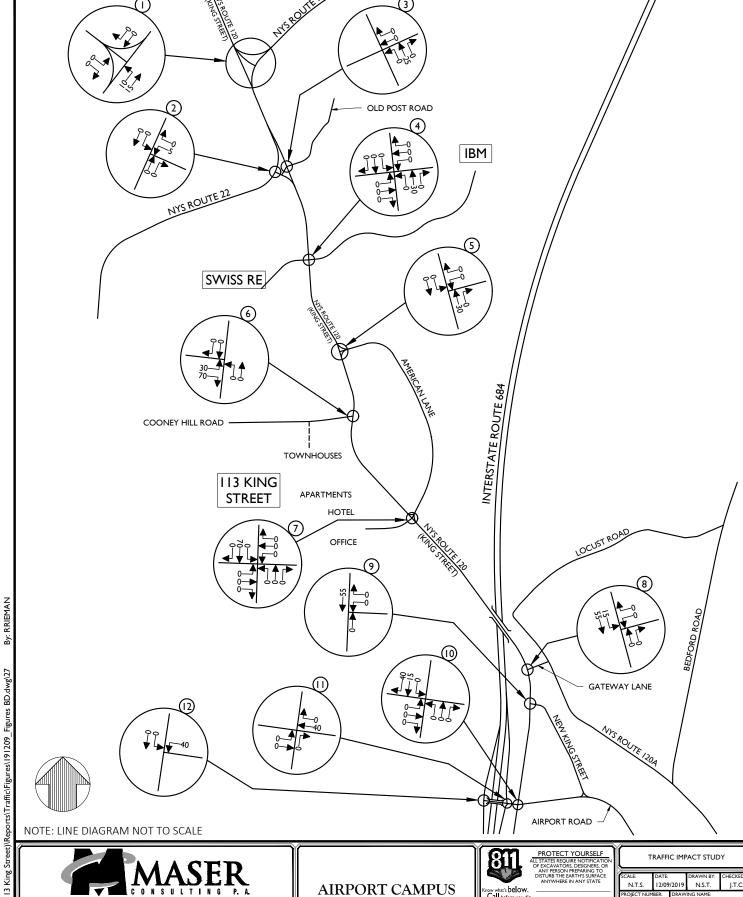

Phone: 914.347.7500 Fax: 914.347.7266

FIGURE NO. 26-A

■ MARYLAND

TENNESSEE

· Lafayette COLORADO

(113 KING STREET)

TOWN OF NORTH CASTLE

WESTCHESTER COUNTY

NEW YORK

PENNSYLVANIA

Philadelphia Pittsburgh
 NORTH CAROLINA

Sterling Norfolk
TENNESSEE

Nashville INDIANA

· Lafayette COLORADO

■ NEW YORK

191209_FIGURES BD

WEEKDAY PEAK AM / PM HOUR

TOWNHOUSES

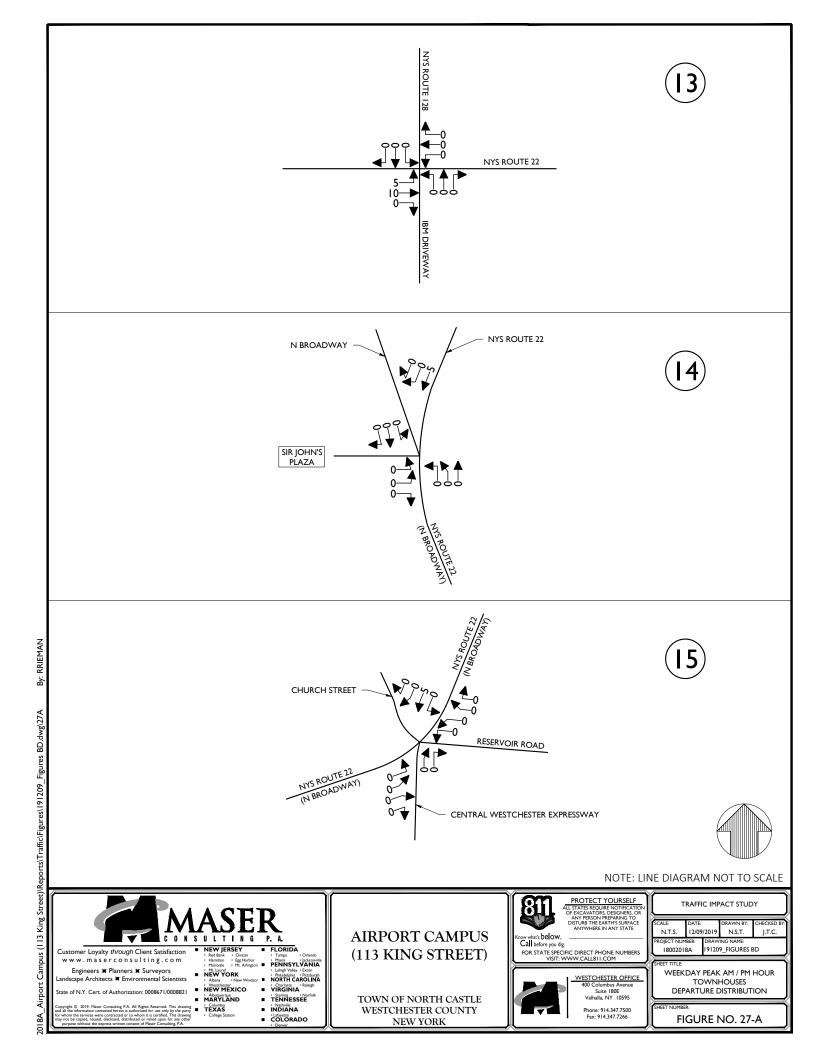
DEPARTURE DISTRIBUTION

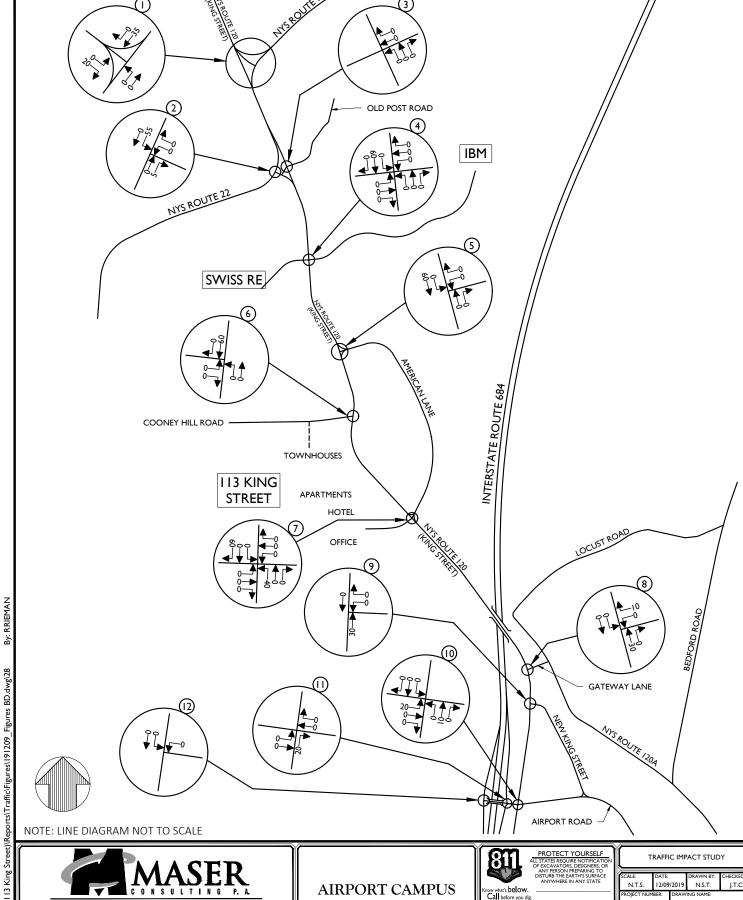
FIGURE NO. 27

18002018A

Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266


_Airport Campus (113 King Street)\Reports\Traffic\Figures\191209_Figures BD.dwg\27


Customer Loyalty through Client Satisfaction

www.maserconsulting.com

Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821

www.maserconsulting.com Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821

PENNSYLVANIA ■ NEW YORK Philadelphia Pittsburgh
 NORTH CAROLINA VIRGINIA

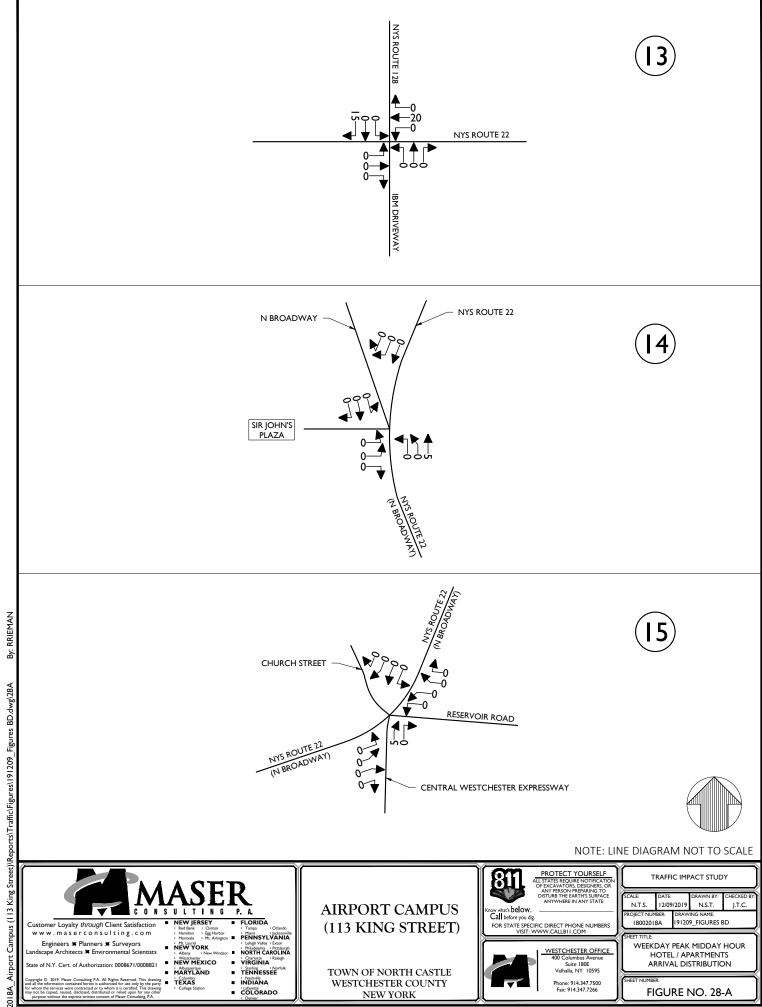
Sterling Norfolk
TENNESSEE

Nashville INDIANA

· Lafayette COLORADO

(113 KING STREET)

TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK



WESTCHESTER OFFICE Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266

191209_FIGURES BD 18002018A

WEEKDAY PEAK MIDDAY HOUR HOTEL / APARTMENTS
ARRIVAL DISTRIBUTION

WESTCHESTER COUNTY

NEW YORK

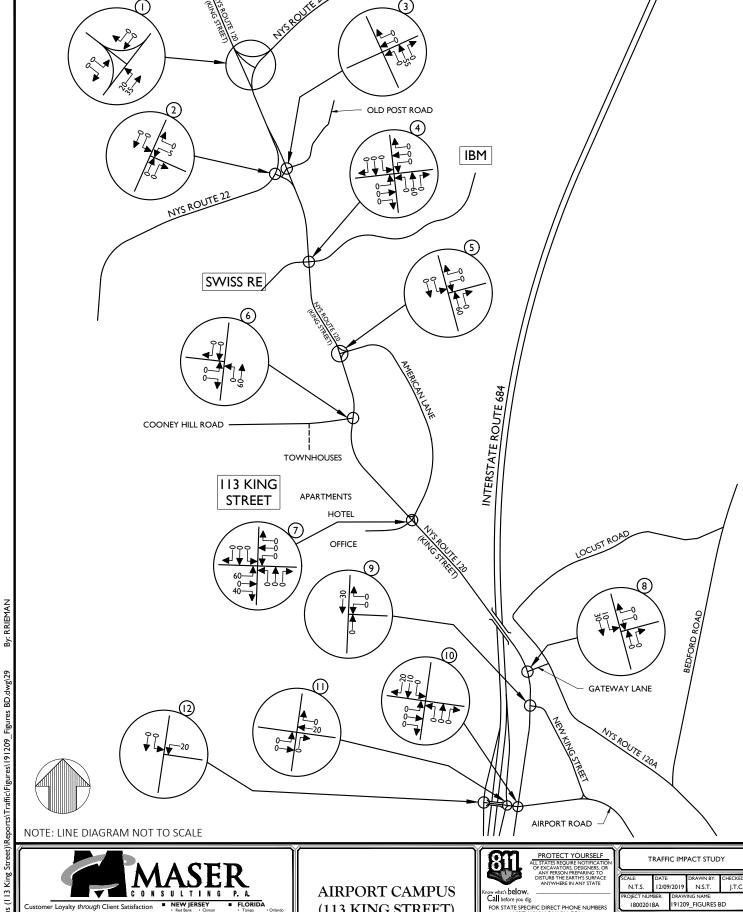

Phone: 914.347.7500 Fax: 914.347.7266

FIGURE NO. 28-A

■ MARYLAND

TENNESSEE

· Lafayette COLORADO

www.maserconsulting.com Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821

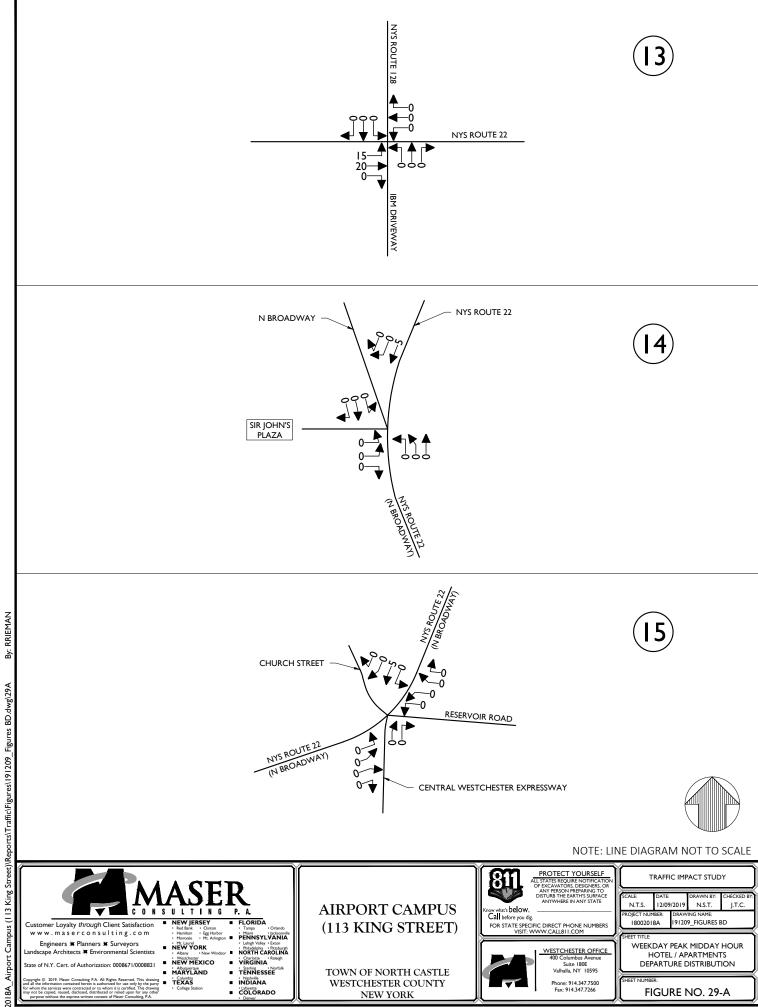
■ NEW YORK

PENNSYLVANIA Philadelphia Pittsburgh
 NORTH CAROLINA

> Sterling Norfolk
> TENNESSEE Nashville INDIANA · Lafayette COLORADO

(113 KING STREET)

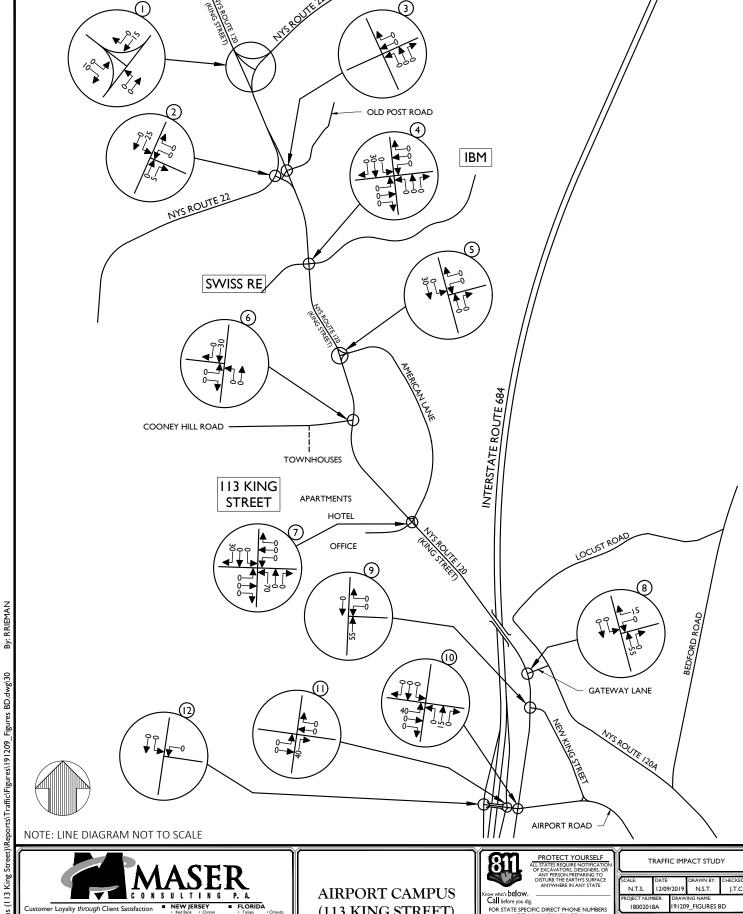
TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK


Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266

HOTEL / APARTMENTS
DEPARTURE DISTRIBUTION

FIGURE NO. 29


WEEKDAY PEAK MIDDAY HOUR

NEW YORK

FIGURE NO. 29-A

· Lafayette COLORADO

www.maserconsulting.com

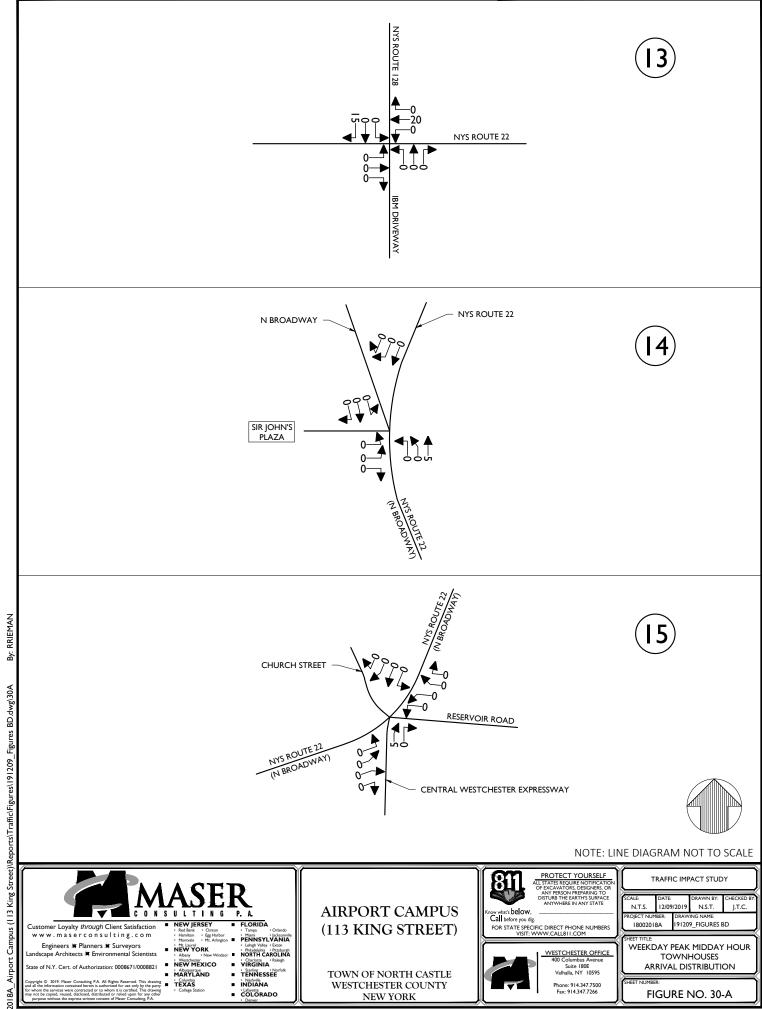
Engineers # Planners # Surveyors scape Architects # Environmental Scientists of N.Y. Cert. of Authorization: 0008671/0008821

■ NEW YORK

PENNSYLVANIA

Philadelphia Pittsburgh
 NORTH CAROLINA

Sterling Norfolk
TENNESSEE Nashville INDIANA · Lafayette COLORADO


(113 KING STREET)

TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK

Suite 180E Valhalla, NY 10595 Phone: 914.347.7500 Fax: 914.347.7266

WEEKDAY PEAK MIDDAY HOUR **TOWNHOUSES** ARRIVAL DISTRIBUTION

WESTCHESTER COUNTY

NEW YORK

WESTCHESTER OFFICE

Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266

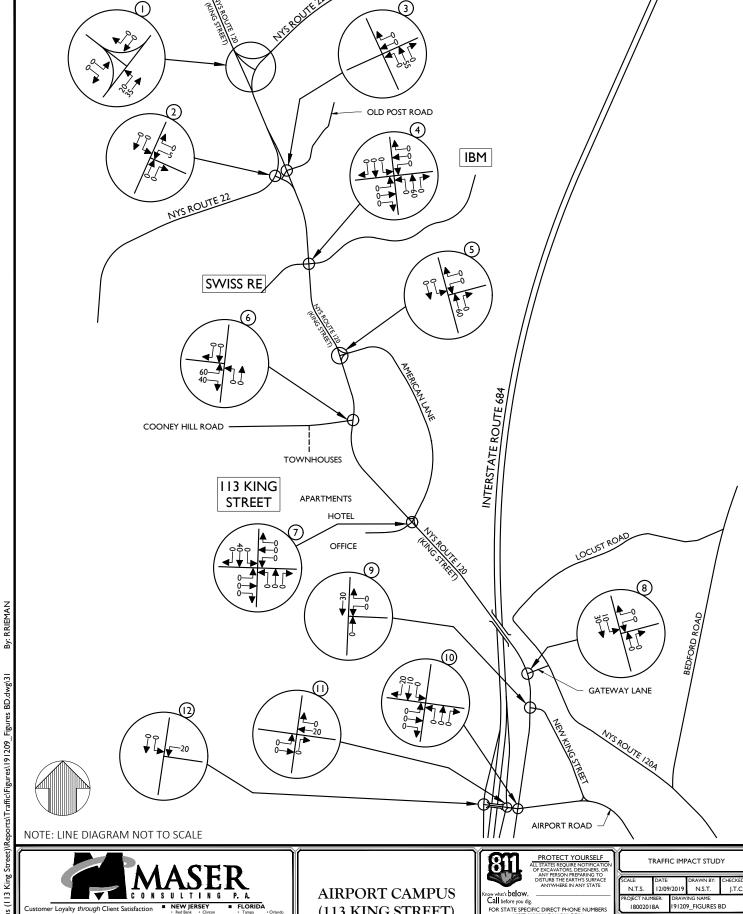
TOWNHOUSES

ARRIVAL DISTRIBUTION

FIGURE NO. 30-A

Mt. Laurel
NEW YORK

■ MARYLAND


of N.Y. Cert. of Authorization: 0008671/0008821

NEW MEXICO

Philadelphia Pittsburgh
 NORTH CAROLINA

TENNESSEE

· Lafayette COLORADO

Engineers # Planners # Surveyors scape Architects # Environmental Scientists of N.Y. Cert. of Authorization: 0008671/0008821

www.maserconsulting.com

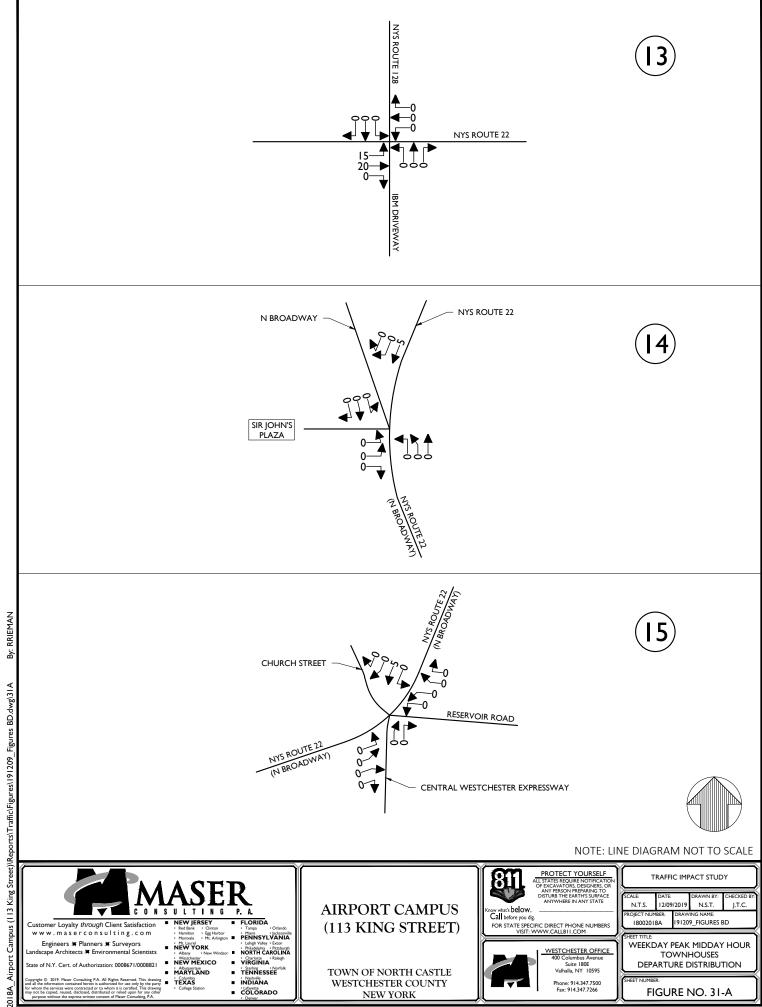
PENNSYLVANIA ■ NEW YORK Philadelphia Pittsburgh
 NORTH CAROLINA

Sterling Norfolk
TENNESSEE

Nashville INDIANA

· Lafayette COLORADO

(113 KING STREET)

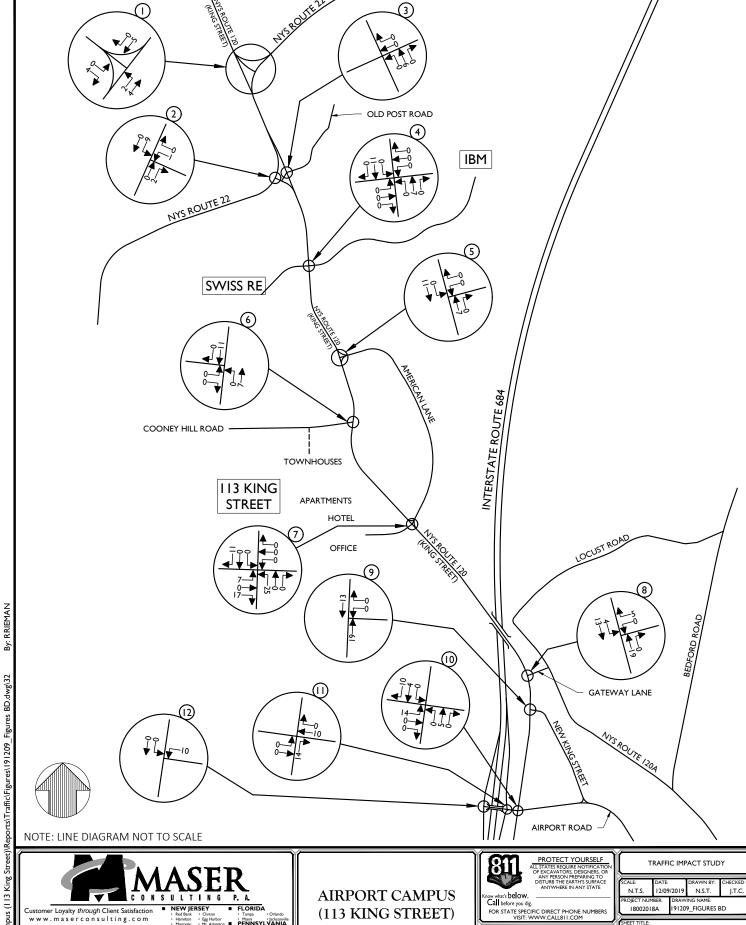

TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK

Suite 180E Valhalla, NY 10595 Phone: 914.347.7500 Fax: 914.347.7266

191209_FIGURES BD 18002018A WEEKDAY PEAK MIDDAY HOUR

TOWNHOUSES DEPARTURE DISTRIBUTION

WESTCHESTER COUNTY


NEW YORK

Phone: 914.347.7500 Fax: 914.347.7266

FIGURE NO. 31-A

Nashville INDIANA

· Lafayette COLORADO

www.maserconsulting.com Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821

■ NEW YORK NEW MEXICO

■ MARYLAND

PENNSYLVANIA

 Philadelphia Pittsburgh
 NORTH CAROLINA VIRGINIA

Sterling Norfolk
TENNESSEE Nashville INDIANA · Lafayette COLORADO

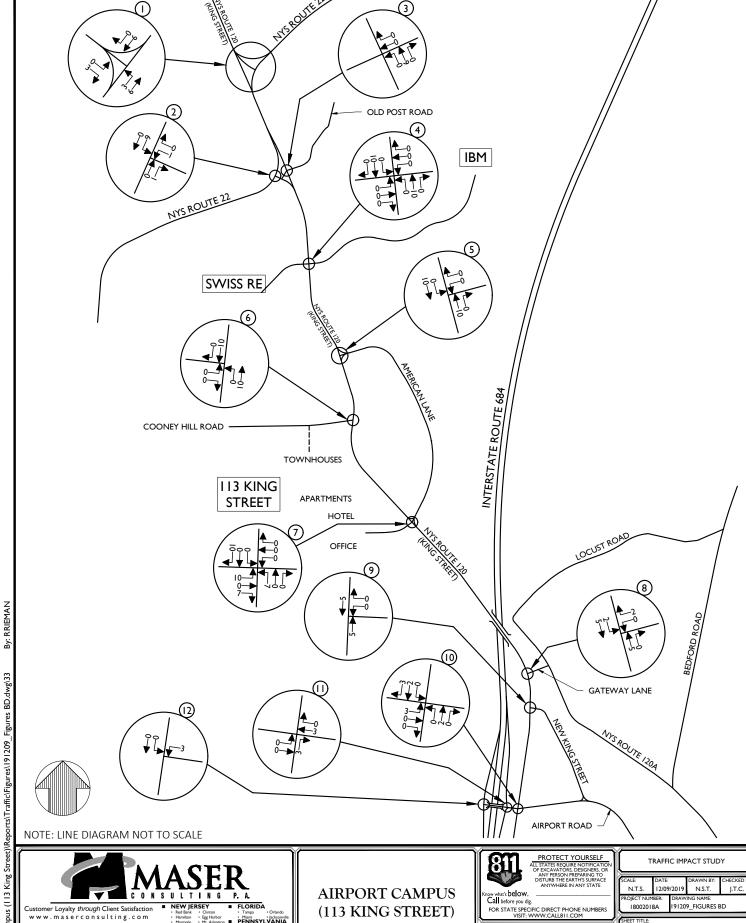
(113 KING STREET)

TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK

WESTCHESTER OFFICE Suite 180E Valhalla, NY 10595 Phone: 914.347.7500 Fax: 914.347.7266

HOTEL SITE GENERATED TRAFFIC VOLUMES WEEKDAY PEAK AM HOUR

WESTCHESTER COUNTY


NEW YORK

Phone: 914.347.7500 Fax: 914.347.7266

FIGURE NO. 32-A

Nashville INDIANA

· Lafayette COLORADO

www.maserconsulting.com Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821

■ NEW YORK

NEW MEXICO

■ MARYLAND

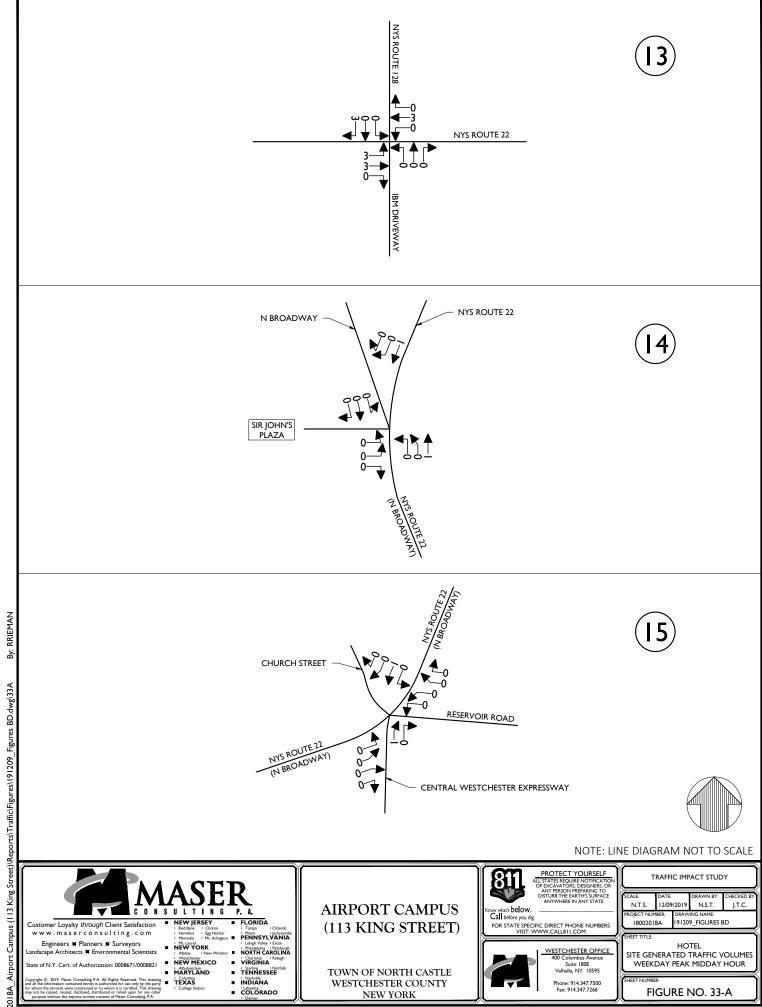
PENNSYLVANIA

 Philadelphia Pittsburgh
 NORTH CAROLINA VIRGINIA

Sterling Norfolk
TENNESSEE Nashville INDIANA · Lafayette COLORADO

(113 KING STREET)

TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK



WESTCHESTER OFFICE Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266

191209_FIGURES BD 18002018A

HOTEL SITE GENERATED TRAFFIC VOLUMES
WEEKDAY PEAK MIDDAY HOUR

WESTCHESTER COUNTY

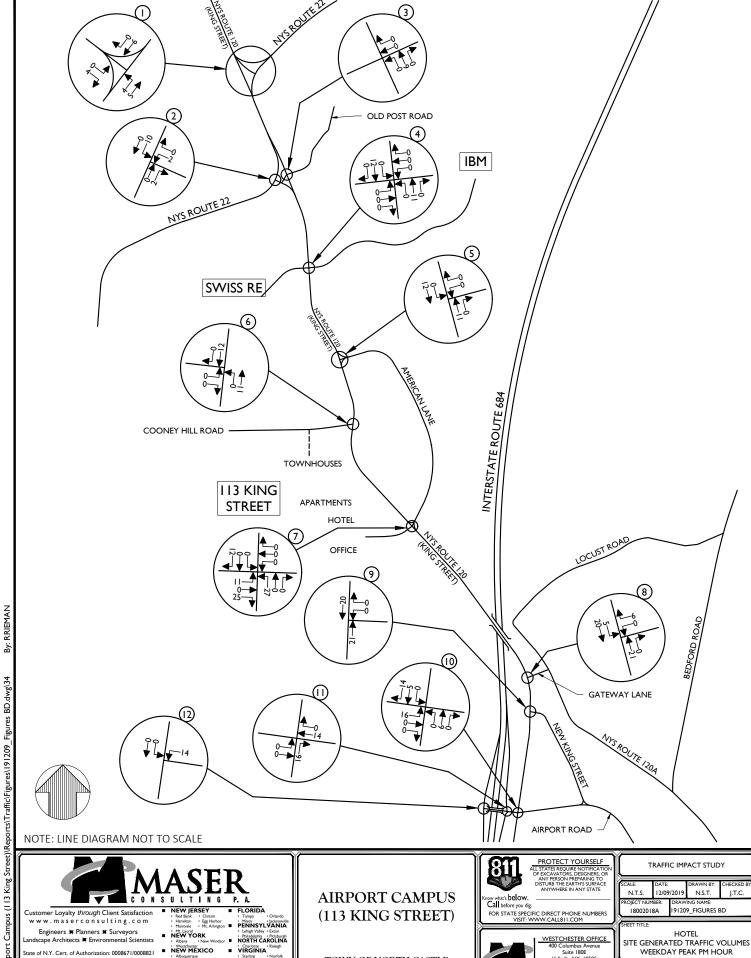
NEW YORK

100 Columbus Avenu Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266

FIGURE NO. 33-A

NEW MEXICO


■ MARYLAND

Sterling Norfolk
TENNESSEE

Nashville INDIANA

COLORADO

of N.Y. Cert. of Authorization: 0008671/0008821

WESTCHESTER COUNTY

NEW YORK

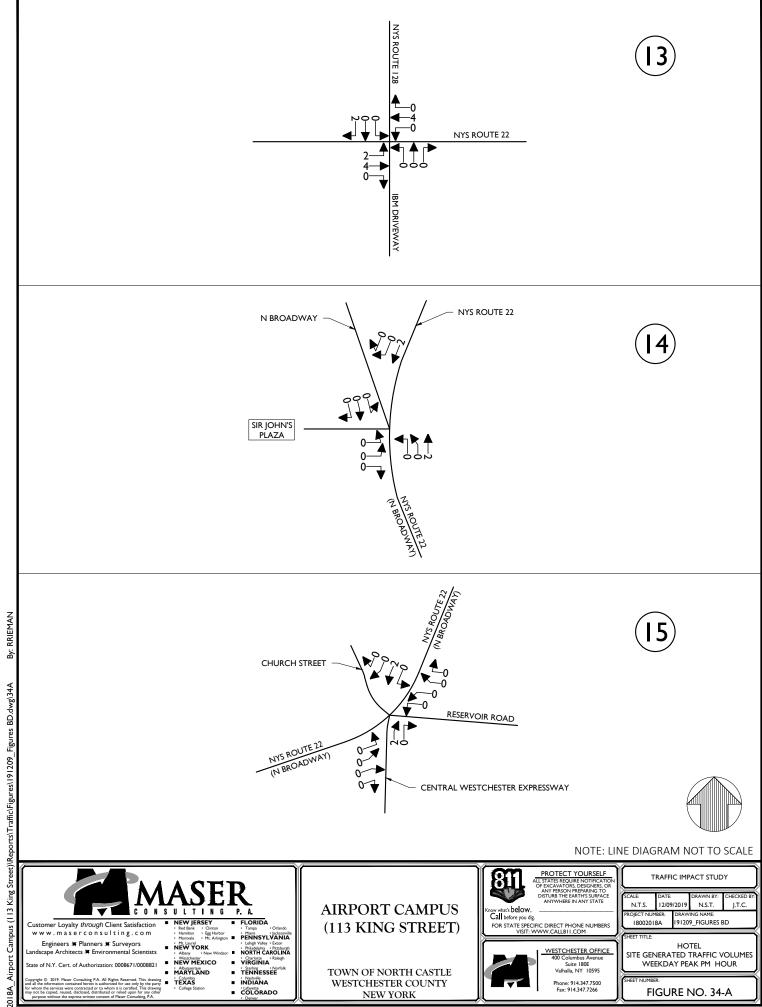
Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266

FIGURE NO. 34

_Airport Campus (113 King Street)\Reports\Traffic\Figures\191209_Figures BD.dwg\34

of N.Y. Cert. of Authorization: 0008671/0008821


VIRGINIA

Nashville INDIANA

· Lafayette COLORADO

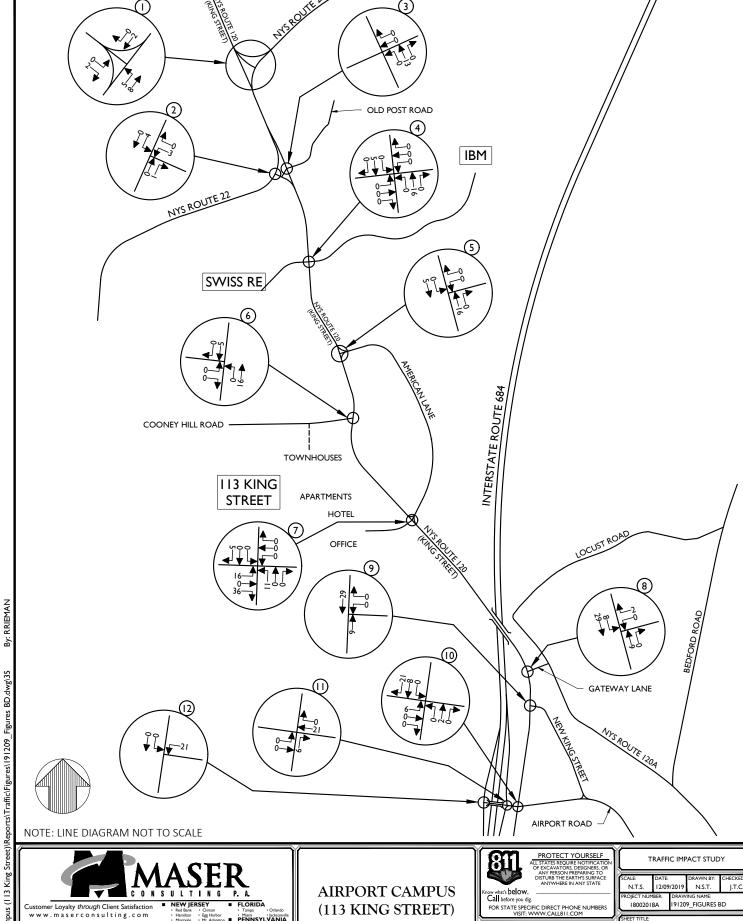
■ MARYLAND

Sterling Norfolk
TENNESSEE

WESTCHESTER COUNTY

NEW YORK

Phone: 914.347.7500 Fax: 914.347.7266


FIGURE NO. 34-A

Sterling Norfolk
TENNESSEE

Nashville INDIANA

· Lafayette COLORADO

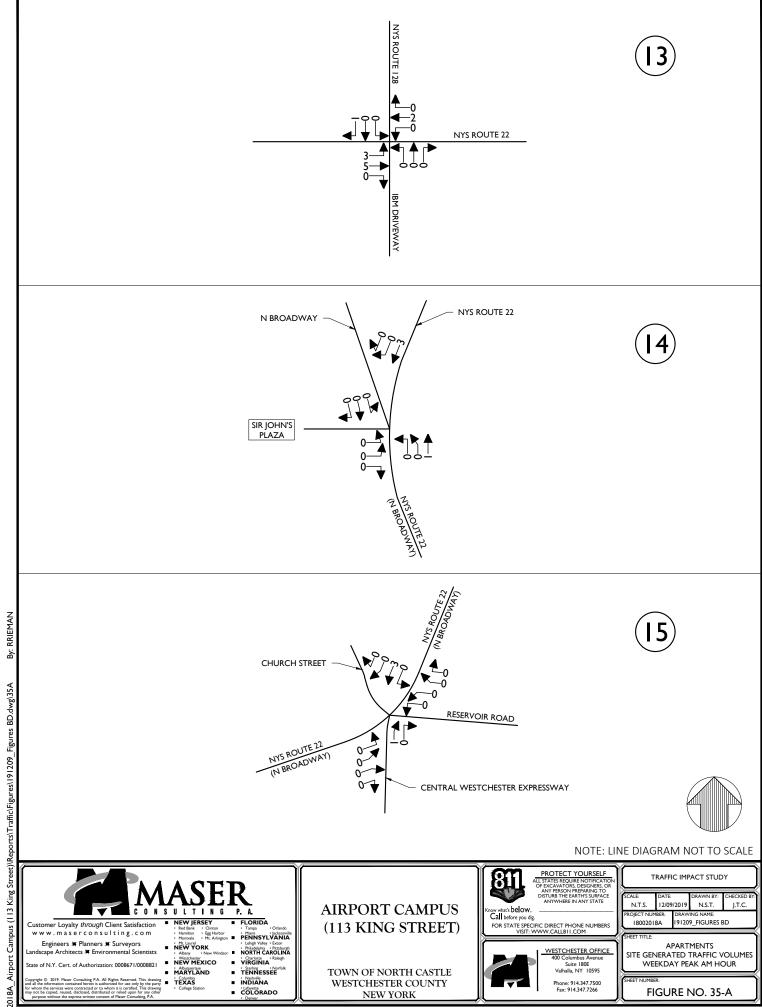
■ MARYLAND

of N.Y. Cert. of Authorization: 0008671/0008821

PENNSYLVANIA

■ NEW YORK Philadelphia Pittsburgh
 NORTH CAROLINA VIRGINIA

Sterling Norfolk
TENNESSEE ■ MARYLAND Nashville INDIANA · Lafayette COLORADO


(113 KING STREET)

TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK

WESTCHESTER OFFICE Suite 180E Valhalla, NY 10595 Phone: 914.347.7500 Fax: 914.347.7266

191209_FIGURES BD 18002018A **APARTMENTS** SITE GENERATED TRAFFIC VOLUMES WEEKDAY PEAK AM HOUR

WESTCHESTER COUNTY

NEW YORK

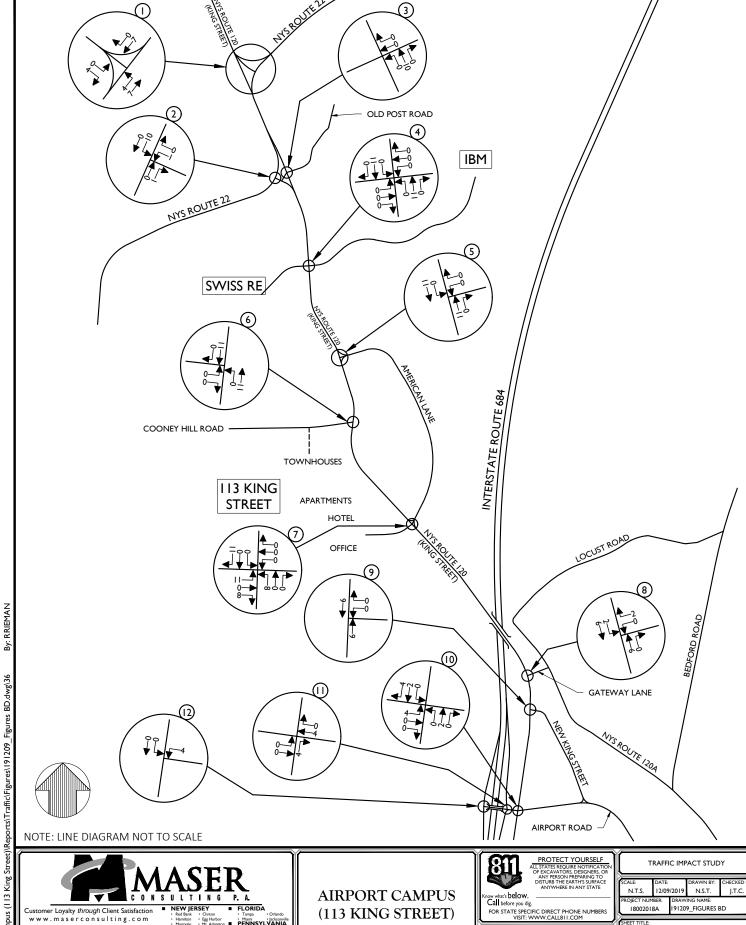

Phone: 914.347.7500 Fax: 914.347.7266

FIGURE NO. 35-A

■ MARYLAND

TENNESSEE

COLORADO

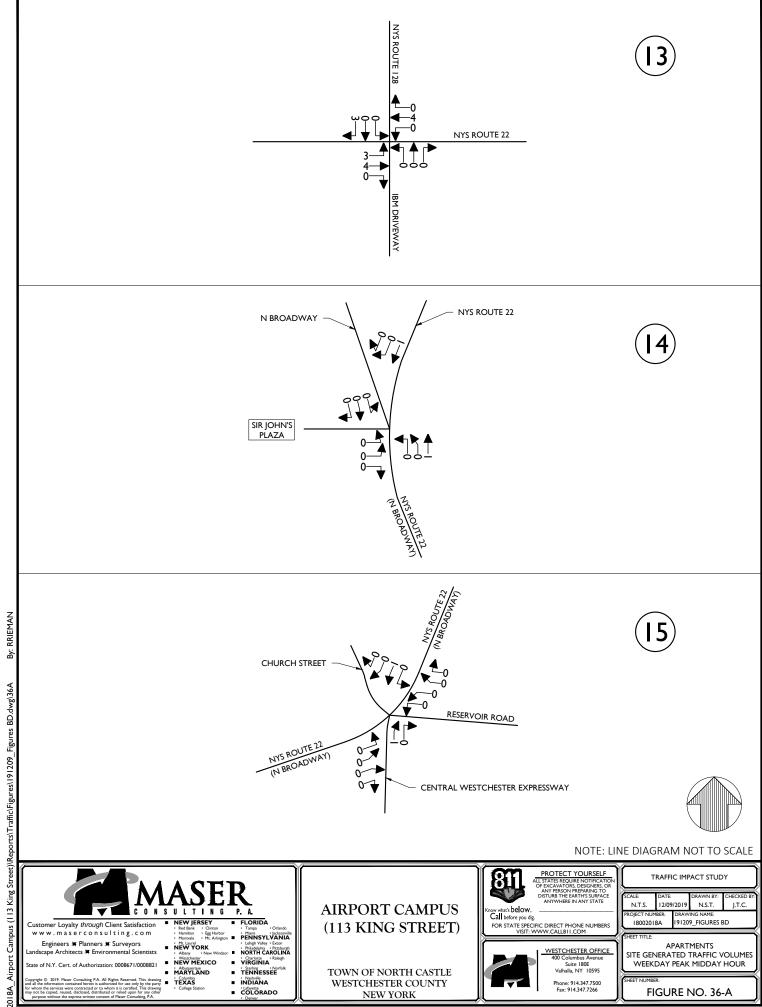
www.maserconsulting.com Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821

■ NEW YORK

PENNSYLVANIA Philadelphia Pittsburgh
 NORTH CAROLINA VIRGINIA

Sterling Norfolk
TENNESSEE Nashville INDIANA · Lafayette COLORADO


(113 KING STREET)

TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK

WESTCHESTER OFFICE Suite 180E Valhalla, NY 10595 Phone: 914.347.7500 Fax: 914.347.7266

APARTMENTS SITE GENERATED TRAFFIC VOLUMES
WEEKDAY PEAK MIDDAY HOUR

WESTCHESTER COUNTY

NEW YORK

Philadelphia Pittsburgh
 NORTH CAROLINA

Sterling Norfolk
TENNESSEE

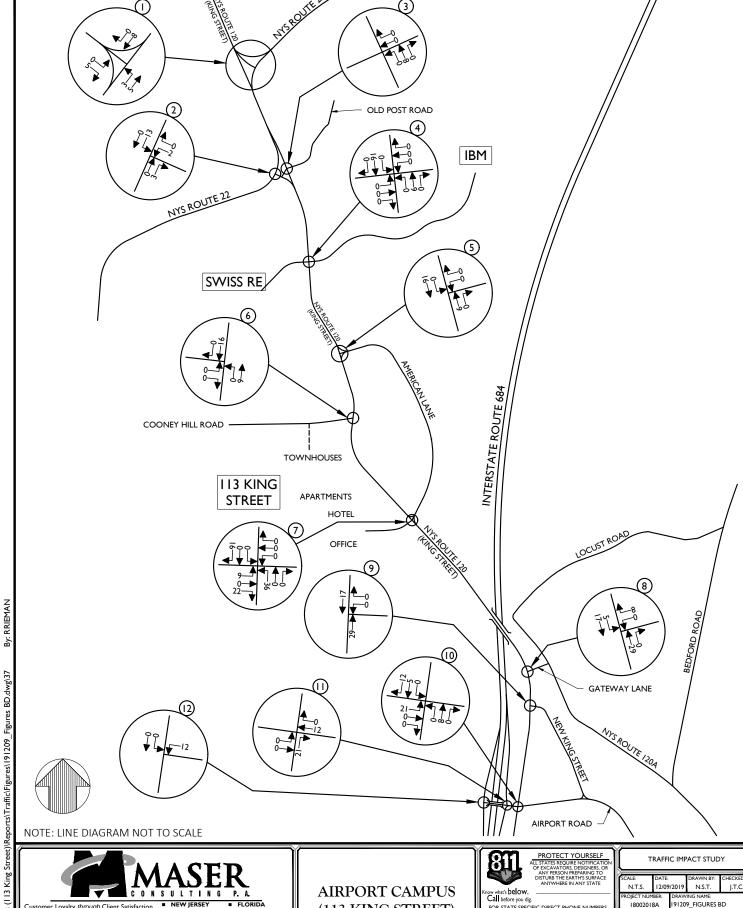
Nashville INDIANA

COLORADO

NEW MEXICO

■ MARYLAND

of N.Y. Cert. of Authorization: 0008671/0008821


WESTCHESTER OFFICE

100 Columbus Avenu Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266

SITE GENERATED TRAFFIC VOLUMES
WEEKDAY PEAK MIDDAY HOUR

FIGURE NO. 36-A

Customer Loyalty through Client Satisfaction www.maserconsulting.com Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821

PENNSYLVANIA

■ NEW YORK

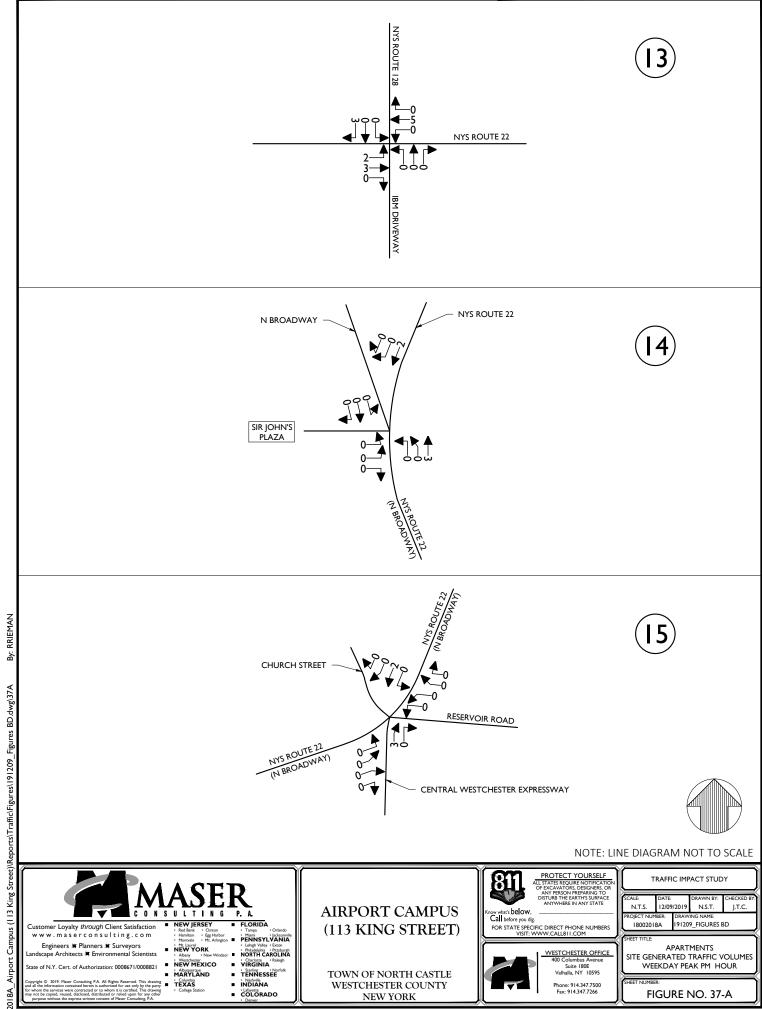
■ MARYLAND

 Philadelphia Pittsburgh
 NORTH CAROLINA VIRGINIA

Sterling Norfolk
TENNESSEE Nashville INDIANA · Lafayette COLORADO

(113 KING STREET)

TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK



WESTCHESTER OFFICE Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266

191209_FIGURES BD

APARTMENTS SITE GENERATED TRAFFIC VOLUMES WEEKDAY PEAK PM HOUR

WESTCHESTER COUNTY

NEW YORK

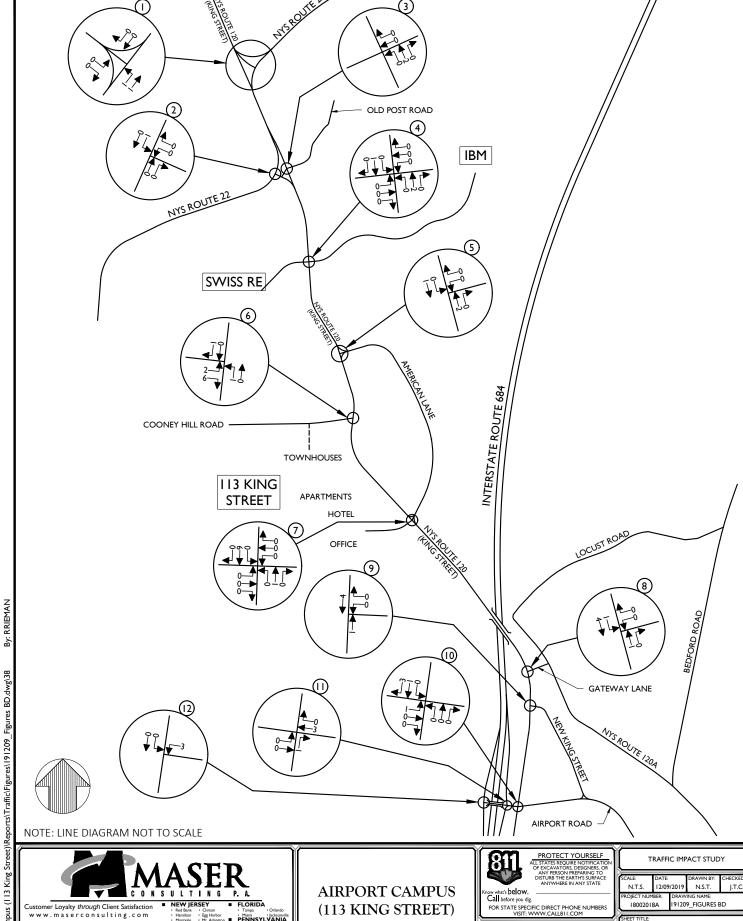

Phone: 914.347.7500 Fax: 914.347.7266

FIGURE NO. 37-A

■ MARYLAND

TENNESSEE

COLORADO

of N.Y. Cert. of Authorization: 0008671/0008821

www.maserconsulting.com

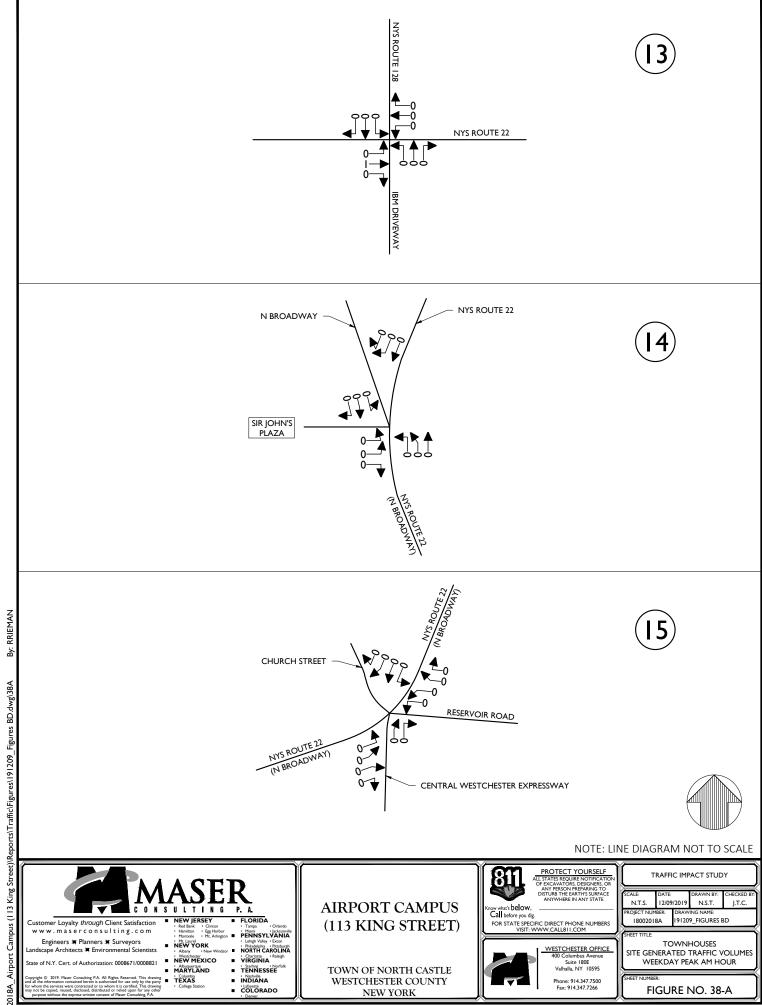
Engineers # Planners # Surveyors scape Architects # Environmental Scientists

■ NEW YORK

PENNSYLVANIA

 Philadelphia Pittsburgh
 NORTH CAROLINA VIRGINIA

Sterling Norfolk
TENNESSEE Nashville INDIANA · Lafayette COLORADO


(113 KING STREET)

TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK

WESTCHESTER OFFICE Suite 180E Valhalla, NY 10595 Phone: 914.347.7500 Fax: 914.347.7266

191209_FIGURES BD 18002018A TOWNHOUSES SITE GENERATED TRAFFIC VOLUMES WEEKDAY PEAK AM HOUR

WESTCHESTER COUNTY

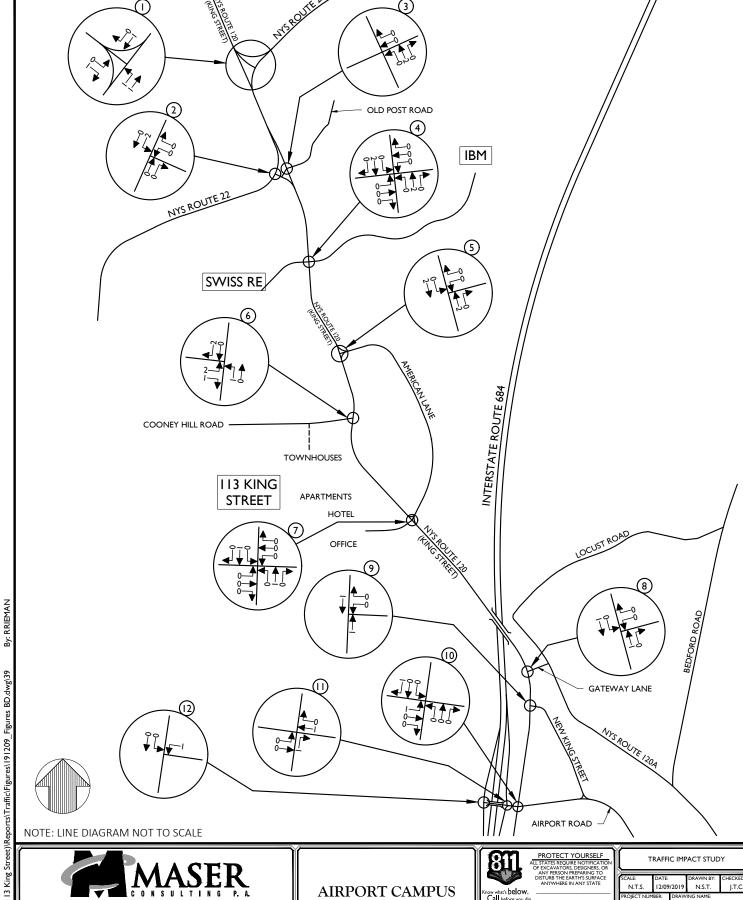
NEW YORK

100 Columbus Avenu Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266

FIGURE NO. 38-A

NEW MEXICO


TENNESSEE

· Lafayette COLORADO

Nashville INDIANA

■ MARYLAND

of N.Y. Cert. of Authorization: 0008671/0008821

Customer Loyalty through Client Satisfaction www.maserconsulting.com

Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821

■ NEW YORK NEW MEXICO

■ MARYLAND

PENNSYLVANIA

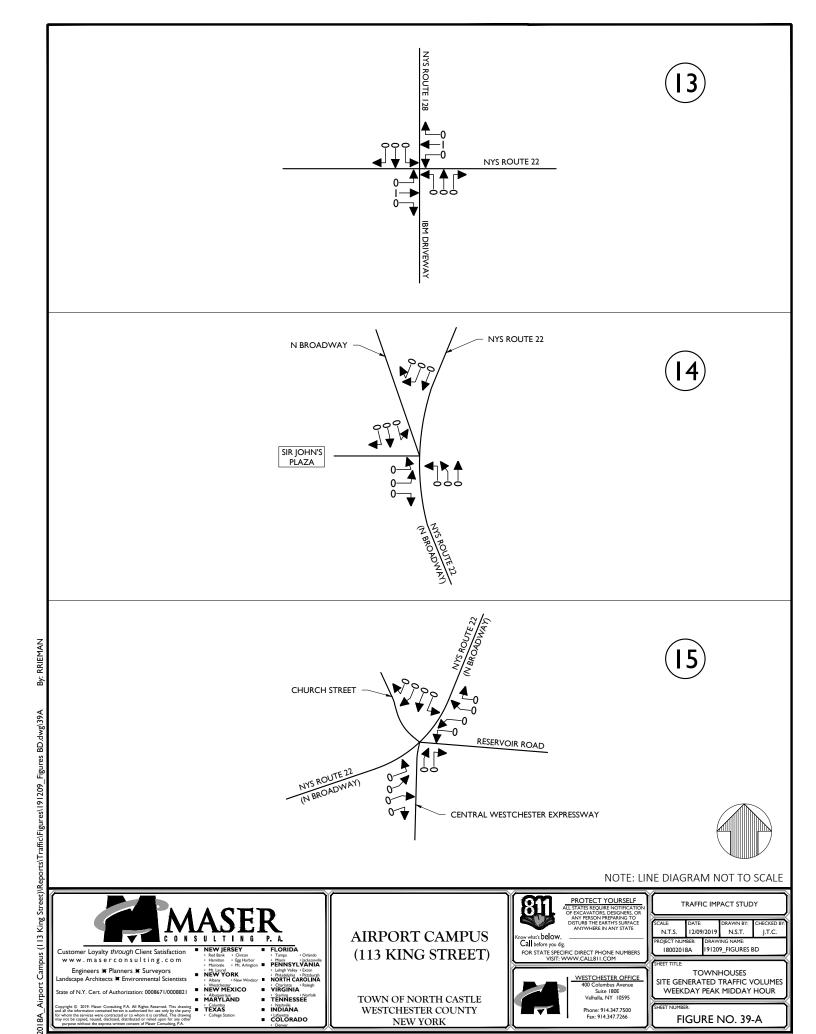
 Philadelphia Pittsburgh
 NORTH CAROLINA VIRGINIA

Sterling Norfolk
TENNESSEE Nashville INDIANA · Lafayette COLORADO

(113 KING STREET)

TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK

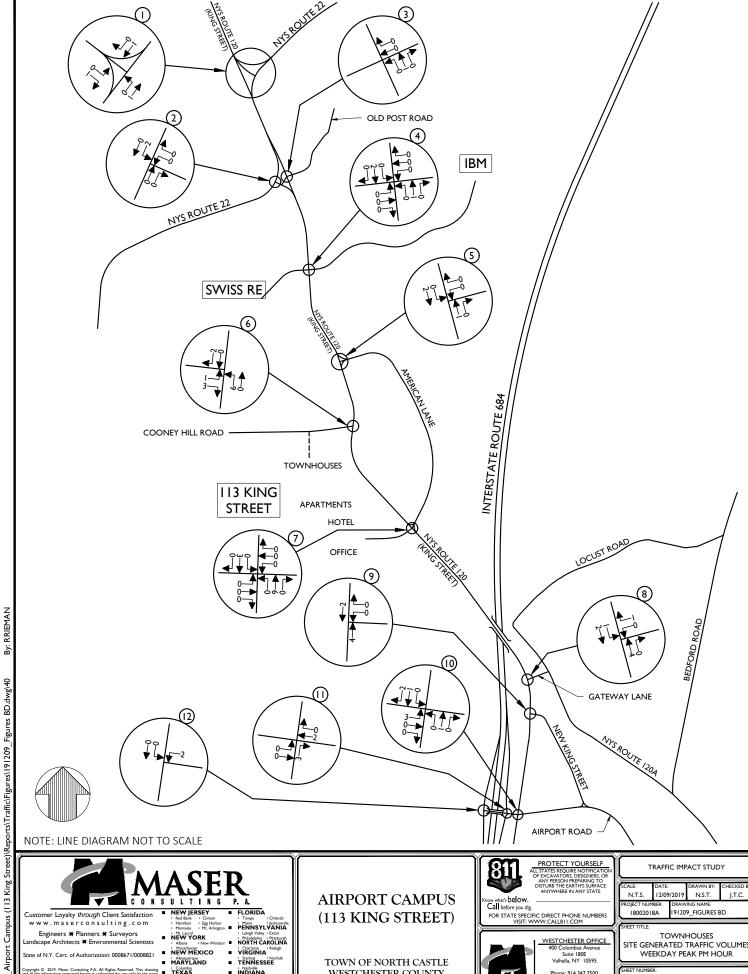
Call before you dig.
FOR STATE SPECIFIC DIRECT PHONE NUMBERS
VISIT: WWW.CALLBII.COM



WESTCHESTER OFFICE Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266

191209_FIGURES BD 18002018A


TOWNHOUSES SITE GENERATED TRAFFIC VOLUMES
WEEKDAY PEAK MIDDAY HOUR

NEW YORK

COLORADO

FIGURE NO. 39-A

of N.Y. Cert. of Authorization: 0008671/0008821

Engineers # Planners # Surveyors scape Architects # Environmental Scientists

■ NEW YORK

Philadelphia Pittsburgh
 NORTH CAROLINA

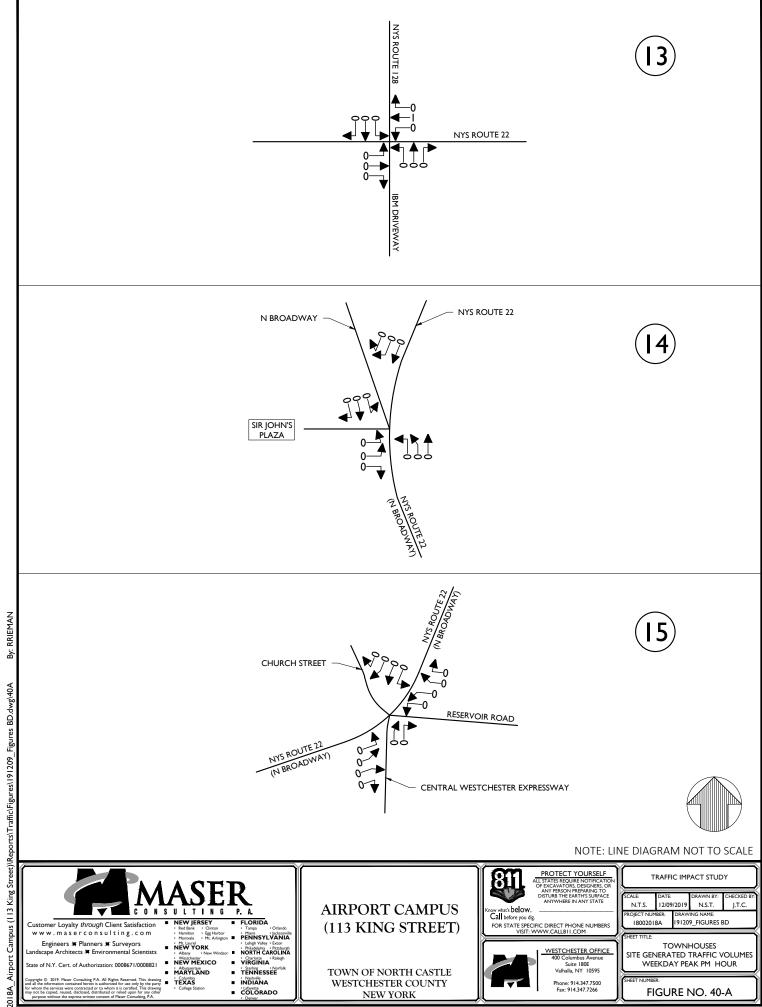
Sterling Norfolk
TENNESSEE

VIRGINIA

Nashville INDIANA

· Lafayette COLORADO

TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK



WESTCHESTER OFFICE Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266

TOWNHOUSES SITE GENERATED TRAFFIC VOLUMES WEEKDAY PEAK PM HOUR

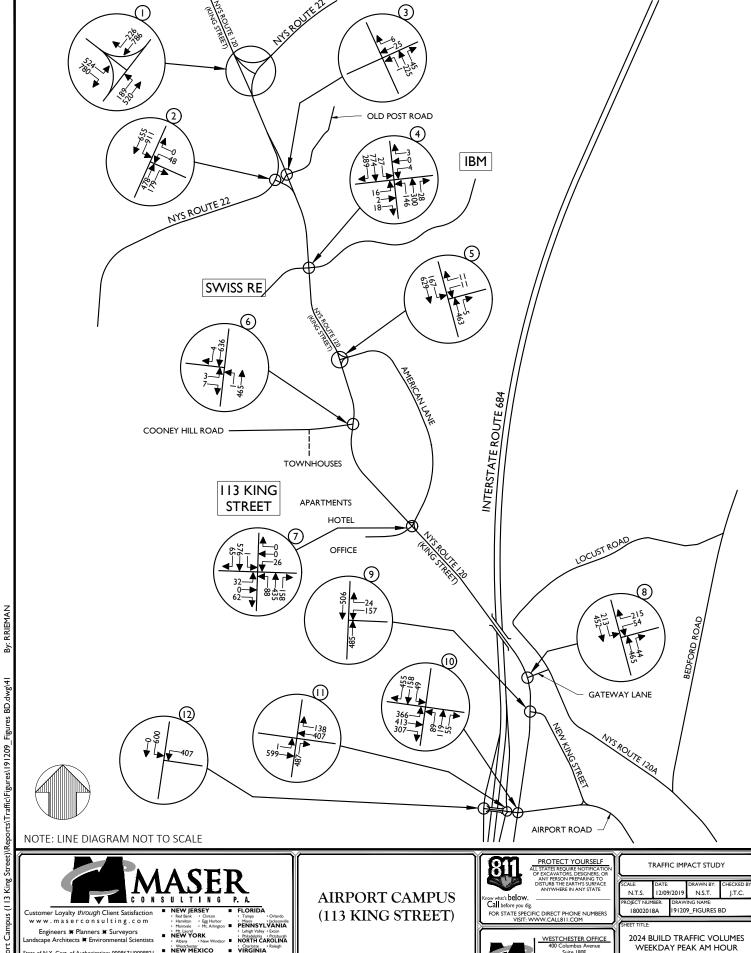
FIGURE NO. 40

TOWN OF NORTH CASTLE

WESTCHESTER COUNTY

NEW YORK

Phone: 914.347.7500 Fax: 914.347.7266


FIGURE NO. 40-A

■ MARYLAND

TENNESSEE

· Lafayette COLORADO

Nashville INDIANA

TOWN OF NORTH CASTLE

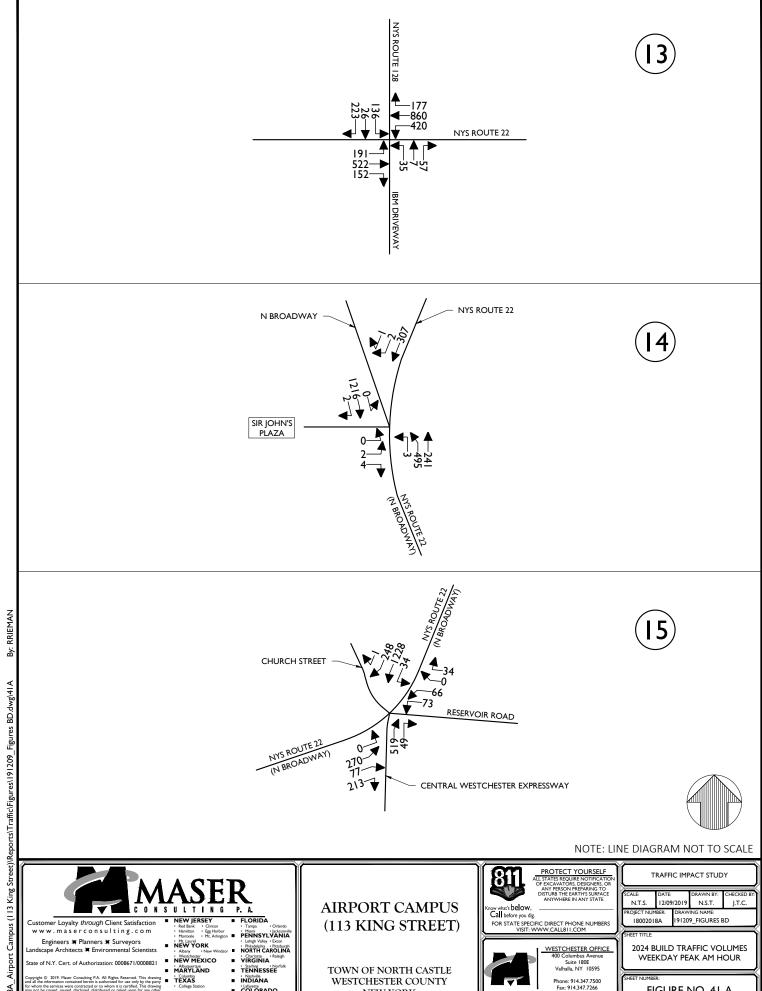
WESTCHESTER COUNTY

NEW YORK

Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266

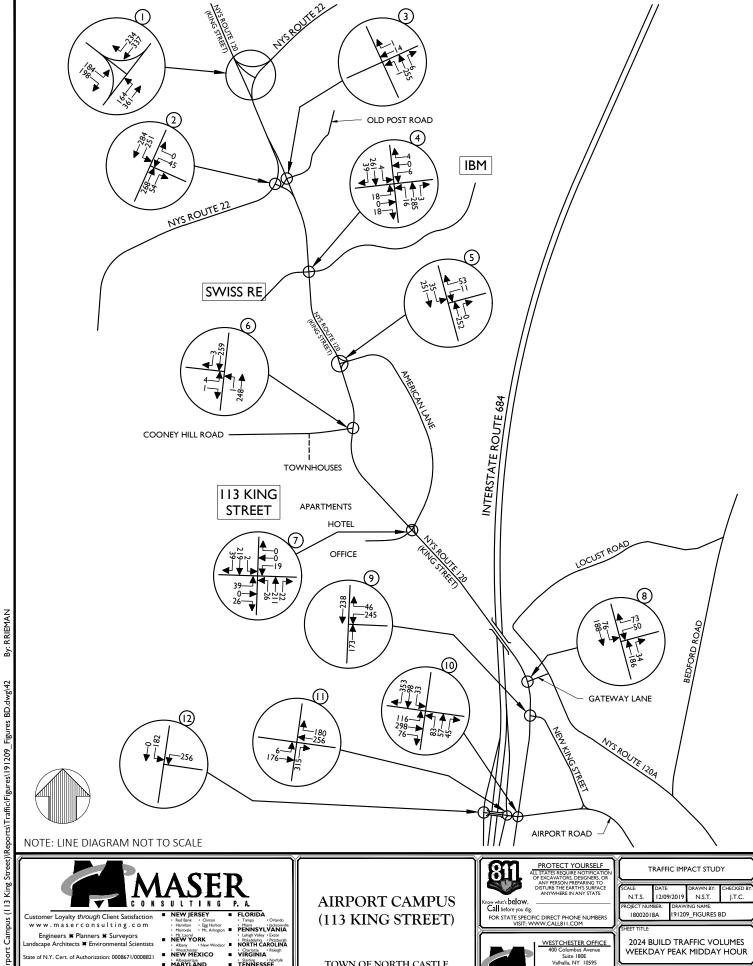
FIGURE NO. 41


_Airport Campus (113 King Street)\Reports\Traffic\Figures\191209_Figures BD.dwg\41

of N.Y. Cert. of Authorization: 0008671/0008821

Sterling Norfolk
TENNESSEE

Nashville INDIANA


· Lafayette COLORADO

NEW YORK

COLORADO

FIGURE NO. 41-A

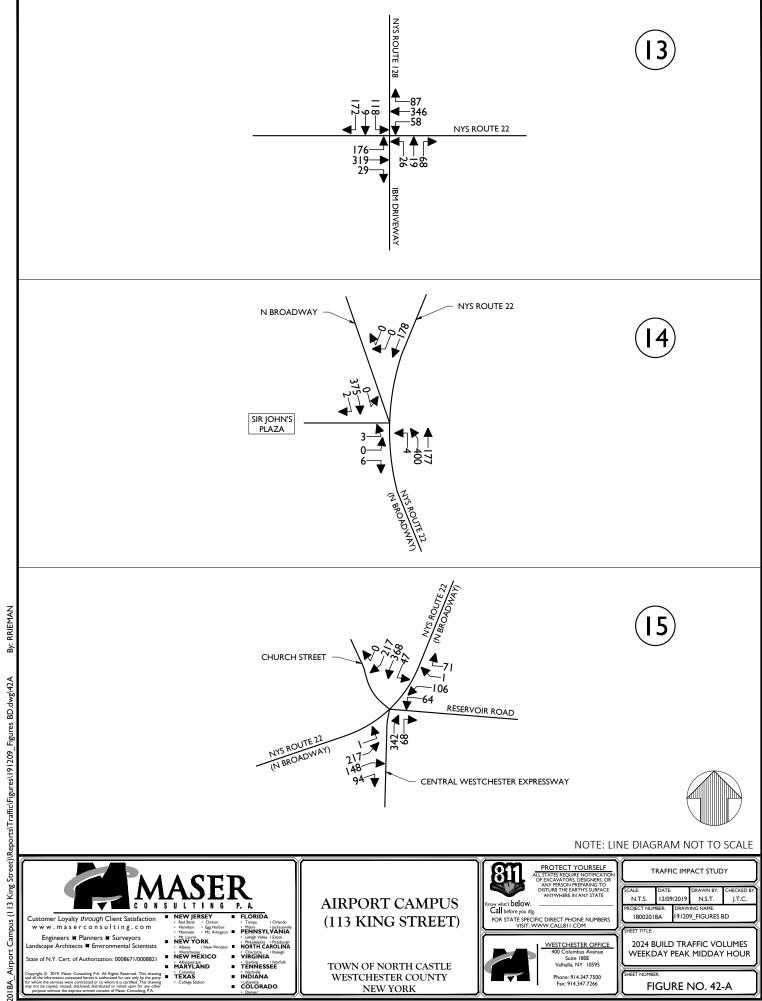
TOWN OF NORTH CASTLE

WESTCHESTER COUNTY

NEW YORK

Sterling Norfolk
TENNESSEE

Nashville INDIANA


· Lafayette COLORADO

Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266

FIGURE NO. 42

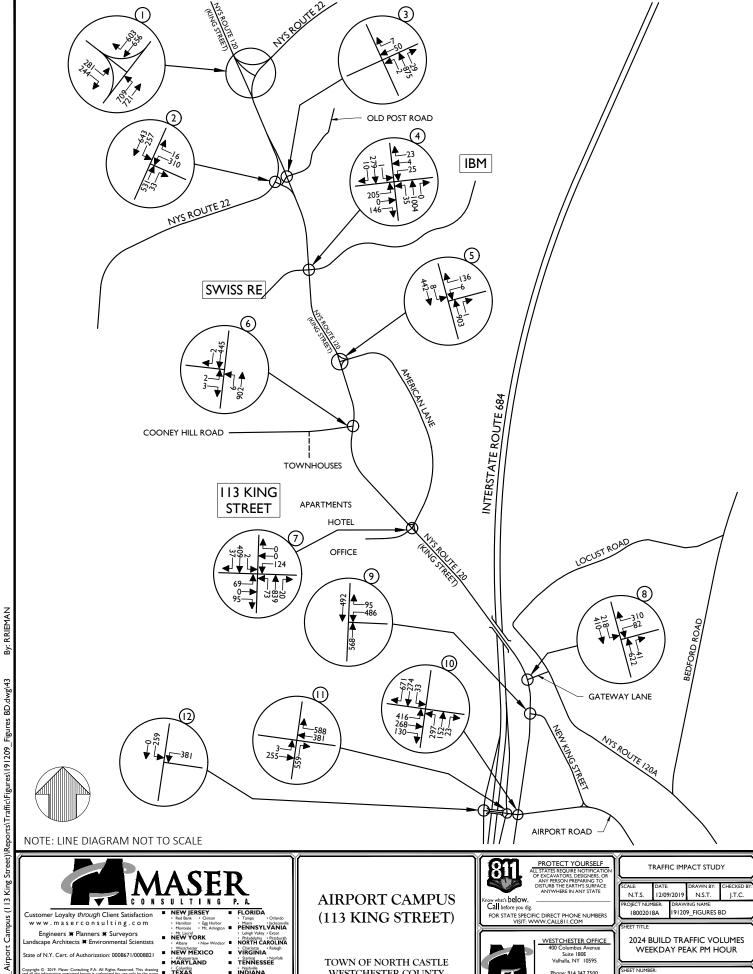
_Airport Campus (113 King Street)\Reports\Traffic\Figures\191209_Figures BD.dwg\42

TOWN OF NORTH CASTLE

WESTCHESTER COUNTY

NEW YORK

Phone: 914.347.7500 Fax: 914.347.7266


FIGURE NO. 42-A

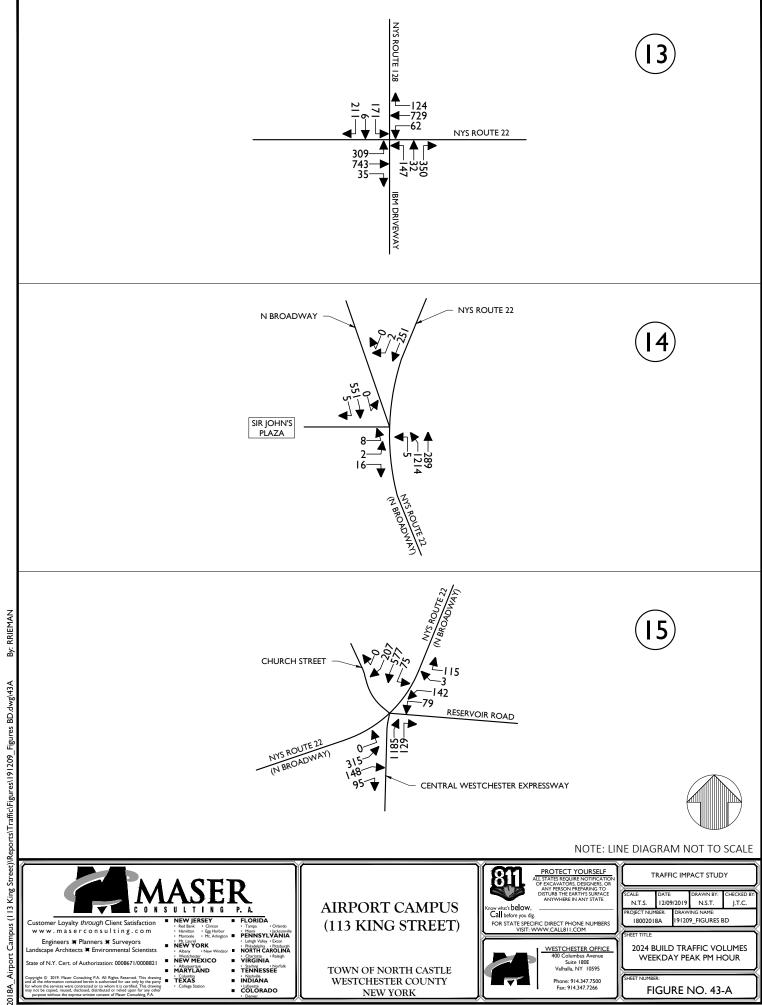
■ MARYLAND

TENNESSEE

· Lafayette COLORADO

Nashville INDIANA

WESTCHESTER COUNTY


NEW YORK

Phone: 914.347.7500 Fax: 914.347.7266

FIGURE NO. 43

Nashville INDIANA

· Lafayette COLORADO

WESTCHESTER COUNTY

NEW YORK

Phone: 914.347.7500 Fax: 914.347.7266

FIGURE NO. 43-A

Nashville INDIANA

· Lafayette COLORADO

AIRPORT CAMPUS (113 KING STREET)

APPENDIX B

LEVEL OF SERVICE SUMMARY TABLE QUEUE SUMMARY TABLE

TABLE NO. 1

HOURLY TRIP GENERATION RATES &
ANTICIPATED SITE GENERATED TRAFFIC VOLUMES

AIDDODT CAMBLIS (442 KING STREET)	EN	TRY	E	XIT	TO	TAL
AIRPORT CAMPUS (113 KING STREET)	HTGR*	VOLUME	HTGR*	VOLUME	HTGR*	VOLUME
EXISTING OFFICE BUILDING (1) (100,000 S.F.)						
WEEKDAY PEAK AM HOUR	1.00	100	0.16	16	1.16	116
WEEKDAY PEAK MIDDAY HOUR * WEEKDAY PEAK PM HOUR	0.29 0.18	29 18	0.29 0.97	29 97	0.58 1.15	58 115
EXISTING OFFICE BUILDING (1) (161,000 S.F.)						
WEEKDAY PEAK AM HOUR	1.00	161	0.16	26	1.16	187
WEEKDAY PEAK MIDDAY HOUR *	0.29	47	0.29	47	0.58	94
WEEKDAY PEAK PM HOUR	0.18	29	0.97	156	1.15	185
TOTAL TRIPS						
WEEKDAY PEAK AM HOUR		261		42		303
WEEKDAY PEAK MIDDAY HOUR *		76		76		152
WEEKDAY PEAK PM HOUR		47		253		300

THE HOURLY TRIP GENERATION RATES (HTGR) ARE BASED ON DATA PUBLISHED BY THE INSTITUTE OF TRANSPORTATION ENGINEERS (ITE)

TRIP GENERATION HANDBOOK - 10TH EDITION, 2017

(1) ITE LAND USE 710 - OFFICE

18002018A 12/9/2019

^{* 50%} OF AVERAGE OF WEEKDAY PEAK AM HOUR AND WEEKDAY PEAK PM HOUR WITH A 50/50 ENTRY/EXIT SPLIT

TABLE NO. 2

HOURLY TRIP GENERATION RATES &
ANTICIPATED SITE GENERATED TRAFFIC VOLUMES

AIRPORT CAMPUS (113 KING STREET)	EN	TRY	Е	XIT	TO	TAL
TO REMAIN	HTGR*	VOLUME	HTGR*	VOLUME	HTGR*	VOLUME
EXISTING OFFICE BUILDING (1) (100,000 S.F.)						
WEEKDAY PEAK AM HOUR	1.00	100	0.16	16	1.16	116
WEEKDAY PEAK MIDDAY HOUR *	0.29	29	0.29	29	0.58	58
WEEKDAY PEAK PM HOUR	0.18	18	0.97	97	1.15	115

AIRPORT CAMPUS (113 KING STREET)	EN	TRY	Е	XIT	ТО	TAL
PROPOSED	HTGR*	VOLUME	HTGR*	VOLUME	HTGR*	VOLUME
HOTEL (2) (125 ROOMS)						
WEEKDAY PEAK AM HOUR	0.28	35	0.19	24	0.47	59
WEEKDAY PEAK MIDDAY HOUR *	0.135	17	0.135	17	0.27	34
WEEKDAY PEAK PM HOUR	0.31	39	0.29	36	0.60	75
APARTMENTS (3) (149 UNITS)						
WEEKDAY PEAK AM HOUR	0.11	16	0.35	52	0.46	68
WEEKDAY PEAK MIDDAY HOUR *	0.13	19	0.13	19	0.26	38
WEEKDAY PEAK PM HOUR	0.35	52	0.21	31	0.56	83
TOWNHOUSES (3) (22 UNITS)						
WEEKDAY PEAK AM HOUR	0.11	2	0.35	8	0.46	10
WEEKDAY PEAK MIDDAY HOUR *	0.13	3	0.13	3	0.26	6
WEEKDAY PEAK PM HOUR	0.35	8	0.21	4	0.56	12
TOTAL "NEW" TRIPS						
WEEKDAY PEAK AM HOUR		53		84		137
WEEKDAY PEAK MIDDAY HOUR *		39		39		78
WEEKDAY PEAK PM HOUR		99		71		170

THE HOURLY TRIP GENERATION RATES (HTGR) ARE BASED ON DATA PUBLISHED BY THE INSTITUTE OF TRANSPORTATION ENGINEERS (ITE)
TRIP GENERATION HANDBOOK - 10TH EDITION, 2017

(1) ITE LAND USE 710 - OFFICE

(2) ITE LAND USE 310 - HOTEL

(3) ITE LAND USE 220 - MULIFAMILY HOUSING

* 50% OF AVERAGE OF WEEKDAY PEAK AM HOUR AND WEEKDAY PEAK PM HOUR WITH A 50/50 ENTRY/EXIT SPLIT

18002018A 12/9/2019

TABLE NO. 3

LEVEL OF SERVICE SUMMARY TABLE

					YEAR	2019 EX	CISTING					IMARY 1		YEAR	2024 NC)-RUII F)						YE	AR 2024 E	BUILD			
	LOCATION	W	EEKDA'			KDAY M			EEKDA	/ PM	W	EEKDAY			KDAY M			EKDAY	/ PM	W	EEKDA'	VΔM		KDAY M		W/F	EKDA'	V PM
			DELAY			DELAY			DELAY						DELAY			DELAY						DELAY			DELAY	
1	NYS ROUTE 22 & NYS ROUTE 120 (NORTH)																											
	SIGNALIZED																											
	NYS ROUTE 22 NB L	D	48.1	0.60	Ç	27.4	0.40	F	146.1	1.21	D	51.1	0.64	Ç	30.9	0.46	F	270.4	1.51	D	51.0	0.65	Ç	30.8	0.46	F	250.4	
	NB T NB APPROACH NYS ROUTE 22 SB T	В С	13.3 22.4	0.28	A B	7.6 13.9	0.17	E	9.2 79.4	0.29	B C	12.8 23.0	0.29	B	8.1 15.2	0.20	B F 0	10.7 139.1	0.37	B C D	12.9 23.1	0.29	В С	8.1 15.2	0.20	F D	10.5 129.4	
	NYS ROUTE 22 SB T SB R SB APPROACH	A C	39.0 0.2 29.7	0.70 0.14	C A B	25.3 0.2 14.4	0.39	A C	41.4 0.8 21.6	0.71 0.40	D A D	45.9 0.2 36.0	0.84 0.16	C A B	27.5 0.3 16.3	0.46 0.17	D A C	44.3 0.9 23.4	0.76 0.43	D A C	44.6 0.2 34.7	0.82 0.16	С А В	27.4 0.3 16.3	0.46 0.17	D A C	44.5 0.9 23.6	0.77 0.43
	NYS ROUTE 120 SEB L SEB R	E	60.0 1.1	0.92 0.47	C A	27.6 0.2	0.46 0.12	D A	48.1 0.2	0.69 0.15	F	91.7 1.7	1.05 0.57	C A	31.0 0.2	0.51 0.14	D A	50.7 0.2	0.73 0.17	FA	91.0 1.5	1.05 0.55	C	30.9 0.2	0.51 0.14	D A	50.9 0.2	0.73 0.17
	SEB APPROACH	ĉ	26.1		В	13.6		ĉ	25.8		Ď	37.1		В	15.0		Ĉ	27.5		Ď	37.5		В	15.0		ĉ	27.3	
	OVERALL	С	26.3		В	14.0		D	46.8		С	33.5		В	15.6		E	76.8		С	33.2		В	15.6		E	71.3	
	W/ SIGNAL TIMING CHANGES																											
	NYS ROUTE 22 NB L NB T	-			-						D B	51.5 15.0	0.65 0.31	-			F B	188.0 10.3	1.32 0.36	D B	51.6 15.0	0.65 0.31	-			F B	170.8 10.1	1.28 0.35
	NB APPROACH NYS ROUTE 22 SB T	-						-			C	24.7 58.9	0.94	-			F D	98.2 54.0	0.85	C	24.8 54.5	0.90	-			F D	89.8 54.6	0.86
	SB R SB APPROACH	-			-						A D	0.2 46.2	0.16	-			A C	0.9 28.4	0.43	A D	0.2 42.4	0.16	-			A C	0.9 28.9	0.43
	NYS ROUTE 120 SEB L SEB R	-			-						E A	64.3 1.7	0.95 0.57	-			D A	54.9 0.2	0.76 0.17	E A	64.9 1.5	0.95 0.55	-			D A	54.9 0.2	0.76 0.17
	SEB APPROACH	-			-			-			С	26.4		-			С	29.8		С	27.0		-			С	29.5	
	OVERALL	-			-			-			С	32.7					E	60.4		С	31.6		-			E	56.1	
2	NYS ROUTE 22 & NYS ROUTE 120 (SOUTH)																											
	SIGNALIZED																											
	NYS ROUTE 22 NB T	С	26.4	0.59	В	17.6	0.32	С	28.0	0.65	D	35.8	0.70	В	19.2	0.37	С	30.9	0.68	D	35.6	0.70	В	19.2	0.37	С	31.0	0.68
	NB R NB APPROACH NYS ROUTE 22 SB L	A C C	9.1 22.1 24.9	0.21	А В В	2.5 15.2 17.1	0.05	А С С	1.9 26.7 30.8	0.03	В С	16.7 30.5 24.2	0.31	А В В	2.4 16.4 19.1	0.07	A C C	1.8 29.3 34.7	0.04	В с С	16.2 30.3 23.3	0.30	А В В	2.4 16.4 19.1	0.07	A C C	1.8 29.3 34.7	0.04
	SBT	Α	5.1	0.70	A	4.5 9.7	0.23	В В	10.6	0.40	A B	4.3	0.72	A B	5.2	0.33	В	12.0	0.40	A B	4.4	0.08	Α	5.2	0.33	В	11.9	0.40
	SB APPROACH NYS ROUTE 120 WB L-R WB APPROACH	В С С	15.6 30.3 30.3	0.16	B	19.0 19.0	0.11	C	15.8 31.7 31.7	0.68	D	16.2 37.4 37.4	0.23	BBB	11.8 19.9 19.9	0.13	ВСС	18.3 34.5 34.5	0.72	D D	15.4 37.5 37.5	0.24	В В	11.7 19.9 19.9	0.13	В С С	18.4 34.8 34.8	0.72
	OVERALL	В	17.9		В	12.3		С	22.2		С	20.7		В	13.8		С	24.8		С	20.2		В	13.8		С	24.8	
\vdash		F						_			_						_			_						H		\vdash
3	KING STREET & OLD POST ROAD																											
	UNSIGNALIZED																											
	OLD POST ROAD WB T-R	А	9.4	0.040	Α	9.3	0.018	С	15.6	0.167	Α	9.7	0.044	Α	9.7	0.021	С	22.0	0.250	Α	9.8	0.044	A	9.7	0.021	С	20.4	0.231
4	NYS ROUTE 120 & SWISS RE DRIVEWAY / IBM DRIVEWAY																											
	SIGNALIZED																											
	SWISS RE DRIVEWAY EB L-T EB R	C A	28.2 1.2	0.07 0.06	C A	25.4 0.3	0.05 0.04	D A	38.2 6.1	0.52 0.19	C A	29.8 4.8	0.12 0.11	C A	26.3 4.5	0.09	D A	44.6 4.0	0.74 0.26	C A	29.8 4.8	0.12 0.11	C A	26.3 4.5	0.09	D A	44.6 4.0	0.74 0.26
	EB APPROACH IBM DRIVEWAY WB L-T	B	14.7 27.5	0.02	BC	12.9 25.3	0.03	C C	24.8 29.3	0.16	B	16.7 28.5	0.02	B	15.4 26.2	0.03	C C	27.7 25.7	0.20	ВС	16.7 28.5	0.02	B	15.4 26.2	0.03	c	27.7 25.7	0.11
	WB R WB APPROACH	A	0.0 15.7	0.01	Ā	0.2 15.3	0.02	A	5.2 18.4	0.06	A B	0.0 16.3	0.01	A B	0.2 15.8	0.02	A B	4.3 16.0	0.04	Ā	0.0 16.3	0.01	A B	0.2 15.8	0.02	A B	4.3 16.0	0.04
	NYS ROUTE 120 NB L NB T	A	2.3	0.15 0.19	Ā	1.8	0.01 0.15	A	4.9	0.03 0.81	A	5.3 4.3	0.42 0.22	A	1.9	0.02	Ā	8.1 108.8	0.08 1.17	A	4.1	0.37 0.23	A	1.9	0.02 0.18	Ā	8.1 84.7	0.08 1.11
	NB R NB APPROACH	A A	0.0 3.5	0.02	A A	0.0 2.8	0.00	A C	0.0 22.2	0.00	A A	0.0 4.4	0.02	A A	0.0 3.0	0.00	A F	0.0 105.6	0.00	A A	0.0 4.0	0.02	A A	0.0 3.0	0.00	A F	0.0 82.1	0.00
	NYS ROUTE 120 SB L SB T	A	2.0 8.6	0.03 0.54	A A	2.0 2.9	0.00	A B	5.0 10.8	0.00 0.22	A B	2.4 15.8	0.03 0.75	A A	2.2 4.1	0.00	A B	8.0 16.7	0.01 0.34	A B	2.4 13.9	0.03	A A	2.2 4.1	0.00 0.18	A B	8.0 16.9	0.01 0.36
	SB R SB APPROACH	A A	2.4 7.3	0.13	A A	0.0 2.6	0.01	А В	0.0 10.5	0.01	А В	3.7 12.5	0.28	A A	0.6 3.6	0.03	А В	0.0 16.0	0.01	А В	3.4 10.8	0.28	A A	0.6 3.6	0.03	А В	0.0 16.3	0.01
	OVERALL	Α	6.4		А	3.3		С	20.4		В	10.3		А	4.2		Е	73.8		Α	9.0		А	4.2		E	58.1	
	W/ SIGNAL TIMING CHANGES																											
	SWISS RE DRIVEWAY EB L-T	-			-			-									D	48.2	0.75	-			-			D	48.2	0.75
	EB R EB APPROACH	-			-			-			-			-			A C	4.3 29.9	0.27	1 1			-			A C	4.3 29.9	0.27
	IBM DRIVEWAY WB L-T WB R	-			-			-			-			-			CAB	27.9 4.7	0.11 0.05	-			-			C A	27.9 4.7	0.11 0.05
	WB APPROACH NYS ROUTE 120 NB L NB T	-			-			-			-			-			B A F	8.1 05.1	0.08				-			B A	17.3 8.1	0.08
	NB R	-			-			-			-			-			A F	95.1	0.00	-			-			A	72.7 0.0 70.5	0.00
	NYS ROUTE 120 SB L SB T	-			-			-			-			-			A B	92.3 9.0 16.2	0.01 0.32	-			-			E A B	9.0 16.5	0.01 0.34
	SB R SB APPROACH	-			-			-			-			-			В А В	0.0 15.6	0.32	-						В В	0.0 15.9	0.34
	OVERALL	-						_			_			_			E	65.9					_			D	51.6	
	OTENALL																_	55.5								لــُــا	01.0	

TABLE NO. 3

LEVEL OF SERVICE SUMMARY TABLE

Г					YEAR	2019 EX	ISTING	i						YEAR	2024 NC	-BUILD)						YEA	NR 2024 I	BUILD			
	LOCATION		EKDAY			KDAY M			EEKDA'			EEKDAY			KDAY M			EEKDA'			EEKDA'			KDAY M			EKDAY	
ŧ		A C B		0.141 0.052 0.016	A B A	7.7 11.2 9.5	0.025 0.018 0.061	A C C	10.0 20.7 20.6	0.012 0.029 0.390	A D B	9.0 34.7 11.4	0.163 0.088 0.020	A B A	7.9 12.5 9.9	0.029 0.024 0.071	В	11.1 29.6 31.5	0.015 0.045 0.540	A	9.0 32.4 11.5	0.165 0.082 0.021	A B A	7.9 12.4 9.9	0.029 0.023 0.070		10.7	0.014 0.042 0.499
6	NYS ROUTE 120 & COONEY HILL ROAD UNSIGNALIZED NYS ROUTE 120 NB L-T COONEY HILL ROAD EB L-R	A C	0.0 18.8	0.000 0.008	A B	0.0 11.4	0.000 0.004	A D	0.0 30.4	0.000 0.008	A D	0.0 27.0	0.000 0.013	A B	0.0 13.0	0.000 0.005	A F	0.0 50.7	0.000 0.015	A C	8.9 20.8	0.001 0.044	A B	7.8 12.3	0.001 0.011	A D	8.5 27.1	0.007 0.036
7	NYS ROUTE 120 & 113 KING STREET DRIVEWAY / AMERICAN LANE (S) SIGNALIZED NYS ROUTE 120 NWB L NWB T NWB R NWB R NWB APPROACH SEB L-T-R SEB APPROACH 113 KING STREET DRIVEWAY AMERICAN LANE (S) NEB R NEB APPROACH SWB L-T SWB APPROACH SWB L-T SWB APPROACH OVERALL	೧೧೮ ೨೧ ೮ ೮ ୬ ୬୬	4.5 6.4 1.1 4.8 10.1 10.1 129.0 0.0 14.5 31.2 31.2	0.00 0.32 0.15 0.48 0.00 0.00 0.12	Q O D D D D D D D D D	0.0 5.2 1.7 4.9 5.3 5.3 0.0 0.0 0.0 30.4 30.4	0.00 0.16 0.02 0.17 0.00 0.00 0.08	A B A B A A A A D D B	0.0 13.0 1.6 12.8 6.1 6.1 6.0 0.0 0.0 42.6 42.6	0.00 0.73 0.02 0.30 0.00 0.00 0.57	4 4 4 4 0 C 0 4 B 0 C B	6.9 7.2 1.1 5.8 23.7 23.7 30.7 0.3 15.5 31.4 31.4	0.34 0.41 0.16 0.80 0.10 0.06 0.13	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4.5 5.3 1.7 4.9 9.8 9.8 32.5 0.4 19.8 30.6 30.6	0.05 0.18 0.02 0.21 0.08 0.09	АВА В ВЕАСЕ Е С	4.6 15.6 1.7 15.0 11.1 11.1 61.1 8.6 34.9 62.3 62.3	0.05 0.79 0.02 0.45 0.77 0.38 0.77	4 4 4 4 B B C 4 B C C B	5.6 7.2 1.1 5.6 18.7 18.7 31.4 1.0 11.2 31.5 31.5	0.21 0.41 0.16 0.69 0.14 0.17 0.13	A A A A C A B C C A	4.5 5.4 1.7 5.0 8.7 8.7 31.9 0.3 19.1 30.6 30.6	0.04 0.19 0.02 0.17 0.07 0.09	4 B 4 B B D 4 B D D B	5.2 15.9 1.7 14.7 14.5 14.5 38.3 5.2 19.1 47.9 47.9	0.16 0.80 0.02 0.52 0.41 0.28 0.65
	SIGNALIZED NYS ROUTE 120 NB T-R NB APPROACH SB L-T SB APPROACH WB L-R WB L-R WB APPROACH OVERALL W/ SIGNAL TIMING CHANGES	A A A B B A	2.5 2.5 9.5 9.5 18.4 18.4	0.32 0.61 0.67 	A A A A C C	2.1 2.1 3.7 3.7 24.1 24.1	0.14 0.19 0.49 	A A C C C C B	5.3 5.3 25.3 25.3 25.0 25.0	0.54 0.80 0.80	A A B B B B B	3.2 3.2 19.3 19.3 17.9 17.9	0.49 0.81 0.71 	A A A C C	2.2 2.2 4.1 4.1 23.0 23.0	0.17 0.24 0.53 	A	7.6 7.6 246.4 246.4 28.1 28.1 106.8	0.65 1.48 0.81 ATION	А А С С В В	3.1 3.1 20.1 20.1 18.0 18.0	0.46 0.83 0.71 	A A A C C	2.2 2.2 4.1 4.1 23.1 23.1	0.17 0.24 0.52 	B B F F C C F W/C	10.5 10.5 349.8 349.8 29.5 29.5 141.6	0.71 1.71 0.81 ATION
	NYS ROUTE 120 NB T-R NB APPROACH SB L-T SB APPROACH WB L-R WB APPROACH OVERALL	1 1 1 1 1 1			1 1 1 1 1 1 1						111111			1 1 1 1 1 1 1			A	8.7 8.7 67.1 67.1 58.6 58.6	0.55 1.06 0.99 	111111						A A E E E E D	10.0 10.0 79.1 79.1 59.6 59.6	0.59 1.09 1.00
Ç	NYS ROUTE 120 & NEW KING STREET SIGNALIZED NYS ROUTE 120 NB T NB APPROACH SB T SB APPROACH WE L WE R WE APPROACH OVERALL	A A A A D B D B	6.5 6.5 3.2 3.2 38.8 11.5 35.2	0.32 0.36 0.58 0.09 	A A A D A C B	7.1 7.1 6.5 6.5 37.7 7.9 33.0	0.13 0.20 0.67 0.12	B	16.2 16.2 9.1 9.1 38.7 4.6 33.2 21.4	0.53 0.40 0.84 0.16	A A A D B D B	8.6 8.6 3.5 3.5 38.9 11.3 35.2	0.49 0.41 0.59 0.09	A A A D A C B	7.5 7.5 6.5 6.5 37.6 7.7 32.9	0.17 0.24 0.68 0.12	B	18.4 18.4 9.1 9.1 40.1 4.5 34.3	0.61 0.62 0.86 0.16	A A A D B D B	8.1 8.1 3.9 3.9 38.9 11.3 35.2	0.45 0.44 0.59 0.09	A A A D A C B	7.5 7.5 6.5 6.5 37.6 7.7 32.9	0.17 0.24 0.68 0.12	B B A A D A C C	19.9 19.9 8.9 8.9 40.1 4.5 34.3	0.66 0.59 0.86 0.16

TABLE NO. 3

LEVEL OF SERVICE SUMMARY TABLE

	LOCATION				YEAR	2019 EX	(ISTING	i						YEAR	2024 NO	-BUILD	ı						YEA	AR 2024 E	BUILD			
			EKDAY			KDAY M			EEKDAY			EEKDAY			KDAY MI			EKDAY			EEKDA			KDAY M			EKDAY	
L	L	OS [DELAY	V/C	LOS	DELAY	V/C	LOS	DELAY	V/C	LOS	DELAY	V/C	LOS	DELAY	V/C	LOS	DELAY	V/C	LOS	DELAY	V/C	LOS	DELAY	V/C	LOS	DELAY	V/C
10	10 NYS ROUTE 120 & AIRPORT ROAD																											
	SIGNALIZED																											
	NB T T-R	ВВ	16.5 15.0	0.19 0.13	В	12.5 11.3	0.15 0.07	C	20.9 20.3	0.55 0.11	В	16.6 17.3	0.20 0.19	ВВ	13.5 12.4	0.16 0.08	C	28.8 23.6	0.67 0.13	ВВ	16.6 16.9	0.20 0.18	ВВ	13.5 12.4	0.16 0.08	СС	28.8 24.0	0.67 0.14
	NYS ROUTE 120 SB L SB T	B C	15.6 16.1 29.2	0.11 0.29	В В С	11.9 12.8 23.7	0.07 0.17	C B D	20.7 17.5 38.7	0.09 0.58	В В С	17.1 16.2 29.8	0.12 0.33	В В С	12.9 13.8 25.5	0.08 0.21	C C D	26.9 20.6 50.2	0.10 0.75	B B C	16.8 16.2 30.1	0.12 0.33	В В С	12.9 13.8 25.4	0.08 0.20	C C D	27.1 20.7 49.7	0.10 0.74
	SB APPROACH AIRPORT ROAD EB L EB L-T-R	A B E D	1.0 8.8 19.5 66.0 54.6	0.31 0.35 1.02	A B C C	1.0 6.3 17.0 26.0 24.4	0.27 0.16 0.69	A B C C C	5.8 15.7 23.3 26.2 25.0	0.50 0.51 0.68	A A C F E	1.0 9.0 23.0 89.0 68.1	0.34 0.53 1.10	А В С С	1.0 6.9 17.2 26.0 24.1	0.30 0.20 0.70	A C C C C	8.6 20.6 22.9 24.7 23.9	0.64 0.54 0.66	A C F E	1.0 9.1 22.2 87.0 67.4	0.36 0.50 1.09	A B C C	1.0 6.8 17.2 26.0 24.1	0.30 0.20 0.70	A C C C C	8.1 20.2 23.8 24.7 24.3	0.62 0.58 0.66
	OVERALL	С	34.6		В	14.9		С	20.2		D	42.8		В	15.1		С	23.0		D	41.6		В	15.1		С	23.1	
	W/ SIGNAL TIMING CHANGES																											
	NB T T-R	-						-			В	18.8 19.0	0.21 0.20		_					ВВ	18.9 18.6	0.21 0.19	-			-		
	NYS ROUTE 120 SB L							-			ВВСА	19.0 18,3 32.8 1.0	0.13 0.34 0.34	1 1 1						B C A	18.7 18,3 33.2 1.0	0.13 0.37 0.36				-		
	SB APPROACH AIRPORT ROAD EB L	-			-			-			A C F	9.9 21.6 67.7	0.50	-			-			B C E	10.0 20.9 65.9	0.47	-			-		
	75 51 11	-			-			_			D	53.1		-			-			Ď	52.3		-			-		
	OVERALL				-						D	35.0					-			С	34.0							
1	11 AIRPORT ROAD & I-684 NB ON/OFF RAMP																											
	UNSIGNALIZED																											
		A E	8.4 49.9	0.001 0.894	A B	8.2 11.6	0.006 0.358	A C	9.6 17.7	0.004 0.647	A F	8.6 175.3	0.001 1.295	A B	8.3 12.3	0.006 0.411	B C		0.005 0.732		8.7 148.7	0.001 1.227	A B	8.3 12.3	0.006 0.410			0.005 0.775
13	12 AIRPORT ROAD & I-684 SB ON/OFF RAMP																											
	UNSIGNALIZED																											
		A F	0.0 439.9	0.000 1.897	A C	0.0 15.0	0.000 0.335	A C	0.0 22.0	0.000 0.562	A F	0.0 608.2	0.000 2.269	A C	0.0 17.1	0.000 0.392	A F	0.0 64.6	0.000 0.893		0.0 701.3	0.000 2.472	A C	0.0 17.0	0.000 0.389	A F	0.0 54.6	0.000 0.846

TABLE NO. 3

LEVEL OF SERVICE SUMMARY TABLE

П								LLVL	L OI 3	INVICE	JOIVI	MARY T	ADLE							1								
	LOCATION					2019 EX									2024 NC									AR 2024 I				
			DELAY			KDAY M DELAY			DELAY			DELAY			KDAY M DELAY			DELAY			DELAY			KDAY M DELAY			DELAY	
13	NYS ROUTE 22 NYS ROUTE 128 / NORTH CASTLE DRIVE (IBM) SIGNALIZED																											
	NYS ROUTE 22 NEB L NEB T NEB R	E C A	56.2 26.1 5.5	0.71 0.39 0.21	D A A	45.5 7.7 0.0	0.63 0.14 0.01	D B A	53.9 10.6 0.0	0.78 0.29 0.01	E C A	59.8 28.8 5.3	0.75 0.45 0.25	D B A	47.6 13.0 0.1	0.68 0.19 0.03	E B A	58.9 18.5 0.1	0.83 0.42 0.05	E C A	59.6 28.8 5.3	0.75 0.45 0.25	D B A	47.6 13.0 0.1	0.68 0.19 0.03	E B A	59.2 18.5 0.1	0.83 0.41 0.05
	NEB APPROACH NYS ROUTE 22 SWB L SWB T SWB R	D C A	29.4 51.5 20.3 3.9	0.83 0.45 0.21	C D B A	20.6 42.0 16.2 4.9	0.13 0.21 0.12	C D C A	23.3 52.0 28.0 5.9	0.07 0.52 0.17	C D C A	31.4 52.6 22.9 4.7	0.84 0.54 0.22	C D B A	23.9 46.5 18.3 5.3	0.38 0.25 0.13	CECA	29.3 58.8 32.3 6.2	0.44 0.59 0.19	C D C A	31.5 52.6 22.7 4.4	0.84 0.53 0.22	C D B A	23.9 46.3 18.2 5.3	0.38 0.25 0.13	C E C A	29.6 59.0 32.7 6.2	0.44 0.59 0.20
	### SWB APPROACH NYS ROUTE 128	D A C	27.3 43.7 8.3 24.0	0.53 0.44	B D A B	14.9 35.6 7.8 19.9	0.44 0.37	C D A C	25.1 38.1 6.8 21.2	0.48 0.37	C D A C	29.1 45.4 8.2 23.6	0.56 0.49	B D A B	19.3 36.1 7.4 19.6	0.46 0.39	CDAC	30.6 38.6 6.4 21.3	0.49 0.38	C D A C	29.1 45.4 8.2 23.8	0.56 0.48	B D A B	19.2 36.1 7.4 19.6	0.46 0.39	C D A C	30.9 38.4 6.3 21.0	0.49 0.38
	NORTH CASTLE DRIVE (IBM) NB L NB T NB R NB APPROACH	C A C	34.3 32.7 0.1 21.3	0.07 0.01 0.03	C C A B	28.0 28.0 0.3 13.6	0.03 0.04 0.06	D C A B	39.7 30.2 6.7 17.3	0.48 0.06 0.49	D C A B	38.4 32.9 5.4 18.9	0.23 0.03 0.17	C C A B	30.0 28.4 7.3 16.1	0.12 0.05 0.18	D C A B	42.8 30.5 6.5 18.0	0.55 0.07 0.53	D C A B	38.4 32.9 5.4 18.9	0.23 0.03 0.17	C C A B	30.0 28.3 7.3 16.1	0.12 0.05 0.18	D C A B	42.5 30.4 6.4 17.8	0.55 0.07 0.53
	OVERALL	С	27.5		В	18.2		С	22.5		С	28.7		С	20.8		С	26.6		С	28.8		С	20.8		С	26.7	
14	NYS ROUTE 22 & N. BROADWAY / SIR JOHN'S PLAZA																											
	SIGNALIZED SIR JOHN'S PLAZA EB LL	E	62.5	0.03	С	30.3	0.02	Е	65.7	0.09				_			_			_			_					
	EB R EB APPROACH	A C	0.5 21.2 74.5	0.03	A B	0.3 10.3	0.02	A C	1.3 26.1 66.5	0.06				-			-			-			-					
	SWB APPROACH NYS ROUTE 22 NB L-T	E E A	74.5 5.8	0.81	C A	31.1 31.1 7.3	0.39 0.35	E C	66.5 30.0	0.63				-			-			-						-		
	NB R NB APPROACH N. BROADWAY SB L-T-R SB APPROACH	А А В В	0.3 4.2 16.4 16.4	0.16 0.83	A A A	0.5 5.4 7.0 7.0	0.12 0.32 	A C A A	0.5 24.7 8.8 8.8	0.19 0.41 	 				=									=		 	-	
	OVERALL	С	20.1		Α	9.7		С	24.9					-			-			-								
	W/ DEP IMPROVEMENTS SIR JOHN'S PLAZA EB LL										Е	62.5	0.03	С	30.7	0.02	E	67.1	0.10	E	62.5	0.03	С	30.7	0.02	Е	67.0	0.10
	EB R EB APPROACH	-			-			-			A C	0.5 21.2	0.03	A B	0.3 10.4	0.03	A C	1.5 25.8	0.11	A C	0.5 21.2	0.03	А В	0.3 10.4	0.03	A C	1.5 25.8	0.11
	NYS ROUTE 22 SWB L L-R SWB APPROACH NYS ROUTE 22 NB L-T	-			1 1 1			-			E A	64.5 64.5 7.4	0.75 0.41	C C A	31.4 31.4 7.8	0.43	E D	66.7 66.7 42.8	0.67	E E A	64.6 64.6 7.5	0.75 0.41	C C A	31.4 31.4 7.8	0.43	E E D	66.7 66.7 42.4	0.66
	NB R NB APPROACH N. BROADWAY SB L-T T-R SB APPROACH	 						-			A A B	0.4 5.1 12.5 12.5	0.19	A A A	0.5 5.6 6.7 6.7	0.14	A C A	0.5 34.8 8.6 8.6	0.21	A A B	0.4 5.2 12.5 12.5	0.19	A A A	0.5 5.6 6.7 6.7	0.14	A C A	0.5 34.4 8.6 8.6	0.22
	OVERALL	-			-						В	17.1		В	10.0		С	32.0		С	17.2		A	10.0		С	31.6	
15	NYS ROUTE 22 & CENTRAL WESTCHESTER EXPRESSWAY & RESERVOIR ROAD / CHURCH STREET																											
	SIGNALIZED																											
	NYS ROUTE 22 EB L EB T-R EB APPROACH	F F	89.1 99.7 94.6	0.81 0.89	E E	64,4 67.7 66.1	0.70 0.75	F F	93.8 77.5 86.7	0.87 0.69	F F	90.1 101.8 96.1	0.83 0.91	E E	66.7 70.0 68.4	0.72 0.77	F E	96.0 78.6 88.4	0.89 0.70	F F	90.1 101.8 96.1	0.83 0.91	E E	66.7 70.0 68.4	0.72 0.77	F E	96.0 78.6 88.5	0.89 0.70
	RESERVOIR ROAD WB L-T WB R WB APPROACH	F	102.2 0.8 82.2	0.73 0.12	E A D	70.5 6.1 51.6	0.67	F A E	102.6 9.1 71.0	0.84	F A	103.4 0.9 83.1	0.74	E A D	73.2 6.7 53.6	0.69	FAE	105.2 10.0 72.8	0.86	F A	103.4 0.9 83.1	0.74	E A D	73.2 6.7 53.6	0.69	F A E	105.3 10.0 72.8	0.86
	CENTRAL WESTCHESTER NB TT EXPRESSWAY NB R	D A	53.9 1.0	0.46 0.07	E A	63.9 3.9	0.68 0.15	F A	202.3 8.7	1.33 0.20	E A	56.8 1.2	0.53 0.08	E A	66.0 4.2	0.71 0.15	F A	250.7 9.1	1.44 0.21	E A	56.7 1.2	0.52 0.08	E A	66.0 4.2	0.71 0.15	F A	252.2 9.1	1.44 0.21
	NYS ROUTE 22 NB APPROACH SB L SB T T-R SB APPROACH SB APPROACH	D F F	49.1 40.1 102.8 101.4	0.12 1.09	D D D D	53.5 43.7 51.5 50.9	0.21 0.69	F D D D	183.8 51.7 52.2 52.1	0.46 0.61	D F F	52.0 41.3 134.2 132.1	0.14 1.17	E D D D	55.8 45.0 54.2 53.5	0.23 0.74	FDHE	226.9 53.5 55.5 55.3	0.48 0.67	D F F	51.9 41.3 135.3 133.2	0.14 1.17	E D D D	55.8 45.0 54.1 53.5	0.23 0.73	F D E E	228.4 53.4 55.4 55.2	0.48 1.00
	OVERALL	F	88.6		D	55.7		F	117.0		F	105.6		E	58.0		F	136.5		F	106.3		Е	58.0		F	137.3	l
	W/ SIGNAL TIMING CHANGES										W/C	PTIMIZ						PTIMIZ	_		PTIMIZ						PTIMIZA	
	NYS ROUTE 22 EB L EB T-R EB APPROACH	-			-			-			F F	110.4 130.3 120.7	0.91 1.01	-			F F	131.2 97.3 116.4	1.02 0.80	F F	110.4 130.3 120.7	0.91 1.01				F F	131.3 97.4 116.5	0.80
	RESERVOIR ROAD WB L-T WB R	-			-			-			F A	170.9 1.5	1.04 0.16	-			F B	146.4 17.4	1.02 0.38	F A	170.9 1.5	1.04 0.16	-			F B	146.6 17.3	
	WB APPROACH CENTRAL WESTCHESTER NB TT EXPRESSWAY NB R				-			-			F D A	137.4 43.4 1.0	0.41 0.07	-			F A	102.4 82.6 6.5	0.98 0.17	F D A	137.4 43.3 1.0	0.41 0.07	-			F F A	102.5 82.9 6.5	0.98 0.17
	NB APPROACH NYS ROUTE 22 SB L	-			-			-			D C	39.8 31.3	0.11	-			E F	75.1 113.4	0.91	D C	39.6 31.3 71.9	0.11	-			E F	75.4 113.4	0.91
	SB T T-R SB APPROACH	-			-			-			E	71.5 70.6	0.98	-			D	45.5 51.4	0.55	E	71.0	0.98	-			D	45.4 51.3	0.55
Ш	OVERALL	-			-			-			E	78.4		-			E	79.0		E	78.6		-			Е	79.2	

THE ABOVE REPRESENTS THE LEVELS OF SERVICE, VEHICLE DELAY IN SECONDS AND VOLUME-TO-CAPACITY (V/C) RATIO FOR THE ABOVE INTERSECTIONS.

TABLE NO. 4

QUEUE SUMMARY TABLE

Г		STORAGE			2019 E	XISTING					2024 N	D-BUILD					2024	BUILD		$\overline{}$
		LENGTH (FT.)	А	M	MID	-DAY	Р	M	А	M	MID	-DAY	F	M	А	M	MID	-DAY	Р	M
		(F1.)	50%	95%	50%	95%	50%	95%	50%	95%	50%	95%	50%	95%	50%	95%	50%	95%	50%	95%
1	NYS ROUTE 22 & NYS ROUTE 120 (NORTH) SIGNALIZED																			
	NYS ROUTE 22 NB L	250	104'	181'	50'	116'	548'	915'	126'	202'	66'	150'	814'	1146'	128'	204'	66'	149'	777'	1100'
	NB T NYS ROUTE 22 SB T	1000+ 1000+	86' 201'	115' 290'	28' 50'	56' 101'	87' 205'	148' 299'	96' 290'	127' 435'	38' 70'	73' 136'	133' 241'	202' 336'	97' 275'	128' 397'	37' 70'	73' 135'	127' 245'	192' 340'
	SB R NYS ROUTE 120 SEB L-R	500 250	0' 321'	0' 620'	0' 58'	0' 130'	0' 167'	0' 269'	0' 420'	0' 698'	0' 74'	0' 163'	0' 203'	0' 307'	0' 422'	0' 701'	0' 74'	0' 163'	0' 204'	0' 307'
	W/ SIGNAL TIMING CHANGES																			
	NYS ROUTE 22 NB L	250	-	-	-	-	-	-	126'	202'	-	-	776'	1067'	128'	204'	-	-	735'	1021'
	NB T NYS ROUTE 22 SB T	1000+ 1000+	-	-	-	-	-	-	105' 306'	139' 482'	-		135' 365'	192' 381'	106' 291'	141' 455'	-	-	128' 268'	183' 388'
	SB R NYS ROUTE 120 SEB L-R	500 250	-	-	-	-	-	-	0' 368'	0' 655'	-	-	0' 212'	0' 314'	0' 370'	0' 658'	-	-	0' 212'	0' 314'
2	NYS ROUTE 22 & NYS ROUTE 120 (SOUTH)																			
	SIGNALIZED																			
	NYS ROUTE 22 NB T NB R	1000+ 200	88' 26'	153' 69'	37' 0'	65' 11'	115' 0'	191' 7'	127' 63'	180' 110'	41' 0'	72' 12'	138' 0'	231' 8'	126' 58'	181' 105'	41' 0'	72' 12'	138' 0'	233' 8'
	NYS ROUTE 22 SB L SB T	215 1000+	131' 48'	206' 67'	26' 18'	50' 32'	48' 85'	95' 146'	218' 53'	328' 74'	38' 21'	68' 35'	65' 104'	124' 177'	199' 53'	304' 76'	38' 21'	67' 35'	68' 103'	129' 177'
	NYS ROUTE 120 WB L-R	210	15'	49'	11'	33'	132'	237'	22'	57'	13'	38'	164'	291'	24'	61'	13'	37'	164'	291'
3	KING STREET & OLD POST ROAD																			
	UNSIGNALIZED																			İ
	OLD POST ROAD WB T-R	1500+	-	3'	-	3'	-	15'	-	3'	-	3'	-	25'	-	3'	-	3'	-	23'
4	NYS ROUTE 120 & SWISS RE DRIVEWAY / IBM DRIVEWAY																			
	SIGNALIZED																			
	SWISS RE DRIVEWAY EB L-T EB R	620 315	3' 0'	18' 2'	3' 0'	16' 1'	51' 0'	97' 26'	6'	27' 9'	5' 0'	26' 9'	116' 0'	190' 33'	6' 0'	27' 9'	5' 0'	26' 9'	116' 0'	190' 33'
	IBM DRIVEWAY WB L-T WB R	515 125	1' 0'	10' 0'	2' 0'	13' 0'	12' 0'	34' 11'	1' 0'	10' 0'	2' 0'	13' 0'	13' 0'	34' 11'	1' 0'	10' 0'	2' 0'	13' 0'	13' 0'	34' 11'
	NYS ROUTE 120 NB L	280	1'	17'	0'	3'	2'	10'	1'	33'	1'	6'	7'	23'	1'	33'	1'	6'	7'	23'
	NB T NB R	1000+ 445	0'	100' 0'	0'	82' 0'	281' 0'	776' 0'	0'	121' 0'	0'	110' 0'	725' 0'	1214' 0'	0'	127' 0'	0'	108' 0'	594' 0'	1133' 0'
	NYS ROUTE 120 SB L SB T	150 1000+	0' 106'	8' 343'	0'	2' 74'	0' 61'	2' 115'	0' 164'	9' 667'	0'	2' 102'	0' 96'	2' 182'	0' 140'	9' 590'	0'	2' 99'	0' 102'	2' 194'
	SB R	275	3'	31'	0'	0'	0'	0'	13'	75'	0'	4'	0'	0'	11'	69'	0'	4'	0'	0'
	W/ SIGNAL TIMING CHANGES																			
	SWISS RE DRIVEWAY EB L-T EB R	620 315	-	-	-	-	-	-	-	-	-	-	126' 0'	202' 35'	-	-	-	-	126' 0'	202' 35'
	IBM DRIVEWAY WB L-T WB R	515 125	-	-	-	-	-	-	-	-	-	-	14' 0'	36' 11'	-	-	-	-	14' 0'	36' 11'
	NYS ROUTE 120 NB L	280	-	-	-	-	-	-	-	-	-	-	8'	24'	-	-	-	-	8'	24'
	NB R	1000+ 445	-	-	-	-	-	-	-	-]	-	764' 0'	1265' 0'] -	-	-	-	586' 0'	1180' 0'
	NYS ROUTE 120 SB L SB T	150 1000+	-	-	-	-	-	-	-	-	-	-	0' 98'	3' 185'	-	-	-	-	0' 105'	3' 197'
	SB R	275	-	-	-	-	-	-	-	-	-	-	0'	0'	-	-	-	-	0'	0'

TABLE NO. 4

QUEUE SUMMARY TABLE

		STORAGE			2019 E	XISTING					2024 N	O-BUILD					2024 I	BUILD		\Box
1		LENGTH (FT.)	А	M	MID	-DAY	Р	М	А	M	MID	-DAY	F	M	А	M	MID	-DAY	Р	M
		(1.7)	50%	95%	50%	95%	50%	95%	50%	95%	50%	95%	50%	95%	50%	95%	50%	95%	50%	95%
5	NYS ROUTE 120 & AMERICAN LANE (NORTH) UNSIGNALIZED NYS ROUTE 120 SB L-T AMERICA LANE (N) WB L AMERICA LANE (N) WB R	175 350 385		13' 5' 0'		3 3 5		0' 3' 45'		15' 8' 3'		3' 3' 5'		0' 3' 75'		15' 8' 3'		3 3 5 5	-	0' 3' 65'
6	NYS ROUTE 120 & COONEY HILL ROAD UNSIGNALIZED NYS ROUTE 120 NB L-T COONEY HILL ROAD EB L-R	1000 790	1 1	0'		0'		0'		0'		0' 0'	- -	0,	1 1	3' 0'	-	0'	-	3' 0'
7	NYS ROUTE 120 & 113 KING STREET DRIVEWAY / AMERICAN LANE (S) SIGNALIZED NYS ROUTE 120 NWB NWB NWB NYS ROUTE 120 SEB L-T 113 KING STREET DRIVEWAY AMERICAN LANE (S) SWB L-T	120 1000+ 200 1000+ 300 95 1000+	0' 69' 0' 121' 0' 0' 12'	2' 109' 17' 287' 5' 0' 36'	0' 33' 0' 34' 0' 0' 9'	0' 56' 6' 58' 0' 0' 28'	0' 259' 0' 67' 0' 0' 68'	0' 364' 5' 99' 0' 0' 120'	23' 94' 0' 302' 11' 0' 13'	41' 147' 17' 467' 32' 0' 37'	5' 37' 0' 72' 0' 0' 23'	13' 62' 6' 122' 0' 0' 54'	4' 308' 0' 100' 76' 0' 74'	11' 438' 6' 230' 161' 43' 158'	15' 95' 0' 262' 16' 0' 13'	29' 147' 17' 400' 41' 0' 37'	4' 37' 0' 45' 19' 0' 9'	12' 63' 6' 120' 48' 0' 28'	13' 314' 0' 170' 38' 0' 72'	25' 444' 6' 242' 78' 23' 138'
8	NYS ROUTE 120 & GATEWAY LANE SIGNALIZED NYS ROUTE 120 NB T-R NYS ROUTE 120 SB L-T GATEWAY LANE WB L-R SIGNALIZED NYS ROUTE 120 NB T-R NYS ROUTE 120 SB L-T GATEWAY LANE WB L-R	425 1000+ 270 425 1000+ 270	18' 106' 26'	35' 278' 86'	9' 25' 24'	31' 58' 67'	43' 152' 84' - -	84' 416' 152'	27' 163' 27'	45' 516' 93' - -	12' 34' 25'	34' 77' 71'	52' 521' 121' W/ OPTI 111' 416' 92'	95' 562' 186' MIZATION 229' 601' 265'	26' 181' 27'	43' 554' 92' - -	12' 33' 25'	34' 76' 71'	57' 331' 137' W/ OPTIN 140' 409' 93'	506' 603' 202' MIZATION 261' 593' 271'
9	NYS ROUTE 120 & NEW KING STREET SIGNALIZED NYS ROUTE 120 NB T NYS ROUTE 120 SB T NEW KING STREET WB L WB R	1000+ 425 180 1000	60' 30' 73' 0'	123' 51' 123' 18'	25' 25' 116' 0'	59' 99' 173' 24'	159' 65' 222' 0'	267' 79' 325' 28'	111' 33' 77' 0'	221' 64' 127' 19'	34' 28' 122' 0'	77' 104' 180' 23'	198' 106' 232' 0'	319' 65' 380' 29'	99' 34' 77' 0'	199' 66' 127' 19'	34' 27' 122' 0'	75' 103' 180' 23'	223' 91' 232' 0'	359' 59' 380' 29'

TABLE NO. 4

QUEUE SUMMARY TABLE

		STORAG			2019 E	XISTING					2024 N	O-BUILD					2024	BUILD		
		LENGTI (FT.)		AM	_	-DAY		М		М	_	-DAY		M		М	MID			M
Щ		` ′	50%	95%	50%	95%	50%	95%	50%	95%	50%	95%	50%	95%	50%	95%	50%	95%	50%	95%
10	NYS ROUTE 120 & AIRPORT ROAD																			
	SIGNALIZED																			
	NYS ROUT 120 NB	L 385	30'	59'	19'	54'	96'	216'	32'	62'	20'	59'	114'	266'	32'	62'	20'	59'	117'	262'
	NYS ROUTE 120 SB	T T-R 1000+ L 190	19' 16'	43' 37'	5' 7'	28' 27'	26' 9'	64' 33'	30' 17'	58' 39'	7' 8'	34' 29'	33' 11'	81' 39'	28' 17'	55' 39'	7' 8'	34' 29'	37' 11'	86' 39'
	SB SB AIRPORT ROAD EB	T 1000+ R 460 L 425	66' 0' 98'	122' 20' 171'	30' 0' 28'	81' 19' 61'	117' 84' 141'	255' 140' 213'	74' 0' 168'	135' 21' 278'	37' 0' 36'	97' 20' 76'	160' 159' 166'	385'	80' 0' 153'	144' 21' 255'	36' 36'	97' 20' 75'	159' 149' 183'	376' 230' 268'
	EB W/ SIGNAL TIMING CHANGES	L-T-R 85	502'	775'	149'	253'	192'	290'	574'	855'	162'	272'	209'	307'	570'	850'	162'	272'	211'	309'
	NYS ROUT 120 NB NB	L 385 TT-R 1000+	-	-	-	-	-	-	36' 33'	67' 62'	-	-	-	-	36' 31'	67' 60'	-	-	-	
	NYS ROUTE 120 SB SB SB	L 190 T 1000+ R 460	-	-	-	-	-	-	19' 80' 0'	42' 144' 20'	-	-	-	-	19' 87' 0'	42' 154' 21'	-	-	-	
	AIRPORT ROAD EB	L 425 L-T-R 85	-	-	-	-	-	-	169' 576'	277' 862'	-	-	-	-	154' 570'	254' 857'	-	-	-	-
11	AIRPORT ROAD & I-684 NB ON/OFF RAMP																			
	UNSIGNALIZED																			
	I-684 NB ON-RAMP EB I-684 NB OFF-RAMP NB	L-T 340 R 950	-	0' 245'	-	0' 40'	-	0' 120'	-	0' 623'	-	0' 50'	-	0' 163'	-	0' 545'	-	0' 50'	1 1	0' 190'
12	AIRPORT ROAD & I-684 SB ON/OFF RAMP																			
	UNSIGNALIZED																			
	I-684 NB ON-RAMP WB I-684 NB OFF-RAMP SB	L 425 L 1000+	-	1108'	-	38'	-	- 85'	-	1328'	-	- 45'	-	208'	-	- 1400'	1 1	- 45'	1 1	188'

TABLE NO. 4

QUEUE SUMMARY TABLE

П			STORAGE			2019 E	XISTING					2024 N	O-BUILD					2024	BUILD		
			LENGTH (FT.)		М		-DAY		М		М		-DAY		M	_	M		-DAY		M
\vdash			` '	50%	95%	50%	95%	50%	95%	50%	95%	50%	95%	50%	95%	50%	95%	50%	95%	50%	95%
13	NYS ROUTE 22 NYS ROUTE 128 / NORTH CASTLE DRIVE SIGNALIZED	E (IBM)																			
	N	IEB L	680 1000+	113' 125'	191' 197'	77' 24' 0'	150' 73' 0'	164' 87' 0'	271' 180' 0'	126' 145' 0'	201'	93' 48' 0'	177' 96' 0'	206' 176'	337' 276' 0'	128' 146' 0'	203' 213'	92' 48' 0'	176' 96' 0'	208' 173' 0'	337' 266' 0'
	NYS ROUTE 22 S	IEB R SWB L SWB T	250 400 1000+ 250	0' 229' 162' 0'	44' 404' 275' 43'	8' 48'	29' 97' 29'	4' 174' 0'	20' 288' 42'	274' 223' 4'	46' 481' 352' 50'	31' 62'	77' 124' 33'	0' 42' 218' 0'	92' 335' 45'	274' 215'	46' 481' 340' 47'	31' 62' 0'	77' 123' 33'	43' 224' 0'	92' 336' 45'
	NYS ROUTE 128 S	B L-T	580 250	91' 0'	158' 57'	55' 0'	113' 48'	89'	169' 55'	102' 0'	169' 62'	62' 0'	126' 51'	103' 0'	179' 55'	102' 0'	169' 61'	62' 0'	125' 51'	103' 0'	179' 56'
	NORTH CASTLE DRIVE (IBM) N N N	IB L IB T	290 1000+ 225	6' 2' 0'	23' 9' 0'	3' 7' 0'	13' 24' 0'	66' 14' 0'	135' 39' 66'	20' 4' 0'	50' 16' 22'	12' 9' 0'	36' 29' 30'	87' 16' 0'	160' 42' 69'	20' 4' 0'	50' 16' 22'	12' 9' 0'	36' 29' 30'	87' 16' 0'	160' 42' 69'
14	NYS ROUTE 22 & N. BROADWAY / SIR JOHN'S PLAZ/	A																			
	SIGNALIZED																				
	SIR JOHN'S PLAZA E NYS ROTE 22 S NYS ROUTE 22 N	B R SWB LL-R	55 55 450 1000+	2' 0' 118' 100'	12' 0' 204' 204'	1' 0' 30' 53'	10' 0' 67' 176'	9' 0' 103' 928'	30' 0' 149' 1497'	-	-	-	-	-	-	-	-	-	-	-	
	N. BROADWAY S	IB R	1000+ 475	0' 486'	7' 1030'	0' 48'	11' 160'	0' 190'	10' 305'	-	-	-	-	-	-	-	-	-	-	-	-
	W/ DEP IMPROVEMENTS																				
	SIR JOHN'S PLAZA E		55 55	-	-	-	-	-	-	2' 0'	12' 0'	1' 0'	10' 0'	9' 0'	30' 0'	2' 0'	12' 0'	1' 0'	10' 0'	9' 0'	30' 0'
	NYS ROTE 22 S NYS ROUTE 22 N		450 1000+ 1000+	-	-	-	-	-	-	126' 123' 0'	191' 254' 7'	36' 59' 0'	76' 192' 12'	125' 1266' 0'	176' 1671' 11'	127' 124' 0'	192' 254' 7'	36' 59'	76' 192' 12'	123' 1264' 0'	173' 1667' 11'
	N. BROADWAY S		475	-	-	-	-	-	-	337'	652'	38'	120'	147'	229'	339'	652'	37'	119'	147'	229'
15	NYS ROUTE 22 & CENTRAL WESTCHESTER EXPRESSW RESERVOIR ROAD / CHURCH STREI SIGNALIZED																				
	NYS ROUTE 22 E	B L	115	316'	453'	178'	311'	363'	504'	336'	486'	195'	336'	391'	552'	336'	486'	195'	335'	391'	552'
	RESERVOIR ROAD W	B T-R VB L-T VB R	730 185 185	346' 169' 0'	522' 257' 0'	201' 143' 0'	346' 263' 26'	267' 259' 7'	383' 406' 50'	370' 181' 0'	566' 267' 0'	219' 156' 0'	371' 282' 30'	288' 280' 12'	407' 436' 55'	370' 181' 0'	566' 267' 0'	219' 156' 0'	370' 282' 30'	288' 280' 12'	407' 436' 55'
	CENTRAL WESTCHESTER EXPRESSWAY N		1000+ 160	263' 0'	357' 4'	143' 0'	235' 17'	953' 20'	1185' 47'	311' 0'	407' 6'	164' 0'	265' 18'	1097' 22'	1294' 51'	307' 0'	402' 6'	164' 0'	264' 18'	1101' 22'	1298' 51'
	NYS ROUT 22 S		110 1000+	27' 1072'	59' 1321'	32' 235'	77' 363'	61' 397'	110' 496'	29' 1240'	62' 1462'	34' 268'	81' 410'	67' 463'	114' 553'	29' 1245'	62' 1469'	34' 267'	81' 408'	67' 460'	114' 550'
	W/ SIGNAL TIMING CHANGES									W/ OPTI	MIZATION			W/ OPTI	MIZATION	W/ OPTI	MIZATION			W/ OPTII	MIZATION
	NYS ROUTE 22 E		115 730	-	-	-	-	-	-	372' 411'	562' 633'	-	-	449' 322'	669' 463'	372' 411'	562' 633'	-	-	449' 322'	669' 463'
	RESERVOIR ROAD W	VB L-T VB R	185 185	-	-	-	-	-	-	206'	372' 0'	-	-	318'	514' 78'	206' 0'	372' 0'	-	-	318' 25'	514' 78'
	CENTRAL WESTCHESTER EXPRESSWAY N	IB TT	1000+ 160	-	-	-	-	-	-	276' 0'	334' 5'	-	-	837' 19'	993' 41'	273' 0'	331' 5'	-	-	841' 19'	995' 41'
	NYS ROUT 22 S		110 1000+	-	-	-	-	-	-	26' 1055'	52' 1222'	_	-	61' 424'	167' 493'	26' 1059'	52' 1227'	-	-	61' 422'	167' 490'

ACCIDENT SUMMARY TABLE

NYS ROUTE 120 (KING STREET) CORRIDOR

NODE/LINK	LOCA	TION	DATE	TIME	TRAFFIC	ACCIDENT CLASS ²	# OF	# OF	LIGHT CONDITION	ROAD	WEATHER	MANNER OF	APPARENT CONTR	RIBUTING FACTORS
NODE/LINK	ON STREET	CLOSEST STREET	DATE	IIIVIE	CONTROL	ACCIDENT CLASS	VEHICLES	INJURIES	LIGHT CONDITION	CONDITION	WEATHER	COLLISION	VEHICLE 1	VEHICLE 2
22 87024045	MOUNT KISCO RD	King St	01/03/2015	02:18pm	TRAFFIC SIGNAL	PROPERTY DAMAGE	2	0	DAYLIGHT	SNOW/ICE	SNOW	REAR END	PAVEMENT SLIPPERY	NOT APPLICABLE
120 87012090	[Route] 22	[Route] 120	01/07/2015	09:40am	YIELD SIGN	PROPERTY DAMAGE	2	0	DAYLIGHT	DRY	CLEAR	REAR END	FOLLOWING TOO CLOSELY	NOT APPLICABLE
120A87015001	[Route] 120	GATEWAY LN	01/14/2015	05:01pm	NONE	PROPERTY DAMAGE AND INJURY	2	1	DARK-ROAD UNLIGHTED	DRY	CLOUDY	REAR END	FOLLOWING TOO CLOSELY	NOT APPLICABLE
120 87012070	PURCHASE ST	New King St	02/02/2015	03:32pm	TRAFFIC SIGNAL		2	0	DAYLIGHT	SNOW/ICE	SNOW	OVERTAKING	PAVEMENT SLIPPERY	PAVEMENT SLIPPERY
22 87024047	KING ST	Ramp	02/06/2015	02:55pm	YIELD SIGN	NON-REPORTABLE	2	0	DAYLIGHT	DRY	CLEAR	OVERTAKING	FAILURE TO YIELD RIGHT OF WAY	NOT APPLICABLE
22 87024050	ARMONK-BEDFORD RD		02/18/2015	08:39am	TRAFFIC SIGNAL		2	0	DAYLIGHT	DRY	CLEAR	REAR END	DRIVER INATTENTION	NOT APPLICABLE
120 87012091	KING ST		02/24/2015	09:12am	YIELD SIGN	PROPERTY DAMAGE	2	0	DAYLIGHT	DRY	CLEAR	REAR END	DRIVER INATTENTION	NOT APPLICABLE
120 87012071	PURCHASE ST	Gateway Ln	03/01/2015	03:23pm	TRAFFIC SIGNAL	PROPERTY DAMAGE	2	0	DAYLIGHT	SNOW/ICE	SNOW	REAR END	NOT APPLICABLE	PAVEMENT SLIPPERY
22 87024044	[Route] 22	-	04/02/2015	07:56pm	NO PASSING ZON	E PROPERTY DAMAGE AND INJURY	2	1	DARK-ROAD UNLIGHTED	DRY	CLOUDY	REAR END	VIEW OBSTRUCTED/LIMITED	UNKNOWN
22 87024047	KING ST	Ramp	04/10/2015	05:15pm	YIELD SIGN	PROPERTY DAMAGE AND INJURY	2	1	DAYLIGHT	DRY	CLOUDY	REAR END	NOT APPLICABLE	FOLLOWING TOO CLOSELY
684187011049	I 684	King St	04/20/2015	01:30pm	NONE	PROPERTY DAMAGE	1	0	DAYLIGHT	WET	RAIN	OTHER	UNSAFE SPEED	
22 87024047	KING ST	Ramp	04/27/2015	04:17pm	YIELD SIGN	INJURY	2	1	DAYLIGHT	DRY	CLOUDY	REAR END	UNKNOWN	FOLLOWING TOO CLOSELY
684187011049	I 684	King St	05/01/2015	03:08am	NONE	INJURY	2	3	DARK-ROAD UNLIGHTED	DRY	CLEAR	REAR END	UNSAFE SPEED	NOT APPLICABLE
120 87012090	[Route] 22	[Route] 120	05/20/2015	07:48am	YIELD SIGN	PROPERTY DAMAGE	2	0	DAYLIGHT	DRY	CLOUDY	REAR END	FOLLOWING TOO CLOSELY	NOT APPLICABLE
			05/27/2015	10:42am	TRAFFIC SIGNAL	PROPERTY DAMAGE AND INJURY	3	1	DAYLIGHT	DRY	CLEAR	OTHER	NOT APPLICABLE	TRAFFIC CONTROL DISREGARDED
	KING ST	Ramp	06/26/2015	08:59am	YIELD SIGN	PROPERTY DAMAGE AND INJURY	2	2	DAYLIGHT	DRY	CLEAR	REAR END	FOLLOWING TOO CLOSELY	NOT APPLICABLE
120 87012090	KING ST	[Route] 22	07/06/2015	06:42pm	YIELD SIGN	PROPERTY DAMAGE AND INJURY	2	1	DAYLIGHT	DRY	CLOUDY	REAR END	NOT APPLICABLE	FOLLOWING TOO CLOSELY
22 87024047	KING ST	Ramp	07/31/2015	07:42pm	YIELD SIGN	PROPERTY DAMAGE	2	0	DAYLIGHT	DRY	CLEAR	OVERTAKING	NOT APPLICABLE	FAILURE TO YIELD RIGHT OF WAY
120 87012090	KING ST	Ramp	08/08/2015	04:56am	NONE	PROPERTY DAMAGE	1	0	DARK-ROAD LIGHTED	DRY	CLEAR	OTHER	UNSAFE SPEED	
22 87024047	KING ST	Ramp	08/11/2015	09:41am	YIELD SIGN	INJURY	2	1	DAYLIGHT	WET	RAIN	REAR END	FOLLOWING TOO CLOSELY	NOT APPLICABLE
120 87012090	[Route] 120	Armonk-Bedford Rd	10/01/2015	08:23pm	NO PASSING ZON	E NON-REPORTABLE	2	0	DARK-ROAD LIGHTED	WET	RAIN	REAR END	CELL PHONE (HAND HELD)	NOT APPLICABLE
120A87015001	[Route] 120	GATEWAY LN	10/30/2015	12:44pm	TRAFFIC SIGNAL	PROPERTY DAMAGE	2	0	DAYLIGHT	DRY	CLEAR	RIGHT ANGLE	NOT APPLICABLE	FAILURE TO YIELD RIGHT OF WAY
120 87012090	[Route] 120	[Route] 22	11/18/2015	09:09am	YIELD SIGN	PROPERTY DAMAGE AND INJURY	2	1	DAYLIGHT	DRY	CLOUDY	REAR END	DRIVER INATTENTION	NOT APPLICABLE
	STATE HWY 120	Armonk-Bedford Rd	11/30/2015	09:09pm	YIELD SIGN	PROPERTY DAMAGE	1	0	DARK-ROAD LIGHTED	DRY	CLOUDY	OTHER	OTHER UNINVOLVED VEHICL	
			12/03/2015	10:54pm	TRAFFIC SIGNAL	PROPERTY DAMAGE AND INJURY	3	2	DARK-ROAD LIGHTED	DRY	CLEAR	OTHER	TRAFFIC CONTROL DISREGARDED	NOT APPLICABLE
120 87012084	KING ST	Unnamed Street	12/08/2015	06:20pm	TRAFFIC SIGNAL	PROPERTY DAMAGE	3	0	DARK-ROAD LIGHTED	DRY	CLEAR	OTHER	FOLLOWING TOO CLOSELY	NOT APPLICABLE
120 87012090	KING ST		12/09/2015	08:58am	TRAFFIC SIGNAL	NON-REPORTABLE	2	0	DAYLIGHT	DRY	CLOUDY	REAR END	NOT APPLICABLE	DRIVER INATTENTION
684187011049	I 684	King St	12/23/2015	04:35pm	NONE	PROPERTY DAMAGE	2	0	DARK-ROAD UNLIGHTED	WET	RAIN	OVERTAKING	UNSAFE LANE CHANGE	NOT APPLICABLE
684187011049	I 684		12/27/2015	12:57am	NONE	PROPERTY DAMAGE AND INJURY	1	1	DARK-ROAD UNLIGHTED	WET	RAIN	OTHER	UNSAFE SPEED	

ACCIDENT SUMMARY TABLE

NYS ROUTE 120 (KING STREET) CORRIDOR

NODE/LINK	LOCA	TION	DATE	TIME	TRAFFIC	400/DENT 0/ 400 ²	# OF	# OF	LIGHT CONDITION	ROAD	WEATHER	MANNER OF	APPARENT CONTRIB	UTING FACTORS
NODE/EINK	ON STREET	CLOSEST STREET	DATE	TIIVIL	CONTROL	ACCIDENT CLASS ²	VEHICLES	INJURIES	EIGHT CONDITION	CONDITION	WEATHER	COLLISION	VEHICLE 1	VEHICLE 2
120 87012090	[Route] 22	[Route] 120	01/06/2016	03:45pm	YIELD SIGN	PROPERTY DAMAGE AND INJURY	2	1	DAYLIGHT	DRY	CLEAR	REAR END	NOT ENTERED	NOT ENTERED
			01/23/2016	07:42am	TRAFFIC SIGNAL	PROPERTY DAMAGE	1	0	DAWN	SNOW/ICE	SNOW	OTHER	PAVEMENT SLIPPERY	
120 87012090	[Route] 22	[Route] 120	02/15/2016	04:01pm	TRAFFIC SIGNAL	NON-REPORTABLE	2	0	DAYLIGHT	SNOW/ICE	SNOW	REAR END	NOT APPLICABLE	PAVEMENT SLIPPERY
120 87012071	PURCHASE ST	Gateway Ln	02/16/2016	12:57pm		PROPERTY DAMAGE AND INJURY	2	1	DAYLIGHT	WET	RAIN	REAR END	PAVEMENT SLIPPERY	NOT APPLICABLE
120 87012090	[Route] 22		02/16/2016	01:18am	NONE	PROPERTY DAMAGE	1	0	DARK-ROAD UNLIGHTED		CLOUDY	OTHER	PAVEMENT SLIPPERY	
120 87012076	KING ST	Driveway	02/29/2016		NO PASSING ZON		1	0	DARK-ROAD LIGHTED	DRY	CLEAR	OTHER	ANIMAL'S ACTION	
120 87012090	KING ST	[Route] 22	03/01/2016	04:25pm	YIELD SIGN	NON-REPORTABLE	2	0	DUSK	DRY	CLEAR	REAR END	FOLLOWING TOO CLOSELY	NOT APPLICABLE
22 87024049	STATE HWY 120	Ramp	03/15/2016	08:59am	YIELD SIGN	PROPERTY DAMAGE	2	0	DAYLIGHT	WET	CLOUDY	REAR END	NOT APPLICABLE	PAVEMENT SLIPPERY
120 87012067	[Route] 120	AIRPORT RD	03/16/2016	06:30am		PROPERTY DAMAGE AND INJURY	2	3	DAYLIGHT	DRY	CLEAR	RIGHT ANGLE	TRAFFIC CONTROL DISREGARDED	NOT APPLICABLE
120 87012087	KING ST	Old Post Rd	03/24/2016	04:56pm	STOP SIGN	PROPERTY DAMAGE	2	0	DUSK	DRY	CLOUDY	RIGHT ANGLE	DRIVER INATTENTION	NOT APPLICABLE
22 87024045	MOUNT KISCO RD	King St	04/09/2016	04:22am	TRAFFIC SIGNAL	PROPERTY DAMAGE	1	0	DARK-ROAD UNLIGHTED		CLEAR	OTHER	ALCOHOL INVOLVEMENT	
120 87012087	[Route] 22	Mount Kisco Rd	04/15/2016	06:50pm		PROPERTY DAMAGE AND INJURY	3	4	DAYLIGHT	DRY	CLEAR	OTHER	FOLLOWING TOO CLOSELY	NOT APPLICABLE
684187011049	I 684		05/08/2016	08:35am	NONE	PROPERTY DAMAGE	1	0	DAYLIGHT	WET	RAIN	OTHER	PAVEMENT SLIPPERY	
120 87012087	[Route] 22	Mount Kisco Rd	05/19/2016	03:04am	NONE	PROPERTY DAMAGE	1	0	DARK-ROAD LIGHTED	WET	CLOUDY	OTHER	ANIMAL'S ACTION	
	ARMONK-BEDFORD RD	Armonk-Bedford Rd	06/20/2016	04:11pm		PROPERTY DAMAGE AND INJURY	2	1	DAYLIGHT	DRY	CLEAR	REAR END	DRIVER INATTENTION	NOT APPLICABLE
120 87012090	[Route] 120	[Route] 22	07/06/2016	12:01pm	YIELD SIGN	NON-REPORTABLE	2	0	DAYLIGHT	DRY	CLEAR	REAR END	DRIVER INATTENTION	NOT APPLICABLE
684187011049	[Route] 684		07/08/2016	07:57am	TRAFFIC SIGNAL	PROPERTY DAMAGE	2	0	DAYLIGHT	DRY	CLEAR	REAR END	NOT APPLICABLE	DRIVER INATTENTION
120 87012076	KING ST	Driveway	08/05/2016	08:08am	TRAFFIC SIGNAL		4	2	DAYLIGHT	DRY	CLEAR	OTHER	CELL PHONE (HAND HELD)	NOT APPLICABLE
120 87012073	[Route] 120	[Route] 684	08/16/2016	04:45pm	TRAFFIC SIGNAL		2	0	DAYLIGHT	DRY	CLEAR	REAR END	FOLLOWING TOO CLOSELY	NOT APPLICABLE
22 87024047	KING ST	Mount Kisco Rd	09/08/2016	08:47am	NONE	PROPERTY DAMAGE AND INJURY	1	1	DAYLIGHT	DRY	CLEAR	OTHER	OTHER UNINVOLVED VEHICLE	
22 87024048	KING ST		09/15/2016	07:44pm	NONE	PROPERTY DAMAGE	2	0	DAYLIGHT	DRY	CLEAR	REAR END	BRAKES DEFECTIVE	NOT APPLICABLE
120 87012086	KING ST	Ramp	10/18/2016	02:34pm	OTHER	NON-REPORTABLE	2	0	DAYLIGHT	DRY	CLEAR	OVERTAKING	TRAFFIC CONTROL DISREGARDED	NOT APPLICABLE
120 87012069	[Route] 120	New King St	11/12/2016	02:15am	NONE	PROPERTY DAMAGE	1	0	DARK-ROAD UNLIGHTED		CLEAR	OTHER	ANIMAL'S ACTION	
120A87015001	GATEWAY LN	Purchase St	11/13/2016	11:16am	TRAFFIC SIGNAL		2	0	DAYLIGHT	DRY	CLEAR	LEFT TURN	TURNING IMPROPER	NOT APPLICABLE
120 87012090	STATE HWY 22	Ramp	11/18/2016	01:23pm	YIELD SIGN	NON-REPORTABLE	2	0	DAYLIGHT	DRY	CLOUDY	OVERTAKING	UNKNOWN	UNKNOWN
120 87012090	KING ST		11/26/2016	12:37am	YIELD SIGN	PROPERTY DAMAGE	2	0	DARK-ROAD UNLIGHTED		CLEAR	REAR END	NOT APPLICABLE	DRIVER INATTENTION
120 87012090	[Route] 120	[Route] 22	12/13/2016	03:02pm	YIELD SIGN	PROPERTY DAMAGE	2	0	DAYLIGHT	DRY	CLOUDY	REAR END	FOLLOWING TOO CLOSELY	NOT APPLICABLE
120 87012080	KING ST	COONEY HILL RD	12/15/2016	10:00am	NONE	PROPERTY DAMAGE	1	0	DAYLIGHT	WET	CLOUDY	OTHER	ANIMAL'S ACTION	

TABLE NO. 5

ACCIDENT SUMMARY TABLE

NYS ROUTE 120 (KING STREET) CORRIDOR

NODE/LINK	LOC	ATION	DATE	TIME	TRAFFIC	ACCIDENT OF ACC2	# OF	# OF	LIGHT CONDITION	ROAD	WEATHER	MANNER OF	APPARENT CONTRI	BUTING FACTORS
NODE/EINK	ON STREET	CLOSEST STREET	DATE	TIIVIL	CONTROL	ACCIDENT CLASS ²	VEHICLES	INJURIES	EIGHT CONDITION	CONDITION	WEATHER	COLLISION	VEHICLE 1	VEHICLE 2
22 87024050	[Route] 22		01/16/2017	01:02am	NONE	PROPERTY DAMAGE	1	0	DARK-ROAD LIGHTED	WET	CLEAR	OTHER	UNSAFE SPEED	
22 87024044	MOUNT KISCO RD	King St	01/23/2017	08:38pm	TRAFFIC SIGNAL	PROPERTY DAMAGE	2	0	DARK-ROAD UNLIGHTED	WET	SLEET/HAIL	LEFT TURN	NOT APPLICABLE	TRAFFIC CONTROL DISREGARDED
22 87024049	KING ST	Armonk-Bedford Rd	01/27/2017	08:00pm	NONE	PROPERTY DAMAGE	1	0	DARK-ROAD UNLIGHTED	DRY	CLEAR	OTHER	NOT ENTERED	
120 87012074	KING ST		01/30/2017	06:55am	NONE	PROPERTY DAMAGE	2	0	DAWN	DRY	CLOUDY	OTHER	NOT APPLICABLE	TURNING IMPROPER
120 87012071	[Route] 120	Gateway Ln	02/13/2017	06:24pm	TRAFFIC SIGNAL	PROPERTY DAMAGE	2	0	DARK-ROAD LIGHTED	WET	CLOUDY	REAR END	FOLLOWING TOO CLOSELY	NOT APPLICABLE
120 87012091	KING ST	Ramp	02/20/2017	03:39pm	NONE	PROPERTY DAMAGE	1	0	DAYLIGHT	DRY	CLOUDY	OTHER	OTHER UNINVOLVED VEHICLE	
22 87024049	STATE HWY 22	King St	02/25/2017	06:35pm	TRAFFIC SIGNAL	PROPERTY DAMAGE AND INJURY	1	1	DARK-ROAD LIGHTED	WET	RAIN	OTHER	PAVEMENT SLIPPERY	
684187011049	[Route] 120	1684	03/01/2017	11:05am		PROPERTY DAMAGE AND INJURY	2	2	DAYLIGHT	WET	RAIN	RIGHT ANGLE	TRAF CNTRL DEV NON-WRKING	TRAF CNTRL DEV NON-WRKING
22 87024047	KING ST		03/02/2017	09:31am	NONE	PROPERTY DAMAGE	1	0	DAYLIGHT	DRY	OTHER	OTHER	OBSTRUCTION/DEBRIS	
120 87012067	PURCHASE ST	Westchester County Airport	03/10/2017	03:30pm		PROPERTY DAMAGE AND INJURY	2	2	DAYLIGHT	DRY	CLOUDY	RIGHT ANGLE	FAILURE TO YIELD RIGHT OF WAY	NOT APPLICABLE
120 87012090	KING ST	,	03/21/2017	06:15pm	YIELD SIGN	PROPERTY DAMAGE	2	0	DAYLIGHT	DRY	CLEAR	REAR END	NOT APPLICABLE	DRIVER INATTENTION
22 87024049	STATE HWY 22	King St	03/25/2017	07:08am		PROPERTY DAMAGE	1	n	DAYLIGHT	DRY	CLEAR	OTHER	BRAKES DEFECTIVE	Braverandarie
120 87012067	PURCHASE ST	Westchester County Airport	03/30/2017	01:18pm		PROPERTY DAMAGE	2	0	DAYLIGHT	DRY	CLEAR	REAR END	DRIVER INATTENTION	NOT APPLICABLE
.20 0/ 0 1200/	AIRPORT RD	Purchase St	04/06/2017	08:39am		NON-REPORTABLE	2	0	DAYLIGHT	WET	RAIN	REAR END	DRIVER INATTENTION	NOT APPLICABLE
120 87012087	[Route] 22	Mount Kisco Rd	05/05/2017	01:46pm	YIFLD SIGN	PROPERTY DAMAGE	2	0	DAYLIGHT	WET	RAIN	REAR END	UNKNOWN	NOT APPLICABLE
120 87012087	[Route] 120	[Route] 22	05/05/2017	07:36am	YIFLD SIGN	NON-REPORTABLE	2	0	DAYLIGHT	DRY	CLEAR	REAR END	FOLLOWING TOO CLOSELY	NOT APPLICABLE
				07.30am 08:31am	NONE	PROPERTY DAMAGE	2	0	DAYLIGHT	DRY	CLEAR	REAR END	FOLLOWING TOO CLOSELY	NOT APPLICABLE NOT APPLICABLE
120 87012086	KING ST KING ST	Ramp	05/16/2017			PROPERTY DAMAGE PROPERTY DAMAGE	2	0	DAYLIGHT	WET	RAIN	REAR END		NOT APPLICABLE NOT APPLICABLE
22 87024048			05/22/2017	02:11pm			2	0					FOLLOWING TOO CLOSELY	
120 87012067	PURCHASE ST	Westchester County Airport	05/23/2017	10:22am		PROPERTY DAMAGE	2	0	DAYLIGHT	DRY	CLEAR	RIGHT TURN	PASSING /LANE USAGE IMPROPERLY	NOT APPLICABLE
	AIRPORT RD	Purchase St	06/11/2017	10:05pm	YIELD SIGN	PROPERTY DAMAGE	2	0	DARK-ROAD UNLIGHTED	DRY	CLEAR	OVERTAKING	UNSAFE SPEED	NOT APPLICABLE
120 87012084	[Route] 120	NEW ORCHARD RD	07/06/2017	04:49pm		PROPERTY DAMAGE AND INJURY	2	1	DAYLIGHT	DRY	CLOUDY	REAR END	DRIVER INATTENTION	NOT APPLICABLE
120 87012076	KING ST	Driveway	07/20/2017	04:03pm		PROPERTY DAMAGE AND INJURY	2	1	DAYLIGHT	DRY	CLEAR	REAR END	DRIVER INATTENTION	NOT APPLICABLE
120 87012070	[Route] 120	NEW KING ST	07/31/2017		TRAFFIC SIGNAL	PROPERTY DAMAGE	2	0	DAYLIGHT	DRY	CLEAR	RIGHT ANGLE	FAILURE TO YIELD RIGHT OF WAY	NOT APPLICABLE
	ARMONK-BEDFORD RD		08/05/2017	01:56am		PROPERTY DAMAGE AND INJURY	1	1	DARK-ROAD UNLIGHTED	DRY	CLOUDY	OTHER	FELL ASLEEP	
120 87012067	[Route] 120	AIRPORT RD	08/06/2017	11:18pm		PROPERTY DAMAGE AND INJURY	3	2	DARK-ROAD LIGHTED	DRY	CLEAR	OTHER	TURNING IMPROPER	NOT APPLICABLE
120 87012090	[Route] 22	[Route] 120	08/10/2017	05:28pm	YIELD SIGN	PROPERTY DAMAGE	2	0	DAYLIGHT	DRY	CLEAR	REAR END	FOLLOWING TOO CLOSELY	OTHER UNINVOLVED VEHICLE
120 87012076	KING ST	Ramp	08/16/2017	05:42am	NONE	PROPERTY DAMAGE	1	0	DAWN	DRY	CLOUDY	OTHER	ANIMAL'S ACTION	
120 87012087	MOUNT KISCO RD	KING ST	08/27/2017	12:00am	NONE	PROPERTY DAMAGE	1	0	DARK-ROAD UNLIGHTED	DRY	CLEAR	OTHER	NOT ENTERED	
120 87012090	[Route] 22	Armonk-Bedford Rd	09/08/2017	11:02am	TRAFFIC SIGNAL	PROPERTY DAMAGE	2	0	DAYLIGHT	DRY	CLEAR	OVERTAKING	PASSING/LANE USAGE IMPROPERLY	NOT APPLICABLE
120 87012090	[Route] 22	[Route] 120	09/08/2017	05:54pm	YIELD SIGN	PROPERTY DAMAGE	2	0	DAYLIGHT	DRY	CLEAR	REAR END	NOT APPLICABLE	FOLLOWING TOO CLOSELY
120 87012087	KING ST	Old Post Rd	09/15/2017	08:15am	NONE	PROPERTY DAMAGE AND INJURY	2	1	DAYLIGHT	DRY	CLEAR	REAR END	NOT APPLICABLE	ANIMAL'S ACTION
120 87012071	PURCHASE ST	Gateway Ln	09/19/2017	04:50pm	TRAFFIC SIGNAL	PROPERTY DAMAGE	3	0	DAYLIGHT	DRY	CLOUDY	OTHER	FAILURE TO YIELD RIGHT OF WAY	NOT ENTERED
22 87024047	STATE HWY 120	Ramp	09/29/2017	05:33pm	YIELD SIGN	PROPERTY DAMAGE AND INJURY	3	2	DAYLIGHT	DRY	CLEAR	OTHER	FOLLOWING TOO CLOSELY	NOT APPLICABLE
120 87012090	STATE HWY 120	Ramp	10/04/2017	07:04am	YIELD SIGN	PROPERTY DAMAGE	2	0	DAYLIGHT	DRY	CLEAR	REAR END	DRIVER INATTENTION	NOT APPLICABLE
120 87012076	KING ST	Driveway	10/10/2017	07:33am	TRAFFIC SIGNAL	PROPERTY DAMAGE	2	0	DAYLIGHT	DRY	CLEAR	REAR END	FOLLOWING TOO CLOSELY	NOT APPLICABLE
120 87012077	KING ST	Ramp	10/12/2017	06:40pm	NONE	PROPERTY DAMAGE	1	0	DARK-ROAD UNLIGHTED	DRY	CLEAR	OTHER	ANIMAL'S ACTION	
120 87012090 A	ARMONK-BEDFORD RD	[Route] 120	11/02/2017	11:49am	TRAFFIC SIGNAL	PROPERTY DAMAGE AND INJURY	2	2	DAYLIGHT	DRY	CLOUDY	REAR END	DRIVER INEXPERIENCE	NOT APPLICABLE
	KING ST		11/08/2017	05:53pm	TRAFFIC SIGNAL	PROPERTY DAMAGE	2	0	DARK-ROAD LIGHTED	DRY	CLOUDY	REAR END	BRAKES DEFECTIVE	NOT APPLICABLE
22 87024045	MOUNT KISCO RD	King St	11/08/2017	08:37am	TRAFFIC SIGNAL	PROPERTY DAMAGE	2	0	DAYLIGHT	DRY	CLEAR	REAR END	NOT APPLICABLE	DRIVER INATTENTION
120 87012071	PURCHASE ST	Gateway Ln	11/09/2017		TRAFFIC SIGNAL	PROPERTY DAMAGE	2	ō	DAYLIGHT	DRY	CLEAR	REAR END	NOT APPLICABLE	FOLLOWING TOO CLOSELY
22 87024049	KING ST	Armonk-Bedford Rd	11/10/2017		TRAFFIC SIGNAL	PROPERTY DAMAGE	2	0	DAYLIGHT	DRY	CLEAR	REAR END	FOLLOWING TOO CLOSELY	UNKNOWN
120 87012071	PURCHASE ST	Gateway Ln	11/14/2017	07:33am		INJURY	2	1	DAYLIGHT	WET	CLOUDY	REAR END	DRIVER INATTENTION	NOT APPLICABLE
120 87012071	[Route] 120	Gaiona, En	11/19/2017	05:30pm	NONE	PROPERTY DAMAGE	1	0	DARK-ROAD UNLIGHTED	DRY	CLEAR	OTHER	NOT ENTERED	
120 87012086	KING ST	Ramp	11/21/2017	06:06pm	NONE	PROPERTY DAMAGE	2	0	DARK-ROAD UNLIGHTED	DRY	CLEAR	OVERTAKING	PASSING/LANE USAGE IMPROPERLY	NOT APPLICABLE
120 07 0 12000	RAMP	King St	12/01/2017	05:36pm	YIELD SIGN	PROPERTY DAMAGE	2	0	DARK-ROAD LIGHTED	DRY	CLEAR	REAR END	FOLLOWING TOO CLOSELY	NOT APPLICABLE
120 87012079	[Route] 120	COONEY HILL RD	12/27/2017	10:33am	NONE	PROPERTY DAMAGE	2	0	DAYLIGHT	DRY	CLEAR	SIDESWIPE	FAILURE TO KEEP RIGHT	NOT APPLICABLE
120 87012079	KING ST	OCCINET THEE IND	12/29/2017	06:00am	NONE	PROPERTY DAMAGE	2	0	DARK-ROAD UNLIGHTED	DRY	CLOUDY	REAR END	NOT APPLICABLE	TURNING IMPROPER
120 010 12014	NIIVO O I		12/29/2017	บบ.บบสกา	INUINE	FAUFERTT DAMAGE		U	DAIM-KOND GINEIGHTED	ואט	CLUUDI	KEAK END	INUT AFFLICABLE	IUNINING IWITNOTER

TABLE NO. 5

ACCIDENT SUMMARY TABLE

NYS ROUTE 120 (KING STREET) CORRIDOR

NODE/LINK	LOC	CATION	DATE	TIME	TRAFFIC	400/DENT 0/ 400 ²	# OF	# OF	LIGHT CONDITION	ROAD	WEATHER	MANNER OF	APPARENT CONTRIE	BUTING FACTORS
NODE/LINK	ON STREET	CLOSEST STREET	DATE	TIME	CONTROL	ACCIDENT CLASS ²	VEHICLES	INJURIES	LIGHT CONDITION	CONDITION	WEATHER	COLLISION	VEHICLE 1	VEHICLE 2
120 87012090	STATE HWY 22	Ramp	01/10/2018	08:49am	YIELD SIGN	PROPERTY DAMAGE	2	0	DAYLIGHT	DRY	CLOUDY	OVERTAKING	FAILURE TO YIELD RIGHT OF WAY	NOT APPLICABLE
22 87024044	MOUNT KISCO RD	King St	01/26/2018	09:02am	TRAFFIC SIGNAL	PROPERTY DAMAGE	2	0	DAYLIGHT	DRY	CLEAR	REAR END	DRIVER INATTENTION	NOT APPLICABLE
120 87012090	STATE HWY 22	Ramp	01/31/2018	08:18am	YIELD SIGN	PROPERTY DAMAGE	2	0	DAYLIGHT	DRY	CLEAR	OVERTAKING	FAILURE TO YIELD RIGHT OF WAY	NOT APPLICABLE
120 87012084	KING ST	NEW ORCHARD RD	02/02/2018	04:30pm	UNKNOWN	PROPERTY DAMAGE	1	0	UNKNOWN	UNKNOWN	UNKNOWN	OTHER	NOT ENTERED	
120 87012090	[Route] 22	[Route] 120	02/07/2018	09:47am	TRAFFIC SIGNAL	PROPERTY DAMAGE	2	0	DAYLIGHT	SNOW/ICE	SLEET/HAIL	REAR END	PAVEMENT SLIPPERY	NOT APPLICABLE
120 87012090	[Route] 120		02/16/2018	05:45pm	UNKNOWN	PROPERTY DAMAGE	1	0	DUSK	WET	CLEAR	OTHER	NOT ENTERED	
22 87024048	KING ST		02/17/2018	09:04pm	NONE	PROPERTY DAMAGE	1	0	DARK-ROAD LIGHTED	SNOW/ICE	SNOW	OTHER	PAVEMENT SLIPPERY	
120 87012067	PURCHASE ST	Westchester County Airport	02/24/2018	04:05pm	TRAFFIC SIGNAL	PROPERTY DAMAGE	2	0	DAYLIGHT	WET	RAIN	LEFT TURN	TURNING IMPROPER	NOT APPLICABLE
120 87012090	STATE HWY 22	Ramp	03/02/2018	11:36am	YIELD SIGN	PROPERTY DAMAGE AND INJURY	/ 2	2	DAYLIGHT	SNOW/ICE	SLEET/HAIL	OVERTAKING	DRIVER INATTENTION	NOT APPLICABLE
22 87024044	MOUNT KISCO RD	King St	03/06/2018	06:14pm	TRAFFIC SIGNAL	PROPERTY DAMAGE AND INJURY	/ 3	1	DARK-ROAD LIGHTED	DRY	CLOUDY	OTHER	UNSAFE LANE CHANGE	OTHER UNINVOLVED VEHICLE
120 87012076	KING ST	Driveway	03/10/2018	10:02am	TRAFFIC SIGNAL	PROPERTY DAMAGE	2	0	DAYLIGHT	DRY	CLEAR	REAR END	DRIVER INATTENTION	NOT APPLICABLE
120 87012090	STATE HWY 22	Ramp	03/11/2018	06:03pm	YIELD SIGN	PROPERTY DAMAGE	2	0	DAYLIGHT	DRY	CLEAR	OVERTAKING	NOT APPLICABLE	DRIVER INATTENTION
120 87012091	KING ST	Ramp	04/09/2018	08:15am	NONE	PROPERTY DAMAGE AND INJURY	′ 3	2	DAYLIGHT	DRY	CLEAR	OTHER	DRIVER INATTENTION	NOT APPLICABLE
22 87024050	ARMONK-BEDFORD RD	King St	05/11/2018	05:01pm	TRAFFIC SIGNAL	PROPERTY DAMAGE	2	0	DAYLIGHT	DRY	CLEAR	REAR END	NOT APPLICABLE	DRIVER INATTENTION
684187011049	I 684	-	05/14/2018	07:55pm		PROPERTY DAMAGE AND INJURY	4	1	DUSK	DRY	CLOUDY	OTHER	PASSING/LANE USAGE IMPROPERLY	NOT APPLICABLE
120 87012087	[Route] 120	[Route] 22	05/24/2018	06:38pm	YIELD SIGN	PROPERTY DAMAGE	2	0	DAYLIGHT	DRY	CLEAR	REAR END	NOT APPLICABLE	DRIVER INEXPERIENCE
120 87012090	[Route] 120		05/31/2018	06:04pm	NONE	NON-REPORTABLE	2	0	DAYLIGHT	WET	RAIN	REAR END	FOLLOWING TOO CLOSELY	NOT APPLICABLE
22 87024049	[Route] 22	[Route] 120	06/13/2018	05:02pm	TRAFFIC SIGNAL	PROPERTY DAMAGE	2	0	DAYLIGHT	WET	CLEAR	REAR END	TO OTHER UNINVOLVED VEHICLE	FOLLOWING TOO CLOSELY
684187011049	I 684		06/19/2018	04:48pm	NONE	INJURY	2	2	DAYLIGHT	DRY	CLEAR	REAR END	NOT APPLICABLE	FOLLOWING TOO CLOSELY
120 87012090	KING ST	Ramp	06/26/2018	08:34am	YIELD SIGN	PROPERTY DAMAGE	2	0	DAYLIGHT	DRY	CLEAR	REAR END	FAILURE TO YIELD RIGHT OF WAY	NOT APPLICABLE
120 87012067	AIRPORT RD	[Route] 120	07/11/2018	11:15am	TRAFFIC SIGNAL	NON-REPORTABLE	2	0	DAYLIGHT	DRY	CLOUDY	REAR END	NOT APPLICABLE	CELL PHONE (HAND HELD)
22 87024045	MOUNT KISCO RD	King St	07/17/2018	05:08pm	TRAFFIC SIGNAL	PROPERTY DAMAGE AND INJURY	/ 2	1	DAYLIGHT	WET	RAIN	RIGHT ANGLE	TRAFFIC CONTROL DISREGARDED	NOT APPLICABLE
120 87012076	KING ST	Ramp	08/31/2018			PROPERTY DAMAGE	2	0	DAYLIGHT	DRY	CLOUDY	REAR END	NOT APPLICABLE	FOLLOWING TOO CLOSELY
120 87012091	KING ST	Whippoorwill Rd	09/04/2018	08:51am	NONE	PROPERTY DAMAGE AND INJURY	/ 3	1	DAYLIGHT	DRY	CLEAR	OTHER	FELL ASLEEP	NOT APPLICABLE
120 87012071	PURCHASE ST	Gateway Ln	09/26/2018	02:33pm	TRAFFIC SIGNAL	PROPERTY DAMAGE	2	0	DAYLIGHT	DRY	CLEAR	REAR END	FOLLOWING TOO CLOSELY	NOT APPLICABLE
120 87012091	KING ST	Whippoorwill Rd	10/03/2018	07:16am	NONE	PROPERTY DAMAGE AND INJURY	/ 2	1	DAYLIGHT	DRY	CLEAR	REAR END	NOT APPLICABLE	FOLLOWING TOO CLOSELY
120 87012090	[Route] 120	[Route] 22	10/16/2018	12:00am	YIELD SIGN	PROPERTY DAMAGE	2	0	DAYLIGHT	DRY	CLEAR	REAR END	NOT ENTERED	NOT ENTERED
120A87015001	GATEWAY LN	Purchase St	11/08/2018	03:52pm	TRAFFIC SIGNAL	PROPERTY DAMAGE	2	0	DAYLIGHT	DRY	CLEAR	REAR END	DRIVER INATTENTION	NOT APPLICABLE
120 87012090	KING ST		11/11/2018	03:48pm	NONE	PROPERTY DAMAGE	2	0	DAYLIGHT	DRY	CLEAR	LEFT TURN	PASSING/LANE USAGE IMPROPERLY	NOT APPLICABLE
120 87012067	PURCHASE ST	Westchester County Airport	11/14/2018		TRAFFIC SIGNAL	PROPERTY DAMAGE	2	0	DARK-ROAD LIGHTED	DRY	CLOUDY	OVERTAKING	UNKNOWN	UNKNOWN
120 87012077	KING ST	Ramp	11/19/2018		TRAFFIC SIGNAL	PROPERTY DAMAGE	3	0	DAYLIGHT	DRY	CLOUDY	OTHER	DRIVER INATTENTION	NOT APPLICABLE
22 87024049	STATE HWY 22	King St	11/26/2018			PROPERTY DAMAGE AND INJURY	/ 3	2	DAYLIGHT	DRY	CLOUDY	OTHER	TRAFFIC CONTROL DISREGARDED	NOT APPLICABLE
120 87012072	KING ST	[Route] 120	11/28/2018	09:50pm	NONE	PROPERTY DAMAGE	1	0	DARK-ROAD UNLIGHTED	DRY	CLEAR	OTHER	NOT ENTERED	
120 87012090	STATE HWY 120	Ramp	12/11/2018	07:59am	YIELD SIGN	PROPERTY DAMAGE	2	0	DAYLIGHT	DRY	CLEAR	REAR END	NOT APPLICABLE	FOLLOWING TOO CLOSELY
120A87015001	[Route] 120	GATEWAY LN	12/28/2018	08:39am	TRAFFIC SIGNAL	PROPERTY DAMAGE AND INJURY	/ 2	1	DAYLIGHT	WET	RAIN	RIGHT ANGLE	FAILURE TO YIELD RIGHT OF WAY	NOT APPLICABLE

NOTES:

1) ACCIDENT DATA OBTAINED FROM THE NEW YORK STATE DEPARTMENT OF TRANSPORTATION (NYSDOT) RECORDS ACCESS DEPARTMENT FOR THE TIME PERIOD BETWEEN JANUARY 1, 2015 THROUGH DECEMBER 31, 2018.

2) ACCIDENT CLASS: PDO = PROPERTY DAMAGE ONLY, I = INJURY, F = FATALITY, UNKOWN = NON-REPORTABLE

ACCIDENT SUMMARY TABLE

NYS ROUTE 22 & NYS ROUTE 128 / NORTH CASTLE DRIVE NYS ROUTE 22 / NORTH BROADWAY / SIR JOHN'S PLAZA NYS ROUTE 22 / CENTRAL WESTCHESTER EXPRESSWAY / RESERVOIR ROAD / CHURCH STREET

NODE/LINK	LOCA	ATION	DATE	TIME	TRAFFIC	4.00/DENT 01.4.00 ²	# OF	# OF	LIGHT CONDITION	ROAD	WEATHER	MANNER OF	APPARENT CONTR	RIBUTING FACTORS
NODE/LINK	ON STREET	CLOSEST STREET	DATE	IIIVIE	CONTROL	ACCIDENT CLASS ²	VEHICLES	INJURIES	LIGHT CONDITION	CONDITION	WEATHER	COLLISION	VEHICLE 1	VEHICLE 2
	Central Westchester Pkwy	N Broadway	01/28/2015	09:14am	TRAFFIC SIGNAL	PROPERTY DAMAGE	2	0	DAYLIGHT	DRY	CLEAR	REAR END	DRIVER INATTENTION	NOT APPLICABLE
22 87024061	ARMONK-BEDFORD RD	Main St	04/06/2015	02:11pm	TRAFFIC SIGNAL	NON-REPORTABLE	2	0	DAYLIGHT	DRY	CLEAR	REAR END	NOT APPLICABLE	DRIVER INATTENTION
22 87024001	Central Westchester Pkwy		04/07/2015	04:35pm	TRAFFIC SIGNAL	PROPERTY DAMAGE AND INJURY	2	1	DAYLIGHT	WET	RAIN	REAR END	NOT APPLICABLE	FOLLOWING TOO CLOSELY
22 87024002	N BROADWAY	Central Westchester Pkwy	04/09/2015	07:15am	TRAFFIC SIGNAL	PROPERTY DAMAGE	2	0	DAYLIGHT	WET	CLOUDY	RIGHT ANGLE	TRAFFIC CONTROL DISREGARDED	NOT APPLICABLE
22 87024007	N BROADWAY	Mount Kisco Rd	04/21/2015	10:10am	TRAFFIC SIGNAL	PROPERTY DAMAGE	2	0	DAYLIGHT	WET	CLOUDY	RIGHT ANGLE	NOT APPLICABLE	TRAFFIC CONTROL DISREGARDED
22 87024061	BEDFORD RD	Ramp	05/09/2015	02:18pm	STOP SIGN	PROPERTY DAMAGE AND INJURY	2	1	DAYLIGHT	DRY	CLEAR	LEFT TURN	NOT APPLICABLE	DRIVER INATTENTION
22 87024002	N BROADWAY	Central Westchester Pkwy	07/30/2015	05:58pm	NONE	PROPERTY DAMAGE AND INJURY	1	1	DAYLIGHT	WET	CLOUDY	OTHER	TIRE FAILURE/INADEQUATE	
22 87024002	N BROADWAY	Central Westchester Pkwy	09/21/2015	07:09pm	TRAFFIC SIGNAL	NON-REPORTABLE	2	0	DARK-ROAD LIGHTED	DRY	CLEAR	OVERTAKING	NOT APPLICABLE	FAILURE TO YIELD ROW
22 87024061	ARMONK-BEDFORD RD	Main St	09/26/2015	10:55am	TRAFFIC SIGNAL	PROPERTY DAMAGE	2	0	DAYLIGHT	DRY	CLEAR	REAR END	NOT APPLICABLE	DRIVER INATTENTION
22 87024002	N BROADWAY	Central Westchester Pkwy	10/19/2015	09:08am	TRAFFIC SIGNAL	PROPERTY DAMAGE AND INJURY	2	1	DAYLIGHT	DRY	CLOUDY	OTHER	UNSAFE LANE CHANGE	NOT APPLICABLE
22 87024007	BROADWAY	[Route] 22	10/22/2015	08:17pm	TRAFFIC SIGNAL	PROPERTY DAMAGE AND INJURY	2	2	DARK-ROAD LIGHTED	DRY	CLOUDY	HEAD ON	EATING OR DRINKING	NOT APPLICABLE
128 87011000	[Route] 22	MAIN ST	10/29/2015	07:00pm	UNKNOWN	PROPERTY DAMAGE	2	0	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	NOT ENTERED	NOT ENTERED
22 87024002	N BROADWAY	Central Westchester Pkwy	12/15/2015	12:36pm	TRAFFIC SIGNAL	PROPERTY DAMAGE	2	0	DAYLIGHT	DRY	CLEAR	OVERTAKING	OTHER UNINVOLVED VEHICLE	NOT APPLICABLE

ACCIDENT SUMMARY TABLE

NYS ROUTE 22 & NYS ROUTE 128 / NORTH CASTLE DRIVE NYS ROUTE 22 / NORTH BROADWAY / SIR JOHN'S PLAZA NYS ROUTE 22 / CENTRAL WESTCHESTER EXPRESSWAY / RESERVOIR ROAD / CHURCH STREET

NODE/LINK	LOCA	TION	DATE	TIME	TRAFFIC	ACCIDENT CLASS ²	# OF	# OF	LIGHT CONDITION	ROAD	WEATHER	MANNER OF	APPARENT CONTRI	BUTING FACTORS
NODE/EINK	ON STREET	CLOSEST STREET	DAIL	TIIVIL	CONTROL	ACCIDENT CLASS	VEHICLES	INJURIES	LIGHT CONDITION	CONDITION	WEATHER	COLLISION	VEHICLE 1	VEHICLE 2
	Central Westchester Pkwy		01/17/2016	09:00pm	NONE	PROPERTY DAMAGE	1	0	DARK-ROAD UNLIGHTED	SNOW/ICE	SNOW	OTHER	PAVEMENT SLIPPERY	
22 87024007	N BROADWAY	Mount Kisco Rd	01/22/2016	04:35pm	NONE	PROPERTY DAMAGE AND INJURY	2	1	DAYLIGHT	DRY	CLEAR	LEFT TURN	NOT APPLICABLE	DRIVER INATTENTION
22 87024002	N BROADWAY	RESERVOIR RD	02/17/2016	12:15pm	NONE	PROPERTY DAMAGE AND INJURY	1	1	DAYLIGHT	DRY	CLOUDY	OTHER	DRIVER INATTENTION	
22 87024061	ARMONK-BEDFORD RD	Main St	02/24/2016	08:31am	NONE	PROPERTY DAMAGE	2	0	DAYLIGHT	WET	RAIN	OVERTAKING	FAILURE TO YIELD RIGHT OF WAY	UNKNOWN
22 87024002	N BROADWAY	RESERVOIR RD	03/30/2016	12:53pm	TRAFFIC SIGNAL	PROPERTY DAMAGE	2	0	DAYLIGHT	DRY	CLEAR	OVERTAKING	FAILURE TO YIELD RIGHT OF WAY	NOT APPLICABLE
			04/01/2016	04:01pm	NONE	NON-REPORTABLE	2	0	DAYLIGHT	DRY	CLEAR	UNKNOWN	UNKNOWN	NOT APPLICABLE
128 87011000	MAIN ST	[Route] 22	04/08/2016	02:58pm	TRAFFIC SIGNAL	PROPERTY DAMAGE AND INJURY	2	1	DAYLIGHT	DRY	CLOUDY	RIGHT TURN	NOT APPLICABLE	TURNING IMPROPER
22 87024007	N BROADWAY	[Route] 22	05/04/2016	05:11pm	TRAFFIC SIGNAL	PROPERTY DAMAGE	2	0	DAYLIGHT	WET	RAIN	REAR END	NOT APPLICABLE	PAVEMENT SLIPPERY
22 87024008	MOUNT KISCO RD	[Route] 22	05/18/2016	04:00am	NONE	PROPERTY DAMAGE	1	0	DARK-ROAD UNLIGHTED	DRY	CLEAR	OTHER	NOT ENTERED	
22 87024002	N BROADWAY	RESERVOIR RD	06/22/2016	10:00am	UNKNOWN	PROPERTY DAMAGE	1	0	UNKNOWN	UNKNOWN	UNKNOWN	OTHER	NOT ENTERED	
22 87024061	BEDFORD RD	Main St	06/28/2016	09:10am	TRAFFIC SIGNAL	PROPERTY DAMAGE AND INJURY	2	1	DAYLIGHT	DRY	CLOUDY	REAR END	NOT APPLICABLE	DRIVER INATTENTION
22 87024002	N BROADWAY	Central Westchester Pkwy	08/24/2016	05:18pm	TRAFFIC SIGNAL	NON-REPORTABLE	2	0	DAYLIGHT	DRY	CLEAR	RIGHT ANGLE	NOT APPLICABLE	GLARE
	N BROADWAY	Mount Kisco Rd	09/21/2016	07:56am	NONE	PROPERTY DAMAGE	3	0	DAYLIGHT	DRY	CLEAR	OTHER	FOLLOWING TOO CLOSELY	NOT APPLICABLE
22 87024002	N BROADWAY	RESERVOIR RD	09/28/2016	07:32pm	TRAFFIC SIGNAL	PROPERTY DAMAGE	2	0	DARK-ROAD LIGHTED	DRY	CLOUDY	OVERTAKING	NOT APPLICABLE	FAILURE TO YIELD ROW
22 87024008	MOUNT KISCO RD	N Broadway	10/04/2016	01:35pm	TRAFFIC SIGNAL	PROPERTY DAMAGE	2	0	DAYLIGHT	DRY	CLEAR	LEFT TURN	NOT ENTERED	NOT ENTERED
	N BROADWAY	Mount Kisco Rd	10/18/2016	01:08pm	TRAFFIC SIGNAL	PROPERTY DAMAGE AND INJURY	2	2	DAYLIGHT	DRY	CLEAR	REAR END	DRIVER INEXPERIENCE	NOT APPLICABLE
22 87024007	MOUNT KISCO RD	Mount Kisco Rd	10/22/2016	12:42pm	TRAFFIC SIGNAL	NON-REPORTABLE	2	0	DAYLIGHT	WET	RAIN	OVERTAKING	PASSING/LANE USAGE IMPROPERLY	OTHER UNINVOLVED VEHICLE
22 87024002	Central Westchester Pkwy	[Route] 22	10/24/2016	08:00am	NONE	PROPERTY DAMAGE	2	0	DAYLIGHT	UNKNOWN	CLEAR	REAR END	NOT ENTERED	NOT ENTERED
22 87024007	N BROADWAY	[Route] 22	12/12/2016	07:03am	TRAFFIC SIGNAL	PROPERTY DAMAGE	2	0	DAYLIGHT	WET	RAIN	OVERTAKING	UNSAFE LANE CHANGE	NOT APPLICABLE

ACCIDENT SUMMARY TABLE

NYS ROUTE 22 & NYS ROUTE 128 / NORTH CASTLE DRIVE NYS ROUTE 22 / NORTH BROADWAY / SIR JOHN'S PLAZA NYS ROUTE 22 / CENTRAL WESTCHESTER EXPRESSWAY / RESERVOIR ROAD / CHURCH STREET

TING FACTORS
VEHICLE 2
BRAKES DEFECTIVE
NOT APPLICABLE
NOT APPLICABLE
AFFIC CONTROL DISREGARDED
DESTRIAN'S ERROR/CONFUSION
SING/LANE USAGE IMPROPERLY
NOT APPLICABLE
NOT APPLICABLE
NOT APPLICABLE
NOT APPLICABLE
UNKNOWN
NOT ENTERED
NOT APPLICABLE
NOT APPLICABLE
NOT APPLICABLE
NOT APPLICABLE
NOT ENTERED
NOT APPLICABLE
NOT APPLICABLE
UNKNOWN
NOT APPLICABLE
SING/LANE USAGE IMPROPERLY
NOT APPLICABLE
NOT APPLICABLE
NOT APPLICABLE
NOT APPLICABLE
NOT APPLICABLE
NOT APPLICABLE
UNKNOWN

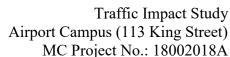
ACCIDENT SUMMARY TABLE

NYS ROUTE 22 & NYS ROUTE 128 / NORTH CASTLE DRIVE NYS ROUTE 22 / NORTH BROADWAY / SIR JOHN'S PLAZA NYS ROUTE 22 / CENTRAL WESTCHESTER EXPRESSWAY / RESERVOIR ROAD / CHURCH STREET

NODE/LINK	LOCA	ATION	DATE	TIME	TRAFFIC		# OF	# OF	LIGHT CONDITION	ROAD	WEATHER	MANNER OF	APPARENT CONTRIBL	JTING FACTORS
NODE/LINK	ON STREET	CLOSEST STREET	DATE	IIIVIE	CONTROL	ACCIDENT CLASS ²	VEHICLES	INJURIES	LIGHT CONDITION	CONDITION	WEATHER	COLLISION	VEHICLE 1	VEHICLE 2
	N BROADWAY	Mount Kisco Rd	01/03/2018	09:07am	NONE	PROPERTY DAMAGE AND INJURY	2	2	DAYLIGHT	DRY	CLEAR	HEAD ON	LOST CONSCIOUSNESS	NOT APPLICABLE
22 87024007	[Route] 22	Mount Kisco Rd	01/03/2018	04:31pm	NONE	PROPERTY DAMAGE AND INJURY	2	1	DUSK	DRY	CLEAR	UNKNOWN	NOT ENTERED	NOT ENTERED
	Central Westchester Pkwy	N Broadway	01/09/2018	10:22am	TRAFFIC SIGNAL	NON-REPORTABLE	2	0	DAYLIGHT	WET	CLOUDY	REAR END	PAVEMENT SLIPPERY	NOT APPLICABLE
22 87024002	Central Westchester Pkwy	N BROADWAY	01/22/2018	04:24pm	TRAFFIC SIGNAL	PROPERTY DAMAGE	2	0	DAYLIGHT	WET	CLOUDY	REAR END	FOLLOWING TOO CLOSELY	NOT APPLICABLE
22 87024002	N BROADWAY	Central Westchester Pkwy	01/28/2018	03:49pm	TRAFFIC SIGNAL	PROPERTY DAMAGE	2	0	DAYLIGHT	DRY	CLOUDY	OVERTAKING	PASSING/LANE USAGE IMPROPERLY	NOT APPLICABLE
128 87011000	[Route] 22	[Route] 128	02/01/2018	06:33pm	TRAFFIC SIGNAL	PROPERTY DAMAGE AND INJURY	3	1	DARK-ROAD LIGHTED		RAIN	OTHER	TRAFFIC CONTROL DISREGARDED	NOT APPLICABLE
22 87024007	N BROADWAY	Mount Kisco Rd	02/15/2018	09:35am	TRAFFIC SIGNAL	PROPERTY DAMAGE	2	0	DAYLIGHT	WET	CLOUDY	OVERTAKING	PASSING/LANE USAGE IMPROPERLY	FAILURE TO YIELD ROW
22 87024002	N BROADWAY	RESERVOIR RD	03/03/2018	06:52pm	TRAFFIC SIGNAL	INJURY	2	1	DUSK	DRY	CLOUDY	REAR END	DRIVER INATTENTION	NOT APPLICABLE
22 87024002	N BROADWAY	Central Westchester Pkwy	03/10/2018	04:23pm	TRAFFIC SIGNAL	PROPERTY DAMAGE	2	0	DAYLIGHT	DRY	CLOUDY	OVERTAKING	PASSING/LANE USAGE IMPROPERLY	NOT APPLICABLE
22 87024002	N BROADWAY	RESERVOIR RD	03/19/2018	05:27pm	STOP SIGN	PROPERTY DAMAGE	2	0	DAYLIGHT	DRY	CLEAR	OVERTAKING	PASSING/LANE USAGE IMPROPERLY	NOT APPLICABLE
22 87024007	N BROADWAY	Mount Kisco Rd	03/28/2018	08:32am	TRAFFIC SIGNAL	PROPERTY DAMAGE	2	0	DAYLIGHT	WET	CLOUDY	REAR END	FOLLOWING TOO CLOSELY	NOT APPLICABLE
22 87024002	N BROADWAY	Central Westchester Pkwy	04/11/2018	09:25am	TRAFFIC SIGNAL	PROPERTY DAMAGE	2	0	DAYLIGHT	DRY	CLEAR	OVERTAKING	DRIVER INATTENTION	NOT APPLICABLE
22 87024001	N BROADWAY	Cloverdale Ave	06/27/2018	09:07am	NONE	NON-REPORTABLE	2	0	DAYLIGHT	DRY	CLOUDY	OVERTAKING	DRIVER INATTENTION	NOT APPLICABLE
22 87024002	N BROADWAY	Central Westchester Pkwy	07/06/2018	12:08pm	TRAFFIC SIGNAL	NON-REPORTABLE	2	0	DAYLIGHT	WET	CLOUDY	OVERTAKING	TURNING IMPROPER	NOT APPLICABLE
22 87024002	N BROADWAY	Central Westchester Pkwy	09/18/2018	06:22pm	TRAFFIC SIGNAL	PROPERTY DAMAGE	2	0	DAYLIGHT	WET	RAIN	OVERTAKING	UNSAFE SPEED	UNKNOWN
22 87024061	ARMONK-BEDFORD RD	Main St	09/28/2018	06:43am	TRAFFIC SIGNAL	PROPERTY DAMAGE AND INJURY	2	1	DAWN	WET	RAIN	LEFT TURN	DRIVER INATTENTION	NOT APPLICABLE
22 87024002	N BROADWAY	Central Westchester Pkwy	10/11/2018	06:48pm	NONE	PROPERTY DAMAGE	2	0	DARK-ROAD LIGHTED	WET	RAIN	OVERTAKING	PASSING/LANE USAGE IMPROPERLY	NOT APPLICABLE
22 87024002	N BROADWAY	Central Westchester Pkwy	10/12/2018	12:33pm	TRAFFIC SIGNAL	PROPERTY DAMAGE	2	0	DAYLIGHT	DRY	CLEAR	OVERTAKING	FAILURE TO YIELD RIGHT OF WAY	NOT APPLICABLE
22 87024007	N BROADWAY	[Route] 22	10/27/2018	06:18pm	NONE	PROPERTY DAMAGE	2	0	DARK-ROAD LIGHTED	WET	RAIN	REAR END	PAVEMENT SLIPPERY	NOT APPLICABLE
22 87024002	Central Westchester Pkwv	N BROADWAY	12/13/2018	06:30pm	TRAFFIC SIGNAL	NON-REPORTABLE	2	0	DARK-ROAD LIGHTED	WET	CLEAR	OVERTAKING	DRIVER INATTENTION	DRIVER INATTENTION

NOTES:

1) ACCIDENT DATA OBTAINED FROM THE NEW YORK STATE DEPARTMENT OF TRANSPORTATION (NYSDOT) RECORDS ACCESS DEPARTMENT FOR THE TIME PERIOD BETWEEN JANUARY 1, 2015 THROUGH DECEMBER 31, 2018.


2) ACCIDENT CLASS: PDO = PROPERTY DAMAGE ONLY, I = INJURY, F = FATALITY, UNKOWN = NON-REPORTABLE

AIRPORT CAMPUS (113 KING STREET)

APPENDIX C

LEVEL OF SERVICE STANDARDS

Appendix

LEVEL OF SERVICE STANDARDS

LEVEL OF SERVICE FOR SIGNALIZED INTERSECTIONS

Level of Service (LOS) can be characterized for the entire intersection, each intersection approach,

and each lane group. Control delay alone is used to characterize LOS for the entire intersection or

an approach. Control delay and volume-to-capacity (v/c) ratio are used to characterize LOS for a

lane group. Delay quantifies the increase in travel time due to traffic signal control. It is also a

measure of driver discomfort and fuel consumption. The volume-to-capacity ratio quantifies the

degree to which a phase's capacity is utilized by a lane group.

LOS A describes operations with a control delay of 10 s/veh or less and a volume-to-capacity ratio

no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is low and

either progression is exceptionally favorable or the cycle length is very short. If it is due to

favorable progression, most vehicles arrive during the green indication and travel through the

intersection without stopping.

LOS B describes operations with control delay between 10 and 20 s/veh and a volume-to-capacity

ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is low

and either progression is highly favorable or the cycle length is short. More vehicles stop than

with LOS A.

LOS C describes operations with control delay between 20 and 35 s/veh and a volume-to-capacity

ratio no greater than 1.0. This level is typically assigned when progression is favorable or the

cycle length is moderate.

LOS D describes operations with control delay between 35 and 55 s/veh and a volume-to-capacity

ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is high

and either progression is ineffective or the cycle length is long.

Appendix

LOS E describes operations with control delay between 55 and 80 s/veh and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is high, progression is unfavorable, and the cycle length is long.

LOS F describes operations with control delay exceeding 80 s/veh or a volume-to-capacity ratio greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is very high, progression is very poor, and the cycle length is long.

A lane group can incur a delay less than 80 s/veh when the volume-to-capacity ratio exceeds 1.0. This condition typically occurs when the cycle length is short, the signal progression is favorable, or both. As a result, both the delay and volume-to-capacity ratio are considered when lane group LOS is established. A ratio of 1.0 or more indicates that cycle capacity is fully utilized and represents failure from a capacity perspective (just as delay in excess of 80 s/veh represents failure from a delay perspective).

The Level of Service Criteria for signalized intersections are given in Exhibit 18-4 from the 2010 Highway Capacity Manual published by the Transportation Research Board.

Exhibit 18-4

	LOS by Volume-	to-Capacity Ratio
Control Delay (s/veh)	$v/c \le 1.0$	v/c > 1.0
≤10	A	F
>10-20	В	F
>20-35	C	F
>35-55	D	F
>55-80	E	F
>80	F	F

For approach-based and intersection wide assessments, LOS is defined solely by control delay.

Appendix

LEVEL OF SERVICE CRITERIA

FOR TWO-WAY STOP-CONTROLLED (TWSC) UNSIGNALIZED INTERSECTIONS

Level of Service (LOS) for a two-way stop-controlled (TWSC) intersection is determined by the computed or measured control delay. For motor vehicles, LOS is determined for each minor-street movement (or shared movement) as well as major-street left turns. LOS is not defined for the intersection as a whole or for major-street approaches.

The Level of Service Criteria for TWSC unsignalized intersections are given in Exhibit 19-1 from the *2010 Highway Capacity Manual* published by the Transportation Research Board.

Exhibit 19-1

	L'AIIIDIC I / I	
	LOS by Volume-	to-Capacity Ratio
Control Delay (s/veh)	$v/c \le 1.0$	v/c > 1.0
0-10	A	F
>10-15	В	F
>15-25	C	F
>25-35	D	F
>35-50	E	F
>50	F	F

The LOS criteria apply to each lane on a given approach and to each approach on the minor street.

LOS is not calculated for major-street approaches or for the intersection as a whole.

As Exhibit 19-1 notes, LOS F is assigned to the movement if the volume-to-capacity ratio for the movement exceeds 1.0, regardless of the control delay.

The Level of Service Criteria for unsignalized intersections are somewhat different from the criteria for signalized intersections.

LEVEL OF SERVICE CRITERIA

FOR ALL-WAY STOP-CONTROLLED (AWSC) UNSIGNALIZED INTERSECTIONS

The Levels of Service (LOS) for all-way stop-controlled (AWSC) intersections are given in Exhibit 20-2. As the exhibit notes, LOS F is assigned if the volume-to-capacity (v/c) ratio of a lane exceeds 1.0, regardless of the control delay. For assessment of LOS at the approach and intersection levels, LOS is based solely on control delay.

The Level of Service Criteria for AWSC unsignalized intersections are given in Exhibit 20-2 from the *2010 Highway Capacity Manual* published by the Transportation Research Board.

Exhibit 20-2

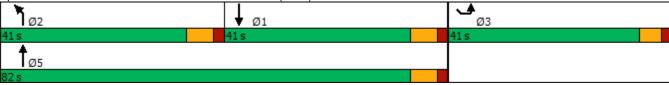
	LOS by Volume-	to-Capacity Ratio
Control Delay (s/veh)	$v/c \le 1.0$	v/c > 1.0
0-10	A	F
>10-15	В	F
>15-25	C	F
>25-35	D	F
>35-50	E	F
>50	F	F

For approaches and intersection wide assessment, LOS is defined solely by control delay.

AIRPORT CAMPUS (113 KING STREET)

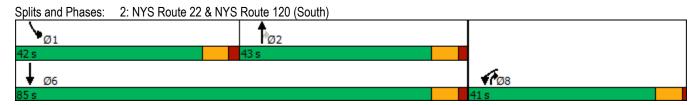
APPENDIX D SYNCHRO ANALYSIS

	ሻ	†	ļ	» J	•	>
Lane Group	NBL	NBT	SBT	SBR	SEL	SER
Lane Configurations	T T	^	† †	ĕ ĕ	<u> </u>	7
Traffic Volume (vph)	166	468	628	198	491	665
Future Volume (vph)	166	468	628	198	491	665
	1900	1900	1900	1900	1900	1900
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	10			10		10
Grade (%)	050	0%	0%	500	0%	0
Storage Length (ft)	250			500	250	0
Storage Lanes	1			1	1	1
Taper Length (ft)	86				86	
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00
Ped Bike Factor						
Frt				0.850		0.850
Flt Protected	0.950				0.950	
Satd. Flow (prot)	1478	3209	3303	1478	1604	1436
Flt Permitted	0.950				0.950	
Satd. Flow (perm)	1478	3209	3303	1478	1604	1436
Right Turn on Red	1710	0200	0000	Yes	1007	Yes
Satd. Flow (RTOR)				202		436
		55	55	202	30	430
Link Speed (mph)						
Link Distance (ft)		767	1064		872	
Travel Time (s)		9.5	13.2		19.8	
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	14%	5%	2%	2%	5%	5%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)		0%	0%		0%	
Adj. Flow (vph)	169	478	641	202	501	679
Shared Lane Traffic (%)	100	410	0+1	202	001	013
Lane Group Flow (vph)	169	478	641	202	501	679
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width(ft)		10	15		10	
Link Offset(ft)		0	0		0	
Crosswalk Width(ft)		16	16		16	
Two way Left Turn Lane						
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (mph)	15			9	15	9
Number of Detectors	1	2	2	1	2	0
Detector Template						
Leading Detector (ft)	35	104	104	0	104	0
Trailing Detector (ft)	-5	0	0	0	0	0
Turn Type	Prot	NA	NA	Free	Prot	Free
Protected Phases	2	5	1	1166	3	1100
		5		Г	J	Г
Permitted Phases	•	_		Free	_	Free
Detector Phase	2	5	1		3	
Switch Phase						


	ሻ	†	 	» J	•	>
Lane Group	NBL	NBT	SBT	SBR	SEL	SER
Minimum Initial (s)	12.0	12.0	12.0		10.0	
Minimum Split (s)	36.0	36.0	36.0		26.0	
Total Split (s)	41.0	82.0	41.0		41.0	
Total Split (%)	33.3%	66.7%	33.3%		33.3%	
Maximum Green (s)	34.0	75.0	34.0		35.0	
Yellow Time (s)	5.0	5.0	5.0		4.0	
All-Red Time (s)	2.0	2.0	2.0		2.0	
Lost Time Adjust (s)	0.0	0.0	0.0		0.0	
Total Lost Time (s)	7.0	7.0	7.0		6.0	
Lead/Lag	Lead		Lag		0.0	
Lead-Lag Optimize?	Yes		Yes			
Vehicle Extension (s)	6.0	6.0	6.0		6.0	
Minimum Gap (s)	4.0	4.0	4.0		4.0	
Time Before Reduce (s)	20.0	20.0	20.0		20.0	
Time To Reduce (s)	8.0	8.0	8.0		5.0	
Recall Mode	None	Min	Min		None	
Walk Time (s)	NOTIC	IVIIII	191111		140116	
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)						
Act Effct Green (s)	20.1	56.0	28.9	104.4	35.3	104.4
Actuated g/C Ratio	0.19	0.54	0.28	1.00	0.34	1.00
v/c Ratio	0.19	0.34	0.20	0.14	0.92	0.47
Control Delay	48.1	13.3	39.0	0.14	60.0	1.1
Queue Delay	0.0	0.0	0.0	0.2	0.0	0.0
Total Delay	48.1	13.3	39.0	0.0	60.0	1.1
LOS	46.1 D	13.3 B	39.0 D	0.2 A	60.0 E	1.1 A
Approach Delay	U	22.4	29.7	A	26.1	A
		22.4 C	29.7 C		26.1 C	
Approach LOS	104	86	201	0	321	0
Queue Length 50th (ft)				0		
Queue Length 95th (ft)	181	115	290	0	#620	0
Internal Link Dist (ft)	050	687	984	500	792	
Turn Bay Length (ft)	250	0004	4004	500	250	1.400
Base Capacity (vph)	485	2324	1084	1478	542	1436
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.35	0.21	0.59	0.14	0.92	0.47
Intersection Summary	Other					
Area Type:	Other					
Cycle Length: 123	24.4					
Actuated Cycle Length: 10	J4.4					
Natural Cycle: 110	,, ,					
Control Type: Actuated-Ur	ncoordinated					
Maximum v/c Ratio: 0.92						
Intersection Signal Delay:					tersection	
Intersection Capacity Utiliz	zation 71.2%			IC	CU Level	of Service
Analysis Period (min) 15						

Synchro 10 Report 18002018A - N.T. Page 2

95th percentile volume exceeds capacity, queue may be longer.


Queue shown is maximum after two cycles.

Splits and Phases: 1: NYS Route 22 & NYS Route 120 (North)

	•	•	†	/	-	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	**	TOIL	†	7	ሻሻ	↑ ↑
Traffic Volume (vph)	40	0	450	150	683	610
Future Volume (vph)	40	0	450	150	683	610
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
	1900	1900	1900	1900	1900	1900
Lane Width (ft)	-8%	12	-2%	10	11	-1%
Grade (%)		0	-2%	200	045	-1%
Storage Length (ft)	0	0		200	215	
Storage Lanes	1	0		1	2	
Taper Length (ft)	25				86	
Lane Util. Factor	1.00	1.00	0.95	1.00	0.97	0.95
Ped Bike Factor						
Frt				0.850		
Flt Protected	0.950				0.950	
Satd. Flow (prot)	1707	0	3304	1478	3368	3405
Flt Permitted	0.950				0.950	
Satd. Flow (perm)	1707	0	3304	1478	3368	3405
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)		. 00		33		
Link Speed (mph)	30		50	- 00		50
Link Distance (ft)	334		905			488
Travel Time (s)	7.6		12.3			6.7
	7.0		12.3			0.7
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)	0.05	0.05	0.05	0.05	0.05	0.05
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	10%	0%	3%	3%	1%	3%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	42	0	474	158	719	642
Shared Lane Traffic (%)						
Lane Group Flow (vph)	42	0	474	158	719	642
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12	ragiit	22	rtigitt	LOIL	22
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane	0.05	0.05	4.00	4.00	4.04	4.04
Headway Factor	0.95	0.95	1.08	1.08	1.04	1.04
Turning Speed (mph)	15	9		9	15	
Number of Detectors	1		2	1	1	2
Detector Template	Left		Thru	Right	Left	Thru
Leading Detector (ft)	20		100	20	20	100
Trailing Detector (ft)	0		0	0	0	0
Turn Type	Prot		NA	pm+ov	Prot	NA
Protected Phases	8		2	8	1	6
Permitted Phases				2		
Detector Phase	8		2	8	1	6
Switch Phase	U			U		U
Switch Phase						

	•	4	†	<i>></i>	\	ţ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Minimum Initial (s)	10.0	TIDIN	12.0	10.0	12.0	12.0
Minimum Split (s)	26.0		36.0	26.0	36.0	36.0
Total Split (s)	41.0		43.0	41.0	42.0	85.0
Total Split (%)	32.5%		34.1%	32.5%	33.3%	67.5%
Maximum Green (s)	35.0		36.0	35.0	35.0	78.0
Yellow Time (s)	5.0		5.0	5.0	5.0	5.0
All-Red Time (s)	1.0		2.0	1.0	2.0	2.0
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0		7.0	6.0	7.0	7.0
Lead/Lag	0.0		Lag	0.0	Lead	7.0
•			Yes		Yes	
Lead-Lag Optimize?	2.0			2.0		2.0
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0
Minimum Gap (s)	3.0		3.0	3.0	3.0	3.0
Time Before Reduce (s)	0.0		0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0		0.0	0.0	0.0	0.0
Recall Mode	None		Min	None	Min	Min
Walk Time (s)						
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)						
Act Effct Green (s)	10.1		16.4	33.6	20.6	44.1
Actuated g/C Ratio	0.15		0.24	0.50	0.31	0.65
v/c Ratio	0.16		0.59	0.21	0.70	0.29
Control Delay	30.3		26.4	9.1	24.9	5.1
Queue Delay	0.0		0.0	0.0	0.0	0.0
Total Delay	30.3		26.4	9.1	24.9	5.1
LOS	С		С	Α	С	Α
Approach Delay	30.3		22.1			15.6
Approach LOS	С		С			В
Queue Length 50th (ft)	15		88	26	131	48
Queue Length 95th (ft)	49		153	69	206	67
Internal Link Dist (ft)	254		825			408
Turn Bay Length (ft)				200	215	
Base Capacity (vph)	899		1791	1297	1775	3380
Starvation Cap Reductn	0		0	0	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductn	0		0	0	0	0
Reduced v/c Ratio	0.05		0.26	0.12	0.41	0.19
Intersection Summary	0.00		J.20	J.,_	J	3.10
Area Type:	Other					
Cycle Length: 126	04101					
Actuated Cycle Length: 67	1					
	.4					
Natural Cycle: 100	ooord					
Control Type: Semi Act-Un	icoord					
Maximum v/c Ratio: 0.70	17.0				-1!	- I OO: D
Intersection Signal Delay:					ntersectio	
Intersection Capacity Utiliz	ation 56.9%			I(JU Level	of Service
Analysis Period (min) 15						

	۶	→	•	•	←	•	4	†	/	\	ļ	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					f)			4				
Traffic Volume (vph)	0	0	0	0	24	6	1	178	43	0	0	0
Future Volume (vph)	0	0	0	0	24	6	1	178	43	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	13	12	12	12	12
Grade (%)		0%			-5%			-7%			0%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	0		0	0		0	0		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt					0.972			0.974				
Flt Protected												
Satd. Flow (prot)	0	0	0	0	1835	0	0	1745	0	0	0	0
Flt Permitted												
Satd. Flow (perm)	0	0	0	0	1835	0	0	1745	0	0	0	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		124			297			300			404	
Travel Time (s)		2.8			6.8			6.8			9.2	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	0%	0%	4%	0%	0%	16%	3%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	0	0	0	0	27	7	1	202	49	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	0	0	0	34	0	0	252	0	0	0	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	0.97	0.97	0.97	0.96	0.92	0.96	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Stop			Stop			Free			Stop	
Intersection Summary												
Area Type:	Other											
Control Type: Unsignalized												
Intersection Capacity Utilizati	on 22.0%			IC	CU Level	of Service	e A					
Analysis Daried (min) 15												

Synchro 10 Report Page 7

Intersection												
Int Delay, s/veh	1.1											
		EDT	ED.2	14/5	MAC	WED	NE	NET	NES	051	0.5.	055
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					f)			4				
Traffic Vol, veh/h	0	0	0	0	24	6	1	178	43	0	0	0
Future Vol, veh/h	0	0	0	0	24	6	1	178	43	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	2	-	-	0	-	-	0	-	-	16965	-
Grade, %	-	0	-	-	-5	-	-	-7	-	-	0	-
Peak Hour Factor	88	88	88	88	88	88	88	88	88	88	88	88
Heavy Vehicles, %	0	0	0	0	4	0	0	16	3	0	0	0
Mvmt Flow	0	0	0	0	27	7	1	202	49	0	0	0
Major/Minor			N	Minor1		N	/lajor1					
Major/Minor					200			^	^			
Conflicting Flow All				-	229	227	0	0	0			
Stage 1				-	229	-	-	-	-			
Stage 2				-	0	- - 7	-	-	-			
Critical Hdwy				-	5.54	5.7	4.1	-	-			
Critical Hdwy Stg 1				-	4.54	-	-	-	-			
Critical Hdwy Stg 2				-	-	-	-	-	-			
Follow-up Hdwy				-	4.036	3.3	2.2	-	-			
Pot Cap-1 Maneuver				0	711	844	-	-	-			
Stage 1				0	758	-	-	-	-			
Stage 2				0	-	-	-	-	-			
Platoon blocked, %								-	-			
Mov Cap-1 Maneuver				-	0	844	-	-	-			
Mov Cap-2 Maneuver				-	0	-	-	-	-			
Stage 1				-	0	-	-	-	-			
Stage 2				-	0	-	-	-	-			
Approach				WB			NB					
HCM Control Delay, s				9.4								
HCM LOS				Α.								
TOW LOO				Α								
Minor Lane/Major Mvmt		NBL	NBT	NDDV	VBLn1							
		INDL	INDT									
Capacity (veh/h)		-	-	-	844							
HCM Cantral Dalay (a)		-	-	-	0.04							
HCM Control Delay (s)		-	-	-	9.4							
HCM Lane LOS		-	-	-	A							
HCM 95th %tile Q(veh)		-	-	-	0.1							

	۶	→	•	•	•	•	4	†	<i>></i>	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ની	7		र्स	7	ሻ	1	7	*		7
Traffic Volume (vph)	8	1	9	4	0	3	71	251	27	26	666	141
Future Volume (vph)	8	1	9	4	0	3	71	251	27	26	666	141
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (%)		4%			-1%			7%			-4%	
Storage Length (ft)	0		315	0		125	280		445	150		275
Storage Lanes	0		1	0		1	1		1	1		1
Taper Length (ft)	25			25			86			86		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt			0.850			0.850			0.850			0.850
Flt Protected		0.957			0.950		0.950			0.950		
Satd. Flow (prot)	0	1328	1190	0	1814	1623	1675	1667	1558	1841	1882	1631
Flt Permitted	-						0.297		,,,,,	0.591		
Satd. Flow (perm)	0	1387	1190	0	1909	1623	524	1667	1558	1145	1882	1631
Right Turn on Red	-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			37			37			83			116
Link Speed (mph)		30			30			55			55	
Link Distance (ft)		601			392			1478			1166	
Travel Time (s)		13.7			8.9			18.3			14.5	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	38%	0%	33%	0%	0%	0%	4%	10%	0%	0%	3%	1%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												J
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	9	1	10	4	0	3	77	273	29	28	724	153
Shared Lane Traffic (%)	•	•	. •	•			• •					
Lane Group Flow (vph)	0	10	10	0	4	3	77	273	29	28	724	153
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	20.0	0	rugiit	2010	0	rugiit	Lon	12	i ugiit	2010	12	i ugiic
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			.0			10			10	
Headway Factor	1.03	1.03	1.03	0.99	0.99	0.99	1.05	1.05	1.05	0.97	0.97	0.97
Turning Speed (mph)	15	1.00	9	15	0.00	9	15	1.00	9	15	0.57	9
Number of Detectors	1	2	1	1	2	1	1	2	1	1	2	1
Detector Template	Left		'	Left	2	'	'			ı		
Leading Detector (ft)	20	83	35	20	83	35	35	83	35	35	83	35
Trailing Detector (ft)	0	-5	-5	0	-5	-5	-5	-5	-5	-5	-5	-5
Turn Type	Perm	NA	pm+ov	Perm	NA	pm+ov	pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases	r ellil	NA 8	pili+0v 1	r ellii	4	piii+0v 5	рпт+рt 1	6	r emi	риі+рі 5	2	r emi
Permitted Phases	8	0	8	4	4	4	6	U	6	2		2
Detector Phase	8	8	1	4	4	5	1	6	6	5	2	2
	Ō	Ŏ	I	4	4	5		O	b	5	Z	Z
Switch Phase												

	۶	→	•	•	←	•	4	†	/	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	5.0	3.0	5.0	5.0	3.0	3.0	5.0	5.0	3.0	5.0	5.0
Minimum Split (s)	13.0	13.0	10.0	13.0	13.0	10.0	10.0	12.0	12.0	10.0	12.0	12.0
Total Split (s)	45.0	45.0	27.0	45.0	45.0	27.0	27.0	47.0	47.0	27.0	47.0	47.0
Total Split (%)	37.8%	37.8%	22.7%	37.8%	37.8%	22.7%	22.7%	39.5%	39.5%	22.7%	39.5%	39.5%
Maximum Green (s)	40.0	40.0	20.0	40.0	40.0	20.0	20.0	40.0	40.0	20.0	40.0	40.0
Yellow Time (s)	4.0	4.0	5.0	4.0	4.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	1.0	1.0	2.0	1.0	1.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		5.0	7.0		5.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
Lead/Lag			Lead			Lead	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?			Yes			Yes	Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0	2.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Minimum Gap (s)	3.0	3.0	2.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Recall Mode	None	None	None	None	None	None	None	Max	Max	None	Max	Max
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		6.2	7.2		6.0	7.0	50.6	52.8	52.8	47.2	44.7	44.7
Actuated g/C Ratio		0.10	0.12		0.10	0.11	0.81	0.85	0.85	0.76	0.72	0.72
v/c Ratio		0.07	0.06		0.02	0.01	0.15	0.19	0.02	0.03	0.54	0.13
Control Delay		28.2	1.2		27.5	0.0	2.3	4.2	0.0	2.0	8.6	2.4
Queue Delay		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		28.2	1.2		27.5	0.0	2.3	4.2	0.0	2.0	8.6	2.4
LOS		С	Α		С	Α	Α	Α	Α	Α	Α	Α
Approach Delay		14.7			15.7			3.5			7.3	
Approach LOS		В			В			Α			Α	
Queue Length 50th (ft)		3	0		1	0	1	0	0	0	106	3
Queue Length 95th (ft)		18	2		10	0	17	100	0	8	343	31
Internal Link Dist (ft)		521			312			1398			1086	
Turn Bay Length (ft)			315			125	280		445	150		275
Base Capacity (vph)		897	449		1235	604	819	1415	1335	1201	1351	1203
Starvation Cap Reductn		0	0		0	0	0	0	0	0	0	0
Spillback Cap Reductn		0	0		0	0	0	0	0	0	0	0
Storage Cap Reductn		0	0		0	0	0	0	0	0	0	0
Reduced v/c Ratio		0.01	0.02		0.00	0.00	0.09	0.19	0.02	0.02	0.54	0.13
Intersection Summary												

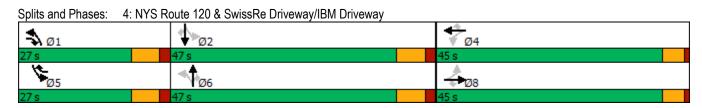
Area Type: Other

Cycle Length: 119

Actuated Cycle Length: 62.2

Natural Cycle: 60

Control Type: Actuated-Uncoordinated


Maximum v/c Ratio: 0.54 Intersection Signal Delay: 6.4

Intersection Capacity Utilization 61.7%

Intersection LOS: A ICU Level of Service B

Analysis Period (min) 15

Page 10 18002018A - N.T.

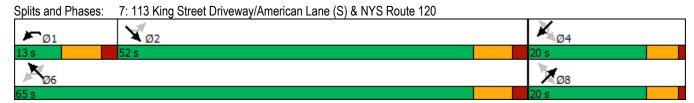
	•	•	†	~	/	ţ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ሻ	7	†	7	ሻ	†
Traffic Volume (vph)	10	10	339	5	159	520
Future Volume (vph)	10	10	339	5	159	520
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	12	12	10	10
Grade (%)	-3%		2%			-1%
Storage Length (ft)	0	0		15	175	
Storage Lanes	1	1		1	1	
Taper Length (ft)	25				86	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt		0.850		0.850		
Flt Protected	0.950				0.950	
Satd. Flow (prot)	1771	1320	1742	1599	1676	1714
Flt Permitted	0.950				0.950	
Satd. Flow (perm)	1771	1320	1742	1599	1676	1714
Link Speed (mph)	25		55			55
Link Distance (ft)	589		993			1478
Travel Time (s)	16.1		12.3			18.3
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	20%	8%	0%	1%	4%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	11	11	361	5	169	553
Shared Lane Traffic (%)						
Lane Group Flow (vph)	11	11	361	5	169	553
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	11		12			12
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane						
Headway Factor	1.02	1.02	1.01	1.01	1.09	1.09
Turning Speed (mph)	15	9		9	15	
Sign Control	Stop		Free			Free
Intersection Summary						
Area Type:	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizat	ion 40.0%			IC	CU Level	of Service
Analysis Period (min) 15						
analysis i silod (ililii) 13						

Intersection						
Int Delay, s/veh	1.6					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ነ	1 0	↑ 339	7	1 59	↑ 520
Traffic Vol, veh/h Future Vol, veh/h	10 10	10	339	5	159	520
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control			Free	Free	Free	Free
RT Channelized	Stop -	Stop Yield	riee -	Free	riee -	
Storage Length	0	0	-	15	175	NULLE
Veh in Median Storage,		-	0	-	- 175	0
Grade, %	-3	-	2	-	-	-1
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	94	20	8	0	1	4
Mvmt Flow	11	11	361	5	169	553
MINITE FIOW	- 11	11	301	3	109	ეეე
Major/Minor N	1inor1	N	Major1	I	Major2	
Conflicting Flow All	1252	361	0	-	361	0
Stage 1	361	-	-	-	-	-
Stage 2	891	-	-	-	-	-
Critical Hdwy	5.8	6.1	-	-	4.11	-
Critical Hdwy Stg 1	4.8	_	-	-	-	-
Critical Hdwy Stg 2	4.8	-	-	-	-	-
Follow-up Hdwy	3.5	3.48	-	-	2.209	-
Pot Cap-1 Maneuver	237	665	-	0	1203	-
Stage 1	754	-	-	0	-	-
Stage 2	469	-	-	0	-	-
Platoon blocked, %			-			-
Mov Cap-1 Maneuver	204	665	_	_	1203	-
Mov Cap-2 Maneuver	204	-	_	_	-	_
Stage 1	754	_	_	_	_	_
Stage 2	403	_	_	_	_	_
Olago Z	100					
Approach	WB		NB		SB	
HCM Control Delay, s	17.1		0		2	
HCM LOS	С					
Minor Lane/Major Mvmt		NRTV	VBLn1V	VRI n2	SBL	SBT
Capacity (veh/h)		-		665	1203	
HCM Lane V/C Ratio				0.016		-
HCM Control Delay (s)		-	23.6	10.5	8.5	-
HCM Lane LOS			23.0 C	10.5 B	0.5 A	_
HCM 95th %tile Q(veh)		-	0.2	0	0.5	-
		_	0.2	U	0.0	_

	٠	•	1	†	↓	1
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			4	f)	
Traffic Volume (vph)	1	1	0	343	527	3
Future Volume (vph)	1	1	0	343	527	3
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	11	11	11	11
Grade (%)	3%			5%	-2%	
Storage Length (ft)	0	0	0			0
Storage Lanes	1	0	0			0
Taper Length (ft)	25		25			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt	0.932				0.999	
Flt Protected	0.976					
Satd. Flow (prot)	1135	0	0	1643	1782	0
Flt Permitted	0.976					
Satd. Flow (perm)	1135	0	0	1643	1782	0
Link Speed (mph)	30			55	55	
Link Distance (ft)	639			1813	993	
Travel Time (s)	14.5			22.5	12.3	
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	100%	0%	0%	9%	4%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%			0%	0%	
Adj. Flow (vph)	1	1	0	361	555	3
Shared Lane Traffic (%)	,		•	301	300	
Lane Group Flow (vph)	2	0	0	361	558	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12	ragnt	LGIL	0	0	ragiit
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane	10			10	10	
Headway Factor	1.02	1.02	1.08	1.08	1.03	1.03
Turning Speed (mph)	1.02	1.02	1.06	1.00	1.03	9
		9	15	Eroo	Free	9
Sign Control	Stop			Free	FIEE	
Intersection Summary						
, , , , , , , , , , , , , , , , , , ,	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizat						
Analysis Period (min) 15	tion 37.9%			IC	CU Level	of Service A

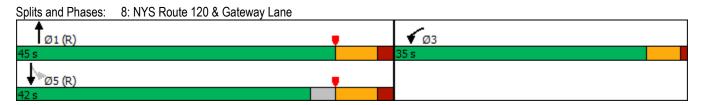
Intersection						
Int Delay, s/veh	0					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			4	1	
Traffic Vol, veh/h	1	1	0	343	527	3
Future Vol, veh/h	1	1	0	343	527	3
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	Stop -	None	-	None	-	None
Storage Length	0	None -	-	INOHE	_	NONE
0 0				0	0	-
Veh in Median Storage,		-	-			-
Grade, %	3	- 0 <i>E</i>	- 0 <i>E</i>	5	-2	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	100	0	0	9	4	0
Mvmt Flow	1	1	0	361	555	3
Major/Minor M	linor2	N	Major1	N	/lajor2	
Conflicting Flow All	918	557	558	0		0
•					-	
Stage 1	557	-	-	-	-	-
Stage 2	361	-	-	-	-	-
Critical Hdwy	8	6.5	4.1	-	-	-
Critical Hdwy Stg 1	7	-	-	-	-	-
Critical Hdwy Stg 2	7	-	-	-	-	-
Follow-up Hdwy	4.4	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	177	510	1023	-	-	-
Stage 1	382	-	-	-	-	-
Stage 2	502	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	177	510	1023	_	-	-
Mov Cap-2 Maneuver	177	-		_	_	_
Stage 1	382	_				_
	502			_	_	-
Stage 2	502	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	18.8		0		0	
HCM LOS	C					
	J					
Minor Lane/Major Mvmt		NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1023	-	263	-	-
HCM Lane V/C Ratio		-	_	0.008	_	-
HCM Control Delay (s)		0	-		_	-
HCM Lane LOS		A	_	С	_	_
HCM 95th %tile Q(veh)		0	_	0	_	_
TOWN JOHN JOHN Q(VOII)		U		U		

	अ	\mathbf{x}	À	_	×	₹	ን	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		4		, J	†	7		ર્ન	7		ર્ન	7
Traffic Volume (vph)	1	527	0	2	342	150	1	0	1	25	0	0
Future Volume (vph)	1	527	0	2	342	150	1	0	1	25	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	11	11	11	11	10	10	10	11	11	11
Grade (%)		-4%			1%			-5%			1%	
Storage Length (ft)	0		0	120		200	0		95	0		0
Storage Lanes	0		0	1		1	0		1	0		1
Taper Length (ft)	25			86			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt						0.850			0.850			
Flt Protected				0.950				0.950			0.950	
Satd. Flow (prot)	0	1801	0	1736	1677	1494	0	1727	1545	0	1536	1827
Flt Permitted				0.385				0.740			0.757	
Satd. Flow (perm)	0	1801	0	704	1677	1494	0	1345	1545	0	1224	1827
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)						161			141			
Link Speed (mph)		55			55			30			25	
Link Distance (ft)		1813			2280			328			518	
Travel Time (s)		22.5			28.3			7.5			14.1	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	4%	0%	0%	9%	4%	0%	0%	0%	13%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	1	567	0	2	368	161	1	0	1	27	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	568	0	2	368	161	0	1	1	0	27	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		11			11	•		0	•		0	J
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.02	1.02	1.02	1.05	1.05	1.05	1.06	1.06	1.06	1.05	1.05	1.05
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2		1	2	1	1	2	1	1	2	1
Detector Template	Left						Left			Left		
Leading Detector (ft)	20	83		35	83	35	20	83	35	20	83	35
Trailing Detector (ft)	0	-5		-5	-5	-5	0	-5	-5	0	-5	-5
Turn Type	Perm	NA		pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases		2		1	6			8			4	
Permitted Phases	2			6		6	8		8	4		4
Detector Phase	2	2		1	6	6	8	8	8	4	4	4
Switch Phase												·


	J	×	٦	*	×	₹	ን	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Minimum Initial (s)	10.0	10.0		3.0	10.0	10.0	3.0	3.0	3.0	5.0	5.0	5.0
Minimum Split (s)	17.0	17.0		10.0	17.0	17.0	10.0	10.0	10.0	10.0	10.0	10.0
Total Split (s)	52.0	52.0		13.0	65.0	65.0	20.0	20.0	20.0	20.0	20.0	20.0
Total Split (%)	61.2%	61.2%		15.3%	76.5%	76.5%	23.5%	23.5%	23.5%	23.5%	23.5%	23.5%
Maximum Green (s)	45.0	45.0		6.0	58.0	58.0	15.0	15.0	15.0	15.0	15.0	15.0
Yellow Time (s)	5.0	5.0		5.0	5.0	5.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)		0.0		0.0	0.0	0.0		0.0	0.0		0.0	0.0
Total Lost Time (s)		7.0		7.0	7.0	7.0		5.0	5.0		5.0	5.0
Lead/Lag	Lag	Lag		Lead								
Lead-Lag Optimize?	Yes	Yes		Yes	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Vehicle Extension (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Minimum Gap (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Time Before Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0 Max	0.0	0.0	0.0 Max	0.0	0.0
Recall Mode Walk Time (s)	Max	Max		None	Max	Max	Max	Max	Max	Max	Max	Max
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		55.6		58.0	58.0	58.0		15.0	15.0		15.0	
Actuated g/C Ratio		0.65		0.68	0.68	0.68		0.18	0.18		0.18	
v/c Ratio		0.48		0.00	0.32	0.00		0.10	0.00		0.10	
Control Delay		10.1		4.5	6.4	1.1		29.0	0.00		31.2	
Queue Delay		0.0		0.0	0.0	0.0		0.0	0.0		0.0	
Total Delay		10.1		4.5	6.4	1.1		29.0	0.0		31.2	
LOS		В		Α	Α	Α		С	Α		С	
Approach Delay		10.1			4.8			14.5			31.2	
Approach LOS		В			Α			В			С	
Queue Length 50th (ft)		121		0	69	0		0	0		12	
Queue Length 95th (ft)		287		2	109	17		5	0		36	
Internal Link Dist (ft)		1733			2200			248			438	
Turn Bay Length (ft)				120		200			95			
Base Capacity (vph)		1178		553	1144	1070		237	388		216	
Starvation Cap Reductn		0		0	0	0		0	0		0	
Spillback Cap Reductn		0		0	0	0		0	0		0	
Storage Cap Reductn		0		0	0	0		0	0		0	
Reduced v/c Ratio		0.48		0.00	0.32	0.15		0.00	0.00		0.13	
Intersection Summary	011											
Area Type:	Other											
Cycle Length: 85												
Actuated Cycle Length: 85												
Natural Cycle: 50												
Control Type: Actuated-Un	coordinated											

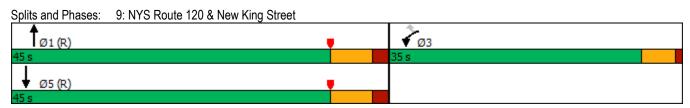
Maximum v/c Ratio: 0.48 Intersection Signal Delay: 8.1

Intersection Capacity Utilization 56.2%


Intersection LOS: A ICU Level of Service B

7: 113 King Street Driveway/American Lane (S) & NYS Route 120

	•	•	†	/	\	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		1			4
Traffic Volume (vph)	51	174	320	42	185	368
Future Volume (vph)	51	174	320	42	185	368
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	11	11	11	11
Grade (%)	-6%	12	2%			0%
Storage Length (ft)	0	0	270	0	0	0 70
Storage Lanes	1	0		0	0	
Taper Length (ft)	25	U		- 0	25	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.896		0.984			
Fit Protected	0.896		0.904			0.984
		0	1600	0	0	
Satd. Flow (prot)	1700	0	1620	0	0	1743
Flt Permitted	0.989	_	4000	^	^	0.740
Satd. Flow (perm)	1700	0	1620	0	0	1311
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)	185		11			
Link Speed (mph)	30		55			55
Link Distance (ft)	328		519			557
Travel Time (s)	7.5		6.4			6.9
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	2%	10%	14%	3%	4%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	54	185	340	45	197	391
Shared Lane Traffic (%)	01	.00	310	-10	101	301
Lane Group Flow (vph)	239	0	385	0	0	588
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
	12	Rigiil		Rigiit	Leit	
Median Width(ft)			0			0
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane	0.00	0.00	4.66	4.00	4.6.1	4.6.
Headway Factor	0.96	0.96	1.06	1.06	1.04	1.04
Turning Speed (mph)	15	9		9	15	
Number of Detectors	1		2		1	2
Detector Template					Left	
Leading Detector (ft)	35		83		20	83
Trailing Detector (ft)	-5		-5		0	-5
Turn Type	Prot		NA		Perm	NA
Protected Phases	3		1			5
Permitted Phases					5	
Detector Phase	3		1		5	5
Switch Phase	•		•		-	•


	•	•	†	~	/	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Minimum Initial (s)	5.0		5.0		5.0	5.0
Minimum Split (s)	10.0		12.0		12.0	12.0
Total Split (s)	35.0		45.0		42.0	42.0
Total Split (%)	43.8%		56.3%		52.5%	52.5%
Maximum Green (s)	30.0		38.0		35.0	35.0
Yellow Time (s)	4.0		5.0		5.0	5.0
All-Red Time (s)	1.0		2.0		2.0	2.0
Lost Time Adjust (s)	0.0		0.0		2.0	0.0
Total Lost Time (s)	5.0		7.0			7.0
Lead/Lag	3.0		1.0			1.0
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0		3.0		3.0	3.0
Minimum Gap (s)	3.0		3.0		3.0	3.0
1 \ /	0.0					
Time Before Reduce (s)			0.0		0.0	0.0
Time To Reduce (s)	0.0		0.0		0.0	0.0
Recall Mode	None		C-Max		C-Max	C-Max
Walk Time (s)						
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)						
Act Effct Green (s)	9.2		58.8			58.8
Actuated g/C Ratio	0.12		0.74			0.74
v/c Ratio	0.67		0.32			0.61
Control Delay	18.4		2.5			9.5
Queue Delay	0.0		0.0			0.0
Total Delay	18.4		2.5			9.5
LOS	В		Α			Α
Approach Delay	18.4		2.5			9.5
Approach LOS	В		Α			Α
Queue Length 50th (ft)	26		18			106
Queue Length 95th (ft)	86		35			278
Internal Link Dist (ft)	248		439			477
Turn Bay Length (ft)						
Base Capacity (vph)	753		1193			963
Starvation Cap Reductn	0		0			0
Spillback Cap Reductn	0		0			0
Storage Cap Reductn	0		0			0
Reduced v/c Ratio	0.32		0.32			0.61
Intersection Summary						
Area Type:	Other					
Cycle Length: 80	0 (110)					
Actuated Cycle Length: 80						
Offset: 13 (16%), Reference		1·NRT a	nd 5.CRTI	Start of	f Vallow	
	eu io pilase	i.ivDI di	iu J.JDTL	., Glait Ul	i i c iiow	
Natural Cycle: 60	ordinated					
Control Type: Actuated-Co	orumateu					
Maximum v/c Ratio: 0.67	2.4					1.00
Intersection Signal Delay: 9					ntersectio	
Intersection Capacity Utiliz	ation /8.4%			10	JU Level	of Service

	•	•	†	/	>	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ኝ	7	†			†
Traffic Volume (vph)	149	23	339	0	0	419
Future Volume (vph)	149	23	339	0	0	419
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1900	1300	1900	1900	1900	1900
	-2%	13	1%	11	- 11	1%
Grade (%)		475	1%	^	^	1%
Storage Length (ft)	0	175		0	0	
Storage Lanes	1	1		0	0	
Taper Length (ft)	25				25	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt		0.850				
Flt Protected	0.950					
Satd. Flow (prot)	1688	1492	1646	0	0	1757
FIt Permitted	0.950					
Satd. Flow (perm)	1688	1492	1646	0	0	1757
Right Turn on Red	1000	Yes	10-10	Yes	0	1.01
Satd. Flow (RTOR)		24		163		
	30	24	55			55
Link Speed (mph)						
Link Distance (ft)	321		928			519
Travel Time (s)	7.3		11.5			6.4
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	8%	13%	11%	0%	0%	4%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	157	24	357	0	0	441
Shared Lane Traffic (%)	101	27	551	U	U	771
	157	24	357	0	0	441
Lane Group Flow (vph)						
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12		0			0
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane						
Headway Factor	0.99	0.95	1.05	1.05	1.05	1.05
Turning Speed (mph)	15	9		9	15	
Number of Detectors	1	1	2			2
Detector Template		•				_
Leading Detector (ft)	35	35	83			83
Trailing Detector (ft)	-5	-5	-5			-5
()						
Turn Type	Prot	Perm	NA			NA
Protected Phases	3		1			5
Permitted Phases		3				
Detector Phase	3	3	1			5
Switch Phase						

Analysis Period (min) 15

	•	•	†	<i>></i>	/	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Minimum Initial (s)	5.0	5.0	5.0			5.0
Minimum Split (s)	10.0	10.0	12.0			12.0
Total Split (s)	35.0	35.0	45.0			45.0
Total Split (%)	43.8%	43.8%	56.3%			56.3%
Maximum Green (s)	30.0	30.0	38.0			38.0
Yellow Time (s)	4.0	4.0	5.0			5.0
All-Red Time (s)	1.0	1.0	2.0			2.0
Lost Time Adjust (s)	0.0	0.0	0.0			0.0
Total Lost Time (s)	5.0	5.0	7.0			7.0
	5.0	5.0	7.0			7.0
Lead/Lag						
Lead-Lag Optimize?	2.0	2.0	2.0			2.0
Vehicle Extension (s)	3.0	3.0	3.0			3.0
Minimum Gap (s)	3.0	3.0	3.0			3.0
Time Before Reduce (s)	0.0	0.0	0.0			0.0
Time To Reduce (s)	0.0	0.0	0.0			0.0
Recall Mode	None	None	C-Max			C-Max
Walk Time (s)						
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)						
Act Effct Green (s)	12.9	12.9	55.1			55.1
Actuated g/C Ratio	0.16	0.16	0.69			0.69
v/c Ratio	0.58	0.09	0.32			0.36
Control Delay	38.8	11.5	6.5			3.2
Queue Delay	0.0	0.0	0.0			0.0
Total Delay	38.8	11.5	6.5			3.2
LOS	D	В	Α			Α
Approach Delay	35.2		6.5			3.2
Approach LOS	D		A			Α
Queue Length 50th (ft)	73	0	60			30
Queue Length 95th (ft)	123	18	123			51
Internal Link Dist (ft)	241		848			439
Turn Bay Length (ft)	211	175	310			100
Base Capacity (vph)	633	574	1133			1209
Starvation Cap Reductn	0	0	0			0
Spillback Cap Reductn	0	0	0			0
Storage Cap Reductn	0	0	0			0
Reduced v/c Ratio	0.25	0.04	0.32			0.36
	0.20	0.04	0.32			0.30
Intersection Summary Area Type:	Other					
Cycle Length: 80	Oute					
Actuated Cycle Length: 80						
, ,		1.NDT a	nd E-CDT	Ctart of V	/allaw	
Offset: 13 (16%), Reference	ced to phase	T:NBT a	na 5:5B1,	Start of Y	ellow	
Natural Cycle: 40	P 4 1					
Control Type: Actuated-Co	ordinated					
Maximum v/c Ratio: 0.58						
Intersection Signal Delay:						n LOS: B
Intersection Capacity Utiliz	ation 40.3%			IC	U Level	of Service
natural Dariad (min) 15						

	۶	→	*	•	←	•	4	†	/	/	ţ	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	4					ሻ	↑ ↑		ሻ		7
Traffic Volume (vph)	256	393	292	0	0	0	85	83	52	47	133	388
Future Volume (vph)	256	393	292	0	0	0	85	83	52	47	133	388
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	16	16	16	12	12	12	12	12	12
Grade (%)		1%			-4%			-1%			1%	
Storage Length (ft)	0		0	0		0	385		0	190		460
Storage Lanes	1		0	0		0	1		0	1		1
Taper Length (ft)	25			25			86			86		
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.938						0.942				0.850
Flt Protected	0.950	0.998					0.950			0.950		
Satd. Flow (prot)	1580	1614	0	0	0	0	1695	3155	0	1727	1734	1530
Flt Permitted	0.950	0.998					0.593			0.661		
Satd. Flow (perm)	1580	1614	0	0	0	0	1058	3155	0	1202	1734	1530
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		34						55				413
Link Speed (mph)		30			30			55			55	
Link Distance (ft)		176			314			586			596	
Travel Time (s)		4.0			7.1			7.3			7.4	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	8%	4%	4%	0%	0%	0%	7%	11%	4%	4%	9%	5%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	272	418	311	0	0	0	90	88	55	50	141	413
Shared Lane Traffic (%)	10%											
Lane Group Flow (vph)	245	756	0	0	0	0	90	143	0	50	141	413
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12	•		12	•		12	J
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.01	1.01	1.01	0.82	0.82	0.82	0.99	0.99	0.99	1.01	1.01	1.01
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2					1	2		1	2	1
Detector Template												
Leading Detector (ft)	35	83					35	83		35	83	35
Trailing Detector (ft)	-5	-5					-5	-5		-5	-5	-5
Turn Type	Split	NA					pm+pt	NA		pm+pt	NA	pm+ov
Protected Phases	3	3					6	1		2	5	3
Permitted Phases							1			5		5
Detector Phase	3	3					6	1		2	5	3
Switch Phase								-		_		

	۶	→	\rightarrow	•	←	•	4	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	5.0					3.0	8.0		3.0	25.0	5.0
Minimum Split (s)	10.0	10.0					10.0	15.0		10.0	32.0	10.0
Total Split (s)	45.0	45.0					22.0	47.0		22.0	47.0	45.0
Total Split (%)	39.5%	39.5%					19.3%	41.2%		19.3%	41.2%	39.5%
Maximum Green (s)	40.0	40.0					15.0	40.0		15.0	40.0	40.0
Yellow Time (s)	4.0	4.0					5.0	5.0		5.0	5.0	4.0
All-Red Time (s)	1.0	1.0					2.0	2.0		2.0	2.0	1.0
Lost Time Adjust (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0					7.0	7.0		7.0	7.0	5.0
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0					2.0	2.0		2.0	2.0	3.0
Minimum Gap (s)	3.0	3.0					2.0	2.0		2.0	2.0	3.0
Time Before Reduce (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Recall Mode	None	None					None	Min		None	Min	None
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)	40.3	40.3					35.6	29.9		30.2	25.2	73.7
Actuated g/C Ratio	0.45	0.45					0.39	0.33		0.33	0.28	0.82
v/c Ratio	0.35	1.02					0.19	0.13		0.11	0.29	0.31
Control Delay	19.5	66.0					16.5	15.0		16.1	29.2	1.0
Queue Delay	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Total Delay	19.5	66.0					16.5	15.0		16.1	29.2	1.0
LOS	В	Е					В	В		В	С	Α
Approach Delay		54.6						15.6			8.8	
Approach LOS		D						В			Α	
Queue Length 50th (ft)	98	~502					30	19		16	66	0
Queue Length 95th (ft)	171	#775					59	43		37	122	20
Internal Link Dist (ft)		96			234			506			516	
Turn Bay Length (ft)							385			190		460
Base Capacity (vph)	705	739					550	1438		576	774	1325
Starvation Cap Reductn	0	0					0	0		0	0	0
Spillback Cap Reductn	0	0					0	0		0	0	0
Storage Cap Reductn	0	0					0	0		0	0	0
Reduced v/c Ratio	0.35	1.02					0.16	0.10		0.09	0.18	0.31
Internation Common .												

Intersection Summary

Area Type: Other

Cycle Length: 114

Actuated Cycle Length: 90.2

Natural Cycle: 90

Control Type: Actuated-Uncoordinated

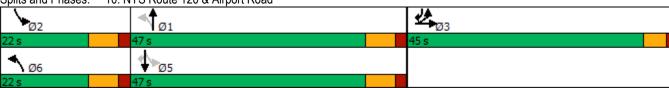
Maximum v/c Ratio: 1.02 Intersection Signal Delay: 34.6 Intersection Capacity Utilization 67.7%

Intersection LOS: C
ICU Level of Service C

Analysis Period (min) 15

Synchro 10 Report Page 26

[~] Volume exceeds capacity, queue is theoretically infinite.


Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

18002018A - N.T.

	۶	-	•	•	•	•	4	†	/	>	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ની			f)				7			
Traffic Volume (vph)	1	570	0	0	342	131	0	0	371	0	0	0
Future Volume (vph)	1	570	0	0	342	131	0	0	371	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	15	15	15	12	12	12	13	13	13	16	16	16
Grade (%)		1%			-1%			1%			2%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	0		0	0		0	0		1	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt					0.963				0.865			
Flt Protected												
Satd. Flow (prot)	0	2039	0	0	1754	0	0	0	1565	0	0	0
Flt Permitted												
Satd. Flow (perm)	0	2039	0	0	1754	0	0	0	1565	0	0	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		331			176			301			377	
Travel Time (s)		7.5			4.0			6.8			8.6	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	2%	0%	0%	4%	7%	0%	0%	8%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	1	633	0	0	380	146	0	0	412	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	634	0	0	526	0	0	0	412	0	0	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0	•		0			0	J
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	0.89	0.89	0.89	0.99	0.99	0.99	0.96	0.96	0.96	0.86	0.86	0.86
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Free			Free			Stop			Stop	
Intersection Summary												
Area Type:	Other											

Area Type: Other Control Type: Unsignalized

Intersection Capacity Utilization 59.7%

ICU Level of Service B

Intersection												
Int Delay, s/veh	13.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			ĵ.				7			
Traffic Vol, veh/h	1	570	0	0	342	131	0	0	371	0	0	0
Future Vol, veh/h	1	570	0	0	342	131	0	0	371	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	<u>-</u>	-	None
Storage Length	-	-	-	-	-	-	-	-	0	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	16983	-
Grade, %	-	1	-	-	-1	-	-	1	-	-	2	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	0	2	0	0	4	7	0	0	8	0	0	0
Mvmt Flow	1	633	0	0	380	146	0	0	412	0	0	0
Major/Minor N	1ajor1		N	Major2		N	/linor1					
Conflicting Flow All	526	0	_	-	_	0	-	_	633			
Stage 1	-	-	-	-	_	-	-	_	-			
Stage 2	_	-	_	-	-	_	-	_	_			
Critical Hdwy	4.1	-	-	-	_	-	-	_	6.38			
Critical Hdwy Stg 1	-	-	-	-	-	-	-	_	-			
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-			
Follow-up Hdwy	2.2	-	-	-	-	-	-	-	3.372			
Pot Cap-1 Maneuver	1051	-	0	0	-	-	0	0	461			
Stage 1	-	-	0	0	-	-	0	0	-			
Stage 2	-	-	0	0	-	-	0	0	-			
Platoon blocked, %		-			-	-						
Mov Cap-1 Maneuver	1051	-	-	-	-	-	-	0	461			
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	0	-			
Stage 1	-	-	-	-	-	-	-	0	-			
Stage 2	-	-	-	-	-	-	-	0	-			
-												
Approach	EB			WB			NB					
HCM Control Delay, s	0			0			49.9					
HCM LOS							E					
							_					
Minor Lane/Major Mvmt		NBLn1	EBL	EBT	WBT	WBR						
Capacity (veh/h)		461	1051									
HCM Lane V/C Ratio		0.894		_	_	_						
HCM Control Delay (s)		49.9	8.4	0	_	_						
HCM Lane LOS		+3.3 E	Α	A	_	_						
HCM 95th %tile Q(veh)		9.8	0	-	_	_						
HOW JOHN JUNE Q(VEII)		5.0	U									

3		
12: I-684 SB On-Ramp/	′I-684 SB Off-Ramp & <i>F</i>	irport Road

	۶	-	\rightarrow	•	←	•	1	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					ર્ન						4	
Traffic Volume (vph)	0	0	0	342	Ö	0	0	0	0	571	Ö	0
Future Volume (vph)	0	0	0	342	0	0	0	0	0	571	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	14	14	13	13	12
Grade (%)		0%			-1%			2%			1%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	0		0	0		0	0		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt												
Flt Protected					0.950						0.950	
Satd. Flow (prot)	0	0	0	0	1744	0	0	0	0	0	1819	0
Flt Permitted					0.950						0.950	
Satd. Flow (perm)	0	0	0	0	1744	0	0	0	0	0	1819	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		71			331			377			345	
Travel Time (s)		1.6			7.5			8.6			7.8	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	0%	4%	0%	0%	0%	0%	0%	2%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	0	0	0	393	0	0	0	0	0	656	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	0	0	0	393	0	0	0	0	0	656	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	0.99	0.99	0.99	1.01	0.93	0.93	0.96	0.96	1.01
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Free			Free			Stop			Stop	
Intersection Summary												

Area Type:
Control Type: Unsignalized Other

Intersection Capacity Utilization 57.2% Analysis Period (min) 15

ICU Level of Service B

Intersection												
Int Delay, s/veh	275.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			LDIT	1122	4	11511	IIDL	1101	TTDIT.	UDL	4	ODIT
Traffic Vol, veh/h	0	0	0	342	0	0	0	0	0	571	0	0
Future Vol, veh/h	0	0	0	342	0	0	0	0	0	571	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-		-	-	None	-	-	None	-	-	None
Storage Length	_	_	-	_	_	-	_	_	-	_	_	-
Veh in Median Storage	.# -	0	_	_	0	_	_	16974	_	_	0	_
Grade, %	-	0	_	-	-1	_	_	2	_	_	1	_
Peak Hour Factor	87	87	87	87	87	87	87	87	87	87	87	87
Heavy Vehicles, %	0	0	0	4	0	0	0	0	0	2	0	0
Mymt Flow	0	0	0	393	0	0	0	0	0	656	0	0
MIVINET IOW				000	v					000		
Major/Minor				Major2						Minor2		
					0	0				786	786	
Conflicting Flow All				0						786		-
Stage 1				-	-	-					786	-
Stage 2				-	-	-				0	0	-
Critical Hdwy				4.14	-	-				6.62	6.7	-
Critical Hdwy Stg 1				-	-	-				5.62	5.7	-
Critical Hdwy Stg 2				- 0.00	-	-				2 540	-	-
Follow-up Hdwy				2.236	-	-				3.518	4	-
Pot Cap-1 Maneuver				-	-	0				~ 346	313	0
Stage 1				-	-	0				~ 430	389	0
Stage 2				-	-	0				-	-	0
Platoon blocked, %					-					0.40	•	
Mov Cap-1 Maneuver				-	-	-				~ 346	0	-
Mov Cap-2 Maneuver				-	-	-				~ 346	0	-
Stage 1				-	-	-				~ 430	0	-
Stage 2				-	-	-				-	0	-
				14/5						^=		
Approach				WB						SB		
HCM Control Delay, s									\$	439.9		
HCM LOS										F		
			\4/==	001 1								
Minor Lane/Major Mvm	it	WBL	WBT:									
Capacity (veh/h)		-	-	346								
HCM Lane V/C Ratio		-		1.897								
HCM Control Delay (s)		-	-\$	439.9								
HCM Lane LOS		-	-	F								
HCM 95th %tile Q(veh)		-	-	44.3								
Notes												
~: Volume exceeds cap	pacity	\$: De	lay exc	eeds 30)0s	+: Comp	utation	Not De	efined	*: All ı	maior v	olume ir
		Ţ. _ U	, 00								, •. v	

Year 2019 Existing Traffic Volumes
13: NYS Route 22 & North Castle Drive (IBM)/NYS Route 128

		4	\mathbf{x}	À	F	*	₹	ን	×	~	Ĺ	×	*
Traffic Volume (γρh)	Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Traffic Volume (γρh)	Lane Configurations		4	7	*	•	7	*	^	7	*	44	7
Future Volume (viph) 127 23 189 12 3 9 176 480 122 372 726 167 1681 1684 1694 1990 19		127								132			_
Ideal Flow (ryphpi) 1900													
Lane Width (ft)													
Grade (%)													
Storage Length (ft)	. ,												
Storage Lanes	` '	0		250	0		225	680		250	400		250
Taper Length (ft)		0			1			1			1		
Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 1.00 1.00 0.95 1.00		25			25			86			86		
Ped Bike Factor Frt		1.00	1.00		1.00	1.00	1.00	0.95	1.00		0.95	1.00	
Fith													
Fit Protected 0.959				0.850			0.850			0.850			0.850
Satd. Flow (prot) 0 1927 1495 1357 1429 1455 1662 3471 1553 1787 3539 1553 Flit Permitted 0.757 0.605 0.950			0.959		0.950			0.950			0.950		
Fit Permitted		0		1495		1429	1455		3471	1553		3539	1553
Satd. Flow (perm)		•											
Page		0		1495		1429	1455		3471	1553		3539	1553
Satid. Flow (RTOR)			-			-							
Link Speed (mph)													
Link Distance (ft)	` ,		30			30			55			55	
Travel Time (s)													
Confi. Peds. (#/hr)	()												
Confile Bikes (#/hr) Peak Hour Factor 0.97													
Peak Hour Factor 0.97 0.													
Heavy Vehicles (%)	` ,	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Bus Blockages (#/hr) 0 0 0 0 0 0 0 0 0	Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Bus Blockages (#/hr) 0 0 0 0 0 0 0 0 0	Heavy Vehicles (%)	4%	4%	8%	33%	33%	11%	5%	4%	4%	1%	2%	4%
Parking (#/hr) Mid-Block Traffic (%) 0% 0% 0% 0% 0% 0% 0%	` ,	0		0	0	0	0	0	0		0		
Mid-Block Traffic (%) 0% 0% 0% 0% 0% 0% Adj. Flow (vph) 131 24 195 12 3 9 181 495 136 384 748 172 Shared Lane Traffic (%) Lane Group Flow (vph) 0 155 195 12 3 9 181 495 136 384 748 172 Enter Blocked Intersection No No <td></td>													
Adj. Flow (vph) 131 24 195 12 3 9 181 495 136 384 748 172 Shared Lane Traffic (%) Lane Group Flow (vph) 0 155 195 12 3 9 181 495 136 384 748 172 Enter Blocked Intersection Log (processed) No N			0%			0%			0%			0%	
Shared Lane Traffic (%) Lane Group Flow (vph) 0 155 195 12 3 9 181 495 136 384 748 172	Adj. Flow (vph)	131	24	195	12	3	9	181	495	136	384	748	172
Enter Blocked Intersection													
Enter Blocked Intersection		0	155	195	12	3	9	181	495	136	384	748	172
Median Width(ft) 12 12 12 12 12 12 12 12 12 12 Link Offset(ft) 0 1.00 1		No	No	No	No	No	No	No	No	No	No	No	No
Median Width(ft) 12 16 10	Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Link Offset(fft) 0 0 0 0 Crosswalk Width(fft) 16 16 16 16 Two way Left Turn Lane Headway Factor 1.00 0.88 1.00 1.00 1.00 1.04 1.00 1							•			•			
Crosswalk Width(ft) 16 16 16 16 16 Two way Left Turn Lane Headway Factor 1.00 0.88 1.00 1.00 1.00 1.04 1.00 1.00 1.00 1.00 Turning Speed (mph) 15 9 15 9 15 9 15 9 Number of Detectors 1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1			0			0			0			0	
Two way Left Turn Lane Headway Factor 1.00 0.88 1.00			16			16						16	
Headway Factor 1.00 0.88 1.00													
Turning Speed (mph) 15 9 15 9 15 9 15 9 15 9 Number of Detectors 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1		1.00	0.88	1.00	1.00	1.00	1.00	1.04	1.00	1.00	1.00	1.00	1.00
Number of Detectors 1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 2 1 2 5 5 2 5		15		9	15		9	15		9	15		9
Leading Detector (ft) 20 43 6 6 6 6 83 6 6 83 6 6 Trailing Detector (ft) 0 0 0 0 0 0 -5 0 0 -5 0 0 Turn Type Perm NA Perm Perm NA Perm Prot		1	1	1	1	1	1	2	1	1	2	1	1
Leading Detector (ft) 20 43 6 6 6 6 83 6 6 83 6 6 Trailing Detector (ft) 0 0 0 0 0 0 -5 0 0 -5 0 0 Turn Type Perm NA Perm Perm NA Perm Prot	Detector Template	Left											
Trailing Detector (ft) 0 0 0 0 0 0 0 -5 0 0 -5 0 0 Turn Type Perm NA Perm NA Perm Prot NA Perm Prot NA Perm Prot NA Perm		20	43	6	6	6	6	83	6	6	83	6	6
Turn Type Perm NA Perm Perm NA Perm Prot NA Perm Perm Prot NA Perm		0	0	0	0	0	0	-5	0	0	-5	0	0
Protected Phases 3 3 6 1 2 5 Permitted Phases 3 3 3 3 1 5 Detector Phase 3 3 3 3 6 1 1 2 5 5		Perm	NA	Perm	Perm	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Permitted Phases 3 3 3 3 1 5 Detector Phase 3 3 3 3 6 1 1 2 5 5													
Detector Phase 3 3 3 3 3 6 1 1 2 5 5		3		3	3		3			1			5
			3			3		6	1	1	2	5	

	4	λ	Ž	~	×	₹	7	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	2.0	10.0	10.0	2.0	10.0	10.0
Minimum Split (s)	31.0	31.0	31.0	31.0	31.0	31.0	16.0	42.0	42.0	16.0	42.0	42.0
Total Split (s)	46.0	46.0	46.0	46.0	46.0	46.0	36.0	42.0	42.0	36.0	42.0	42.0
Total Split (%)	37.1%	37.1%	37.1%	37.1%	37.1%	37.1%	29.0%	33.9%	33.9%	29.0%	33.9%	33.9%
Maximum Green (s)	40.0	40.0	40.0	40.0	40.0	40.0	30.0	36.0	36.0	30.0	36.0	36.0
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	6.0	6.0	6.0	6.0	6.0	6.0	2.0	6.0	6.0	2.0	6.0	6.0
Minimum Gap (s)	3.0	3.0	3.0	3.0	3.0	3.0	2.0	3.0	3.0	2.0	4.0	4.0
Time Before Reduce (s)	20.0	20.0	20.0	20.0	20.0	20.0	0.0	20.0	20.0	0.0	20.0	20.0
Time To Reduce (s)	10.0	10.0	10.0	10.0	10.0	10.0	0.0	10.0	10.0	0.0	10.0	10.0
Recall Mode	Min	Min	Min	Min	Min	Min	None	Max	Max	None	Max	Max
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		19.0	19.0	19.0	19.0	19.0	15.3	36.4	36.4	25.8	46.9	46.9
Actuated g/C Ratio		0.19	0.19	0.19	0.19	0.19	0.15	0.37	0.37	0.26	0.47	0.47
v/c Ratio		0.53	0.44	0.07	0.01	0.03	0.71	0.39	0.21	0.83	0.45	0.21
Control Delay		43.7	8.3	34.3	32.7	0.1	56.2	26.1	5.5	51.5	20.3	3.9
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		43.7	8.3	34.3	32.7	0.1	56.2	26.1	5.5	51.5	20.3	3.9
LOS		D	Α	С	С	Α	Е	С	Α	D	С	Α
Approach Delay		24.0			21.3			29.4			27.3	
Approach LOS		С			С			С			С	
Queue Length 50th (ft)		91	0	6	2	0	113	125	0	229	162	0
Queue Length 95th (ft)		158	57	23	9	0	191	197	44	#404	275	43
Internal Link Dist (ft)		530			518			1111			655	
Turn Bay Length (ft)			250			225	680		250	400		250
Base Capacity (vph)		618	723	351	580	638	506	1269	654	544	1669	823
Starvation Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio		0.25	0.27	0.03	0.01	0.01	0.36	0.39	0.21	0.71	0.45	0.21

Intersection Summary

Area Type: Other

Cycle Length: 124

Actuated Cycle Length: 99.4

Natural Cycle: 90

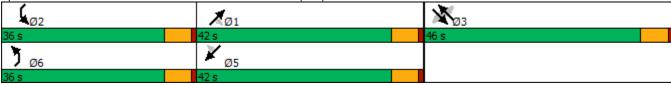
Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.83

Intersection Signal Delay: 27.5

Intersection Capacity Utilization 63.8% ICU Level of Service B

Analysis Period (min) 15


95th percentile volume exceeds capacity, queue may be longer.

18002018A - N.T. Page 33

Intersection LOS: C

Queue shown is maximum after two cycles.

Splits and Phases: 13: NYS Route 22 & North Castle Drive (IBM)/NYS Route 128

	_#	•	•	†	*	₩	ţ	4	€	</th <th>ŧ</th> <th></th>	ŧ	
Lane Group	EBL	EBR	NBL	NBT	NBR	SBL	SBT	SBR	SWL	SWR	SWR2	
Lane Configurations	Ä	7		ર્ન	7		4		44			
Traffic Volume (vph)	2	4	3	471	204	0	1157	2	273	2	1	
Future Volume (vph)	2	4	3	471	204	0	1157	2	273	2	1	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Lane Width (ft)	10	10	11	11	11	12	12	12	11	11	11	
Grade (%)	0%			4%			1%		0%			
Storage Length (ft)	0	0	0		0	0		0	0	0		
Storage Lanes	1	1	0		1	0		0	2	0		
Taper Length (ft)	25		25			25			25			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.97	0.95	0.95	
Ped Bike Factor				1.00			1.00		1.00			
Frt		0.850			0.850				0.998			
Flt Protected	0.950								0.953			
Satd. Flow (prot)	1685	1507	0	1667	1342	0	1835	0	3055	0	0	
Flt Permitted	0.950			0.995					0.953			
Satd. Flow (perm)	1685	1507	0	1659	1342	0	1835	0	3055	0	0	
Right Turn on Red		Yes			Yes			No			No	
Satd. Flow (RTOR)		72			208							
Link Speed (mph)	30			35			35		35			
Link Distance (ft)	155			796			597		998			
Travel Time (s)	3.5			15.5			11.6		19.4			
Confl. Peds. (#/hr)	0.0		1				•	1		1		
Confl. Bikes (#/hr)			•					•		•		
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	
Heavy Vehicles (%)	0%	0%	0%	8%	14%	0%	3%	0%	11%	0%	0%	
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	
Parking (#/hr)						•						
Mid-Block Traffic (%)	0%			0%			0%		0%			
Adj. Flow (vph)	2	4	3	481	208	0	1181	2	279	2	1	
Shared Lane Traffic (%)	_	•	J	101	200			_	2.0	_	•	
Lane Group Flow (vph)	2	4	0	484	208	0	1183	0	282	0	0	
Enter Blocked Intersection	No	No.	No	No	No	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Left	Right	Left	Left	Right	Left	Right	Right	
Median Width(ft)	10	ragne	Loit	0	rugiit	Loit	0	ragne	22	rugiit	rugiit	
Link Offset(ft)	0			0			0		0			
Crosswalk Width(ft)	16			16			16		16			
Two way Left Turn Lane	10			10			10		10			
Headway Factor	1.09	1.09	1.07	1.07	1.07	1.01	1.01	1.01	1.04	1.04	1.04	
Turning Speed (mph)	1.05	9	1.07	1.07	9	1.01	1.01	9	15	9	9	
Number of Detectors	1	1	10	2	1	13	2	3	1	3	3	
Detector Template	ı	'	Left		'	Left			ı			
Leading Detector (ft)	35	35	20	83	35	20	83		35			
Trailing Detector (ft)	-5	-5	0	-5	-5	0	-5		-5			
Turn Type	Prot	Perm	Perm	NA	pm+ov	U	NA		Prot			
Protected Phases	3	FEIIII	FEIIII	1 1	μπ+ον 4		5		4			
Permitted Phases	3	3	1	I I	1	5	Ü		4			
	2			1	-				1			
Detector Phase	3	3	1	1	4	5	5		4			
Switch Phase												

	_≠	•	4	†	7	4	ţ	4	€	~	t	
Lane Group	EBL	EBR	NBL	NBT	NBR	SBL	SBT	SBR	SWL	SWR	SWR2	
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0			
Minimum Split (s)	10.0	10.0	11.0	11.0	11.0	11.0	11.0		11.0			
Total Split (s)	10.0	10.0	106.0	106.0	21.0	106.0	106.0		21.0			
Total Split (%)	7.3%	7.3%	77.4%	77.4%	15.3%	77.4%	77.4%		15.3%			
Maximum Green (s)	5.0	5.0	100.0	100.0	15.0	100.0	100.0		15.0			
Yellow Time (s)	4.0	4.0	5.0	5.0	5.0	5.0	5.0		5.0			
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0			
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0		0.0			
Total Lost Time (s)	5.0	5.0		6.0	6.0		6.0		6.0			
Lead/Lag	Lag	Lag			Lead				Lead			
Lead-Lag Optimize?	Yes	Yes			Yes				Yes			
Vehicle Extension (s)	5.0	5.0	5.0	5.0	3.0	5.0	5.0		3.0			
Minimum Gap (s)	5.0	5.0	5.0	5.0	3.0	5.0	5.0		3.0			
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0			
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0			
Recall Mode	None	None	Max	Max	None	Max	Max		None			
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)	5.0	5.0		100.1	125.6		100.1		14.6			
Actuated g/C Ratio	0.04	0.04		0.78	0.98		0.78		0.11			
v/c Ratio	0.03	0.03		0.37	0.16		0.83		0.81			
Control Delay	62.5	0.5		5.8	0.3		16.4		74.5			
Queue Delay	0.0	0.0		0.0	0.0		0.0		0.0			
Total Delay	62.5	0.5		5.8	0.3		16.4		74.5			
LOS	E	Α		Α	Α		В		E			
Approach Delay	21.2			4.2			16.4		74.5			
Approach LOS	С			Α			В		Е			
Queue Length 50th (ft)	2	0		100	0		486		118			
Queue Length 95th (ft)	12	0		204	7		1030		#204			
Internal Link Dist (ft)	75			716			517		918			
Turn Bay Length (ft)												
Base Capacity (vph)	65	127		1291	1308		1427		356			
Starvation Cap Reductn	0	0		0	0		0		0			
Spillback Cap Reductn	0	0		0	0		0		0			
Storage Cap Reductn	0	0		0	0		0		0			
Reduced v/c Ratio	0.03	0.03		0.37	0.16		0.83		0.79			
Intono action Common and												

Intersection Summary

Area Type: Other

Cycle Length: 137

Actuated Cycle Length: 128.6

Natural Cycle: 90

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.83

Intersection Signal Delay: 20.1 Intersection LOS: C
Intersection Capacity Utilization 87.2% ICU Level of Service E

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Year 2019 Existing Traffic Volumes Weekday Peak AM Hour 15: Central Westchester Expressway & NYS Route 22 & Reservoir Road & Church Stret 16/2019

Lane Group		•	-	•	•	←	•	†	/	/	ţ	4	> J
Traffic Volume (vph)	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR2	NBT	NBR	SBL	SBT	SBR	SBR2
Traffic Volume (vph)	Lane Configurations	ř	£			ર્ની	*	^	7	ř	↑ Ъ		
Future Volume (vph) 257 73 203 69 63 32 468 47 32 1149 236 1				203	69		32		47	32		236	1
Ideal Flow (ryphpi) 1900		257		203	69	63	32	468	47	32	1149	236	1
Lane Width (ft)				1900			1900						1900
Storage Length (ft)													
Storage Length (ft)	. ,		2%			2%		4%					
Storage Lanes	` '	115		0	0				160	110		0	
Taper Length (ft)		1		0	0				1	1		0	
Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.95 1.00 0.95	ů .	86			25					86			
Ped Bike Factor			1.00	1.00		1.00	1.00	0.95	1.00		0.95	0.95	0.95
Fith			0.98			1.00							
Fit Protected 1595 1555 0 0 1754 1508 3257 1500 1805 3470 0 0 0 0 0 0 0 0 0			0.890						0.850		0.974		
Fit Permitted	Flt Protected					0.974				0.950			
Fit Permitted	Satd. Flow (prot)	1595	1555	0	0	1754	1508	3257	1500	1805	3470	0	0
Satd. Flow (perm) 1590 1555 0 0 1748 1487 3257 1500 610 3470 0 0 0 0 0 0 0 0 0													
No Satd Flow (RTOR) Satd Sa	Satd. Flow (perm)	1590	1555	0	0		1487	3257	1500		3470	0	0
Satd. Flow (RTOR)													
Link Speed (mph)													
Link Distance (ft)	· ,		35			30		45			35		
Travel Time (s)	,												
Confi. Peds. (#/hr)	` ,												
Confile Bikes (#/hr) Peak Hour Factor 0.95		2		6	6		2						
Peak Hour Factor 0.95 0.													
Heavy Vehicles (%)	` ,	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Bus Blockages (#/hr) 0 0 0 0 0 0 0 0 0	Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Parking (#/hr) Mid-Block Traffic (%) O% O% O% O% O% O% O%	Heavy Vehicles (%)	14%	6%	1%	3%	6%	6%	5%	2%	3%	3%	11%	0%
Parking (#/hr) Mid-Block Traffic (%) 0% 0% 0% 0% 0% 0% 0%	, ,	0	0	0	0	0	0	0	0	0	0	0	0
Adj. Flow (vph) 271 77 214 73 66 34 493 49 34 1209 248 1 Shared Lane Traffic (%) Lane Group Flow (vph) 271 291 0 0 139 34 493 49 34 1458 0 0 Enter Blocked Intersection No N	Parking (#/hr)												
Shared Lane Traffic (%) Lane Group Flow (vph) 271 291 0 0 139 34 493 49 34 1458 0 0			0%			0%		0%			0%		
Lane Group Flow (vph) 271 291 0 0 139 34 493 49 34 1458 0 0 Enter Blocked Intersection No No <td< td=""><td>Adj. Flow (vph)</td><td>271</td><td>77</td><td>214</td><td>73</td><td>66</td><td>34</td><td>493</td><td>49</td><td>34</td><td>1209</td><td>248</td><td>1</td></td<>	Adj. Flow (vph)	271	77	214	73	66	34	493	49	34	1209	248	1
Enter Blocked Intersection													
Enter Blocked Intersection		271	291	0	0	139	34	493	49	34	1458	0	0
Median Width(ft) 11 11 12 12 Link Offset(ft) 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 Two way Left Turn Lane 1.06 1.06 1.01 1.01 1.07 1.07 0.96 0.96 0.96 0.96 Headway Factor 1.06 1.06 1.01 1.01 1.07 1.07 0.96 0.96 0.96 0.96 Turning Speed (mph) 15 9 15 9 9 15 9 9 9 15 9 9 9 15 9		No	No	No	No	No	No	No	No	No	No	No	No
Median Width(ft) 11 11 11 12 12 Link Offset(ft) 0	Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Right	Left	Left	Right	Right
Link Offset(fft) 0 0 0 0 0 Crosswalk Width(fft) 16 16 16 16 Two way Left Turn Lane Headway Factor 1.06 1.06 1.01 1.01 1.01 1.07 1.07 0.96 0.96 0.96 0.96 Turning Speed (mph) 15 9 15 9 9 15 9 9 Number of Detectors 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>J</td><td></td><td></td><td></td><td></td><td>•</td><td></td></t<>							J					•	
Crosswalk Width(ft) 16 16 16 16 16 16 16 Town way Left Turn Lane Turn Lane Turn Lane Image: Control of the Land of the Lan			0			0		0			0		
Two way Left Turn Lane Headway Factor 1.06 1.06 1.06 1.06 1.01 1.01 1.01 1.07 1.07 0.96 0.96 0.96 0.96 0.96 1.096			16			16					16		
Headway Factor													
Turning Speed (mph) 15 9 15 9 9 15 9 9 Number of Detectors 1 2 1 2 1 2 1 1 2 Detector Template Left Leading Detector (ft) 35 83 20 83 35 83 35 83 Trailing Detector (ft) -5 -5 -5 0 -5		1.06	1.06	1.06	1.01	1.01	1.01	1.07	1.07	0.96	0.96	0.96	0.96
Number of Detectors 1 2 1 2 1 2 1 2 1 1 2 Detector Template Left Leading Detector (ft) 35 83 20 83 35 83 35 83 Trailing Detector (ft) -5 -5 0 -5				9	15		9		9	15		9	9
Leading Detector (ft) 35 83 20 83 35 83 35 83 Trailing Detector (ft) -5 -5 -5 -5 -5 -5 -5 -5 Turn Type Split NA Split NA pm+ov NA pm+ov pm+pt NA Protected Phases 3 3 4 4 5 6 4 5 2 Permitted Phases 3 3 4 4 5 6 4 5 2 Detector Phase 3 3 4 4 5 6 4 5 2			2		1	2	1	2	1	1	2		
Leading Detector (ft) 35 83 20 83 35 83 35 83 Trailing Detector (ft) -5 -5 -5 -5 -5 -5 -5 -5 Turn Type Split NA Split NA pm+ov NA pm+ov pm+pt NA Protected Phases 3 3 4 4 5 6 4 5 2 Permitted Phases 3 3 4 4 5 6 4 5 2 Detector Phase 3 3 4 4 5 6 4 5 2	Detector Template				Left								
Trailing Detector (ft) -5 -5 0 -5 -5 -5 -5 -5 -5 Turn Type Split NA Split NA pm+ov NA pm+pt NA Protected Phases 3 3 4 4 5 6 4 5 2 Permitted Phases 4 4 5 6 4 5 2 Detector Phase 3 3 4 4 5 6 4 5 2		35	83		20	83	35	83	35	35	83		
Turn Type Split NA Split NA pm+ov NA pm+ov pm+pt NA Protected Phases 3 3 4 4 5 6 4 5 2 Permitted Phases 4 6 2 Detector Phase 3 3 4 4 5 6 4 5 2	Trailing Detector (ft)	-5	-5		0	-5	-5	-5	-5	-5	-5		
Protected Phases 3 3 4 4 5 6 4 5 2 Permitted Phases 4 6 2 Detector Phase 3 3 4 4 5 6 4 5 2		Split	NA		Split	NA	pm+ov	NA	pm+ov	pm+pt	NA		
Permitted Phases 4 6 2 Detector Phase 3 3 4 4 5 6 4 5 2									•				
Detector Phase 3 3 4 4 5 6 4 5 2													
		3	3		4	4		6			2		
	Switch Phase												

Synchro 10 Report Page 38 18002018A - N.T.

Lane Group Ø	7
Lane Configurations	
Traffic Volume (vph)	
Future Volume (vph)	
Ideal Flow (vphpl)	
Lane Width (ft)	
Grade (%)	
Storage Length (ft)	
Storage Lanes	
Taper Length (ft)	
Lane Util. Factor	
Ped Bike Factor	
Frt	
Flt Protected	
Satd. Flow (prot)	
Flt Permitted	
Satd. Flow (perm)	
Right Turn on Red	
Satd. Flow (RTOR)	
Link Speed (mph)	
Link Distance (ft)	
Travel Time (s)	
Confl. Peds. (#/hr)	
Confl. Bikes (#/hr)	
Peak Hour Factor	
Growth Factor	
Heavy Vehicles (%)	
Bus Blockages (#/hr)	
Parking (#/hr)	
Mid-Block Traffic (%)	
Adj. Flow (vph)	
Shared Lane Traffic (%)	
Lane Group Flow (vph)	
Enter Blocked Intersection	
Lane Alignment	
Median Width(ft)	
Link Offset(ft)	
Crosswalk Width(ft)	
Two way Left Turn Lane	
Headway Factor	
Turning Speed (mph)	
Number of Detectors	
Detector Template	
Leading Detector (ft)	
Trailing Detector (ft)	
Turn Type	
	7
Permitted Phases	
Detector Phase Switch Phase	
Switch Phace	

Synchro 10 Report Page 39

15: Central Westchester Expressway & NYS Route 22 & Reservoir Road & Church Stret 16/2019

	۶	→	•	•	←	•	†	/	/	ļ	4	» J
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR2	NBT	NBR	SBL	SBT	SBR	SBR2
Minimum Initial (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0	5.0		
Minimum Split (s)	39.0	39.0		11.0	11.0	11.0	11.0	11.0	11.0	31.0		
Total Split (s)	51.0	51.0		36.0	36.0	26.0	51.0	36.0	26.0	77.0		
Total Split (%)	25.5%	25.5%		18.0%	18.0%	13.0%	25.5%	18.0%	13.0%	38.5%		
Maximum Green (s)	45.0	45.0		30.0	30.0	20.0	45.0	30.0	20.0	71.0		
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0		
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0		
Lost Time Adjust (s)	0.0	0.0			0.0	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	6.0	6.0			6.0	6.0	6.0	6.0	6.0	6.0		
Lead/Lag	Lead	Lead		Lag	Lag	Lead	Lag	Lag	Lead			
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes			
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0		
Minimum Gap (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0		
Time Before Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Time To Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Recall Mode	None	None		None	None	None	Min	None	None	Min		
Walk Time (s)	8.0	8.0								8.0		
Flash Dont Walk (s)	25.0	25.0								17.0		
Pedestrian Calls (#/hr)	6	6								0		
Act Effct Green (s)	38.6	38.6			20.0	27.9	60.1	80.1	71.3	71.3		
Actuated g/C Ratio	0.21	0.21			0.11	0.15	0.33	0.43	0.39	0.39		
v/c Ratio	0.81	0.89			0.73	0.12	0.46	0.07	0.12	1.09		
Control Delay	89.1	99.7			102.2	0.8	53.9	1.0	40.1	102.8		
Queue Delay	0.0	0.0			0.0	0.0	0.0	0.0	0.0	0.0		
Total Delay	89.1	99.7			102.2	0.8	53.9	1.0	40.1	102.8		
LOS	F	F			F	Α	D	Α	D	F		
Approach Delay		94.6			82.2		49.1			101.4		
Approach LOS	040	F			F	0	D	0	07	F		
Queue Length 50th (ft)	316	346			169	0	263	0	27	~1072		
Queue Length 95th (ft)	453	#522			257	0	357	4	59	#1321		
Internal Link Dist (ft)	115	452			395	100	449	100	110	698		
Turn Bay Length (ft)	115	204			200	180	1061	160	110	1212		
Base Capacity (vph)	391	381			286	385	1061	773 0	366	1343		
Starvation Cap Reductn	0	0			0	0	0		0	0		
Spillback Cap Reductn	0	0			0	0	0	0	0	0		
Storage Cap Reductn	0 0 0	0.76			0 40	0	0 46	0.06	0 00	1.00		
Reduced v/c Ratio	0.69	0.76			0.49	0.09	0.46	0.06	0.09	1.09		
Intersection Summary												
Area Type:	Other											
Cycle Length: 200	4.0											
Actuated Cycle Length: 18	4.2											
Natural Cycle: 150	الم مغم ما أنه معام ما											

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 1.09 Intersection Signal Delay: 88.6 Intersection Capacity Utilization 88.7%

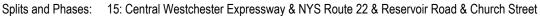
Intersection LOS: F ICU Level of Service E

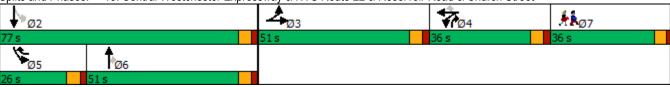
Analysis Period (min) 15

~ Volume exceeds capacity, queue is theoretically infinite.

Intersection Summary

Lane Group	Ø7
Minimum Initial (s)	8.0
Minimum Split (s)	36.0
Total Split (s)	36.0
Total Split (%)	18%
Maximum Green (s)	31.0
Yellow Time (s)	3.5
All-Red Time (s)	1.5
Lost Time Adjust (s)	
Total Lost Time (s)	
Lead/Lag	
Lead-Lag Optimize?	
Vehicle Extension (s)	3.0
Minimum Gap (s)	3.0
Time Before Reduce (s)	0.0
Time To Reduce (s)	0.0
Recall Mode	Ped
Walk Time (s)	8.0
Flash Dont Walk (s)	23.0
Pedestrian Calls (#/hr)	2
Act Effct Green (s)	
Actuated g/C Ratio	
v/c Ratio	
Control Delay	
Queue Delay	
Total Delay	
LOS	
Approach Delay	
Approach LOS	
Queue Length 50th (ft)	
Queue Length 95th (ft)	
Internal Link Dist (ft)	
Turn Bay Length (ft)	
Base Capacity (vph)	
Starvation Cap Reductn	
Spillback Cap Reductn	
Storage Cap Reductn	
Reduced v/c Ratio	


Page 41 18002018A - N.T.

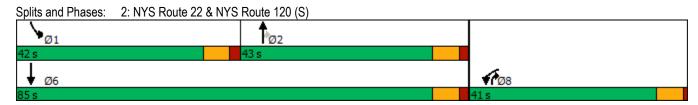

15: Central Westchester Expressway & NYS Route 22 & Reservoir Road & Church Stret 16/2019

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

18002018A - N.T. Page 42


	ሽ	†	ļ	₩ J	•	>
Lane Group	NBL	NBT	SBT	SBR	SEL	SER
Lane Configurations	ች	^	^	7	ሻ	7
Traffic Volume (vph)	140	300	271	209	162	168
Future Volume (vph)	140	300	271	209	162	168
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1900	1900	1900	1900	1900	1900
	10	0%	0%	10	0%	10
Grade (%)	050	U%	0%	F00		0
Storage Length (ft)	250			500	250	0
Storage Lanes	1			1	1	1
Taper Length (ft)	86				86	
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00
Ped Bike Factor						
Frt				0.850		0.850
Flt Protected	0.950				0.950	
Satd. Flow (prot)	1620	3209	3240	1436	1560	1449
Flt Permitted	0.950				0.950	
Satd. Flow (perm)	1620	3209	3240	1436	1560	1449
Right Turn on Red	1020	0200	0270	Yes	1000	Yes
				218		175
Satd. Flow (RTOR)		EE	EE	210	20	1/5
Link Speed (mph)		55 767	55		30	
Link Distance (ft)		767	1064		872	
Travel Time (s)		9.5	13.2		19.8	
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	4%	5%	4%	5%	8%	4%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)				•	•	•
Mid-Block Traffic (%)		0%	0%		0%	
Adj. Flow (vph)	146	313	282	218	169	175
	140	313	202	210	103	173
Shared Lane Traffic (%)	146	242	202	240	160	175
Lane Group Flow (vph)		313	282	218	169	175 No.
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width(ft)		10	15		10	
Link Offset(ft)		0	0		0	
Crosswalk Width(ft)		16	16		16	
Two way Left Turn Lane						
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (mph)	15			9	15	9
Number of Detectors	1	2	2	1	2	0
Detector Template	l l			'		U
Leading Detector (ft)	25	104	104	0	104	0
• ,	35	104		0		0
Trailing Detector (ft)	-5	0	0	0	0	0
Turn Type	Prot	NA	NA	Free	Prot	Free
Protected Phases	2	5	1		3	
Permitted Phases				Free		Free
Detector Phase	2	5	1		3	
Switch Phase						
- Thirt indo						

	ሻ	†	↓	wJ	•	>
Lane Group	NBL	NBT	SBT	SBR	SEL	SER
Minimum Initial (s)	12.0	12.0	12.0		10.0	
Minimum Split (s)	36.0	36.0	36.0		26.0	
Total Split (s)	41.0	82.0	41.0		41.0	
Total Split (%)	33.3%	66.7%	33.3%		33.3%	
Maximum Green (s)	34.0	76.0	34.0		34.0	
Yellow Time (s)	5.0	4.0	5.0		5.0	
All-Red Time (s)	2.0	2.0	2.0		2.0	
Lost Time Adjust (s)	0.0	0.0	0.0		0.0	
Total Lost Time (s)	7.0	6.0	7.0		7.0	
Lead/Lag	Lead	0.0	Lag		1.0	
Lead-Lag Optimize?	Yes		Yes			
Vehicle Extension (s)	6.0	6.0	6.0		6.0	
Minimum Gap (s)	4.0	4.0	4.0		4.0	
Time Before Reduce (s)	20.0	20.0	20.0		20.0	
Time To Reduce (s)	8.0	8.0	8.0		5.0	
Recall Mode	None	Min	Min		None	
Walk Time (s)	NOTIE	IVIIII	IVIIII		INUITE	
Flash Dont Walk (s)						
. ,						
Pedestrian Calls (#/hr) Act Effct Green (s)	15.2	38.2	14.9	67.3	15.9	67.3
Actuated g/C Ratio	0.23	0.57	0.22	1.00	0.24	1.00
v/c Ratio	0.23	0.57	0.22	0.15	0.24	0.12
	27.4	7.6	25.3	0.15	27.6	0.12
Control Delay	0.0					
Queue Delay	27.4	0.0	0.0 25.3	0.0	0.0	0.0
Total Delay		7.6		0.2	27.6	0.2
LOS	С	A	C	Α	C	Α
Approach Delay		13.9	14.4		13.6	
Approach LOS	50	В	B	^	B	^
Queue Length 50th (ft)	50	28	50	0	58	0
Queue Length 95th (ft)	116	56	101	0	130	0
Internal Link Dist (ft)		687	984		792	
Turn Bay Length (ft)	250			500	250	
Base Capacity (vph)	834	3151	1669	1436	804	1449
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.18	0.10	0.17	0.15	0.21	0.12
Intersection Summary	011					
Area Type:	Other					
Cycle Length: 123						
Actuated Cycle Length: 67	.3					
Natural Cycle: 100						
Control Type: Actuated-Un	coordinated					
Maximum v/c Ratio: 0.46						
Intersection Signal Delay:	14.0			Ir	ntersection	LOS: B
Intersection Capacity Utiliz	ation 45.6%			IC	CU Level o	of Service
Analysis Period (min) 15						

Lane Group		•	•	†	<i>></i>	>	ļ
Lane Configurations	Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Traffic Volume (vph) 39 0 245 46 181 258 Future Volume (vph) 39 0 245 46 181 258 Future Volume (vph) 190 1900 1900 1900 1900 1900 1900 lane Width (ft) 12 12 10 10 10 11 11							
Future Volume (vph) 190 1900 215 2000 215 2000 215 2000 215 2000 200 215 2000 200 215 2000 2			0				
Ideal Flow (vphpl) 1900 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 -1% Storage Lanes 1 0 0 2 20 215 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 3 2 <							
Lane Width (ft)							
Grade (%) -8% -2% -1% Storage Length (ft) 0 0 200 215 Storage Lanes 1 0 1 2 Taper Length (ft) 25 86							
Storage Length (ft) 0			12		10	- 11	
Storage Lanes			^	- 2%	000	045	-170
Taper Length (ft)							
Lane Util. Factor			0		1		
Ped Bike Factor Frt							
Fit Protected 0.950 0.950 0.950 Satd. Flow (prot) 1823 0 3210 1478 3209 3372 Flt Permitted 0.950 0.950 0.950 Satd. Flow (perm) 1823 0 3210 1478 3209 3372 Flt Permitted 0.950 Ves Ves Satd. Flow (perm) 1823 0 3210 1478 3209 3372 Right Turn on Red Yes Ves Satd. Flow (RTOR) 49 Ves Ves Satd. Flow (RTOR) 49 Ves		1.00	1.00	0.95	1.00	0.97	0.95
Fit Protected							
Satd. Flow (prot) 1823 0 3210 1478 3209 3372 Fit Permitted 0.950 0.950 0.950 0.950 0.950 Satd. Flow (perm) 1823 0 3210 1478 3209 3372 Right Turn on Red Yes Yes Yes Yes Yes Satd. Flow (RTOR) 49 1 <td>Frt</td> <td></td> <td></td> <td></td> <td>0.850</td> <td></td> <td></td>	Frt				0.850		
Fit Permitted 0.950 3210	Flt Protected	0.950				0.950	
Fit Permitted 0.950 3210	Satd. Flow (prot)	1823	0	3210	1478	3209	3372
Satd. Flow (perm) 1823 0 3210 1478 3209 3372 Right Turn on Red Yes Yes Yes Satd. Flow (RTOR) 49 49 Link Speed (mph) 55 50 50 Link Distance (ft) 334 905 488 Travel Time (s) 4.1 12.3 6.7 Confl. Peds. (#/hr) Confl. Bikes (#/hr) 6.7 6.7 Confl. Bikes (#/hr) 0 0.93							
Right Turn on Red Yes Yes Satd. Flow (RTOR) 49 Link Speed (mph) 55 50 50 Link Distance (ft) 334 905 488 Travel Time (s) 4.1 12.3 6.7 Confl. Peds. (#/hr) Confl. Bikes (#/hr) 6.7 Confl. Bikes (#/hr) 8 0.93			0	3210	1478		3372
Satd. Flow (RTOR) 49 Link Speed (mph) 55 50 50 Link Distance (ft) 334 905 488 Travel Time (s) 4.1 12.3 6.7 Confl. Peds. (#/hr) Confl. Bikes (#/hr) 8 Peak Hour Factor 0.93 0.93 0.93 0.93 0.93 0.93 Growth Factor 100%		1020		JL 10		3200	301 Z
Link Speed (mph) 55 50 50 Link Distance (ft) 334 905 488 Travel Time (s) 4.1 12.3 6.7 Confl. Peds. (#/hr) 6.7 6.7 Confl. Peds. (#/hr) 6.7 6.7 Peak Hour Factor 0.93 0.93 0.93 0.93 0.93 0.93 Growth Factor 100%			163				
Link Distance (ft) 334 905 488 Travel Time (s) 4.1 12.3 6.7 Confl. Peds. (#/hr) 6.7 Confl. Bikes (#/hr) 6.7 Peak Hour Factor 0.93		55		50	49		50
Travel Time (s) 4.1 12.3 6.7 Confl. Peds. (#/hr) Confl. Bikes (#/hr) Feak Hour Factor 0.93 0.94 1.95 277 9 9 1.95 27							
Confl. Peds. (#/hr) Confl. Bikes (#/hr) Peak Hour Factor 0.93 0.94 4% 9 9 277 8 8 2 2 2 2 2 2 2 2 2 2	` ,						
Confl. Bikes (#/hr) Peak Hour Factor 0.93 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	. ,	4.1		12.3			6./
Peak Hour Factor 0.93 0.96 0.00 0 0 0 0 4 4 4 8 9 9 2 7 7 8 9 1.95 277 277 277 278 277 278 277 277 277 278 277							
Growth Factor 100% 100% 100% 100% 100% 100% Heavy Vehicles (%) 3% 0% 6% 3% 6% 4% Bus Blockages (#/hr) 0 0 0 0 0 0 Parking (#/hr) Wid-Block Traffic (%) 0% 0% 0% 0% Adj. Flow (vph) 42 0 263 49 195 277 Shared Lane Traffic (%) 42 0 263 49 195 277 Enter Blocked Intersection No No <td>, ,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	, ,						
Heavy Vehicles (%) 3% 0% 6% 3% 6% 4% Bus Blockages (#/hr) 0 0 0 0 0 0 Parking (#/hr) Mid-Block Traffic (%) 0% 0% 0% 0% Adj. Flow (vph) 42 0 263 49 195 277 Shared Lane Traffic (%) 2 0 263 49 195 277 Enter Blocked Intersection No	Peak Hour Factor						
Bus Blockages (#/hr) 0 0 0 0 0 0 Parking (#/hr) Mid-Block Traffic (%) 0% 0% 0% 0% Adj. Flow (vph) 42 0 263 49 195 277 Shared Lane Traffic (%)	Growth Factor	100%	100%	100%	100%	100%	100%
Bus Blockages (#/hr) 0 0 0 0 0 Parking (#/hr) Mid-Block Traffic (%) 0% 0% 0% Adj. Flow (vph) 42 0 263 49 195 277 Shared Lane Traffic (%)	Heavy Vehicles (%)	3%	0%	6%	3%	6%	4%
Parking (#/hr) Mid-Block Traffic (%) 0% 0% 0% Adj. Flow (vph) 42 0 263 49 195 277 Shared Lane Traffic (%) Lane Group Flow (vph) 42 0 263 49 195 277 Enter Blocked Intersection No 10 10 10 10	. ,			0		0	
Mid-Block Traffic (%) 0% 0% Adj. Flow (vph) 42 0 263 49 195 277 Shared Lane Traffic (%) Lane Group Flow (vph) 42 0 263 49 195 277 Enter Blocked Intersection No							
Adj. Flow (vph) 42 0 263 49 195 277 Shared Lane Traffic (%) Lane Group Flow (vph) 42 0 263 49 195 277 Enter Blocked Intersection No No </td <td></td> <td>0%</td> <td></td> <td>0%</td> <td></td> <td></td> <td>0%</td>		0%		0%			0%
Shared Lane Traffic (%) Lane Group Flow (vph) 42 0 263 49 195 277 Enter Blocked Intersection No No <t< td=""><td>, ,</td><td></td><td>Λ</td><td></td><td>10</td><td>105</td><td></td></t<>	, ,		Λ		10	105	
Lane Group Flow (vph) 42 0 263 49 195 277 Enter Blocked Intersection No No <td< td=""><td></td><td>42</td><td>U</td><td>203</td><td>43</td><td>133</td><td>211</td></td<>		42	U	203	43	133	211
Enter Blocked Intersection No No <th< td=""><td></td><td>40</td><td>0</td><td>262</td><td>40</td><td>105</td><td>077</td></th<>		40	0	262	40	105	077
Lane Alignment Left Median Width(ft) Left 12 Right 22 Left 22 Left 22 Link Offset(ft) 0 1.04 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
Median Width(ff) 12 22 22 Link Offset(ft) 0 0 0 Crosswalk Width(ft) 16 16 16 Two way Left Turn Lane Headway Factor 0.95 0.95 1.08 1.08 1.04 1.04 Turning Speed (mph) 15 9 9 15 9 15 15 10							
Link Offset(ft) 0 0 0 Crosswalk Width(ft) 16 16 16 Two way Left Turn Lane Headway Factor 0.95 0.95 1.08 1.08 1.04 1.04 Turning Speed (mph) 15 9 9 15 Number of Detectors 1 2 1 1 2 Detector Template Left Thru Right Left Thru Leading Detector (ft) 20 100 20 20 100 Trailing Detector (ft) 0 0 0 0 0 Turn Type Prot NA pm+ov Prot NA Protected Phases 8 2 8 1 6 Permitted Phases 2 8 1 6			Right		Right	Lett	
Crosswalk Width(ft) 16 16 16 Two way Left Turn Lane 0.95 0.95 1.08 1.08 1.04 1.04 Headway Factor 0.95 0.95 1.08 1.08 1.04 1.04 Turning Speed (mph) 15 9 9 15 Number of Detectors 1 2 1 1 2 Detector Template Left Thru Right Left Thru Leading Detector (ft) 20 100 20 20 100 Trailing Detector (ft) 0 0 0 0 0 Turn Type Prot NA pm+ov Prot NA Protected Phases 8 2 8 1 6 Permitted Phases 2 8 1 6							
Two way Left Turn Lane Headway Factor 0.95 0.95 1.08 1.08 1.04 1.04 Turning Speed (mph) 15 9 9 15 Number of Detectors 1 2 1 1 2 Detector Template Left Thru Right Left Thru Leading Detector (ft) 20 100 20 20 100 Trailing Detector (ft) 0 0 0 0 0 Turn Type Prot NA pm+ov Prot NA Protected Phases 8 2 8 1 6 Permitted Phases 2 8 1 6							
Headway Factor 0.95 0.95 1.08 1.08 1.04 1.04 Turning Speed (mph) 15 9 9 15 Number of Detectors 1 2 1 1 2 Detector Template Left Thru Right Left Thru Leading Detector (ft) 20 100 20 20 100 Trailing Detector (ft) 0 0 0 0 0 Turn Type Prot NA pm+ov Prot NA Protected Phases 8 2 8 1 6 Permitted Phases 2 8 1 6	Crosswalk Width(ft)	16		16			16
Headway Factor 0.95 0.95 1.08 1.08 1.04 1.04 Turning Speed (mph) 15 9 9 15 Number of Detectors 1 2 1 1 2 Detector Template Left Thru Right Left Thru Leading Detector (ft) 20 100 20 20 100 Trailing Detector (ft) 0 0 0 0 0 Turn Type Prot NA pm+ov Prot NA Protected Phases 8 2 8 1 6 Permitted Phases 2 8 1 6							
Turning Speed (mph) 15 9 9 15 Number of Detectors 1 2 1 1 2 Detector Template Left Thru Right Left Thru Leading Detector (ft) 20 100 20 20 100 Trailing Detector (ft) 0 0 0 0 0 Turn Type Prot NA pm+ov Prot NA Protected Phases 8 2 8 1 6 Permitted Phases 2 8 1 6		0.95	0.95	1.08	1.08	1.04	1.04
Number of Detectors 1 2 1 1 2 Detector Template Left Thru Right Left Thru Leading Detector (ft) 20 100 20 20 100 Trailing Detector (ft) 0 0 0 0 0 Turn Type Prot NA pm+ov Prot NA Protected Phases 8 2 8 1 6 Permitted Phases 2 2 1 6							
Detector Template Left Thru Right Left Thru Leading Detector (ft) 20 100 20 20 100 Trailing Detector (ft) 0 0 0 0 0 Turn Type Prot NA pm+ov Prot NA Protected Phases 8 2 8 1 6 Permitted Phases 2 8 1 6				2			2
Leading Detector (ft) 20 100 20 20 100 Trailing Detector (ft) 0 0 0 0 0 0 Turn Type Prot NA pm+ov Prot NA Protected Phases 8 2 8 1 6 Permitted Phases 2 2 8 1 6		•				•	
Trailing Detector (ft) 0 0 0 0 0 Turn Type Prot NA pm+ov Prot NA Protected Phases 8 2 8 1 6 Permitted Phases 2 2 8 1 6	•						
Turn TypeProtNA pm+ovProtNAProtected Phases82816Permitted Phases2							
Protected Phases 8 2 8 1 6 Permitted Phases 2	• ,						
Permitted Phases 2					•		
		8		2		1	6
Detector Phase 8 2 8 1 6	Permitted Phases						
	Detector Phase	8		2	8	1	6
Switch Phase							

	•	•	†	<i>></i>	/	ţ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Minimum Initial (s)	10.0		12.0	10.0	12.0	12.0
Minimum Split (s)	26.0		36.0	26.0	36.0	36.0
Total Split (s)	41.0		43.0	41.0	42.0	85.0
Total Split (%)	32.5%		34.1%	32.5%	33.3%	67.5%
Maximum Green (s)	35.0		36.0	35.0	35.0	78.0
Yellow Time (s)	5.0		5.0	5.0	5.0	5.0
All-Red Time (s)	1.0		2.0	1.0	2.0	2.0
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0		7.0	6.0	7.0	7.0
Lead/Lag			Lag	- 0.0	Lead	
Lead-Lag Optimize?			Yes		Yes	
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0
Minimum Gap (s)	3.0		3.0	3.0	3.0	3.0
Time Before Reduce (s)	0.0		0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0		0.0	0.0	0.0	0.0
Recall Mode	None		Min	None	Min	Min
Walk Time (s)	140116		171111	140116	(VIII (IVIIII
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)						
Act Effct Green (s)	10.3		12.4	29.9	12.4	35.4
Actuated g/C Ratio	0.22		0.26	0.63	0.26	0.74
v/c Ratio	0.22		0.26	0.05	0.20	0.74
	19.0		17.6	2.5	17.1	4.5
Control Delay	0.0		0.0		0.0	
Queue Delay				0.0		0.0
Total Delay	19.0		17.6	2.5	17.1	4.5
LOS	B		45.0	Α	В	A
Approach Delay	19.0		15.2			9.7
Approach LOS	В		В			Α
Queue Length 50th (ft)	11		37	0	26	18
Queue Length 95th (ft)	33		65	11	50	32
Internal Link Dist (ft)	254		825			408
Turn Bay Length (ft)				200	215	
Base Capacity (vph)	1380		2500	1433	2429	3372
Starvation Cap Reductn	0		0	0	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductn	0		0	0	0	0
Reduced v/c Ratio	0.03		0.11	0.03	0.08	0.08
Intersection Summary	011					
Area Type:	Other					
Cycle Length: 126						
Actuated Cycle Length: 47	7.6					
Natural Cycle: 100						
O	ncoord					
Control Type: Semi Act-Ur	100014					
Maximum v/c Ratio: 0.32	100014					
				lr	ntersectio	n LOS: B
Maximum v/c Ratio: 0.32	12.3					n LOS: B of Service

	۶	→	•	•	←	4	4	†	~	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					f)			4				
Traffic Volume (vph)	0	0	0	0	13	1	1	194	6	0	0	0
Future Volume (vph)	0	0	0	0	13	1	1	194	6	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	13	12	12	12	12
Grade (%)		0%			-5%			-7%			0%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	0		0	0		0	0		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt					0.991			0.996				
Flt Protected												
Satd. Flow (prot)	0	0	0	0	1796	0	0	1959	0	0	0	0
Flt Permitted												
Satd. Flow (perm)	0	0	0	0	1796	0	0	1959	0	0	0	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		124			297			300			404	
Travel Time (s)		2.8			6.8			6.8			9.2	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	0%	0%	8%	0%	100%	3%	0%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	0	0	0	0	14	1	1	216	7	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	0	0	0	15	0	0	224	0	0	0	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0	_		0	_		0	_		0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	0.97	0.97	0.97	0.96	0.92	0.96	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Stop			Stop			Free			Stop	
Intersection Summary												
· · · · · · · · · · · · · · · · · · ·	Other											
Control Type: Unsignalized												
Intersection Canacity Utilizat	ion 20.6%			IC	CLLL evel	of Service	Δ					

Intersection Capacity Utilization 20.6% Analysis Period (min) 15 ICU Level of Service A

Intersection												
Int Delay, s/veh	0.6											
	EDI	EDT	EDD	WDI	WDT	WDD	NDI	NDT	NDD	CDI	CDT	CDD
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	^	0	^	^	^	4		4	0	^	^	^
Traffic Vol, veh/h	0	0	0	0	13	1	1	194	6	0	0	0
Future Vol, veh/h	0	0	0	0	13	1	1	194	6	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	_ 0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,		2	-	-	0	-	-	0	-		16965	-
Grade, %	-	0	-	-	-5	-	-	-7	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	0	0	0	0	8	0	100	3	0	0	0	0
Mvmt Flow	0	0	0	0	14	1	1	216	7	0	0	0
Major/Minor				Minor1		N	/lajor1					
Conflicting Flow All				-	222	220	0	0	0			
Stage 1				_	222	-	-	-	-			
Stage 2				_	0	<u>-</u>	_	_	_			
Critical Hdwy				_	5.58	5.7	5.1	_	_			
Critical Hdwy Stg 1				_	4.58	-	-	_	_			
Critical Hdwy Stg 2				_	50	_	_	_	_			
Follow-up Hdwy				_	4.072	3.3	3.1	_	_			
Pot Cap-1 Maneuver				0	709	850	-	_	_			
Stage 1				0	754	-	_	_	_			
Stage 2				0	- 104	_	_	_	_			
Platoon blocked, %				- 0				_	_			
Mov Cap-1 Maneuver				_	0	850	_	_	_			
Mov Cap-2 Maneuver				_	0	-	_	_	_			
Stage 1				_	0	_	_	_	_			
Stage 2				_	0	_	_	_	_			
Olugo Z					J							
Approach				WB			NB					
HCM Control Delay, s				9.3								
HCM LOS				Α								
Minor Lane/Major Mvmt	1	NBL	NBT	NBRV	VBLn1							
Capacity (veh/h)				-								
HCM Lane V/C Ratio		_	_		0.018							
HCM Control Delay (s)				_	9.3							
HCM Lane LOS		_	_	_	9.5 A							
HCM 95th %tile Q(veh)		_	<u>-</u>	_	0.1							
HOW JOHN JOHN Q(VEH)		_	-	-	U. I							

	۶	→	•	•	•	•	1	†	<i>></i>	/	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	7		र्स	7	ሻ	1	7	*	^	7
Traffic Volume (vph)	9	0	9	6	0	4	8	227	3	4	204	19
Future Volume (vph)	9	0	9	6	0	4	8	227	3	4	204	19
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (%)		4%			-1%			7%			-4%	-
Storage Length (ft)	0	.,,	315	0	.,,	125	280	. , .	445	150	.,,	275
Storage Lanes	0		1	0		1	1		1	1		1
Taper Length (ft)	25			25		•	86		•	86		-
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor							1.00					0.98
Frt			0.850			0.850			0.850			0.850
Flt Protected		0.950			0.950		0.950			0.950		
Satd. Flow (prot)	0	1769	1583	0	1814	1623	1742	1798	1558	1841	1828	1647
Flt Permitted	•	1100	1000	•	1011	1020	0.624	1100	1000	0.610	1020	1011
Satd. Flow (perm)	0	1862	1583	0	1909	1623	1142	1798	1558	1182	1828	1622
Right Turn on Red	•	1002	Yes	•	1000	Yes		1100	Yes	1102	1020	Yes
Satd. Flow (RTOR)			37			37			83			83
Link Speed (mph)		30	O.		30	O,		55	00		55	00
Link Distance (ft)		601			392			1478			1166	
Travel Time (s)		13.7			8.9			18.3			14.5	
Confl. Peds. (#/hr)		10.7			0.0		4	10.0			11.0	4
Confl. Bikes (#/hr)							•					•
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	2%	0%	0%	6%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												J
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	9	0	9	6	0	4	8	239	3	4	215	20
Shared Lane Traffic (%)						•				•		
Lane Group Flow (vph)	0	9	9	0	6	4	8	239	3	4	215	20
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	2010	0	rugiii	2010	0	rugiit	Lon	12	i ugiit	2010	12	i ugiic
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			.0			10			10	
Headway Factor	1.03	1.03	1.03	0.99	0.99	0.99	1.05	1.05	1.05	0.97	0.97	0.97
Turning Speed (mph)	15	1.00	9	15	0.00	9	15	1.00	9	15	0.07	9
Number of Detectors	1	2	1	1	2	1	1	2	1	1	2	1
Detector Template	Left		'	Left	2	'	'					
Leading Detector (ft)	20	83	35	20	83	35	35	83	35	35	83	35
Trailing Detector (ft)	0	-5	-5	0	-5	-5	-5	-5	-5	-5	-5	-5
Turn Type	Perm	NA	pm+ov	Perm	NA	pm+ov	pm+pt	NA	Perm		NA	Perm
Protected Phases	r Cilli	NA 8	pm+ov 1	r Cilli	1NA 4	pm+ov 5	ртт+рt 1	1NA 6	r eilli	pm+pt 5	2	FEIII
Permitted Phases	8	0	8	4	4	4	6	U	6	2		2
	8	8	1	4	4	5	1	6	6	5	2	2
Detector Phase	ð	ŏ	T	4	4	5	T	б	р	5	2	2
Switch Phase												

	•	→	•	•	←	•	4	†	<i>></i>	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	5.0	3.0	5.0	5.0	3.0	3.0	5.0	5.0	3.0	5.0	5.0
Minimum Split (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	12.0	12.0	10.0	12.0	12.0
Total Split (s)	45.0	45.0	27.0	45.0	45.0	27.0	27.0	47.0	47.0	27.0	47.0	47.0
Total Split (%)	37.8%	37.8%	22.7%	37.8%	37.8%	22.7%	22.7%	39.5%	39.5%	22.7%	39.5%	39.5%
Maximum Green (s)	40.0	40.0	20.0	40.0	40.0	20.0	20.0	40.0	40.0	20.0	40.0	40.0
Yellow Time (s)	4.0	4.0	5.0	4.0	4.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	1.0	1.0	2.0	1.0	1.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		5.0	7.0		5.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
Lead/Lag			Lead			Lead	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?			Yes			Yes	Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0	2.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Minimum Gap (s)	3.0	3.0	2.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Recall Mode	None	None	None	None	None	None	None	Max	Max	None	Max	Max
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		6.2	6.8		6.1	6.8	50.4	55.5	55.5	50.4	55.5	55.5
Actuated g/C Ratio		0.10	0.11		0.10	0.11	0.83	0.91	0.91	0.83	0.91	0.91
v/c Ratio		0.05	0.04		0.03	0.02	0.01	0.15	0.00	0.00	0.13	0.01
Control Delay		25.4	0.3		25.3	0.2	1.8	2.9	0.0	2.0	2.9	0.0
Queue Delay		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		25.4	0.3		25.3	0.2	1.8	2.9	0.0	2.0	2.9	0.0
LOS		С	Α		С	Α	Α	Α	Α	Α	Α	Α
Approach Delay		12.9			15.3			2.8			2.6	
Approach LOS		В			В			Α			Α	
Queue Length 50th (ft)		3	0		2	0	0	0	0	0	0	0
Queue Length 95th (ft)		16	1		13	0	3	82	0	2	74	0
Internal Link Dist (ft)		521			312			1398			1086	
Turn Bay Length (ft)			315			125	280		445	150		275
Base Capacity (vph)		1247	607		1279	621	1170	1642	1430	1224	1669	1488
Starvation Cap Reductn		0	0		0	0	0	0	0	0	0	0
Spillback Cap Reductn		0	0		0	0	0	0	0	0	0	0
Storage Cap Reductn		0	0		0	0	0	0	0	0	0	0
Reduced v/c Ratio		0.01	0.01		0.00	0.01	0.01	0.15	0.00	0.00	0.13	0.01
Intersection Summary												

Intersection Summary

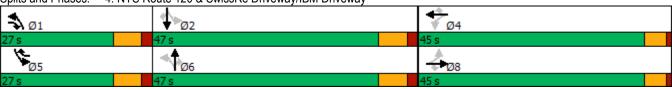
Area Type: Other

Cycle Length: 119

Actuated Cycle Length: 60.8

Natural Cycle: 40

Control Type: Actuated-Uncoordinated


Maximum v/c Ratio: 0.15 Intersection Signal Delay: 3.3

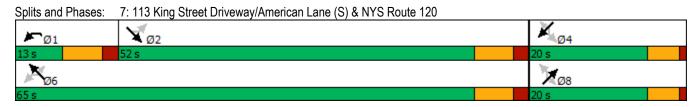
Intersection Capacity Utilization 35.3%

Intersection LOS: A ICU Level of Service A

Analysis Period (min) 15

4: NYS Route 120 & SwissRe Driveway/IBM Driveway Splits and Phases:

	•	•	†	/	>	↓	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	ሻ	7	1	7	ሻ	†	
Traffic Volume (vph)	10	50	188	0	33	186	
Future Volume (vph)	10	50	188	0	33	186	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Width (ft)	11	11	12	12	10	10	
Grade (%)	-3%		2%			-1%	
Storage Length (ft)	0	0		15	175		
Storage Lanes	1	1		1	1		
Taper Length (ft)	25				86		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Ped Bike Factor							
Frt		0.850					
Flt Protected	0.950				0.950		
Satd. Flow (prot)	1771	1585	1826	1881	1644	1666	
Flt Permitted	0.950	. 500	. 320	. 30 1	0.950	. 500	
Satd. Flow (perm)	1771	1585	1826	1881	1644	1666	
Link Speed (mph)	25	.000	55	1301	1011	55	
Link Distance (ft)	589		993			1478	
Travel Time (s)	16.1		12.3			18.3	
Confl. Peds. (#/hr)	10.1	1	12.0	1	1	10.0	
Confl. Bikes (#/hr)				T I			
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	
Growth Factor	100%	100%	100%	100%	100%	100%	
Heavy Vehicles (%)	0%	0%	3%	0%	3%	7%	
Bus Blockages (#/hr)	0 %	0 /0	0	0 %	0	0	
Parking (#/hr)	U	U	U	U	U	U	
Mid-Block Traffic (%)	0%		0%			0%	
` ,	11	53	198	0	35	196	
Adj. Flow (vph)	11	55	190	U	ან	190	
Shared Lane Traffic (%)	11	F2	400	0	25	100	
Lane Group Flow (vph)	11	53	198	0	35	196	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Right	Left	Left	
Median Width(ft)	11		12			12	
Link Offset(ft)	0		0			0	
Crosswalk Width(ft)	16		16			16	
Two way Left Turn Lane							
Headway Factor	1.02	1.02	1.01	1.01	1.09	1.09	
Turning Speed (mph)	15	9		9	15		
Sign Control	Stop		Free			Free	
Intersection Summary							
Area Type:	Other						
Control Type: Unsignalized							
Intersection Capacity Utilizat	ion 27.0%			IC	U Level	of Service	A
Analysis Period (min) 15							

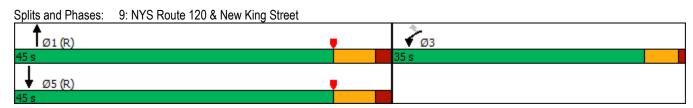

Intersection						
Int Delay, s/veh	1.8					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ሻ	7	†	7	ሻ	†
Traffic Vol, veh/h	10	50	188	0	33	186
Future Vol, veh/h	10	50	188	0	33	186
Conflicting Peds, #/hr	10	1	0	1	1	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	Slop -	Yield		Free	riee -	None
		0	-	15		None
Storage Length	0		-		175	-
Veh in Median Storage,		-	0	-	-	0
Grade, %	-3	-	2	-	-	-1
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	0	0	3	0	3	7
Mvmt Flow	11	53	198	0	35	196
Major/Minor M	linor1		laier1		Major	
	linor1		//ajor1		Major2	
Conflicting Flow All	466	200	0	-	199	0
Stage 1	199	-	-	-	-	-
Stage 2	267	-	-	-	-	-
Critical Hdwy	5.8	5.9	-	-	4.13	-
Critical Hdwy Stg 1	4.8	-	-	-	-	-
Critical Hdwy Stg 2	4.8	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	2.227	-
Pot Cap-1 Maneuver	604	860	-	0	1367	-
Stage 1	868	-	-	0	-	-
Stage 2	818	_	_	0	_	_
Platoon blocked, %	0.0		_			_
Mov Cap-1 Maneuver	587	859	_	_	1366	_
Mov Cap-1 Maneuver	587	-	_		1000	_
	867			-	-	
Stage 1		-	-	-	-	-
Stage 2	796	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	9.8		0		1.2	
HCM LOS	9.0 A		U		1.2	
HOW LOS	А					
Minor Lane/Major Mvmt		NBTV	VBLn1V	VBLn2	SBL	SBT
Capacity (veh/h)		-	587		1366	-
HCM Lane V/C Ratio				0.061		_
HCM Control Delay (s)			11.2	9.5	7.7	_
HCM Lane LOS			11.2 B	9.5 A	Α	
HCM 95th %tile Q(veh)		-	0.1	0.2	0.1	-
HOW Sour Wille Q(ven)		-	0.1	0.2	U. I	-

	۶	•	4	†		4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			4	1>	
Traffic Volume (vph)	2	0	0	186	195	1
Future Volume (vph)	2	0	0	186	195	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	11	11	11	11
Grade (%)	3%			5%	-2%	
Storage Length (ft)	0	0	0			0
Storage Lanes	1	0	0			0
Taper Length (ft)	25		25			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt					0.999	
Flt Protected	0.950					
Satd. Flow (prot)	1778	0	0	1722	1749	0
Flt Permitted	0.950					
Satd. Flow (perm)	1778	0	0	1722	1749	0
Link Speed (mph)	30			55	55	
Link Distance (ft)	639			1813	993	
Travel Time (s)	14.5			22.5	12.3	
Confl. Peds. (#/hr)	1	1	1			1
Confl. Bikes (#/hr)						
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	0%	4%	6%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%			0%	0%	
Adj. Flow (vph)	2	0	0	198	207	1
Shared Lane Traffic (%)				,		
Lane Group Flow (vph)	2	0	0	198	208	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12			0	0	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	1.02	1.02	1.08	1.08	1.03	1.03
Turning Speed (mph)	15	9	15	_		9
Sign Control	Stop			Free	Free	
Intersection Summary						
	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizat	tion 20.8%			IC	CU Level of	of Service /
Analysis Period (min) 15						

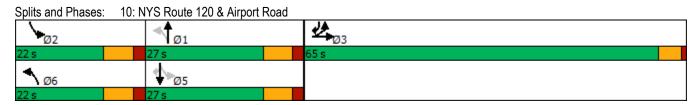
Intersection						
Int Delay, s/veh	0.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
		LDK	INDL			אמט
Lane Configurations	¥	^	^	€	♣	4
Traffic Vol, veh/h	2	0	0	186	195	1
Future Vol, veh/h	2	0	0	186	195	1
Conflicting Peds, #/hr	1	1	1	0	0	1
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	3	_	-	5	-2	-
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	0	0	0	4	6	0
Mvmt Flow	2	0	0	198	207	1
IVIVIIIL FIOW	2	U	U	190	207	ı
Major/Minor N	Minor2	N	//ajor1	N	/lajor2	
Conflicting Flow All	408	210	209	0		0
Stage 1	209	-	-	-	_	-
Stage 2	199	_	_	_	_	_
Critical Hdwy	7	6.5	4.1	-	-	-
Critical Hdwy Stg 1	6	-	-	-	-	-
Critical Hdwy Stg 2	6	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	564	821	1374	-	-	-
Stage 1	802	-	-	-	-	-
Stage 2	812	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	563	820	1373	_	-	-
Mov Cap-2 Maneuver	563	-		_	_	_
Stage 1	801	-	_			
	811	-		-		-
Stage 2	011	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	11.4		0		0	
HCM LOS	В		U		U	
I IOIVI LOS	D					
Minor Lane/Major Mvmf	t	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1373	_		-	_
HCM Lane V/C Ratio		-		0.004	_	_
HCM Control Delay (s)		0	_		_	
HCM Lane LOS			_	11. 4 B	_	
		A				-
HCM 95th %tile Q(veh)		0	-	0	-	-

	7	×	٤	Ž	×	₹	ን	×	~	Ĺ	×	*~
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		4		ሻ	†	7		ર્ન	7		ર્ન	7
Traffic Volume (vph)	2	193	0	0	186	21	0	0	0	18	0	0
Future Volume (vph)	2	193	0	0	186	21	0	0	0	18	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	11	11	11	11	10	10	10	11	11	11
Grade (%)	• •	-4%		• •	1%			-5%			1%	
Storage Length (ft)	0	. , 0	0	120	. , ,	200	0	0,0	95	0	. , ,	0
Storage Lanes	0		0	1		1	0		1	0		1
Taper Length (ft)	25			86		•	25		•	25		•
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	1.00	1.00	1.00	1.00	0.99	1.00	1.00	1.00	1.00	1.00	1.00
Frt		1.00				0.850						
Flt Protected						0.000					0.950	
Satd. Flow (prot)	0	1760	0	1827	1774	1553	0	1818	1818	0	1638	1827
Flt Permitted	U	0.998	U	1021	1117	1000	U	1010	1010	U	0.757	1021
Satd. Flow (perm)	0	1757	0	1827	1774	1534	0	1818	1818	0	1305	1827
Right Turn on Red	U	1101	Yes	1021	1117	Yes	U	1010	Yes	U	1000	Yes
Satd. Flow (RTOR)			163			26			163			163
Link Speed (mph)		55			55	20		30			25	
Link Distance (ft)		1813			2280			328			518	
Travel Time (s)		22.5			28.3			7.5			14.1	
. ,	1	22.3			20.3	1		7.5			14.1	
Confl. Peds. (#/hr) Confl. Bikes (#/hr)	l					I						
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
		6%	0%	0%	3%	0%	0%	0%	0%		0%	0%
Heavy Vehicles (%)	50%				3% 0		0%		0%	6% 0	0%	
Bus Blockages (#/hr)	0	0	0	0	U	0	U	0	U	U	U	0
Parking (#/hr)		0%			0%			0%			00/	
Mid-Block Traffic (%)	0	205	0	0		22	0		٥	19	0%	0
Adj. Flow (vph)	2	205	0	0	198	22	0	0	0	19	0	U
Shared Lane Traffic (%)	0	207	0	0	100	20	0	٥	٥	٥	10	0
Lane Group Flow (vph)	0	207	0	0	198	22	0	0	0	0	19	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		11			11			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane	4.00	4.00	4.00	4.05	4.05	4.05	4.00	4.00	4.00	4.05	4.05	4.05
Headway Factor	1.02	1.02	1.02	1.05	1.05	1.05	1.06	1.06	1.06	1.05	1.05	1.05
Turning Speed (mph)	15	_	9	15	0	9	15	^	9	15	_	9
Number of Detectors	1	2		1	2	1	1	2	1	1	2	1
Detector Template	Left	00		25	00	25	Left	00	25	Left	00	25
Leading Detector (ft)	20	83		35	83	35	20	83	35	20	83	35
Trailing Detector (ft)	0	-5		-5	-5	-5	0	-5	-5	0	-5	-5
Turn Type	Perm	NA		pm+pt	NA	Perm		_	Perm	Perm	NA	Perm
Protected Phases		2		1	6			8			4	
Permitted Phases	2			6		6	8		8	4		4
Detector Phase	2	2		1	6	6	8	8	8	4	4	4
Switch Phase												

	₩.	\mathbf{x}	À	F	*	₹	•	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Minimum Initial (s)	10.0	10.0		3.0	10.0	10.0	3.0	3.0	3.0	5.0	5.0	5.0
Minimum Split (s)	17.0	17.0		10.0	17.0	17.0	10.0	10.0	10.0	10.0	10.0	10.0
Total Split (s)	52.0	52.0		13.0	65.0	65.0	20.0	20.0	20.0	20.0	20.0	20.0
Total Split (%)	61.2%	61.2%		15.3%	76.5%	76.5%	23.5%	23.5%	23.5%	23.5%	23.5%	23.5%
Maximum Green (s)	45.0	45.0		6.0	58.0	58.0	15.0	15.0	15.0	15.0	15.0	15.0
Yellow Time (s)	5.0	5.0		5.0	5.0	5.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)		0.0		0.0	0.0	0.0		0.0	0.0		0.0	0.0
Total Lost Time (s)		7.0		7.0	7.0	7.0		5.0	5.0		5.0	5.0
Lead/Lag	Lag	Lag		Lead								
Lead-Lag Optimize?	Yes	Yes		Yes								
Vehicle Extension (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Minimum Gap (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Time Before Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Recall Mode	Max	Max		None	Max	Max	Max	Max	Max	Max	Max	Max
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		58.0			58.0	58.0					15.0	
Actuated g/C Ratio		0.68			0.68	0.68					0.18	
v/c Ratio		0.17			0.16	0.02					0.08	
Control Delay		5.3			5.2	1.7					30.4	
Queue Delay		0.0			0.0	0.0					0.0	
Total Delay		5.3			5.2	1.7					30.4	
LOS		Α			Α	Α					С	
Approach Delay		5.3			4.9						30.4	
Approach LOS		Α			Α						С	
Queue Length 50th (ft)		34			33	0					9	
Queue Length 95th (ft)		58			56	6					28	
Internal Link Dist (ft)		1733			2200			248			438	
Turn Bay Length (ft)						200						
Base Capacity (vph)		1198			1210	1054					230	
Starvation Cap Reductn		0			0	0					0	
Spillback Cap Reductn		0			0	0					0	
Storage Cap Reductn		0			0	0					0	
Reduced v/c Ratio		0.17			0.16	0.02					0.08	
Intersection Summary												
Area Type:	Other											
Cycle Length: 85												
Actuated Cycle Length: 85												
Natural Cycle: 40												
Control Type: Actuated-Und	coordinated											
Maximum v/c Ratio: 0.17												
Intersection Signal Delay: 6					ntersectio							
Intersection Capacity Utiliza	ation 30.3%			I	CU Level	of Service	Α					
Analysis Period (min) 15												


	•	•	†	/	\	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	**	.,,,,,,	1	.1511	UDE	<u> </u>
Traffic Volume (vph)	48	59	148	32	62	149
Future Volume (vph)	48	59	148	32	62	149
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	11	11	11	11
Grade (%)	-6%	14	2%	, ,		0%
Storage Length (ft)	0	0	270	0	0	0 /0
Storage Lanes	1	0		0	0	
Taper Length (ft)	25	- 0		- 0	25	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.926		0.976			
Flt Protected	0.928		0.310			0.985
Satd. Flow (prot)	1649	0	1704	0	0	1703
" ,		U	1704	U	U	
Flt Permitted	0.978	0	1704	0	0	0.871
Satd. Flow (perm)	1649	0	1704	0	0	1506
Right Turn on Red	0.4	Yes	40	Yes		
Satd. Flow (RTOR)	61		18			
Link Speed (mph)	30		55			55
Link Distance (ft)	328		519			557
Travel Time (s)	7.5		6.4			6.9
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	8%	7%	1%	19%	2%	8%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	50	61	154	33	65	155
Shared Lane Traffic (%)						
Lane Group Flow (vph)	111	0	187	0	0	220
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12	. ugiit	0	- ugin	2010	0
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane	10		10			10
Headway Factor	0.96	0.96	1.06	1.06	1.04	1.04
	15	0.90	1.00	1.00	1.04	1.04
Turning Speed (mph) Number of Detectors		9	2	9		0
	1		2		1	2
Detector Template	٥٦		00		Left	00
Leading Detector (ft)	35		83		20	83
Trailing Detector (ft)	-5		-5		0	-5
Turn Type	Prot		NA		Perm	NA
Protected Phases	3		1			5
Permitted Phases					5	
Detector Phase	3		1		5	5
Switch Phase						

	•	•	†	~	>	ţ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Minimum Initial (s)	5.0		5.0		5.0	5.0
Minimum Split (s)	10.0		12.0		12.0	12.0
Total Split (s)	35.0		45.0		45.0	45.0
Total Split (%)	43.8%		56.3%		56.3%	56.3%
Maximum Green (s)	30.0		38.0		38.0	38.0
Yellow Time (s)	4.0		5.0		5.0	5.0
All-Red Time (s)	1.0		2.0		2.0	2.0
Lost Time Adjust (s)	0.0		0.0			0.0
Total Lost Time (s)	5.0		7.0			7.0
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0		3.0		3.0	3.0
Minimum Gap (s)	3.0		3.0		3.0	3.0
Time Before Reduce (s)	0.0		0.0		0.0	0.0
Time To Reduce (s)	0.0		0.0		0.0	0.0
Recall Mode	None		C-Max		C-Max	C-Max
Walk Time (s)	140116		J-IVIAA		O-IVIAX	U-IVIAX
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)						
Act Effct Green (s)	8.4		63.1			63.1
Actuated g/C Ratio	0.4		0.79			0.79
v/c Ratio	0.10		0.79			0.79
Control Delay	24.1		2.1			3.7
Queue Delay	0.0		0.0			0.0
Total Delay	24.1		2.1			3.7
LOS	24.1 C					3. <i>1</i>
			A			
Approach Delay	24.1		2.1			3.7
Approach LOS	C		A			A
Queue Length 50th (ft)	24		9			25
Queue Length 95th (ft)	67		31			58
Internal Link Dist (ft)	248		439			477
Turn Bay Length (ft)						
Base Capacity (vph)	656		1347			1187
Starvation Cap Reductn	0		0			0
Spillback Cap Reductn	0		0			0
Storage Cap Reductn	0		0			0
Reduced v/c Ratio	0.17		0.14			0.19
Intersection Summary						
Area Type:	Other					
Cycle Length: 80						
Actuated Cycle Length: 80)					
Offset: 13 (16%), Reference		1:NBT ar	nd 5:SBTL	, Start of	f Yellow	
Natural Cycle: 40						
Control Type: Actuated-Co	oordinated					
Maximum v/c Ratio: 0.49						
Intersection Signal Delay:	7.5			Ir	ntersectio	n LOS: A
Intersection Capacity Utiliz						of Service
Analysis Period (min) 15	-aaon -to. 1 /0				OO LOVGI	51 551 VICE
maryoro i Gilou (IIIIII) 10						


	•	•	†	/	\	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ሻ	7	<u>↑</u>	, LDIT	JDL	<u> </u>
Traffic Volume (vph)	233	44	136	0	0	1 97
Future Volume (vph)	233	44	136	0	0	197
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
	1900					
Lane Width (ft)		13	11	11	11	11
Grade (%)	-2%	475	1%	^	^	1%
Storage Length (ft)	0	175		0	0	
Storage Lanes	1	1		0	0	
Taper Length (ft)	25				25	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt		0.850				
Flt Protected	0.950					
Satd. Flow (prot)	1770	1686	1740	0	0	1692
Flt Permitted	0.950					
Satd. Flow (perm)	1770	1686	1740	0	0	1692
Right Turn on Red	1110	Yes	. 1 10	Yes	0	1002
Satd. Flow (RTOR)		47		100		
Link Speed (mph)	30	41	55			55
Link Distance (ft)	321		928			519
` ,						
Travel Time (s)	7.3		11.5			6.4
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	3%	0%	5%	0%	0%	8%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	251	47	146	0	0	212
Shared Lane Traffic (%)						
Lane Group Flow (vph)	251	47	146	0	0	212
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12	Right	0	rtigrit	Leit	0
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane						
Headway Factor	0.99	0.95	1.05	1.05	1.05	1.05
Turning Speed (mph)	15	9		9	15	
Number of Detectors	1	1	2			2
Detector Template						
Leading Detector (ft)	35	35	83			83
Trailing Detector (ft)	-5	-5	-5			-5
Turn Type	Prot	Perm	NA			NA
Protected Phases	3		1			5
Permitted Phases		3				
Detector Phase	3	3	1			5
Switch Phase	J	J				3
SWILCH FIIdSE						

	•	•	†	/	>	ļ	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Minimum Initial (s)	5.0	5.0	5.0			5.0	
Minimum Split (s)	10.0	10.0	12.0			12.0	
Total Split (s)	35.0	35.0	45.0			45.0	
otal Split (%)	43.8%	43.8%	56.3%			56.3%	
laximum Green (s)	30.0	30.0	38.0			38.0	
ellow Time (s)	4.0	4.0	5.0			5.0	
II-Red Time (s)	1.0	1.0	2.0			2.0	
ost Time Adjust (s)	0.0	0.0	0.0			0.0	
otal Lost Time (s)	5.0	5.0	7.0			7.0	
ead/Lag	0.0	3.0					
ead-Lag Optimize?							
ehicle Extension (s)	3.0	3.0	3.0			3.0	
inimum Gap (s)	3.0	3.0	3.0			3.0	
me Before Reduce (s)	0.0	0.0	0.0			0.0	
me To Reduce (s)	0.0	0.0	0.0			0.0	
ecall Mode	None	None	C-Max			C-Max	
alk Time (s)	140116	NONE	O-IVIAX			J-IVIAX	
ash Dont Walk (s)							
edestrian Calls (#/hr)							
et Effet Green (s)	16.8	16.8	51.2			51.2	
tuated g/C Ratio	0.21	0.21	0.64			0.64	
Ratio	0.21	0.21	0.04			0.04	
ontrol Delay	37.7	7.9	7.1			6.5	
leue Delay	0.0	0.0	0.0			0.0	
otal Delay	37.7	7.9	7.1			6.5	
OS	37.7 D	7.9 A	7.1 A			0.5 A	
	33.0	А	7.1			6.5	
proach Delay	33.0 C					0.5 A	
pproach LOS	116	0	A 25			25	
ueue Length 50th (ft)		0	25 59			25 99	
ueue Length 95th (ft)	173	24				439	
ternal Link Dist (ft)	241	175	848			439	
urn Bay Length (ft)	660	175	1112			1000	
ase Capacity (vph)	663	661	1113			1082	
arvation Cap Reductn	0	0	0			0	
oillback Cap Reductn	0	0	0			0	
torage Cap Reductn educed v/c Ratio	0.38	0.07	0.13			0.20	
tersection Summary	0.36	0.07	0.13			0.20	
	Othor						
rea Type:	Other						
ycle Length: 80							
ctuated Cycle Length: 80	ad ta whar -	1.NDT -	nd E.ODT	Ctort - f V	'allas:		
ffset: 13 (16%), Reference	eu to pnase	I:NRI 9	na 5:5BT,	SIALL OF A	ellow		
atural Cycle: 40	and and						
ontrol Type: Actuated-Coc	ordinated						
aximum v/c Ratio: 0.67	0.7					1.00.5	
tersection Signal Delay: 1						LOS: B	A
tersection Capacity Utiliza	ation 33.3%			IC	U Level (of Service	A
nalysis Period (min) 15							

	۶	→	•	•	—	•	•	†	<i>></i>	/	+	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	4					7	∱ î≽		7	†	7
Traffic Volume (vph)	90	284	72	0	0	0	79	46	43	31	85	314
Future Volume (vph)	90	284	72	0	0	0	79	46	43	31	85	314
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	16	16	16	12	12	12	12	12	12
Grade (%)		1%			-4%			-1%			1%	
Storage Length (ft)	0		0	0		0	385		0	190		460
Storage Lanes	1		0	0		0	1		0	1		1
Taper Length (ft)	25			25			86			86		
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.971						0.927				0.850
Flt Protected	0.950	0.999					0.950			0.950		
Satd. Flow (prot)	1595	1674	0	0	0	0	1711	3279	0	1694	1750	1545
Flt Permitted	0.950	0.999		_	-		0.595		-	0.691	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Satd. Flow (perm)	1595	1674	0	0	0	0	1072	3279	0	1232	1750	1545
Right Turn on Red			Yes		•	Yes		00	Yes			Yes
Satd. Flow (RTOR)		16						47				341
Link Speed (mph)		30			30			55			55	011
Link Distance (ft)		176			314			586			596	
Travel Time (s)		4.0			7.1			7.3			7.4	
Confl. Peds. (#/hr)		1.0						7.0			,.,	
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	7%	4%	4%	0%	0%	0%	6%	5%	0%	6%	8%	4%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	98	309	78	0	0	0	86	50	47	34	92	341
Shared Lane Traffic (%)	10%	000	10	J	J	•	00	00		O I	UL.	011
Lane Group Flow (vph)	88	397	0	0	0	0	86	97	0	34	92	341
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Loit	12	rtigitt	Loit	12	rtigit	LOIL	12	ragne	LOIL	12	rtigitt
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane											10	
Headway Factor	1.01	1.01	1.01	0.82	0.82	0.82	0.99	0.99	0.99	1.01	1.01	1.01
Turning Speed (mph)	15	1.01	9	15	0.02	9	15	0.00	9	15	1.01	9
Number of Detectors	1	2		10		•	1	2		1	2	1
Detector Template	•	_					•			•		
Leading Detector (ft)	35	83					35	83		35	83	35
Trailing Detector (ft)	-5	-5					-5	-5		-5	-5	-5
Turn Type	Split	NA					pm+pt	NA		pm+pt	NA	pm+ov
Protected Phases	3	3					6	1		2	5	3
Permitted Phases	3	3					1			5	3	5
Detector Phase	3	3					6	1		2	5	3
Switch Phase	J	J					U				J	3
- Indiana indiana												

	٠	→	•	•	+	•	•	†	~	/	+	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	5.0					3.0	8.0		3.0	20.0	5.0
Minimum Split (s)	10.0	10.0					10.0	15.0		10.0	27.0	10.0
Total Split (s)	65.0	65.0					22.0	27.0		22.0	27.0	65.0
Total Split (%)	57.0%	57.0%					19.3%	23.7%		19.3%	23.7%	57.0%
Maximum Green (s)	60.0	60.0					15.0	20.0		15.0	20.0	60.0
Yellow Time (s)	4.0	4.0					5.0	5.0		5.0	5.0	4.0
All-Red Time (s)	1.0	1.0					2.0	2.0		2.0	2.0	1.0
Lost Time Adjust (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0					7.0	7.0		7.0	7.0	5.0
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0					2.0	2.0		2.0	2.0	3.0
Minimum Gap (s)	3.0	3.0					2.0	2.0		2.0	2.0	3.0
Time Before Reduce (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Recall Mode	None	None					None	Min		None	Min	None
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)	22.9	22.9					31.3	28.0		25.3	21.1	53.0
Actuated g/C Ratio	0.34	0.34					0.46	0.41		0.37	0.31	0.78
v/c Ratio	0.16	0.69					0.15	0.07		0.07	0.17	0.27
Control Delay	17.0	26.0					12.5	11.3		12.8	23.7	1.0
Queue Delay	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Total Delay	17.0	26.0					12.5	11.3		12.8	23.7	1.0
LOS	В	С					В	В		В	С	Α
Approach Delay		24.4						11.9			6.3	
Approach LOS		С						В			Α	
Queue Length 50th (ft)	28	149					19	5		7	30	0
Queue Length 95th (ft)	61	253					54	28		27	81	19
Internal Link Dist (ft)		96			234			506			516	
Turn Bay Length (ft)							385			190		460
Base Capacity (vph)	1384	1455					661	1377		685	542	1545
Starvation Cap Reductn	0	0					0	0		0	0	0
Spillback Cap Reductn	0	0					0	0		0	0	0
Storage Cap Reductn	0	0					0	0		0	0	0
Reduced v/c Ratio	0.06	0.27					0.13	0.07		0.05	0.17	0.22
Intersection Summary												
Area Type:	Other											
Cycle Length: 114												
Actuated Cycle Length: 68	3.1											
Natural Cycle: 60												
Control Type: Actuated-Ur	ncoordinated											
Maximum v/c Ratio: 0.69												
Intersection Signal Delay:	14.9			In	tersection	LOS: B						
Intersection Capacity Utiliz	zation 42.1%			IC	U Level	of Service	e A					
Analysis Period (min) 15												

	۶	→	•	•	•	•	4	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્ન			f)				7			
Traffic Volume (vph)	6	167	0	0	222	171	0	0	279	0	0	0
Future Volume (vph)	6	167	0	0	222	171	0	0	279	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	15	15	15	12	12	12	13	13	13	16	16	16
Grade (%)		1%			-1%			1%			2%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	0		0	0		0	0		1	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt					0.941				0.865			
Flt Protected		0.998										
Satd. Flow (prot)	0	1980	0	0	1713	0	0	0	1594	0	0	0
Flt Permitted		0.998										
Satd. Flow (perm)	0	1980	0	0	1713	0	0	0	1594	0	0	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		331			176			301			377	
Travel Time (s)		7.5			4.0			6.8			8.6	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	5%	0%	0%	4%	6%	0%	0%	6%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	7	182	0	0	241	186	0	0	303	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	189	0	0	427	0	0	0	303	0	0	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	0.89	0.89	0.89	0.99	0.99	0.99	0.96	0.96	0.96	0.86	0.86	0.86
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Free			Free			Stop			Stop	
Intersection Summary												
Area Type:	Other											
Control Type: Unsignalized												
Intersection Canacity Litilizati	ion 33 1%			IC	CLLL evel	of Service	Δ					

Intersection Capacity Utilization 33.1%

ICU Level of Service A

Analysis Period (min) 15

Intersection												
Int Delay, s/veh	3.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		सी			f				7			
Traffic Vol, veh/h	6	167	0	0	222	171	0	0	279	0	0	0
Future Vol, veh/h	6	167	0	0	222	171	0	0	279	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	0	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	16983	-
Grade, %	-	1	-	-	-1	-	-	1	-	-	2	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	0	5	0	0	4	6	0	0	6	0	0	0
Mvmt Flow	7	182	0	0	241	186	0	0	303	0	0	0
Major/Minor N	1ajor1		1	Major2		N	/linor1					
Conflicting Flow All	427	0	-	-	-	0	-	-	182			
Stage 1	-	-	-	-	-	-	-	-	-			
Stage 2	-	-	-	-	-	-	-	-	-			
Critical Hdwy	4.1	-	-	-	-	-	-	-	6.36			
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-			
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-			
Follow-up Hdwy	2.2	-	-	-	-	-	-	-	3.354			
Pot Cap-1 Maneuver	1143	-	0	0	-	-	0	0	846			
Stage 1	-	-	0	0	-	-	0	0	-			
Stage 2	-	-	0	0	-	-	0	0	-			
Platoon blocked, %	4440	-			-	-			0.10			
Mov Cap-1 Maneuver	1143	-	-	-	-	-	-	0	846			
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	0	-			
Stage 1	-	-	-	-	-	-	-	0	-			
Stage 2	-	-	-	-	-	-	-	0	-			
Approach	EB			WB			NB					
HCM Control Delay, s	0.3			0			11.6					
HCM LOS							В					
Minor Lane/Major Mvmt	1	NBLn1	EBL	EBT	WBT	WBR						
Capacity (veh/h)		846	1143	-	-	-						
HCM Lane V/C Ratio		0.358	0.006	-	-	-						
HCM Control Delay (s)		11.6	8.2	0	-	-						
HCM Lane LOS		В	Α	Α	-	-						
HCM 95th %tile Q(veh)		1.6	0	-	-	-						

	۶	→	*	•	+	•	1	†	/	/	↓	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					ર્ન						ર્ન	
Traffic Volume (vph)	0	0	0	222	0	0	0	0	0	173	Ö	0
Future Volume (vph)	0	0	0	222	0	0	0	0	0	173	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	14	14	13	13	12
Grade (%)		0%			-1%			2%			1%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	0		0	0		0	0		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt												
Flt Protected					0.950						0.950	
Satd. Flow (prot)	0	0	0	0	1744	0	0	0	0	0	1767	0
FIt Permitted					0.950						0.950	
Satd. Flow (perm)	0	0	0	0	1744	0	0	0	0	0	1767	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		71			331			377			345	
Travel Time (s)		1.6			7.5			8.6			7.8	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	0%	4%	0%	0%	0%	0%	0%	5%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)		•••						•			•	
Mid-Block Traffic (%)		0%		224	0%			0%		100	0%	
Adj. Flow (vph)	0	0	0	231	0	0	0	0	0	180	0	0
Shared Lane Traffic (%)	•	•	•	•	004	•	•	•	•	•	400	
Lane Group Flow (vph)	0	0	0	0	231	0	0	0	0	0	180	.0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane	4.00	4.00	4.00	0.00	0.00	0.00	4.04	0.00	0.00	0.00	0.00	4.04
Headway Factor	1.00	1.00	1.00	0.99	0.99	0.99	1.01	0.93	0.93	0.96	0.96	1.01
Turning Speed (mph)	15		9	15	_	9	15	01	9	15	01	9
Sign Control		Free			Free			Stop			Stop	
Intersection Summary												
	Other											
Control Type: Unsignalized												
Intersection Capacity Utilization 28.6% ICU Level of Service A												
Analysis Period (min) 15												

Synchro 10 Report Page 30

18002018A - N.T.

Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR SBR SBT SBT
Cane Configurations
Traffic Vol, veh/h 0 0 0 222 0 0 0 0 173 0 0 Future Vol, veh/h 0
Traffic Vol, veh/h 0 0 0 222 0 0 0 0 173 0 0 Future Vol, veh/h 0
Conflicting Peds, #/hr 0
Sign Control Free Stop
Sign Control Free Free Free Free Free Free Free Free Free Stop O - - - - None -
RT Channelized - - None - - None - - None Storage Length -
Veh in Median Storage, # - 0 - - 16974 - - 0 - Grade, % - 0 - - - - - 2 - - 1 - Peak Hour Factor 96
Veh in Median Storage, # - 0 - - 16974 - - 0 - Grade, % - 0 - - -1 - - 2 - - 1 - Peak Hour Factor 96
Peak Hour Factor 96
Heavy Vehicles, % 0 0 0 4 0 0 0 0 5 0 0
Major/Minor Major2 Minor2
Conflicting Flow All 0 0 0 462 462 -
Stage 1 462 462 -
Stage 2 0 0 -
Critical Hdwy 4.14 6.65 6.7 -
Critical Hdwy Stg 1 5.65 5.7 -
Critical Hdwy Stg 2
Follow-up Hdwy 2.236 3.545 4 -
Pot Cap-1 Maneuver 0 538 487 0
Stage 1 0 612 554 0
Stage 2 0 0
Platoon blocked, %
Mov Cap-1 Maneuver 538 0 -
Mov Cap-2 Maneuver 538 0 -
Stage 1 612 0 -
Stage 2 0 -
Approach WB SB
HCM Control Delay, s 15
HCM LOS C
0
Minor Lane/Major Mvmt WBL WBT SBLn1
Capacity (veh/h) 538
HCM Lane V/C Ratio 0.335
HCM Control Delay (s) 15
HCM Lane LOS C
HCM 95th %tile Q(veh) 1.5

	4	\mathbf{x}	À	F	*	₹	ን	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		ર્ન	7	ሻ	†	7	ሻ	^	7	ሻ	^	7
Traffic Volume (vph)	110	6	150	6	15	23	153	280	9	15	299	81
Future Volume (vph)	110	6	150	6	15	23	153	280	9	15	299	81
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	15	12	12	12	12	11	12	12	12	12	12
Grade (%)		0%			0%			0%			0%	
Storage Length (ft)	0		250	0		225	680		250	400		250
Storage Lanes	0		1	1		1	1		1	1		1
Taper Length (ft)	25			25			86			86		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Ped Bike Factor			0.99	1.00								
Frt			0.850			0.850			0.850			0.850
Flt Protected		0.955		0.950			0.950			0.950		
Satd. Flow (prot)	0	1888	1583	1543	1900	1615	1678	3343	1615	1805	3438	1482
Flt Permitted	•	0.725		0.679			0.950			0.950	0.00	
Satd. Flow (perm)	0	1434	1563	1102	1900	1615	1678	3343	1615	1805	3438	1482
Right Turn on Red	•		Yes			Yes			Yes		0.00	Yes
Satd. Flow (RTOR)			156			79			79			84
Link Speed (mph)		30			30			55	. •		55	٠.
Link Distance (ft)		610			598			1191			735	
Travel Time (s)		13.9			13.6			14.8			9.1	
Confl. Peds. (#/hr)		10.0	1	1	10.0			11.0			0.1	
Confl. Bikes (#/hr)			•	•								
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	6%	0%	2%	17%	0%	0%	4%	8%	0%	0%	5%	9%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	115	6	156	6	16	24	159	292	9	16	311	84
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	121	156	6	16	24	159	292	9	16	311	84
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	0.88	1.00	1.00	1.00	1.00	1.04	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1	1	1	1	1	2	1	1	2	1	1
Detector Template	Left					•	_		•	_		·
Leading Detector (ft)	20	43	6	6	6	6	83	6	6	83	6	6
Trailing Detector (ft)	0	0	0	0	0	0	-5	0	0	-5	0	0
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	. 31111	3	. 5	. 51111	3	. 51111	6	1	. 51111	2	5	. 51111
Permitted Phases	3		3	3	•	3	-		1	_		5
Detector Phase	3	3	3	3	3	3	6	1	1	2	5	5
Switch Phase	- 0	- 0	- 0	- 0	- 0	- 0	U				- 0	- 0
CWITCH HAGO												

	₩.	λ	Ž	F	*	₹	7	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	2.0	10.0	10.0	2.0	10.0	10.0
Minimum Split (s)	31.0	31.0	31.0	31.0	31.0	31.0	16.0	42.0	42.0	16.0	42.0	42.0
Total Split (s)	46.0	46.0	46.0	46.0	46.0	46.0	36.0	42.0	42.0	36.0	42.0	42.0
Total Split (%)	37.1%	37.1%	37.1%	37.1%	37.1%	37.1%	29.0%	33.9%	33.9%	29.0%	33.9%	33.9%
Maximum Green (s)	40.0	40.0	40.0	40.0	40.0	40.0	30.0	36.0	36.0	30.0	36.0	36.0
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	6.0	6.0	6.0	6.0	6.0	6.0	2.0	6.0	6.0	2.0	6.0	6.0
Minimum Gap (s)	3.0	3.0	3.0	3.0	3.0	3.0	2.0	3.0	3.0	2.0	4.0	4.0
Time Before Reduce (s)	20.0	20.0	20.0	20.0	20.0	20.0	0.0	20.0	20.0	0.0	20.0	20.0
Time To Reduce (s)	10.0	10.0	10.0	10.0	10.0	10.0	0.0	10.0	10.0	0.0	10.0	10.0
Recall Mode	Min	Min	Min	Min	Min	Min	None	Max	Max	None	Max	Max
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		15.7	15.7	15.7	15.7	15.7	12.3	52.5	52.5	5.5	36.3	36.3
Actuated g/C Ratio		0.19	0.19	0.19	0.19	0.19	0.15	0.64	0.64	0.07	0.44	0.44
v/c Ratio		0.44	0.37	0.03	0.04	0.06	0.63	0.14	0.01	0.13	0.21	0.12
Control Delay		35.6	7.8	28.0	28.0	0.3	45.5	7.7	0.0	42.0	16.2	4.9
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		35.6	7.8	28.0	28.0	0.3	45.5	7.7	0.0	42.0	16.2	4.9
LOS		D	Α	С	С	Α	D	Α	Α	D	В	Α
Approach Delay		19.9			13.6			20.6			14.9	
Approach LOS		В			В			С			В	
Queue Length 50th (ft)		55	0	3	7	0	77	24	0	8	48	0
Queue Length 95th (ft)		113	48	13	24	0	150	73	0	29	97	29
Internal Link Dist (ft)		530			518			1111			655	
Turn Bay Length (ft)			250			225	680		250	400		250
Base Capacity (vph)		701	844	538	929	830	615	2126	1056	662	1513	699
Starvation Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio		0.17	0.18	0.01	0.02	0.03	0.26	0.14	0.01	0.02	0.21	0.12

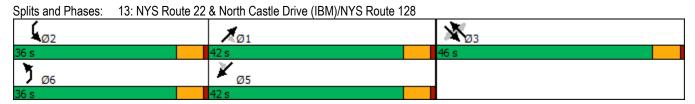
Intersection Summary

Area Type: Other

Cycle Length: 124

Actuated Cycle Length: 82.5

Natural Cycle: 90


Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.63

Intersection Signal Delay: 18.2 Intersection Capacity Utilization 44.9% Intersection LOS: B
ICU Level of Service A

Analysis Period (min) 15

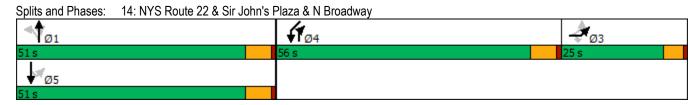
13: NYS Route 22 & North Castle Drive (IBM)/NYS Route 128

	۶	_#	•	•	†	7	(w	Ţ	4	4	✓	
Lane Group	EBL2	EBL	EBR	NBL	NBT	NBR	SBL	SBT	SBR	SWL	SWR	
Lane Configurations		ă	7		ર્ન	7		4		444		
Traffic Volume (vph)	3	0	6	4	381	153	0	357	2	153	0	
Future Volume (vph)	3	0	6	4	381	153	0	357	2	153	0	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Lane Width (ft)	10	10	10	11	11	11	12	12	12	11	11	
Grade (%)		0%			4%			1%		0%		
Storage Length (ft)		0	0	0		0	0		0	0	0	
Storage Lanes		1	1	0		1	0		0	2	0	
Taper Length (ft)		25		25			25		•	25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.97	0.95	
Ped Bike Factor					1.00			1.00				
Frt			0.850			0.850		0.999				
Flt Protected		0.950								0.950		
Satd. Flow (prot)	0	1685	1133	0	1744	1391	0	1782	0	3164	0	
Flt Permitted		0.950	1100		0.997	1001		1102	•	0.950		
Satd. Flow (perm)	0	1685	1133	0	1739	1391	0	1782	0	3164	0	
Right Turn on Red		1000	Yes		1100	Yes		1102	No	0101		
Satd. Flow (RTOR)			74			159						
Link Speed (mph)		30			35	100		35		35		
Link Distance (ft)		155			796			597		511		
Travel Time (s)		3.5			15.5			11.6		10.0		
Confl. Peds. (#/hr)		0.0		1	10.0			11.0	1	10.0	1	
Confl. Bikes (#/hr)				•					•		•	
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	
Heavy Vehicles (%)	0%	0%	33%	25%	3%	10%	0%	6%	0%	7%	0%	
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%		0%		
Adj. Flow (vph)	3	0	6	4	397	159	0	372	2	159	0	
Shared Lane Traffic (%)	U	U	J		001	100	U	012		100	U	
Lane Group Flow (vph)	0	3	6	0	401	159	0	374	0	159	0	
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Right	
Median Width(ft)	Leit	10	rtigrit	LGIL	0	ragnt	Leit	0	rtigiit	22	rtigiit	
Link Offset(ft)		0			0			0		0		
Crosswalk Width(ft)		16			16			16		16		
Two way Left Turn Lane		10			10			10		10		
Headway Factor	1.09	1.09	1.09	1.07	1.07	1.07	1.01	1.01	1.01	1.04	1.04	
Turning Speed (mph)	1.09	1.03	9	1.07	1.07	9	1.01	1.01	9	1.04	9	
Number of Detectors	1		1	13	2	1	13	2	9	13	9	
Detector Template	Left	1	ı	Left	2	I	Left	۷		ı		
Leading Detector (ft)	20	35	35	20	83	35	20	83		35		
. ,	0	ან -5	ან -5	20	-5	აე -5	0	-5		ან -5		
Trailing Detector (ft)							U			-ა Prot		
Turn Type	Perm	Prot	Perm	Perm	NA 1	pm+ov		NA 5				
Protected Phases	2	3	2	4	1	4	-	5		4		
Permitted Phases	3	•	3	1		1	5	-		4		
Detector Phase	3	3	3	1	1	4	5	5		4		
Switch Phase												

	۶	_#	•	4	†	7	4	ţ	4	4	✓
Lane Group	EBL2	EBL	EBR	NBL	NBT	NBR	SBL	SBT	SBR	SWL	SWR
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	
Minimum Split (s)	10.0	10.0	10.0	11.0	11.0	11.0	11.0	11.0		11.0	
Total Split (s)	25.0	25.0	25.0	51.0	51.0	56.0	51.0	51.0		56.0	
Total Split (%)	18.9%	18.9%	18.9%	38.6%	38.6%	42.4%	38.6%	38.6%		42.4%	
Maximum Green (s)	20.0	20.0	20.0	45.0	45.0	50.0	45.0	45.0		50.0	
Yellow Time (s)	4.0	4.0	4.0	5.0	5.0	5.0	5.0	5.0		5.0	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	
Lost Time Adjust (s)		0.0	0.0		0.0	0.0		0.0		0.0	
Total Lost Time (s)		5.0	5.0		6.0	6.0		6.0		6.0	
Lead/Lag	Lag	Lag	Lag			Lead				Lead	
Lead-Lag Optimize?	Yes	Yes	Yes			Yes				Yes	
Vehicle Extension (s)	5.0	5.0	5.0	5.0	5.0	3.0	5.0	5.0		3.0	
Minimum Gap (s)	5.0	5.0	5.0	5.0	5.0	3.0	5.0	5.0		3.0	
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	
Recall Mode	None	None	None	Max	Max	None	Max	Max		None	
Walk Time (s)											
Flash Dont Walk (s)											
Pedestrian Calls (#/hr)											
Act Effct Green (s)		7.8	7.8		45.4	65.4		45.4		8.9	
Actuated g/C Ratio		0.11	0.11		0.66	0.95		0.66		0.13	
v/c Ratio		0.02	0.03		0.35	0.12		0.32		0.39	
Control Delay		30.3	0.3		7.3	0.5		7.0		31.1	
Queue Delay		0.0	0.0		0.0	0.0		0.0		0.0	
Total Delay		30.3	0.3		7.3	0.5		7.0		31.1	
LOS		С	Α		Α	Α		Α		С	
Approach Delay		10.3			5.4			7.0		31.1	
Approach LOS		В			Α			Α		С	
Queue Length 50th (ft)		1	0		53	0		48		30	
Queue Length 95th (ft)		10	0		176	11		160		67	
Internal Link Dist (ft)		75			716			517		431	
Turn Bay Length (ft)											
Base Capacity (vph)		495	385		1150	1391		1178		2325	
Starvation Cap Reductn		0	0		0	0		0		0	
Spillback Cap Reductn		0	0		0	0		0		0	
Storage Cap Reductn		0	0		0	0		0		0	
Reduced v/c Ratio		0.01	0.02		0.35	0.11		0.32		0.07	
Intersection Summary											
Area Type:	Other										
Cycle Length: 132											
Actuated Cycle Length: 68	3.6										

Natural Cycle: 40

Control Type: Semi Act-Uncoord


Maximum v/c Ratio: 0.39

Intersection Signal Delay: 9.7 Intersection Capacity Utilization 45.9%

Analysis Period (min) 15

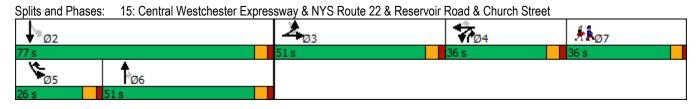
Intersection LOS: A ICU Level of Service A

> Synchro 10 Report Page 36

	>	۶	-	*	•	—	*_	•	†	<i>></i>	/	
Lane Group	EBL2	EBL	EBT	EBR	WBL	WBT	WBR	WBR2	NBT	NBR	SBL	SBT
Lane Configurations		*	f)			ર્ન		7	^	7	ሻ	↑ ↑
Traffic Volume (vph)	1	206	141	89	61	101	1	68	310	65	45	334
Future Volume (vph)	1	206	141	89	61	101	1	68	310	65	45	334
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	11	11	12	12	12	12	11	11	12	12
Grade (%)			2%			2%			4%			-6%
Storage Length (ft)		115		0	0		180			160	110	
Storage Lanes		1		0	0		1			1	1	
Taper Length (ft)		86			25						86	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95
Ped Bike Factor		0.99	0.99		,,,,,,	0.99		0.99				0.99
Frt		0.00	0.942			0.999		0.850		0.850		0.943
Flt Protected			0.0			0.982		0.000		0.000	0.950	0.0.0
Satd. Flow (prot)	0	1639	1683	0	0	1834	0	1599	3353	1443	1859	3241
Flt Permitted	•	1000	1000	· ·	J	0.982	•	1000	0000	1110	0.291	0211
Satd. Flow (perm)	0	1627	1683	0	0	1825	0	1576	3353	1443	569	3241
Right Turn on Red	•	1021	1000	No	J	1020	•	Yes	0000	Yes	000	0211
Satd. Flow (RTOR)								76		76		
Link Speed (mph)			35			30			45	. •		35
Link Distance (ft)			532			475			529			778
Travel Time (s)			10.4			10.8			8.0			15.2
Confl. Peds. (#/hr)	3	2	10.4	10	10	10.0	3	2	0.0			10.2
Confl. Bikes (#/hr)		_		10	10			_				
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	11%	1%	0%	0%	1%	0%	0%	2%	6%	0%	3%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)			0%			0%			0%			0%
Adj. Flow (vph)	1	219	150	95	65	107	1	72	330	69	48	355
Shared Lane Traffic (%)	•	210	100	30	00	101	•	12	000	03	70	000
Lane Group Flow (vph)	0	220	245	0	0	173	0	72	330	69	48	574
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Left	Right	Right	Left	Right	Left	Left
Median Width(ft)	LOIL	LOIL	11	rtigitt	LOIL	11	ragnt	rtigrit	12	rtigiit	LOIL	12
Link Offset(ft)			0			0			0			0
Crosswalk Width(ft)			16			16			16			16
Two way Left Turn Lane			10			10			10			10
Headway Factor	1.06	1.06	1.06	1.06	1.01	1.01	1.01	1.01	1.07	1.07	0.96	0.96
Turning Speed (mph)	1.00	1.00	1.00	9	1.01	1.01	9	9	1.07	9	15	0.30
Number of Detectors	10	1	2	3	13	2	3	1	2	1	10	2
Detector Template	Left	ı			Left			ı		ı	ı	
Leading Detector (ft)	20	35	83		20	83		35	83	35	35	83
Trailing Detector (ft)	0	-5	-5		0	-5		-5	-5	-5	-5	-5
			NA									
Turn Type	Perm	Split	NA 3		Split 4	NA		pm+ov	NA 6	pm+ov 4	pm+pt	NA 2
Protected Phases	2	3	3		4	4		5	O		5	2
Permitted Phases	3	2	2		4	4		4	6	6	2	0
Detector Phase	3	3	3		4	4		5	6	4	5	2
Switch Phase												

Synchro 10 Report Page 38 18002018A - N.T.

Lane Group	SBR	Ø7
LareConfigurations		
Traffic Volume (vph)	206	
Future Volume (vph)	206	
Ideal Flow (vphpl)	1900	
Lane Width (ft)	12	
Grade (%)		
Storage Length (ft)	0	
Storage Lanes	Ö	
Taper Length (ft)	.	
Lane Util. Factor	0.95	
Ped Bike Factor	0.00	
Frt		
Flt Protected		
Satd. Flow (prot)	0	
Flt Permitted	U	
Satd. Flow (perm)	0	
,	U	
Right Turn on Red		
Satd. Flow (RTOR)		
Link Speed (mph)		
Link Distance (ft)		
Travel Time (s)	4	
Confl. Peds. (#/hr)	1	
Confl. Bikes (#/hr)	0.04	
Peak Hour Factor	0.94	
Growth Factor	100%	
Heavy Vehicles (%)	14%	
Bus Blockages (#/hr)	0	
Parking (#/hr)		
Mid-Block Traffic (%)		
Adj. Flow (vph)	219	
Shared Lane Traffic (%)		
Lane Group Flow (vph)	0	
Enter Blocked Intersection	No	
Lane Alignment	Right	
Median Width(ft)		
Link Offset(ft)		
Crosswalk Width(ft)		
Two way Left Turn Lane		
Headway Factor	0.96	
Turning Speed (mph)	9	
Number of Detectors		
Detector Template		
Leading Detector (ft)		
Trailing Detector (ft)		
Turn Type		
Protected Phases		7
Permitted Phases		I
Detector Phase		
Switch Phase		


15: Central Westchester Expressway & NYS Route 22 & Reservoir Road & Church Stret 16/2019

	>	٠	→	•	•	←	*_	•	†	/	/	+
Lane Group	EBL2	EBL	EBT	EBR	WBL	WBT	WBR	WBR2	NBT	NBR	SBL	SBT
Minimum Initial (s)	5.0	5.0	5.0		5.0	5.0		5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	39.0	39.0	39.0		11.0	11.0		11.0	11.0	11.0	11.0	31.0
Total Split (s)	51.0	51.0	51.0		36.0	36.0		26.0	51.0	36.0	26.0	77.0
Total Split (%)	25.5%	25.5%	25.5%		18.0%	18.0%		13.0%	25.5%	18.0%	13.0%	38.5%
Maximum Green (s)	45.0	45.0	45.0		30.0	30.0		20.0	45.0	30.0	20.0	71.0
Yellow Time (s)	4.0	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)		0.0	0.0			0.0		0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		6.0	6.0			6.0		6.0	6.0	6.0	6.0	6.0
Lead/Lag	Lead	Lead	Lead		Lag	Lag		Lead	Lag	Lag	Lead	
Lead-Lag Optimize?	Yes	Yes	Yes		Yes	Yes		Yes	Yes	Yes	Yes	
Vehicle Extension (s)	3.0	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0
Minimum Gap (s)	3.0	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0
Time Before Reduce (s)	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0
Recall Mode	None	None	None		None	None		None	Min	None	None	Min
Walk Time (s)	8.0	8.0	8.0									8.0
Flash Dont Walk (s)	25.0	25.0	25.0									17.0
Pedestrian Calls (#/hr)	6	6	6			40.0			40.0	00.5	0.4.5	0
Act Effct Green (s)		26.1	26.1			19.0		27.7	19.6	38.5	34.5	34.5
Actuated g/C Ratio		0.19	0.19			0.14		0.21	0.15	0.29	0.26	0.26
v/c Ratio		0.70	0.75			0.67		0.19	0.68	0.15	0.21	0.69
Control Delay		64.4	67.7			70.5		6.1	63.9	3.9	43.7	51.5
Queue Delay		0.0	0.0			0.0		0.0	0.0	0.0	0.0	0.0
Total Delay		64.4	67.7			70.5		6.1	63.9	3.9	43.7	51.5
LOS		E	E			E		Α	E	А	D	D
Approach Delay			66.1			51.6			53.5 D			50.9
Approach LOS		170	E			D		٥		0	20	D
Queue Length 50th (ft)		178	201			143 263		0 26	143	0	32 77	235
Queue Length 95th (ft)		311	346 452			395		20	235 449	17	11	363 698
Internal Link Dist (ft)		115	452			393		180	449	160	110	090
Turn Bay Length (ft)		555	574			417		518	1144	585	341	1746
Base Capacity (vph) Starvation Cap Reductn		0	0			0		0	0	0	0	0
Spillback Cap Reductn		0	0			0		0	0	0	0	0
Storage Cap Reductn		0	0			0		0	0	0	0	0
Reduced v/c Ratio		0.40	0.43			0.41		0.14	0.29	0.12	0.14	0.33
Intersection Summary												
Area Type:	Other											
Cycle Length: 200												
Actuated Cycle Length: 13	4.8											
Natural Cycle: 120												
Control Type: Actuated-Un	coordinated											
Maximum v/c Ratio: 0.75												
						100 =						

Intersection Signal Delay: 55.7 Intersection LOS: E
Intersection Capacity Utilization 68.3% ICU Level of Service C

Analysis Period (min) 15

15: Central Westchester Expressway & NYS Route 22 & Reservoir Road & Church Stret 16/2019

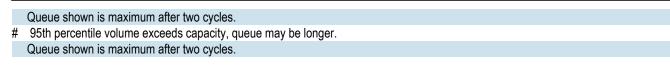
18002018A - N.T. Page 41

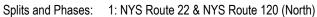
Minimum Initial (s) 8.0 Minimum Split (s) 36.0 Total Split (%) 18% Maximum Green (s) 31.0 Yellow Time (s) 3.5 All-Red Time (s) 1.5 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#hr) 2 Act Effet Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay Los Approach Los Queue Length 95th (ft) Internal Link Dist (ft) Tum Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Storage Cap Reductn Reduced v/c Ratio Vic Ratio Corage Cap Reductn Storage Cap Reductn Storage Cap Reductn			
Minimum Split (s) 36.0 Total Split (s) 36.0 Total Split (s) 36.0 Total Split (s) 18% Maximum Green (s) 31.0 Yellow Time (s) 3.5 All-Red Time (s) 1.5 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effet Green (s) Actuated g/C Ratio V/c Ratio Control Delay Queue Delay Total Delay LoS Approach LoS Queue Length 95th (ft) Internal Link Dist (ft) Tum Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio	Lane Group	SBR Ø7	
Total Split (s) 36.0 Total Split (%) 18% Maximum Green (s) 31.0 Yellow Time (s) 3.5 All-Red Time (s) 1.5 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#hr) 2 Act Effct Green (s) Actuated g/C Ratio V/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Total Split (%) 18% Maximum Green (s) 31.0 Yellow Time (s) 3.5 All-Red Time (s) 1.5 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (v/ph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Maximum Green (s) 31.0 Yellow Time (s) 3.5 All-Red Time (s) 1.5 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (v/ph) Starvation Cap Reductn Spillback Cap Reductn Spillback Cap Reductn Reduced v/c Ratio	Total Split (s)		
Yellow Time (s) 3.5 All-Red Time (s) 1.5 Lost Time Adjust (s) 1.5 Total Lost Time (s) 1.5 Lead/Lag 1.5 Lead-Lag Optimize? 1.0 Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effet Green (s) Actuated g/C Ratio V/c Ratio Vic Ratio Control Delay Queue Delay Total Delay Vic Ratio LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
All-Red Time (s) 1.5 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio	Maximum Green (s)	31.0	
Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio	Yellow Time (s)		
Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio	All-Red Time (s)	1.5	
Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio	Lead/Lag		
Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effet Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio	Lead-Lag Optimize?		
Time Before Reduce (s) Time To Reduce (s) Time To Reduce (s) Recall Mode Recall Mode Ped Walk Time (s) Resolution Calls (#/hr) Redestrian Calls (#/hr) Retain Calls (#			
Time To Reduce (s) Recall Mode Recall Mode Ped Walk Time (s) Resh Dont Walk (s) Pedestrian Calls (#/hr) Pedestrian Calls (#/hr) Pedestrian Calls (#/hr) Act Effct Green (s) Actuated g/C Ratio V/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Reduced v/c Ratio			
Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Reduced v/c Ratio			
Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Pedestrian Calls (#/hr) Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Reduced v/c Ratio	Flash Dont Walk (s)	23.0	
Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio		2	
V/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio	Act Effct Green (s)		
Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio	•		
Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio	Turn Bay Length (ft)		
Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Storage Cap Reductn Reduced v/c Ratio	Starvation Cap Reductn		
Reduced v/c Ratio			
	Reduced v/c Ratio		
Intersection Summary	Intersection Summary		

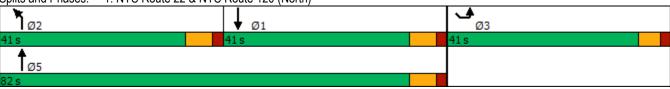
Synchro 10 Report Page 42 18002018A - N.T.

	ሻ	†	ļ	» J	•	>
Lane Group	NBL	NBT	SBT	SBR	SEL	SER
Lane Configurations	ች	^	^	7	ሻ	7
Traffic Volume (vph)	611	581	589	563	249	217
Future Volume (vph)	611	581	589	563	249	217
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1900	1900	1900	1900	1900	1900
	10	0%	0%	10	0%	10
Grade (%)	050	U%	0%	F00		0
Storage Length (ft)	250			500	250	0
Storage Lanes	1			1	1	1
Taper Length (ft)	86				86	
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00
Ped Bike Factor						
Frt				0.850		0.850
Flt Protected	0.950				0.950	
Satd. Flow (prot)	1685	3336	3336	1507	1685	1507
Flt Permitted	0.950				0.950	
Satd. Flow (perm)	1685	3336	3336	1507	1685	1507
Right Turn on Red	1000	0000	0000	Yes	1000	Yes
				599		231
Satd. Flow (RTOR)		EE	EE	วษษ	20	231
Link Speed (mph)		55 767	55		30	
Link Distance (ft)		767	1064		872	
Travel Time (s)		9.5	13.2		19.8	
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	1%	1%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)				•		•
Mid-Block Traffic (%)		0%	0%		0%	
Adj. Flow (vph)	650	618	627	599	265	231
	030	010	021	333	200	201
Shared Lane Traffic (%)	GEO.	610	627	500	265	224
Lane Group Flow (vph)	650	618		599 No	265	231
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width(ft)		10	15		10	
Link Offset(ft)		0	0		0	
Crosswalk Width(ft)		16	16		16	
Two way Left Turn Lane						
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (mph)	15			9	15	9
Number of Detectors	1	2	2	1	2	0
Detector Template	I			ı		U
	25	104	104	0	101	0
Leading Detector (ft)	35	104	104	0	104	0
Trailing Detector (ft)	-5	0	0	_ 0	0	_ 0
Turn Type	Prot	NA	NA	Free	Prot	Free
Protected Phases	2	5	1		3	
Permitted Phases				Free		Free
Detector Phase	2	5	1		3	
Switch Phase						

	ሻ	†	ļ	¥J	•	>
Lane Group	NBL	NBT	SBT	SBR	SEL	SER
Minimum Initial (s)	12.0	12.0	12.0		10.0	
Minimum Split (s)	36.0	36.0	36.0		26.0	
Total Split (s)	41.0	82.0	41.0		41.0	
Total Split (%)	33.3%	66.7%	33.3%		33.3%	
Maximum Green (s)	34.0	75.0	34.0		35.0	
Yellow Time (s)	5.0	5.0	5.0		4.0	
All-Red Time (s)	2.0	2.0	2.0		2.0	
Lost Time Adjust (s)	0.0	0.0	0.0		0.0	
Total Lost Time (s)	7.0	7.0	7.0		6.0	
Lead/Lag	Lead		Lag			
Lead-Lag Optimize?	Yes		Yes			
Vehicle Extension (s)	6.0	6.0	6.0		6.0	
Minimum Gap (s)	4.0	4.0	4.0		4.0	
Time Before Reduce (s)	20.0	20.0	20.0		20.0	
Time To Reduce (s)	8.0	8.0	8.0		5.0	
Recall Mode	None	Min	Min		None	
Walk Time (s)	NOTIC	IVIIII	IVIIII		INOHE	
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)						
Act Effct Green (s)	34.4	70.0	28.6	107.9	24.8	107.9
Actuated g/C Ratio	0.32	0.65	0.27	1.00	0.23	1.00
v/c Ratio	1.21	0.05	0.27	0.40	0.23	0.15
	1.21	9.2	41.4	0.40	48.1	0.15
Control Delay	0.0	0.0	0.0	0.0	0.0	0.2
Queue Delay	146.1		41.4	0.0	48.1	0.0
Total Delay		9.2				
LOS Approach Delay	F	A 70.4	D	Α	D	Α
Approach Delay		79.4	21.6		25.8	
Approach LOS	E 40	E	C	^	C	^
Queue Length 50th (ft)	~548	87	205	0	167	0
Queue Length 95th (ft)	#915	148	299	0	269	0
Internal Link Dist (ft)		687	984		792	
Turn Bay Length (ft)	250			500	250	
Base Capacity (vph)	536	2343	1062	1507	552	1507
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	1.21	0.26	0.59	0.40	0.48	0.15
Intersection Summary						
Area Type:	Other					
Cycle Length: 123						
Actuated Cycle Length: 10	07.9					
Natural Cycle: 110	- · · ·					
Control Type: Actuated-Ur	ncoordinated					

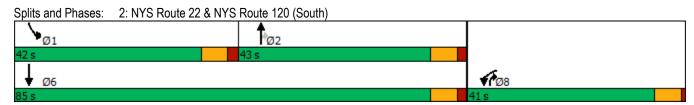

Control Type: Actuated-Uncoordinated


Maximum v/c Ratio: 1.21 Intersection Signal Delay: 46.8 Intersection Capacity Utilization 80.6%


Intersection LOS: D ICU Level of Service D

Analysis Period (min) 15

[~] Volume exceeds capacity, queue is theoretically infinite.



	•	•	†	~	\	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥	1151	^	7	ሻሻ	† †
Traffic Volume (vph)	277	15	491	25	205	601
Future Volume (vph)	277	15	491	25	205	601
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1300	12	1900	1900	1300	1300
Grade (%)	-8%	۱۷	-2%	10	11	-1%
Storage Length (ft)	-6%	0	- Z /0	200	215	-1 /0
Storage Lanes	1	0		200 1	215	
Taper Length (ft)	25	U		I	86	
Lane Util. Factor	1.00	1.00	0.95	1.00	0.97	0.95
	1.00	1.00	0.95	1.00	0.97	0.95
Ped Bike Factor	0.000			0.050		
Frt	0.993			0.850	0.050	
Flt Protected	0.955	_	0.100	4404	0.950	0.470
Satd. Flow (prot)	1856	0	3403	1464	3335	3472
Flt Permitted	0.955				0.950	
Satd. Flow (perm)	1856	0	3403	1464	3335	3472
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)	2			29		
Link Speed (mph)	30		50			50
Link Distance (ft)	334		905			488
Travel Time (s)	7.6		12.3			6.7
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	1%	0%	0%	4%	2%	1%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	326	18	578	29	241	707
Shared Lane Traffic (%)	020	10	010	20	271	707
Lane Group Flow (vph)	344	0	578	29	241	707
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12		22			22
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane						
Headway Factor	0.95	0.95	1.08	1.08	1.04	1.04
Turning Speed (mph)	15	9		9	15	
Number of Detectors	1		2	1	1	2
Detector Template	Left		Thru	Right	Left	Thru
Leading Detector (ft)	20		100	20	20	100
Trailing Detector (ft)	0		0	0	0	0
Turn Type	Prot		NA	pm+ov	Prot	NA
Protected Phases	8		2	8	1	6
Permitted Phases			_	2		•
Detector Phase	8		2	8	1	6
	0		2	0		U
Switch Phase						

	€	•	†	<i>></i>	/	↓
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Minimum Initial (s)	10.0		12.0	10.0	12.0	12.0
Minimum Split (s)	26.0		36.0	26.0	36.0	36.0
Total Split (s)	41.0		43.0	41.0	42.0	85.0
Total Split (%)	32.5%		34.1%	32.5%	33.3%	67.5%
Maximum Green (s)	35.0		36.0	35.0	35.0	78.0
Yellow Time (s)	5.0		5.0	5.0	5.0	5.0
All-Red Time (s)	1.0		2.0	1.0	2.0	2.0
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0		7.0	6.0	7.0	7.0
Lead/Lag	0.0		Lag	0.0	Lead	1.0
Lead-Lag Optimize?			Yes		Yes	
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0
Minimum Gap (s)	3.0		3.0	3.0	3.0	3.0
Time Before Reduce (s)	0.0		0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0		0.0	0.0	0.0	0.0
\ /						
Recall Mode	None		Min	None	Min	Min
Walk Time (s)						
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)	40.0		40.0	45.0	40.4	00.4
Act Effct Green (s)	19.6		19.0	45.8	13.1	39.4
Actuated g/C Ratio	0.27		0.26	0.63	0.18	0.54
v/c Ratio	0.68		0.65	0.03	0.40	0.37
Control Delay	31.7		28.0	1.9	30.8	10.6
Queue Delay	0.0		0.0	0.0	0.0	0.0
Total Delay	31.7		28.0	1.9	30.8	10.6
LOS	С		С	Α	С	В
Approach Delay	31.7		26.7			15.8
Approach LOS	С		С			В
Queue Length 50th (ft)	132		115	0	48	85
Queue Length 95th (ft)	237		191	7	95	146
Internal Link Dist (ft)	254		825			408
Turn Bay Length (ft)				200	215	
Base Capacity (vph)	924		1742	1263	1659	3362
Starvation Cap Reductn	0		0	0	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductn	0		0	0	0	0
Reduced v/c Ratio	0.37		0.33	0.02	0.15	0.21
Intersection Summary						
Area Type:	Other					
Cycle Length: 126						
Actuated Cycle Length: 72	2.3					
Natural Cycle: 100						
Control Type: Semi Act-Ur	ncoord					
Maximum v/c Ratio: 0.68						
Intersection Signal Delay:	22.2			lr	ntersectio	n LOS: C
Intersection Capacity Utiliz						of Service
Analysis Period (min) 15				'`		27 231 1100
raidiyolo i orlod (ililii) 10						

	۶	→	•	•	←	•	4	†	/	>	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					f)			4				
Traffic Volume (vph)	0	0	0	0	48	7	2	679	28	0	0	0
Future Volume (vph)	0	0	0	0	48	7	2	679	28	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	13	12	12	12	12
Grade (%)		0%			-5%			-7%			0%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	0		0	0		0	0		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt					0.982			0.995				
Flt Protected												
Satd. Flow (prot)	0	0	0	0	1848	0	0	2000	0	0	0	0
Flt Permitted												
Satd. Flow (perm)	0	0	0	0	1848	0	0	2000	0	0	0	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		124			297			300			404	
Travel Time (s)		2.8			6.8			6.8			9.2	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	0%	0%	4%	0%	0%	1%	4%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	0	0	0	0	59	9	2	838	35	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	0	0	0	68	0	0	875	0	0	0	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0	<u> </u>		0			0	J
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	0.97	0.97	0.97	0.96	0.92	0.96	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Stop	-		Stop			Free	-		Stop	
Intersection Summary												
Area Type:	Other											
Control Type: Unsignalized												
Intersection Capacity Utilizati	on 47.5%			IC	CU Level	of Service	Α					
Analysis Period (min) 15												

Intersection												
Int Delay, s/veh	1.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					f)			4				
Traffic Vol, veh/h	0	0	0	0	48	7	2	679	28	0	0	0
Future Vol, veh/h	0	0	0	0	48	7	2	679	28	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None	-	<u> </u>	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	_	-	-	-
Veh in Median Storage,	# -	2	-	-	0	-	-	0	-	-	16965	-
Grade, %	-	0	-	-	-5	-	-	-7	-	-	0	-
Peak Hour Factor	81	81	81	81	81	81	81	81	81	81	81	81
Heavy Vehicles, %	0	0	0	0	4	0	0	1	4	0	0	0
Mvmt Flow	0	0	0	0	59	9	2	838	35	0	0	0
Major/Minor			N	Minor1		N	/lajor1					
Conflicting Flow All			- 1	-	860	856	0	0	0			
Stage 1				_	860	-	-	-	-			
Stage 2					0	_	_	_	_			
Critical Hdwy				_	5.54	5.7	4.1	_	_			
Critical Hdwy Stg 1				_	4.54	-	-	_	_			
Critical Hdwy Stg 2				_	5-	_	_	_	_			
Follow-up Hdwy				_	4.036	3.3	2.2	_	_			
Pot Cap-1 Maneuver				0	370	406	-	_	_			
Stage 1				0	470	-	_	_	_			
Stage 2				0	-	_	_	_	_			
Platoon blocked, %				- 0				_	_			
Mov Cap-1 Maneuver				-	0	406	_	_	_			
Mov Cap-1 Maneuver				_	0	-	_	<u>-</u>	_			
Stage 1				-	0	_	_	_	_			
Stage 2				_	0	_	_	_	_			
J. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.					<u> </u>							
Approach				WB			NB					
HCM Control Delay, s				15.6			IND					
HCM LOS				13.0 C								
TIOIVI LOO				U								
Minor Long/Maior NA		NDI	NDT	NDD	MDL 4							
Minor Lane/Major Mvmt		NBL	NBT		WBLn1							
Capacity (veh/h)		-	-	-								
HCM Lane V/C Ratio		-	-		0.167							
HCM Control Delay (s)		-	-	-	15.6							
HCM Lane LOS		-	-	-	С							
HCM 95th %tile Q(veh)		-	-	-	0.6							

4: NYS Route 120 8	SwissRe Driveway	y/IBM Driveway

Lane Configurations		۶	→	\rightarrow	•	•	•	4	†	/	>	ļ	4
Traffic Volume (vph)	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph)	Lane Configurations		ર્ની	7		ની	7	ሻ	1	7	ሻ	1	7
Ideal Flow (yoph) 1900 1000 1	Traffic Volume (vph)	100			24		22	17		0	1		
Lane Width (fft)	Future Volume (vph)	100	0	71	24	2	22	17	879	0	1	224	5
Grade (%)	Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Storage Lanes	Grade (%)		4%			-1%			7%			-4%	
Storage Lanes	Storage Length (ft)	0		315	0		125	280		445	150		275
Lane Util. Factor	Storage Lanes	0		1	0		1	1		1	1		1
Ped Bike Factor Fit	Taper Length (ft)	25			25			86			86		
Fith	Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit Protected 0.950 0.955 0.950 0.95	Ped Bike Factor												
Satd. Flow (prot)	Frt			0.850			0.850						0.850
Fit Permitted	Flt Protected		0.950			0.955		0.950			0.950		
Satd. Flow (perm)	Satd. Flow (prot)	0	1769	1479	0	1765	1623	1476	1815	1834	1841	1882	1647
Page	FIt Permitted		0.738			0.663		0.573			0.101		
Satd. Flow (RTOR) 82 37 55 55 Link Speed (mph) 30 330 55 55 Link Distance (ft) 601 332 1478 1166 Travel Time (s) 13.7 8.9 18.3 0.87 14.5 Confl. Peds. (#hr) 0.87 <td< td=""><td>Satd. Flow (perm)</td><td>0</td><td>1374</td><td>1479</td><td>0</td><td>1225</td><td>1623</td><td>890</td><td>1815</td><td>1834</td><td>196</td><td>1882</td><td>1647</td></td<>	Satd. Flow (perm)	0	1374	1479	0	1225	1623	890	1815	1834	196	1882	1647
Link Speed (mph)	Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph) 30 30 30 55 55 Link Distance (ft) 601 332 1478 1166 Travel Time (s) 13.7 8.9 18.3 14.5 Conff. Peds. (#/hr) 8.9 18.3 18.3 14.5 Conff. Bilkes (#/hr) 8.9 18.3 0.87 0.	Satd. Flow (RTOR)			82			37						
Link Distance (ft)	` ,		30			30			55			55	
Travel Time (s)			601			392			1478			1166	
Confi. Peds. (#/hr)	()		13.7			8.9			18.3			14.5	
Confile Bikes (#/hr)	` ,												
Growth Factor 100%	Confl. Bikes (#/hr)												
Heavy Vehicles (%)	Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Bus Blockages (#/hr) 0 0 0 0 0 0 0 0 0	Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Parking (#/hr) Mid-Block Traffic (%) 0% 0% 0% 0% 0% 0% 0%	Heavy Vehicles (%)	0%	0%	7%	0%	50%	0%	18%	1%	0%	0%	3%	0%
Mid-Block Traffic (%) 0% 0% 0% 0% 0% 0% 0% Adj. Flow (vph) 115 0 82 28 2 25 20 1010 0 1 257 6 Shared Lane Traffic (%) Lane Group Flow (vph) 0 115 82 0 30 25 20 1010 0 1 257 6 Enter Blocked Intersection No	Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Adj. Flow (vph) 115 0 82 28 2 25 20 1010 0 1 257 6 Shared Lane Traffic (%) Lane Group Flow (vph) 0 115 82 0 30 25 20 1010 0 1 257 6 Enter Blocked Intersection Loss No No <td>Parking (#/hr)</td> <td></td>	Parking (#/hr)												
Shared Lane Traffic (%) Lane Group Flow (vph) 0 115 82 0 30 25 20 1010 0 1 257 6 6 6 6 2 2 1 1 2 1 1 2 1 1	Mid-Block Traffic (%)		0%			0%			0%			0%	
Lane Group Flow (vph) 0 115 82 0 30 25 20 1010 0 1 257 6 Enter Blocked Intersection No	Adj. Flow (vph)	115	0	82	28	2	25	20	1010	0	1	257	6
Enter Blocked Intersection No No <th< td=""><td>Shared Lane Traffic (%)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Shared Lane Traffic (%)												
Left Left Right Left Right Left Right Left Right Left Left Right Left Left Right Left Left Right Left Left Right Left	Lane Group Flow (vph)	0	115	82	0	30	25	20	1010	0	1	257	6
Median Width(fft) 0 0 12 12 Link Offset(ft) 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 Two way Left Turn Lane 1.03 1.03 1.03 0.99 0.99 0.99 1.05 1.05 0.97 0.97 0.97 Headway Factor 1.03 1.03 1.03 0.99 0.99 0.99 1.05 1.05 0.97 0.97 0.97 Turning Speed (mph) 15 9 15 12 1 1	Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Link Offset(ft) 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 Two way Left Turn Lane Headway Factor 1.03 1.03 1.03 0.99 0.99 0.99 1.05 1.05 0.97 0.97 0.97 Turning Speed (mph) 15 9 15 9 15 9 15 9 Number of Detectors 1 2 1 1 2	Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Crosswalk Width(ft) 16 16 16 16 16 Two way Left Turn Lane Headway Factor 1.03 1.03 1.03 0.99 0.99 0.99 1.05 1.05 0.97 0.97 0.97 Turning Speed (mph) 15 9 15 10 15 10 15 10 10 10 10 10 10 10 10 10 10 10 10	Median Width(ft)		0			0			12			12	
Two way Left Turn Lane Headway Factor 1.03 1.03 1.03 0.99 0.99 0.99 1.05 1.05 1.05 0.97 0.97 0.97 Turning Speed (mph) 15 9 15 10 10 10 10 10 10 10 10 10 10 10 10 10 <td></td> <td></td> <td>0</td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td>0</td> <td></td>			0			0			0			0	
Headway Factor 1.03 1.03 1.03 0.99 0.99 0.99 1.05 1.05 1.05 0.97 0.97 0.97 Turning Speed (mph) 15 9 15 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 3 </td <td>Crosswalk Width(ft)</td> <td></td> <td>16</td> <td></td> <td></td> <td>16</td> <td></td> <td></td> <td>16</td> <td></td> <td></td> <td>16</td> <td></td>	Crosswalk Width(ft)		16			16			16			16	
Turning Speed (mph) 15 9 15 9 15 9 15 9 15 9 Number of Detectors 1 2 1 1 1	Two way Left Turn Lane												
Number of Detectors 1 2 1 3 3 3 3 3 3 3 5 -5 -5 -5 -5 -5 -5 -5 </td <td>Headway Factor</td> <td>1.03</td> <td>1.03</td> <td>1.03</td> <td>0.99</td> <td>0.99</td> <td>0.99</td> <td>1.05</td> <td>1.05</td> <td>1.05</td> <td>0.97</td> <td>0.97</td> <td>0.97</td>	Headway Factor	1.03	1.03	1.03	0.99	0.99	0.99	1.05	1.05	1.05	0.97	0.97	0.97
Number of Detectors 1 2 1 3 3 3 3 3 3 3 3 3 5 -5 -5 -5 -5 -5 -5 -5 -5<		15		9	15		9	15		9	15		9
Leading Detector (ft) 20 83 35 20 83 35 35 83 35 35 83 35 Trailing Detector (ft) 0 -5 -5 0 -5		1	2	1	1	2	1	1	2	1	1	2	1
Trailing Detector (ft) 0 -5 -5 0 -5 <td>Detector Template</td> <td>Left</td> <td></td> <td></td> <td>Left</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Detector Template	Left			Left								
Trailing Detector (ft) 0 -5 -5 0 -5 <td>Leading Detector (ft)</td> <td>20</td> <td>83</td> <td>35</td> <td>20</td> <td>83</td> <td>35</td> <td>35</td> <td>83</td> <td>35</td> <td>35</td> <td>83</td> <td>35</td>	Leading Detector (ft)	20	83	35	20	83	35	35	83	35	35	83	35
Turn Type Perm NA pm+ov Perm NA pm+ov pm+pt NA Perm pm+pt NA Perm Protected Phases 8 1 4 5 1 6 5 2 Permitted Phases 8 8 4 4 6 6 2 2 Detector Phase 8 8 1 4 4 5 1 6 6 5 2 2				-5	0								
Protected Phases 8 1 4 5 1 6 5 2 Permitted Phases 8 8 4 4 6 6 2 2 Detector Phase 8 8 1 4 4 5 1 6 6 5 2 2		Perm		pm+ov	Perm	NA	pm+ov	pm+pt	NA	Perm	pm+pt		
Permitted Phases 8 8 4 4 6 6 2 2 Detector Phase 8 8 1 4 4 5 1 6 6 5 2 2				•							· · · · · ·		
Detector Phase 8 8 1 4 4 5 1 6 6 5 2 2		8		8	4	•		= = =		6	-		2
			8			4			6			2	
Switch Phase	Switch Phase			•	•							_	_

Came Group		۶	→	•	•	←	•	4	†	/	>	ļ	4	
Minimum Split (s) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 12.0 12.0 12.0 10.0 12.0 12.0 12.0 10.0 12.0 12.0 10.0 10.0 10.0 10.0 10.0 12.0 12.0 10.0 12.0 12.0 10.0 12.0 10.0 1	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Total Split (s)	Minimum Initial (s)	5.0	5.0	3.0	5.0	5.0	3.0	3.0	5.0	5.0	3.0	5.0	5.0	
Total Split (%) 37.8% 37.8% 22.7% 37.8% 37.8% 22.7% 37.8% 37.8% 22.7% 39.5% 39	Minimum Split (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	12.0	12.0	10.0	12.0	12.0	
Maximum Green (s) 40.0 40.0 20.0 40.0 40.0 20.0 20.0 40.0 40.0 20.0 4	Total Split (s)	45.0	45.0	27.0	45.0	45.0	27.0	27.0	47.0	47.0	27.0	47.0	47.0	
Yellow Time (s) 4.0 4.0 5.0 4.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 2.0 7.0	Total Split (%)	37.8%	37.8%	22.7%	37.8%	37.8%	22.7%	22.7%	39.5%	39.5%	22.7%	39.5%	39.5%	
All-Red Time (s)	Maximum Green (s)	40.0	40.0	20.0	40.0	40.0	20.0	20.0	40.0	40.0	20.0	40.0	40.0	
Lost Time Adjust (s) 0.0	Yellow Time (s)	4.0	4.0	5.0	4.0	4.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Total Lost Time (s)	All-Red Time (s)	1.0	1.0	2.0	1.0	1.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lead Lead Lead Lead Lead Lead Lead Lag Lag Lead Lag Ves V	Lost Time Adjust (s)		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Ves	Total Lost Time (s)		5.0	7.0		5.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	
Vehicle Extension (s) 3.0 3.0 2.0 3.0 3.0 2.0 0.0	Lead/Lag			Lead			Lead	Lead	Lag	Lag	Lead	Lag	Lag	
Minimum Gap (s) 3.0 3.0 2.0 3.0 3.0 2.0 0.0	Lead-Lag Optimize?							Yes					Yes	
Time Before Reduce (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vehicle Extension (s)		3.0		3.0	3.0	2.0	2.0		2.0				
Time To Reduce (s)	Minimum Gap (s)	3.0	3.0		3.0	3.0	2.0	2.0		2.0	2.0	2.0	2.0	
Recall Mode None None None None None None None None None Max Max Max Max Max Max Max Max Max Walk Time (s)	Time Before Reduce (s)		0.0		0.0		0.0	0.0		0.0		0.0		
Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) 11.6 18.4 11.1 18.0 48.7 48.8 45.4 44.0 40.0 0.0 <th col<="" td=""><td>Time To Reduce (s)</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td></th>	<td>Time To Reduce (s)</td> <td>0.0</td>	Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Pedestrian Calls (#/hr)	Recall Mode	None	None	None	None	None	None	None	Max	Max	None	Max	Max	
Pedestrian Calls (#/hr)	\ <i>\</i>													
Act Effct Green (s) 11.6 18.4 11.1 18.0 48.7 48.8 45.4 44.0 44.0 Actuated g/C Ratio 0.16 0.26 0.16 0.25 0.68 0.68 0.64 0.62 0.62 v/c Ratio 0.52 0.19 0.16 0.06 0.03 0.81 0.00 0.22 0.01 Control Delay 38.2 6.1 29.3 5.2 4.9 22.6 5.0 10.8 0.0 Queue Delay 0.0	` '													
Actuated g/C Ratio 0.16 0.26 0.16 0.25 0.68 0.68 0.64 0.62 0.62 v/c Ratio 0.52 0.19 0.16 0.06 0.03 0.81 0.00 0.22 0.01 Control Delay 38.2 6.1 29.3 5.2 4.9 22.6 5.0 10.8 0.0 Queue Delay 0.0														
V/c Ratio 0.52 0.19 0.16 0.06 0.03 0.81 0.00 0.22 0.01 Control Delay 38.2 6.1 29.3 5.2 4.9 22.6 5.0 10.8 0.0 Queue Delay 0.0				-							-			
Control Delay 38.2 6.1 29.3 5.2 4.9 22.6 5.0 10.8 0.0 Queue Delay 0.0	•													
Queue Delay 0.0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>														
Total Delay 38.2 6.1 29.3 5.2 4.9 22.6 5.0 10.8 0.0 LOS D A C A A C A B A Approach Delay 24.8 18.4 22.2 10.5 B A C B C B C B C B C B C B C B C B C B C B C B C C B C C B C C B C C B C C B C C B C C B C D 0 61 0 0 0 0 61 0 <td>•</td> <td></td>	•													
LOS D A C A A C A B A Approach Delay 24.8 18.4 22.2 10.5 Approach LOS C B C B Queue Length 50th (ft) 51 0 12 0 2 281 0 61 0 Queue Length 95th (ft) 97 26 34 11 10 #776 2 115 0 Internal Link Dist (ft) 521 312 1398 1086 Turn Bay Length (ft) 315 125 280 150 275 Base Capacity (vph) 795 745 709 790 804 1240 616 1159 1046 Starvation Cap Reductn 0<	•													
Approach Delay 24.8 18.4 22.2 10.5 Approach LOS C B C B Queue Length 50th (ft) 51 0 12 0 2 281 0 61 0 Queue Length 95th (ft) 97 26 34 11 10 #776 2 115 0 Internal Link Dist (ft) 521 312 1398 1086 Turn Bay Length (ft) 315 125 280 150 275 Base Capacity (vph) 795 745 709 790 804 1240 616 1159 1046 Starvation Cap Reductn 0 <td></td>														
Approach LOS C B C B Queue Length 50th (ft) 51 0 12 0 2 281 0 61 0 Queue Length 95th (ft) 97 26 34 11 10 #776 2 115 0 Internal Link Dist (ft) 521 312 1398 1086 Turn Bay Length (ft) 315 125 280 150 275 Base Capacity (vph) 795 745 709 790 804 1240 616 1159 1046 Starvation Cap Reductn 0				Α			Α	Α			Α		Α	
Queue Length 50th (ft) 51 0 12 0 2 281 0 61 0 Queue Length 95th (ft) 97 26 34 11 10 #776 2 115 0 Internal Link Dist (ft) 521 312 1398 1086 Turn Bay Length (ft) 315 125 280 150 275 Base Capacity (vph) 795 745 709 790 804 1240 616 1159 1046 Starvation Cap Reductn 0<														
Queue Length 95th (ft) 97 26 34 11 10 #776 2 115 0 Internal Link Dist (ft) 521 312 1398 1086 Turn Bay Length (ft) 315 125 280 150 275 Base Capacity (vph) 795 745 709 790 804 1240 616 1159 1046 Starvation Cap Reductn 0														
Internal Link Dist (ft) 521 312 1398 1086 Turn Bay Length (ft) 315 125 280 150 275 Base Capacity (vph) 795 745 709 790 804 1240 616 1159 1046 Starvation Cap Reductn 0<														
Turn Bay Length (ft) 315 125 280 150 275 Base Capacity (vph) 795 745 709 790 804 1240 616 1159 1046 Starvation Cap Reductn 0	• , ,		-	26		-	11	10			2		0	
Base Capacity (vph) 795 745 709 790 804 1240 616 1159 1046 Starvation Cap Reductn 0	` '		521			312			1398			1086		
Starvation Cap Reductn 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0	, ,													
Spillback Cap Reductn 0													1046	
Storage Cap Reductn 0 0 0 0 0 0 0 0 0														
	· .													
Reduced v/c Ratio 0.14 0.11 0.04 0.03 0.02 0.81 0.00 0.22 0.01	Reduced v/c Ratio		0.14	0.11		0.04	0.03	0.02	0.81		0.00	0.22	0.01	

Intersection Summary

Area Type: Other

Cycle Length: 119

Actuated Cycle Length: 71.4

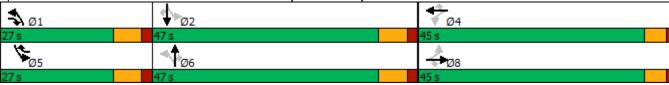
Natural Cycle: 80

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.81

Intersection Signal Delay: 20.4

Intersection Capacity Utilization 71.0%


Intersection LOS: C ICU Level of Service C

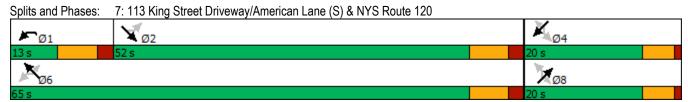
Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

18002018A - N.T. Page 10 Queue shown is maximum after two cycles.

Splits and Phases: 4: NYS Route 120 & SwissRe Driveway/IBM Driveway

Intersection						
Int Delay, s/veh	2.4					
		WDD	NDT	NDD	CDI	CDT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ች	7	†	- 7	<u> </u>	^
Traffic Vol, veh/h	6	129	767	1	8	311
Future Vol, veh/h	6	129	767	1	8	311
Conflicting Peds, #/hr	0	0	_ 0	_ 0	_ 0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	Yield	-	Free	-	None
Storage Length	0	0	-	15	175	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	-3	-	2	-	-	-1
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, %	0	2	1	0	12	4
Mvmt Flow	7	147	872	1	9	353
	-		• • •	•		
	Minor1		Major1		Major2	
Conflicting Flow All	1243	872	0	-	872	0
Stage 1	872	-	-	-	-	-
Stage 2	371	-	-	-	-	-
Critical Hdwy	5.8	5.92	-	-	4.22	-
Critical Hdwy Stg 1	4.8	-	-	_	-	-
Critical Hdwy Stg 2	4.8	_	_	_	_	_
Follow-up Hdwy	3.5	3.318	_	-	2.308	_
Pot Cap-1 Maneuver	239	376	_	0	733	_
Stage 1	477	-	_	0	-	_
Stage 2	747	_	_	0	_	_
Platoon blocked, %	741	_	_	U	_	-
	026	276	_		722	-
Mov Cap-1 Maneuver	236	376	-	-	733	-
Mov Cap-2 Maneuver	236	-	-	-	-	-
Stage 1	477	-	-	-	-	-
Stage 2	738	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	20.6		0		0.3	
HCM LOS	С					
	nt	NRTV	VBLn1V	VBLn2	SBL	SBT
Minor Lane/Maior Myn					UDL	UD.
Minor Lane/Major Mvn	IL	INDIV		376	722	
Capacity (veh/h)	IL .	-	236	376 0.30	733	-
Capacity (veh/h) HCM Lane V/C Ratio		-	236 0.029	0.39	0.012	-
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		-	236 0.029 20.7	0.39 20.6	0.012 10	-
Capacity (veh/h) HCM Lane V/C Ratio		-	236 0.029	0.39	0.012	-

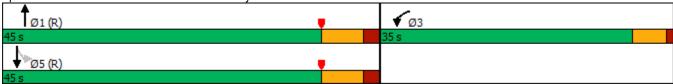

	۶	•	1	†		4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			4	1 >	
Traffic Volume (vph)	1	0	0	767	317	0
Future Volume (vph)	1	0	0	767	317	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	11	11	11	11
Grade (%)	3%			5%	-2%	
Storage Length (ft)	0	0	0			0
Storage Lanes	1	0	0			0
Taper Length (ft)	25		25			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt						
Flt Protected	0.950					
Satd. Flow (prot)	1778	0	0	1756	1801	0
Flt Permitted	0.950					
Satd. Flow (perm)	1778	0	0	1756	1801	0
Link Speed (mph)	30			55	55	
Link Distance (ft)	639			1813	993	
Travel Time (s)	14.5			22.5	12.3	
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.83	0.83	0.83	0.83	0.83	0.83
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	0%	2%	3%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%			0%	0%	
Adj. Flow (vph)	1	0	0	924	382	0
Shared Lane Traffic (%)						
Lane Group Flow (vph)	1	0	0	924	382	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12			0	0	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	1.02	1.02	1.08	1.08	1.03	1.03
Turning Speed (mph)	15	9	15			9
Sign Control	Stop			Free	Free	
Intersection Summary						
Area Type:	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizat	tion 50.4%			IC	CU Level	of Service
Analysis Period (min) 15					2 20.010	

Intersection						
Int Delay, s/veh	0					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	EBL	EDK	INDL	₩ NB1		אמט
Traffic Vol, veh/h	- T	0	0	€ 767	1 → 317	0
Future Vol, veh/h	1	0	0	767	317	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	Stop -	None	-		-	
Storage Length	0	-	_	-	_	INOHE
Veh in Median Storage			_	0	0	_
Grade, %	3	_	_	5	-2	_
Peak Hour Factor	83	83	83	83	83	83
Heavy Vehicles, %	0	0	0	2	3	0
Mymt Flow	1	0	0	924	382	0
IVIVIIIL FIOW	- 1	U	U	924	302	U
Major/Minor N	/linor2	N	Major1	N	/lajor2	
Conflicting Flow All	1306	382	382	0	-	0
Stage 1	382	-	-	-	-	-
Stage 2	924	-	-	-	-	-
Critical Hdwy	7	6.5	4.1	-	-	-
Critical Hdwy Stg 1	6	-	-	-	-	-
Critical Hdwy Stg 2	6	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	143	649	1188	-	-	-
Stage 1	651	-	-	-	-	-
Stage 2	334	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	143	649	1188	-	-	-
Mov Cap-2 Maneuver	143	-	-	-	-	-
Stage 1	651	-	_	-	_	-
Stage 2	334	_	-	_	_	_
5g5 =						
			ND		0.0	
Approach	EB		NB		SB	
HCM Control Delay, s	30.4		0		0	
HCM LOS	D					
Minor Lane/Major Mvm		NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1188	_		_	_
HCM Lane V/C Ratio		-	-	0.008	-	_
HCM Control Delay (s)		0	-		-	-
HCM Lane LOS		A	-	D	-	-
HCM 95th %tile Q(veh)		0	-	0	-	-

Lane Group SEL SET SER NWL NWT NWR NEL NET NER SWL	SWT	SWR
Lane Configurations 🗘 🏌 † †	4	7
Traffic Volume (vph) 2 314 1 0 767 19 0 0 118	Ö	0
Future Volume (vph) 2 314 1 0 767 19 0 0 118	0	0
Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 190	1900	1900
Lane Width (ft) 11 11 11 11 11 10 10 10 11	11	11
Grade (%) -4% 1% -5%	1%	
Storage Length (ft) 0 0 120 200 0 95 0		0
Storage Lanes 0 0 1 1 0 1 0		1
Taper Length (ft) 25 86 25 25		
Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	1.00	1.00
Ped Bike Factor 1.00		
Frt 0.850		
Flt Protected	0.950	
Satd. Flow (prot) 0 1819 0 1827 1792 1412 0 1818 1818 0	1702	1827
Flt Permitted 0.997	0.757	
Satd. Flow (perm) 0 1814 0 1827 1792 1412 0 1818 1818 0	1356	1827
Right Turn on Red Yes Yes Yes		Yes
Satd. Flow (RTOR) 26		
Link Speed (mph) 55 55 30	25	
Link Distance (ft) 1813 2280 328	518	
Travel Time (s) 22.5 28.3 7.5	14.1	
Confl. Peds. (#/hr) 1 1		
Confl. Bikes (#/hr)		
Peak Hour Factor 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86	0.86	0.86
Growth Factor 100% 100% 100% 100% 100% 100% 100% 100	100%	100%
Heavy Vehicles (%) 0% 3% 0% 0% 2% 10% 0% 0% 0% 2%	0%	0%
Bus Blockages (#/hr) 0 0 0 0 0 0 0 0 0	0	0
Parking (#/hr)		
Mid-Block Traffic (%) 0% 0%	0%	
Adj. Flow (vph) 2 365 1 0 892 22 0 0 137	0	0
Shared Lane Traffic (%)		
Lane Group Flow (vph) 0 368 0 0 892 22 0 0 0	137	0
Enter Blocked Intersection No No No No No No No No No	No	No
Lane Alignment Left Left Right Left Right Left Right Left	Left	Right
Median Width(ft) 11 11 0	0	
Link Offset(ft) 0 0	0	
Crosswalk Width(ft) 16 16	16	
Two way Left Turn Lane		
Headway Factor 1.02 1.02 1.02 1.05 1.05 1.06 1.06 1.06 1.05	1.05	1.05
Turning Speed (mph) 15 9 15 9 15		9
Number of Detectors 1 2 1 1 2 1 1 1	2	1
Detector Template Left Left Left		
Leading Detector (ft) 20 83 35 83 35 20 83 35 20	83	35
Trailing Detector (ft) 0 -5 -5 -5 0 -5 0	-5	-5
Turn Type Perm NA pm+pt NA Perm Perm Perm	NA	Perm
Protected Phases 2 1 6 8	4	
Permitted Phases 2 6 6 8 8 4		4
Detector Phase 2 2 1 6 6 8 8 4	4	4
Switch Phase		

	y	*	À	¥	×	₹	ን	×	~	Ĺ	×	*~
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Minimum Initial (s)	10.0	10.0		3.0	10.0	10.0	3.0	3.0	3.0	5.0	5.0	5.0
Minimum Split (s)	17.0	17.0		10.0	17.0	17.0	10.0	10.0	10.0	10.0	10.0	10.0
Total Split (s)	52.0	52.0		13.0	65.0	65.0	20.0	20.0	20.0	20.0	20.0	20.0
Total Split (%)	61.2%	61.2%		15.3%	76.5%	76.5%	23.5%	23.5%	23.5%	23.5%	23.5%	23.5%
Maximum Green (s)	45.0	45.0		6.0	58.0	58.0	15.0	15.0	15.0	15.0	15.0	15.0
Yellow Time (s)	5.0	5.0		5.0	5.0	5.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)		0.0		0.0	0.0	0.0		0.0	0.0		0.0	0.0
Total Lost Time (s)		7.0		7.0	7.0	7.0		5.0	5.0		5.0	5.0
Lead/Lag	Lag	Lag		Lead								
Lead-Lag Optimize?	Yes	Yes		Yes								
Vehicle Extension (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Minimum Gap (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Time Before Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Recall Mode	Max	Max		None	Max	Max	Max	Max	Max	Max	Max	Max
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		58.0			58.0	58.0					15.0	
Actuated g/C Ratio		0.68			0.68	0.68					0.18	
v/c Ratio		0.30			0.73	0.02					0.57	
Control Delay		6.1			13.0	1.6					42.6	
Queue Delay		0.0			0.0	0.0					0.0	
Total Delay		6.1			13.0	1.6					42.6	
LOS		A			В	A					D	
Approach Delay		6.1			12.8	, ,					42.6	
Approach LOS		A			В						12.0 D	
Queue Length 50th (ft)		67			259	0					68	
Queue Length 95th (ft)		99			364	5					120	
Internal Link Dist (ft)		1733			2200			248			438	
Turn Bay Length (ft)		1700			2200	200		240			400	
Base Capacity (vph)		1237			1222	971					239	
Starvation Cap Reductn		0			0	0					0	
Spillback Cap Reductn		0			0	0					0	
Storage Cap Reductn		0			0	0					0	
Reduced v/c Ratio		0.30			0.73	0.02					0.57	
Intersection Summary												
Area Type:	Other											
Cycle Length: 85												
Actuated Cycle Length: 85												
Natural Cycle: 60												
Control Type: Actuated-Un	coordinated											_
Maximum v/c Ratio: 0.73												
Intersection Signal Delay:	13.9			lr	ntersectio	n LOS: B						
Intersection Capacity Utiliz					CU Level		В					
Analysis Period (min) 15												
. ,												

The raing of our Environay, amonoun Earlo (e) and reads

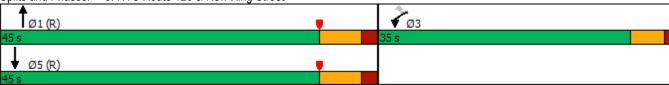


	•	•	†	/	\	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		1			4
Traffic Volume (vph)	78	273	513	39	174	258
Future Volume (vph)	78	273	513	39	174	258
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	11	11	11	11
Grade (%)	-6%	12	2%			0%
Storage Length (ft)	0	0	2 /0	0	0	0 70
Storage Lanes	1	0		0	0	
Taper Length (ft)	25	U		U	25	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	1.00	1.00	1.00	1.00	1.00
	0.005		0.004			
Frt	0.895		0.991			0.000
Flt Protected	0.989	_	470-	•	•	0.980
Satd. Flow (prot)	1709	0	1765	0	0	1751
Flt Permitted	0.989		, .			0.521
Satd. Flow (perm)	1709	0	1765	0	0	931
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)	219		6			
Link Speed (mph)	30		55			55
Link Distance (ft)	328		519			557
Travel Time (s)	7.5		6.4			6.9
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	6%	0%	2%	3%	1%	4%
Bus Blockages (#/hr)	0 /8	0 /0	0	0	0	0
Parking (#/hr)	U	U	U	U	U	U
	0%		0%			0%
Mid-Block Traffic (%)		240		4.4	400	
Adj. Flow (vph)	89	310	583	44	198	293
Shared Lane Traffic (%)	000	•	007	•	•	40.4
Lane Group Flow (vph)	399	0	627	0	0	491
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12		0			0
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane						
Headway Factor	0.96	0.96	1.06	1.06	1.04	1.04
Turning Speed (mph)	15	9		9	15	
Number of Detectors	1		2		1	2
Detector Template	'				Left	
Leading Detector (ft)	35		83		20	83
Trailing Detector (ft)	-5		-5		0	-5
Turn Type	Prot		NA		Perm	NA
Protected Phases	3		1		_	5
Permitted Phases					5	_
Detector Phase	3		1		5	5
Switch Phase						

	•	•	†	/	>	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Minimum Initial (s)	5.0		5.0		5.0	5.0
Minimum Split (s)	10.0		12.0		12.0	12.0
Total Split (s)	35.0		45.0		45.0	45.0
Total Split (%)	43.8%		56.3%		56.3%	56.3%
Maximum Green (s)	30.0		38.0		38.0	38.0
Yellow Time (s)	4.0		5.0		5.0	5.0
All-Red Time (s)	1.0		2.0		2.0	2.0
` ,	0.0		0.0		2.0	0.0
Lost Time Adjust (s)						
Total Lost Time (s)	5.0		7.0			7.0
Lead/Lag						
Lead-Lag Optimize?						0.0
Vehicle Extension (s)	3.0		3.0		3.0	3.0
Minimum Gap (s)	3.0		3.0		3.0	3.0
Time Before Reduce (s)	0.0		0.0		0.0	0.0
Time To Reduce (s)	0.0		0.0		0.0	0.0
Recall Mode	None		C-Max		C-Max	C-Max
Walk Time (s)						
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)						
Act Effct Green (s)	15.1		52.9			52.9
Actuated g/C Ratio	0.19		0.66			0.66
v/c Ratio	0.19		0.54			0.80
	25.0		5.3			25.3
Control Delay						
Queue Delay	0.0		0.0			0.0
Total Delay	25.0		5.3			25.3
LOS	С		Α			С
Approach Delay	25.0		5.3			25.3
Approach LOS	С		Α			С
Queue Length 50th (ft)	84		43			152
Queue Length 95th (ft)	152		84			#416
Internal Link Dist (ft)	248		439			477
Turn Bay Length (ft)			-			
Base Capacity (vph)	777		1168			615
Starvation Cap Reductn	0		0			0
Spillback Cap Reductn	0		0			0
•	0		0			0
Storage Cap Reductn						
Reduced v/c Ratio	0.51		0.54			0.80
Intersection Summary						
Area Type:	Other					
Cycle Length: 80						
Actuated Cycle Length: 80						
Offset: 13 (16%), Reference		1·NRT an	d 5:SRTI	Start of	Yellow	
Natural Cycle: 45	ou to priase	ווא ו טוויי	u J.JD1L	., otali ol	I CIIOW	
Natural Cycle. 45 Control Type: Actuated-Co	ordinated					
Control Type. Actuated-Co	orumated					
Maximum v/c Ratio: 0.80	47.0			,		100 -
Maximum v/c Ratio: 0.80 Intersection Signal Delay:					tersectio	
Maximum v/c Ratio: 0.80 Intersection Signal Delay: Intersection Capacity Utiliz Analysis Period (min) 15						n LOS: B of Service

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 8: NYS Route 120 & Gateway Lane


	•	•	†	/	>	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ች	7	†			†
Traffic Volume (vph)	462	90	462	0	0	336
Future Volume (vph)	462	90	462	0	0	336
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1300	1300	11	11	11	11
		13		11	11	
Grade (%)	-2%	475	1%	^	0	1%
Storage Length (ft)	0	175		0	0	
Storage Lanes	1	1		0	0	
Taper Length (ft)	25				25	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt		0.850				
Flt Protected	0.950					
Satd. Flow (prot)	1805	1669	1792	0	0	1740
Flt Permitted	0.950			-	-	
Satd. Flow (perm)	1805	1669	1792	0	0	1740
Right Turn on Red	1000	Yes	1102	Yes	U	11-10
Satd. Flow (RTOR)		97		163		
	30	31	55			55
Link Speed (mph)						
Link Distance (ft)	321		928			519
Travel Time (s)	7.3		11.5			6.4
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	1%	1%	2%	0%	0%	5%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	497	97	497	0	0	361
Shared Lane Traffic (%)	731	31	731	U	U	001
	497	97	497	0	0	361
Lane Group Flow (vph)						
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12		0			0
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane						
Headway Factor	0.99	0.95	1.05	1.05	1.05	1.05
Turning Speed (mph)	15	9		9	15	, ,
Number of Detectors	1	1	2			2
Detector Template	I	'				
Leading Detector (ft)	35	35	83			83
	ან -5					
Trailing Detector (ft)		-5	-5			-5
Turn Type	Prot	Perm	NA			NA
Urotootod Dhaaca			1			5
Protected Phases	3		- 1			
Permitted Phases		3				
	3	3	1			5

	•	4	†	<i>></i>	\	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Minimum Initial (s)	5.0	5.0	5.0	אטוז	ODL	5.0
Minimum Split (s)	10.0	10.0	12.0			12.0
Total Split (s)	35.0	35.0	45.0			45.0
Total Split (%)	43.8%	43.8%	56.3%			56.3%
Maximum Green (s)	30.0	30.0	38.0			38.0
Yellow Time (s)	4.0	4.0	5.0			5.0
All-Red Time (s)	1.0	1.0	2.0			2.0
Lost Time Adjust (s)	0.0	0.0	0.0			0.0
Total Lost Time (s)	5.0	5.0	7.0			7.0
Lead/Lag	5.0	5.0	7.0			7.0
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0	3.0	3.0			3.0
Minimum Gap (s)	3.0	3.0	3.0			3.0
	0.0	0.0	0.0			0.0
Time Before Reduce (s)						
Time To Reduce (s)	0.0	0.0	0.0			0.0
Recall Mode	None	None	C-Max			C-Max
Walk Time (s)						
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)	00.4	00.4	44.0			44.0
Act Effct Green (s)	26.1	26.1	41.9			41.9
Actuated g/C Ratio	0.33	0.33	0.52			0.52
v/c Ratio	0.84	0.16	0.53			0.40
Control Delay	38.7	4.6	16.2			9.1
Queue Delay	0.0	0.0	0.0			0.0
Total Delay	38.7	4.6	16.2			9.1
LOS	D	Α	В			Α
Approach Delay	33.2		16.2			9.1
Approach LOS	С		В			Α
Queue Length 50th (ft)	222	0	159			65
Queue Length 95th (ft)	325	28	267			m79
Internal Link Dist (ft)	241		848			439
Turn Bay Length (ft)		175				
Base Capacity (vph)	676	686	938			910
Starvation Cap Reductn	0	0	0			0
Spillback Cap Reductn	0	0	0			0
Storage Cap Reductn	0	0	0			0
Reduced v/c Ratio	0.74	0.14	0.53			0.40
Intersection Summary						
Area Type:	Other					
Cycle Length: 80	C 11.0.					
Actuated Cycle Length: 80)					
Offset: 13 (16%), Referen		1·NRT a	nd 5:SBT	Start of Y	'ellow	
Natural Cycle: 55	ood to pridac	ומווו	11G 0.0D1,	Juli Ui I	CIIOVV	
Control Type: Actuated-Co	oordinated					
Maximum v/c Ratio: 0.84	Jordinated					
					toreaction	n LOS: C
Intersection Signal Delay: 21.4						
Intersection Capacity Utiliz		ICU Level of Service B				

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

	۶	→	•	•	•	•	•	†	/	>	ţ	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	4					*	∱ }		ሻ		7
Traffic Volume (vph)	338	255	124	0	0	0	283	124	22	31	228	539
Future Volume (vph)	338	255	124	0	0	0	283	124	22	31	228	539
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	16	16	16	12	12	12	12	12	12
Grade (%)		1%			-4%			-1%			1%	
Storage Length (ft)	0		0	0		0	385		0	190		460
Storage Lanes	1		0	0		0	1		0	1		1
Taper Length (ft)	25			25			86			86		
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.955						0.978				0.850
Flt Protected	0.950	0.996					0.950			0.950		
Satd. Flow (prot)	1689	1686	0	0	0	0	1796	3376	0	1633	1800	1575
Flt Permitted	0.950	0.996	•		•	•	0.403		•	0.654		
Satd. Flow (perm)	1689	1686	0	0	0	0	762	3376	0	1124	1800	1575
Right Turn on Red	1000	1000	Yes	· ·	J	Yes	702	0010	Yes		1000	Yes
Satd. Flow (RTOR)		29	100			100		15	100			160
Link Speed (mph)		30			30			55			55	100
Link Distance (ft)		176			314			586			596	
Travel Time (s)		4.0			7.1			7.3			7.4	
Confl. Peds. (#/hr)		т.0			7.1			7.5			7.7	
Confl. Bikes (#/hr)												
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	1%	2%	0%	0%	0%	0%	1%	6%	0%	10%	5%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)	U	U	U	U	U	U	U	U	U	U	U	J
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	360	271	132	0	0	0	301	132	23	33	243	573
Shared Lane Traffic (%)	10%	211	102	U	U	U	JU 1	102	20	33	240	313
Lane Group Flow (vph)	324	439	0	0	0	0	301	155	0	33	243	573
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Leit	12	rtigrit	Leit	12	Right	Leit	12	Right	Leit	12	Right
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.01	1.01	1.01	0.82	0.82	0.82	0.99	0.99	0.99	1.01	1.01	1.01
Turning Speed (mph)	1.01	1.01	9	15	0.02	9	15	0.55	9	1.01	1.01	9
Number of Detectors	1	2	9	13		9	13	2	9	13	2	1
Detector Template	ı						ı			ı		ı
Leading Detector (ft)	35	83					35	83		35	83	35
	-5	-5					-5	-5		-5	-5	-5
Trailing Detector (ft)												
Turn Type	Split	NA					pm+pt	NA		pm+pt	NA	pm+ov
Protected Phases	3	3					6	1		2	5	3
Permitted Phases		2					1	4		5		5
Detector Phase	3	3					6	1		2	5	3
Switch Phase												

	۶	-	•	•	←	•	4	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	5.0					3.0	8.0		3.0	20.0	5.0
Minimum Split (s)	10.0	10.0					10.0	15.0		10.0	27.0	10.0
Total Split (s)	65.0	65.0					22.0	27.0		22.0	27.0	65.0
Total Split (%)	57.0%	57.0%					19.3%	23.7%		19.3%	23.7%	57.0%
Maximum Green (s)	60.0	60.0					15.0	20.0		15.0	20.0	60.0
Yellow Time (s)	4.0	4.0					5.0	5.0		5.0	5.0	4.0
All-Red Time (s)	1.0	1.0					2.0	2.0		2.0	2.0	1.0
Lost Time Adjust (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0					7.0	7.0		7.0	7.0	5.0
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0					2.0	2.0		2.0	2.0	3.0
Minimum Gap (s)	3.0	3.0					2.0	2.0		2.0	2.0	3.0
Time Before Reduce (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Recall Mode	None	None					None	Min		None	Min	None
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)	32.3	32.3					42.1	34.8		26.1	20.4	59.8
Actuated g/C Ratio	0.37	0.37					0.49	0.40		0.30	0.24	0.69
v/c Ratio	0.51	0.68					0.55	0.11		0.09	0.58	0.50
Control Delay	23.3	26.2					20.9	20.3		17.5	38.7	5.8
Queue Delay	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Total Delay	23.3	26.2					20.9	20.3		17.5	38.7	5.8
LOS	С	С					С	С		В	D	Α
Approach Delay		25.0						20.7			15.7	
Approach LOS		С						С			В	
Queue Length 50th (ft)	141	192					96	26		9	117	84
Queue Length 95th (ft)	213	290					216	64		33	#255	140
Internal Link Dist (ft)		96			234			506			516	
Turn Bay Length (ft)							385			190		460
Base Capacity (vph)	1190	1196					552	1362		551	422	1509
Starvation Cap Reductn	0	0					0	0		0	0	0
Spillback Cap Reductn	0	0					0	0		0	0	0
Storage Cap Reductn	0	0					0	0		0	0	0
Reduced v/c Ratio	0.27	0.37					0.55	0.11		0.06	0.58	0.38
Intersection Summary												

Intersection Summary

Area Type: Other

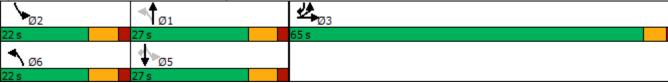
Cycle Length: 114

Actuated Cycle Length: 86.7

Natural Cycle: 70

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.68
Intersection Signal Delay:


Intersection Signal Delay: 20.2 Intersection Capacity Utilization 68.0% ICU Level of Service C

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

		_	•	₹		_	7	ı		*	\psi	*
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્ન			f)				7			
Traffic Volume (vph)	3	243	0	0	263	559	0	0	474	0	0	0
Future Volume (vph)	3	243	0	0	263	559	0	0	474	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	15	15	15	12	12	12	13	13	13	16	16	16
Grade (%)		1%			-1%			1%			2%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	0		0	0		0	0		1	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt					0.908				0.865			
Flt Protected		0.999										
Satd. Flow (prot)	0	2037	0	0	1695	0	0	0	1690	0	0	0
Flt Permitted		0.999										
Satd. Flow (perm)	0	2037	0	0	1695	0	0	0	1690	0	0	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		331			176			301			377	
Travel Time (s)		7.5			4.0			6.8			8.6	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	2%	0%	0%	3%	2%	0%	0%	0%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	3	259	0	0	280	595	0	0	504	0	0	0
Shared Lane Traffic (%)			•					•		-		
Lane Group Flow (vph)	0	262	0	0	875	0	0	0	504	0	0	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane					. •							
Headway Factor	0.89	0.89	0.89	0.99	0.99	0.99	0.96	0.96	0.96	0.86	0.86	0.86
Turning Speed (mph)	15	3.00	9	15	3.00	9	15	2.00	9	15	3.00	9
Sign Control		Free			Free			Stop			Stop	
Intersection Summary								·			•	
Area Type:	Other											

Area Type: Other Control Type: Unsignalized

Intersection Capacity Utilization 51.5%

ICU Level of Service A

Intersection												
Int Delay, s/veh	5.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	LDIX	WDL .	1>	W DIX	IIDL	1101	7	ODL	051	ODIT
Traffic Vol, veh/h	3	243	0	0	263	559	0	0	474	0	0	0
Future Vol, veh/h	3	243	0	0	263	559	0	0	474	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	_	-	-	-	0	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	16983	-
Grade, %	-	1	-	-	-1	-	-	1	-	-	2	-
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles, %	0	2	0	0	3	2	0	0	0	0	0	0
Mvmt Flow	3	259	0	0	280	595	0	0	504	0	0	0
Major/Minor N	1ajor1		N	Major2		N	/linor1					
Conflicting Flow All	875	0	_	-	_	0	-	_	259			
Stage 1	-	-	_	_	_	-	_	_	-			
Stage 2	_	_	_	_	_	_	_	_	_			
Critical Hdwy	4.1	-	-	-	-	-	-	-	6.3			
Critical Hdwy Stg 1	-	-	_	-	-	-	-	_	-			
Critical Hdwy Stg 2	_	-	-	-	-	-	-	_	-			
Follow-up Hdwy	2.2	_	-	-	-	-	-	-	3.3			
Pot Cap-1 Maneuver	780	-	0	0	-	-	0	0	779			
Stage 1	-	-	0	0	-	-	0	0	-			
Stage 2	-	-	0	0	-	-	0	0	-			
Platoon blocked, %		-			-	-						
Mov Cap-1 Maneuver	780	-	-	-	-	-	-	0	779			
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	0	-			
Stage 1	-	-	-	-	-	-	-	0	-			
Stage 2	-	-	-	-	-	-	-	0	-			
Approach	EB			WB			NB					
HCM Control Delay, s	0.1			0			17.7					
HCM LOS							С					
Minor Lane/Major Mvmt	- 1	NBLn1	EBL	EBT	WBT	WBR						
Capacity (veh/h)		779	780	_		-						
HCM Lane V/C Ratio		0.647	0.004	_	_	_						
HCM Control Delay (s)		17.7	9.6	0	_	-						
HCM Lane LOS		C	Α	A	_	_						
HCM 95th %tile Q(veh)		4.8	0	-	-	-						
, , , , , , , , , , , , , , , ,		1.0										

	۶	→	•	•	←	4	4	†	<i>></i>	/	+	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					ર્ન						र्स	
Traffic Volume (vph)	0	0	0	263	0	0	0	0	0	246	0	0
Future Volume (vph)	0	0	0	263	0	0	0	0	0	246	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	14	14	13	13	12
Grade (%)		0%			-1%			2%			1%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	0		0	0		0	0		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt												
Flt Protected					0.950						0.950	
Satd. Flow (prot)	0	0	0	0	1761	0	0	0	0	0	1819	0
Flt Permitted					0.950						0.950	
Satd. Flow (perm)	0	0	0	0	1761	0	0	0	0	0	1819	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		182			331			377			345	
Travel Time (s)		4.1			7.5			8.6			7.8	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	0%	3%	0%	0%	0%	0%	0%	2%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	0	0	0	283	0	0	0	0	0	265	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	0	0	0	283	0	0	0	0	0	265	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	0.99	0.99	0.99	1.01	0.93	0.93	0.96	0.96	1.01
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Free			Free			Stop			Stop	
Intersection Summary												
Area Type:	Other											
Control Type: Unsignalized												
Intersection Capacity Utilizati	ion 34.9%			IC	CU Level	of Service	A					
Analysis Period (min) 15												

Intersection												
Int Delay, s/veh	10.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					र्स						र्स	
Traffic Vol, veh/h	0	0	0	263	0	0	0	0	0	246	0	0
Future Vol, veh/h	0	0	0	263	0	0	0	0	0	246	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	,# -	0	-	-	0	-	-	16974	-	-	0	-
Grade, %	-	0	-	-	-1	-	-	2	-	-	1	-
Peak Hour Factor	93	93	93	93	93	93	93	93	93	93	93	93
Heavy Vehicles, %	0	0	0	3	0	0	0	0	0	2	0	0
Mvmt Flow	0	0	0	283	0	0	0	0	0	265	0	0
Major/Minor			1	Major2					N	/linor2		
Conflicting Flow All				0	0	0				566	566	-
Stage 1				-	-	-				566	566	-
Stage 2				-	-	-				0	0	-
Critical Hdwy				4.13	-	-				6.62	6.7	-
Critical Hdwy Stg 1				-	-	-				5.62	5.7	-
Critical Hdwy Stg 2				-	-	-				-	-	-
Follow-up Hdwy				2.227	-	-				3.518	4	-
Pot Cap-1 Maneuver					-	0				471	423	0
Stage 1				-	-	0				551	495	0
Stage 2				-	-	0				-	-	0
Platoon blocked, %					-							
Mov Cap-1 Maneuver				-	-	-				471	0	-
Mov Cap-2 Maneuver				-	-	-				471	0	-
Stage 1				-	-	-				551	0	_
Stage 2				-	_	_				-	0	-
- ····g- =												
Approach				WB						SB		
HCM Control Delay, s										22		
HCM LOS										C		
TOW LOO										J		
Minor Lane/Major Mvmt	t	WBL	WBT :	SBI n1								
Capacity (veh/h)		-	-	471								
HCM Lane V/C Ratio		_		0.562								
HCM Control Delay (s)			_	22								
HCM Lane LOS		_	_	C								
HCM 95th %tile Q(veh)		-	_	3.4								
HOW JOHN JOHN WINE WINE				J. T								

		4	\mathbf{x}	À	*	×	₹	ን	×	~	Ĺ	×	*
Traffic Volume (γph)	Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Traffic Volume (γph)	Lane Configurations		ર્ન	7	ř	<u></u>	7	ň	^	7	ř	^	7
Future Volume (vph) 162 2	Traffic Volume (vph)	162		192	123		295			9	7		115
Ideal Flow (ryphpi)		162	2	192	123	28	295	270	633	9	7	673	115
Lane Width (ft)		1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (%)			15	12	12	12	12	11	12	12	12	12	12
Storage Length (ft)	. ,		0%			0%			0%			0%	
Taper Length (ff)		0		250	0		225	680		250	400		250
Taper Length (ff)	Storage Lanes	0		1	1		1	1		1	1		1
Lane Unil Factor		25			25			86			86		
Ped Bike Factor		1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Fit Protected 0.953				0.99	1.00								
Filt Protected 0.953 0.950 0.950 0.950 0.950							0.850			0.850			0.850
Satd. Flow (prot) 0 1953 1615 1770 1900 1615 1771 3574 1324 1805 3539 1599 Fil Permitted			0.953		0.950			0.950			0.950		
Fit Permitted	Satd. Flow (prot)	0		1615		1900	1615	1711	3574	1324		3539	1599
Satd. Flow (perm)		•											
Page		0		1594		1900	1615		3574	1324		3539	1599
Satid. Flow (RTOR)													
Link Speed (mph)													
Link Distance (ft)			30			30			55			55	
Travel Time (s)	,												
Confi. Peds. (#/hr) Confi. Bikes (#/hr)	` /												
Confile Bikes (#/hr) Peak Hour Factor 0.99				1	1				•			.	
Peak Hour Factor 0.99 0.				•	•								
Growth Factor 100%		0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Heavy Vehicles (%)													
Bus Blockages (#/hr) 0 0 0 0 0 0 0 0 0	Heavy Vehicles (%)		0%	0%		0%	0%				0%		
Parking (#/hr) Mid-Block Traffic (%) 0% 0% 0% 0% 0% 0% 0%	, ,												
Mid-Block Traffic (%) 0% 0% 0% 0% 0% 0% Adj. Flow (vph) 164 2 194 124 28 298 273 639 9 7 680 116 Shared Lane Traffic (%) Lane Group Flow (vph) 0 166 194 124 28 298 273 639 9 7 680 116 Enter Blocked Intersection No No <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
Adj. Flow (vph) 164 2 194 124 28 298 273 639 9 7 680 116 Shared Lane Traffic (%) Lane Group Flow (vph) 0 166 194 124 28 298 273 639 9 7 680 116 Enter Blocked Intersection No No <t< td=""><td></td><td></td><td>0%</td><td></td><td></td><td>0%</td><td></td><td></td><td>0%</td><td></td><td></td><td>0%</td><td></td></t<>			0%			0%			0%			0%	
Shared Lane Traffic (%) Lane Group Flow (vph) 0 166 194 124 28 298 273 639 9 7 680 116	` ,	164		194	124		298	273	639	9	7		116
Lane Group Flow (vph) 0 166 194 124 28 298 273 639 9 7 680 116 Enter Blocked Intersection No													
Enter Blocked Intersection		0	166	194	124	28	298	273	639	9	7	680	116
Lane Alignment Left Left Right Left Left Right Left Left Right Left Left Right Left Right Median Width(ft) 12				No	No	No			No	No	No		
Median Width(ft) 12 12 12 12 12 Link Offset(ft) 0 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 16 Two way Left Turn Lane 1.00	Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Link Offset(ft) 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 Two way Left Turn Lane Headway Factor 1.00 0.88 1.00 1.00 1.00 1.04 1.00 1.00 1.00 1.00 Turning Speed (mph) 15 9 15 0 0 0				•									J
Crosswalk Width(ft) 16 16 16 16 16 Two way Left Turn Lane Headway Factor 1.00 0.88 1.00 1.00 1.00 1.04 1.00			0			0			0			0	
Two way Left Turn Lane Headway Factor 1.00 0.88 1.00						16						16	
Headway Factor 1.00 0.88 1.00													
Turning Speed (mph) 15 9 15 9 15 9 15 9 15 9 15 9 15 9 15 9 15 9 15 9 15 9 15 9 15 9 15 9 NA 9 NA 15 9 15 1 1 2 1 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 5 0 0 0 0 0 0 0 0 0 0		1.00	0.88	1.00	1.00	1.00	1.00	1.04	1.00	1.00	1.00	1.00	1.00
Number of Detectors 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 2 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 2 5 5 2 5 5 2	Turning Speed (mph)	15		9	15		9	15			15		9
Leading Detector (ft) 20 43 6 6 6 6 83 6 6 83 6 6 7 6 6 83 6 6 83 6 6 6 6 6 6 7<		1	1	1		1	1	2	1	1	2	1	1
Leading Detector (ft) 20 43 6 6 6 6 83 6 6 83 6 6 7 6 6 83 6 6 83 6 6 6 6 6 6 7<	Detector Template	Left											
Trailing Detector (ft) 0 0 0 0 0 0 0 -5 0 0 -5 0 0 Turn Type Perm NA Perm Prot NA Perm Prot NA Perm Prot NA Perm Prot NA Perm		20	43	6	6	6	6	83	6	6	83	6	6
Turn Type Perm NA Perm Perm NA Perm Prot NA Perm Perm Prot NA Perm Prot NA Perm Perm Prot NA Perm Perm <t< td=""><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>						0							
Protected Phases 3 3 6 1 2 5 Permitted Phases 3 3 3 3 1 5 Detector Phase 3 3 3 3 6 1 1 2 5 5			NA	Perm	Perm	NA	Perm	Prot		Perm	Prot	NA	Perm
Permitted Phases 3 3 3 3 1 5 Detector Phase 3 3 3 3 6 1 1 2 5 5	• • • • • • • • • • • • • • • • • • • •	,		2			2			2			,
Detector Phase 3 3 3 3 3 6 1 1 2 5 5		3		3	3	-	3			1			5
			3			3		6	1	•	2	5	
	Switch Phase								-				

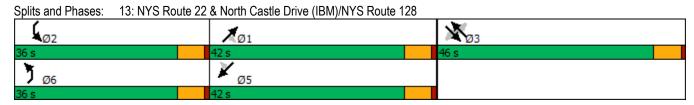
	-	λ	Ž	~	×	₹	7	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	2.0	10.0	10.0	2.0	10.0	10.0
Minimum Split (s)	31.0	31.0	31.0	31.0	31.0	31.0	16.0	42.0	42.0	16.0	42.0	42.0
Total Split (s)	46.0	46.0	46.0	46.0	46.0	46.0	36.0	42.0	42.0	36.0	42.0	42.0
Total Split (%)	37.1%	37.1%	37.1%	37.1%	37.1%	37.1%	29.0%	33.9%	33.9%	29.0%	33.9%	33.9%
Maximum Green (s)	40.0	40.0	40.0	40.0	40.0	40.0	30.0	36.0	36.0	30.0	36.0	36.0
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	6.0	6.0	6.0	6.0	6.0	6.0	2.0	6.0	6.0	2.0	6.0	6.0
Minimum Gap (s)	3.0	3.0	3.0	3.0	3.0	3.0	2.0	3.0	3.0	2.0	4.0	4.0
Time Before Reduce (s)	20.0	20.0	20.0	20.0	20.0	20.0	0.0	20.0	20.0	0.0	20.0	20.0
Time To Reduce (s)	10.0	10.0	10.0	10.0	10.0	10.0	0.0	10.0	10.0	0.0	10.0	10.0
Recall Mode	Min	Min	Min	Min	Min	Min	None	Max	Max	None	Max	Max
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		23.3	23.3	23.3	23.3	23.3	20.1	60.8	60.8	5.1	36.7	36.7
Actuated g/C Ratio		0.24	0.24	0.24	0.24	0.24	0.20	0.62	0.62	0.05	0.37	0.37
v/c Ratio		0.48	0.37	0.48	0.06	0.49	0.78	0.29	0.01	0.07	0.52	0.17
Control Delay		38.1	6.8	39.7	30.2	6.7	53.9	10.6	0.0	52.0	28.0	5.9
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		38.1	6.8	39.7	30.2	6.7	53.9	10.6	0.0	52.0	28.0	5.9
LOS		D	Α	D	С	Α	D	В	Α	D	С	Α
Approach Delay		21.2			17.3			23.3			25.1	
Approach LOS		С			В			С			С	
Queue Length 50th (ft)		89	0	66	14	0	164	87	0	4	174	0
Queue Length 95th (ft)		169	55	135	39	66	271	180	0	20	288	42
Internal Link Dist (ft)		530			518			1111			655	
Turn Bay Length (ft)			250			225	680		250	400		250
Base Capacity (vph)		601	773	457	786	843	531	2209	848	560	1319	669
Starvation Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio		0.28	0.25	0.27	0.04	0.35	0.51	0.29	0.01	0.01	0.52	0.17

Intersection Summary

Area Type: Other

Cycle Length: 124

Actuated Cycle Length: 98.4


Natural Cycle: 90

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.78

Intersection Signal Delay: 22.5
Intersection Capacity Utilization 64.3%

Intersection LOS: C
ICU Level of Service C

	ၨ	≭	\rightarrow	•	†	7	(w	ļ	4	€	✓	
Lane Group	EBL2	EBL	EBR	NBL	NBT	NBR	SBL	SBT	SBR	SWL	SWR	
Lane Configurations		ă	7		ર્ન	7		4		444		
Traffic Volume (vph)	8	2	15	5	1155	254	0	524	5	212	2	
Future Volume (vph)	8	2	15	5	1155	254	0	524	5	212	2	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Lane Width (ft)	10	10	10	11	11	11	12	12	12	11	11	
Grade (%)		0%			4%			1%		0%		
Storage Length (ft)		0	0	0		0	0		0	0	0	
Storage Lanes		1	1	0		1	0		0	2	0	
Taper Length (ft)		25		25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.97	0.95	
Ped Bike Factor					1.00			1.00		1.00		
Frt			0.850			0.850		0.999		0.999		
Flt Protected		0.950								0.953		
Satd. Flow (prot)	0	1685	1507	0	1782	1500	0	1852	0	3294	0	
Flt Permitted		0.950		•	0.998			.00_		0.953	•	
Satd. Flow (perm)	0	1685	1507	0	1779	1500	0	1852	0	3294	0	
Right Turn on Red			Yes	•		Yes		.00_	No	0_0	•	
Satd. Flow (RTOR)			63			267						
Link Speed (mph)		30			35	201		35		35		
Link Distance (ft)		155			796			597		511		
Travel Time (s)		3.5			15.5			11.6		10.0		
Confl. Peds. (#/hr)		0.0		2	10.0			11.0	2	10.0	2	
Confl. Bikes (#/hr)				_					_		_	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	
Heavy Vehicles (%)	0%	0%	0%	0%	1%	2%	0%	2%	0%	3%	0%	
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%		0%		
Adj. Flow (vph)	8	2	16	5	1216	267	0	552	5	223	2	
Shared Lane Traffic (%)	J		10	U	1210	201	U	002	U	220		
Lane Group Flow (vph)	0	10	16	0	1221	267	0	557	0	225	0	
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Right	
Median Width(ft)	LOIL	10	rtigiit	LOIL	0	rtigrit	LOIL	0	rtigiit	22	rtigitt	
Link Offset(ft)		0			0			0		0		
Crosswalk Width(ft)		16			16			16		16		
Two way Left Turn Lane		10			10			10		10		
Headway Factor	1.09	1.09	1.09	1.07	1.07	1.07	1.01	1.01	1.01	1.04	1.04	
Turning Speed (mph)	1.03	1.03	9	1.07	1.07	9	1.01	1.01	9	1.04	9	
Number of Detectors	13	13	1	15	2	1	13	2	9	15	9	
Detector Template	Left	ı	ı	Left		ı	Left			·		
Leading Detector (ft)	20	35	35	20	83	35	20	83		35		
	0	-5	-5	0	-5	-5	0	-5		-5		
Trailing Detector (ft)		-ⴢ Prot	-5 Perm	Perm	c- NA		U	-5 NA		-ი Prot		
Turn Type Protected Phases	Perm	3	FEIIII	FEIIII		pm+ov						
	2	3	2	1	1	4	E	5		4		
Permitted Phases	3	2	3	1	1	1	5	-				
Detector Phase	3	3	3	1	1	4	5	5		4		
Switch Phase												

	•	_≉	•	1	†	ř	4	ţ	4	€	✓	
Lane Group	EBL2	EBL	EBR	NBL	NBT	NBR	SBL	SBT	SBR	SWL	SWR	
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0		
Minimum Split (s)	10.0	10.0	10.0	11.0	11.0	11.0	11.0	11.0		11.0		
Total Split (s)	20.0	20.0	20.0	106.0	106.0	31.0	106.0	106.0		31.0		
Total Split (%)	12.7%	12.7%	12.7%	67.5%	67.5%	19.7%	67.5%	67.5%		19.7%		
Maximum Green (s)	15.0	15.0	15.0	100.0	100.0	25.0	100.0	100.0		25.0		
Yellow Time (s)	4.0	4.0	4.0	5.0	5.0	5.0	5.0	5.0		5.0		
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0		
Lost Time Adjust (s)		0.0	0.0		0.0	0.0		0.0		0.0		
Total Lost Time (s)		5.0	5.0		6.0	6.0		6.0		6.0		
Lead/Lag	Lag	Lag	Lag			Lead				Lead		
Lead-Lag Optimize?	Yes	Yes	Yes			Yes				Yes		
Vehicle Extension (s)	5.0	5.0	5.0	5.0	5.0	3.0	5.0	5.0		3.0		
Minimum Gap (s)	5.0	5.0	5.0	5.0	5.0	3.0	5.0	5.0		3.0		
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0		
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0		
Recall Mode	None	None	None	Max	Max	None	Max	Max		None		
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		8.5	8.5		100.5	124.0		100.5		14.8		
Actuated g/C Ratio		0.06	0.06		0.74	0.92		0.74		0.11		
v/c Ratio		0.09	0.10		0.93	0.19		0.41		0.63		
Control Delay		65.7	1.3		30.0	0.5		8.8		66.5		
Queue Delay		0.0	0.0		0.0	0.0		0.0		0.0		
Total Delay		65.7	1.3		30.0	0.5		8.8		66.5		
LOS		Е	Α		С	Α		Α		Ε		
Approach Delay		26.1			24.7			8.8		66.5		
Approach LOS		С			С			Α		E		
Queue Length 50th (ft)		9	0		928	0		190		103		
Queue Length 95th (ft)		30	0		#1497	10		305		149		
Internal Link Dist (ft)		75			716			517		431		
Turn Bay Length (ft)												
Base Capacity (vph)		187	223		1320	1436		1375		611		
Starvation Cap Reductn		0	0		0	0		0		0		
Spillback Cap Reductn		0	0		0	0		0		0		
Storage Cap Reductn		0	0		0	0		0		0		
Reduced v/c Ratio		0.05	0.07		0.93	0.19		0.41		0.37		

Intersection Summary

Area Type: Other

Cycle Length: 157

Actuated Cycle Length: 135.4

Natural Cycle: 90

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.93

Intersection Signal Delay: 24.9 Intersection LOS: C
Intersection Capacity Utilization 89.2% ICU Level of Service E

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

 Year 2019 Existing Traffic Volumes Weekday Peak PM Hour 15: Central Westchester Expressway & NYS Route 22 & Reservoir Road & Church Stret 17/2019

	۶	→	•	•	←	*_	•	†	<i>></i>	/	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	WBR2	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^}			ર્ન		7	^	7	*	∱ }	
Traffic Volume (vph)	300	141	90	75	135	3	109	1107	123	71	522	197
Future Volume (vph)	300	141	90	75	135	3	109	1107	123	71	522	197
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	11	12	12	12	12	11	11	12	12	12
Grade (%)		2%			2%			4%			-6%	
Storage Length (ft)	115		0	0		180			160	110		0
Storage Lanes	1		0	0		1			1	1		0
Taper Length (ft)	86			25						86		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	0.95
Ped Bike Factor					1.00							
Frt		0.941			0.998		0.850		0.850		0.959	
FIt Protected					0.983					0.950		
Satd. Flow (prot)	1732	1688	0	0	1810	0	1599	3420	1515	1859	3511	0
Flt Permitted					0.983					0.078		
Satd. Flow (perm)	1732	1688	0	0	1810	0	1599	3420	1515	153	3511	0
Right Turn on Red			No				Yes		Yes			
Satd. Flow (RTOR)							101		76			
Link Speed (mph)		35			30			45			35	
Link Distance (ft)		532			475			529			778	
Travel Time (s)		10.4			10.8			8.0			15.2	
Confl. Peds. (#/hr)						2						
Confl. Bikes (#/hr)												
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	5%	1%	2%	0%	3%	0%	0%	0%	1%	0%	1%	3%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	309	145	93	77	139	3	112	1141	127	73	538	203
Shared Lane Traffic (%)												
Lane Group Flow (vph)	309	238	0	0	219	0	112	1141	127	73	741	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Right	Left	Right	Left	Left	Right
Median Width(ft)		11			11	J	J	12	•		12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.06	1.06	1.06	1.01	1.01	1.01	1.01	1.07	1.07	0.96	0.96	0.96
Turning Speed (mph)	15		9	15		9	9		9	15		9
Number of Detectors	1	2		1	2		1	2	1	1	2	
Detector Template				Left								
Leading Detector (ft)	35	83		20	83		35	83	35	35	83	
Trailing Detector (ft)	-5	-5		0	-5		-5	-5	-5	-5	-5	
Turn Type	Split	NA		Split	NA		pm+ov	NA	pm+ov	pm+pt	NA	
Protected Phases	3	3		4	4		5	6	4	5	2	
Permitted Phases				•			4		6	2	_	
Detector Phase	3	3		4	4		5	6	4	5	2	
Switch Phase											_	

Synchro 10 Report Page 38 18002018A - N.T.

Lane Group	07
Lane Configurations	
Traffic Volume (vph)	
Future Volume (vph)	
Ideal Flow (vphpl)	
Lane Width (ft)	
Grade (%)	
Storage Length (ft)	
Storage Lanes	
Taper Length (ft)	
Lane Util. Factor	
Ped Bike Factor	
Frt	
Flt Protected	
Satd. Flow (prot)	
Flt Permitted	
Satd. Flow (perm)	
Right Turn on Red	
Satd. Flow (RTOR)	
Link Speed (mph)	
Link Distance (ft)	
Travel Time (s)	
Confl. Peds. (#/hr)	
Confl. Bikes (#/hr)	
Peak Hour Factor	
Growth Factor	
Heavy Vehicles (%)	
Bus Blockages (#/hr)	
Parking (#/hr)	
Mid-Block Traffic (%)	
Adj. Flow (vph)	
Shared Lane Traffic (%)	
Lane Group Flow (vph) Enter Blocked Intersection	
Lane Alignment	
Median Width(ft)	
Link Offset(ft)	
Crosswalk Width(ft)	
Two way Left Turn Lane	
Headway Factor	
Turning Speed (mph)	
Number of Detectors	
Detector Template	
Leading Detector (ft)	
Trailing Detector (ft)	
Turn Type	-
Protected Phases	7
Permitted Phases	
Detector Phase	
Switch Phase	

Synchro 10 Report Page 39 18002018A - N.T.

15: Central Westchester Expressway & NYS Route 22 & Reservoir Road & Church Strete(17/2019)

	•	-	•	•	•	*_	•	†		-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	WBR2	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	39.0	39.0		11.0	11.0		11.0	11.0	11.0	11.0	31.0	
Total Split (s)	51.0	51.0		36.0	36.0		26.0	51.0	36.0	26.0	77.0	
Total Split (%)	25.5%	25.5%		18.0%	18.0%		13.0%	25.5%	18.0%	13.0%	38.5%	
Maximum Green (s)	45.0	45.0		30.0	30.0		20.0	45.0	30.0	20.0	71.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0			0.0		0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0			6.0		6.0	6.0	6.0	6.0	6.0	
Lead/Lag	Lead	Lead		Lag	Lag		Lead	Lag	Lag	Lead		
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes	Yes	Yes		
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Minimum Gap (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Time Before Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Recall Mode	None	None		None	None		None	Min	None	None	Min	
Walk Time (s)	8.0	8.0									8.0	
Flash Dont Walk (s)	25.0	25.0									17.0	
Pedestrian Calls (#/hr)	6	6									0	
Act Effct Green (s)	37.0	37.0			25.9		37.2	45.3	71.2	62.7	62.7	
Actuated g/C Ratio	0.21	0.21			0.14		0.21	0.25	0.40	0.35	0.35	
v/c Ratio	0.87	0.69			0.84		0.27	1.33	0.20	0.46	0.61	
Control Delay	93.8	77.5			102.6		9.1	203.3	8.7	51.7	52.2	
Queue Delay	0.0	0.0			0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay	93.8	77.5			102.6		9.1	203.3	8.7	51.7	52.2	
LOS	F	Е			F		Α	F	Α	D	D	
Approach Delay		86.7			71.0			183.8			52.1	
Approach LOS		F			Е			F			D	
Queue Length 50th (ft)	363	267			259		7	~953	20	61	397	
Queue Length 95th (ft)	504	383			#406		50	#1185	47	110	496	
Internal Link Dist (ft)		452			395			449			698	
Turn Bay Length (ft)	115						180		160	110		
Base Capacity (vph)	436	425			304		484	861	680	244	1395	
Starvation Cap Reductn	0	0			0		0	0	0	0	0	
Spillback Cap Reductn	0	0			0		0	0	0	0	0	
Storage Cap Reductn	0	0			0		0	0	0	0	0	
Reduced v/c Ratio	0.71	0.56			0.72		0.23	1.33	0.19	0.30	0.53	

Intersection Summary

Area Type: Other

Cycle Length: 200

Actuated Cycle Length: 179.9

Natural Cycle: 150

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 1.33 Intersection Signal Delay: 117.0 Intersection Capacity Utilization 82.8%

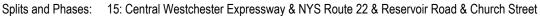
Intersection LOS: F
ICU Level of Service E

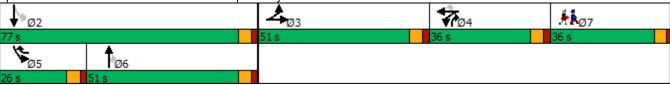
Analysis Period (min) 15

Synchro 10 Report Page 40

[~] Volume exceeds capacity, queue is theoretically infinite.

Lane Group	Ø7		
Minimum Initial (s)	8.0		
Minimum Split (s)	36.0		
Total Split (s)	36.0		
	18%		
Total Split (%)	31.0		
Maximum Green (s)	3.5		
Yellow Time (s)	3.5 1.5		
All-Red Time (s)	1.5		
Lost Time Adjust (s)			
Total Lost Time (s)			
Lead/Lag			
Lead-Lag Optimize?	2.0		
Vehicle Extension (s)	3.0 3.0		
Minimum Gap (s)			
Time Before Reduce (s)	0.0		
Time To Reduce (s)	0.0		
Recall Mode	Ped 8.0		
Walk Time (s)			
Flash Dont Walk (s)	23.0		
Pedestrian Calls (#/hr)	2		
Act Effct Green (s)			
Actuated g/C Ratio			
v/c Ratio			
Control Delay			
Queue Delay			
Total Delay			
LOS			
Approach Delay			
Approach LOS			
Queue Length 50th (ft)			
Queue Length 95th (ft)			
Internal Link Dist (ft)			
Turn Bay Length (ft)			
Base Capacity (vph)			
Starvation Cap Reductn			
Spillback Cap Reductn			
Storage Cap Reductn			
Reduced v/c Ratio			
Intersection Summary			
y			


Synchro 10 Report Page 41 18002018A - N.T.


15: Central Westchester Expressway & NYS Route 22 & Reservoir Road & Church Stret 17/2019

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

18002018A - N.T. Page 42

	ሻ	†	↓	» J	•	>
Lane Group	NBL	NBT	SBT	SBR	SEL	SER
Lane Configurations	T T	^	^	ĕ	ሻ	7
Traffic Volume (vph)	186	514	818	226	524	807
Future Volume (vph)	186	514	818	226	524	807
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1900	1900	1900	1900	1900	1900
. ,	10			10		10
Grade (%)	050	0%	0%	F00	0%	0
Storage Length (ft)	250			500	250	0
Storage Lanes	1			1	1	1
Taper Length (ft)	86				86	
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00
Ped Bike Factor						
Frt				0.850		0.850
Flt Protected	0.950				0.950	
Satd. Flow (prot)	1478	3209	3303	1478	1604	1436
Flt Permitted	0.950				0.950	
Satd. Flow (perm)	1478	3209	3303	1478	1604	1436
Right Turn on Red	1110	3233	3000	Yes	1007	Yes
Satd. Flow (RTOR)				231		495
Link Speed (mph)		55	55	201	30	+30
Link Distance (ft)		767	1064		872	
` ,						
Travel Time (s)		9.5	13.2		19.8	
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	14%	5%	2%	2%	5%	5%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)		0%	0%		0%	
Adj. Flow (vph)	190	524	835	231	535	823
Shared Lane Traffic (%)	100	ŲL!		231		020
Lane Group Flow (vph)	190	524	835	231	535	823
Enter Blocked Intersection	No	No	No	No	No	No
		Left				
Lane Alignment	Left		Left	Right	Left	Right
Median Width(ft)		10	15		10	
Link Offset(ft)		0	0		0	
Crosswalk Width(ft)		16	16		16	
Two way Left Turn Lane						
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (mph)	15			9	15	9
Number of Detectors	1	2	2	1	2	0
Detector Template						
Leading Detector (ft)	35	104	104	0	104	0
Trailing Detector (ft)	-5	0	0	0	0	0
Turn Type	Prot	NA	NA	Free	Prot	Free
Protected Phases	2	5	1	1100	3	1100
Permitted Phases		J	ı	Free	J	Free
	0	Г	1	гіее	2	riee
Detector Phase	2	5	1		3	
Switch Phase						

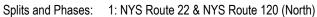
	ሻ	†	↓	wJ	•	\
Lane Group	NBL	NBT	SBT	SBR	SEL	SER
Minimum Initial (s)	12.0	12.0	12.0		10.0	
Minimum Split (s)	36.0	36.0	36.0		26.0	
Total Split (s)	41.0	82.0	41.0		41.0	
Total Split (%)	33.3%	66.7%	33.3%		33.3%	
Maximum Green (s)	34.0	75.0	34.0		35.0	
Yellow Time (s)	5.0	5.0	5.0		4.0	
All-Red Time (s)	2.0	2.0	2.0		2.0	
Lost Time Adjust (s)	0.0	0.0	0.0		0.0	
Total Lost Time (s)	7.0	7.0	7.0		6.0	
Lead/Lag	Lead		Lag			
Lead-Lag Optimize?	Yes		Yes			
Vehicle Extension (s)	6.0	6.0	6.0		6.0	
Minimum Gap (s)	4.0	4.0	4.0		4.0	
Time Before Reduce (s)	20.0	20.0	20.0		20.0	
Time To Reduce (s)	8.0	8.0	8.0		5.0	
Recall Mode	None	Min	Min		None	
Walk Time (s)						
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)						
Act Effct Green (s)	22.1	62.2	33.1	110.4	35.1	110.4
Actuated g/C Ratio	0.20	0.56	0.30	1.00	0.32	1.00
v/c Ratio	0.64	0.29	0.84	0.16	1.05	0.57
Control Delay	51.1	12.8	45.9	0.2	91.7	1.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	51.1	12.8	45.9	0.2	91.7	1.7
LOS	D	В	D	Α	F	Α
Approach Delay		23.0	36.0		37.1	
Approach LOS		С	D		D	
Queue Length 50th (ft)	126	96	290	0	~420	0
Queue Length 95th (ft)	202	127	#435	0	#698	0
Internal Link Dist (ft)		687	984		792	
Turn Bay Length (ft)	250			500	250	
Base Capacity (vph)	456	2187	1020	1478	510	1436
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.42	0.24	0.82	0.16	1.05	0.57
Intersection Summary						
Area Type:	Other					
Cycle Length: 123						
Actuated Cycle Length: 11	0.4					
Natural Cycle: 110						
Control Type: Actuated-Un	ncoordinated					
Maximum v/c Ratio: 1.05						

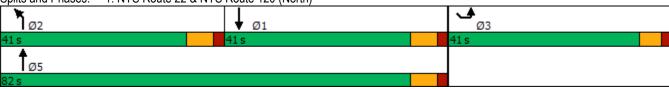
Intersection LOS: C

ICU Level of Service D

Analysis Period (min) 15

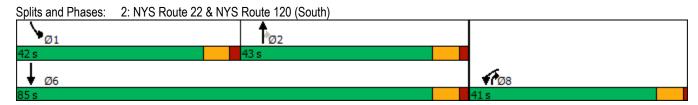
Volume exceeds capacity, queue is theoretically infinite.


Intersection Signal Delay: 33.5


Intersection Capacity Utilization 78.6%

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.


Queue shown is maximum after two cycles.

	•	•	†	/	\	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	**	TIBIT	↑ ↑	7	ሻሻ	↑ ↑
Traffic Volume (vph)	45	0	478	185	970	655
Future Volume (vph)	45	0	478	185	970	655
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1900	1900	1900	1900	1900	1900
		12	-2%	10	11	-1%
Grade (%)	-8%	0	-2%	200	045	-1%
Storage Length (ft)	0	0		200	215	
Storage Lanes	1	0		1	2	
Taper Length (ft)	25	4.00	0.05	4.00	86	0.05
Lane Util. Factor	1.00	1.00	0.95	1.00	0.97	0.95
Ped Bike Factor						
Frt				0.850		
Flt Protected	0.950				0.950	
Satd. Flow (prot)	1707	0	3304	1478	3368	3405
Flt Permitted	0.950				0.950	
Satd. Flow (perm)	1707	0	3304	1478	3368	3405
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)		. 00		7		
Link Speed (mph)	30		50			50
Link Distance (ft)	334		905			488
Travel Time (s)	7.6		12.3			6.7
	7.0		12.3			0.7
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)	0.05	0.05	0.05	0.05	0.05	0.05
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	10%	0%	3%	3%	1%	3%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	47	0	503	195	1021	689
Shared Lane Traffic (%)						
Lane Group Flow (vph)	47	0	503	195	1021	689
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12	ragni	22	rtigrit	LUIL	22
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane	0.05	0.05	4.00	4.00	4.04	4.04
Headway Factor	0.95	0.95	1.08	1.08	1.04	1.04
Turning Speed (mph)	15	9		9	15	
Number of Detectors	1		2	1	1	2
Detector Template	Left		Thru	Right	Left	Thru
Leading Detector (ft)	20		100	20	20	100
Trailing Detector (ft)	0		0	0	0	0
Turn Type	Prot		NA	pm+ov	Prot	NA
Protected Phases	8		2	8	1	6
Permitted Phases				2		
Detector Phase	8		2	8	1	6
Switch Phase	U			U		U
Switch Phase						

	•	4	†	~	\	ţ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Minimum Initial (s)	10.0	.,,,,,	12.0	10.0	12.0	12.0
Minimum Split (s)	26.0		36.0	26.0	36.0	36.0
Total Split (s)	41.0		43.0	41.0	42.0	85.0
Total Split (%)	32.5%		34.1%	32.5%	33.3%	67.5%
Maximum Green (s)	35.0		36.0	35.0	35.0	78.0
Yellow Time (s)	5.0		5.0	5.0	5.0	5.0
All-Red Time (s)	1.0		2.0	1.0	2.0	2.0
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0		7.0	6.0	7.0	7.0
Lead/Lag	0.0		Lag	0.0	Lead	7.0
Lead-Lag Optimize?			Yes		Yes	
	3.0		3.0	3.0	3.0	3.0
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0
Minimum Gap (s)						
Time Before Reduce (s)	0.0		0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0		0.0	0.0	0.0	0.0
Recall Mode	None		Min	None	Min	Min
Walk Time (s)						
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)						
Act Effct Green (s)	10.1		18.0	35.1	35.1	60.1
Actuated g/C Ratio	0.12		0.22	0.42	0.42	0.72
v/c Ratio	0.23		0.70	0.31	0.72	0.28
Control Delay	37.4		35.8	16.7	24.2	4.3
Queue Delay	0.0		0.0	0.0	0.0	0.0
Total Delay	37.4		35.8	16.7	24.2	4.3
LOS	D		D	В	С	Α
Approach Delay	37.4		30.5			16.2
Approach LOS	D		С			В
Queue Length 50th (ft)	22		127	63	218	53
Queue Length 95th (ft)	57		180	110	328	74
Internal Link Dist (ft)	254		825	•	320	408
Turn Bay Length (ft)			020	200	215	100
Base Capacity (vph)	719		1432	1069	1419	3197
Starvation Cap Reductn	0		0	0	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductn	0		0	0	0	0
•			-			
Reduced v/c Ratio	0.07		0.35	0.18	0.72	0.22
Intersection Summary						
Area Type:	Other					
Cycle Length: 126						
Actuated Cycle Length: 83	.2					
Natural Cycle: 100						
Control Type: Semi Act-Ur	coord					
Maximum v/c Ratio: 0.72						
Intersection Signal Delay:	20.7			lr	ntersectio	n LOS: C
Intersection Capacity Utiliz						of Service
Analysis Period (min) 15					JO LOVGI	51 551 VICE
raidiyələ i Gilou (illili) 13						

	۶	→	•	•	←	•	•	†	~	/	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					f)			4				
Traffic Volume (vph)	0	0	0	0	25	6	1	216	45	0	0	0
Future Volume (vph)	0	0	0	0	25	6	1	216	45	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	13	12	12	12	12
Grade (%)		0%			-5%			-7%			0%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	0		0	0		0	0		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt					0.973			0.977				
Flt Protected												
Satd. Flow (prot)	0	0	0	0	1836	0	0	1746	0	0	0	0
Flt Permitted												
Satd. Flow (perm)	0	0	0	0	1836	0	0	1746	0	0	0	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		124			297			300			404	
Travel Time (s)		2.8			6.8			6.8			9.2	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	0%	0%	4%	0%	0%	16%	3%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	0	0	0	0	28	7	1	245	51	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	0	0	0	35	0	0	297	0	0	0	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	0.97	0.97	0.97	0.96	0.92	0.96	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15	_	9	15		9
Sign Control		Stop			Stop			Free			Stop	
Intersection Summary												
7 1	Other											
Control Type: Unsignalized												
Intersection Capacity Utilizati	on 24.2%			IC	CU Level	of Service	e A					
Analysis Period (min) 15												

Synchro 10 Report Page 7

Intersection												
Int Delay, s/veh	1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					(î			4				
Traffic Vol, veh/h	0	0	0	0	25	6	1	216	45	0	0	0
Future Vol, veh/h	0	0	0	0	25	6	1	216	45	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None	-	_	None	-	-	None	<u>-</u>	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	2	-	-	0	-	-	0	-	-	16965	-
Grade, %	-	0	-	-	-5	-	-	-7	-	-	0	-
Peak Hour Factor	88	88	88	88	88	88	88	88	88	88	88	88
Heavy Vehicles, %	0	0	0	0	4	0	0	16	3	0	0	0
Mvmt Flow	0	0	0	0	28	7	1	245	51	0	0	0
Major/Minor			_	Minor1		N	//ajor1					
Conflicting Flow All				_	273	271	0	0	0			
Stage 1				_	273		-	-	-			
Stage 2				_	0	-	_	_	_			
Critical Hdwy				-	5.54	5.7	4.1	_	-			
Critical Hdwy Stg 1				-	4.54	-	-	_	_			
Critical Hdwy Stg 2				-	-	-	-	-	-			
Follow-up Hdwy				-	4.036	3.3	2.2	_	_			
Pot Cap-1 Maneuver				0	680	802	-	-	-			
Stage 1				0	734	-	-	-	-			
Stage 2				0	-	-	-	-	-			
Platoon blocked, %								-	-			
Mov Cap-1 Maneuver				-	0	802	-	-	-			
Mov Cap-2 Maneuver				-	0	-	-	-	-			
Stage 1				-	0	-	-	-	-			
Stage 2				-	0	-	-	-	-			
Approach				WB			NB					
HCM Control Delay, s				9.7								
HCM LOS				Α								
Minor Lane/Major Mvmt		NBL	NBT	NBRV	VBLn1							
Capacity (veh/h)		_	-	-	802							
HCM Lane V/C Ratio		-	-	-	0.044							
HCM Control Delay (s)		-	-	-	9.7							
HCM Lane LOS		-	-	-	Α							
HCM 95th %tile Q(veh)		-	-	-	0.1							

Lane Group		۶	→	•	•	←	4	•	†	~	/	↓	4
Traffic Volume (vph)	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (γph)	Lane Configurations		ર્ન	7		ન	7	ř	*	7	¥		7
Ideal Flow (ryphpi)	Traffic Volume (vph)	16		18	4		3	146	288	28	27	838	289
Lane Width (ft)	Future Volume (vph)	16	1	18	4	0	3	146	288	28	27	838	289
Lane Width (ff)	· · /	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)			12		12	12	12	12	12	12	12	12	
Storage Length (ft)			4%			-1%			7%			-4%	
Storage Lanes	` ,	0		315	0		125	280		445	150		275
Taper Length (ft)		0			0			1		1			
Lane Util. Factor 1.00								86			86		
Ped Bike Factor			1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
Fith Protected 0.955 0.950 0													
Fit Protected 0.955 0.950 0.95				0.850			0.850			0.850			0.850
Satd. Flow (prot)			0.955			0.950		0.950			0.950		
Fit Permitted Satch Flow (perm) 0 1370 1190 0 1090 1623 289 1667 1558 1105 1882 1631 1891 1892 1631 1892 1631 1892 1631 1892 1631 1892 1631 1892 1631 1892 1631 1892 1631 1892 1631 1892		0		1190	0		1623		1667	1558		1882	1631
Satd. Flow (perm)		-			-								
Page		0	1370	1190	0	1909	1623		1667	1558		1882	1631
Satd. Flow (RTOR)		-			-								
Link Speed (mph)	•												
Link Distance (ft)			30			30			55			55	
Travel Time (s)													
Confi. Peds. (#/hr)													
Confl. Bikes (#/hr)	. ,												
Peak Hour Factor 0.92 0.													
Growth Factor 100%		0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (%) 38% 0% 33% 0% 0% 0% 4% 10% 0% 0% 3% 1%													
Bus Blockages (#/hr) 0 0 0 0 0 0 0 0 0			0%							0%		3%	
Parking (#/hr) Mid-Block Traffic (%) O% O% O% O% O% O% O%	, ,												
Mid-Block Traffic (%) 0% 0% 0% 0% 0% 0% 0% Adj. Flow (vph) 17 1 20 4 0 3 159 313 30 29 911 314 Shared Lane Traffic (%) Lane Group Flow (vph) 0 18 20 0 4 3 159 313 30 29 911 314 20 0 4 3 159 313 30 29 911 314 20 0 4 3 159 313 30 29 911 314 20 0 0 No													
Adj. Flow (vph) 17 1 20 4 0 3 159 313 30 29 911 314 Shared Lane Traffic (%) Lane Group Flow (vph) 0 18 20 0 4 3 159 313 30 29 911 314 Enter Blocked Intersection No			0%			0%			0%			0%	
Shared Lane Traffic (%) Lane Group Flow (vph) 0 18 20 0 4 3 159 313 30 29 911 314	. ,	17		20	4		3	159		30	29		314
Lane Group Flow (vph) 0 18 20 0 4 3 159 313 30 29 911 314 Enter Blocked Intersection No N													
Enter Blocked Intersection No No <th< td=""><td></td><td>0</td><td>18</td><td>20</td><td>0</td><td>4</td><td>3</td><td>159</td><td>313</td><td>30</td><td>29</td><td>911</td><td>314</td></th<>		0	18	20	0	4	3	159	313	30	29	911	314
Lane Alignment Left Left Right Median Width(ft) 0													
Median Width(ft) 0 0 12 12 Link Offset(ft) 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 Two way Left Turn Lane 1.03 1.03 0.99 0.99 0.99 1.05 1.05 0.97 0.97 0.97 Turning Speed (mph) 15 9 15 10 15 10 15 10 15 10													
Link Offset(fft) 0 0 0 0 Crosswalk Width(fft) 16 16 16 16 Two way Left Turn Lane Headway Factor 1.03 1.03 1.03 0.99 0.99 0.99 1.05 1.05 0.97 0.97 0.97 Turning Speed (mph) 15 9 15 15 15 15 15				J -			J			J 1			J •
Crosswalk Width(ft) 16 16 16 16 16 Two way Left Turn Lane Headway Factor 1.03 1.03 1.03 0.99 0.99 0.99 1.05 1.05 0.97 0.97 0.97 Turning Speed (mph) 15 9 15 10 10 10 10 10 10 10 10 10 10 10 10						0							
Two way Left Turn Lane Headway Factor 1.03 1.03 1.03 0.99 0.99 0.99 1.05 1.05 1.05 0.97 0.97 0.97 Turning Speed (mph) 15 9 15 10 10 10 10 10 10 10 10 10 10 10 10 10 <td></td>													
Headway Factor 1.03 1.03 1.03 0.99 0.99 0.99 1.05 1.05 0.97 0.97 0.97 Turning Speed (mph) 15 9 15 9 15 9 15 9 15 9 Number of Detectors 1 2 1 3 <t< td=""><td>` '</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	` '												
Turning Speed (mph) 15 9 15 9 15 9 15 9 15 9 15 9 15 9 15 9 15 9 15 9 15 9 15 9 15 9 15 9 NA NA Purity 1 2 1 3 3 3 3 3 3 3 3 3 3 3 3 3	•	1.03	1.03	1.03	0.99	0.99	0.99	1.05	1.05	1.05	0.97	0.97	0.97
Number of Detectors 1 2 1 3 3 3 3 3 3 3 5 5 -5 -5 -5 -5 -5 -5 -5 -5 -5													
Detector Template Left Left Leading Detector (ft) 20 83 35 20 83 35 83 35 35 83 35 Trailing Detector (ft) 0 -5 -5 0 -5 -2 -2			2			2			2			2	
Leading Detector (ft) 20 83 35 20 83 35 35 83 35 83 35 Trailing Detector (ft) 0 -5 -5 0 -5		Left			Left								
Trailing Detector (ft) 0 -5 -5 0 -5 <td></td> <td></td> <td>83</td> <td>35</td> <td></td> <td>83</td> <td>35</td> <td>35</td> <td>83</td> <td>35</td> <td>35</td> <td>83</td> <td>35</td>			83	35		83	35	35	83	35	35	83	35
Turn Type Perm NA pm+ov Perm NA pm+ov pm+pt NA Perm pm+pt NA Perm Protected Phases 8 1 4 5 1 6 5 2 Permitted Phases 8 8 4 4 6 6 2 2 Detector Phase 8 8 1 4 5 1 6 6 5 2 2													
Protected Phases 8 1 4 5 1 6 5 2 Permitted Phases 8 8 4 4 6 6 2 2 Detector Phase 8 8 1 4 4 5 1 6 6 5 2 2	• ,												
Permitted Phases 8 8 4 4 6 6 2 2 Detector Phase 8 8 1 4 4 5 1 6 6 5 2 2				•									
Detector Phase 8 8 1 4 4 5 1 6 6 5 2 2		8			4					6			2
			8			4			6			2	
	Switch Phase												

	•	→	•	•	←	*	1	†	_	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	5.0	3.0	5.0	5.0	3.0	3.0	5.0	5.0	3.0	5.0	5.0
Minimum Split (s)	13.0	13.0	10.0	13.0	13.0	10.0	10.0	12.0	12.0	10.0	12.0	12.0
Total Split (s)	45.0	45.0	27.0	45.0	45.0	27.0	27.0	47.0	47.0	27.0	47.0	47.0
Total Split (%)	37.8%	37.8%	22.7%	37.8%	37.8%	22.7%	22.7%	39.5%	39.5%	22.7%	39.5%	39.5%
Maximum Green (s)	40.0	40.0	20.0	40.0	40.0	20.0	20.0	40.0	40.0	20.0	40.0	40.0
Yellow Time (s)	4.0	4.0	5.0	4.0	4.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	1.0	1.0	2.0	1.0	1.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		5.0	7.0		5.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
Lead/Lag			Lead			Lead	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?			Yes			Yes	Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0	2.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Minimum Gap (s)	3.0	3.0	2.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Recall Mode	None	None	None	None	None	None	None	Max	Max	None	Max	Max
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		6.8	8.4		6.3	7.1	52.3	53.8	53.8	45.4	40.5	40.5
Actuated g/C Ratio		0.11	0.13		0.10	0.11	0.83	0.85	0.85	0.72	0.64	0.64
v/c Ratio		0.12	0.11		0.02	0.01	0.42	0.22	0.02	0.03	0.75	0.28
Control Delay		29.8	4.8		28.5	0.0	5.3	4.3	0.0	2.4	15.8	3.7
Queue Delay		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		29.8	4.8		28.5	0.0	5.3	4.3	0.0	2.4	15.8	3.7
LOS		С	Α		С	Α	Α	Α	Α	Α	В	Α
Approach Delay		16.7			16.3			4.4			12.5	
Approach LOS		В			В			Α			В	
Queue Length 50th (ft)		6	0		1	0	1	0	0	0	164	13
Queue Length 95th (ft)		27	9		10	0	33	121	0	9	#667	75
Internal Link Dist (ft)		521			312			1398			1086	
Turn Bay Length (ft)			315			125	280		445	150		275
Base Capacity (vph)		880	447		1226	602	691	1420	1340	1178	1208	1114
Starvation Cap Reductn		0	0		0	0	0	0	0	0	0	0
Spillback Cap Reductn		0	0		0	0	0	0	0	0	0	0
Storage Cap Reductn		0	0		0	0	0	0	0	0	0	0
Reduced v/c Ratio		0.02	0.04		0.00	0.00	0.23	0.22	0.02	0.02	0.75	0.28

Intersection Summary

Area Type: Other

Cycle Length: 119

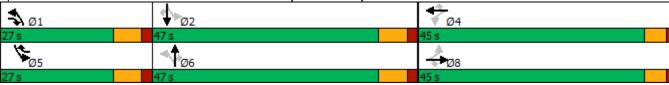
Actuated Cycle Length: 63.1

Natural Cycle: 65

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.75

Intersection Signal Delay: 10.3 Intersection LOS: B
Intersection Capacity Utilization 75.6% ICU Level of Service D


Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Synchro 10 Report 18002018A - N.T. Page 10

Queue shown is maximum after two cycles.

Splits and Phases: 4: NYS Route 120 & SwissRe Driveway/IBM Driveway

	•	•	†	/	>	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ሻ	7	†	7	ሻ	†
Traffic Volume (vph)	11	11	451	5	167	694
Future Volume (vph)	11	11	451	5	167	694
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	12	12	10	10
Grade (%)	-3%		2%			-1%
Storage Length (ft)	0	0		15	175	
Storage Lanes	1	1		1	1	
Taper Length (ft)	25				86	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt		0.850		0.850		
Flt Protected	0.950				0.950	
Satd. Flow (prot)	1771	1320	1742	1599	1676	1714
Flt Permitted	0.950				0.950	
Satd. Flow (perm)	1771	1320	1742	1599	1676	1714
Link Speed (mph)	25		55			55
Link Distance (ft)	589		993			1478
Travel Time (s)	16.1		12.3			18.3
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	20%	8%	0%	1%	4%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	12	12	480	5	178	738
Shared Lane Traffic (%)						
Lane Group Flow (vph)	12	12	480	5	178	738
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	11		12			12
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane						
Headway Factor	1.02	1.02	1.01	1.01	1.09	1.09
Turning Speed (mph)	15	9		9	15	
Sign Control	Stop		Free			Free
Intersection Summary						
Area Type:	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizat	ion 46.5%			IC	U Level	of Service
Analysis Period (min) 15						
,						

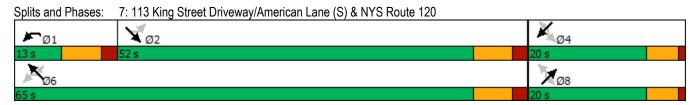
Intersection						
Int Delay, s/veh	1.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ች	7		7	ች	↑
Traffic Vol, veh/h	11	11	451	5	167	694
Future Vol, veh/h	11	11	451	5	167	694
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	Yield	-	Free	-	None
Storage Length	0	0	_	15	175	-
Veh in Median Storage,		-	0	-	-	0
Grade, %	-3	_	2	_	_	-1
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	0	20	8	0	1	4
Mymt Flow	12	12	480		178	738
MOLT LIOM	12	12	400	5	1/0	130
Major/Minor N	/linor1	N	Major1		Major2	
Conflicting Flow All	1574	480	0	_	480	0
Stage 1	480	-	_	_	-	_
Stage 2	1094	_	_	_	_	_
Critical Hdwy	5.8	6.1	_	_	4.11	_
Critical Hdwy Stg 1	4.8	-	_	_	-	_
Critical Hdwy Stg 2	4.8	_	_	_	_	_
Follow-up Hdwy	3.5	3.48	_	_	2.209	_
Pot Cap-1 Maneuver	159	573	_	0	1088	_
Stage 1	679	-	-	0	1000	
	389	-		0	-	
Stage 2	309	-	-	U	-	-
Platoon blocked, %	400	F70	-		4000	-
Mov Cap-1 Maneuver	133	573	-	-	1088	-
Mov Cap-2 Maneuver	133	-	-	-	-	-
Stage 1	679	-	-	-	-	-
Stage 2	325	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	23.1		0		1.7	
HCM LOS	23.1 C		U		1.7	
TICIVI LOS	C					
Minor Lane/Major Mvmt	t	NBTV	VBLn1V	VBLn2	SBL	SBT
Capacity (veh/h)		_	133	573	1088	-
HCM Lane V/C Ratio		-	0.088		0.163	-
HCM Control Delay (s)		-	34.7	11.4	9	_
HCM Lane LOS		_	D	В	A	-
HCM 95th %tile Q(veh)		-	0.3	0.1	0.6	_
			3.0	J .,	0.0	

Intersection						
Int Delay, s/veh	0					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	₩.	LUIK	NDL	4	<u>361</u>	אופט
Traffic Vol, veh/h	'T'	1	0	€ 455	701	3
Future Vol, veh/h	1	1	0	455	701	3
Conflicting Peds, #/hr	0	0	0	455	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	Stop -	None	Free -	None	Free -	None
		HOHE	-		-	
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	3	- 0 <i>E</i>	- 0 <i>E</i>	5	-2	- 05
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	100	0	0	9	4	0
Mvmt Flow	1	1	0	479	738	3
Major/Minor	Minor2	N	/lajor1	Λ	//ajor2	
Conflicting Flow All	1219	740	741	0	-	0
Stage 1	740	-	-	-	_	-
Stage 2	479	_	_	_	_	_
Critical Hdwy	8	6.5	4.1	-		-
Critical Hdwy Stg 1	7	0.5	4.1	-		-
Critical Hdwy Stg 2	7	-	-	-	_	-
	4.4	3.3	2.2	-	-	-
Follow-up Hdwy Pot Cap-1 Maneuver	105	3.3	875	-	-	-
•	295	395	0/0	-	_	-
Stage 1	426	-	-	-	-	
Stage 2	420	-	-	-	-	-
Platoon blocked, %	405	205	075	-	-	-
Mov Cap-1 Maneuver	105	395	875	-	-	-
Mov Cap-2 Maneuver	105	-	-	-	-	-
Stage 1	295	-	-	-	-	-
Stage 2	426	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	27		0		0	
HCM LOS	D		J		J	
	J					
Minor Lane/Major Mvm	nt	NBL	NRT	EBLn1	SBT	SBR
	i C	875		166		
Capacity (veh/h) HCM Lane V/C Ratio			-	0.013	-	-
HCM Control Delay (s)		-	-	0.013	-	-
LICIVI CONTROL DEIAV (S)		0	-	21	-	-
		٨		ח		
HCM Lane LOS HCM 95th %tile Q(veh	\	A 0	-	D 0	-	-

	•	\mathbf{x}	À	*	*	₹	ን	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		4		Ť	†	7		ર્ન	7		ર્ન	7
Traffic Volume (vph)	1	571	131	133	433	158	22	0	22	26	0	0
Future Volume (vph)	1	571	131	133	433	158	22	0	22	26	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	11	11	11	11	10	10	10	11	11	11
Grade (%)		-4%			1%			-5%			1%	
Storage Length (ft)	0		0	120		200	0		95	0		0
Storage Lanes	0		0	1		1	0		1	0		1
Taper Length (ft)	25			86			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.975				0.850			0.850			
Flt Protected				0.950				0.950			0.950	
Satd. Flow (prot)	0	1769	0	1736	1677	1494	0	1727	1545	0	1536	1827
Flt Permitted	-		•	0.273			_	0.739			0.742	
Satd. Flow (perm)	0	1769	0	499	1677	1494	0	1343	1545	0	1200	1827
Right Turn on Red	-		Yes			Yes	-		Yes			Yes
Satd. Flow (RTOR)		21				170			141			
Link Speed (mph)		55			55	110		30			25	
Link Distance (ft)		1813			2280			328			518	
Travel Time (s)		22.5			28.3			7.5			14.1	
Confl. Peds. (#/hr)		22.0			20.0			7.5			17.1	
Confl. Bikes (#/hr)												
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	4%	0%	0%	9%	4%	0%	0%	0%	13%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	1	614	141	143	466	170	24	0	24	28	0	0
Shared Lane Traffic (%)	•	014	171	140	400	170	27	U	27	20	U	J
Lane Group Flow (vph)	0	756	0	143	466	170	0	24	24	0	28	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	LOIL	11	rtigitt	LOIL	11	rtigitt	LOIL	0	rtigitt	LOIL	0	rtigitt
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.02	1.02	1.02	1.05	1.05	1.05	1.06	1.06	1.06	1.05	1.05	1.05
Turning Speed (mph)	1.02	1.02	9	1.03	1.00	9	1.00	1.00	9	1.05	1.00	9
Number of Detectors	1	2	3	1	2	1	1	2	1	1	2	1
Detector Template	Left			ı		ı	Left		ı	Left		1
Leading Detector (ft)	20	83		35	83	35	20	83	35	20	83	35
Trailing Detector (ft)	0	-5		-5	-5	-5	0	-5	-5	0	-5	-5
. ,		NA			NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Turn Type Protected Phases	Perm	2		pm+pt	1NA 6	r Cilli	r Cilli	NA 8	r eiiii	FEIIII	NA 4	r Cilli
	2	Z		1	O	G	0	0	0	1	4	1
Permitted Phases	2	0		6	C	6	8	0	8	4	1	4
Detector Phase	2	2		1	6	6	8	8	8	4	4	4
Switch Phase												

	4	×	À	F	*	₹	ን	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Minimum Initial (s)	10.0	10.0		3.0	10.0	10.0	3.0	3.0	3.0	5.0	5.0	5.0
Minimum Split (s)	17.0	17.0		10.0	17.0	17.0	10.0	10.0	10.0	10.0	10.0	10.0
Total Split (s)	52.0	52.0		13.0	65.0	65.0	20.0	20.0	20.0	20.0	20.0	20.0
Total Split (%)	61.2%	61.2%		15.3%	76.5%	76.5%	23.5%	23.5%	23.5%	23.5%	23.5%	23.5%
Maximum Green (s)	45.0	45.0		6.0	58.0	58.0	15.0	15.0	15.0	15.0	15.0	15.0
Yellow Time (s)	5.0	5.0		5.0	5.0	5.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)		0.0		0.0	0.0	0.0		0.0	0.0		0.0	0.0
Total Lost Time (s)		7.0		7.0	7.0	7.0		5.0	5.0		5.0	5.0
Lead/Lag	Lag	Lag		Lead								
Lead-Lag Optimize?	Yes	Yes		Yes								
Vehicle Extension (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Minimum Gap (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Time Before Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Recall Mode	Max	Max		None	Max							
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		45.2		58.0	58.0	58.0		15.0	15.0		15.0	
Actuated g/C Ratio		0.53		0.68	0.68	0.68		0.18	0.18		0.18	
v/c Ratio		0.80		0.34	0.41	0.16		0.10	0.06		0.13	
Control Delay		23.7		6.9	7.2	1.1		30.7	0.3		31.4	
Queue Delay		0.0		0.0	0.0	0.0		0.0	0.0		0.0	
Total Delay		23.7		6.9	7.2	1.1		30.7	0.3		31.4	
LOS		С		Α	Α	Α		С	Α		С	
Approach Delay		23.7			5.8			15.5			31.4	
Approach LOS		С			Α			В			С	
Queue Length 50th (ft)		302		23	94	0		11	0		13	
Queue Length 95th (ft)		467		41	147	17		32	0		37	
Internal Link Dist (ft)		1733			2200			248			438	
Turn Bay Length (ft)				120		200			95			
Base Capacity (vph)		949		427	1144	1073		237	388		211	
Starvation Cap Reductn		0		0	0	0		0	0		0	
Spillback Cap Reductn		0		0	0	0		0	0		0	
Storage Cap Reductn		0		0	0	0		0	0		0	
Reduced v/c Ratio		0.80		0.33	0.41	0.16		0.10	0.06		0.13	
Intersection Summary	011											
Area Type:	Other											
Cycle Length: 85												
Actuated Cycle Length: 85												

Natural Cycle: 60

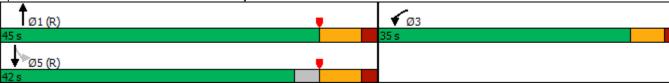

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.80 Intersection Signal Delay: 15.0

Intersection Capacity Utilization 84.8%

Intersection LOS: B ICU Level of Service E

7: 113 King Street Driveway/American Lane (S) & NYS Route 120

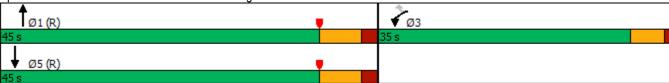


	•	•	†	/	\	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥	1151	7	, tort	000	<u>⊕</u>
Traffic Volume (vph)	54	223	501	44	203	417
Future Volume (vph)	54	223	501	44	203	417
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	11	11	11	11
Grade (%)	-6%	12	2%			0%
Storage Length (ft)	0	0	270	0	0	0 70
Storage Lanes	1	0		0	0	
Taper Length (ft)	25	U		U	25	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.891		0.989			
Fit Protected	0.891		0.909			0.984
		^	1620	0	0	
Satd. Flow (prot)	1692	0	1630	0	0	1743
Flt Permitted	0.990	^	4000	^	^	0.634
Satd. Flow (perm)	1692	0	1630	0	0	1123
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)	237		8			
Link Speed (mph)	30		55			55
Link Distance (ft)	328		519			557
Travel Time (s)	7.5		6.4			6.9
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	2%	10%	14%	3%	4%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)	<u> </u>		-	-	-	
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	57	237	533	47	216	444
Shared Lane Traffic (%)	- 01	201	000	71	210	-177
Lane Group Flow (vph)	294	0	580	0	0	660
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12		0			0
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane						
Headway Factor	0.96	0.96	1.06	1.06	1.04	1.04
Turning Speed (mph)	15	9		9	15	
Number of Detectors	1		2		1	2
Detector Template					Left	
Leading Detector (ft)	35		83		20	83
Trailing Detector (ft)	-5		-5		0	-5
Turn Type	Prot		NA		Perm	NA
Protected Phases	3		1			5
Permitted Phases					5	
Detector Phase	3		1		5	5
Switch Phase	J				3	3

	•	•	†	~	/	ţ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Minimum Initial (s)	5.0		5.0		5.0	5.0
Minimum Split (s)	10.0		12.0		12.0	12.0
Total Split (s)	35.0		45.0		42.0	42.0
Total Split (%)	43.8%		56.3%		52.5%	52.5%
Maximum Green (s)	30.0		38.0		35.0	35.0
Yellow Time (s)	4.0		5.0		5.0	5.0
All-Red Time (s)	1.0		2.0		2.0	2.0
Lost Time Adjust (s)	0.0		0.0		2.0	0.0
Total Lost Time (s)	5.0		7.0			7.0
Lead/Lag	0.0		1.0			1.0
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0		3.0		3.0	3.0
Minimum Gap (s)	3.0		3.0		3.0	3.0
Time Before Reduce (s)	0.0		0.0		0.0	0.0
Time To Reduce (s)	0.0		0.0		0.0	0.0
Recall Mode	None		C-Max		C-Max	C-Max
Walk Time (s)						
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)						
Act Effct Green (s)	9.7		58.3			58.3
Actuated g/C Ratio	0.12		0.73			0.73
v/c Ratio	0.71		0.49			0.81
Control Delay	17.9		3.2			19.3
Queue Delay	0.0		0.0			0.0
Total Delay	17.9		3.2			19.3
LOS	В		Α			В
Approach Delay	17.9		3.2			19.3
Approach LOS	В		A			В
Queue Length 50th (ft)	27		27			163
Queue Length 95th (ft)	93		45			#516
	248		439			477
Internal Link Dist (ft)	246		439			4//
Turn Bay Length (ft)	700		4400			040
Base Capacity (vph)	782		1190			818
Starvation Cap Reductn	0		2			0
Spillback Cap Reductn	0		0			0
Storage Cap Reductn	0		0			0
Reduced v/c Ratio	0.38		0.49			0.81
Intersection Summary						
Area Type:	Other					
Cycle Length: 80						
Actuated Cycle Length: 80)					
Offset: 13 (16%), Reference		1·NBT ar	d 5:SBTI	Start of	f Yellow	
Natural Cycle: 60	cca to priasc	i.ivDi ai	IG 5.001L	., Otali ol	I I CIIOW	
Control Type: Actuated-Co	oordinated					
Maximum v/c Ratio: 0.81	Jordinaled					
	12.0			1	storot' -	» I OO: D
Intersection Signal Delay:						n LOS: B
Intersection Capacity Utiliz	zation 94.8%			IC	JU Level	of Service
Analysis Period (min) 15						

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 8: NYS Route 120 & Gateway Lane



	•	•	†	/	>	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ኝ	7	†			†
Traffic Volume (vph)	157	24	521	0	0	470
Future Volume (vph)	157	24	521	0	0	470
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1900	1300	1900	1900	1900	1900
	-2%	10	1%	11	- 11	1%
Grade (%)		475	1%	0	^	1%
Storage Length (ft)	0	175		0	0	
Storage Lanes	1	1		0	0	
Taper Length (ft)	25	4		4	25	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt		0.850				
Flt Protected	0.950					
Satd. Flow (prot)	1688	1492	1646	0	0	1757
Flt Permitted	0.950					
Satd. Flow (perm)	1688	1492	1646	0	0	1757
Right Turn on Red	1000	Yes	10-10	Yes	U	1101
Satd. Flow (RTOR)		25		163		
	30	20	55			55
Link Speed (mph)						
Link Distance (ft)	321		928			519
Travel Time (s)	7.3		11.5			6.4
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	8%	13%	11%	0%	0%	4%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	165	25	548	0	0	495
Shared Lane Traffic (%)	100	20	U+U	U	U	730
	165	25	548	0	0	495
Lane Group Flow (vph)						
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12		0			0
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane						
Headway Factor	0.99	0.95	1.05	1.05	1.05	1.05
Turning Speed (mph)	15	9		9	15	
Number of Detectors	1	1	2			2
Detector Template	•	•	_			_
Leading Detector (ft)	35	35	83			83
Trailing Detector (ft)	-5	-5	-5			-5
• ,						
Turn Type	Prot	Perm	NA			NA
Protected Phases	3		1			5
Permitted Phases		3				
Detector Phase Switch Phase	3	3	1			5

	•	4	†	<i>></i>	\	ţ	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Minimum Initial (s)	5.0	5.0	5.0	HUIT	ODL	5.0	
Minimum Split (s)	10.0	10.0	12.0			12.0	
Total Split (s)	35.0	35.0	45.0			45.0	
Total Split (%)	43.8%	43.8%	56.3%			56.3%	
Maximum Green (s)	30.0	30.0	38.0			38.0	
Yellow Time (s)	4.0	4.0	5.0			5.0	
All-Red Time (s)	1.0	1.0	2.0			2.0	
Lost Time Adjust (s)	0.0	0.0	0.0			0.0	
Total Lost Time (s)	5.0	5.0	7.0			7.0	
Lead/Lag	0.0	0.0					
Lead-Lag Optimize?							
Vehicle Extension (s)	3.0	3.0	3.0			3.0	
Minimum Gap (s)	3.0	3.0	3.0			3.0	
Time Before Reduce (s)	0.0	0.0	0.0			0.0	
Time To Reduce (s)	0.0	0.0	0.0			0.0	
Recall Mode	None	None	C-Max			C-Max	
Walk Time (s)	. 10110		Ju.			2	
Flash Dont Walk (s)							
Pedestrian Calls (#/hr)							
Act Effct Green (s)	13.3	13.3	54.7			54.7	
Actuated g/C Ratio	0.17	0.17	0.68			0.68	
v/c Ratio	0.59	0.09	0.49			0.41	
Control Delay	38.9	11.3	8.6			3.5	
Queue Delay	0.0	0.0	0.0			0.0	
Total Delay	38.9	11.3	8.6			3.5	
LOS	D	В	A			A	
Approach Delay	35.2		8.6			3.5	
Approach LOS	D		Α			Α	
Queue Length 50th (ft)	77	0	111			33	
Queue Length 95th (ft)	127	19	221			m64	
Internal Link Dist (ft)	241		848			439	
Turn Bay Length (ft)		175	, , ,				
Base Capacity (vph)	633	575	1125			1201	
Starvation Cap Reductn	0	0	0			0	
Spillback Cap Reductn	0	0	0			0	
Storage Cap Reductn	0	0	0			0	
Reduced v/c Ratio	0.26	0.04	0.49			0.41	
Intersection Summary							
Area Type:	Other						
Cycle Length: 80	Ouiei						
Actuated Cycle Length: 80)						
Offset: 13 (16%), Reference		1·NPT a	nd 5.CDT	Start of V	'allow		
Natural Cycle: 40	ceu to priase	I.INDI a	iiu J.SDI,	Start Of 1	GIIOW		
Control Type: Actuated-Co	ordinated						
Maximum v/c Ratio: 0.59	oorumat e u						
Intersection Signal Delay:	10.7			ln	torcostic	n LOS: B	
Intersection Capacity Utiliz						of Service	Δ
intersection capacity Utiliz	Lauon 40.1%			IC	O LEVEL	or service.	$\overline{}$

m Volume for 95th percentile queue is metered by upstream signal.

	۶	→	•	•	-	•	•	†	<i>></i>	/	ţ	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	¥	4					7	∱ î≽		7	*	7
Traffic Volume (vph)	393	413	307	0	0	0	89	127	55	49	148	429
Future Volume (vph)	393	413	307	0	0	0	89	127	55	49	148	429
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	16	16	16	12	12	12	12	12	12
Grade (%)		1%			-4%			-1%			1%	
Storage Length (ft)	0		0	0		0	385		0	190		460
Storage Lanes	1		0	0		0	1		0	1		1
Taper Length (ft)	25			25			86			86		
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.939						0.954				0.850
Flt Protected	0.950	0.997					0.950			0.950		
Satd. Flow (prot)	1580	1613	0	0	0	0	1695	3179	0	1727	1734	1530
Flt Permitted	0.950	0.997					0.605			0.630		
Satd. Flow (perm)	1580	1613	0	0	0	0	1080	3179	0	1145	1734	1530
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		33						59				456
Link Speed (mph)		30			30			55			55	
Link Distance (ft)		176			314			586			596	
Travel Time (s)		4.0			7.1			7.3			7.4	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	8%	4%	4%	0%	0%	0%	7%	11%	4%	4%	9%	5%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	418	439	327	0	0	0	95	135	59	52	157	456
Shared Lane Traffic (%)	10%											
Lane Group Flow (vph)	376	808	0	0	0	0	95	194	0	52	157	456
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.01	1.01	1.01	0.82	0.82	0.82	0.99	0.99	0.99	1.01	1.01	1.01
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2					1	2		1	2	1
Detector Template												
Leading Detector (ft)	35	83					35	83		35	83	35
Trailing Detector (ft)	-5	-5					-5	-5		-5	-5	-5
Turn Type	Split	NA					pm+pt	NA		pm+pt	NA	pm+ov
Protected Phases	3	3					6	1		2	5	3
Permitted Phases							1			5		5
Detector Phase	3	3					6	1		2	5	3
Switch Phase	U										~	-

	۶	→	•	•	←	4	1	†	~	/	+	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	5.0					3.0	8.0		3.0	25.0	5.0
Minimum Split (s)	10.0	10.0					10.0	15.0		10.0	32.0	10.0
Total Split (s)	45.0	45.0					22.0	47.0		22.0	47.0	45.0
Total Split (%)	39.5%	39.5%					19.3%	41.2%		19.3%	41.2%	39.5%
Maximum Green (s)	40.0	40.0					15.0	40.0		15.0	40.0	40.0
Yellow Time (s)	4.0	4.0					5.0	5.0		5.0	5.0	4.0
All-Red Time (s)	1.0	1.0					2.0	2.0		2.0	2.0	1.0
Lost Time Adjust (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0					7.0	7.0		7.0	7.0	5.0
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0					2.0	2.0		2.0	2.0	3.0
Minimum Gap (s)	3.0	3.0					2.0	2.0		2.0	2.0	3.0
Time Before Reduce (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Recall Mode	None	None					None	Min		None	Min	None
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)	40.2	40.2					34.8	27.4		30.2	25.1	73.6
Actuated g/C Ratio	0.45	0.45					0.39	0.30		0.33	0.28	0.82
v/c Ratio	0.53	1.10					0.20	0.19		0.12	0.33	0.34
Control Delay	23.0	89.0					16.6	17.3		16.2	29.8	1.0
Queue Delay	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Total Delay	23.0	89.0					16.6	17.3		16.2	29.8	1.0
LOS	С	F					В	В		В	С	Α
Approach Delay		68.1						17.1			9.0	
Approach LOS		Е						В			Α	
Queue Length 50th (ft)	168	~574					32	30		17	74	0
Queue Length 95th (ft)	278	#855					62	58		39	135	21
Internal Link Dist (ft)		96			234			506			516	
Turn Bay Length (ft)							385			190		460
Base Capacity (vph)	704	737					556	1450		562	773	1332
Starvation Cap Reductn	0	0					0	0		0	0	0
Spillback Cap Reductn	0	0					0	0		0	0	0
Storage Cap Reductn	0	0					0	0		0	0	0
Reduced v/c Ratio	0.53	1.10					0.17	0.13		0.09	0.20	0.34
Intersection Summary												
Area Type:	Other											
Cycle Length: 114												

Actuated Cycle Length: 90.2

Natural Cycle: 90

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 1.10 Intersection Signal Delay: 42.8 Intersection Capacity Utilization 72.7%

Intersection LOS: D ICU Level of Service C

Analysis Period (min) 15

Synchro 10 Report Page 26


[~] Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	۶	→	•	•	←	•	1	†	~	/	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્ન			f)				7			
Traffic Volume (vph)	1	599	0	0	381	138	0	0	514	0	0	0
Future Volume (vph)	1	599	0	0	381	138	0	0	514	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	15	15	15	12	12	12	13	13	13	16	16	16
Grade (%)		1%			-1%			1%			2%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	0		0	0		0	0		1	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt					0.964				0.865			
Flt Protected												
Satd. Flow (prot)	0	2039	0	0	1757	0	0	0	1565	0	0	0
Flt Permitted												
Satd. Flow (perm)	0	2039	0	0	1757	0	0	0	1565	0	0	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		331			176			301			377	
Travel Time (s)		7.5			4.0			6.8			8.6	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	2%	0%	0%	4%	7%	0%	0%	8%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	1	666	0	0	423	153	0	0	571	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	667	0	0	576	0	0	0	571	0	0	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	0.89	0.89	0.89	0.99	0.99	0.99	0.96	0.96	0.96	0.86	0.86	0.86
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Free			Free			Stop			Stop	
Intersection Summary												
, , , , , , , , , , , , , , , , , , ,	Other											
Control Type: Unsignalized												
Intersection Capacity Utilizat	ion 70.1%			IC	CU Level	of Service	C					
Analysis Daried (min) 15												

Synchro 10 Report Page 28

18002018A - N.T.

A siveh	ntersection													
Infigurations	nt Delay, s/veh	55.2												
Infigurations	Movement	FRI	FRT	FRR	WRI	WRT	WRR	NRI	NRT	NRR	SRI	SRT	SBR	
O , veh/h	ane Configurations	LUL		LDIN	VVDL		VVDIX	INDL	וטוו		ODL	ODI	ODIX	
Value Valu	Fraffic Vol, veh/h	1		0	Λ		138	Λ	Λ		Λ	0	0	
ng Peds, #hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	future Vol, veh/h													
Titrol Free	Conflicting Peds, #/hr	•												
Inelized - None - None - None - None - None - None None	Sign Control													
Length 0	T Channelized													
Median Storage, # - 0	Storage Length		_			_	-		_			_	-	
	eh in Median Storage	# -	0	_		0	_		0		_	16983	_	
Surfactor 90 90 90 90 90 90 90 9	Grade, %													
Pericles, % 0 2 0 0 4 7 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	eak Hour Factor	90	•	90	90		90	90		90	90		90	
1 666 0 0 423 153 0 0 571 0 0 0 0	Heavy Vehicles, %													
inor Major1 Major2 Minor1 ng Flow All 576 0 0 0 - 666 age 1 638 Iddwy 4.1 6.38 Iddwy Stg 1 6.38 Iddwy Stg 2	Nymt Flow													
ng Flow All 576 0 0 - 666 age 1	,			•						• • •		•		
ng Flow All 576 0 0 - 666 age 1	Asian/NAinan	1-:1			1=:==0			1:1						
age 1								/IIIOT I		000				
Angle 2	Conflicting Flow All			-				-	-	666				
Holwy 4.1 6.38 Holwy Stg 1				-						-				
Holwy Stg 1										-				
Holdwy Stg 2	ritical Hdwy								-	0.38				
p Hdwy 2.2 3.372 -1 Maneuver 1007 - 0 0 0 0 ~ 441 age 1 0 0 0 0 0 0 - age 2 0 0 0 0 - blocked, % 0 ~ 441									-	-				
-1 Maneuver 1007 - 0 0 0 0 ~441 age 1 0 0 0 - 0 0 0 0 age 2 0 0 0 - 0 0 blocked, % 0 0 ~441 b-2-1 Maneuver 1007 0 0 0 - b-1 Maneuver 1007 0 0 ~441 b-2-2 Maneuver 0 0 age 1 0 0 age 2 0 0 age 2 0 0 b-1 Maneuver 1007 0 0 age 1 0 0 age 2 0 0 age 2 0 0 age 2 b-1 Maneuver 1007 age 2														
age 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 - 0 0 0 0 - 0	follow-up Hdwy													
age 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0	•													
blocked, %								-						
0-1 Maneuver 1007 0 ~ 441 0-2 Maneuver 0 - 0 0		-		U	U			U	U	-				
2-2 Maneuver 0		1007							Λ	~ 1/11				
age 1 0 - age 2 0 0 0														
And	•													
h EB WB NB ontrol Delay, s 0 0 175.3 one/Major Mvmt NBLn1 EBL EBT WBT WBR of (veh/h) 441 1007 one V/C Ratio 1.295 0.001 ontrol Delay (s) 175.3 8.6 0 one LOS F A A th %tile Q(veh) 24.9 0				_	_	_	_							
ontrol Delay, s 0 0 175.3 S Inne/Major Mvmt NBLn1 EBL EBT WBT WBR ((veh/h) 441 1007 ne V/C Ratio 1.295 0.001 ontrol Delay (s) 175.3 8.6 0 ne LOS F A A th %tile Q(veh) 24.9 0	Olage 2								U					
ontrol Delay, s 0 0 175.3 S F Inne/Major Mvmt NBLn1 EBL EBT WBT WBR ((veh/h) 441 1007 ne V/C Ratio 1.295 0.001 ontrol Delay (s) 175.3 8.6 0 ne LOS F A A th %tile Q(veh) 24.9 0		ED			WD			ND						
Ane/Major Mvmt NBLn1 EBL EBT WBT WBR (veh/h)	pproach													
ane/Major Mvmt NBLn1 EBL EBT WBT WBR v (veh/h) 441 1007 ne V/C Ratio 1.295 0.001 ontrol Delay (s) 175.3 8.6 0 ne LOS F A A th %tile Q(veh) 24.9 0	HCM Control Delay, s	U			U									
v (veh/h) 441 1007	ICM LOS							Г						
v (veh/h) 441 1007														
ne V/C Ratio 1.295 0.001 ontrol Delay (s) 175.3 8.6 0 ne LOS F A A th %tile Q(veh) 24.9 0	Minor Lane/Major Mvm	t 1			EBT	WBT	WBR							
ontrol Delay (s) 175.3 8.6 0 ne LOS F A A th %tile Q(veh) 24.9 0	apacity (veh/h)				-	-	-							
ne LOS F A A th %tile Q(veh) 24.9 0	CM Lane V/C Ratio				-	-	-							
th %tile Q(veh) 24.9 0	CM Control Delay (s)					-	-							
	CM Lane LOS				Α	-	-							
	ICM 95th %tile Q(veh)		24.9	0	-	-	-							
	lotes													
ne exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon			¢. D.	day aya	oods 30	lΩe .	+· Comr	utation	Not De	fined	*· ΔII r	maior v	olume in	nlatoon

Synchro 10 Report 18002018A - N.T. Page 29

	۶	→	•	•	+	4	1	†	~	-		1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					ર્ન						4	
Traffic Volume (vph)	0	0	0	381	0	0	0	0	0	600	0	0
Future Volume (vph)	0	0	0	381	0	0	0	0	0	600	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	14	14	13	13	12
Grade (%)		0%			-1%			2%			1%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	0		0	0		0	0		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt												
Flt Protected					0.950						0.950	
Satd. Flow (prot)	0	0	0	0	1744	0	0	0	0	0	1819	0
Flt Permitted					0.950						0.950	
Satd. Flow (perm)	0	0	0	0	1744	0	0	0	0	0	1819	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		71			331			377			345	
Travel Time (s)		1.6			7.5			8.6			7.8	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	0%	4%	0%	0%	0%	0%	0%	2%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	0	0	0	438	0	0	0	0	0	690	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	0	0	0	438	0	0	0	0	0	690	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	J
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	0.99	0.99	0.99	1.01	0.93	0.93	0.96	0.96	1.01
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Free			Free			Stop			Stop	
Intersection Summary												
Area Type:	Other											
Control Type: Unsignalized												
Intersection Capacity Utilizati	ion 61.0%			IC	CU Level	of Service	В					
and the second second				- ' '			_					

Intersection													
Int Delay, s/veh	372												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	LUL		LDIK	TTDL	4	11011	TIDE	וטו	HOIL	ODL	<u>લ</u>	ODIT	
Traffic Vol, veh/h	0	0	0	381	0	0	0	0	0	600	0	0	
Future Vol, veh/h	0	0	0	381	0	0	0	0	0	600	0	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	000	0	0	
			Free	Free			Stop						
Sign Control RT Channelized	Free -	Free -	None	Free -	Free -	Free None	Stop	Stop -	Stop None	Stop -	Stop -	Stop None	
								_	None -		_	None -	
Storage Length	- #	-	-	-	_	-	-	16974		-	-		
Veh in Median Storage,		0	-	-	0	-			-	-	0	-	
Grade, %	-	0	-	- 07	-1	-	- 07	2	-	-	1	-	
Peak Hour Factor	87	87	87	87	87	87	87	87	87	87	87	87	
Heavy Vehicles, %	0	0	0	4	0	0	0	0	0	2	0	0	
Mvmt Flow	0	0	0	438	0	0	0	0	0	690	0	0	
N A = i = 1/N Ai = = 1			_	4-:- 0						4:			
Major/Minor				Major2						Minor2			
Conflicting Flow All				0	0	0				876	876	-	
Stage 1				-	-	-				876	876	-	
Stage 2				-	-	-				0	0	-	
Critical Hdwy				4.14	-	-				6.62	6.7	-	
Critical Hdwy Stg 1				-	-	-				5.62	5.7	-	
Critical Hdwy Stg 2				-	-	-				-	-	-	
Follow-up Hdwy				2.236	-	-				3.518	4	-	
Pot Cap-1 Maneuver				-	-	0				~ 304	276	0	
Stage 1				-	-	0				~ 388	352	0	
Stage 2				-	-	0				-	-	0	
Platoon blocked, %					_								
Mov Cap-1 Maneuver				_	_	_				~ 304	0	-	
Mov Cap-1 Maneuver				_	_					~ 304	0	_	
Stage 1					_	_				~ 388	0	-	
Stage 2				<u>-</u>	_	<u>-</u>				- 300	0	_	
Slaye 2				-	-	-				-	U	-	
Approach				WB						SB			
HCM Control Delay, s									¢	608.2			
HCM LOS									Ψ	F			
I IOIVI LOO										Г			
Minor Lane/Major Mvmt		WBL	WBT :	SBI n1									
Capacity (veh/h)				304									
HCM Lane V/C Ratio		-	_	2.269									
HCM Control Delay (s)				608.2									
		-	-φ										
HCM Lane LOS		-	-	F 52.4									
HCM 95th %tile Q(veh)		-	-	53.1									
Notes													
~: Volume exceeds capa	city	\$: De	lay exc	eeds 30)0s -	+: Comp	outation	Not De	efined	*: All ı	major v	olume in	platoon

	y	×	À	~	×	₹	ን	×	~	Ĺ	×	*~
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		ર્ન	7	ሻ	†	7	ሻ	^	7	ሻ	^	7
Traffic Volume (vph)	136	26	229	35	7	57	188	519	152	420	887	177
Future Volume (vph)	136	26	229	35	7	57	188	519	152	420	887	177
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	15	12	12	12	12	11	12	12	12	12	12
Grade (%)		0%			0%			0%			0%	
Storage Length (ft)	0		250	0		225	680		250	400		250
Storage Lanes	0		1	1		1	1		1	1		1
Taper Length (ft)	25			25			86			86		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Ped Bike Factor								0.00			0.00	
Frt			0.850			0.850			0.850			0.850
Flt Protected		0.960		0.950			0.950			0.950		
Satd. Flow (prot)	0	1929	1495	1357	1429	1455	1662	3471	1553	1787	3539	1553
Flt Permitted		0.756	1 100	0.568	1120	1 100	0.950	0111	1000	0.950	0000	1000
Satd. Flow (perm)	0	1519	1495	811	1429	1455	1662	3471	1553	1787	3539	1553
Right Turn on Red		1010	Yes	011	1120	Yes	1002	0111	Yes	1101	0000	Yes
Satd. Flow (RTOR)			236			79			157			170
Link Speed (mph)		30	200		30	70		55	101		55	170
Link Distance (ft)		610			598			1191			735	
Travel Time (s)		13.9			13.6			14.8			9.1	
Confl. Peds. (#/hr)		10.0			10.0			11.0			0.1	
Confl. Bikes (#/hr)												
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	4%	4%	8%	33%	33%	11%	5%	4%	4%	1%	2%	4%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	140	27	236	36	7	59	194	535	157	433	914	182
Shared Lane Traffic (%)	170	21	200	00	•	03	104	000	107	100	314	102
Lane Group Flow (vph)	0	167	236	36	7	59	194	535	157	433	914	182
Enter Blocked Intersection	No	No	No	No	, No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Loit	12	ragin	LOIL	12	ragin	LOIL	12	ragin	LOIL	12	ragin
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.00	0.88	1.00	1.00	1.00	1.00	1.04	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	1.00	0.00	9	1.00	1.00	9	15	1.00	9	1.00	1.00	9
Number of Detectors	13	1	1	1	1	1	2	1	1	2	1	1
Detector Template	Left	ı	ı			ı		ı	ı	۷	ı	ı
Leading Detector (ft)	20	43	6	6	6	6	83	6	6	83	6	6
Trailing Detector (ft)	0	0	0	0	0	0	-5	0	0	-5	0	0
		-	-	-					-			•
Turn Type	Perm	NA 3	Perm	Perm	NA 3	Perm	Prot	NA 1	Perm	Prot 2	NA 5	Perm
Protected Phases	2	3	2	2	3	2	6	1	4		5	F
Permitted Phases	3	2	3	3	2	3	^	4	1	0	-	5
Detector Phase	3	3	3	3	3	3	6	1	1	2	5	5
Switch Phase												

	₩.	\mathbf{x}	Ì	~	×	₹	7	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	2.0	10.0	10.0	2.0	10.0	10.0
Minimum Split (s)	31.0	31.0	31.0	31.0	31.0	31.0	16.0	42.0	42.0	16.0	42.0	42.0
Total Split (s)	46.0	46.0	46.0	46.0	46.0	46.0	36.0	42.0	42.0	36.0	42.0	42.0
Total Split (%)	37.1%	37.1%	37.1%	37.1%	37.1%	37.1%	29.0%	33.9%	33.9%	29.0%	33.9%	33.9%
Maximum Green (s)	40.0	40.0	40.0	40.0	40.0	40.0	30.0	36.0	36.0	30.0	36.0	36.0
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	6.0	6.0	6.0	6.0	6.0	6.0	2.0	6.0	6.0	2.0	6.0	6.0
Minimum Gap (s)	3.0	3.0	3.0	3.0	3.0	3.0	2.0	3.0	3.0	2.0	4.0	4.0
Time Before Reduce (s)	20.0	20.0	20.0	20.0	20.0	20.0	0.0	20.0	20.0	0.0	20.0	20.0
Time To Reduce (s)	10.0	10.0	10.0	10.0	10.0	10.0	0.0	10.0	10.0	0.0	10.0	10.0
Recall Mode	Min	Min	Min	Min	Min	Min	None	Max	Max	None	Max	Max
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		20.5	20.5	20.5	20.5	20.5	16.4	36.1	36.1	30.1	49.7	49.7
Actuated g/C Ratio		0.20	0.20	0.20	0.20	0.20	0.16	0.34	0.34	0.29	0.47	0.47
v/c Ratio		0.56	0.49	0.23	0.03	0.17	0.75	0.45	0.25	0.84	0.54	0.22
Control Delay		45.4	8.2	38.4	32.9	5.4	59.8	28.8	5.3	52.6	22.9	4.7
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		45.4	8.2	38.4	32.9	5.4	59.8	28.8	5.3	52.6	22.9	4.7
LOS		D	Α	D	С	Α	Е	С	Α	D	С	Α
Approach Delay		23.6			18.9			31.4			29.1	
Approach LOS		С			В			С			С	
Queue Length 50th (ft)		102	0	20	4	0	126	145	0	274	223	4
Queue Length 95th (ft)		169	62	50	16	22	201	212	46	#481	352	50
Internal Link Dist (ft)		530			518			1111			655	
Turn Bay Length (ft)			250			225	680		250	400		250
Base Capacity (vph)		581	718	310	546	605	477	1195	638	513	1680	826
Starvation Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio		0.29	0.33	0.12	0.01	0.10	0.41	0.45	0.25	0.84	0.54	0.22

Intersection Summary

Area Type: Other

Cycle Length: 124

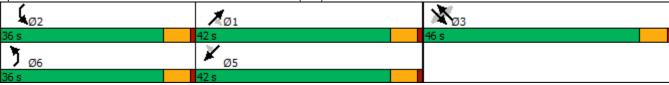
Actuated Cycle Length: 104.7

Natural Cycle: 100

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.84

Intersection Signal Delay: 28.7
Intersection Capacity Utilization 68.2%


Intersection LOS: C
ICU Level of Service C

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 13: NYS Route 22 & North Castle Drive (IBM)/NYS Route 128

	_#	•	•	†	7	L.	ţ	4	€	</th <th>ŧ</th> <th></th>	ŧ	
Lane Group	EBL	EBR	NBL	NBT	NBR	SBL	SBT	SBR	SWL	SWR	SWR2	
Lane Configurations	Ä	7		ર્ન	7		413		44			
Traffic Volume (vph)	2	4	3	495	246	0	1216	2	304	2	1	
Future Volume (vph)	2	4	3	495	246	0	1216	2	304	2	1	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Lane Width (ft)	10	10	11	11	11	10	10	10	11	11	11	
Grade (%)	0%			4%			1%		0%			
Storage Length (ft)	0	0	0		0	0		0	0	0		
Storage Lanes	1	1	0		1	0		0	2	0		
Taper Length (ft)	25		25			25			25			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	*0.67	*0.67	*0.67	0.97	0.95	0.95	
Ped Bike Factor				1.00			1.00		1.00			
Frt		0.850			0.850				0.999			
Flt Protected	0.950								0.953			
Satd. Flow (prot)	1685	1507	0	1667	1342	0	2296	0	3058	0	0	
Flt Permitted	0.950		-	0.989		•		-	0.953	-	•	
Satd. Flow (perm)	1685	1507	0	1649	1342	0	2296	0	3058	0	0	
Right Turn on Red		Yes			Yes			No			No	
Satd. Flow (RTOR)		72			251							
Link Speed (mph)	30			35	_,		35		35			
Link Distance (ft)	155			796			597		998			
Travel Time (s)	3.5			15.5			11.6		19.4			
Confl. Peds. (#/hr)	0.0		1				•	1		1		
Confl. Bikes (#/hr)			•					•		•		
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	
Heavy Vehicles (%)	0%	0%	0%	8%	14%	0%	3%	0%	11%	0%	0%	
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	
Parking (#/hr)												
Mid-Block Traffic (%)	0%			0%			0%		0%			
Adj. Flow (vph)	2	4	3	505	251	0	1241	2	310	2	1	
Shared Lane Traffic (%)	_	•		000	201			_	0.0	_	•	
Lane Group Flow (vph)	2	4	0	508	251	0	1243	0	313	0	0	
Enter Blocked Intersection	No	No.	No	No	No	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Left	Right	Left	Left	Right	Left	Right	Right	
Median Width(ft)	10	ragne	Loit	0	ragne	Loit	0	ragne	22	rugiit	rugiit	
Link Offset(ft)	0			0			0		0			
Crosswalk Width(ft)	16			16			16		16			
Two way Left Turn Lane	10			10			10		10			
Headway Factor	1.09	1.09	1.07	1.07	1.07	1.10	1.10	1.10	1.04	1.04	1.04	
Turning Speed (mph)	1.05	9	1.07	1.07	9	1.10	1.10	9	15	9	9	
Number of Detectors	1	1	10	2	1	1	2	3	1	3	3	
Detector Template	ı	'	Left		'	Left			ı			
Leading Detector (ft)	35	35	20	83	35	20	83		35			
Trailing Detector (ft)	-5	-5	0	-5	-5	0	-5		-5			
Turn Type	Prot	Perm	Perm	NA	-ა pm+ov	U	NA		Prot			
Protected Phases	3	FEIIII	FEIIII	1 1	μπ+ον 4		5		4			
Permitted Phases	3	3	1	I I	1	5	Ü		4			
	2			1	-				1			
Detector Phase	3	3	1	1	4	5	5		4			
Switch Phase												

	_#	\rightarrow	4	†	7	4	ţ	4	€	</th <th>t</th> <th></th>	t	
Lane Group	EBL	EBR	NBL	NBT	NBR	SBL	SBT	SBR	SWL	SWR	SWR2	
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0			
Minimum Split (s)	10.0	10.0	11.0	11.0	11.0	11.0	11.0		11.0			
Total Split (s)	10.0	10.0	101.0	101.0	26.0	101.0	101.0		26.0			
Total Split (%)	7.3%	7.3%	73.7%	73.7%	19.0%	73.7%	73.7%		19.0%			
Maximum Green (s)	5.0	5.0	95.0	95.0	20.0	95.0	95.0		20.0			
Yellow Time (s)	4.0	4.0	5.0	5.0	5.0	5.0	5.0		5.0			
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0			
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0		0.0			
Total Lost Time (s)	5.0	5.0		6.0	6.0		6.0		6.0			
Lead/Lag	Lag	Lag			Lead				Lead			
Lead-Lag Optimize?	Yes	Yes			Yes				Yes			
Vehicle Extension (s)	5.0	5.0	5.0	5.0	3.0	5.0	5.0		3.0			
Minimum Gap (s)	5.0	5.0	5.0	5.0	3.0	5.0	5.0		3.0			
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0			
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0			
Recall Mode	None	None	Max	Max	None	Max	Max		None			
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)	5.0	5.0		95.2	123.4		95.2		17.3			
Actuated g/C Ratio	0.04	0.04		0.75	0.98		0.75		0.14			
v/c Ratio	0.03	0.03		0.41	0.19		0.72		0.75			
Control Delay	62.5	0.5		7.4	0.4		12.5		64.5			
Queue Delay	0.0	0.0		0.0	0.0		0.0		0.0			
Total Delay	62.5	0.5		7.4	0.4		12.5		64.5			
LOS	Е	Α		Α	Α		В		Е			
Approach Delay	21.2			5.1			12.5		64.5			
Approach LOS	С			Α			В		Е			
Queue Length 50th (ft)	2	0		123	0		337		126			
Queue Length 95th (ft)	12	0		254	7		652		191			
Internal Link Dist (ft)	75			716			517		918			
Turn Bay Length (ft)												
Base Capacity (vph)	66	128		1241	1306		1729		484			
Starvation Cap Reductn	0	0		0	0		0		0			
Spillback Cap Reductn	0	0		0	0		0		0			
Storage Cap Reductn	0	0		0	0		0		0			
Reduced v/c Ratio	0.03	0.03		0.41	0.19		0.72		0.65			
Intersection Summary												
Area Type:	Othor											

Area Type: Other

Cycle Length: 137

Actuated Cycle Length: 126.4


Natural Cycle: 80

Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.75

Intersection Signal Delay: 17.1

Intersection Capacity Utilization 60.8% Analysis Period (min) 15 Intersection LOS: B ICU Level of Service B

* User Entered Value

Year 2024 No-Build Traffic Volumes Weekday Peak AM Hour 15: Central Westchester Expressway & NYS Route 22 & Reservoir Road & Church Street (20/20/2020)

	ᄼ	-	•	•	•	•	†	/	\	ţ	4	×
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR2	NBT	NBR	SBL	SBT	SBR	SBR2
Lane Configurations	ř	f)			ર્ન	*	^	7	ř	↑ 1>		
Traffic Volume (vph)	270	77	213	73	66	34	524	49	34	1225	248	1
Future Volume (vph)	270	77	213	73	66	34	524	49	34	1225	248	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	11	12	12	12	11	11	12	12	12	12
Grade (%)		2%			2%		4%			-6%		
Storage Length (ft)	115		0	0				160	110		0	
Storage Lanes	1		0	0				1	1		0	
Taper Length (ft)	86			25					86			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	0.95	0.95
Ped Bike Factor	1.00	0.98			1.00	0.99						
Frt		0.890				0.850		0.850		0.975		
Flt Protected					0.974				0.950			
Satd. Flow (prot)	1595	1555	0	0	1755	1508	3257	1500	1805	3474	0	0
Flt Permitted			•	•	0.974		0_0.		0.279	•		· ·
Satd. Flow (perm)	1590	1555	0	0	1748	1487	3257	1500	530	3474	0	0
Right Turn on Red	1000	1000	No		11 10	Yes	0201	Yes	000	0111	· ·	No
Satd. Flow (RTOR)						76		76				
Link Speed (mph)		35			30		45	10		35		
Link Distance (ft)		532			475		529			778		
Travel Time (s)		10.4			10.8		8.0			15.2		
Confl. Peds. (#/hr)	2	10.1	6	6	10.0	2	0.0			10.2		
Confl. Bikes (#/hr)	_		J	•		_						
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	14%	6%	1%	3%	6%	6%	5%	2%	3%	3%	11%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%		0%			0%		
Adj. Flow (vph)	284	81	224	77	69	36	552	52	36	1289	261	1
Shared Lane Traffic (%)	204	01		- 11	00	00	002	02	00	1200	201	•
Lane Group Flow (vph)	284	305	0	0	146	36	552	52	36	1551	0	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Right	Left	Left	Right	Right
Median Width(ft)	LOIL	11	rtigitt	LOIL	11	rtigrit	12	rtigitt	LOIL	12	rtigitt	rtigitt
Link Offset(ft)		0			0		0			0		
Crosswalk Width(ft)		16			16		16			16		
Two way Left Turn Lane		10			10		10			10		
Headway Factor	1.06	1.06	1.06	1.01	1.01	1.01	1.07	1.07	0.96	0.96	0.96	0.96
Turning Speed (mph)	1.00	1.00	9	1.01	1.01	9	1.07	9	15	0.30	9	9
Number of Detectors	13	2	9	13	2	1	2	1	15	2	9	9
Detector Template	1			Left		ı		'	ı			
Leading Detector (ft)	35	83		20	83	35	83	35	35	83		
Trailing Detector (ft)	-5	-5		0	-5	-5	-5	-5	-5	-5		
										NA		
Turn Type Protected Phases	Split	NA		Split 4	NA 4	pm+ov	NA 6	pm+ov	pm+pt	NA 2		
	3	3		4	4	5	O	4	5	2		
Permitted Phases	2	2		4	4	4	^	6	2	0		
Detector Phase	3	3		4	4	5	6	4	5	2		
Switch Phase												

Synchro 10 Report Page 38 18002018A - N.T.

Lane Group	0 7
Lane Configurations	
Traffic Volume (vph)	
Future Volume (vph)	
Ideal Flow (vphpl)	
Lane Width (ft)	
Grade (%)	
Storage Length (ft)	
Storage Lanes	
Taper Length (ft)	
Lane Util. Factor	
Ped Bike Factor	
Frt	
Flt Protected	
Satd. Flow (prot)	
Flt Permitted	
Satd. Flow (perm)	
Right Turn on Red	
Satd. Flow (RTOR)	
Link Speed (mph)	
Link Distance (ft)	
Travel Time (s)	
Confl. Peds. (#/hr)	
Confl. Bikes (#/hr)	
Peak Hour Factor	
Growth Factor	
Heavy Vehicles (%)	
Bus Blockages (#/hr)	
Parking (#/hr)	
Mid-Block Traffic (%)	
Adj. Flow (vph)	
Shared Lane Traffic (%)	
Lane Group Flow (vph)	
Enter Blocked Intersection	
Lane Alignment	
Median Width(ft)	
Link Offset(ft)	
Crosswalk Width(ft)	
Two way Left Turn Lane	
Headway Factor	
Turning Speed (mph)	
Number of Detectors	
Detector Template	
Leading Detector (ft)	
Trailing Detector (ft)	
Turn Type	
Protected Phases	7
Permitted Phases	
Detector Phase	
Switch Phase	
- Indse	

Synchro 10 Report Page 39 18002018A - N.T.

15: Central Westchester Expressway & NYS Route 22 & Reservoir Road & Church Street 20/2020

	•	→	\rightarrow	•	←	•	†	/	>	ļ	4	≽ J
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR2	NBT	NBR	SBL	SBT	SBR	SBR2
Minimum Initial (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0	5.0		
Minimum Split (s)	39.0	39.0		11.0	11.0	11.0	11.0	11.0	11.0	31.0		
Total Split (s)	51.0	51.0		36.0	36.0	26.0	51.0	36.0	26.0	77.0		
Total Split (%)	25.5%	25.5%		18.0%	18.0%	13.0%	25.5%	18.0%	13.0%	38.5%		
Maximum Green (s)	45.0	45.0		30.0	30.0	20.0	45.0	30.0	20.0	71.0		
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0		
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0		
Lost Time Adjust (s)	0.0	0.0			0.0	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	6.0	6.0			6.0	6.0	6.0	6.0	6.0	6.0		
Lead/Lag	Lead	Lead		Lag	Lag	Lead	Lag	Lag	Lead			
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes			
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0		
Minimum Gap (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0		
Time Before Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Time To Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Recall Mode	None	None		None	None	None	Min	None	None	Min		
Walk Time (s)	8.0	8.0								8.0		
Flash Dont Walk (s)	25.0	25.0								17.0		
Pedestrian Calls (#/hr)	6	6								0		
Act Effct Green (s)	40.4	40.4			20.9	28.9	59.9	80.8	71.3	71.3		
Actuated g/C Ratio	0.22	0.22			0.11	0.15	0.32	0.43	0.38	0.38		
v/c Ratio	0.83	0.91			0.74	0.12	0.53	80.0	0.14	1.17		
Control Delay	90.1	101.8			103.4	0.9	56.8	1.2	41.3	134.2		
Queue Delay	0.0	0.0			0.0	0.0	0.0	0.0	0.0	0.0		
Total Delay	90.1	101.8			103.4	0.9	56.8	1.2	41.3	134.2		
LOS	F	F			F	Α	Е	Α	D	F		
Approach Delay		96.1			83.1		52.0			132.1		
Approach LOS		F			F		D			F		
Queue Length 50th (ft)	336	370			181	0	311	0	29	~1240		
Queue Length 95th (ft)	#486	#566			267	0	407	6	62	#1462		
Internal Link Dist (ft)		452			395		449			698		
Turn Bay Length (ft)	115					180		160	110			
Base Capacity (vph)	385	376			283	388	1043	761	339	1325		
Starvation Cap Reductn	0	0			0	0	0	0	0	0		
Spillback Cap Reductn	0	0			0	0	0	0	0	0		
Storage Cap Reductn	0	0			0	0	0	0	0	0		
Reduced v/c Ratio	0.74	0.81			0.52	0.09	0.53	0.07	0.11	1.17		
Intersection Summary												

Area Type: Other

Cycle Length: 200

Actuated Cycle Length: 186.8

Natural Cycle: 150

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 1.17

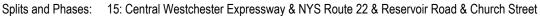
Intersection Signal Delay: 105.6 Intersection LOS: F
Intersection Capacity Utilization 92.2% ICU Level of Service F

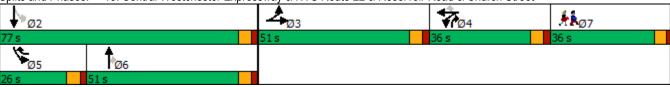
Analysis Period (min) 15

Synchro 10 Report 18002018A - N.T. Page 40

[~] Volume exceeds capacity, queue is theoretically infinite.

Lane Group	Ø7
Minimum Initial (s)	8.0
Minimum Split (s)	36.0
Total Split (s)	36.0
Total Split (%)	18%
Maximum Green (s)	31.0
	31.0
Yellow Time (s) All-Red Time (s)	1.5
	1.5
Lost Time Adjust (s)	
Total Lost Time (s)	
Lead/Lag	
Lead-Lag Optimize?	2.0
Vehicle Extension (s)	3.0
Minimum Gap (s)	3.0
Time Before Reduce (s)	0.0
Time To Reduce (s)	0.0
Recall Mode	Ped
Walk Time (s)	8.0
Flash Dont Walk (s)	23.0
Pedestrian Calls (#/hr)	2
Act Effct Green (s)	
Actuated g/C Ratio	
v/c Ratio	
Control Delay	
Queue Delay	
Total Delay	
LOS	
Approach Delay	
Approach LOS	
Queue Length 50th (ft)	
Queue Length 95th (ft)	
Internal Link Dist (ft)	
Turn Bay Length (ft)	
Base Capacity (vph)	
Starvation Cap Reductn	
Spillback Cap Reductn	
Storage Cap Reductn	
Reduced v/c Ratio	
Interception Cummen	
Intersection Summary	

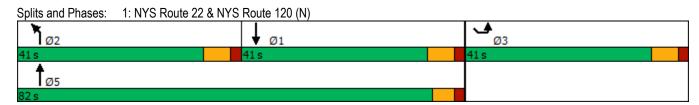

Synchro 10 Report Page 41 18002018A - N.T.


15: Central Westchester Expressway & NYS Route 22 & Reservoir Road & Church Street/20/2020

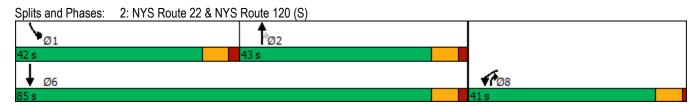
Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.



18002018A - N.T. Page 42


	ሻ	†	↓	W	•	>
Lane Group	NBL	NBT	SBT	SBR	SEL	SER
Lane Configurations	ሻ	^	^	7	<u> </u>	7
Traffic Volume (vph)	165	364	339	234	184	200
Future Volume (vph)	165	364	339	234	184	200
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1900	1900	1900	1900	1900	1900
	10	0%	0%	10	0%	10
Grade (%)	050	0%	0%	F00		0
Storage Length (ft)	250			500	250	0
Storage Lanes	1			1	1	1
Taper Length (ft)	86				86	
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00
Ped Bike Factor						
Frt				0.850		0.850
Flt Protected	0.950				0.950	
Satd. Flow (prot)	1620	3209	3240	1436	1560	1449
Flt Permitted	0.950				0.950	
Satd. Flow (perm)	1620	3209	3240	1436	1560	1449
Right Turn on Red				Yes		Yes
Satd. Flow (RTOR)				244		208
Link Speed (mph)		55	55	-11	30	
Link Distance (ft)		767	1064		872	
Travel Time (s)		9.5	13.2		19.8	
Confl. Peds. (#/hr)		9.5	13.2		19.0	
Confl. Bikes (#/hr)	0.00	0.00	0.00	0.00	0.00	0.00
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	4%	5%	4%	5%	8%	4%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)		0%	0%		0%	
Adj. Flow (vph)	172	379	353	244	192	208
Shared Lane Traffic (%)						
Lane Group Flow (vph)	172	379	353	244	192	208
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width(ft)	2011	10	15	rugiit	10	rugin
Link Offset(ft)		0	0		0	
		16	16		16	
Crosswalk Width(ft)		10	10		10	
Two way Left Turn Lane	4.00	4.00	4.00	4.00	4.00	4.00
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (mph)	15	_	_	9	15	9
Number of Detectors	1	2	2	1	2	0
Detector Template						
Leading Detector (ft)	35	104	104	0	104	0
Trailing Detector (ft)	-5	0	0	0	0	0
Turn Type	Prot	NA	NA	Free	Prot	Free
Protected Phases	2	5	1		3	
Permitted Phases				Free		Free
Detector Phase	2	5	1		3	
Switch Phase		U	•		U	
OWITOH I HOSE						

Lane Group NBL NBT SBT SBR SEL SER Minimum Initial (s) 12.0 12.0 12.0 10.0 10.0 Minimum Split (s) 36.0 36.0 36.0 26.0 76.0 36.0 26.0 76.0 76.0 34.0 76.0 34.0 34.0 76.0 34.0 34.0 76.0 34.0 34.0 76.0 34.0 34.0 76.0 34.0 34.0 76.0 34.0 34.0 76.0 34.0 34.0 76.0 34.0 34.0 76.0 34.0 34.0 34.0 76.0 34.0 34.0 76.0 34.0 34.0 76.0 34.0 34.0 76.0 34.0 34.0 76.0 34.0 76.0 34.0 76.0 34.0 76.0 34.0 76.0 34.0 76.0 34.0 76.0 34.0 76.0 34.0 76.0 34.0 76.0 34.0 76.0 76.0 76.0 76.0 76.0 <td< th=""></td<>
Minimum Initial (s) 12.0 12.0 12.0 10.0 Minimum Split (s) 36.0 36.0 36.0 26.0 Total Split (s) 41.0 82.0 41.0 41.0 Total Split (%) 33.3% 66.7% 33.3% 33.3% Maximum Green (s) 34.0 76.0 34.0 34.0 Yellow Time (s) 5.0 4.0 5.0 5.0 All-Red Time (s) 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Lost Time (s) 7.0 6.0 7.0 7.0 Lead/Lag Lead Lag Lead-Lag Optimize? Yes Yes Vehicle Extension (s) 6.0 6.0 6.0 6.0 6.0 Minimum Gap (s) 4.0 4.0 4.0 4.0 4.0 4.0 Time Before Reduce (s) 8.0 8.0 8.0 5.0 8.0 8.0 8.0 5.0 Recall Mode
Minimum Split (s) 36.0 36.0 36.0 26.0 Total Split (s) 41.0 82.0 41.0 41.0 Total Split (%) 33.3% 66.7% 33.3% 33.3% Maximum Green (s) 34.0 76.0 34.0 34.0 Yellow Time (s) 5.0 4.0 5.0 5.0 All-Red Time (s) 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 7.0 6.0 7.0 7.0 Lead Lag Lead Lag Lead Lag Lead-Lag Optimize? Yes Yes Yes Vehicle Extension (s) 6.0 6.0 6.0 6.0 Minimum Gap (s) 4.0 4.0 4.0 4.0 Time Before Reduce (s) 20.0 20.0 20.0 20.0 Time To Reduce (s) 8.0 8.0 8.0 5.0 Recall Mode None Min Min None Walk Time (s) 16.8 42.5 17.4 73.6<
Total Split (s)
Total Split (%) 33.3% 66.7% 33.3% 33.3% 33.3% Maximum Green (s) 34.0 76.0 34.0 34.0 Yellow Time (s) 5.0 4.0 5.0 5.0 All-Red Time (s) 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) Lead Lag Lead Lag Lead-Lag Optimize? Yes Yes Vehicle Extension (s) 6.0 6.0 6.0 6.0 6.0 Minimum Gap (s) 4.0 4.0 4.0 4.0 Time Before Reduce (s) 20.0 20.0 20.0 20.0 Time To Reduce (s) 8.0 8.0 8.0 5.0 Recall Mode None Min Min None Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effet Green (s) 16.8 42.5 17.4 73.6 17.7 73.6 Actuated g/C Ratio 0.23 0.58 0.24 1.00 0.24 1.00 v/c Ratio 0.46 0.20 0.46 0.17 0.51 0.14 Control Delay 30.9 8.1 27.5 0.3 31.0 0.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 30.9 8.1 27.5 0.3 31.0 0.2 LOS C A C A C A C A Approach LOS B B B B B B C Queue Length 50th (ft) 66 38 70 0 74 0
Maximum Green (s) 34.0 76.0 34.0 34.0 Yellow Time (s) 5.0 4.0 5.0 5.0 All-Red Time (s) 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 7.0 6.0 7.0 7.0 Lead/Lag Lead Lag Lead-Lag Optimize? Yes Yes Vehicle Extension (s) 6.0 6.0 6.0 6.0 Minimum Gap (s) 4.0 4.0 4.0 4.0 Time Before Reduce (s) 20.0 20.0 20.0 20.0 Time To Reduce (s) 8.0 8.0 8.0 5.0 Recall Mode None Min Min None Walk Time (s) None Min None None Walk Time (s) None
Yellow Time (s) 5.0 4.0 5.0 5.0 All-Red Time (s) 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 7.0 6.0 7.0 7.0 Lead/Lag Lead Lag Lead-Lag Optimize? Yes Yes Vehicle Extension (s) 6.0 6.0 6.0 Minimum Gap (s) 4.0 4.0 4.0 Minimum Gap (s) 4.0 4.0 4.0 Time Before Reduce (s) 20.0 20.0 20.0 Time To Reduce (s) 8.0 8.0 8.0 5.0 Recall Mode None Min Min None Walk Time (s) None Min Min None Walk Time (s) None None None None Walk Time (s) 16.8 42.5 17.4 73.6 17.7 73.6 Actuated g/C Ratio 0.23 0.58 0.24 1.00 0.24 1.00 v/c Ratio 0.46
All-Red Time (s) 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 7.0 6.0 7.0 7.0 Lead/Lag Lead Lag Lead-Lag Optimize? Yes Yes Vehicle Extension (s) 6.0 6.0 6.0 6.0 Minimum Gap (s) 4.0 4.0 4.0 4.0 Time Before Reduce (s) 20.0 20.0 20.0 Time To Reduce (s) 8.0 8.0 8.0 5.0 Recall Mode None Min Min None Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) 16.8 42.5 17.4 73.6 17.7 73.6 Actuated g/C Ratio 0.23 0.58 0.24 1.00 0.24 1.00 v/c Ratio 0.46 0.20 0.46 0.17 0.51 0.14 Control Delay 30.9 8.1 27.5 0.3 31.0 0.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 30.9 8.1 27.5 0.3 31.0 0.2 LOS C A C A C A Approach Delay 15.2 16.3 15.0 Approach LOS B B B Queue Length 50th (ft) 66 38 70 0 74 0
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 7.0 6.0 7.0 7.0 Lead/Lag Lead Lag Lead-Lag Optimize? Yes Yes Vehicle Extension (s) 6.0 6.0 6.0 6.0 Minimum Gap (s) 4.0 4.0 4.0 4.0 Time Before Reduce (s) 20.0 20.0 20.0 Time To Reduce (s) 8.0 8.0 8.0 5.0 Recall Mode None Min Min None Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) 16.8 42.5 17.4 73.6 17.7 73.6 Actuated g/C Ratio 0.23 0.58 0.24 1.00 0.24 1.00 v/c Ratio 0.46 0.20 0.46 0.17 0.51 0.14 Control Delay 30.9 8.1 27.5 0.3 31.0 0.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 30.9 8.1 27.5 0.3 31.0 0.2 LOS C A C A C A Approach Delay 15.2 16.3 15.0 Approach LOS B B Queue Length 50th (ft) 66 38 70 0 74 0
Total Lost Time (s) 7.0 6.0 7.0 7.0 Lead/Lag Lead Lag Lead-Lag Optimize? Yes Yes Vehicle Extension (s) 6.0 6.0 6.0 6.0 Minimum Gap (s) 4.0 4.0 4.0 4.0 Time Before Reduce (s) 20.0 20.0 20.0 20.0 Time To Reduce (s) 8.0 8.0 8.0 5.0 Recall Mode None Min Min None Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) 16.8 42.5 17.4 73.6 17.7 73.6 Actuated g/C Ratio 0.23 0.58 0.24 1.00 0.24 1.00 v/c Ratio 0.46 0.20 0.46 0.17 0.51 0.14 Control Delay 30.9 8.1 27.5 0.3 31.0 0.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 30.9 8.1 27.5 0.3 31.0 0.2 Queue Delay 15.2 16.3 15.0 Approach Delay 15.2 16.3 15.0 Approach LOS B B B Queue Length 50th (ft) 66 38 70 0 74 0
Lead/Lag Lead Lag Lead-Lag Optimize? Yes Yes Vehicle Extension (s) 6.0 6.0 6.0 Minimum Gap (s) 4.0 4.0 4.0 4.0 Time Before Reduce (s) 20.0 20.0 20.0 20.0 Time To Reduce (s) 8.0 8.0 8.0 5.0 Recall Mode None Min Min None Walk Time (s) None Min Min None Walk Time (s) None Win None Min None Walk Time (s) None Win None N
Lead-Lag Optimize? Yes Yes Vehicle Extension (s) 6.0 6.0 6.0 Minimum Gap (s) 4.0 4.0 4.0 Time Before Reduce (s) 20.0 20.0 20.0 Time To Reduce (s) 8.0 8.0 8.0 Recall Mode None Min Min None Walk Time (s) None Min Min None Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) 16.8 42.5 17.4 73.6 17.7 73.6 Actuated g/C Ratio 0.23 0.58 0.24 1.00 0.24 1.00 v/c Ratio 0.46 0.20 0.46 0.17 0.51 0.14 Control Delay 30.9 8.1 27.5 0.3 31.0 0.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 30.9 8.1 27.5 0.3 31.0 0.2 <t< td=""></t<>
Vehicle Extension (s) 6.0 6.0 6.0 6.0 Minimum Gap (s) 4.0 4.0 4.0 4.0 Time Before Reduce (s) 20.0 20.0 20.0 20.0 Time To Reduce (s) 8.0 8.0 8.0 5.0 Recall Mode None Min Min None Walk Time (s) None Min Nin None Walk Time (s) None 42.5 17.4 73.6 17.7 73.6 Act Effect Green (s) 16.8
Minimum Gap (s) 4.0 4.0 4.0 20.0 8.0
Time Before Reduce (s) 20.0 20.0 20.0 20.0 Time To Reduce (s) 8.0 8.0 8.0 5.0 Recall Mode None Min Min None Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) 16.8 42.5 17.4 73.6 17.7 73.6 Actuated g/C Ratio 0.23 0.58 0.24 1.00 0.24 1.00 v/c Ratio 0.46 0.20 0.46 0.17 0.51 0.14 Control Delay 30.9 8.1 27.5 0.3 31.0 0.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 30.9 8.1 27.5 0.3 31.0 0.2 LOS C A C A C A Approach Delay 15.2 16.3 15.0 Approach LOS B B Queue Length 50th (ft) 66 38 70 0 74 0
Time To Reduce (s) 8.0 8.0 5.0 Recall Mode None Min Min None Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) 16.8 42.5 17.4 73.6 17.7 73.6 Actuated g/C Ratio 0.23 0.58 0.24 1.00 0.24 1.00 v/c Ratio 0.46 0.20 0.46 0.17 0.51 0.14 Control Delay 30.9 8.1 27.5 0.3 31.0 0.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 30.9 8.1 27.5 0.3 31.0 0.2 LOS C A C A C A Approach Delay 15.2 16.3 15.0 Approach LOS B B Queue Length 50th (ft) 66 38 70 0 74 0
Recall Mode None Min Min None Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) 16.8 42.5 17.4 73.6 17.7 73.6 Actuated g/C Ratio 0.23 0.58 0.24 1.00 0.24 1.00 v/c Ratio 0.46 0.20 0.46 0.17 0.51 0.14 Control Delay 30.9 8.1 27.5 0.3 31.0 0.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 30.9 8.1 27.5 0.3 31.0 0.2 LOS C A C A C A Approach Delay 15.2 16.3 15.0 Approach LOS B B B Queue Length 50th (ft) 66 38 70 0 74 0
Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) 16.8 42.5 17.4 73.6 17.7 73.6 Actuated g/C Ratio 0.23 0.58 0.24 1.00 0.24 1.00 v/c Ratio 0.46 0.20 0.46 0.17 0.51 0.14 Control Delay 30.9 8.1 27.5 0.3 31.0 0.2 Queue Delay 30.9 8.1 27.5 0.3 31.0 0.2 LOS C A C A C A Approach Delay 15.2 16.3 15.0 Approach LOS B B B Queue Length 50th (ft) 66 38 70 0 74 0
Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) 16.8 42.5 17.4 73.6 17.7 73.6 Actuated g/C Ratio 0.23 0.58 0.24 1.00 0.24 1.00 v/c Ratio 0.46 0.20 0.46 0.17 0.51 0.14 Control Delay 30.9 8.1 27.5 0.3 31.0 0.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 30.9 8.1 27.5 0.3 31.0 0.2 LOS C A C A C A Approach Delay 15.2 16.3 15.0 Approach LOS B B B Queue Length 50th (ft) 66 38 70 0 74 0
Pedestrian Calls (#/hr) Act Effct Green (s) 16.8 42.5 17.4 73.6 17.7 73.6 Actuated g/C Ratio 0.23 0.58 0.24 1.00 0.24 1.00 v/c Ratio 0.46 0.20 0.46 0.17 0.51 0.14 Control Delay 30.9 8.1 27.5 0.3 31.0 0.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 30.9 8.1 27.5 0.3 31.0 0.2 LOS C A C A C A Approach Delay 15.2 16.3 15.0 Approach LOS B B B Queue Length 50th (ft) 66 38 70 0 74 0
Act Effct Green (s) 16.8 42.5 17.4 73.6 17.7 73.6 Actuated g/C Ratio 0.23 0.58 0.24 1.00 0.24 1.00 v/c Ratio 0.46 0.20 0.46 0.17 0.51 0.14 Control Delay 30.9 8.1 27.5 0.3 31.0 0.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 30.9 8.1 27.5 0.3 31.0 0.2 LOS C A C A C A Approach Delay 15.2 16.3 15.0 Approach LOS B B B Queue Length 50th (ft) 66 38 70 0 74 0
Actuated g/C Ratio 0.23 0.58 0.24 1.00 0.24 1.00 v/c Ratio 0.46 0.20 0.46 0.17 0.51 0.14 Control Delay 30.9 8.1 27.5 0.3 31.0 0.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 30.9 8.1 27.5 0.3 31.0 0.2 LOS C A C A C A Approach Delay 15.2 16.3 15.0 Approach LOS B B B Queue Length 50th (ft) 66 38 70 0 74 0
v/c Ratio 0.46 0.20 0.46 0.17 0.51 0.14 Control Delay 30.9 8.1 27.5 0.3 31.0 0.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 30.9 8.1 27.5 0.3 31.0 0.2 LOS C A C A C A Approach Delay 15.2 16.3 15.0 Approach LOS B B B Queue Length 50th (ft) 66 38 70 0 74 0
Control Delay 30.9 8.1 27.5 0.3 31.0 0.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 30.9 8.1 27.5 0.3 31.0 0.2 LOS C A C A C A Approach Delay 15.2 16.3 15.0 Approach LOS B B B Queue Length 50th (ft) 66 38 70 0 74 0
Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 30.9 8.1 27.5 0.3 31.0 0.2 LOS C A C A C A Approach Delay 15.2 16.3 15.0 Approach LOS B B B Queue Length 50th (ft) 66 38 70 0 74 0
Total Delay 30.9 8.1 27.5 0.3 31.0 0.2 LOS C A C A C A Approach Delay 15.2 16.3 15.0 Approach LOS B B B Queue Length 50th (ft) 66 38 70 0 74 0
LOS C A C A C A Approach Delay 15.2 16.3 15.0 Approach LOS B B B Queue Length 50th (ft) 66 38 70 0 74 0
Approach Delay 15.2 16.3 15.0 Approach LOS B B B Queue Length 50th (ft) 66 38 70 0 74 0
Approach LOS B B B Queue Length 50th (ft) 66 38 70 0 74 0
Queue Length 50th (ft) 66 38 70 0 74 0
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
Queue Length 95th (ft) 150 73 136 0 163 0
Internal Link Dist (ft) 687 984 792
Turn Bay Length (ft) 250 500 250
Base Capacity (vph) 771 3050 1542 1436 742 1449
Starvation Cap Reductn 0 0 0 0 0 0
Spillback Cap Reductn 0 0 0 0 0 0
Storage Cap Reductn 0 0 0 0 0 0
Reduced v/c Ratio 0.22 0.12 0.23 0.17 0.26 0.14
Intersection Summary
Area Type: Other
Cycle Length: 123
Actuated Cycle Length: 73.6
Natural Cycle: 100
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.51
Intersection Signal Delay: 15.6 Intersection LOS: B
Intersection Capacity Utilization 46.9% ICU Level of Service A
Analysis Period (min) 15

	•	•	†	<i>></i>	>	ţ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		^	7	ሻሻ	^
Traffic Volume (vph)	46	0	268	54	255	284
Future Volume (vph)	46	0	268	54	255	284
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1900	1900	1900	1900	1900	1900
Grade (%)	-8%	12	-2%	10	11	-1%
` ,		0	-270	200	245	-170
Storage Length (ft)	0	0		200	215	
Storage Lanes	1	0		1	2	
Taper Length (ft)	25	4.00	0.05	4.00	86	0.05
Lane Util. Factor	1.00	1.00	0.95	1.00	0.97	0.95
Ped Bike Factor						
Frt				0.850		
Flt Protected	0.950				0.950	
Satd. Flow (prot)	1823	0	3210	1478	3209	3372
Flt Permitted	0.950				0.950	
Satd. Flow (perm)	1823	0	3210	1478	3209	3372
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)		. 50		58		
Link Speed (mph)	55		50			50
Link Distance (ft)	334		905			488
Travel Time (s)	4.1		12.3			6.7
. ,	4.1		12.3			0.7
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)	0.00	0.00	0.00	0.00	0.00	0.00
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	3%	0%	6%	3%	6%	4%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	49	0	288	58	274	305
Shared Lane Traffic (%)						
Lane Group Flow (vph)	49	0	288	58	274	305
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12	rugiit	22	rugiit	LOIL	22
Link Offset(ft)	0		0			0
	16		16			16
Crosswalk Width(ft)	10		10			10
Two way Left Turn Lane	0.05	0.05	4.00	4.00	4.04	4.04
Headway Factor	0.95	0.95	1.08	1.08	1.04	1.04
Turning Speed (mph)	15	9		9	15	
Number of Detectors	1		2	1	1	2
Detector Template	Left		Thru	Right	Left	Thru
Leading Detector (ft)	20		100	20	20	100
Trailing Detector (ft)	0		0	0	0	0
Turn Type	Prot		NA	pm+ov	Prot	NA
Protected Phases	8		2	8	1	6
Permitted Phases				2		
Detector Phase	8		2	8	1	6
Switch Phase	U			U		U
SWILCH FHASE						

	•	•	†	<i>></i>	/	ţ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Minimum Initial (s)	10.0		12.0	10.0	12.0	12.0
Minimum Split (s)	26.0		36.0	26.0	36.0	36.0
Total Split (s)	41.0		43.0	41.0	42.0	85.0
Total Split (%)	32.5%		34.1%	32.5%	33.3%	67.5%
Maximum Green (s)	35.0		36.0	35.0	35.0	78.0
Yellow Time (s)	5.0		5.0	5.0	5.0	5.0
All-Red Time (s)	1.0		2.0	1.0	2.0	2.0
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0		7.0	6.0	7.0	7.0
Lead/Lag	0.0		Lag	0.0	Lead	1.0
Lead-Lag Optimize?			Yes		Yes	
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0
Minimum Gap (s)	3.0		3.0	3.0	3.0	3.0
Time Before Reduce (s)	0.0		0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0		0.0	0.0	0.0	0.0
\ <i>\</i>						
Recall Mode	None		Min	None	Min	Min
Walk Time (s)						
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)	40.0		40.4	00.0	40.4	00.0
Act Effct Green (s)	10.2		12.4	29.8	12.4	33.8
Actuated g/C Ratio	0.20		0.24	0.58	0.24	0.66
v/c Ratio	0.13		0.37	0.07	0.35	0.14
Control Delay	19.9		19.2	2.4	19.1	5.2
Queue Delay	0.0		0.0	0.0	0.0	0.0
Total Delay	19.9		19.2	2.4	19.1	5.2
LOS	В		В	Α	В	Α
Approach Delay	19.9		16.4			11.8
Approach LOS	В		В			В
Queue Length 50th (ft)	13		41	0	38	21
Queue Length 95th (ft)	38		72	12	68	35
Internal Link Dist (ft)	254		825			408
Turn Bay Length (ft)				200	215	
Base Capacity (vph)	1274		2309	1452	2243	3372
Starvation Cap Reductn	0		0	0	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductn	0		0	0	0	0
Reduced v/c Ratio	0.04		0.12	0.04	0.12	0.09
Intersection Summary	0.01		0.72	0.01	J. 12	3.00
Area Type:	Other					
Cycle Length: 126	0.00					
Actuated Cycle Length: 51	1					
Natural Cycle: 100	. 1					
•	ncoord					
Control Type: Semi Act-Ur Maximum v/c Ratio: 0.37	icoolu					
	12.0			1	otorocati-	n I OO, D
Intersection Signal Delay:					ntersectio	
Intersection Capacity Utiliz	zation 45.0%			10	U Level	of Service
Analysis Period (min) 15						

	۶	→	•	•	←	•	•	†	~	/	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					f)			4				
Traffic Volume (vph)	0	0	0	0	14	1	1	260	6	0	0	0
Future Volume (vph)	0	0	0	0	14	1	1	260	6	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	13	12	12	12	12
Grade (%)		0%			-5%			-7%			0%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	0		0	0		0	0		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt					0.992			0.997				
Flt Protected												
Satd. Flow (prot)	0	0	0	0	1797	0	0	1962	0	0	0	0
FIt Permitted												
Satd. Flow (perm)	0	0	0	0	1797	0	0	1962	0	0	0	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		124			297			300			404	
Travel Time (s)		2.8			6.8			6.8			9.2	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	0%	0%	8%	0%	100%	3%	0%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	0	0	0	0	16	1	1	289	7	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	0	0	0	17	0	0	297	0	0	0	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0	<u> </u>		0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	0.97	0.97	0.97	0.96	0.92	0.96	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Stop			Stop			Free			Stop	
Intersection Summary												
	Other											
Control Type: Unsignalized	-											
Intersection Capacity Utilizati	ion 24.1%			IC	CU Level	of Service	A					
1 1 2 2 1 4 1 4 5	/0						-					

Intersection												
Int Delay, s/veh	0.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				1,02	1>	1,51	1100	4	11511	UDL	<u> </u>	UDIT
Traffic Vol, veh/h	0	0	0	0	14	1	1	260	6	0	0	0
Future Vol, veh/h	0	0	0	0	14	1	1	260	6	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	- -	None	-	- -	None	-	-	None	- -	-	None
Storage Length	_	_	-	_	_	-	_	_	-	_	_	-
Veh in Median Storage,	# -	2	_	_	0	-	_	0	_	_	16965	_
Grade, %	<i>"</i>	0	_	_	-5	_	_	-7	_	_	0	_
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	0	0	0	0	8	0	100	3	0	0	0	0
Mymt Flow	0	0	0	0	16	1	1	289	7	0	0	0
	•							_00				
Major/Minor			1	Minor1			//ajor1					
Conflicting Flow All				-	295	293	0	0	0			
Stage 1				-	295	-	-	-	-			
Stage 2				-	0	-		-	-			
Critical Hdwy				-	5.58	5.7	5.1	-	-			
Critical Hdwy Stg 1				-	4.58	-	-	-	-			
Critical Hdwy Stg 2				-	4.070	-	-	-	-			
Follow-up Hdwy				-	4.072	3.3	3.1	-	-			
Pot Cap-1 Maneuver				0	658	782	-	-	-			
Stage 1				0	714	-	-	-	-			
Stage 2				0	-	-	-	-	-			
Platoon blocked, %					0	700		-	-			
Mov Cap-1 Maneuver				-	0	782	-	-	-			
Mov Cap-2 Maneuver				-	0	-	-	-	-			
Stage 1				-	0	-	-	-	-			
Stage 2				-	0	-	-	-	-			
Approach				WB			NB					
HCM Control Delay, s				9.7								
HCM LOS				Α								
Minor Lane/Major Mvmt		NBL	NBT	NRRV	VBLn1							
Capacity (veh/h)		HUL	1401	-	782							
HCM Lane V/C Ratio			-		0.021							
HCM Control Delay (s)		_	<u>-</u>	_	9.7							
HCM Lane LOS			-	<u> </u>	9.7 A							
HCM 95th %tile Q(veh)		_	_	_	0.1							
HOW JOHN JOHN Q(VEII)					0.1							

	۶	→	•	•	•	4	4	†	~	/	↓	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્ન	7		ર્ન	7	7	†	7	7	*	7
Traffic Volume (vph)	18	Ō	18	6	0	4	16	290	3	4	266	39
Future Volume (vph)	18	0	18	6	0	4	16	290	3	4	266	39
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (%)		4%			-1%			7%			-4%	
Storage Length (ft)	0		315	0		125	280		445	150		275
Storage Lanes	0		1	0		1	1		1	1		1
Taper Length (ft)	25			25			86			86		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor							1.00					0.98
Frt			0.850			0.850			0.850			0.850
Flt Protected		0.950			0.950		0.950			0.950		
Satd. Flow (prot)	0	1769	1583	0	1814	1623	1742	1798	1558	1841	1828	1647
Flt Permitted	-			-			0.575			0.574		
Satd. Flow (perm)	0	1862	1583	0	1909	1623	1053	1798	1558	1112	1828	1622
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			37			37			83			83
Link Speed (mph)		30			30			55			55	
Link Distance (ft)		601			392			1478			1166	
Travel Time (s)		13.7			8.9			18.3			14.5	
Confl. Peds. (#/hr)							4					4
Confl. Bikes (#/hr)												
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	2%	0%	0%	6%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	19	0	19	6	0	4	17	305	3	4	280	41
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	19	19	0	6	4	17	305	3	4	280	41
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.03	1.03	1.03	0.99	0.99	0.99	1.05	1.05	1.05	0.97	0.97	0.97
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2	1	1	2	1	1	2	1
Detector Template	Left			Left								
Leading Detector (ft)	20	83	35	20	83	35	35	83	35	35	83	35
Trailing Detector (ft)	0	-5	-5	0	-5	-5	-5	-5	-5	-5	-5	-5
Turn Type	Perm	NA	pm+ov	Perm	NA	pm+ov	pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases		8	1		4	5	1	6		5	2	
Permitted Phases	8		8	4		4	6		6	2		2
Detector Phase	8	8	1	4	4	5	1	6	6	5	2	2
Switch Phase												

4: NYS Route	120 & SwissRe Driveway/IBM Driveway	r

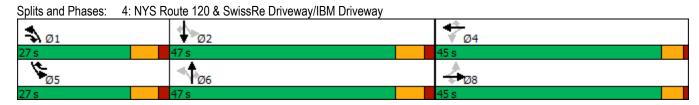
	ᄼ	-	•	•	←	•	1	†	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	5.0	3.0	5.0	5.0	3.0	3.0	5.0	5.0	3.0	5.0	5.0
Minimum Split (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	12.0	12.0	10.0	12.0	12.0
Total Split (s)	45.0	45.0	27.0	45.0	45.0	27.0	27.0	47.0	47.0	27.0	47.0	47.0
Total Split (%)	37.8%	37.8%	22.7%	37.8%	37.8%	22.7%	22.7%	39.5%	39.5%	22.7%	39.5%	39.5%
Maximum Green (s)	40.0	40.0	20.0	40.0	40.0	20.0	20.0	40.0	40.0	20.0	40.0	40.0
Yellow Time (s)	4.0	4.0	5.0	4.0	4.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	1.0	1.0	2.0	1.0	1.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		5.0	7.0		5.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
Lead/Lag			Lead			Lead	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?			Yes			Yes	Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0	2.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Minimum Gap (s)	3.0	3.0	2.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Recall Mode	None	Max	Max	None	Max	Max						
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		6.6	7.0		6.3	6.9	50.0	55.1	55.1	48.4	51.1	51.1
Actuated g/C Ratio		0.11	0.12		0.10	0.11	0.83	0.91	0.91	0.80	0.85	0.85
v/c Ratio		0.09	0.09		0.03	0.02	0.02	0.19	0.00	0.00	0.18	0.03
Control Delay		26.3	4.5		26.2	0.2	1.9	3.1	0.0	2.2	4.1	0.6
Queue Delay		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		26.3	4.5		26.2	0.2	1.9	3.1	0.0	2.2	4.1	0.6
LOS		С	Α		С	Α	Α	Α	Α	Α	Α	Α
Approach Delay		15.4			15.8			3.0			3.6	
Approach LOS		В			В			Α			Α	
Queue Length 50th (ft)		5	0		2	0	1	0	0	0	0	0
Queue Length 95th (ft)		26	9		13	0	6	110	0	2	102	4
Internal Link Dist (ft)		521			312			1398			1086	
Turn Bay Length (ft)			315			125	280		445	150		275
Base Capacity (vph)		1257	614		1288	629	1123	1639	1428	1186	1548	1386
Starvation Cap Reductn		0	0		0	0	0	0	0	0	0	0
Spillback Cap Reductn		0	0		0	0	0	0	0	0	0	0
Storage Cap Reductn		0	0		0	0	0	0	0	0	0	0
Reduced v/c Ratio		0.02	0.03		0.00	0.01	0.02	0.19	0.00	0.00	0.18	0.03

Intersection Summary

Area Type: Other

Cycle Length: 119

Actuated Cycle Length: 60.4


Natural Cycle: 40

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.19 Intersection Signal Delay: 4.2

Intersection Capacity Utilization 38.6%

Intersection LOS: A ICU Level of Service A

	•	•	†	~	>	↓	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	7	7	†	7	ሻ	†	
Traffic Volume (vph)	11	53	257	0	35	256	
Future Volume (vph)	11	53	257	0	35	256	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Width (ft)	11	11	12	12	10	10	
Grade (%)	-3%		2%			-1%	
Storage Length (ft)	0	0		15	175		
Storage Lanes	1	1		1	1		
Taper Length (ft)	25	1.00	1.00	1.00	86	1.00	
Lane Util. Factor Ped Bike Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt		0.850					
Flt Protected	0.950	0.050			0.950		
Satd. Flow (prot)	1771	1585	1826	1881	1644	1666	
Flt Permitted	0.950	1000	1020	1001	0.950	1000	
Satd. Flow (perm)	1771	1585	1826	1881	1644	1666	
Link Speed (mph)	25	1000	55	1301		55	
Link Distance (ft)	589		993			1478	
Travel Time (s)	16.1		12.3			18.3	
Confl. Peds. (#/hr)	1	1		1	1		
Confl. Bikes (#/hr)							
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	
Growth Factor	100%	100%	100%	100%	100%	100%	
Heavy Vehicles (%)	0%	0%	3%	0%	3%	7%	
Bus Blockages (#/hr)	0	0	0	0	0	0	
Parking (#/hr)							
Mid-Block Traffic (%)	0%		0%			0%	
Adj. Flow (vph)	12	56	271	0	37	269	
Shared Lane Traffic (%)		_	_				
Lane Group Flow (vph)	12	56	271	0	37	269	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Right	Left	Left	
Median Width(ft)	11		12			12	
Link Offset(ft)	0		0			0	
Crosswalk Width(ft)	16		16			16	
Two way Left Turn Lane	1.00	1.00	1.04	1.04	1.00	1.00	
Headway Factor	1.02	1.02	1.01	1.01	1.09	1.09	
Turning Speed (mph)	15 Stop	9	Eroo	9	15	Eroo	
Sign Control	Stop		Free			Free	
Intersection Summary	201						
	Other						
Control Type: Unsignalized	00 50/			, .	NIII .		٨
Intersection Capacity Utilizati	on 30.5%			IC	U Level (of Service A	: A
Analysis Period (min) 15							

Intersection						
Int Delay, s/veh	1.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		7	↑	7	ች	
Traffic Vol, veh/h	11	53	257	0	35	256
Future Vol, veh/h	11	53	257	0	35	256
Conflicting Peds, #/hr	1	1	0	1	1	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	Yield	-	Free	-	None
Storage Length	0	0	_	15	175	-
Veh in Median Storage,		-	0	-	-	0
Grade, %	-3	_	2	_	_	-1
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	95	93	3	0	3	7
	12					
Mvmt Flow	12	56	271	0	37	269
Major/Minor N	1inor1	N	Major1	ı	Major2	
Conflicting Flow All	616	273	0	_	272	0
Stage 1	272		-	_		-
Stage 2	344	_	_	_	_	_
Critical Hdwy	5.8	5.9	_	_	4.13	_
Critical Hdwy Stg 1	4.8	-	_	_	7.13	_
Critical Hdwy Stg 2	4.8	_	_	_	_	_
Follow-up Hdwy	3.5	3.3	_	_	2.227	_
	507	788		0	1286	
Pot Cap-1 Maneuver	814		-		1200	-
Stage 1		-	-	0	-	-
Stage 2	765	-	-	0	-	-
Platoon blocked, %	101	-0-	-		1005	-
Mov Cap-1 Maneuver	491	787	-	-	1285	-
Mov Cap-2 Maneuver	491	-	-	-	-	-
Stage 1	813	-	-	-	-	-
Stage 2	742	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	10.3		0		0.9	
HCM LOS	В					
Minor Lane/Major Mvmt		NBTV	VBLn1V	VBLn2	SBL	SBT
Capacity (veh/h)		-	491		1285	_
HCM Lane V/C Ratio		_	0.024		0.029	_
HCM Control Delay (s)		_	12.5	9.9	7.9	_
HCM Lane LOS		_	В	Α	Α.	_
HCM 95th %tile Q(veh)		_	0.1	0.2	0.1	_
TOW JOHN JOHN Q (VOII)			J. 1	0.2	J. I	

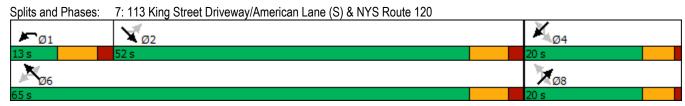
	۶	•	1	†		4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			4	1>	
Traffic Volume (vph)	2	0	0	255	266	1
Future Volume (vph)	2	0	0	255	266	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	11	11	11	11
Grade (%)	3%			5%	-2%	
Storage Length (ft)	0	0	0			0
Storage Lanes	1	0	0			0
Taper Length (ft)	25		25			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt						
Flt Protected	0.950					
Satd. Flow (prot)	1778	0	0	1722	1750	0
Flt Permitted	0.950					
Satd. Flow (perm)	1778	0	0	1722	1750	0
Link Speed (mph)	30			55	55	
Link Distance (ft)	639			1813	993	
Travel Time (s)	14.5			22.5	12.3	
Confl. Peds. (#/hr)	1	1	1			1
Confl. Bikes (#/hr)						
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	0%	4%	6%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%			0%	0%	
Adj. Flow (vph)	2	0	0	271	283	1
Shared Lane Traffic (%)				a= :		
Lane Group Flow (vph)	2	0	0	271	284	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12			0	0	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	1.02	1.02	1.08	1.08	1.03	1.03
Turning Speed (mph)	15	9	15	_	_	9
Sign Control	Stop			Free	Free	
Intersection Summary						
	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizat	tion 24.4%			IC	CU Level of	of Service A
Analysis Period (min) 15						

Intersection						
Int Delay, s/veh	0					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
		EDI	INDL			SDN
Lane Configurations	Y	۸	۸	વ	1	4
Traffic Vol, veh/h	2	0	0	255	266	1
Future Vol, veh/h	2	0	0	255	266	1
Conflicting Peds, #/hr	1	1	_ 1	_ 0	0	_ 1
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	3	-	-	5	-2	-
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	0	0	0	4	6	0
Mvmt Flow	2	0	0	271	283	1
NA . ' /NA'	ı		4.1.4		4	
	/linor2		Major1		/lajor2	
Conflicting Flow All	557	286	285	0	-	0
Stage 1	285	-	-	-	-	-
Stage 2	272	-	-	-	-	-
Critical Hdwy	7	6.5	4.1	-	-	-
Critical Hdwy Stg 1	6	-	-	-	-	-
Critical Hdwy Stg 2	6	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	451	740	1289	-	-	-
Stage 1	732	-	-	-	-	-
Stage 2	744	-	_	-	_	-
Platoon blocked, %				_	_	_
Mov Cap-1 Maneuver	450	739	1288	_	_	_
Mov Cap-1 Maneuver	450	100	1200	_	_	_
Stage 1	731	_		_		
		-	-	-		-
Stage 2	743	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	13		0		0	
HCM LOS	В				-	
Minor Lane/Major Mvmt		NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1288	-		-	-
HCM Lane V/C Ratio		-	-	0.005	-	-
HCM Control Delay (s)		0	-	13	-	-
HCM Lane LOS		Α	-	В	-	-
HCM 95th %tile Q(veh)		0	-	0	-	-

	y	*	À	~	*	₹	ን	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		4		ሻ	†	7		ર્ન	7		ર્ન	7
Traffic Volume (vph)	2	218	46	30	209	22	46	0	30	19	0	0
Future Volume (vph)	2	218	46	30	209	22	46	0	30	19	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	11	11	11	11	10	10	10	11	11	11
Grade (%)		-4%			1%			-5%			1%	
Storage Length (ft)	0		0	120		200	0		95	0		0
Storage Lanes	0		0	1		1	0		1	0		1
Taper Length (ft)	25		•	86		•	25		•	25		•
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		1.00				0.99						
Frt		0.977				0.850			0.850			
Flt Protected		0.011		0.950		0.000		0.950	0.000		0.950	
Satd. Flow (prot)	0	1739	0	1736	1774	1553	0	1727	1545	0	1638	1827
Flt Permitted	•	0.999		0.533		1000	J	0.744	10 10		0.725	1021
Satd. Flow (perm)	0	1737	0	974	1774	1534	0	1352	1545	0	1250	1827
Right Turn on Red	•	1101	Yes	07.1		Yes		1002	Yes		1200	Yes
Satd. Flow (RTOR)		19	100			26			141			100
Link Speed (mph)		55			55	20		30	171		25	
Link Distance (ft)		1813			2280			328			518	
Travel Time (s)		22.5			28.3			7.5			14.1	
Confl. Peds. (#/hr)	1	22.0			20.0	1		7.0			17.1	
Confl. Bikes (#/hr)												
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	50%	6%	0%	0%	3%	0%	0%	0%	0%	6%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0 /0
Parking (#/hr)	U	U	U	U	U	U	U	U	U	J	U	J
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	2	232	49	32	222	23	49	0 /0	32	20	0	0
Shared Lane Traffic (%)		202	73	02		20	73	U	52	20	U	U
Lane Group Flow (vph)	0	283	0	32	222	23	0	49	32	0	20	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Leit	11	rtigiit	LGIL	11	rtigrit	Leit	0	rtigrit	Leit	0	rtigiit
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.02	1.02	1.02	1.05	1.05	1.05	1.06	1.06	1.06	1.05	1.05	1.05
Turning Speed (mph)	1.02	1.02	9	1.03	1.03	9	1.00	1.00	9	1.03	1.05	9
Number of Detectors	13	2	9	13	2	1	13	2	1	13	2	1
Detector Template	Left			ı		1	Left		1	Left		ı
Leading Detector (ft)	20	83		35	83	35	20	83	35	20	83	35
	0	-5		-5	-5	-5	0	-5	-5	0	-5	-5
Trailing Detector (ft)										-		
Turn Type	Perm	NA 2		pm+pt	NA 6	Perm	Perm	NA 8	Perm	Perm	NA 4	Perm
Protected Phases	0	2		1	р	6	0	ď	0	A	4	A
Permitted Phases	2	0		6		6	8	0	8	4	4	4
Detector Phase	2	2		1	6	6	8	8	8	4	4	4
Switch Phase												

	7	×	Ž	~	*	₹	7	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Minimum Initial (s)	10.0	10.0		3.0	10.0	10.0	3.0	3.0	3.0	5.0	5.0	5.0
Minimum Split (s)	17.0	17.0		10.0	17.0	17.0	10.0	10.0	10.0	10.0	10.0	10.0
Total Split (s)	52.0	52.0		13.0	65.0	65.0	20.0	20.0	20.0	20.0	20.0	20.0
Total Split (%)	61.2%	61.2%		15.3%	76.5%	76.5%	23.5%	23.5%	23.5%	23.5%	23.5%	23.5%
Maximum Green (s)	45.0	45.0		6.0	58.0	58.0	15.0	15.0	15.0	15.0	15.0	15.0
Yellow Time (s)	5.0	5.0		5.0	5.0	5.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)		0.0		0.0	0.0	0.0		0.0	0.0		0.0	0.0
Total Lost Time (s)		7.0		7.0	7.0	7.0		5.0	5.0		5.0	5.0
Lead/Lag	Lag	Lag		Lead								
Lead-Lag Optimize?	Yes	Yes		Yes								
Vehicle Extension (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Minimum Gap (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Time Before Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Recall Mode	Max	Max		None	Max							
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		50.5		58.0	58.0	58.0		15.0	15.0		15.0	
Actuated g/C Ratio		0.59		0.68	0.68	0.68		0.18	0.18		0.18	
v/c Ratio		0.27		0.05	0.18	0.02		0.21	0.08		0.09	
Control Delay		9.8		4.5	5.3	1.7		32.5	0.4		30.6	
Queue Delay		0.0		0.0	0.0	0.0		0.0	0.0		0.0	
Total Delay		9.8		4.5	5.3	1.7		32.5	0.4		30.6	
LOS		Α		Α	Α	Α		С	Α		С	
Approach Delay		9.8			4.9			19.8			30.6	
Approach LOS		Α			Α			В			С	
Queue Length 50th (ft)		72		5	37	0		23	0		9	
Queue Length 95th (ft)		122		13	62	6		54	0		28	
Internal Link Dist (ft)		1733			2200			248			438	
Turn Bay Length (ft)				120		200			95			
Base Capacity (vph)		1040		718	1210	1054		238	388		220	
Starvation Cap Reductn		0		0	0	0		0	0		0	
Spillback Cap Reductn		0		0	0	0		0	0		0	
Storage Cap Reductn		0		0	0	0		0	0		0	
Reduced v/c Ratio		0.27		0.04	0.18	0.02		0.21	0.08		0.09	
Intersection Summary												
7 1	Other											
Cycle Length: 85												
Actuated Cycle Length: 85												
Natural Cycle: 40												
Control Type: Actuated-Unco	oordinated											
Maximum v/c Ratio: 0.27												

Intersection LOS: A ICU Level of Service A


Analysis Period (min) 15

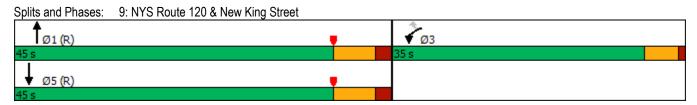
Intersection Signal Delay: 9.6

Intersection Capacity Utilization 41.9%

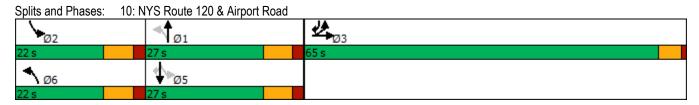
Synchro 10 Report 18002018A - N.T. Page 17

7: 113 King Street Driveway/American Lane (S) & NYS Route 120

Synchro 10 Report 18002018A - N.T. Page 18


	•	•	†	~	>	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		1			4
Traffic Volume (vph)	50	74	188	34	77	190
Future Volume (vph)	50	74	188	34	77	190
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	11	11	11	11
Grade (%)	-6%	12	2%	11	11	0%
		^	Z 70	^	^	U 70
Storage Length (ft)	0	0		0	0	
Storage Lanes	1	0		0	0	
Taper Length (ft)	25	4.00	4.00	4.00	25	4.00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt	0.919		0.980			
Flt Protected	0.980					0.986
Satd. Flow (prot)	1641	0	1718	0	0	1704
Flt Permitted	0.980					0.853
Satd. Flow (perm)	1641	0	1718	0	0	1474
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)	77		15			
Link Speed (mph)	30		55			55
Link Distance (ft)	328		519			557
Travel Time (s)	7.5		6.4			6.9
Confl. Peds. (#/hr)	1.5		0.4			0.9
Confl. Bikes (#/hr)						
Peak Hour Factor	0.96	0.96	0.96	0.96	0.06	0.96
					0.96	
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	8%	7%	1%	19%	2%	8%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	52	77	196	35	80	198
Shared Lane Traffic (%)						
Lane Group Flow (vph)	129	0	231	0	0	278
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12		0		_2.,	0
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane	10		10			10
	0.96	0.96	1.06	1.06	1.04	1.04
Headway Factor			1.00			1.04
Turning Speed (mph)	15	9	^	9	15	^
Number of Detectors	1		2		1	2
Detector Template					Left	
Leading Detector (ft)	35		83		20	83
Trailing Detector (ft)	-5		-5		0	-5
Turn Type	Prot		NA		Perm	NA
Protected Phases	3		1			5
Permitted Phases					5	
Detector Phase	3		1		5	5
Switch Phase	_		•		-	-
- WILOH I HOSE						

Minimum Initial (s) 5.0 5.0 5.0 5.0 5.0 Minimum Split (s) 10.0 12.0 12.0 12.0 12.0 12.0 10tal Split (s) 35.0 45.0 45.0 45.0 56.3% 56		•	•	†	~	/	ţ
Minimum Initial (s) 5.0 5.0 5.0 5.0 5.0 5.0 Minimum Split (s) 10.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Minimum Split (s) 10.0 12.0 12.0 12.0 12.0 10.0 10.0 10.0							
Total Split (s)							
Total Split (%)							
Maximum Green (s) 30.0 38.0 38.0 38.0 38.0 40 yellow Time (s) 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5							
Vellow Time (s)							
All-Red Time (s)							
Lost Time Adjust (s) 0.0 0.0 0.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0							
Total Lost Time (s) 5.0 7.0 7.0 -ead/Lag -ead-Lag Optimize?						2.0	
Lead/Lag							
Lead-Lag Optimize? Vehicle Extension (s) 3.0 3		0.0		1.0			1.0
Vehicle Extension (s) 3.0 3.0 3.0 3.0 Minimum Gap (s) 3.0 3.0 3.0 3.0 Time Before Reduce (s) 0.0 0.0 0.0 0.0 Recall Mode None C-Max C-Max C-Max Walk Time (s) Flash Dont Walk (s) C-Max C-Max C-Max Pedestrian Calls (#/hr) Actuated g/C Ratio 0.11 0.79 0.79 Actuated g/C Ratio 0.11 0.79 0.79 0.79 V/c Ratio 0.53 0.17 0.24 Control Delay 23.0 2.2 4.1 Queue Delay 0.0 0.0 0.0 Total Delay 23.0 2.2 4.1 Approach LOS C A A Approach LOS C A A Queue Length 50th (ft) 25 12 34 Queue Length 95th (ft) 71 34 77 Internal Link Dist (ft) 248 439 477							
Minimum Gap (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Fime Before Reduce (s) 0.0 0.0 0.0 0.0 0.0 Recall Mode None C-Max C-Max C-Max Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) 8.6 62.9 62.9 Actuated g/C Ratio 0.11 0.79 0.79 I/c Ratio 0.53 0.17 0.24 Control Delay 23.0 2.2 4.1 Queue Delay 0.0 0.0 0.0 0.0 Cos C A A A A A Approach Delay 23.0 2.2 4.1 Approach Delay 23.0 2.2 4.1 Approach LOS C A A A A A Approach LOS C A A A A Approach LOS C A A A A A Approach LOS C A A A A A Approach LOS C A A A A A A Approach LOS C A A A A A A Approach LOS C A A A A A A A A A A A A A A A A A A		3.0		3.0		3.0	3.0
Time Before Reduce (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Firme To Reduce (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.							
Time To Reduce (s) 0.0 0.0 0.0 0.0 0.0 Recall Mode None C-Max C-Max C-Max Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#hr) Act Effct Green (s) 8.6 62.9 62.9 62.9 Actuated g/C Ratio 0.11 0.79 0.79 0.79 actuated g/C Ratio 0.53 0.17 0.24 control Delay 23.0 2.2 4.1 Queue Delay 0.0 0.0 0.0 0.0 0.0 fotal Delay 23.0 2.2 4.1 Queue Delay 0.0 0.0 0.0 0.0 fotal Delay 23.0 2.2 4.1 Approach LOS C A A Approach LOS C A A Approach LOS C A A A Approach Link Dist (ft) 25 12 34 Queue Length 95th (ft) 25 12 34 Queue Length 95th (ft) 248 439 477 furran Bay Length (ft) Base Capacity (vph) 663 1354 1158 Starvation Cap Reductn 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 CReduced v/C Ratio 0.19 0.17 0.24 intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Actuated Cycle Length: 80 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.53 intersection Capacity Utilization 49.4% ICU Level of Service Artersection Capacity Utilization 49.4%							
Recall Mode None C-Max C-Max C-Max Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effet Green (s) 8.6 62.9 62.9 Actuated g/C Ratio 0.11 0.79 0.79 //c Ratio 0.53 0.17 0.24 Control Delay 23.0 2.2 4.1 Queue Delay 0.0 0.0 0.0 0.0 Total Delay 23.0 2.2 4.1 Approach Delay 23.0 2.2 4.1 Approach Delay 23.0 2.2 4.1 Approach LOS C A A A Approach LOS C A A A Approach LOS C A A A Queue Length 50th (ft) 25 12 34 Queue Length 95th (ft) 71 34 77 Internal Link Dist (ft) Base Capacity (yph) 663 1354 1158 Starvation Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.19 0.17 0.24 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow Natural Cycle: 40 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.53 Intersection Signal Delay: 7.2 Intersection LOS: A Intersection Capacity Utilization 49.4% Intersection Capacity Utilization 49.4% ICU Level of Service A ICU Level of Servi							
Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) 8.6 62.9 62.9 Actuated g/C Ratio 0.11 0.79 0.79 I/c Ratio 0.53 0.17 0.24 Control Delay 23.0 2.2 4.1 Queue Delay 0.0 0.0 0.0 Total Delay 23.0 2.2 4.1 LOS C A A Approach Delay 23.0 2.2 4.1 Approach LOS C A A Queue Length 50th (ft) 25 12 34 Queue Length 95th (ft) 71 34 77 Internal Link Dist (ft) 248 439 477 Turn Bay Length (ft) 8ase Capacity (vph) 663 1354 1158 Starvation Cap Reductn 0 0 0 Spillback Cap Reductn 0 0 0 Reduced v/c Ratio 0.19 0.17 0.24 Intersection Summary Area Type: Oth	\ <i>\</i>						
Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) 8.6 62.9 62.9 Actuated g/C Ratio 0.11 0.79 0.79 //c Ratio 0.53 0.17 0.24 Control Delay 23.0 2.2 4.1 Queue Delay 0.0 0.0 0.0 Total Delay 23.0 2.2 4.1 LOS C A A A Approach Delay 23.0 2.2 4.1 Approach LOS C A A A Approach LOS C A A A Queue Length 50th (ft) 25 12 34 Queue Length 95th (ft) 71 34 77 Internal Link Dist (ft) 248 439 477 Turn Bay Length (ft) Base Capacity (vph) 663 1354 1158 Starvation Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0 Reduced v/c Ratio 0.19 0.17 0.24 Intersection Summary Area Type: Other Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow Natural Cycle: 40 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.53 Intersection Signal Delay: 7.2 Intersection LOS: A Intersection Capacity Utilization 49.4% ICU Level of Service A ICU Level of		ivone		U-IVIAX		C-IVIAX	C-IVIAX
Pedestrian Calls (#/hr) Act Effct Green (s) 8.6 62.9 62.9 Actuated g/C Ratio 0.11 0.79 0.79 //c Ratio 0.53 0.17 0.24 Control Delay 23.0 2.2 4.1 Queue Delay 0.0 0.0 0.0 Total Delay 23.0 2.2 4.1 LOS C A A A Approach Delay 23.0 2.2 4.1 Approach LOS C A A A Approach LOS C A A A Queue Length 50th (ft) 25 12 34 Queue Length 95th (ft) 71 34 77 Turn Bay Length (ft) Base Capacity (vph) 663 1354 1158 Starvation Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0 Reduced v/c Ratio 0.19 0.17 0.24 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow Natural Cycle: 40 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.53 Intersection Signal Delay: 7.2 Intersection LOS: A Intersection Capacity Utilization 49.4% Intersection Capacity Utilization 49.4% Intersection Capacity Utilization 49.4% Intersection Capacity Utilization 49.4%							
Act Effet Green (s) 8.6 62.9 62.9 Actuated g/C Ratio 0.11 0.79 0.79 Actuated g/C Ratio 0.53 0.17 0.24 Control Delay 23.0 2.2 4.1 Queue Delay 0.0 0.0 0.0 Total Delay 23.0 2.2 4.1 LOS C A A A Approach Delay 23.0 2.2 4.1 Approach LOS C A A A Approach LOS C A A A Queue Length 50th (ft) 25 12 34 Queue Length 95th (ft) 71 34 77 Internal Link Dist (ft) 248 439 477 Turn Bay Length (ft) Base Capacity (vph) 663 1354 1158 Starvation Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.19 0.17 0.24 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.53 Intersection Capacity Utilization 49.4% Icu Level of Service A	. ,						
Actuated g/C Ratio 0.11 0.79 0.79 //c Ratio 0.53 0.17 0.24 Control Delay 23.0 2.2 4.1 Queue Delay 0.0 0.0 0.0 Total Delay 23.0 2.2 4.1 LOS C A A A Approach Delay 23.0 2.2 4.1 Approach LOS C A A A Queue Length 50th (ft) 25 12 34 Queue Length 95th (ft) 71 34 77 Internal Link Dist (ft) 248 439 477 Turn Bay Length (ft) Base Capacity (vph) 663 1354 1158 Starvation Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.19 0.17 0.24 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.53 Intersection Signal Delay: 7.2 Intersection LOS: A Intersection Capacity Utilization 49.4% Intersection Capacity Utilization 49.4% Intersection Capacity Utilization 49.4% Icu Level of Service A	` ,	0.0		00.0			00.0
a/c Ratio 0.53 0.17 0.24 Control Delay 23.0 2.2 4.1 Queue Delay 0.0 0.0 0.0 Total Delay 23.0 2.2 4.1 LOS C A A Approach Delay 23.0 2.2 4.1 Approach LOS C A A Queue Length 50th (ft) 25 12 34 Queue Length 95th (ft) 71 34 77 nternal Link Dist (ft) 248 439 477 Furm Bay Length (ft) 334 1158 Base Capacity (vph) 663 1354 1158 Starvation Cap Reductn 0 0 0 Spillback Cap Reductn 0 0 0 Reduced v/c Ratio 0.19 0.17 0.24 ntersection Summary Area Type: Other Cycle Length: 80 0 Actuated Cycle Length: 80 0 Actuated Cycle: 40 0 Control Type: Actuated-Coordinated 0 M	. ,						
Control Delay 23.0 2.2 4.1 Queue Delay 0.0 0.0 0.0 Total Delay 23.0 2.2 4.1 LOS C A A A Approach Delay 23.0 2.2 4.1 Approach LOS C A A A Queue Length 50th (ft) 25 12 34 Queue Length 95th (ft) 71 34 77 Internal Link Dist (ft) 248 439 477 Iurn Bay Length (ft) Base Capacity (vph) 663 1354 1158 Starvation Cap Reductn 0 0 0 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.19 0.17 0.24 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow Natural Cycle: 40 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.53 Intersection Signal Delay: 7.2 Intersection LOS: A Intersection Capacity Utilization 49.4% ICU Level of Service A Intersection Capacity Utilization 49.4% ICU Level of Service A							
Queue Delay 0.0 0.0 Total Delay 23.0 2.2 4.1 LOS C A A Approach Delay 23.0 2.2 4.1 Approach LOS C A A Queue Length 50th (ft) 25 12 34 Queue Length 95th (ft) 71 34 77 nternal Link Dist (ft) 248 439 477 Turn Bay Length (ft) 3ase Capacity (vph) 663 1354 1158 Starvation Cap Reductn 0 0 0 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.19 0.17 0.24 Intersection Summary Area Type: Other Other <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
Total Delay 23.0 2.2 4.1 LOS C A A A Approach Delay 23.0 2.2 4.1 Approach LOS C A A A Queue Length 50th (ft) 25 12 34 Queue Length 95th (ft) 71 34 77 Internal Link Dist (ft) 248 439 477 Turn Bay Length (ft) Base Capacity (vph) 663 1354 1158 Starvation Cap Reductn 0 0 0 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.19 0.17 0.24 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow Natural Cycle: 40 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.53 Intersection Signal Delay: 7.2 Intersection LOS: A Intersection Capacity Utilization 49.4% ICU Level of Service A							
C A A Approach Delay 23.0 2.2 4.1 Approach LOS C A A A Queue Length 50th (ft) 25 12 34 Queue Length 95th (ft) 71 34 77 Internal Link Dist (ft) 248 439 477 Itum Bay Length (ft) Base Capacity (vph) 663 1354 1158 Starvation Cap Reductn 0 0 0 0 Spillback Cap Reductn 0 0 0 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.19 0.17 0.24 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow Natural Cycle: 40 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.53 Intersection Capacity Utilization 49.4% ICU Level of Service A	Queue Delay						
Approach Delay 23.0 2.2 4.1 Approach LOS C A A A Queue Length 50th (ft) 25 12 34 Queue Length 95th (ft) 71 34 77 Internal Link Dist (ft) 248 439 477 Turn Bay Length (ft) Base Capacity (vph) 663 1354 1158 Starvation Cap Reductn 0 0 0 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.19 0.17 0.24 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow Natural Cycle: 40 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.53 Intersection Signal Delay: 7.2 Intersection LOS: A Intersection Capacity Utilization 49.4% ICU Level of Service A	Total Delay						
Approach LOS C A A A Queue Length 50th (ft) 25 12 34 Queue Length 95th (ft) 71 34 77 Internal Link Dist (ft) 248 439 477 Turn Bay Length (ft) Base Capacity (vph) 663 1354 1158 Starvation Cap Reductn 0 0 0 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.19 0.17 0.24 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow Natural Cycle: 40 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.53 Intersection Signal Delay: 7.2 Intersection LOS: A Intersection Capacity Utilization 49.4% ICU Level of Service A	LOS						
Queue Length 50th (ft) 25 12 34 Queue Length 95th (ft) 71 34 77 Internal Link Dist (ft) 248 439 477 Turn Bay Length (ft) Base Capacity (vph) 663 1354 1158 Starvation Cap Reductn 0 0 0 0 Spillback Cap Reductn 0 0 0 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.19 0.17 0.24 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow Natural Cycle: 40 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.53 Intersection Signal Delay: 7.2 Intersection LOS: A Intersection Capacity Utilization 49.4% ICU Level of Service A	Approach Delay			2.2			4.1
Queue Length 95th (ft) 71 34 77 Internal Link Dist (ft) 248 439 477 Turn Bay Length (ft) Base Capacity (vph) 663 1354 1158 Starvation Cap Reductn 0 0 0 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.19 0.17 0.24 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow Natural Cycle: 40 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.53 Intersection Signal Delay: 7.2 Intersection Capacity Utilization 49.4% ICU Level of Service A	Approach LOS	С					
Queue Length 95th (ft) 71 34 77 Internal Link Dist (ft) 248 439 477 Turn Bay Length (ft) Base Capacity (vph) 663 1354 1158 Starvation Cap Reductn 0 0 0 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.19 0.17 0.24 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow Natural Cycle: 40 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.53 Intersection Signal Delay: 7.2 Intersection LOS: A Intersection Capacity Utilization 49.4% ICU Level of Service A	Queue Length 50th (ft)	25		12			34
Internal Link Dist (ft) Part Length (ft) Base Capacity (vph) Base Cap	Queue Length 95th (ft)			34			
Turn Bay Length (ft) Base Capacity (vph) 663 1354 1158 Starvation Cap Reductn 0 0 0 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.19 0.17 0.24 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow Natural Cycle: 40 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.53 Intersection Signal Delay: 7.2 Intersection LOS: A Intersection Capacity Utilization 49.4% ICU Level of Service	Internal Link Dist (ft)						
Base Capacity (vph) 663 1354 1158 Starvation Cap Reductn 0 0 0 Spillback Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.19 0.17 0.24 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow Natural Cycle: 40 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.53 Intersection Signal Delay: 7.2 Intersection LOS: A Intersection Capacity Utilization 49.4% ICU Level of Service	` ,						
Starvation Cap Reductn 0 0 0 Spillback Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0 Reduced v/c Ratio 0.19 0.17 0.24 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow Natural Cycle: 40 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.53 Intersection Signal Delay: 7.2 Intersection LOS: A Intersection Capacity Utilization 49.4% ICU Level of Service		663		1354			1158
Spillback Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0 Reduced v/c Ratio 0.19 0.17 0.24 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow Natural Cycle: 40 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.53 Intersection Signal Delay: 7.2 Intersection LOS: A Intersection Capacity Utilization 49.4% ICU Level of Service							
Storage Cap Reductn 0 0 0 Reduced v/c Ratio 0.19 0.17 0.24 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow Natural Cycle: 40 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.53 Intersection Signal Delay: 7.2 Intersection LOS: A Intersection Capacity Utilization 49.4% ICU Level of Service							
Reduced v/c Ratio 0.19 0.17 0.24 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow Natural Cycle: 40 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.53 Intersection Signal Delay: 7.2 Intersection LOS: A Intersection Capacity Utilization 49.4% Intersection Signal Delay: 7.2 Intersection Signal Delay: 7.2 Intersection Capacity Utilization 49.4%							
Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow Natural Cycle: 40 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.53 Intersection Signal Delay: 7.2 Intersection LOS: A Intersection Capacity Utilization 49.4%							
Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow Natural Cycle: 40 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.53 Intersection Signal Delay: 7.2 Intersection LOS: A Intersection Capacity Utilization 49.4% ICU Level of Service		0.10		0.17			0.24
Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow Natural Cycle: 40 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.53 Intersection Signal Delay: 7.2 Intersection LOS: A Intersection Capacity Utilization 49.4% ICU Level of Service		Other					
Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow Natural Cycle: 40 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.53 Intersection Signal Delay: 7.2 Intersection LOS: A ICU Level of Service		Ouiei					
Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow Natural Cycle: 40 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.53 Intersection Signal Delay: 7.2 Intersection Capacity Utilization 49.4% ICU Level of Service A							
Natural Cycle: 40 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.53 Intersection Signal Delay: 7.2 Intersection Capacity Utilization 49.4% ICU Level of Service A			ANDT	LE ODTI	01 1	6	
Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.53 Intersection Signal Delay: 7.2 Intersection Capacity Utilization 49.4% ICU Level of Service A		ced to phase	1:NB1 an	id 5:SBTL	., Start of	Yellow	
Maximum v/c Ratio: 0.53 Intersection Signal Delay: 7.2 Intersection LOS: A ICU Level of Service A							
ntersection Signal Delay: 7.2 Intersection LOS: A ntersection Capacity Utilization 49.4% ICU Level of Service A		ordinated					
ntersection Capacity Utilization 49.4% ICU Level of Service							
A 1 : D : 1/ : \45		ation 49.4%			10	CU Level	of Service
Analysis Period (min) 15	Analysis Period (min) 15						


	•	•	†	/	>	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ች	7	†			†
Traffic Volume (vph)	245	46	176	0	0	241
Future Volume (vph)	245	46	176	0	0	241
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
	1900	1900	1900	1900	1900	1900
Lane Width (ft)		13		- 11	- 11	
Grade (%)	-2%	475	1%		_	1%
Storage Length (ft)	0	175		0	0	
Storage Lanes	1	1		0	0	
Taper Length (ft)	25				25	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt		0.850				
Flt Protected	0.950					
Satd. Flow (prot)	1770	1686	1740	0	0	1692
Flt Permitted	0.950					
Satd. Flow (perm)	1770	1686	1740	0	0	1692
Right Turn on Red	1170	Yes	. 1 10	Yes	0	1002
Satd. Flow (RTOR)		49		103		
Link Speed (mph)	30	43	55			55
Link Distance (ft)	321		928			519
Travel Time (s)	7.3		11.5			6.4
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	3%	0%	5%	0%	0%	8%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	263	49	189	0	0	259
Shared Lane Traffic (%)	_00	10	100	U	J	_00
Lane Group Flow (vph)	263	49	189	0	0	259
Enter Blocked Intersection	No	No	No	No	No	No
						Left
Lane Alignment	Left	Right	Left	Right	Left	
Median Width(ft)	12		0			0
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane						
Headway Factor	0.99	0.95	1.05	1.05	1.05	1.05
Turning Speed (mph)	15	9		9	15	
Number of Detectors	1	1	2			2
Detector Template						
Leading Detector (ft)	35	35	83			83
Trailing Detector (ft)	-5	-5	-5			-5
Turn Type	Prot	Perm	NA			NA
Protected Phases	3	i Gilli	1			5
Permitted Phases	J	3				5
	2		4			E
Detector Phase Switch Phase	3	3	1			5
Chambala I Na a a a						

inimum Initial (s) 5.0 5.0 5.0 5.0 1.0 1.0 1.0 1.0 1.2 1.0 1.0 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		•	4	†	<i>></i>	-	Ţ	
inimum Initial (s)	Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
inimum Split (s)	· · · · · · · · · · · · · · · · · · ·							
Detail Split (s) 35.0 35.0 45.0 45.0 45.0 245.0								
tatal Split (%)								
Asximum Green (s) 30.0 30.0 38.0 30.0 3								
ellow Time (s)								
	· ,							
ost Time Adjust (s)								
total Lost Time (s) 5.0 5.0 7.0 7.0 7.0 and/Lag pand-Lag Optimize? ehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 inimum Gap (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 me Before Reduce (s) 0.0 0.0 0.0 0.0 0.0 me To Reduce (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 and To Reduce (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	` ,							
and/Lag Optimize? shicle Extension (s)								
ead-Lag Optimize? ehicle Extension (s)		0.0	0.0	1.0			1.0	
ehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 inimum Gap (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0								
inimum Gap (s) 3.0 3.0 3.0 3.0 0.0 0.0 me Before Reduce (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 me To Reduce (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		3.0	3.0	3.0			3.0	
me Before Reduce (s) 0.0 0.0 0.0 0.0 0.0 me To Reduce (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.								
me To Reduce (s)								
ecall Mode	. ,							
Valk Time (s) ash Dont Walk (s) edestrian Calls (#/hr) ct Effct Green (s) 17.4 17.4 50.6 50.6 ctuated g/C Ratio 0.22 0.22 0.63 0.63 c Ratio 0.68 0.12 0.17 0.24 ontrol Delay 37.6 7.7 7.5 6.5 ueue Delay 0.0 0.0 0.0 0.0 otal Delay 37.6 7.7 7.5 6.5 OS D A A A A pproach Delay 32.9 7.5 6.5 pproach LOS C A A A ueue Length 50th (ft) 122 0 34 28 ueue Length 95th (ft) 180 23 77 104 ternal Link Dist (ft) 241 848 439 urn Bay Length (ft) 175 ase Capacity (vph) 663 662 1101 1071 tarvation Cap Reductn 0 0 0 0 pillblack Cap Reductn 0 0 0 0 0 peduced v/c Ratio 0.40 0.07 0.17 0.24 tersection Summary rea Type: Other ycle Length: 80 ffset: 13 (16%), Referenced to phase 1:NBT and 5:SBT, Start of Yellow atural Cycle: 40 ontrol Type: Actuated-Coordinated aximum v/c Ratio: 0.68 tersection Signal Delay: 17.6 Intersection LOS: B tersection Capacity Utilization 36.3% ICU Level of Service A								
ash Dont Walk (s) edestrian Calls (#/hr) ct Effct Green (s) 17.4 17.4 50.6 50.6 ctuated g/C Ratio 0.22 0.22 0.63 0.63 c Ratio 0.68 0.12 0.17 0.24 ontrol Delay 37.6 7.7 7.5 6.5 ueue Delay 0.0 0.0 0.0 0.0 otal Delay 37.6 7.7 7.5 6.5 OS DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		140116	INOTIC	O-IVIAX			J-IVIAA	
edestrian Calls (#/hr) ct Effct Green (s) 17.4 17.4 50.6 50.6 ctuated g/C Ratio 0.22 0.22 0.63 0.63 c Ratio 0.68 0.12 0.17 0.24 ontrol Delay 37.6 7.7 7.5 6.5 ueue Delay 0.0 0.0 0.0 0.0 otal Delay 37.6 7.7 7.5 6.5 OS DA A A A A pproach Delay 32.9 7.5 6.5 pproach LOS C A A A A pproach LOS C A A A A pureue Length 50th (ft) 122 0 34 28 ueue Length 95th (ft) 180 23 77 104 ternal Link Dist (ft) 241 848 439 urn Bay Length (ft) 175 ase Capacity (vph) 663 662 1101 1071 tarvation Cap Reductn 0 0 0 0 torage Cap Reductn 0 0 0 0 0 torage Cap Reductn 0 0.00 0 torage Cap Reductn 0 0 0 0 torage Cap Reductn 0 0 0 0 0 torage Cap Reductn 0 0 0 0 0 torage Cap Reductn 0 0 0 0 0 0 torage Cap Reductn 0 0 0 0 0 0 torage Cap Reductn 0 0 0 0 0 0 0 torage Cap Reductn 0 0 0 0 0								
tet Effet Green (s) 17.4 17.4 50.6 50.6 ctuated g/C Ratio 0.22 0.22 0.63 0.63 c Ratio 0.68 0.12 0.17 0.24 cettated g/C Ratio 0.68 0.12 0.17 0.24 cettated g/C Ratio 0.68 0.12 0.17 0.24 cettated g/C Ratio 0.60 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0								
ctuated g/C Ratio 0.22 0.22 0.63 0.63 c Ratio 0.68 0.12 0.17 0.24 ontrol Delay 37.6 7.7 7.5 6.5 ueue Delay 0.0 0.0 0.0 0.0 otal Delay 37.6 7.7 7.5 6.5 OS D A A A pproach Delay 32.9 7.5 6.5 pproach LOS C A A ueue Length 50th (ft) 122 0 34 28 ueue Length 95th (ft) 180 23 77 104 ternal Link Dist (ft) 241 848 439 um Bay Length (ft) 175 ase Capacity (vph) 663 662 1101 1071 tarvation Cap Reductn 0 0 0 0 0 torage Cap Reductn 0 0 0 0 0 tersection Summary Tere Type: Other Other <td c<="" td=""><td></td><td>17 /</td><td>17 <i>/</i></td><td>50.6</td><td></td><td></td><td>50.6</td></td>	<td></td> <td>17 /</td> <td>17 <i>/</i></td> <td>50.6</td> <td></td> <td></td> <td>50.6</td>		17 /	17 <i>/</i>	50.6			50.6
c Ratio								
ontrol Delay 37.6 7.7 7.5 6.5 ueue Delay 0.0 0.0 0.0 0.0 otal Delay 37.6 7.7 7.5 6.5 OS D A A A A pproach Delay 32.9 7.5 6.5 pproach LOS C A A A ueue Length 50th (ft) 122 0 34 28 ueue Length 95th (ft) 180 23 77 104 ternal Link Dist (ft) 241 848 439 um Bay Length (ft) 175 ase Capacity (vph) 663 662 1101 1071 tarvation Cap Reductn 0 0 0 0 0 pillback Cap Reductn 0 0 0 0 0 porage Cap Reductn 0 0 0 0 0 otorage Cap Reductn 0 0 0 0 0 otorage Cap Reductn 0 0 0 0 0 forage Cap Reductn 0 0 0 0 0 otorage Cap Reductn 0 0 0 0 0 forage Cap Reductn 0 0 0 0 0 0 0 forage Cap Reductn 0 0 0 0 0 0 0 forage Cap Reductn 0 0 0 0 0 0 0 forage Cap Reductn 0 0 0 0 0 0 0 forage Cap Reductn 0 0 0 0 0 0 0 forage Cap Reductn 0 0 0 0 0 0 0 forage Cap Reductn 0 0 0 0 0 0 0 forage Cap Reductn 0 0 0 0 0 0 0 forage Cap Reductn 0 0 0 0 0 0 0 forage Cap Reductn 0 0 0 0 0 0 0 forage Cap Reductn 0 0 0 0 0 0 0 forage Cap Reductn 0 0 0 0 0 0 0 forage Cap Reductn 0 0 0 0 0 0 0 forage Cap Reductn 0 0 0 0 0 0 0 0 forage Cap Reductn 0 0 0 0 0 0 0 0 0 forage Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 0								
ueue Delay 0.0 0.0 0.0 0.0 otal Delay 37.6 7.7 7.5 6.5 OS D A A A pproach Delay 32.9 7.5 6.5 pproach LOS C A A ueue Length 50th (ft) 122 0 34 28 ueue Length 95th (ft) 180 23 77 104 ternal Link Dist (ft) 241 848 439 urn Bay Length (ft) 175 3 3 ase Capacity (vph) 663 662 1101 1071 tarvation Cap Reductn 0 0 0 0 torage Cap Reductn 0 0 0 0 torage Cap Reductn 0 0 0 0 educed v/c Ratio 0.40 0.07 0.17 0.24 tersection Summary rea Type: Other ycle Length: 80 5 5 5								
Stall Delay 37.6 7.7 7.5 6.5	•							
D								
pproach Delay 32.9 7.5 6.5 pproach LOS C A A A ueue Length 50th (ft) 122 0 34 28 ueue Length 95th (ft) 180 23 77 104 ternal Link Dist (ft) 241 848 439 um Bay Length (ft) 175 ase Capacity (vph) 663 662 1101 1071 tarvation Cap Reductn 0 0 0 0 0 pillback Cap Reductn 0 0 0 0 0 torage Cap Reductn 0 0 0 0 0 torage Cap Reductn 0 0 0 0 0 educed v/c Ratio 0.40 0.07 0.17 0.24 tersection Summary rea Type: Other ycle Length: 80 ctuated Cycle Length: 80 ffset: 13 (16%), Referenced to phase 1:NBT and 5:SBT, Start of Yellow atural Cycle: 40 ontrol Type: Actuated-Coordinated faximum v/c Ratio: 0.68 tersection Signal Delay: 17.6 Intersection LOS: B tersection Capacity Utilization 36.3% ICU Level of Service A	LOS							
pproach LOS			A					
ueue Length 50th (ft) 122 0 34 28 ueue Length 95th (ft) 180 23 77 104 ternal Link Dist (ft) 241 848 439 urn Bay Length (ft) 175 ase Capacity (vph) 663 662 1101 1071 tarvation Cap Reductn 0 0 0 0 0 pillback Cap Reductn 0 0 0 0 0 torage Cap Reductn 0 0 0 0 0 torage Cap Reductn 0 0 0 0 0 educed v/c Ratio 0.40 0.07 0.17 0.24 **tersection Summary** rea Type: Other ycle Length: 80 ctuated Cycle Length: 80 ctuated Cycle Length: 80 ffset: 13 (16%), Referenced to phase 1:NBT and 5:SBT, Start of Yellow atural Cycle: 40 ontrol Type: Actuated-Coordinated laximum v/c Ratio: 0.68 tersection Signal Delay: 17.6 Intersection LOS: B tersection Capacity Utilization 36.3% ICU Level of Service A								
ueue Length 95th (ft) 180 23 77 104 Iternal Link Dist (ft) 241 848 439 Iurn Bay Length (ft) 175 Iase Capacity (vph) 663 662 1101 1071 Itarvation Cap Reductn 0 0 0 0 0 Ipillback Cap Reductn 0 0 0 0 0 Iterage Cap Reductn 0 0 0 0 0 0 Iterage Cap Reductn 0 0 0 0 0 0 Iterage Cap Reductn 0 0 0 0 0 0 Iterage Cap Reductn 0 0 0 0 0 0 Iterage Cap Reductn 0 0 0 0 0 0 Iterage Cap Reductn 0 0 0 0 0 0 Iterage Cap Reductn 0 0 0 0 0 0 Iterage Cap Reductn 0 0 0 0 0 0 Iterage Cap Reductn 0 0 0 0 0 0 Iterage Cap Reductn 0 0 0 0 0 0 Iterage Cap Reductn 0 0 0 0 0 0 0 Iterage Cap Reductn 0 0 0 0 0 0 0 Iterage Cap Reductn 0 0 0 0 0 0 0 Iterage Cap Reductn 0 0 0 0 0 0 0 0 Iterage Cap Reductn 0 0 0 0 0 0 0 0 0 Iterage Cap Reductn 0 0 0 0 0 0 0 0 0 0 Iterage Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 0 Iterage Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0					
ternal Link Dist (ft) 241 848 439 urn Bay Length (ft) 175 ase Capacity (vph) 663 662 1101 1071 tarvation Cap Reductn 0 0 0 0 0 pillback Cap Reductn 0 0 0 0 0 torage Cap Reductn 0 0 0 0 0 torage Cap Reductn 0 0 0 0 0 educed v/c Ratio 0.40 0.07 0.17 0.24 tersection Summary rea Type: Other ycle Length: 80 ctuated Cycle Length: 80 ffset: 13 (16%), Referenced to phase 1:NBT and 5:SBT, Start of Yellow atural Cycle: 40 ontrol Type: Actuated-Coordinated laximum v/c Ratio: 0.68 tersection Signal Delay: 17.6 Intersection LOS: B tersection Capacity Utilization 36.3% ICU Level of Service A								
urn Bay Length (ft) 175 ase Capacity (vph) 663 662 1101 1071 tarvation Cap Reductn 0 0 0 0 0 pillback Cap Reductn 0 0 0 0 0 pillback Cap Reductn 0 0 0 0 0 torage Cap Reductn 0 0 0 0 0 educed v/c Ratio 0.40 0.07 0.17 0.24 tersection Summary rea Type: Other ycle Length: 80 ctuated Cycle Length: 80 ctuated Cycle Length: 80 ffset: 13 (16%), Referenced to phase 1:NBT and 5:SBT, Start of Yellow atural Cycle: 40 ontrol Type: Actuated-Coordinated laximum v/c Ratio: 0.68 tersection Signal Delay: 17.6 Intersection LOS: B tersection Capacity Utilization 36.3% ICU Level of Service A			23					
ase Capacity (vph) 663 662 1101 1071 tarvation Cap Reductn 0 0 0 0 0 pillback Cap Reductn 0 0 0 0 0 torage Cap Reductn 0 0 0 0 0 educed v/c Ratio 0.40 0.07 0.17 0.24 tersection Summary rea Type: Other ycle Length: 80 ctuated Cycle Length: 80 ffset: 13 (16%), Referenced to phase 1:NBT and 5:SBT, Start of Yellow atural Cycle: 40 ontrol Type: Actuated-Coordinated aximum v/c Ratio: 0.68 tersection Signal Delay: 17.6 Intersection LOS: B tersection Capacity Utilization 36.3% ICU Level of Service A		Z4 I	175	040			439	
tarvation Cap Reductn 0 0 0 0 0 pillback Cap Reductn 0 0 0 0 0 torage Cap Reductn 0 0 0 0 0 educed v/c Ratio 0.40 0.07 0.17 0.24 tersection Summary rea Type: Other ycle Length: 80 ctuated Cycle Length: 80 ffset: 13 (16%), Referenced to phase 1:NBT and 5:SBT, Start of Yellow atural Cycle: 40 ontrol Type: Actuated-Coordinated laximum v/c Ratio: 0.68 tersection Capacity Utilization 36.3% Intersection LOS: B tersection Capacity Utilization 36.3%		662		1101			1071	
pillback Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								
torage Cap Reductn 0 0 0 0 0 educed v/c Ratio 0.40 0.07 0.17 0.24 tersection Summary rea Type: Other ycle Length: 80 ctuated Cycle Length: 80 ffset: 13 (16%), Referenced to phase 1:NBT and 5:SBT, Start of Yellow atural Cycle: 40 ontrol Type: Actuated-Coordinated laximum v/c Ratio: 0.68 tersection Signal Delay: 17.6 Intersection LOS: B tersection Capacity Utilization 36.3% ICU Level of Service A								
tersection Summary rea Type: Other ycle Length: 80 ctuated Cycle Length: 80 ffset: 13 (16%), Referenced to phase 1:NBT and 5:SBT, Start of Yellow atural Cycle: 40 ontrol Type: Actuated-Coordinated aximum v/c Ratio: 0.68 tersection Signal Delay: 17.6 Intersection LOS: B tersection Capacity Utilization 36.3% ICU Level of Service A								
tersection Summary rea Type: Other ycle Length: 80 ctuated Cycle Length: 80 ffset: 13 (16%), Referenced to phase 1:NBT and 5:SBT, Start of Yellow atural Cycle: 40 ontrol Type: Actuated-Coordinated aximum v/c Ratio: 0.68 tersection Signal Delay: 17.6 Intersection LOS: B tersection Capacity Utilization 36.3% ICU Level of Service A								
rea Type: ycle Length: 80 ctuated Cycle Length: 80 ffset: 13 (16%), Referenced to phase 1:NBT and 5:SBT, Start of Yellow atural Cycle: 40 ontrol Type: Actuated-Coordinated aximum v/c Ratio: 0.68 tersection Signal Delay: 17.6 Intersection LOS: B tersection Capacity Utilization 36.3% ICU Level of Service A		0.40	0.07	0.17			0.24	
ycle Length: 80 ctuated Cycle Length: 80 ffset: 13 (16%), Referenced to phase 1:NBT and 5:SBT, Start of Yellow atural Cycle: 40 ontrol Type: Actuated-Coordinated aximum v/c Ratio: 0.68 tersection Signal Delay: 17.6 Intersection LOS: B tersection Capacity Utilization 36.3% ICU Level of Service A		0.0						
ctuated Cycle Length: 80 ffset: 13 (16%), Referenced to phase 1:NBT and 5:SBT, Start of Yellow atural Cycle: 40 ontrol Type: Actuated-Coordinated laximum v/c Ratio: 0.68 tersection Signal Delay: 17.6 Intersection LOS: B tersection Capacity Utilization 36.3% ICU Level of Service A	Area Type:	Other						
ffset: 13 (16%), Referenced to phase 1:NBT and 5:SBT, Start of Yellow atural Cycle: 40 ontrol Type: Actuated-Coordinated aximum v/c Ratio: 0.68 Intersection Signal Delay: 17.6 Intersection LOS: B tersection Capacity Utilization 36.3% ICU Level of Service A	Cycle Length: 80							
atural Cycle: 40 ontrol Type: Actuated-Coordinated laximum v/c Ratio: 0.68 tersection Signal Delay: 17.6 Intersection LOS: B tersection Capacity Utilization 36.3% ICU Level of Service A	Actuated Cycle Length: 80							
ontrol Type: Actuated-Coordinated aximum v/c Ratio: 0.68 tersection Signal Delay: 17.6 Intersection LOS: B tersection Capacity Utilization 36.3% ICU Level of Service A		ed to phase	1:NBT a	nd 5:SBT,	Start of Y	'ellow		
aximum v/c Ratio: 0.68 tersection Signal Delay: 17.6 Intersection LOS: B tersection Capacity Utilization 36.3% ICU Level of Service A	Natural Cycle: 40							
tersection Signal Delay: 17.6 Intersection LOS: B tersection Capacity Utilization 36.3% ICU Level of Service A		ordinated						
tersection Capacity Utilization 36.3% ICU Level of Service A	Maximum v/c Ratio: 0.68							
	Intersection Signal Delay: 1	7.6			In	tersection	n LOS: B	
					IC	U Level	of Service	
nalysis Period (min) 15	Analysis Period (min) 15							

	۶	→	*	•	←	•	4	†	<i>></i>	>	ļ	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	¥	4					Ť	∱ }		7	<u></u>	7
Traffic Volume (vph)	118	298	76	0	0	0	83	58	45	33	99	354
Future Volume (vph)	118	298	76	0	0	0	83	58	45	33	99	354
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	16	16	16	12	12	12	12	12	12
Grade (%)		1%			-4%			-1%			1%	
Storage Length (ft)	0		0	0		0	385		0	190		460
Storage Lanes	1		0	0		0	1		0	1		1
Taper Length (ft)	25			25			86			86		
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.970						0.934				0.850
Flt Protected	0.950	0.998					0.950			0.950		
Satd. Flow (prot)	1595	1670	0	0	0	0	1711	3296	0	1694	1750	1545
Flt Permitted	0.950	0.998					0.583			0.681		
Satd. Flow (perm)	1595	1670	0	0	0	0	1050	3296	0	1215	1750	1545
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		16						49				385
Link Speed (mph)		30			30			55			55	
Link Distance (ft)		176			314			586			596	
Travel Time (s)		4.0			7.1			7.3			7.4	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	7%	4%	4%	0%	0%	0%	6%	5%	0%	6%	8%	4%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	128	324	83	0	0	0	90	63	49	36	108	385
Shared Lane Traffic (%)	10%											
Lane Group Flow (vph)	115	420	0	0	0	0	90	112	0	36	108	385
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.01	1.01	1.01	0.82	0.82	0.82	0.99	0.99	0.99	1.01	1.01	1.01
	15		9	15		9	15		9	15		9
Number of Detectors	1	2					1	2		1	2	1
Detector Template												
Leading Detector (ft)	35	83					35	83		35	83	35
	-5	-5					-5	-5		-5	-5	-5
	Split	NA					pm+pt	NA		pm+pt	NA	pm+ov
Protected Phases	3	3					6	1		2	5	3
Permitted Phases							1			5		5
Detector Phase	3	3					6	1		2	5	3
Switch Phase												
Heavy Vehicles (%) Bus Blockages (#/hr) Parking (#/hr) Mid-Block Traffic (%) Adj. Flow (vph) Shared Lane Traffic (%) Lane Group Flow (vph) Enter Blocked Intersection Lane Alignment Median Width(ft) Link Offset(ft) Crosswalk Width(ft) Two way Left Turn Lane Headway Factor Turning Speed (mph) Number of Detectors Detector Template Leading Detector (ft) Trailing Detector (ft) Turn Type Protected Phases Permitted Phases Detector Phase	7% 0 128 10% 115 No Left 1.01 15 1 35 -5 Split 3	4% 0 0% 324 420 No Left 12 0 16 1.01 2 83 -5 NA 3	4% 0 83 0 No Right	0% 0 0 0 No Left	0% 0 0 0 0 No Left 12 0	0% 0 0 0 No Right	6% 0 90 90 No Left 0.99 15 1 35 -5 pm+pt 6	5% 0 0% 63 112 No Left 12 0 16 0.99 2 83 -5 NA 1	0% 0 49 0 No Right	6% 0 36 No Left 1.01 15 1 35 -5 pm+pt 2 5	8% 0 0% 108 108 No Left 12 0 16 1.01 2 83 -5 NA 5	38 38 N Rig

	٠	→	•	•	—	•	4	†	/	/	ţ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	5.0					3.0	8.0		3.0	20.0	5.0
Minimum Split (s)	10.0	10.0					10.0	15.0		10.0	27.0	10.0
Total Split (s)	65.0	65.0					22.0	27.0		22.0	27.0	65.0
Total Split (%)	57.0%	57.0%					19.3%	23.7%		19.3%	23.7%	57.0%
Maximum Green (s)	60.0	60.0					15.0	20.0		15.0	20.0	60.0
Yellow Time (s)	4.0	4.0					5.0	5.0		5.0	5.0	4.0
All-Red Time (s)	1.0	1.0					2.0	2.0		2.0	2.0	1.0
Lost Time Adjust (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0					7.0	7.0		7.0	7.0	5.0
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0					2.0	2.0		2.0	2.0	3.0
Minimum Gap (s)	3.0	3.0					2.0	2.0		2.0	2.0	3.0
Time Before Reduce (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Recall Mode	None	None					None	Min		None	Min	None
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)	24.8	24.8					31.7	28.3		25.4	21.1	54.9
Actuated g/C Ratio	0.35	0.35					0.45	0.40		0.36	0.30	0.78
v/c Ratio	0.20	0.70					0.16	0.08		0.08	0.21	0.30
Control Delay	17.2	26.0					13.5	12.4		13.8	25.5	1.0
Queue Delay	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Total Delay	17.2	26.0					13.5	12.4		13.8	25.5	1.0
LOS	В	С					В	В		В	С	Α
Approach Delay		24.1						12.9			6.9	
Approach LOS		С						В			Α	
Queue Length 50th (ft)	36	162					20	7		8	37	0
Queue Length 95th (ft)	76	272					59	34		29	97	20
Internal Link Dist (ft)		96			234			506			516	
Turn Bay Length (ft)							385			190		460
Base Capacity (vph)	1330	1396					638	1354		661	525	1537
Starvation Cap Reductn	0	0					0	0		0	0	0
Spillback Cap Reductn	0	0					0	0		0	0	0
Storage Cap Reductn	0	0					0	0		0	0	0
Reduced v/c Ratio	0.09	0.30					0.14	0.08		0.05	0.21	0.25
Intersection Summary												
Area Type:	Other											
Cycle Length: 114												
Actuated Cycle Length: 70).3											
Natural Cycle: 60												
Control Type: Actuated-Ur	ncoordinated											
Maximum v/c Ratio: 0.70												
Intersection Signal Delay:	15.1			In	tersection	n LOS: B						
Intersection Capacity Utiliz				IC	CU Level	of Service	e A					
Analysis Period (min) 15												

	۶	→	•	•	—	4	1	†	~	/	↓	√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स			f)				7			
Traffic Volume (vph)	6	176	0	0	258	180	0	0	316	0	0	0
Future Volume (vph)	6	176	0	0	258	180	0	0	316	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	15	15	15	12	12	12	13	13	13	16	16	16
Grade (%)		1%			-1%			1%			2%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	0		0	0		0	0		1	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt					0.944				0.865			
Flt Protected		0.998										
Satd. Flow (prot)	0	1980	0	0	1720	0	0	0	1594	0	0	0
Flt Permitted		0.998										
Satd. Flow (perm)	0	1980	0	0	1720	0	0	0	1594	0	0	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		331			176			301			377	
Travel Time (s)		7.5			4.0			6.8			8.6	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	5%	0%	0%	4%	6%	0%	0%	6%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	7	191	0	0	280	196	0	0	343	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	198	0	0	476	0	0	0	343	0	0	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	0.89	0.89	0.89	0.99	0.99	0.99	0.96	0.96	0.96	0.86	0.86	0.86
Turning Speed (mph)	15	_	9	15	_	9	15		9	15		9
Sign Control		Free			Free			Stop			Stop	
Intersection Summary												
	Other											
Control Type: Unsignalized												
Intersection Capacity Utilizati	on 35.8%			IC	U Level	of Service	A					
Analysis Period (min) 15												

Synchro 10 Report Page 28

Intersection												
Int Delay, s/veh	4.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		सी			f				7			
Traffic Vol, veh/h	6	176	0	0	258	180	0	0	316	0	0	0
Future Vol, veh/h	6	176	0	0	258	180	0	0	316	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
_	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	0	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	16983	-
Grade, %	-	1	-	-	-1	-	-	1	-	-	2	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	0	5	0	0	4	6	0	0	6	0	0	0
Mvmt Flow	7	191	0	0	280	196	0	0	343	0	0	0
Major/Minor M	lajor1		ľ	Major2		N	/linor1					
Conflicting Flow All	476	0	-	-	-	0	-	-	191			
Stage 1	-	-	-	-	-	-	-	-	-			
Stage 2	-	-	-	-	-	-	-	-	-			
Critical Hdwy	4.1	-	-	-	-	-	-	-	6.36			
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-			
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-			
Follow-up Hdwy	2.2	-	-	-	-	-	-	-	3.354			
	1097	-	0	0	-	-	0	0	836			
Stage 1	-	-	0	0	-	-	0	0	-			
Stage 2	-	-	0	0	-	-	0	0	-			
Platoon blocked, %	400=	-			-	-			000			
	1097	-	-	-	-	-	-	0	836			
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	0	-			
Stage 1	-	-	-	-	-	-	-	0	-			
Stage 2	-	-	-	-	-	-	-	0	-			
Approach	EB			WB			NB					
HCM Control Delay, s	0.3			0			12.3					
HCM LOS							В					
Minor Lane/Major Mvmt	1	VBLn1	EBL	EBT	WBT	WBR						
Capacity (veh/h)		836	1097	-	-	-						
HCM Lane V/C Ratio		0.411		-	-	-						
HCM Control Delay (s)		12.3	8.3	0	-	-						
HCM Lane LOS		В	A	Α	-	-						
HCM 95th %tile Q(veh)		2	0	-	-	-						

	۶	→	•	•	•	•	•	†	/	\	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					ર્ન						ર્ન	
Traffic Volume (vph)	0	0	0	258	0	0	0	0	0	182	0	0
Future Volume (vph)	0	0	0	258	0	0	0	0	0	182	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	14	14	13	13	12
Grade (%)		0%			-1%			2%			1%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	0		0	0		0	0		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt												
Flt Protected					0.950						0.950	
Satd. Flow (prot)	0	0	0	0	1744	0	0	0	0	0	1767	0
Flt Permitted	•	•	•		0.950		•			•	0.950	J
Satd. Flow (perm)	0	0	0	0	1744	0	0	0	0	0	1767	0
Link Speed (mph)	· ·	30	•	· ·	30			30	· ·	· ·	30	J
Link Distance (ft)		71			331			377			345	
Travel Time (s)		1.6			7.5			8.6			7.8	
Confl. Peds. (#/hr)		1.0			7.0			0.0			7.0	
Confl. Bikes (#/hr)												
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	0%	4%	0%	0%	0%	0%	0%	5%	0%	0%
Bus Blockages (#/hr)	0	0 /0	0 /0	0	0 /0	0	0	0	0	0	0	0 70
Parking (#/hr)	U	U	U	U	U	U	U	U	U	U	U	U
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	0	0 /0	0	269	0	0	0	0	0	190	0	0
Shared Lane Traffic (%)	U	U	U	203	U	U	U	U	U	130	U	U
Lane Group Flow (vph)	0	0	0	0	269	0	0	0	0	0	190	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Leit	Len 0	Nigiti	Leit	0	Rigiit	Leit	Leit 0	Rigiit	Leit	0	Nigiti
. ,		0			0			0			0	
Link Offset(ft)		16			16			16			16	
Crosswalk Width(ft)		10			10			10			10	
Two way Left Turn Lane	1.00	1.00	1.00	0.00	0.00	0.00	1.01	0.02	0.02	0.06	0.06	1 01
Headway Factor	1.00	1.00	1.00	0.99	0.99	0.99	1.01	0.93	0.93	0.96	0.96	1.01
Turning Speed (mph)	15	Гилл	9	15	Гилл	9	15	Ctor	9	15	Cton	9
Sign Control		Free			Free			Stop			Stop	
Intersection Summary												
7 1	Other											
Control Type: Unsignalized	04.004						^					
Intersection Capacity Utilizati	on 31.0%			IC	U Level	of Service	А					
Analysis Period (min) 15												

Intersection												
Int Delay, s/veh	7.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					र्स						सी	
Traffic Vol, veh/h	0	0	0	258	0	0	0	0	0	182	0	0
Future Vol, veh/h	0	0	0	258	0	0	0	0	0	182	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-		-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	,# -	0	-	-	0	-	-	16974	-	-	0	-
Grade, %	-	0	-	-	-1	-	-	2	-	-	1	-
Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96
Heavy Vehicles, %	0	0	0	4	0	0	0	0	0	5	0	0
Mvmt Flow	0	0	0	269	0	0	0	0	0	190	0	0
Major/Minor			ı	Major2					N	/linor2		
Conflicting Flow All				0	0	0				538	538	-
Stage 1				-	-	-				538	538	-
Stage 2				-	-	-				0	0	-
Critical Hdwy				4.14	-	-				6.65	6.7	-
Critical Hdwy Stg 1				-	-	-				5.65	5.7	-
Critical Hdwy Stg 2				-	-	-				-	-	-
Follow-up Hdwy				2.236	-	-				3.545	4	-
Pot Cap-1 Maneuver				-	-	0				484	439	0
Stage 1				-	-	0				562	510	0
Stage 2				-	-	0				-	-	0
Platoon blocked, %					-							
Mov Cap-1 Maneuver				-	-	-				484	0	-
Mov Cap-2 Maneuver				-	-	-				484	0	-
Stage 1				-	-	-				562	0	-
Stage 2				-	-	-				-	0	-
Approach				WB						SB		
HCM Control Delay, s										17.1		
HCM LOS										С		
Minor Lane/Major Mvm	t	WBL	WBT :	SBLn1								
Capacity (veh/h)		-	-	484								
HCM Lane V/C Ratio		-	-	0.392								
HCM Control Delay (s)		-	-	17.1								
HCM Lane LOS		-	-	С								
HCM 95th %tile Q(veh)		-	-	1.8								

	4	\mathbf{x}	1	_	×	₹	ን	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		ર્ન	7	7	1	7	ሻ	^	7	7	^	7
Traffic Volume (vph)	118	9	173	26	19	68	177	320	29	58	347	87
Future Volume (vph)	118	9	173	26	19	68	177	320	29	58	347	87
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	15	12	12	12	12	11	12	12	12	12	12
Grade (%)		0%			0%			0%			0%	
Storage Length (ft)	0		250	0		225	680		250	400		250
Storage Lanes	0		1	1		1	1		1	1		1
Taper Length (ft)	25			25			86			86		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Ped Bike Factor			0.99	1.00				0.00			0.00	
Frt			0.850	1.00		0.850			0.850			0.850
Flt Protected		0.955	0.000	0.950		0.000	0.950		0.000	0.950		0.000
Satd. Flow (prot)	0	1890	1583	1543	1900	1615	1678	3343	1615	1805	3438	1482
Flt Permitted	•	0.726	1000	0.673	1000	1010	0.950	0010	1010	0.950	0 100	1102
Satd. Flow (perm)	0	1437	1563	1092	1900	1615	1678	3343	1615	1805	3438	1482
Right Turn on Red	U	1407	Yes	1002	1500	Yes	1070	00-10	Yes	1000	0-100	Yes
Satd. Flow (RTOR)			180			79			79			91
Link Speed (mph)		30	100		30	13		55	13		55	31
Link Distance (ft)		610			598			1191			735	
Travel Time (s)		13.9			13.6			14.8			9.1	
Confl. Peds. (#/hr)		13.3	1	1	13.0			14.0			9.1	
Confl. Bikes (#/hr)												
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	6%	0%	2%	17%	0%	0%	4%	8%	0%	0%	5%	9%
Bus Blockages (#/hr)	0 /8	0 %	0	0	0 %	0 %	0	0 /0	0 %	0 %	0	970
Parking (#/hr)	U	U	U	U	U	U	U	U	U	U	U	U
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	123	9	180	27	20	71	184	333	30	60	361	91
Shared Lane Traffic (%)	123	9	100	21	20	7.1	104	333	30	00	301	91
Lane Group Flow (vph)	0	132	180	27	20	71	184	333	30	60	361	91
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
	Left	Left		Left	Left		Left	Left		Left	Left	Right
Lane Alignment Median Width(ft)	Leit	12	Right	Leit	12	Right	Leit	12	Right	Leit	12	Rigiil
Link Offset(ft)		0			0			0			0	
` ,		16			16			16			16	
Crosswalk Width(ft) Two way Left Turn Lane		10			10			10			10	
	1.00	0.88	1.00	1.00	1.00	1.00	1.04	1.00	1.00	1.00	1.00	1.00
Headway Factor	1.00	0.00	1.00	1.00	1.00		1.04	1.00	1.00	1.00	1.00	
Turning Speed (mph) Number of Detectors	15	1			1	9	2	1	1	2	1	9
Detector Template		1	1	1	ı	1	2	1	ı		ı	I
	Left	42	c	c	c	c	02	c	c	02	c	C
Leading Detector (ft)	20	43	6	6	6	6	83	6	6	83	6	6
Trailing Detector (ft)	0	0	0	0	0	0	-5 Draf	0	0	-5 Draf	0	0
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases		3			3		6	1		2	5	_
Permitted Phases	3	_	3	3	•	3	_		1	•	-	5
Detector Phase	3	3	3	3	3	3	6	1	1	2	5	5
Switch Phase												

	₩.	\mathbf{x}	Ž	F	×	₹	7	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	2.0	10.0	10.0	2.0	10.0	10.0
Minimum Split (s)	31.0	31.0	31.0	31.0	31.0	31.0	16.0	42.0	42.0	16.0	42.0	42.0
Total Split (s)	46.0	46.0	46.0	46.0	46.0	46.0	36.0	42.0	42.0	36.0	42.0	42.0
Total Split (%)	37.1%	37.1%	37.1%	37.1%	37.1%	37.1%	29.0%	33.9%	33.9%	29.0%	33.9%	33.9%
Maximum Green (s)	40.0	40.0	40.0	40.0	40.0	40.0	30.0	36.0	36.0	30.0	36.0	36.0
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	6.0	6.0	6.0	6.0	6.0	6.0	2.0	6.0	6.0	2.0	6.0	6.0
Minimum Gap (s)	3.0	3.0	3.0	3.0	3.0	3.0	2.0	3.0	3.0	2.0	4.0	4.0
Time Before Reduce (s)	20.0	20.0	20.0	20.0	20.0	20.0	0.0	20.0	20.0	0.0	20.0	20.0
Time To Reduce (s)	10.0	10.0	10.0	10.0	10.0	10.0	0.0	10.0	10.0	0.0	10.0	10.0
Recall Mode	Min	Min	Min	Min	Min	Min	None	Max	Max	None	Max	Max
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		17.2	17.2	17.2	17.2	17.2	14.0	45.5	45.5	7.5	36.5	36.5
Actuated g/C Ratio		0.20	0.20	0.20	0.20	0.20	0.16	0.53	0.53	0.09	0.42	0.42
v/c Ratio		0.46	0.39	0.12	0.05	0.18	0.68	0.19	0.03	0.38	0.25	0.13
Control Delay		36.1	7.4	30.0	28.4	7.3	47.6	13.0	0.1	46.5	18.3	5.3
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		36.1	7.4	30.0	28.4	7.3	47.6	13.0	0.1	46.5	18.3	5.3
LOS		D	Α	С	С	Α	D	В	Α	D	В	Α
Approach Delay		19.6			16.1			23.9			19.3	
Approach LOS		В			В			С			В	
Queue Length 50th (ft)		62	0	12	9	0	93	48	0	31	62	0
Queue Length 95th (ft)		126	51	36	29	30	177	96	0	77	124	33
Internal Link Dist (ft)		530			518			1111			655	
Turn Bay Length (ft)			250			225	680		250	400		250
Base Capacity (vph)		678	832	515	896	803	593	1768	891	638	1459	681
Starvation Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio		0.19	0.22	0.05	0.02	0.09	0.31	0.19	0.03	0.09	0.25	0.13

Intersection Summary

Area Type: Other

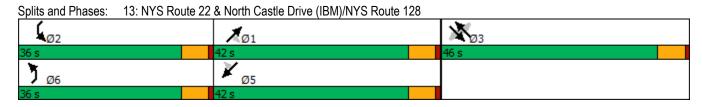
Cycle Length: 124

Actuated Cycle Length: 85.9

Natural Cycle: 90

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.68


Intersection Signal Delay: 20.8

Intersection Capacity Utilization 48.1%

Analysis Period (min) 15

Intersection LOS: C

ICU Level of Service A

Lane Configurations		۶	- ≉	\rightarrow	•	†	1	L _a	ļ	4	€	✓	
Traffic Volume (vph)	Lane Group	EBL2	EBL	EBR	NBL	NBT	NBR	SBL	SBT	SBR	SWL	SWR	
Traffic Volume (vph)	Lane Configurations		Ä	7		ર્ન	7		€ 1₽		44		
	Traffic Volume (vph)	3		6	4		181	0		2		0	
Lane Wolth (ff)	Future Volume (vph)	3	0	6	4	400	181	0	375	2	182	0	
Grade (%)	Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Storage Length (ft)	Lane Width (ft)	10	10	10	11	11	11	10	10	10	11	11	
Storage Lanes	Grade (%)		0%			4%			1%		0%		
Taper Length (ft)	Storage Length (ft)		0	0	0		0	0		0	0	0	
Lane Util. Factor	Storage Lanes		1	1	0		1	0		0	2	0	
Ped Bike Factor	Taper Length (ft)		25		25			25			25		
Fit Protected	Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	*0.67	*0.67	*0.67	0.97	0.95	
Fit Protected Satd. Flow (prot) O 1685 1133 O 1744 1391 O 2229 O 3164 O O Satd. Flow (perm) O 1685 1133 O 1744 1391 O 2229 O 3164 O O Satd. Flow (perm) O 1685 1133 O 1737 1391 O 2229 O 3164 O O Satd. Flow (perm) O 1685 1133 O 1737 1391 O 2229 O 3164 O O Satd. Flow (RTOR) Tay Ta	Ped Bike Factor					1.00			1.00				
Satd. Flow (prot) 0 1685 1133 0 1744 1391 0 2229 0 3164 0 0.950 0.	Frt			0.850			0.850		0.999				
Fit Permitted	Flt Protected		0.950								0.950		
Fit Permitted 0.950 0.996 0.996 0.900 0.90	Satd. Flow (prot)	0	1685	1133	0	1744	1391	0	2229	0	3164	0	
Page			0.950			0.996					0.950		
Satid Flow (RTOR)	Satd. Flow (perm)	0	1685	1133	0	1737	1391	0	2229	0	3164	0	
Link Speed (mph)	Right Turn on Red			Yes			Yes			No			
Link Speed (mph)				74			189						
Link Distance (ft)			30			35			35		35		
Confil Peds (#/hr) Confil Bikes (#/hr)			155			796			597		511		
Confil Peds (#/hr) Confil Bikes (#/hr)	Travel Time (s)		3.5			15.5			11.6		10.0		
Confile Bikes (#/hr)	. ,				1					1		1	
Peak Hour Factor	` ,												
Heavy Vehicles (%)	, ,	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	
Bus Blockages (#/hr)	Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	
Bus Blockages (#/hr)	Heavy Vehicles (%)	0%	0%	33%	25%	3%	10%	0%	6%	0%	7%	0%	
Parking (#/hr) Mid-Block Traffic (%) 0% 0% 0% 0% 0% 0% 0%	• • • • • • • • • • • • • • • • • • • •	0	0	0	0	0	0	0	0	0	0	0	
Mid-Block Traffic (%) 0% 0% 0% 0% Adj. Flow (vph) 3 0 6 4 417 189 0 391 2 190 0 Shared Lane Traffic (%) Lane Group Flow (vph) 0 3 6 0 421 189 0 393 0 190 0 Enter Blocked Intersection No													
Adj. Flow (vph) 3 0 6 4 417 189 0 391 2 190 0 Shared Lane Traffic (%) Lane Group Flow (vph) 0 3 6 0 421 189 0 393 0 190 0 Enter Blocked Intersection No No <t< td=""><td></td><td></td><td>0%</td><td></td><td></td><td>0%</td><td></td><td></td><td>0%</td><td></td><td>0%</td><td></td><td></td></t<>			0%			0%			0%		0%		
Shared Lane Traffic (%) Lane Group Flow (vph) 0 3 6 0 421 189 0 393 0 190 0	Adj. Flow (vph)	3	0	6	4	417	189	0	391	2	190	0	
Lane Group Flow (vph) 0 3 6 0 421 189 0 393 0 190 0 Enter Blocked Intersection No No </td <td></td>													
Enter Blocked Intersection No No <th< td=""><td></td><td>0</td><td>3</td><td>6</td><td>0</td><td>421</td><td>189</td><td>0</td><td>393</td><td>0</td><td>190</td><td>0</td><td></td></th<>		0	3	6	0	421	189	0	393	0	190	0	
Lane Alignment			No	No	No		No		No	No		No	
Median Width(ft) 10 0 0 22 Link Offset(ft) 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 Two way Left Turn Lane 1.09 1.09 1.09 1.07 1.07 1.07 1.10 1.10 1.04 1.04 Headway Factor 1.09 1.09 1.07 1.07 1.07 1.10 1.10 1.04 1.04 Turning Speed (mph) 15 15 9 15 2													
Link Offset(ft) 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 Two way Left Turn Lane Headway Factor 1.09 1.09 1.07 1.07 1.07 1.10 1.10 1.10 1.04 1.04 Turning Speed (mph) 15 15 9 15 10 10 10 10 10 10 10 10 10 10	•			<u> </u>								.	
Crosswalk Width(ft) 16 16 16 16 16 16 16 16 16 16 16 Two way Left Turn Lane Turn Lane Image: Control of the control of t						0							
Two way Left Turn Lane Headway Factor 1.09 1.09 1.09 1.07 1.07 1.07 1.10 1.10 1.10 1.04 1.04 Turning Speed (mph) 15 15 9 15 9 15 9 15 9 Number of Detectors 1 1 1 1 1 2			16			16			16		16		
Headway Factor													
Turning Speed (mph) 15 15 9 15 9 15 9 15 9 Number of Detectors 1 1 1 1 1 2 1 1 2 1 Detector Template Left	•	1.09	1.09	1.09	1.07	1.07	1.07	1.10	1.10	1.10	1.04	1.04	
Number of Detectors 1 1 1 1 1 2 1 1 2 1 Detector Template Left													
Detector Template Left Left Left Leading Detector (ft) 20 35 35 20 83 35 Trailing Detector (ft) 0 -5 -5 0 -5 -5 0 -5 -5 Turn Type Perm Prot Perm Perm NA pm+ov NA Prot Protected Phases 3 3 1 4 5 4 Permitted Phases 3 3 1 1 5 4 Detector Phase 3 3 1 1 4 5 5 4						2			2				
Leading Detector (ft) 20 35 35 20 83 35 20 83 35 Trailing Detector (ft) 0 -5 -5 0 -5 -5 0 -5 -5 Turn Type Perm Prot Perm NA pm+ov NA Prot Protected Phases 3 1 4 5 4 Permitted Phases 3 3 1 1 5 Detector Phase 3 3 1 1 4 5 5		Left			Left			Left					
Trailing Detector (ft) 0 -5 -5 0 -5 -5 0 -5 -5 Turn Type Perm Prot Perm Perm NA pm+ov NA Prot Protected Phases 3 1 4 5 4 Permitted Phases 3 3 1 1 5 Detector Phase 3 3 1 1 4 5 5 4			35	35		83	35		83		35		
Turn Type Perm Prot Perm Perm NA pm+ov NA Prot Protected Phases 3 1 4 5 4 Permitted Phases 3 3 1 1 5 Detector Phase 3 3 1 1 4 5 5 4													
Protected Phases 3 1 4 5 4 Permitted Phases 3 3 1 1 5 Detector Phase 3 3 1 1 4 5 5 4								-					
Permitted Phases 3 3 1 1 5 Detector Phase 3 3 1 1 4 5 5 4							•						
Detector Phase 3 3 3 1 1 4 5 5 4		3		3	1	•		5					
			3			1			5		4		
	Switch Phase						•						

	۶	_#	•	4	†	7	4	↓	4	√	✓	
Lane Group	EBL2	EBL	EBR	NBL	NBT	NBR	SBL	SBT	SBR	SWL	SWR	
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0		
Minimum Split (s)	10.0	10.0	10.0	11.0	11.0	11.0	11.0	11.0		11.0		
Total Split (s)	25.0	25.0	25.0	51.0	51.0	56.0	51.0	51.0		56.0		
Total Split (%)	18.9%	18.9%	18.9%	38.6%	38.6%	42.4%	38.6%	38.6%		42.4%		
Maximum Green (s)	20.0	20.0	20.0	45.0	45.0	50.0	45.0	45.0		50.0		
Yellow Time (s)	4.0	4.0	4.0	5.0	5.0	5.0	5.0	5.0		5.0		
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0		
Lost Time Adjust (s)		0.0	0.0		0.0	0.0		0.0		0.0		
Total Lost Time (s)		5.0	5.0		6.0	6.0		6.0		6.0		
Lead/Lag	Lag	Lag	Lag			Lead				Lead		
Lead-Lag Optimize?	Yes	Yes	Yes			Yes				Yes		
Vehicle Extension (s)	5.0	5.0	5.0	5.0	5.0	3.0	5.0	5.0		3.0		
Minimum Gap (s)	5.0	5.0	5.0	5.0	5.0	3.0	5.0	5.0		3.0		
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0		
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0		
Recall Mode	None	None	None	Max	Max	None	Max	Max		None		
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		7.9	7.9		45.4	66.1		45.4		9.6		
Actuated g/C Ratio		0.11	0.11		0.66	0.95		0.66		0.14		
v/c Ratio		0.02	0.03		0.37	0.14		0.27		0.43		
Control Delay		31.0	0.3		7.9	0.5		6.7		31.4		
Queue Delay		0.0	0.0		0.0	0.0		0.0		0.0		
Total Delay		31.0	0.3		7.9	0.5		6.7		31.4		
LOS		С	Α		Α	Α		Α		С		
Approach Delay		10.6			5.6			6.7		31.4		
Approach LOS		В			Α			Α		С		
Queue Length 50th (ft)		1	0		60	0		38		37		
Queue Length 95th (ft)		10	0		193	12		120		77		
Internal Link Dist (ft)		75			716			517		431		
Turn Bay Length (ft)												
Base Capacity (vph)		490	382		1137	1391		1459		2301		
Starvation Cap Reductn		0	0		0	0		0		0		
Spillback Cap Reductn		0	0		0	0		0		0		
Storage Cap Reductn		0	0		0	0		0		0		
Reduced v/c Ratio		0.01	0.02		0.37	0.14		0.27		0.08		
Intersection Summary												
Area Type:	Other											

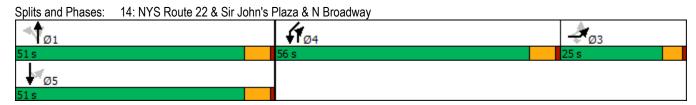
Cycle Length: 132

Actuated Cycle Length: 69.3

Natural Cycle: 40

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.43


Intersection Signal Delay: 10.1

Intersection Capacity Utilization 47.8%

Intersection LOS: B
ICU Level of Service A

Analysis Period (min) 15

* User Entered Value

Year 2024 No-Build Traffic Volumes Weekday Peak Mid-Day Hour 15: Central Westchester Expressway & NYS Route 22 & Reservoir Road & Church Street 21/2020

	>	ၨ	→	•	•	—	*_	•	†	<i>></i>	>	ļ
Lane Group	EBL2	EBL	EBT	EBR	WBL	WBT	WBR	WBR2	NBT	NBR	SBL	SBT
Lane Configurations		ሻ	ĵ»			ર્ન		7	^	7	ሻ	↑ ↑
Traffic Volume (vph)	1	217	148	94	64	106	1	71	343	68	47	369
Future Volume (vph)	1	217	148	94	64	106	1	71	343	68	47	369
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	11	11	12	12	12	12	11	11	12	12
Grade (%)			2%			2%			4%			-6%
Storage Length (ft)		115		0	0		180			160	110	
Storage Lanes		1		0	0		1			1	1	
Taper Length (ft)		86			25						86	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95
Ped Bike Factor		0.99	0.99			1.00		0.99				0.99
Frt			0.942			0.999		0.850		0.850		0.944
Flt Protected						0.982					0.950	
Satd. Flow (prot)	0	1639	1683	0	0	1834	0	1599	3353	1443	1859	3249
Flt Permitted						0.982					0.262	
Satd. Flow (perm)	0	1627	1683	0	0	1825	0	1576	3353	1443	513	3249
Right Turn on Red				No				Yes		Yes		
Satd. Flow (RTOR)								76		76		
Link Speed (mph)			35			30			45			35
Link Distance (ft)			532			475			529			778
Travel Time (s)			10.4			10.8			8.0			15.2
Confl. Peds. (#/hr)	3	2		10	10		3	2				
Confl. Bikes (#/hr)												
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	11%	1%	0%	0%	1%	0%	0%	2%	6%	0%	3%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)			0%			0%			0%			0%
Adj. Flow (vph)	1	231	157	100	68	113	1	76	365	72	50	393
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	232	257	0	0	182	0	76	365	72	50	624
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Left	Right	Right	Left	Right	Left	Left
Median Width(ft)			11			11			12			12
Link Offset(ft)			0			0			0			0
Crosswalk Width(ft)			16			16			16			16
Two way Left Turn Lane												
Headway Factor	1.06	1.06	1.06	1.06	1.01	1.01	1.01	1.01	1.07	1.07	0.96	0.96
Turning Speed (mph)	15	15		9	15		9	9		9	15	
Number of Detectors	1	1	2		1	2		1	2	1	1	2
Detector Template	Left				Left							
Leading Detector (ft)	20	35	83		20	83		35	83	35	35	83
Trailing Detector (ft)	0	-5	-5		0	-5		-5	-5	-5	-5	-5
Turn Type	Perm	Split	NA		Split	NA		pm+ov	NA	pm+ov	pm+pt	NA
Protected Phases		3	3		4	4		5	6	4	5	2
Permitted Phases	3							4		6	2	
Detector Phase	3	3	3		4	4		5	6	4	5	2
Switch Phase												

Synchro 10 Report Page 38 18002018A - N.T.

	-	
Lane Group	SBR	Ø7
LareConfigurations		
Traffic Volume (vph)	217	
Future Volume (vph)	217	
Ideal Flow (vphpl)	1900	
Lane Width (ft)	12	
Grade (%)	· -	
Storage Length (ft)	0	
Storage Lanes	0	
Taper Length (ft)		
Lane Util. Factor	0.95	
Ped Bike Factor	3.00	
Frt		
Flt Protected		
Satd. Flow (prot)	0	
Flt Permitted	- 0	
Satd. Flow (perm)	0	
Right Turn on Red	U	
Satd. Flow (RTOR)		
Link Speed (mph)		
Link Distance (ft)		
Travel Time (s)		
Confl. Peds. (#/hr)	1	
,	ļ	
Confl. Bikes (#/hr)	0.94	
Peak Hour Factor		
Growth Factor	100%	
Heavy Vehicles (%)	14%	
Bus Blockages (#/hr)	0	
Parking (#/hr)		
Mid-Block Traffic (%)	004	
Adj. Flow (vph)	231	
Shared Lane Traffic (%)	•	
Lane Group Flow (vph)	0	
Enter Blocked Intersection	No	
Lane Alignment	Right	
Median Width(ft)		
Link Offset(ft)		
Crosswalk Width(ft)		
Two way Left Turn Lane		
Headway Factor	0.96	
Turning Speed (mph)	9	
Number of Detectors		
Detector Template		
Leading Detector (ft)		
Trailing Detector (ft)		
Turn Type		
Protected Phases		7
Permitted Phases		
Detector Phase		
Switch Phase		

Synchro 10 Report Page 39

15: Central Westchester Expressway & NYS Route 22 & Reservoir Road & Church Street 21/2020

	>	۶	→	•	•	←	*_	•	†	/	/	+
Lane Group	EBL2	EBL	EBT	EBR	WBL	WBT	WBR	WBR2	NBT	NBR	SBL	SBT
Minimum Initial (s)	5.0	5.0	5.0		5.0	5.0		5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	39.0	39.0	39.0		11.0	11.0		11.0	11.0	11.0	11.0	31.0
Total Split (s)	51.0	51.0	51.0		36.0	36.0		26.0	51.0	36.0	26.0	77.0
Total Split (%)	25.5%	25.5%	25.5%		18.0%	18.0%		13.0%	25.5%	18.0%	13.0%	38.5%
Maximum Green (s)	45.0	45.0	45.0		30.0	30.0		20.0	45.0	30.0	20.0	71.0
Yellow Time (s)	4.0	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)		0.0	0.0			0.0		0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		6.0	6.0			6.0		6.0	6.0	6.0	6.0	6.0
Lead/Lag	Lead	Lead	Lead		Lag	Lag		Lead	Lag	Lag	Lead	
Lead-Lag Optimize?	Yes	Yes	Yes		Yes	Yes		Yes	Yes	Yes	Yes	
Vehicle Extension (s)	3.0	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0
Minimum Gap (s)	3.0	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0
Time Before Reduce (s)	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0
Recall Mode	None	None	None		None	None		None	Min	None	None	Min
Walk Time (s)	8.0	8.0	8.0									8.0
Flash Dont Walk (s)	25.0	25.0	25.0									17.0
Pedestrian Calls (#/hr)	6	6	6									0
Act Effct Green (s)		27.8	27.8			20.1		29.0	21.5	41.6	36.5	36.5
Actuated g/C Ratio		0.20	0.20			0.14		0.21	0.15	0.30	0.26	0.26
v/c Ratio		0.72	0.77			0.69		0.20	0.71	0.15	0.23	0.74
Control Delay		66.7	70.0			73.2		6.7	66.0	4.2	45.0	54.2
Queue Delay		0.0	0.0			0.0		0.0	0.0	0.0	0.0	0.0
Total Delay		66.7	70.0			73.2		6.7	66.0	4.2	45.0	54.2
LOS		Е	E			Е		Α	Е	Α	D	D
Approach Delay			68.4			53.6			55.8			53.5
Approach LOS			Е			D			Е			D
Queue Length 50th (ft)		195	219			156		0	164	0	34	268
Queue Length 95th (ft)		336	371			282		30	265	18	81	410
Internal Link Dist (ft)			452			395			449			698
Turn Bay Length (ft)		115						180		160	110	
Base Capacity (vph)		536	554			403		515	1105	586	331	1690
Starvation Cap Reductn		0	0			0		0	0	0	0	0
Spillback Cap Reductn		0	0			0		0	0	0	0	0
Storage Cap Reductn		0	0			0		0	0	0	0	0
Reduced v/c Ratio		0.43	0.46			0.45		0.15	0.33	0.12	0.15	0.37
Intersection Summary												
Area Type:	Other											
Cycle Length: 200												

Cycle Length: 200

Actuated Cycle Length: 139.8

Natural Cycle: 120

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.77 Intersection Signal Delay: 58.0 Intersection Capacity Utilization 70.1%

Intersection LOS: E ICU Level of Service C

Analysis Period (min) 15

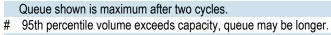
15: Central Westchester Expressway & NYS Route 22 & Reservoir Road & Church Street Splits and Phases: ₹/_{Ø4} ₹kø7 v[®]Ø2 † ø₆

18002018A - N.T. Page 41

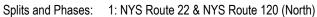
Lane Group	SBR	Ø7	
Minimum Initial (s)		8.0	
Minimum Split (s)		36.0	
Total Split (s)		36.0	
Total Split (%)		18%	
Maximum Green (s)		31.0	
Yellow Time (s)		3.5	
All-Red Time (s)		1.5	
Lost Time Adjust (s)			
Total Lost Time (s)			
Lead/Lag			
Lead-Lag Optimize?			
Vehicle Extension (s)		3.0	
Minimum Gap (s)		3.0	
Time Before Reduce (s)		0.0	
Time To Reduce (s)		0.0	
Recall Mode		Ped	
Walk Time (s)		8.0	
Flash Dont Walk (s)		23.0	
Pedestrian Calls (#/hr)		2	
Act Effct Green (s)			
Actuated g/C Ratio			
v/c Ratio			
Control Delay			
Queue Delay			
Total Delay			
LOS			
Approach Delay			
Approach LOS			
Queue Length 50th (ft)			
Queue Length 95th (ft)			
Internal Link Dist (ft)			
Turn Bay Length (ft)			
Base Capacity (vph)			
Starvation Cap Reductn			
Spillback Cap Reductn			
Storage Cap Reductn			
Reduced v/c Ratio			
Intersection Summary			

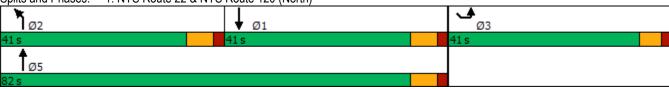
Synchro 10 Report Page 42 18002018A - N.T.

	ሻ	†	ļ	» J	•	>
Lane Group	NBL	NBT	SBT	SBR	SEL	SER
Lane Configurations	ች	^	^	#	*	7
Traffic Volume (vph)	733	749	649	603	281	239
Future Volume (vph)	733	749	649	603	281	239
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	10	10	10	10	10	10
Grade (%)	10	0%	0%	10	0%	10
	250	0 %	U 70	500		٥
Storage Length (ft)	250			500	250	0
Storage Lanes	1			1	1	1
Taper Length (ft)	86	0.05	0.05	4.00	86	4.00
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00
Ped Bike Factor						
Frt				0.850		0.850
Flt Protected	0.950				0.950	
Satd. Flow (prot)	1685	3336	3336	1507	1685	1507
Flt Permitted	0.950				0.950	
Satd. Flow (perm)	1685	3336	3336	1507	1685	1507
Right Turn on Red	.000	0000	0000	Yes	. 300	Yes
Satd. Flow (RTOR)				641		254
Link Speed (mph)		55	55	041	30	204
Link Distance (ft)		767	1064		872	
Travel Time (s)		9.5	13.2		19.8	
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	1%	1%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)		0%	0%		0%	
Adj. Flow (vph)	780	797	690	641	299	254
Shared Lane Traffic (%)	100	101	330	3 T I	200	201
Lane Group Flow (vph)	780	797	690	641	299	254
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width(ft)		10	15		10	
Link Offset(ft)		0	0		0	
Crosswalk Width(ft)		16	16		16	
Two way Left Turn Lane						
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (mph)	15			9	15	9
Number of Detectors	1	2	2	1	2	0
Detector Template						
Leading Detector (ft)	35	104	104	0	104	0
Trailing Detector (ft)	-5	0	0	0	0	0
Turn Type	Prot	NA	NA	Free	Prot	Free
Protected Phases	2			1166	3	1166
	2	5	1	F	3	Г
Permitted Phases	_	_		Free	_	Free
Detector Phase	2	5	1		3	
Switch Phase						

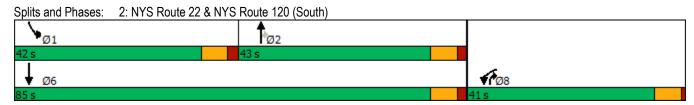

	ሻ	†	ļ	W J	•	>
Lane Group	NBL	NBT	SBT	SBR	SEL	SER
Minimum Initial (s)	12.0	12.0	12.0		10.0	
Minimum Split (s)	36.0	36.0	36.0		26.0	
Total Split (s)	41.0	82.0	41.0		41.0	
Total Split (%)	33.3%	66.7%	33.3%		33.3%	
Maximum Green (s)	34.0	75.0	34.0		35.0	
Yellow Time (s)	5.0	5.0	5.0		4.0	
All-Red Time (s)	2.0	2.0	2.0		2.0	
Lost Time Adjust (s)	0.0	0.0	0.0		0.0	
Total Lost Time (s)	7.0	7.0	7.0		6.0	
Lead/Lag	Lead		Lag			
Lead-Lag Optimize?	Yes		Yes			
Vehicle Extension (s)	6.0	6.0	6.0		6.0	
Minimum Gap (s)	4.0	4.0	4.0		4.0	
Time Before Reduce (s)	20.0	20.0	20.0		20.0	
Time To Reduce (s)	8.0	8.0	8.0		5.0	
Recall Mode	None	Min	Min		None	
Walk Time (s)						
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)						
Act Effct Green (s)	34.3	71.6	30.3	111.8	27.1	111.8
Actuated g/C Ratio	0.31	0.64	0.27	1.00	0.24	1.00
v/c Ratio	1.51	0.37	0.76	0.43	0.73	0.17
Control Delay	270.4	10.7	44.3	0.9	50.7	0.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	270.4	10.7	44.3	0.9	50.7	0.2
LOS	F	В	D	Α	D	Α
Approach Delay		139.1	23.4		27.5	
Approach LOS		F	С		С	
Queue Length 50th (ft)	~814	133	241	0	203	0
Queue Length 95th (ft)	#1146	202	336	0	307	0
Internal Link Dist (ft)		687	984		792	-
Turn Bay Length (ft)	250			500	250	
Base Capacity (vph)	516	2255	1022	1507	531	1507
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	1.51	0.35	0.68	0.43	0.56	0.17
Intersection Summary						
Area Type:	Other					
Cycle Length: 123						
Actuated Cycle Length: 11	11.8					
Natural Cycle: 130	- .					
Control Type: Actuated-Ur	ncoordinated					
Maximum v/c Ratio: 1.51						
Intersection Signal Delay:	76.8			lr	ntersection	LOS: F
Intersection Capacity Utiliz						

ICU Level of Service E


~ Volume exceeds capacity, queue is theoretically infinite.


Intersection Capacity Utilization 90.8%

Analysis Period (min) 15


Queue shown is maximum after two cycles.

	•	•	†	~	>	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	**	TIDIC	^	7	ሻሻ	↑ ↑
Traffic Volume (vph)	314	16	531	30	246	643
Future Volume (vph)	314	16	531	30	246	643
			1900	1900	1900	1900
Ideal Flow (vphpl)	1900	1900				
Lane Width (ft)	12	12	10	10	11	11
Grade (%)	-8%	•	-2%	200	0.15	-1%
Storage Length (ft)	0	0		200	215	
Storage Lanes	1	0		1	2	
Taper Length (ft)	25				86	
Lane Util. Factor	1.00	1.00	0.95	1.00	0.97	0.95
Ped Bike Factor						
Frt	0.993			0.850		
Flt Protected	0.955				0.950	
Satd. Flow (prot)	1856	0	3403	1464	3335	3472
Flt Permitted	0.955				0.950	
Satd. Flow (perm)	1856	0	3403	1464	3335	3472
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)	2	. 00		35		
Link Speed (mph)	30		50	- 00		50
Link Distance (ft)	334		905			488
` ,	7.6		12.3			6.7
Travel Time (s)	7.0		12.3			0.7
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	1%	0%	0%	4%	2%	1%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	369	19	625	35	289	756
Shared Lane Traffic (%)						
Lane Group Flow (vph)	388	0	625	35	289	756
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12	ragiit	22	rtigiit	LUIL	22
` '			0			0
Link Offset(ft)	0					
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane						
Headway Factor	0.95	0.95	1.08	1.08	1.04	1.04
Turning Speed (mph)	15	9		9	15	
Number of Detectors	1		2	1	1	2
Detector Template	Left		Thru	Right	Left	Thru
Leading Detector (ft)	20		100	20	20	100
Trailing Detector (ft)	0		0	0	0	0
Turn Type	Prot		NA	pm+ov	Prot	NA
Protected Phases	8		2	8	1	6
Permitted Phases				2	-	
Detector Phase	8		2	8	1	6
Switch Phase	U		2	U		U
Swillin Filase						

	•	4	†	<i>></i>	\	+
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Minimum Initial (s)	10.0	TIDIN	12.0	10.0	12.0	12.0
Minimum Split (s)	26.0		36.0	26.0	36.0	36.0
Total Split (s)	41.0		43.0	41.0	42.0	85.0
Total Split (%)	32.5%		34.1%	32.5%	33.3%	67.5%
Maximum Green (s)	35.0		36.0	35.0	35.0	78.0
Yellow Time (s)	5.0		5.0	5.0	5.0	5.0
All-Red Time (s)	1.0		2.0	1.0	2.0	2.0
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0		7.0	6.0	7.0	7.0
Lead/Lag	0.0		Lag	0.0	Lead	1.0
			Yes		Yes	
Lead-Lag Optimize?	3.0		3.0	3.0	3.0	3.0
Vehicle Extension (s)	3.0				3.0	
Minimum Gap (s)			3.0	3.0		3.0
Time Before Reduce (s)	0.0		0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0		0.0	0.0	0.0	0.0
Recall Mode	None		Min	None	Min	Min
Walk Time (s)						
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)						
Act Effct Green (s)	22.8		21.4	51.5	14.2	42.9
Actuated g/C Ratio	0.29		0.27	0.65	0.18	0.54
v/c Ratio	0.72		0.68	0.04	0.48	0.40
Control Delay	34.5		30.9	1.8	34.7	12.0
Queue Delay	0.0		0.0	0.0	0.0	0.0
Total Delay	34.5		30.9	1.8	34.7	12.0
LOS	С		С	Α	С	В
Approach Delay	34.5		29.3			18.3
Approach LOS	С		С			В
Queue Length 50th (ft)	164		138	0	65	104
Queue Length 95th (ft)	291		231	8	124	177
Internal Link Dist (ft)	254		825			408
Turn Bay Length (ft)				200	215	
Base Capacity (vph)	851		1604	1207	1528	3223
Starvation Cap Reductn	0		0	0	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductn	0		0	0	0	0
Reduced v/c Ratio	0.46		0.39	0.03	0.19	0.23
Intersection Summary						
Area Type:	Other					
Cycle Length: 126						
Actuated Cycle Length: 79	.2					
Natural Cycle: 100	-					
Control Type: Semi Act-Un	coord					
Maximum v/c Ratio: 0.72	100010					
Intersection Signal Delay:	24.8			Ir	ntersectio	n I OS· C
Intersection Capacity Utiliz						of Service
Analysis Period (min) 15	.au011 J3.1 /0			I.	JO LEVE	OI GEIVICE
Alialysis Fellou (IIIIII) 15						

	۶	→	*	•	←	4	1	†	~	/	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					f)			4				
Traffic Volume (vph)	0	0	0	0	50	7	2	927	29	0	0	0
Future Volume (vph)	0	0	0	0	50	7	2	927	29	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	13	12	12	12	12
Grade (%)		0%			-5%			-7%			0%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	0		0	0		0	0		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt					0.983			0.996				
Flt Protected												
Satd. Flow (prot)	0	0	0	0	1850	0	0	2002	0	0	0	0
Flt Permitted												
Satd. Flow (perm)	0	0	0	0	1850	0	0	2002	0	0	0	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		124			297			300			404	
Travel Time (s)		2.8			6.8			6.8			9.2	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	0%	0%	4%	0%	0%	1%	4%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	0	0	0	0	62	9	2	1144	36	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	0	0	0	71	0	0	1182	0	0	0	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	0.97	0.97	0.97	0.96	0.92	0.96	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15	_	9	15		9
Sign Control		Stop			Stop			Free			Stop	
Intersection Summary												
	Other											
Control Type: Unsignalized												
Intersection Capacity Utilization 60.7% ICU Level of Service B												
Analysis Period (min) 15	Analysis Period (min) 15											

Synchro 10 Report Page 7

18002018A - N.T.

Intersection												
Int Delay, s/veh	1.2											
					==	==						
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					₽			4				
Traffic Vol, veh/h	0	0	0	0	50	7	2	927	29	0	0	0
Future Vol, veh/h	0	0	0	0	50	7	2	927	29	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	,# -	2	-	-	0	-	-	0	-	-	16965	-
Grade, %	-	0	-	-	-5	-	-	-7	-	-	0	-
Peak Hour Factor	81	81	81	81	81	81	81	81	81	81	81	81
Heavy Vehicles, %	0	0	0	0	4	0	0	1	4	0	0	0
Mvmt Flow	0	0	0	0	62	9	2	1144	36	0	0	0
Majan/Minan				Min = 44			1-11					
Major/Minor				Minor1	4400		/lajor1					
Conflicting Flow All				-	1166	1162	0	0	0			
Stage 1				-	1166	-	-	-	-			
Stage 2				-	0	-	-	-	-			
Critical Hdwy				-	5.54	5.7	4.1	-	-			
Critical Hdwy Stg 1				-	4.54	-	-	-	-			
Critical Hdwy Stg 2				-	-	-	-	-	-			
Follow-up Hdwy				-	4.036	3.3	2.2	-	-			
Pot Cap-1 Maneuver				0	266	282	-	-	-			
Stage 1				0	367	-	-	-	-			
Stage 2				0	-	-	-	-	-			
Platoon blocked, %								-	-			
Mov Cap-1 Maneuver				-	0	282	-	-	-			
Mov Cap-2 Maneuver				-	0	-	-	-	-			
Stage 1				-	0	-	-	-	-			
Stage 2				-	0	-	-	-	-			
Approach				WB			NB					
HCM Control Delay, s				22								
HCM LOS				C								
TOW LOO				J								
Min and an a /M. C. A.		NDI	NDT	MDD	VDL 4							
Minor Lane/Major Mvm	τ	NBL	NBT	NRKA	VBLn1							
Capacity (veh/h)		-	-	-	282							
HCM Lane V/C Ratio		-	-	-	0.25							
HCM Control Delay (s)		-	-	-	22							
HCM Lane LOS		-	-	-	С							
HCM 95th %tile Q(veh)		-	-	-	1							

	۶	→	•	•	+	•	•	†	~	/	ţ	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	7		सी	7	ሻ	1	7	ሻ	†	7
Traffic Volume (vph)	205	Ö	146	25	2	23	35	1060	0	1	264	10
Future Volume (vph)	205	0	146	25	2	23	35	1060	0	1	264	10
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (%)		4%			-1%			7%			-4%	
Storage Length (ft)	0		315	0		125	280		445	150		275
Storage Lanes	0		1	0		1	1		1	1		1
Taper Length (ft)	25			25			86			86		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt			0.850			0.850						0.850
Flt Protected		0.950			0.955		0.950			0.950		
Satd. Flow (prot)	0	1769	1479	0	1767	1623	1476	1815	1834	1841	1882	1647
Flt Permitted		0.737			0.666		0.505			0.090		
Satd. Flow (perm)	0	1372	1479	0	1232	1623	785	1815	1834	174	1882	1647
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			168			37						83
Link Speed (mph)		30			30			55			55	
Link Distance (ft)		601			392			1478			1166	
Travel Time (s)		13.7			8.9			18.3			14.5	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	7%	0%	50%	0%	18%	1%	0%	0%	3%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	236	0	168	29	2	26	40	1218	0	1	303	11
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	236	168	0	31	26	40	1218	0	1	303	11
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			12	Ū		12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.03	1.03	1.03	0.99	0.99	0.99	1.05	1.05	1.05	0.97	0.97	0.97
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2	1	1	2	1	1	2	1
Detector Template	Left			Left								
Leading Detector (ft)	20	83	35	20	83	35	35	83	35	35	83	35
Trailing Detector (ft)	0	-5	-5	0	-5	-5	-5	-5	-5	-5	-5	-5
Turn Type	Perm	NA	pm+ov	Perm	NA	pm+ov	pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases		8	1		4	5	1	6		5	2	
Permitted Phases	8		8	4		4	6		6	2		2
Detector Phase	8	8	1	4	4	5	1	6	6	5	2	2
Switch Phase					•							

	۶	→	•	•	←	*	1	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	5.0	3.0	5.0	5.0	3.0	3.0	5.0	5.0	3.0	5.0	5.0
Minimum Split (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	12.0	12.0	10.0	12.0	12.0
Total Split (s)	45.0	45.0	27.0	45.0	45.0	27.0	27.0	47.0	47.0	27.0	47.0	47.0
Total Split (%)	37.8%	37.8%	22.7%	37.8%	37.8%	22.7%	22.7%	39.5%	39.5%	22.7%	39.5%	39.5%
Maximum Green (s)	40.0	40.0	20.0	40.0	40.0	20.0	20.0	40.0	40.0	20.0	40.0	40.0
Yellow Time (s)	4.0	4.0	5.0	4.0	4.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	1.0	1.0	2.0	1.0	1.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		5.0	7.0		5.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
Lead/Lag			Lead			Lead	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?			Yes			Yes	Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0	2.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Minimum Gap (s)	3.0	3.0	2.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Recall Mode	None	None	None	None	None	None	None	Max	Max	None	Max	Max
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		19.7	30.4		19.7	29.4	51.1	48.6		44.9	40.2	40.2
Actuated g/C Ratio		0.23	0.36		0.23	0.35	0.60	0.57		0.53	0.47	0.47
v/c Ratio		0.74	0.26		0.11	0.04	0.08	1.17		0.01	0.34	0.01
Control Delay		44.6	4.0		25.7	4.3	8.1	108.8		8.0	16.7	0.0
Queue Delay		0.0	0.0		0.0	0.0	0.0	0.0		0.0	0.0	0.0
Total Delay		44.6	4.0		25.7	4.3	8.1	108.8		8.0	16.7	0.0
LOS		D	Α		С	Α	Α	F		Α	В	Α
Approach Delay		27.7			16.0			105.6			16.0	
Approach LOS		С			В			F			В	
Queue Length 50th (ft)		116	0		13	0	7	~725		0	96	0
Queue Length 95th (ft)		190	33		34	11	23	#1214		2	182	0
Internal Link Dist (ft)		521			312			1398			1086	
Turn Bay Length (ft)			315			125	280			150		275
Base Capacity (vph)		651	862		584	876	654	1041		504	893	825
Starvation Cap Reductn		0	0		0	0	0	0		0	0	0
Spillback Cap Reductn		0	0		0	0	0	0		0	0	0
Storage Cap Reductn		0	0		0	0	0	0		0	0	0
Reduced v/c Ratio		0.36	0.19		0.05	0.03	0.06	1.17		0.00	0.34	0.01

Area Type: Other

Cycle Length: 119

Actuated Cycle Length: 84.7

Natural Cycle: 140

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 1.17 Intersection Signal Delay: 73.8 Intersection Capacity Utilization 86.3%

Intersection LOS: E ICU Level of Service E


Analysis Period (min) 15

Synchro 10 Report 18002018A - N.T. Page 10

[~] Volume exceeds capacity, queue is theoretically infinite.

- # 95th percentile volume exceeds capacity, queue may be longer.
 - Queue shown is maximum after two cycles.

Splits and Phases: 4: NYS Route 120 & SwissRe Driveway/IBM Driveway

	•	•	†	/	>	ļ				
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT				
Lane Configurations	ሻ	7	†	7	ሻ	†				
Traffic Volume (vph)	6	136	960	1	8	426				
Future Volume (vph)	6	136	960	1	8	426				
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900				
Lane Width (ft)	11	11	12	12	10	10				
Grade (%)	-3%		2%			-1%				
Storage Length (ft)	0	0		15	175					
Storage Lanes	1	1		1	1					
Taper Length (ft)	25				86					
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00				
Ped Bike Factor										
Frt		0.850		0.850						
Flt Protected	0.950				0.950					
Satd. Flow (prot)	1771	1554	1862	1599	1512	1714				
Flt Permitted	0.950				0.950					
Satd. Flow (perm)	1771	1554	1862	1599	1512	1714				
Link Speed (mph)	25		55			55				
Link Distance (ft)	589		993			1478				
Travel Time (s)	16.1		12.3			18.3				
Confl. Peds. (#/hr)										
Confl. Bikes (#/hr)										
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88				
Growth Factor	100%	100%	100%	100%	100%	100%				
Heavy Vehicles (%)	0%	2%	1%	0%	12%	4%				
Bus Blockages (#/hr)	0	0	0	0	0	0				
Parking (#/hr)										
Mid-Block Traffic (%)	0%		0%			0%				
Adj. Flow (vph)	7	155	1091	1	9	484				
Shared Lane Traffic (%)										
Lane Group Flow (vph)	7	155	1091	1	9	484				
Enter Blocked Intersection	No	No	No	No	No	No				
Lane Alignment	Left	Right	Left	Right	Left	Left				
Median Width(ft)	11		12			12				
Link Offset(ft)	0		0			0				
Crosswalk Width(ft)	16		16			16				
Two way Left Turn Lane										
Headway Factor	1.02	1.02	1.01	1.01	1.09	1.09				
Turning Speed (mph)	15	9		9	15					
Sign Control	Stop		Free			Free				
Intersection Summary										
Area Type: Other										
Control Type: Unsignalized										
Intersection Capacity Utilizat	ion 65.6%			IC	CU Level	of Service				
Analysis Period (min) 15										

Intersection						
Int Delay, s/veh	3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	VVDL آ	₩DIX	<u>ND1</u>	T T) j	<u> </u>
Traffic Vol, veh/h	6	136	960		8	426
Future Vol, veh/h	6	136	960	1	8	426
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	Yield	-	Free	-	None
Storage Length	0	0	_	15	175	-
Veh in Median Storage		-	0	-	-	0
Grade, %	·, # 0 -3	_	2	_	_	-1
Peak Hour Factor	-s 88	88	88	88	88	88
Heavy Vehicles, %	0	2	1	0	12	4
Mvmt Flow	7	155	1091	1	9	484
Major/Minor I	Minor1	ľ	Major1	ľ	Major2	
Conflicting Flow All	1593	1091	0	_	1091	0
Stage 1	1091	-	_	-		-
Stage 2	502	_	-	-	-	_
Critical Hdwy	5.8	5.92	_	_	4.22	_
Critical Hdwy Stg 1	4.8	-	_	_		_
Critical Hdwy Stg 2	4.8	_	_	_	_	_
Follow-up Hdwy		3.318	_	_	2.308	_
Pot Cap-1 Maneuver	155	286	_	0	604	_
Stage 1	390	200	_	0	004	_
Stage 2	666			0	-	
	000	-	-	U	-	-
Platoon blocked, %	450	000	-		CO 4	-
Mov Cap-1 Maneuver	153	286	-	-	604	-
Mov Cap-2 Maneuver	153	-	-	-	-	-
Stage 1	390	-	-	-	-	-
Stage 2	656	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	31.4		0		0.2	
HCM LOS	D D		U		0.2	
TICIVI LOS	U					
Minor Lane/Major Mvm	<u>nt</u>	NBTV	VBLn1V	VBLn2	SBL	SBT
Capacity (veh/h)		-	153	286	604	-
HCM Lane V/C Ratio		-	0.045	0.54	0.015	-
HCM Control Delay (s)		-	29.6	31.5	11.1	-
HCM Lane LOS		-	D	D	В	-
HCM 95th %tile Q(veh))	-	0.1	3	0	-

	۶	•	1	†		4				
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR				
Lane Configurations	¥			4	1 >					
Traffic Volume (vph)	1	0	0	960	433	0				
Future Volume (vph)	1	0	0	960	433	0				
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900				
Lane Width (ft)	12	12	11	11	11	11				
Grade (%)	3%			5%	-2%					
Storage Length (ft)	0	0	0			0				
Storage Lanes	1	0	0			0				
Taper Length (ft)	25		25							
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00				
Ped Bike Factor										
Frt										
Flt Protected	0.950									
Satd. Flow (prot)	1778	0	0	1756	1801	0				
Flt Permitted	0.950									
Satd. Flow (perm)	1778	0	0	1756	1801	0				
Link Speed (mph)	30			55	55					
Link Distance (ft)	639			1813	993					
Travel Time (s)	14.5			22.5	12.3					
Confl. Peds. (#/hr)										
Confl. Bikes (#/hr)										
Peak Hour Factor	0.83	0.83	0.83	0.83	0.83	0.83				
Growth Factor	100%	100%	100%	100%	100%	100%				
Heavy Vehicles (%)	0%	0%	0%	2%	3%	0%				
Bus Blockages (#/hr)	0	0	0	0	0	0				
Parking (#/hr)										
Mid-Block Traffic (%)	0%			0%	0%					
Adj. Flow (vph)	1	0	0	1157	522	0				
Shared Lane Traffic (%)										
Lane Group Flow (vph)	1	0	0	1157	522	0				
Enter Blocked Intersection	No	No	No	No	No	No				
Lane Alignment	Left	Right	Left	Left	Left	Right				
Median Width(ft)	12			0	0	·				
Link Offset(ft)	0			0	0					
Crosswalk Width(ft)	16			16	16					
Two way Left Turn Lane										
Headway Factor	1.02	1.02	1.08	1.08	1.03	1.03				
Turning Speed (mph)	15	9	15			9				
Sign Control	Stop			Free	Free					
Intersection Summary										
Area Type: Other										
Control Type: Unsignalized										
Intersection Capacity Utilizat	tion 60.5%			IC	CU Level	of Service				
Analysis Period (min) 15				10	.5 25001	CO. VIOC				
raidiyaia i oriou (iliili) 13										

Intersection						
Int Delay, s/veh	0					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	EDL ₩	LDK	INDL	ND I		אמט
Traffic Vol, veh/h	- 'T '	0	Λ	960	1 33	0
Future Vol, veh/h	1	0	0	960	433	0
Conflicting Peds, #/hr	0	0	0	900	433	0
Sign Control		Stop	Free	Free	Free	Free
RT Channelized	Stop -	None	riee -		-	
Storage Length	0	NOHE -	_	-		NOHE
Veh in Median Storage		-		0	0	-
Grade, %	3	_	_	5	-2	_
Peak Hour Factor	83	83	83	83	83	83
Heavy Vehicles, %	0	0	03	2	3	0
Mvmt Flow	1	0	0	1157	522	
MINITIL FIOW	ı	U	U	1157	JZZ	0
Major/Minor I	Minor2	N	Major1	Λ	//ajor2	
Conflicting Flow All	1679	522	522	0	-	0
Stage 1	522	-	-	-	-	-
Stage 2	1157	-	-	-	-	-
Critical Hdwy	7	6.5	4.1	-	-	-
Critical Hdwy Stg 1	6	-	-	-	-	-
Critical Hdwy Stg 2	6	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	80	535	1055	-	-	-
Stage 1	549	-	-	-	-	-
Stage 2	249	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	80	535	1055	-	-	-
Mov Cap-2 Maneuver	80	-	-	_	_	_
Stage 1	549	_	_	-	-	-
Stage 2	249	_	_	_	_	_
olago 2						
Approach	EB		NB		SB	
HCM Control Delay, s	50.7		0		0	
HCM LOS	F					
Minor Lane/Major Mvm	t	NBL	NRT	EBLn1	SBT	SBR
Capacity (veh/h)		1055	-		-	-
HCM Lane V/C Ratio		-		0.015	_	_
HCM Control Delay (s)		0	_		_	_
HCM Lane LOS		A	_	50.7 F	_	_
HCM 95th %tile Q(veh)		0	_	0	_	_
		•		•		

		4	\mathbf{x}	À	_	×	₹	ን	×	~	Ĺ	×	*
Traffic Volume (vph)	Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Traffic Volume (γph)	Lane Configurations		4		ř		7		ર્ન	7		ની	7
Future Volume (vph) 2	Traffic Volume (vph)	2		25	24		20	127		127	124		
Ideal Flow (ryphpi)		2	406	25	24	833	20	127	0	127	124	0	0
Lane Width (ft)		1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)			11	11	11	11	11	10	10	10	11	11	11
Storage Langth (ft)	. ,		-4%						-5%				
Storage Lanes		0		0	120		200	0		95	0		0
Taper Length (ff)	Storage Lanes	0		0	1		1	0		1	0		1
Lane Unil Factor		25			86			25			25		
Ped Bike Factor		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit Protected	Ped Bike Factor		1.00		1.00								
Fit Protected 0.950 0.95			0.992				0.850			0.850			
Fit Permitted					0.950				0.950			0.950	
Fit Permitted	Satd. Flow (prot)	0	1805	0	1736	1792	1412	0	1727	1545	0	1702	1827
Satd. Flow (perm)				-				•			-		
Page	Satd. Flow (perm)	0		0		1792	1412	0		1545	0		1827
Satid. Flow (RTOR)													
Link Speed (mph)			6										
Link Distance (ft)						55			30			25	
Travel Time (s)	,												
Confi. Peds. (#hr) Confi. Bikes (#hr)	` /												
Confile Bikes (#/hr) Peak Hour Factor 0.86				1	1								
Peak Hour Factor				•	•								
Growth Factor 100%		0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Heavy Vehicles (%)													
Bus Blockages (#/hr) 0 0 0 0 0 0 0 0 0	Heavy Vehicles (%)		3%	0%	0%	2%	10%	0%		0%	2%		
Parking (#/hr) Mid-Block Traffic (%) 0% 0% 0% 0% 0% 0% 0%	. ,												
Mid-Block Traffic (%) 0% 0% 0% 0% 0% 0% Adj. Flow (vph) 2 472 29 28 969 23 148 0 148 144 0 0 Shared Lane Traffic (%) Lane Group Flow (vph) 0 503 0 28 969 23 0 148 148 0 144 0 0 144 0 144 0 144 0 144 0 144 0 144 0 148 148 0 144 0 0 148 148 0 144 0													
Adj. Flow (vph) 2 472 29 28 969 23 148 0 148 144 0 0 Shared Lane Traffic (%) Lane Group Flow (vph) 0 503 0 28 969 23 0 148 148 0 144 0 Enter Blocked Intersection No 10			0%			0%			0%			0%	
Shared Lane Traffic (%) Lane Group Flow (vph) 0 503 0 28 969 23 0 148 148 0 144 0	` ,	2		29	28		23	148		148	144		0
Lane Group Flow (vph) 0 503 0 28 969 23 0 148 148 0 144 0 Enter Blocked Intersection No N													
Enter Blocked Intersection	` ,	0	503	0	28	969	23	0	148	148	0	144	0
Median Width(ft) 11 11 11 0 0 Link Offset(ft) 0 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 16 Two way Left Turn Lane Feadway Factor 1.02 1.02 1.05 1.05 1.05 1.06 1.06 1.06 1.05 1.05 1.05 1.06 1.06 1.06 1.05 1.05 1.05 1.05 1.05 1.06 1.06 1.06 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.06 1.06 1.06 1.05 1		No	No	No	No	No	No	No	No	No	No	No	No
Median Width(ft) 11 11 11 0 0 Link Offset(ft) 0 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 16 Two way Left Turn Lane Feadway Factor 1.02 1.02 1.05 1.05 1.05 1.06 1.06 1.06 1.05 1.05 1.05 1.06 1.06 1.06 1.05 1.05 1.05 1.05 1.05 1.06 1.06 1.06 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.06 1.06 1.06 1.05 1	Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Link Offset(ft) 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 Two way Left Turn Lane Headway Factor 1.02 1.02 1.02 1.05 1.05 1.06 1.06 1.06 1.05 1.05 1.05 Turning Speed (mph) 15 9 15 10 105 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05			11						0			0	J
Crosswalk Width(ft) 16 16 16 16 16 Two way Left Turn Lane Headway Factor 1.02 1.02 1.02 1.05 1.05 1.06 1.06 1.06 1.05 1.05 1.05 Turning Speed (mph) 15 9 15 9 15 9 15 9 Number of Detectors 1 2 1 2 1 2 1 1			0			0			0			0	
Two way Left Turn Lane Headway Factor 1.02 1.02 1.02 1.05 1.05 1.06 1.06 1.06 1.05 1.05 1.05 Turning Speed (mph) 15 9 15 9 15 9 15 9 Number of Detectors 1 2 1 2 1 1 2 <						16						16	
Headway Factor 1.02 1.02 1.02 1.05 1.05 1.06 1.06 1.06 1.06 1.05 1.05 1.05 Turning Speed (mph) 15 9 15 10 15 10 1													
Turning Speed (mph) 15 9 15 9 15 9 15 9 Number of Detectors 1 2 1 2 1 2 1 3 3 3		1.02	1.02	1.02	1.05	1.05	1.05	1.06	1.06	1.06	1.05	1.05	1.05
Number of Detectors 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	Turning Speed (mph)	15		9	15		9	15			15		
Leading Detector (ft) 20 83 35 83 35 20 83 35 20 83 35 Trailing Detector (ft) 0 -5 -5 -5 -5 0 -5 -5 0 -5 -5 -5 -5 -5 0 -5 -8			2			2	1	1	2	1	1	2	1
Leading Detector (ft) 20 83 35 83 35 20 83 35 20 83 35 Trailing Detector (ft) 0 -5 -5 -5 -5 0 -5 -5 0 -5 -5 -5 -5 -5 0 -5 -8	Detector Template	Left						Left			Left		
Trailing Detector (ft) 0 -5 -5 -5 -5 0 -5 -5 0 -5 -5 -5 Turn Type Perm NA pm+pt NA Perm Perm NA Perm Perm NA Perm Perm NA Perm NA Perm Perm NA <td></td> <td>20</td> <td>83</td> <td></td> <td>35</td> <td>83</td> <td>35</td> <td></td> <td>83</td> <td>35</td> <td>20</td> <td>83</td> <td>35</td>		20	83		35	83	35		83	35	20	83	35
Turn Type Perm NA pm+pt NA Perm Perm Perm Perm NA Perm Protected Phases 2 1 6 8 4 4 Permitted Phases 2 6 6 8 8 4 4 Detector Phase 2 2 1 6 8 8 8 4 4								0					
Protected Phases 2 1 6 8 4 Permitted Phases 2 6 6 8 8 4 4 Detector Phase 2 2 1 6 6 8 8 4 4 4			NA		pm+pt		Perm		NA	Perm			
Permitted Phases 2 6 6 8 8 4 4 Detector Phase 2 2 1 6 6 8 8 4 4 4	• • • • • • • • • • • • • • • • • • • •									2	2		,
Detector Phase 2 2 1 6 6 8 8 4 4 4		2			6		6	8		8	4		4
			2			6			8			4	
	Switch Phase												

	₩.	\mathbf{x}	Ž	_	×	₹	7	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Minimum Initial (s)	10.0	10.0		3.0	10.0	10.0	3.0	3.0	3.0	5.0	5.0	5.0
Minimum Split (s)	17.0	17.0		10.0	17.0	17.0	10.0	10.0	10.0	10.0	10.0	10.0
Total Split (s)	52.0	52.0		13.0	65.0	65.0	20.0	20.0	20.0	20.0	20.0	20.0
Total Split (%)	61.2%	61.2%		15.3%	76.5%	76.5%	23.5%	23.5%	23.5%	23.5%	23.5%	23.5%
Maximum Green (s)	45.0	45.0		6.0	58.0	58.0	15.0	15.0	15.0	15.0	15.0	15.0
Yellow Time (s)	5.0	5.0		5.0	5.0	5.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)		0.0		0.0	0.0	0.0		0.0	0.0		0.0	0.0
Total Lost Time (s)		7.0		7.0	7.0	7.0		5.0	5.0		5.0	5.0
Lead/Lag	Lag	Lag		Lead								
Lead-Lag Optimize?	Yes	Yes		Yes								
Vehicle Extension (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Minimum Gap (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Time Before Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Recall Mode	Max	Max		None	Max							
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		53.0		58.0	58.0	58.0		15.0	15.0		15.0	
Actuated g/C Ratio		0.62		0.68	0.68	0.68		0.18	0.18		0.18	
v/c Ratio		0.45		0.05	0.79	0.02		0.77	0.38		0.77	
Control Delay		11.1		4.6	15.6	1.7		61.1	8.6		62.3	
Queue Delay		0.0		0.0	0.0	0.0		0.0	0.0		0.0	
Total Delay		11.1		4.6	15.6	1.7		61.1	8.6		62.3	
LOS		В		Α	В	Α		Е	Α		Е	
Approach Delay		11.1			15.0			34.9			62.3	
Approach LOS		В			В			С			Е	
Queue Length 50th (ft)		100		4	308	0		76	0		74	
Queue Length 95th (ft)		230		11	438	6		#161	43		#158	
Internal Link Dist (ft)		1733			2200			248			438	
Turn Bay Length (ft)				120		200			95			
Base Capacity (vph)		1124		579	1222	971		192	394		186	
Starvation Cap Reductn		0		0	0	0		0	0		0	
Spillback Cap Reductn		0		0	0	0		0	0		0	
Storage Cap Reductn		0		0	0	0		0	0		0	
Reduced v/c Ratio		0.45		0.05	0.79	0.02		0.77	0.38		0.77	
Intersection Summary												

Area Type: Other

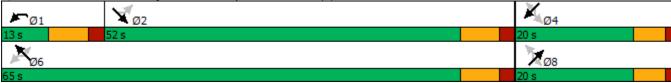
Cycle Length: 85

Actuated Cycle Length: 85

Natural Cycle: 60

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.79

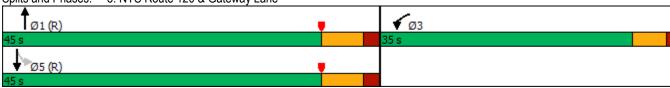

Intersection Signal Delay: 20.5 Intersection Capacity Utilization 67.5% Intersection LOS: C
ICU Level of Service C

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Synchro 10 Report 18002018A - N.T. Page 17

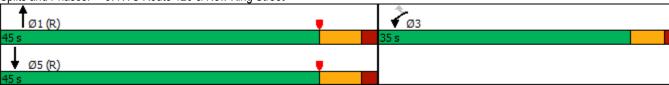
Splits and Phases: 7: 113 King Street Driveway/American Lane (S) & NYS Route 120



	•	•	†	-	-	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W.	11511	7>	, tort	- JDL	<u> </u>
Traffic Volume (vph)	82	298	579	41	223	433
Future Volume (vph)	82	298	579	41	223	433
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1900	1900	1900	1900	1900	1900
Grade (%)	-6%	12	2%	11	11	0%
` ,		^	Z70	^	0	U%
Storage Length (ft)	0	0		0	0	
Storage Lanes	1	0		0	0	
Taper Length (ft)	25	4.00	4.00	4.00	25	4.00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt	0.894		0.991			
Flt Protected	0.989					0.983
Satd. Flow (prot)	1708	0	1765	0	0	1753
Flt Permitted	0.989					0.459
Satd. Flow (perm)	1708	0	1765	0	0	819
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)	177		6			
Link Speed (mph)	30		55			55
Link Distance (ft)	328		519			557
Travel Time (s)	7.5		6.4			6.9
Confl. Peds. (#/hr)	1.5		0.4			0.5
Confl. Bikes (#/hr)						
Peak Hour Factor	0.00	0.00	0.88	0.00	0.00	0.00
	0.88	0.88		0.88	0.88	0.88
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	6%	0%	2%	3%	1%	4%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	93	339	658	47	253	492
Shared Lane Traffic (%)						
Lane Group Flow (vph)	432	0	705	0	0	745
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12	3	0	3		0
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane	10		10			10
Headway Factor	0.96	0.96	1.06	1.06	1.04	1.04
			1.00			1.04
Turning Speed (mph)	15	9	0	9	15	_
Number of Detectors	1		2		1	2
Detector Template	-				Left	
Leading Detector (ft)	35		83		20	83
Trailing Detector (ft)	-5		-5		0	-5
Turn Type	Prot		NA		Perm	NA
Protected Phases	3		1			5
Permitted Phases					5	
Detector Phase	3		1		5	5
	-					
Detector Phase Switch Phase	3		1		5	5

	•	•	†	~	>	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Minimum Initial (s)	5.0		5.0		5.0	5.0
Minimum Split (s)	10.0		12.0		12.0	12.0
Total Split (s)	35.0		45.0		45.0	45.0
Total Split (%)	43.8%		56.3%		56.3%	56.3%
Maximum Green (s)	30.0		38.0		38.0	38.0
Yellow Time (s)	4.0		5.0		5.0	5.0
All-Red Time (s)	1.0		2.0		2.0	2.0
Lost Time Adjust (s)	0.0		0.0		2.0	0.0
Total Lost Time (s)	5.0		7.0			7.0
Lead/Lag	3.0		1.0			7.0
Lead-Lag Optimize?						
	3.0		3.0		3.0	3.0
Vehicle Extension (s)						
Minimum Gap (s)	3.0		3.0		3.0	3.0
Time Before Reduce (s)	0.0		0.0		0.0	0.0
Time To Reduce (s)	0.0		0.0		0.0	0.0
Recall Mode	None		C-Max		C-Max	C-Max
Walk Time (s)						
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)						
Act Effct Green (s)	18.7		49.3			49.3
Actuated g/C Ratio	0.23		0.62			0.62
v/c Ratio	0.81		0.65			1.48
Control Delay	28.1		7.6			246.4
Queue Delay	0.0		0.0			0.0
Total Delay	28.1		7.6			246.4
LOS	C		Α.			F F
Approach Delay	28.1		7.6			246.4
Approach LOS	20.1 C		7.0 A			240.4 F
	121		52			~521
Queue Length 50th (ft)						
Queue Length 95th (ft)	186		95			#562
Internal Link Dist (ft)	248		439			477
Turn Bay Length (ft)			100-			
Base Capacity (vph)	751		1089			504
Starvation Cap Reductn	0		0			0
Spillback Cap Reductn	0		0			0
Storage Cap Reductn	0		0			0
Reduced v/c Ratio	0.58		0.65			1.48
Intersection Summary						
Area Type:	Other					
Cycle Length: 80						
Actuated Cycle Length: 80)					
Offset: 13 (16%), Referen		1·NRT ar	nd 5:SRTI	Start of	f Yellow	
Natural Cycle: 55	ced to priase	i.ivbi ai	10 J.JD1L	., Glait Oi	i i Gilow	
	oordinated					
Control Type: Actuated-Co Maximum v/c Ratio: 1.48	Jorumalea					
	100.0				-4-u (f)	-100 5
Intersection Signal Delay:					ntersectio	
Intersection Capacity Utiliz	zation 106.8%			IC	JU Level	of Service
Analysis Period (min) 15						

- Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.


	•	•	†	/	\	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*	7	†			†
Traffic Volume (vph)	486	95	525	0	0	515
Future Volume (vph)	486	95	525	0	0	515
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1300	1300	11	11	11	11
Grade (%)	-2%	10	1%	11	11	1%
Storage Length (ft)	0	175	1 /0	0	0	1 /0
Storage Lanes	1	1/5		0	0	
Taper Length (ft)	25			U	25	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.050				
Frt	0.050	0.850				
Flt Protected	0.950	1000	4=00	_	•	4=40
Satd. Flow (prot)	1805	1669	1792	0	0	1740
FIt Permitted	0.950					
Satd. Flow (perm)	1805	1669	1792	0	0	1740
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)		102				
Link Speed (mph)	30		55			55
Link Distance (ft)	321		928			519
Travel Time (s)	7.3		11.5			6.4
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	1%	1%	2%	0%	0%	5%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	523	102	565	0	0	554
Shared Lane Traffic (%)	JZJ	102	300	U	U	JJ4
	523	102	565	0	0	554
Lane Group Flow (vph)						
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12		0			0
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane						
Headway Factor	0.99	0.95	1.05	1.05	1.05	1.05
Turning Speed (mph)	15	9		9	15	
Number of Detectors	1	1	2			2
Detector Template						
Leading Detector (ft)	35	35	83			83
Trailing Detector (ft)	-5	-5	-5			-5
Turn Type	Prot	Perm	NA			NA
Protected Phases	3	1 01111	1			5
Permitted Phases	J	3				J
	2	3	1_			
Detector Phase	3	3	1			5
Switch Phase						

	•	•	†	<i>></i>	/	↓
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Minimum Initial (s)	5.0	5.0	5.0			5.0
Minimum Split (s)	10.0	10.0	12.0			12.0
Total Split (s)	35.0	35.0	45.0			45.0
Total Split (%)	43.8%	43.8%	56.3%			56.3%
Maximum Green (s)	30.0	30.0	38.0			38.0
Yellow Time (s)	4.0	4.0	5.0			5.0
All-Red Time (s)	1.0	1.0	2.0			2.0
Lost Time Adjust (s)	0.0	0.0	0.0			0.0
Total Lost Time (s)	5.0	5.0	7.0			7.0
Lead/Lag	5.0	5.0	7.0			1.0
Lead-Lag Optimize?						
	3.0	3.0	3.0			3.0
Vehicle Extension (s)	3.0	3.0	3.0			3.0
Minimum Gap (s)	0.0	0.0	0.0			0.0
Time Before Reduce (s)						
Time To Reduce (s)	0.0	0.0	0.0			0.0
Recall Mode	None	None	C-Max			C-Max
Walk Time (s)						
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)	00.0	00.0	44.4			44.4
Act Effct Green (s)	26.9	26.9	41.1			41.1
Actuated g/C Ratio	0.34	0.34	0.51			0.51
v/c Ratio	0.86	0.16	0.61			0.62
Control Delay	40.1	4.5	18.4			8.8
Queue Delay	0.0	0.0	0.0			0.3
Total Delay	40.1	4.5	18.4			9.1
LOS	D	Α	В			Α
Approach Delay	34.3		18.4			9.1
Approach LOS	С		В			Α
Queue Length 50th (ft)	232	0	198			106
Queue Length 95th (ft)	#380	29	319			m65
Internal Link Dist (ft)	241		848			439
Turn Bay Length (ft)		175				
Base Capacity (vph)	676	689	921			894
Starvation Cap Reductn	0	0	0			55
Spillback Cap Reductn	0	0	11			0
Storage Cap Reductn	0	0	0			0
Reduced v/c Ratio	0.77	0.15	0.62			0.66
Intersection Summary						
Area Type:	Other					
Cycle Length: 80						
Actuated Cycle Length: 80)					
Offset: 13 (16%), Reference		1:NBT a	nd 5:SBT.	Start of Y	ellow	
Natural Cycle: 55	ood to pridoo		0.05 .,	Otal Co. 1	0011	
Control Type: Actuated-Co	ordinated					
Maximum v/c Ratio: 0.86	Jordinatod					
Intersection Signal Delay:	21 1			In	tareaction	n LOS: C
Intersection Capacity Utiliz						of Service
Analysis Daried (min) 15	LallUII 04.0%			IC	O LEVEL	oi service

Analysis Period (min) 15

- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
- m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 9: NYS Route 120 & New King Street

	۶	→	•	•	←	•	4	†	/	>	ţ	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	4					ሻ	↑ ↑		ሻ		7
Traffic Volume (vph)	385	268	130	0	0	0	297	140	23	33	279	689
Future Volume (vph)	385	268	130	0	0	0	297	140	23	33	279	689
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	16	16	16	12	12	12	12	12	12
Grade (%)		1%			-4%			-1%			1%	
Storage Length (ft)	0		0	0		0	385		0	190		460
Storage Lanes	1		0	0		0	1		0	1		1
Taper Length (ft)	25			25			86			86		
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.955						0.979				0.850
Flt Protected	0.950	0.996					0.950			0.950		
Satd. Flow (prot)	1689	1686	0	0	0	0	1796	3377	0	1633	1800	1575
Flt Permitted	0.950	0.996					0.310			0.643		
Satd. Flow (perm)	1689	1686	0	0	0	0	586	3377	0	1105	1800	1575
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		28						14				119
Link Speed (mph)		30			30			55			55	
Link Distance (ft)		176			314			586			596	
Travel Time (s)		4.0			7.1			7.3			7.4	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	1%	2%	0%	0%	0%	0%	1%	6%	0%	10%	5%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	410	285	138	0	0	0	316	149	24	35	297	733
Shared Lane Traffic (%)	10%											
Lane Group Flow (vph)	369	464	0	0	0	0	316	173	0	35	297	733
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12	•		12	•		12	•		12	J
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.01	1.01	1.01	0.82	0.82	0.82	0.99	0.99	0.99	1.01	1.01	1.01
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2					1	2		1	2	1
Detector Template												
Leading Detector (ft)	35	83					35	83		35	83	35
Trailing Detector (ft)	-5	-5					-5	-5		-5	-5	-5
Turn Type	Split	NA					pm+pt	NA		pm+pt	NA	pm+ov
Protected Phases	3	3					6	1		2	5	3
Permitted Phases							1	-		5		5
Detector Phase	3	3					6	1		2	5	3
Switch Phase	-										- 0	- 3

	۶	-	•	•	←	•	4	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	5.0					3.0	8.0		3.0	20.0	5.0
Minimum Split (s)	10.0	10.0					10.0	15.0		10.0	27.0	10.0
Total Split (s)	65.0	65.0					22.0	27.0		22.0	27.0	65.0
Total Split (%)	57.0%	57.0%					19.3%	23.7%		19.3%	23.7%	57.0%
Maximum Green (s)	60.0	60.0					15.0	20.0		15.0	20.0	60.0
Yellow Time (s)	4.0	4.0					5.0	5.0		5.0	5.0	4.0
All-Red Time (s)	1.0	1.0					2.0	2.0		2.0	2.0	1.0
Lost Time Adjust (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0					7.0	7.0		7.0	7.0	5.0
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0					2.0	2.0		2.0	2.0	3.0
Minimum Gap (s)	3.0	3.0					2.0	2.0		2.0	2.0	3.0
Time Before Reduce (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Recall Mode	None	None					None	Min		None	Min	None
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)	37.9	37.9					42.8	35.2		26.3	20.4	65.4
Actuated g/C Ratio	0.41	0.41					0.46	0.38		0.28	0.22	0.70
v/c Ratio	0.54	0.66					0.67	0.13		0.10	0.75	0.64
Control Delay	22.9	24.7					28.8	23.6		20.6	50.2	8.6
Queue Delay	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Total Delay	22.9	24.7					28.8	23.6		20.6	50.2	8.6
LOS	С	С					С	С		С	D	Α
Approach Delay		23.9						26.9			20.6	
Approach LOS		С						С			С	
Queue Length 50th (ft)	166	209					114	33		11	160	159
Queue Length 95th (ft)	244	307					#266	81		39	#385	244
Internal Link Dist (ft)		96			234			506			516	
Turn Bay Length (ft)							385			190		460
Base Capacity (vph)	1111	1119					469	1290		511	395	1456
Starvation Cap Reductn	0	0					0	0		0	0	0
Spillback Cap Reductn	0	0					0	0		0	0	0
Storage Cap Reductn	0	0					0	0		0	0	0
Reduced v/c Ratio	0.33	0.41					0.67	0.13		0.07	0.75	0.50

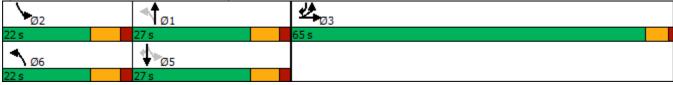
Area Type: Other

Cycle Length: 114

Actuated Cycle Length: 92.9

Natural Cycle: 70

Control Type: Actuated-Uncoordinated


Maximum v/c Ratio: 0.75

Intersection Signal Delay: 23.0 Intersection LOS: C
Intersection Capacity Utilization 70.6% ICU Level of Service C

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Intersection Capacity Utilization 60.4% Analysis Period (min) 15

	۶	→	•	•	•	•	4	†	/	>	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			f a				7			
Traffic Volume (vph)	3	255	0	0	399	588	0	0	528	0	0	0
Future Volume (vph)	3	255	0	0	399	588	0	0	528	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	15	15	15	12	12	12	13	13	13	16	16	16
Grade (%)		1%			-1%			1%			2%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	0		0	0		0	0		1	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt					0.920				0.865			
Flt Protected		0.999										
Satd. Flow (prot)	0	2037	0	0	1716	0	0	0	1690	0	0	0
Flt Permitted		0.999										
Satd. Flow (perm)	0	2037	0	0	1716	0	0	0	1690	0	0	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		331			176			301			377	
Travel Time (s)		7.5			4.0			6.8			8.6	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	2%	0%	0%	3%	2%	0%	0%	0%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	3	271	0	0	424	626	0	0	562	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	274	0	0	1050	0	0	0	562	0	0	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	0.89	0.89	0.89	0.99	0.99	0.99	0.96	0.96	0.96	0.86	0.86	0.86
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Free			Free			Stop			Stop	
Intersection Summary												
Area Type:	Other											
Control Type: Unsignalized												
Internación Compaite Hillmati	CO 40/			10	بامريم اللا		n .					

ICU Level of Service B

Intersection 6.4
Int Delay, s/veh 6.4
Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR
Lane Configurations 4
Traffic Vol, veh/h 3 255 0 0 399 588 0 0 528 0 0 0
Future Vol, veh/h 3 255 0 0 399 588 0 0 528 0 0 0
Conflicting Peds, #/hr 0 0 0 0 0 0 0 0 0 0 0 0
Sign Control Free Free Free Free Free Stop Stop Stop Stop Stop Stop
RT Channelized None None None
Storage Length 0
Veh in Median Storage, # - 0 0 16983 -
Grade, % - 1 1 2 -
Peak Hour Factor 94 94 94 94 94 94 94 94 94 94 94 94
Heavy Vehicles, % 0 2 0 0 3 2 0 0 0 0 0
Mvmt Flow 3 271 0 0 424 626 0 0 562 0 0 0
Major/Minor Major1 Major2 Minor1
Conflicting Flow All 1050 0 0 271
Stage 1
Stage 2
Critical Hdwy 4.1 6.3
Critical Hdwy Stg 1
Critical Hdwy Stg 2
Follow-up Hdwy 2.2 3.3
Pot Cap-1 Maneuver 671 - 0 0 0 0 767
Stage 1 0 0 0 0 -
Stage 2 0 0 0 0 -
Platoon blocked, %
Mov Cap-1 Maneuver 671 0 767
Mov Cap-2 Maneuver 0 -
Stage 1 0 -
Stage 2 0 -
Approach EB WB NB
HCM Control Delay, s 0.1 0 21.4
HCM LOS C
Minor Lane/Major Mvmt NBLn1 EBL EBT WBT WBR
Capacity (veh/h) 767 671
HCM Lane V/C Ratio 0.732 0.005
HCM Control Delay (s) 21.4 10.4 0

	۶	→	•	•	←	4	1	†	~	/	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					ર્ન						ર્ન	
Traffic Volume (vph)	0	0	0	399	0	0	0	0	0	259	0	0
Future Volume (vph)	0	0	0	399	0	0	0	0	0	259	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	14	14	13	13	12
Grade (%)		0%			-1%			2%			1%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	0		0	0		0	0		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt												
Flt Protected					0.950						0.950	
Satd. Flow (prot)	0	0	0	0	1761	0	0	0	0	0	1819	0
Flt Permitted					0.950						0.950	
Satd. Flow (perm)	0	0	0	0	1761	0	0	0	0	0	1819	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		182			331			377			345	
Travel Time (s)		4.1			7.5			8.6			7.8	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	0%	3%	0%	0%	0%	0%	0%	2%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	0	0	0	429	0	0	0	0	0	278	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	0	0	0	429	0	0	0	0	0	278	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0	•		0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	0.99	0.99	0.99	1.01	0.93	0.93	0.96	0.96	1.01
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control	-	Free			Free			Stop			Stop	
Intersection Summary												
Area Type:	Other											
Control Type: Unsignalized												
Intersection Capacity Utilizati	on 43.1%			IC	CU Level	of Service	A					
Analysis Period (min) 15												

Int Dolay shop	25.4											
Int Delay, s/veh												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					- 4						- 4	
Traffic Vol, veh/h	0	0	0	399	0	0	0	0	0	259	0	0
Future Vol, veh/h	0	0	0	399	0	0	0	0	0	259	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	,# -	0	-	-	0	-	-	16974	-	-	0	-
Grade, %	-	0	-	-	-1	-	-	2	-	-	1	-
Peak Hour Factor	93	93	93	93	93	93	93	93	93	93	93	93
Heavy Vehicles, %	0	0	0	3	0	0	0	0	0	2	0	0
Mvmt Flow	0	0	0	429	0	0	0	0	0	278	0	0
Major/Minor			ı	Major2					N	/linor2		
Conflicting Flow All				0	0	0				858	858	_
Stage 1				-	-	-				858	858	_
Stage 2				_	_	_				000	0	_
Critical Hdwy				4.13	_	_				6.62	6.7	_
Critical Hdwy Stg 1				10	_	_				5.62	5.7	_
Critical Hdwy Stg 2				_	_	_				-	-	_
Follow-up Hdwy				2.227	_	_				3.518	4	_
Pot Cap-1 Maneuver					_	0				312	283	0
Stage 1				_	_	0				396	359	0
Stage 2				_	_	0				-	-	0
Platoon blocked, %					_	U						J
Mov Cap-1 Maneuver				_	_	_				312	0	_
Mov Cap-1 Maneuver				_	_	_				312	0	_
Stage 1						_				396	0	_
Stage 2				_	_	_				-	0	_
Olago Z											J	-
Approach				WB						SB		
HCM Control Delay, s										64.6		
HCM LOS										F		
Minor Lane/Major Mvmt	t	WBL	WBT :	SBLn1								
Capacity (veh/h)		-	-	312								
HCM Lane V/C Ratio		-	-	0.893								
HCM Control Delay (s)		-	-									
HCM Lane LOS		-	-	F								
HCM 95th %tile Q(veh)			_	8.3								

		4	\mathbf{x}	À	*	×	₹	ን	×	~	Ĺ	×	*
Traffic Volume (γph)	Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Traffic Volume (γph)	Lane Configurations		ર્ન	7	Ť	<u></u>	7	ň	^	7	Ť	^	7
Future Volume (vph) 171 6 207 147 32 350 313 767 35 62 725 124 126a Flow (vph)ph) 1900 1000 255		171		207			350			35	62		
Ideal Flow (ryphpi)		171	6	207		32	350	313	767	35	62	725	124
Lane Width (ft)													1900
Grade (%)				12	12	12	12	11	12	12	12	12	12
Storage Length (ft)			0%			0%			0%			0%	
Storage Lanes		0		250	0		225	680		250	400		250
Taper Length (ff)	Storage Lanes	0		1	1		1	1		1	1		1
Ped Bike Factor		25			25			86			86		
Ped Bike Factor		1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Filt Protected 0.954 0.950 0.950 0.950 0.950				0.99	1.00								
Satd. Flow (prot) 0 1956 1615 1770 1900 1615 1771 3574 1324 1805 3539 1599 Fil Permitted	Frt			0.850			0.850			0.850			0.850
Fit Permitted	Flt Protected		0.954		0.950			0.950			0.950		
Fit Permitted 0.710 0.577 0.950 0.95	Satd. Flow (prot)	0	1956	1615	1770	1900	1615	1711	3574	1324	1805	3539	1599
Page			0.710		0.577			0.950			0.950		
Page	Satd. Flow (perm)	0	1456	1594	1074	1900	1615	1711	3574	1324	1805	3539	1599
Satid. Flow (RTOR)				Yes			Yes			Yes			Yes
Link Speed (mph)				209			354			79			125
Link Distance (ft)			30			30			55			55	
Travel Time (s)	,		610			598			1191			735	
Confil Peds (#hr) Confil Bikes (#hr)			13.9			13.6			14.8				
Confile Bikes (#/hr) Peak Hour Factor 0.99				1	1								
Peak Hour Factor 0.99 0.													
Heavy Vehicles (%)		0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Bus Blockages (#/hr) 0 0 0 0 0 0 0 0 0	Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Parking (#/hr) Mid-Block Traffic (%) 0% 0% 0% 0% 0% 0% 0%	Heavy Vehicles (%)	2%	0%	0%	2%	0%	0%	2%	1%	22%	0%	2%	1%
Parking (#/hr) Mid-Block Traffic (%) 0% 0% 0% 0% 0% 0% 0%	. ,	0	0	0	0	0	0	0	0	0	0	0	0
Adj. Flow (vph) 173 6 209 148 32 354 316 775 35 63 732 125 Shared Lane Traffic (%) Lane Group Flow (vph) 0 179 209 148 32 354 316 775 35 63 732 125 Enter Blocked Intersection Low (vph) No Do No No No </td <td>Parking (#/hr)</td> <td></td>	Parking (#/hr)												
Shared Lane Traffic (%) Lane Group Flow (vph) 0 179 209 148 32 354 316 775 35 63 732 125			0%			0%			0%			0%	
Lane Group Flow (vph) 0 179 209 148 32 354 316 775 35 63 732 125 Enter Blocked Intersection No	Adj. Flow (vph)	173	6	209	148	32	354	316	775	35	63	732	125
Enter Blocked Intersection													
Enter Blocked Intersection		0	179	209	148	32	354	316	775	35	63	732	125
Median Width(fft) 12 12 12 12 12 Link Offset(fft) 0 0 0 0 0 Crosswalk Width(fft) 16 16 16 16 16 Two way Left Turn Lane 1.00 </td <td></td> <td>No</td>		No	No	No	No	No	No	No	No	No	No	No	No
Median Width(ft) 12 16 10 10 10 10 10 10 10 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Link Offset(ft) 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 Two way Left Turn Lane Headway Factor 1.00 0.88 1.00 1.00 1.00 1.04 1.00 1.00 1.00 1.00 Turning Speed (mph) 15 9 15 0 0 0													J
Crosswalk Width(ft) 16 16 16 16 16 16 16 Two way Left Turn Lane Turn Lane Headway Factor 1.00 0.88 1.00			0			0			0			0	
Two way Left Turn Lane Headway Factor 1.00 0.88 1.00						16						16	
Headway Factor 1.00 0.88 1.00													
Number of Detectors 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 2 1 1 2 1 2 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1.00	0.88	1.00	1.00	1.00	1.00	1.04	1.00	1.00	1.00	1.00	1.00
Number of Detectors 1 1 1 1 1 1 1 2 2 5 0	Turning Speed (mph)	15		9	15		9	15			15		9
Leading Detector (ft) 20 43 6 6 6 6 83 6 6 83 6 6 Trailing Detector (ft) 0 0 0 0 0 0 -5 0 0 -5 0 0 Turn Type Perm NA Perm Perm NA Perm Prot NA Perm Prot NA Perm Prot NA Perm <		1	1	1		1	1	2	1	1	2	1	1
Leading Detector (ft) 20 43 6 6 6 6 83 6 6 83 6 6 7 6 6 83 6 6 83 6 6 6 6 6 6 7<	Detector Template	Left											
Trailing Detector (ft) 0 0 0 0 0 0 0 -5 0 0 -5 0 0 Turn Type Perm NA Perm Prot NA Perm Prot NA Perm Prot NA Perm Prot NA Perm			43	6	6	6	6	83	6	6	83	6	6
Turn Type Perm NA Perm Perm NA Perm Prot NA Perm Perm Prot NA Perm Prot NA Perm Perm Prot NA Perm Perm <t< td=""><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>						0							
Protected Phases 3 3 6 1 2 5 Permitted Phases 3 3 3 3 1 5 Detector Phase 3 3 3 3 6 1 1 2 5 5			NA	Perm	Perm	NA	Perm	Prot		Perm	Prot	NA	Perm
Permitted Phases 3 3 3 3 1 5 Detector Phase 3 3 3 3 6 1 1 2 5 5	• • • • • • • • • • • • • • • • • • • •						·						
Detector Phase 3 3 3 3 3 6 1 1 2 5 5		3		3	3		3			1			5
			3			3		6	1	•	2	5	
	Switch Phase								-				

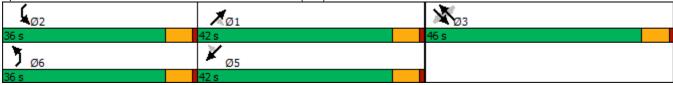
	₩.	\mathbf{x}	Ž	F	×	₹	7	×	~	Ĺ	K	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	2.0	10.0	10.0	2.0	10.0	10.0
Minimum Split (s)	31.0	31.0	31.0	31.0	31.0	31.0	16.0	42.0	42.0	16.0	42.0	42.0
Total Split (s)	46.0	46.0	46.0	46.0	46.0	46.0	36.0	42.0	42.0	36.0	42.0	42.0
Total Split (%)	37.1%	37.1%	37.1%	37.1%	37.1%	37.1%	29.0%	33.9%	33.9%	29.0%	33.9%	33.9%
Maximum Green (s)	40.0	40.0	40.0	40.0	40.0	40.0	30.0	36.0	36.0	30.0	36.0	36.0
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	6.0	6.0	6.0	6.0	6.0	6.0	2.0	6.0	6.0	2.0	6.0	6.0
Minimum Gap (s)	3.0	3.0	3.0	3.0	3.0	3.0	2.0	3.0	3.0	2.0	4.0	4.0
Time Before Reduce (s)	20.0	20.0	20.0	20.0	20.0	20.0	0.0	20.0	20.0	0.0	20.0	20.0
Time To Reduce (s)	10.0	10.0	10.0	10.0	10.0	10.0	0.0	10.0	10.0	0.0	10.0	10.0
Recall Mode	Min	Min	Min	Min	Min	Min	None	Max	Max	None	Max	Max
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		26.1	26.1	26.1	26.1	26.1	23.1	54.2	54.2	8.3	36.6	36.6
Actuated g/C Ratio		0.25	0.25	0.25	0.25	0.25	0.22	0.52	0.52	0.08	0.35	0.35
v/c Ratio		0.49	0.38	0.55	0.07	0.53	0.83	0.42	0.05	0.44	0.59	0.19
Control Delay		38.6	6.4	42.8	30.5	6.5	58.9	18.5	0.1	58.8	32.3	6.2
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		38.6	6.4	42.8	30.5	6.5	58.9	18.5	0.1	58.8	32.3	6.2
LOS		D	Α	D	С	Α	Е	В	Α	Е	С	Α
Approach Delay		21.3			18.0			29.3			30.6	
Approach LOS		С			В			С			С	
Queue Length 50th (ft)		103	0	87	16	0	206	176	0	42	218	0
Queue Length 95th (ft)		179	55	160	42	69	#337	276	0	92	335	45
Internal Link Dist (ft)		530			518			1111			655	
Turn Bay Length (ft)			250			225	680		250	400		250
Base Capacity (vph)		569	750	419	742	846	501	1860	726	529	1245	643
Starvation Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio		0.31	0.28	0.35	0.04	0.42	0.63	0.42	0.05	0.12	0.59	0.19

Area Type: Other

Cycle Length: 124

Actuated Cycle Length: 104.1

Natural Cycle: 90


Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.83

Intersection Signal Delay: 26.6 Intersection Capacity Utilization 68.8% ICU Level of Service C

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Splits and Phases: 13: NYS Route 22 & North Castle Drive (IBM)/NYS Route 128

	۶	⊸	\rightarrow	•	†	1	(w	ļ	4	€	✓	
Lane Group	EBL2	EBL	EBR	NBL	NBT	NBR	SBL	SBT	SBR	SWL	SWR	
Lane Configurations		Ä	7		ર્ન	7		414		444		
Traffic Volume (vph)	8	2	16	5	1214	285	0	551	5	255	2	
Future Volume (vph)	8	2	16	5	1214	285	0	551	5	255	2	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Lane Width (ft)	10	10	10	11	11	11	10	10	10	11	11	
Grade (%)		0%			4%			1%		0%		
Storage Length (ft)		0	0	0		0	0		0	0	0	
Storage Lanes		1	1	0		1	0		0	2	0	
Taper Length (ft)		25		25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	*0.67	*0.67	*0.67	0.97	0.95	
Ped Bike Factor					1.00			1.00		1.00		
Frt			0.850			0.850		0.999		0.999		
Flt Protected		0.950								0.953		
Satd. Flow (prot)	0	1685	1507	0	1782	1500	0	2316	0	3294	0	
Flt Permitted		0.950			0.997					0.953		
Satd. Flow (perm)	0	1685	1507	0	1777	1500	0	2316	0	3294	0	
Right Turn on Red			Yes			Yes			No			
Satd. Flow (RTOR)			63			300						
Link Speed (mph)		30			35			35		35		
Link Distance (ft)		155			796			597		511		
Travel Time (s)		3.5			15.5			11.6		10.0		
Confl. Peds. (#/hr)				2					2		2	
Confl. Bikes (#/hr)												
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	
Heavy Vehicles (%)	0%	0%	0%	0%	1%	2%	0%	2%	0%	3%	0%	
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%		0%		
Adj. Flow (vph)	8	2	17	5	1278	300	0	580	5	268	2	
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	10	17	0	1283	300	0	585	0	270	0	
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Right	
Median Width(ft)		10			0			0		22		
Link Offset(ft)		0			0			0		0		
Crosswalk Width(ft)		16			16			16		16		
Two way Left Turn Lane												
Headway Factor	1.09	1.09	1.09	1.07	1.07	1.07	1.10	1.10	1.10	1.04	1.04	
Turning Speed (mph)	15	15	9	15		9	15		9	15	9	
Number of Detectors	1	1	1	1	2	1	1	2		1		
Detector Template	Left			Left			Left					
Leading Detector (ft)	20	35	35	20	83	35	20	83		35		
Trailing Detector (ft)	0	-5	-5	0	-5	-5	0	-5		-5		
Turn Type	Perm	Prot	Perm	Perm	NA	pm+ov		NA		Prot		
Protected Phases		3			1	4		5		4		
Permitted Phases	3		3	1		1	5					
Detector Phase	3	3	3	1	1	4	5	5		4		
Switch Phase												

	•	⊸ ≉	\rightarrow	4	†	7	4	ļ	4	€	✓
Lane Group	EBL2	EBL	EBR	NBL	NBT	NBR	SBL	SBT	SBR	SWL	SWR
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	
Minimum Split (s)	10.0	10.0	10.0	11.0	11.0	11.0	11.0	11.0		11.0	
Total Split (s)	20.0	20.0	20.0	106.0	106.0	31.0	106.0	106.0		31.0	
Total Split (%)	12.7%	12.7%	12.7%	67.5%	67.5%	19.7%	67.5%	67.5%		19.7%	
Maximum Green (s)	15.0	15.0	15.0	100.0	100.0	25.0	100.0	100.0		25.0	
Yellow Time (s)	4.0	4.0	4.0	5.0	5.0	5.0	5.0	5.0		5.0	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	
Lost Time Adjust (s)		0.0	0.0		0.0	0.0		0.0		0.0	
Total Lost Time (s)		5.0	5.0		6.0	6.0		6.0		6.0	
Lead/Lag	Lag	Lag	Lag			Lead				Lead	
Lead-Lag Optimize?	Yes	Yes	Yes			Yes				Yes	
Vehicle Extension (s)	5.0	5.0	5.0	5.0	5.0	3.0	5.0	5.0		3.0	
Minimum Gap (s)	5.0	5.0	5.0	5.0	5.0	3.0	5.0	5.0		3.0	
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	
Recall Mode	None	None	None	Max	Max	None	Max	Max		None	
Walk Time (s)											
Flash Dont Walk (s)											
Pedestrian Calls (#/hr)											
Act Effct Green (s)		8.6	8.6		100.6	126.3		100.6		17.0	
Actuated g/C Ratio		0.06	0.06		0.73	0.92		0.73		0.12	
v/c Ratio		0.10	0.11		0.99	0.21		0.35		0.67	
Control Delay		67.1	1.5		42.8	0.5		8.6		66.7	
Queue Delay		0.0	0.0		0.0	0.0		0.0		0.0	
Total Delay		67.1	1.5		42.8	0.5		8.6		66.7	
LOS		Е	Α		D	Α		Α		Е	
Approach Delay		25.8			34.8			8.6		66.7	
Approach LOS		С			С			Α		Ε	
Queue Length 50th (ft)		9	0		~1267	0		147		125	
Queue Length 95th (ft)		30	0		#1671	11		229		176	
Internal Link Dist (ft)		75			716			517		431	
Turn Bay Length (ft)											
Base Capacity (vph)		184	221		1298	1425		1692		601	
Starvation Cap Reductn		0	0		0	0		0		0	
Spillback Cap Reductn		0	0		0	0		0		0	
Storage Cap Reductn		0	0		0	0		0		0	
Reduced v/c Ratio		0.05	0.08		0.99	0.21		0.35		0.45	
Intersection Summary											
Area Type:	Other										

Cycle Length: 157

Actuated Cycle Length: 137.7

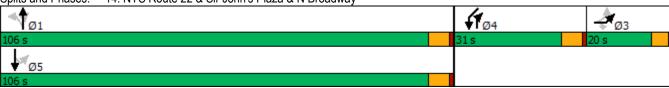
Natural Cycle: 110

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.99

Intersection Signal Delay: 32.0

Intersection Capacity Utilization 93.5%


Analysis Period (min) 15

* User Entered Value

Intersection LOS: C ICU Level of Service F

- Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 14: NYS Route 22 & Sir John's Plaza & N Broadway

Year 2024 No-Build Traffic Volumes Weekday Peak PM Hour 15: Central Westchester Expressway & NYS Route 22 & Reservoir Road & Church Street (20/20/2020)

	•	-	•	•	—	*_	•	†	<i>></i>	/	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	WBR2	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ň	f)			ર્ન		7	^	7	ħ	∱ }	
Traffic Volume (vph)	315	148	95	79	142	3	115	1182	129	75	581	207
Future Volume (vph)	315	148	95	79	142	3	115	1182	129	75	581	207
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	11	12	12	12	12	11	11	12	12	12
Grade (%)		2%			2%			4%			-6%	
Storage Length (ft)	115		0	0		180			160	110		0
Storage Lanes	1		0	0		1			1	1		0
Taper Length (ft)	86			25						86		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	0.95
Ped Bike Factor					1.00							
Frt		0.941			0.998		0.850		0.850		0.961	
Flt Protected					0.983					0.950		
Satd. Flow (prot)	1732	1688	0	0	1810	0	1599	3420	1515	1859	3520	0
Flt Permitted					0.983					0.078		
Satd. Flow (perm)	1732	1688	0	0	1810	0	1599	3420	1515	153	3520	0
Right Turn on Red			No				Yes		Yes			
Satd. Flow (RTOR)							102		76			
Link Speed (mph)		35			30			45			35	
Link Distance (ft)		532			475			529			778	
Travel Time (s)		10.4			10.8			8.0			15.2	
Confl. Peds. (#/hr)						2						
Confl. Bikes (#/hr)												
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	5%	1%	2%	0%	3%	0%	0%	0%	1%	0%	1%	3%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	325	153	98	81	146	3	119	1219	133	77	599	213
Shared Lane Traffic (%)												
Lane Group Flow (vph)	325	251	0	0	230	0	119	1219	133	77	812	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Right	Left	Right	Left	Left	Right
Median Width(ft)		11			11	J	J	12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.06	1.06	1.06	1.01	1.01	1.01	1.01	1.07	1.07	0.96	0.96	0.96
Turning Speed (mph)	15		9	15		9	9		9	15		9
Number of Detectors	1	2		1	2		1	2	1	1	2	
Detector Template				Left								
Leading Detector (ft)	35	83		20	83		35	83	35	35	83	
Trailing Detector (ft)	-5	-5		0	-5		-5	-5	-5	-5	-5	
Turn Type	Split	NA		Split	NA		pm+ov	NA	pm+ov	pm+pt	NA	
Protected Phases	3	3		4	4		5	6	4	5	2	
Permitted Phases							4		6	2	_	
Detector Phase	3	3		4	4		5	6	4	5	2	
Switch Phase											_	

Synchro 10 Report Page 38 18002018A - N.T.

	Ø7
Lane Configurations	
Traffic Volume (vph)	
Future Volume (vph)	
Ideal Flow (vphpl)	
Lane Width (ft)	
Grade (%)	
Storage Length (ft)	
Storage Lanes	
Taper Length (ft)	
Lane Util. Factor	
Ped Bike Factor	
Frt	
Flt Protected	
Satd. Flow (prot)	
Flt Permitted	
Satd. Flow (perm)	
Right Turn on Red	
Satd. Flow (RTOR)	
Link Speed (mph)	
Link Distance (ft)	
Travel Time (s)	
Confl. Peds. (#/hr)	
Confl. Bikes (#/hr)	
Peak Hour Factor	
Growth Factor	
Heavy Vehicles (%)	
Bus Blockages (#/hr)	
Parking (#/hr)	
Mid-Block Traffic (%)	
Adj. Flow (vph)	
Shared Lane Traffic (%)	
Lane Group Flow (vph)	
Enter Blocked Intersection	
Lane Alignment	
Median Width(ft)	
Link Offset(ft)	
Crosswalk Width(ft)	
Two way Left Turn Lane	
Headway Factor	
Turning Speed (mph)	
Number of Detectors	
Detector Template	
Leading Detector (ft)	
Trailing Detector (ft)	
Turn Type	7
Protected Phases	7
Permitted Phases	
Detector Phase	
Switch Phase	

Synchro 10 Report Page 39 18002018A - N.T.

15: Central Westchester Expressway & NYS Route 22 & Reservoir Road & Church Street/20/2020

	۶	→	•	•	←	*_	•	†	/	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	WBR2	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	39.0	39.0		11.0	11.0		11.0	11.0	11.0	11.0	31.0	
Total Split (s)	51.0	51.0		36.0	36.0		26.0	51.0	36.0	26.0	77.0	
Total Split (%)	25.5%	25.5%		18.0%	18.0%		13.0%	25.5%	18.0%	13.0%	38.5%	
Maximum Green (s)	45.0	45.0		30.0	30.0		20.0	45.0	30.0	20.0	71.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0			0.0		0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0			6.0		6.0	6.0	6.0	6.0	6.0	
Lead/Lag	Lead	Lead		Lag	Lag		Lead	Lag	Lag	Lead		
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes	Yes	Yes		
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Minimum Gap (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Time Before Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Recall Mode	None	None		None	None		None	Min	None	None	Min	
Walk Time (s)	8.0	8.0									8.0	
Flash Dont Walk (s)	25.0	25.0									17.0	
Pedestrian Calls (#/hr)	6	6									0	
Act Effct Green (s)	38.6	38.6			27.0		38.5	45.2	72.2	62.8	62.8	
Actuated g/C Ratio	0.21	0.21			0.15		0.21	0.25	0.40	0.34	0.34	
v/c Ratio	0.89	0.70			0.86		0.29	1.44	0.21	0.48	0.67	
Control Delay	96.0	78.6			105.2		10.0	250.7	9.1	53.5	55.5	
Queue Delay	0.0	0.0			0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay	96.0	78.6			105.2		10.0	250.7	9.1	53.5	55.5	
LOS	F	Е			F		Α	F	Α	D	Е	
Approach Delay		88.4			72.8			226.9			55.3	
Approach LOS		F			Ε			F			Е	
Queue Length 50th (ft)	391	288			280		12	~1097	22	67	463	
Queue Length 95th (ft)	#552	407			#436		55	#1294	51	114	553	
Internal Link Dist (ft)		452			395			449			698	
Turn Bay Length (ft)	115						180		160	110		
Base Capacity (vph)	428	417			298		488	846	669	240	1375	
Starvation Cap Reductn	0	0			0		0	0	0	0	0	
Spillback Cap Reductn	0	0			0		0	0	0	0	0	
Storage Cap Reductn	0	0			0		0	0	0	0	0	
Reduced v/c Ratio	0.76	0.60			0.77		0.24	1.44	0.20	0.32	0.59	
Intono action Common .												

Intersection Summary

Area Type: Other

Cycle Length: 200

Actuated Cycle Length: 182.7

Natural Cycle: 150

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 1.44 Intersection Signal Delay: 136.5

Intersection Capacity Utilization 86.3%

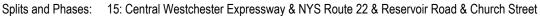
Intersection LOS: F ICU Level of Service E

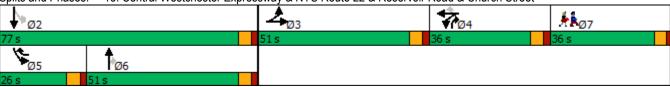
Analysis Period (min) 15

Synchro 10 Report Page 40

[~] Volume exceeds capacity, queue is theoretically infinite.

Lane Group	Ø7
Minimum Initial (s)	8.0
Minimum Split (s)	36.0
Total Split (s)	36.0
Total Split (%)	18%
	31.0
Maximum Green (s)	31.0
Yellow Time (s)	1.5
All-Red Time (s)	1.5
Lost Time Adjust (s)	
Total Lost Time (s)	
Lead/Lag	
Lead-Lag Optimize?	0.0
Vehicle Extension (s)	3.0
Minimum Gap (s)	3.0
Time Before Reduce (s)	0.0
Time To Reduce (s)	0.0
Recall Mode	Ped
Walk Time (s)	8.0
Flash Dont Walk (s)	23.0
Pedestrian Calls (#/hr)	2
Act Effct Green (s)	
Actuated g/C Ratio	
v/c Ratio	
Control Delay	
Queue Delay	
Total Delay	
LOS	
Approach Delay	
Approach LOS	
Queue Length 50th (ft)	
Queue Length 95th (ft)	
Internal Link Dist (ft)	
Turn Bay Length (ft)	
Base Capacity (vph)	
Starvation Cap Reductn	
Spillback Cap Reductn	
Storage Cap Reductn	
Reduced v/c Ratio	
Internation Commerce	
Intersection Summary	


Synchro 10 Report Page 41 18002018A - N.T.

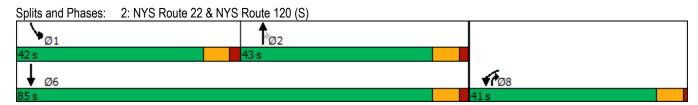

15: Central Westchester Expressway & NYS Route 22 & Reservoir Road & Church Street/20/2020

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

18002018A - N.T. Page 42


	ሻ	†	↓	W	•	>
Lane Group	NBL	NBT	SBT	SBR	SEL	SER
Lane Configurations	ሻ	† †	† †	7	ሻ	7
Traffic Volume (vph)	164	361	337	234	184	198
Future Volume (vph)	164	361	337	234	184	198
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1900	1900	1900	1900	1900	1900
Grade (%)	10	0%	0%	10	0%	10
Storage Length (ft)	250	0 70	0 /0	500	250	0
	1			1	230	1
Storage Lanes	86			ı	86	l
Taper Length (ft)		0.05	0.05	4.00		4.00
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00
Ped Bike Factor				0.050		0.050
Frt				0.850	0.055	0.850
Flt Protected	0.950				0.950	
Satd. Flow (prot)	1620	3209	3240	1436	1560	1449
Flt Permitted	0.950				0.950	
Satd. Flow (perm)	1620	3209	3240	1436	1560	1449
Right Turn on Red				Yes		Yes
Satd. Flow (RTOR)				244		206
Link Speed (mph)		55	55		30	
Link Distance (ft)		767	1064		872	
Travel Time (s)		9.5	13.2		19.8	
Confl. Peds. (#/hr)		0.0	10.2		10.0	
Confl. Bikes (#/hr)						
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96
Growth Factor	100%	100%	100%	100%	100%	100%
	4%	5%	4%	5%	8%	4%
Heavy Vehicles (%)						
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)		00/	201		201	
Mid-Block Traffic (%)		0%	0%	011	0%	
Adj. Flow (vph)	171	376	351	244	192	206
Shared Lane Traffic (%)						
Lane Group Flow (vph)	171	376	351	244	192	206
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width(ft)		10	15		10	
Link Offset(ft)		0	0		0	
Crosswalk Width(ft)		16	16		16	
Two way Left Turn Lane		, 0	, 0		10	
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (mph)	1.09	1.00	1.00	9	1.03	9
Number of Detectors	1	2	2	1	2	0
	I	۷	۷	ı		U
Detector Template	25	404	404	^	101	^
Leading Detector (ft)	35	104	104	0	104	0
Trailing Detector (ft)	-5	0	0	_ 0	0	_ 0
Turn Type	Prot	NA	NA	Free	Prot	Free
Protected Phases	2	5	1		3	
Permitted Phases				Free		Free
Detector Phase	2	5	1		3	
Switch Phase						

	ሻ	†	Ţ	₩ J	•	<u> </u>
Lane Group	NBL	NBT	SBT	SBR	SEL	SER
•			12.0	SBR	10.0	SER
Minimum Initial (s)	12.0	12.0 36.0			26.0	
Minimum Split (s)	36.0 41.0	36.0 82.0	36.0 41.0		41.0	
Total Split (s)						
Total Split (%)	33.3%	66.7%	33.3%		33.3%	
Maximum Green (s)	34.0	76.0	34.0		34.0	
Yellow Time (s)	5.0	4.0	5.0		5.0	
All-Red Time (s)	2.0	2.0	2.0		2.0	
Lost Time Adjust (s)	0.0	0.0	0.0		0.0	
Total Lost Time (s)	7.0	6.0	7.0		7.0	
Lead/Lag	Lead		Lag			
Lead-Lag Optimize?	Yes	0.0	Yes		2.2	
Vehicle Extension (s)	6.0	6.0	6.0		6.0	
Minimum Gap (s)	4.0	4.0	4.0		4.0	
Time Before Reduce (s)	20.0	20.0	20.0		20.0	
Time To Reduce (s)	8.0	8.0	8.0		5.0	
Recall Mode	None	Min	Min		None	
Walk Time (s)						
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)						
Act Effct Green (s)	16.8	42.4	17.3	73.5	17.7	73.5
Actuated g/C Ratio	0.23	0.58	0.24	1.00	0.24	1.00
v/c Ratio	0.46	0.20	0.46	0.17	0.51	0.14
Control Delay	30.8	8.1	27.4	0.3	30.9	0.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	30.8	8.1	27.4	0.3	30.9	0.2
LOS	С	Α	С	Α	С	Α
Approach Delay		15.2	16.3		15.0	
Approach LOS		В	В		В	
Queue Length 50th (ft)	66	37	70	0	74	0
Queue Length 95th (ft)	149	73	135	0	163	0
Internal Link Dist (ft)		687	984		792	
Turn Bay Length (ft)	250	301	301	500	250	
Base Capacity (vph)	772	3053	1545	1436	744	1449
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductin	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.22	0.12	0.23	0.17	0.26	0.14
	0.22	0.12	U.Z3	0.17	0.20	0.14
Intersection Summary	Other					
Area Type:	Other					
Cycle Length: 123	-					
Actuated Cycle Length: 73.	5					
Natural Cycle: 100						
Control Type: Actuated-Un	coordinated					
Maximum v/c Ratio: 0.51						
Intersection Signal Delay: 1					ntersection	
Intersection Capacity Utilization	ation 46.9%			IC	CU Level o	of Service A
Analysis Period (min) 15						

	•	•	†	<i>></i>	>	ţ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		^	7	ሻሻ	^
Traffic Volume (vph)	45	0	268	54	251	284
Future Volume (vph)	45	0	268	54	251	284
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1900	1900	1900	1900	1900	1900
	-8%	12	-2%	10	11	-1%
Grade (%)		0	-2%	000	045	-1%
Storage Length (ft)	0	0		200	215	
Storage Lanes	1	0		1	2	
Taper Length (ft)	25	4			86	
Lane Util. Factor	1.00	1.00	0.95	1.00	0.97	0.95
Ped Bike Factor						
Frt				0.850		
Flt Protected	0.950				0.950	
Satd. Flow (prot)	1823	0	3210	1478	3209	3372
Flt Permitted	0.950				0.950	
Satd. Flow (perm)	1823	0	3210	1478	3209	3372
Right Turn on Red	1020	Yes	JL 10	Yes	3200	301 L
Satd. Flow (RTOR)		169		58		
	55		50	30		50
Link Speed (mph)						
Link Distance (ft)	334		905			488
Travel Time (s)	4.1		12.3			6.7
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	3%	0%	6%	3%	6%	4%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	48	0	288	58	270	305
Shared Lane Traffic (%)	70	U	200	00	210	303
	48	0	288	58	270	305
Lane Group Flow (vph)						
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12		22			22
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane						
Headway Factor	0.95	0.95	1.08	1.08	1.04	1.04
Turning Speed (mph)	15	9		9	15	
Number of Detectors	1		2	1	1	2
Detector Template	Left		Thru	Right	Left	Thru
Leading Detector (ft)	20		100	20	20	100
Trailing Detector (ft)	0		0	0	0	0
• ,						
Turn Type	Prot		NA	pm+ov	Prot	NA
Protected Phases	8		2	8	1	6
Permitted Phases				2		
Detector Phase	8		2	8	1	6
Switch Phase						

	€	•	†	<i>></i>	/	+
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Minimum Initial (s)	10.0		12.0	10.0	12.0	12.0
Minimum Split (s)	26.0		36.0	26.0	36.0	36.0
Total Split (s)	41.0		43.0	41.0	42.0	85.0
Total Split (%)	32.5%		34.1%	32.5%	33.3%	67.5%
Maximum Green (s)	35.0		36.0	35.0	35.0	78.0
Yellow Time (s)	5.0		5.0	5.0	5.0	5.0
All-Red Time (s)	1.0		2.0	1.0	2.0	2.0
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0		7.0	6.0	7.0	7.0
Lead/Lag	0.0		Lag	0.0	Lead	7.0
Lead-Lag Optimize?			Yes		Yes	
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0
Minimum Gap (s)	3.0		3.0	3.0	3.0	3.0
Time Before Reduce (s)	0.0		0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0		0.0	0.0	0.0	0.0
\ /						
Recall Mode	None		Min	None	Min	Min
Walk Time (s)						
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)	40.0		40.4	00.0	40.4	20.0
Act Effct Green (s)	10.2		12.4	29.8	12.4	33.8
Actuated g/C Ratio	0.20		0.24	0.58	0.24	0.66
v/c Ratio	0.13		0.37	0.07	0.35	0.14
Control Delay	19.9		19.2	2.4	19.1	5.2
Queue Delay	0.0		0.0	0.0	0.0	0.0
Total Delay	19.9		19.2	2.4	19.1	5.2
LOS	В		В	Α	В	Α
Approach Delay	19.9		16.4			11.7
Approach LOS	В		В			В
Queue Length 50th (ft)	13		41	0	38	21
Queue Length 95th (ft)	37		72	12	67	35
Internal Link Dist (ft)	254		825			408
Turn Bay Length (ft)				200	215	
Base Capacity (vph)	1275		2310	1453	2245	3372
Starvation Cap Reductn	0		0	0	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductn	0		0	0	0	0
Reduced v/c Ratio	0.04		0.12	0.04	0.12	0.09
Intersection Summary						
Area Type:	Other					
Cycle Length: 126	0 (110)					
Actuated Cycle Length: 51	1 1					
Natural Cycle: 100						
Control Type: Semi Act-Ur	ncoord					
Maximum v/c Ratio: 0.37	iicooiu					
	12.0			l.	atorecatio	n I Oc. D
Intersection Signal Delay:					ntersectio	
Intersection Capacity Utiliz	zation 45.0%			IC	JU Level	of Service
Analysis Period (min) 15						

	۶	→	*	•	←	4	1	†	~	/	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					f)			4				
Traffic Volume (vph)	0	0	0	0	14	1	1	255	6	0	0	0
Future Volume (vph)	0	0	0	0	14	1	1	255	6	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	13	12	12	12	12
Grade (%)		0%			-5%			-7%			0%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	0		0	0		0	0		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt					0.992			0.997				
Flt Protected												
Satd. Flow (prot)	0	0	0	0	1797	0	0	1962	0	0	0	0
Flt Permitted												
Satd. Flow (perm)	0	0	0	0	1797	0	0	1962	0	0	0	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		124			297			300			404	
Travel Time (s)		2.8			6.8			6.8			9.2	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	0%	0%	8%	0%	100%	3%	0%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	0	0	0	0	16	1	1	283	7	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	0	0	0	17	0	0	291	0	0	0	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	0.97	0.97	0.97	0.96	0.92	0.96	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15	_	9	15		9
Sign Control		Stop			Stop			Free			Stop	
Intersection Summary												
	Other											
Control Type: Unsignalized												
Intersection Capacity Utilizati	on 23.8%			IC	CU Level	of Service	A					
Analysis Period (min) 15												

Synchro 10 Report Page 7

Intersection												
Int Delay, s/veh	0.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					î,			4				
Traffic Vol, veh/h	0	0	0	0	14	1	1	255	6	0	0	0
Future Vol, veh/h	0	0	0	0	14	1	1	255	6	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	<u>-</u>	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	2	-	-	0	-	-	0	-	-	16965	-
Grade, %	-	0	-	-	-5	-	-	-7	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	0	0	0	0	8	0	100	3	0	0	0	0
Mvmt Flow	0	0	0	0	16	1	1	283	7	0	0	0
Major/Minor			ı	Minor1		N	//ajor1					
Conflicting Flow All				-	289	287	0	0	0			
Stage 1				_	289	-	-	-	-			
Stage 2				_	0	_	_	_	_			
Critical Hdwy				-	5.58	5.7	5.1	-	-			
Critical Hdwy Stg 1				_	4.58	-	-	_	_			
Critical Hdwy Stg 2				_	-	-	-	_	-			
Follow-up Hdwy				-	4.072	3.3	3.1	_	_			
Pot Cap-1 Maneuver				0	662	788	-	-	-			
Stage 1				0	718	-	-	-	-			
Stage 2				0	-	-	-	-	-			
Platoon blocked, %								-	-			
Mov Cap-1 Maneuver				-	0	788	-	-	-			
Mov Cap-2 Maneuver				-	0	-	-	-	-			
Stage 1				-	0	-	-	-	-			
Stage 2				-	0	-	-	-	-			
Approach				WB			NB					
HCM Control Delay, s				9.7								
HCM LOS				Α								
Minor Lane/Major Mvmt		NBL	NBT	NBRV	VBLn1							
Capacity (veh/h)		-	-	_								
HCM Lane V/C Ratio		-	-	-	0.021							
HCM Control Delay (s)		-	-	-	9.7							
HCM Lane LOS		-	-	-	Α							
HCM 95th %tile Q(veh)		-	-	-	0.1							
,												

	۶	→	•	•	•	•	•	†	~	/	ţ	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્ન	7		ર્ન	7	7	†	7	7	†	7
Traffic Volume (vph)	18	Ō	18	6	Ō	4	16	285	3	4	261	39
Future Volume (vph)	18	0	18	6	0	4	16	285	3	4	261	39
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (%)		4%			-1%			7%			-4%	
Storage Length (ft)	0		315	0		125	280		445	150		275
Storage Lanes	0		1	0		1	1		1	1		1
Taper Length (ft)	25			25			86			86		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor							1.00					0.98
Frt			0.850			0.850			0.850			0.850
Flt Protected		0.950			0.950		0.950			0.950		
Satd. Flow (prot)	0	1769	1583	0	1814	1623	1742	1798	1558	1841	1828	1647
Flt Permitted				•			0.577		,,,,,	0.577		
Satd. Flow (perm)	0	1862	1583	0	1909	1623	1056	1798	1558	1118	1828	1622
Right Turn on Red	•		Yes			Yes			Yes		.020	Yes
Satd. Flow (RTOR)			37			37			83			83
Link Speed (mph)		30	•		30	0.		55			55	
Link Distance (ft)		601			392			1478			1166	
Travel Time (s)		13.7			8.9			18.3			14.5	
Confl. Peds. (#/hr)		10.7			0.0		4	10.0				4
Confl. Bikes (#/hr)							•					•
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	2%	0%	0%	6%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	19	0	19	6	0	4	17	300	3	4	275	41
Shared Lane Traffic (%)				•		•	••	000	•	•	2.0	
Lane Group Flow (vph)	0	19	19	0	6	4	17	300	3	4	275	41
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Lon	0	i ugiit	20.0	0	rugiit	2010	12	rugiit	2010	12	i tigitt
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.03	1.03	1.03	0.99	0.99	0.99	1.05	1.05	1.05	0.97	0.97	0.97
Turning Speed (mph)	15	1.00	9	15	0.55	9	15	1.00	9	15	0.57	9
Number of Detectors	1	2	1	1	2	1	1	2	1	1	2	1
Detector Template	Left	2	'	Left	2	ı ı	ı ı		Į.	Į.		!
Leading Detector (ft)	20	83	35	20	83	35	35	83	35	35	83	35
Trailing Detector (ft)	0	-5	-5	0	-5	-5	-5	-5	-5	-5	-5	-5
Turn Type	Perm	NA	pm+ov	Perm	NA	pm+ov	pm+pt	NA	Perm		NA	Perm
Protected Phases	i- Cilli	NA 8	pm+ov 1	FEIIII	1NA 4	pm+ov 5	рпі+рі 1	1NA 6	r ellli	pm+pt 5	2	r ellli
Permitted Phases	8	Ö	8	4	4	4	6	U	6	2	Z	2
	8	8	1	4	4		1	6	6	5	2	2
Detector Phase	ď	ď	T	4	4	5		Ь	р	5	2	2
Switch Phase												

	۶	→	•	•	←	•	4	†	/	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	5.0	3.0	5.0	5.0	3.0	3.0	5.0	5.0	3.0	5.0	5.0
Minimum Split (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	12.0	12.0	10.0	12.0	12.0
Total Split (s)	45.0	45.0	27.0	45.0	45.0	27.0	27.0	47.0	47.0	27.0	47.0	47.0
Total Split (%)	37.8%	37.8%	22.7%	37.8%	37.8%	22.7%	22.7%	39.5%	39.5%	22.7%	39.5%	39.5%
Maximum Green (s)	40.0	40.0	20.0	40.0	40.0	20.0	20.0	40.0	40.0	20.0	40.0	40.0
Yellow Time (s)	4.0	4.0	5.0	4.0	4.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	1.0	1.0	2.0	1.0	1.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		5.0	7.0		5.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
Lead/Lag			Lead			Lead	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?			Yes			Yes	Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0	2.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Minimum Gap (s)	3.0	3.0	2.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Recall Mode	None	None	None	None	None	None	None	Max	Max	None	Max	Max
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		6.6	7.0		6.3	6.9	50.0	55.1	55.1	48.4	51.1	51.1
Actuated g/C Ratio		0.11	0.12		0.10	0.11	0.83	0.91	0.91	0.80	0.85	0.85
v/c Ratio		0.09	0.09		0.03	0.02	0.02	0.18	0.00	0.00	0.18	0.03
Control Delay		26.3	4.5		26.2	0.2	1.9	3.1	0.0	2.2	4.1	0.6
Queue Delay		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		26.3	4.5		26.2	0.2	1.9	3.1	0.0	2.2	4.1	0.6
LOS		С	Α		С	Α	Α	Α	Α	Α	Α	Α
Approach Delay		15.4			15.8			3.0			3.6	
Approach LOS		В	_		В	_		Α	_		Α	_
Queue Length 50th (ft)		5	0		2	0	1	0	0	0	0	0
Queue Length 95th (ft)		26	9		13	0	6	108	0	2	99	4
Internal Link Dist (ft)		521			312			1398		4-0	1086	
Turn Bay Length (ft)		1055	315		1000	125	280	1000	445	150	4540	275
Base Capacity (vph)		1257	614		1288	629	1124	1639	1428	1189	1548	1386
Starvation Cap Reductn		0	0		0	0	0	0	0	0	0	0
Spillback Cap Reductn		0	0		0	0	0	0	0	0	0	0
Storage Cap Reductn		0	0		0	0	0	0	0	0	0	0
Reduced v/c Ratio		0.02	0.03		0.00	0.01	0.02	0.18	0.00	0.00	0.18	0.03
Intersection Summary												
Area Tyne:	Other											

Area Type: Other

Cycle Length: 119

Actuated Cycle Length: 60.4

Natural Cycle: 40

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.18 Intersection Signal Delay: 4.2

Intersection Capacity Utilization 38.3%

Intersection LOS: A ICU Level of Service A

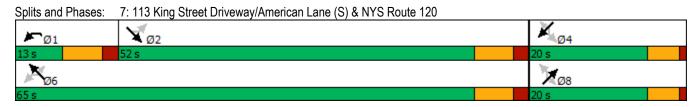
Analysis Period (min) 15

Synchro 10 Report 18002018A - N.T. Page 10

	•	4	†	~	>	ţ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ሻ	7	†	7	ሻ	†
Traffic Volume (vph)	11	53	252	0	35	251
Future Volume (vph)	11	53	252	0	35	251
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	12	12	10	10
Grade (%)	-3%		2%			-1%
Storage Length (ft)	0	0		15	175	
Storage Lanes	1	1		1	1	
Taper Length (ft)	25	1.00	1.00	1.00	86	1.00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor Frt		0.850				
Flt Protected	0.950	0.050			0.950	
Satd. Flow (prot)	1771	1585	1826	1881	1644	1666
Flt Permitted	0.950	1000	1020	1001	0.950	1000
Satd. Flow (perm)	1771	1585	1826	1881	1644	1666
Link Speed (mph)	25	1000	55	1301		55
Link Distance (ft)	589		993			1478
Travel Time (s)	16.1		12.3			18.3
Confl. Peds. (#/hr)	1	1		1	1	
Confl. Bikes (#/hr)						
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	3%	0%	3%	7%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	12	56	265	0	37	264
Shared Lane Traffic (%)						001
Lane Group Flow (vph)	12	56	265	0	37	264
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	11		12			12
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane Headway Factor	1.02	1.02	1.01	1.01	1.09	1.09
Turning Speed (mph)	1.02	1.02	1.01	1.01	1.09	1.09
Sign Control	Stop	3	Free	3	10	Free
	Сюр		1 100			1100
Intersection Summary	Othor					
	Other					
Control Type: Unsignalized	ion 20 20/			10	III aval:	of Consider
Intersection Capacity Utilizat	1011 30.3%			IC	U Level (of Service A
Analysis Period (min) 15						

Intersection						
Int Delay, s/veh	1.6					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*	7	†	7	*	†
Traffic Vol, veh/h	11	53	252	0	35	251
Future Vol, veh/h	11	53	252	0	35	251
Conflicting Peds, #/hr	1	1	0	1	1	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	- Otop	Yield	-	Free	-	None
Storage Length	0	0	_	15	175	-
Veh in Median Storage		-	0	-	-	0
Grade, %	-3	_	2	_	_	-1
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	0	0	3	0	3	7
Mvmt Flow	12	56	265	0	37	264
Major/Minor I	Minor1	N	Major1		Major2	
Conflicting Flow All	605	267	0		266	0
Stage 1	266	207		_	200	-
Stage 2	339	-	-	-	-	-
			-	-		
Critical Hdwy	5.8	5.9	-	-	4.13	-
Critical Hdwy Stg 1	4.8	-	-	_	_	-
Critical Hdwy Stg 2	4.8	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	2.227	-
Pot Cap-1 Maneuver	513	794	-	0	1292	-
Stage 1	819	-	-	0	-	-
Stage 2	768	-	-	0	-	-
Platoon blocked, %			-			-
Mov Cap-1 Maneuver	497	793	-	-	1291	-
Mov Cap-2 Maneuver	497	-	-	-	-	-
Stage 1	818	-	-	-	-	-
Stage 2	745	-	-	_	-	-
- 13.50 -						
Approach	WB		NB		SB	
HCM Control Delay, s	10.3		0		1	
HCM LOS	В					
Minor Lane/Major Mvm	.+	NIDTM	VBLn1V	VDI 52	SBL	SBT
	ı					
Capacity (veh/h)		-	497	793	1291	-
HCM Lane V/C Ratio		-	0.023		0.029	-
HCM Control Delay (s)		-	12.4	9.9	7.9	-
HCM Lane LOS		-	В	Α	Α	-
HCM 95th %tile Q(veh)		-	0.1	0.2	0.1	-

	۶	•	4	†	ļ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			4	f)	
Traffic Volume (vph)	4	1	1	248	259	3
Future Volume (vph)	4	1	1	248	259	3
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	11	11	11	11
Grade (%)	3%			5%	-2%	
Storage Length (ft)	0	0	0		_,,	0
Storage Lanes	1	0	0			0
Taper Length (ft)	25		25			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.973				0.999	
Flt Protected	0.962				0.999	
		٥	٥	1700	1710	0
Satd. Flow (prot)	1752	0	0	1722	1749	0
Flt Permitted	0.962	^	^	4700	4740	^
Satd. Flow (perm)	1752	0	0	1722	1749	0
Link Speed (mph)	30			55	55	
Link Distance (ft)	639			1813	993	
Travel Time (s)	14.5			22.5	12.3	
Confl. Peds. (#/hr)	1	1	1			1
Confl. Bikes (#/hr)						
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	0%	4%	6%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%			0%	0%	
Adj. Flow (vph)	4	1	1	264	276	3
Shared Lane Traffic (%)	'					
Lane Group Flow (vph)	5	0	0	265	279	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12	Night	Leit	Leit 0	Leit 0	Nigit
` ,	0			0	0	
Link Offset(ft)	-			-	~	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane	4.00	4.00	4.00	4.00	4.00	4.00
Headway Factor	1.02	1.02	1.08	1.08	1.03	1.03
Turning Speed (mph)	15	9	15		_	9
Sign Control	Stop			Free	Free	
Intersection Summary						
Area Type:	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizat	tion 24.2%			IC	CU Level	of Service
Analysis Period (min) 15				10	. 5 25101	
, analysis i shou (illiii) is						


0.1 EBL 4 4 1 Stop	EBR 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NBL 1	NBT	SBT \$\frac{1}{5}\$	SBR
4 4 4	1	1	4	ĵ.	
4 4 4	1	1	4	ĵ.	
4 4 1	1				
4 1	1		240		2
1			040		3
		1	248	259	3
Stop	2		0	0	
		Free	Free	Free	Free
-		-		-	
0	-	-	-	-	-
, # 0	-	-	0	0	-
3		-	5	-2	- 04
					94
					0
4	1	1	264	2/6	3
Minor2	N	Major1	N	Major2	
					0
			-	-	-
	_	_	_	_	_
		4 1	_	_	_
		- '	_	_	_
		_	_	_	_
		22	_	_	_
			_	_	_
	-	-	_	_	_
	_	_	_	_	_
140			_	_	_
158	7/15	1203			_
	143	1233			
	-	-	-	_	-
	-	_	_	-	
141	-	-	-	-	-
EB		NB		SB	
12.3		0		0	
В					
	NDI	NDT	EDL 4	ODT	ODD
		NBI	EBLn1	SBT	SBR
it	NBL				
t	1293	-	496	-	-
	1293 0.001	- -	496 0.011	-	-
t	1293 0.001 7.8	- - 0	496 0.011 12.3	- - -	- - -
	1293 0.001	- -	496 0.011		
	546 279 267 7 6 6 3.5 459 738 748 458 458 737 747 EB	0 0 4 1 Minor2 1 546 280 279 - 267 - 7 6.5 6 - 6 - 3.5 3.3 459 746 738 - 748 - 458 745 458 - 737 - 747 - EB 12.3	0 0 0 4 1 1 Minor2 Major1 546 280 280 279 267 7 6.5 4.1 6 6 3.5 3.3 2.2 459 746 1294 738 748 458 745 1293 458 737 747 EB NB 12.3 0	0 0 0 4 4 1 1 264 Minor2 Major1 N 546 280 280 0 279 267 7 6.5 4.1 - 6 6 3.5 3.3 2.2 - 459 746 1294 - 738 748 458 745 1293 - 458 747 747 EB NB 12.3 0	Minor2 Major1 Major2 546 280 280 0 279 - - 267 - - 7 6.5 4.1 - 6 - - - 3.5 3.3 2.2 - 459 746 1294 - - 748 - - - 458 745 1293 - - 458 747 - - - 747 - - - - EB NB SB 12.3 0 0

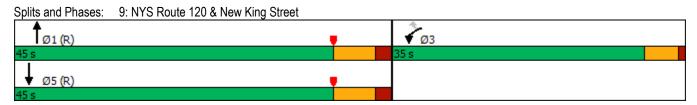
	7	*	À	~	×	₹	ን	×	~	Ĺ	×	*~
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		4		ሻ	†	7		ર્ન	7		ર્ન	7
Traffic Volume (vph)	2	219	39	26	211	22	39	0	26	19	Ö	0
Future Volume (vph)	2	219	39	26	211	22	39	0	26	19	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	11	11	11	11	10	10	10	11	11	11
Grade (%)		-4%			1%			-5%			1%	
Storage Length (ft)	0		0	120		200	0		95	0		0
Storage Lanes	0		0	1		1	0		1	0		1
Taper Length (ft)	25			86			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		1.00				0.99						
Frt		0.980				0.850			0.850			
Flt Protected				0.950				0.950			0.950	
Satd. Flow (prot)	0	1741	0	1736	1774	1553	0	1727	1545	0	1638	1827
Flt Permitted		0.999		0.543				0.744			0.730	
Satd. Flow (perm)	0	1740	0	992	1774	1534	0	1352	1545	0	1259	1827
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		16				26			141			
Link Speed (mph)		55			55			30			25	
Link Distance (ft)		1813			2280			328			518	
Travel Time (s)		22.5			28.3			7.5			14.1	
Confl. Peds. (#/hr)	1					1						
Confl. Bikes (#/hr)												
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	50%	6%	0%	0%	3%	0%	0%	0%	0%	6%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	2	233	41	28	224	23	41	0	28	20	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	276	0	28	224	23	0	41	28	0	20	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		11	J		11	•		0	J		0	J
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.02	1.02	1.02	1.05	1.05	1.05	1.06	1.06	1.06	1.05	1.05	1.05
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2		1	2	1	1	2	1	1	2	1
Detector Template	Left						Left			Left		
Leading Detector (ft)	20	83		35	83	35	20	83	35	20	83	35
Trailing Detector (ft)	0	-5		-5	-5	-5	0	-5	-5	0	-5	-5
Turn Type	Perm	NA		pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases		2		1	6			8			4	
Permitted Phases	2			6		6	8		8	4		4
Detector Phase	2	2		1	6	6	8	8	8	4	4	4
Switch Phase												

7: 113 King Street	Street Driveway/American Lane (S) & NYS Route 120												
	₩.	\mathbf{x}	Ì	F	×	₹	7	×	~	Ĺ	×	*	
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR	
Minimum Initial (s)	10.0	10.0		3.0	10.0	10.0	3.0	3.0	3.0	5.0	5.0	5.0	
Minimum Split (s)	17.0	17.0		10.0	17.0	17.0	10.0	10.0	10.0	10.0	10.0	10.0	
Total Split (s)	52.0	52.0		13.0	65.0	65.0	20.0	20.0	20.0	20.0	20.0	20.0	
Total Split (%)	61.2%	61.2%		15.3%	76.5%	76.5%	23.5%	23.5%	23.5%	23.5%	23.5%	23.5%	
Maximum Green (s)	45.0	45.0		6.0	58.0	58.0	15.0	15.0	15.0	15.0	15.0	15.0	
Yellow Time (s)	5.0	5.0		5.0	5.0	5.0	4.0	4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)		0.0		0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		7.0		7.0	7.0	7.0		5.0	5.0		5.0	5.0	
Lead/Lag	Lag	Lag		Lead									
Lead-Lag Optimize?	Yes	Yes		Yes									
Vehicle Extension (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Minimum Gap (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Time Before Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Time To Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Recall Mode	Max	Max		None	Max								
Walk Time (s)													
Flash Dont Walk (s)													
Pedestrian Calls (#/hr)													
Act Effct Green (s)		53.0		58.0	58.0	58.0		15.0	15.0		15.0		
Actuated g/C Ratio		0.62		0.68	0.68	0.68		0.18	0.18		0.18		
v/c Ratio		0.25		0.04	0.19	0.02		0.17	0.07		0.09		
Control Delay		8.7		4.5	5.4	1.7		31.9	0.3		30.6		
Queue Delay		0.0		0.0	0.0	0.0		0.0	0.0		0.0		
Total Delay		8.7		4.5	5.4	1.7		31.9	0.3		30.6		
LOS		Α		Α	Α	Α		С	Α		С		
Approach Delay		8.7			5.0			19.1			30.6		
Approach LOS		Α			Α			В			С		
Queue Length 50th (ft)		45		4	37	0		19	0		9		
Queue Length 95th (ft)		120		12	63	6		48	0		28		
Internal Link Dist (ft)		1733			2200			248			438		
Turn Bay Length (ft)				120		200			95				
Base Capacity (vph)		1090		729	1210	1054		238	388		222		
Starvation Cap Reductn		0		0	0	0		0	0		0		
Spillback Cap Reductn		0		0	0	0		0	0		0		
Storage Cap Reductn		0		0	0	0		0	0		0		
Reduced v/c Ratio		0.25		0.04	0.19	0.02		0.17	0.07		0.09		
Intersection Summary													
Area Type:	Other												
Cycle Length: 85													
Actuated Cycle Length: 85													
Natural Cycle: 40													
Control Type: Actuated-Und	coordinated												
Maximum v/c Ratio: 0.25													

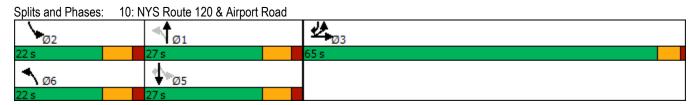
Intersection Signal Delay: 8.9 Intersection LOS: A Intersection Capacity Utilization 41.5% ICU Level of Service A

Analysis Period (min) 15

	•	•	†	~	>	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		f _a			4
Traffic Volume (vph)	50	73	186	34	76	188
Future Volume (vph)	50	73	186	34	76	188
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	11	11	11	11
Grade (%)	-6%	12	2%	11	11	0%
	-078	0	Z /0	0	0	0 /0
Storage Length (ft)	1	0		0	0	
Storage Lanes	25	U		U	25	
Taper Length (ft)		4.00	4.00	4.00		4.00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt	0.920		0.979			
Flt Protected	0.980					0.986
Satd. Flow (prot)	1643	0	1716	0	0	1704
FIt Permitted	0.980					0.854
Satd. Flow (perm)	1643	0	1716	0	0	1476
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)	76		15			
Link Speed (mph)	30		55			55
Link Distance (ft)	328		519			557
Travel Time (s)	7.5		6.4			6.9
Confl. Peds. (#/hr)	1.0		0.7			0.5
Confl. Bikes (#/hr)						
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	8%	7%	1%	19%	2%	8%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)	201		221			201
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	52	76	194	35	79	196
Shared Lane Traffic (%)						
Lane Group Flow (vph)	128	0	229	0	0	275
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12		0			0
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane	10		10			10
Headway Factor	0.96	0.96	1.06	1.06	1.04	1.04
Turning Speed (mph)	15	9	1.00	9	1.04	1.04
Number of Detectors	15	3	2	9	15	2
	ı					
Detector Template	25		00		Left	00
Leading Detector (ft)	35		83		20	83
Trailing Detector (ft)	-5		-5		0	-5
Turn Type	Prot		NA		Perm	NA
Protected Phases	3		1			5
Permitted Phases					5	
D (
Detector Phase	3		1		5	5


Minimum Initial (s)
Minimum Initial (s) 5.0 5.0 5.0 5.0 5.0 Minimum Split (s) 10.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0
Minimum Split (s) 10.0 12.0 12.0 12.0 Total Split (s) 35.0 45.0 45.0 45.0 Total Split (s) 35.0 45.0 45.0 45.0 Total Split (%) 43.8% 56.3% 56.3% 56.3% 56.3% Maximum Green (s) 30.0 38.0 38.0 38.0 38.0 Yellow Time (s) 4.0 5.0 5.0 5.0 5.0 All-Red Time (s) 1.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 Total Lost Time (s) 5.0 7.0 7.0 Lead/Lag Lead/Lag Qotimize? Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Minimum Gap (s) 3.0 3.0 3.0 3.0 3.0 3.0 Time Before Reduce (s) 0.0 0.0 0.0 0.0 0.0 Time To Reduce (s) 0.0 0.0 0.0 0.0 0.0 Recall Mode None C-Max C-Max Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) 8.6 62.9 62.9 Actuated g/C Ratio 0.11 0.79 0.79 V/c Ratio 0.52 0.17 0.24 Control Delay 23.1 2.2 4.1 LOS C A A A A A Approach LoS C A A A A Approach LOS C A A A A Approach LOS C A A A A Since C A A A A Approach LOS C A A A A Since C A A A A Approach LOS C A A A A Approach LOS C A A A A Approach LOS C A A A A Since C A A A A Approach LOS C A A A A Since C A A A A Couleue Length 50th (ft) 25 12 33 Queue Length 50th (ft) 248 439 477 Turn Bay Length (ft) Base Capacity (vph) 663 1353 1161 Starvation Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Total Split (s) 35.0 45.0 45.0 45.0 56.3% 56.3% 56.3% Maximum Green (s) 30.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0
Total Split (%)
Maximum Green (s) 30.0 38.0 38.0 38.0 Yellow Time (s) 4.0 5.0 5.0 5.0 All-Red Time (s) 1.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 5.0 7.0 7.0 7.0 Lead/Lag Lead/Lag Vehicle Extension (s) 3.0 <
Yellow Time (s) 4.0 5.0 5.0 5.0 All-Red Time (s) 1.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 Total Lost Time (s) 5.0 7.0 7.0 Lead/Lag Optimize? Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Minimum Gap (s) 3.0 3.0 3.0 3.0 3.0 3.0 Minimum Gap (s) 3.0 3.0 3.0 3.0 3.0 3.0 Time Before Reduce (s) 0.0
All-Red Time (s) 1.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 Total Lost Time (s) 5.0 7.0 7.0 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 3.0 3.0 Minimum Gap (s) 3.0 3.0 3.0 3.0 3.0 Time Before Reduce (s) 0.0 0.0 0.0 0.0 Time To Reduce (s) 0.0 0.0 0.0 0.0 0.0 Recall Mode None C-Max C-Max C-Max Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) 8.6 62.9 62.9 Actuated g/C Ratio 0.11 0.79 0.79 v/c Ratio 0.52 0.17 0.24 Control Delay 23.1 2.2 4.1 Control Delay 23.1 2.2 4.1 LOS C A A A Approach Delay 23.1 2.2 4.1 LOS C A A A Approach Delay 23.1 2.2 4.1 Approach LOS C A A A Approach LOS C A A A Cueue Length 50th (ft) 25 12 33 Cueue Length 95th (ft) 71 34 76 Internal Link Dist (ft) 248 439 477 Turn Bay Length (ft) Base Capacity (vph) 663 1353 1161 Starvation Cap Reductn 0 0 0 0 Sprillback Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.19 0.17 0.24 Intersection Summary Area Type: Other Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow
Lost Time Adjust (s) 0.0 0.0 0.0 Total Lost Time (s) 5.0 7.0 7.0 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 3.0 3.0 Minimum Gap (s) 3.0 3.0 3.0 3.0 3.0 Time Before Reduce (s) 0.0 0.0 0.0 0.0 Time To Reduce (s) 0.0 0.0 0.0 0.0 0.0 Recall Mode None C-Max C-Max C-Max Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) 8.6 62.9 62.9 Actuated g/C Ratio 0.11 0.79 0.79 v/c Ratio 0.52 0.17 0.24 Control Delay 23.1 2.2 4.1 Queue Delay 0.0 0.0 0.0 0.0 Total Delay 23.1 2.2 4.1 LOS C A A Approach Delay 23.1 2.2 4.1 LOS C A A Approach LOS C A A Queue Length 50th (ft) 25 12 33 Queue Length 95th (ft) 71 34 76 Internal Link Dist (ft) 248 439 477 Turn Bay Length (ft) Base Capacity (vph) 663 1353 1161 Starvation Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.19 0.17 0.24 Intersection Summary Area Type: Other Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow
Total Lost Time (s) 5.0 7.0 7.0 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 3.0 3.0 Time Before Reduce (s) 0.0 0.0 0.0 0.0 Time To Reduce (s) 0.0 0.0 0.0 0.0 0.0 Recall Mode None C-Max C-Max C-Max Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) 8.6 62.9 62.9 Actuated g/C Ratio 0.11 0.79 0.79 v/c Ratio 0.52 0.17 0.24 Control Delay 23.1 2.2 4.1 Queue Delay 0.0 0.0 0.0 0.0 Total Delay 23.1 2.2 4.1 LOS C A A A Approach Delay 23.1 2.2 4.1 LOS C A A A Approach Delay 23.1 2.2 4.1 LOS C A A A Approach Lost (ft) 25 12 33 Queue Length 50th (ft) 25 12 33 Queue Length 95th (ft) 71 34 76 Internal Link Dist (ft) 248 439 477 Turn Bay Length (ft) Base Capacity (vph) 663 1353 1161 Starvation Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.19 0.17 0.24 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow
Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 3.0 3.0 Minimum Gap (s) 3.0 3.0 3.0 3.0 3.0 Time Before Reduce (s) 0.0 0.0 0.0 0.0 Recall Mode None C-Max C-Max C-Max Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) 8.6 62.9 62.9 Actuated g/C Ratio 0.11 0.79 0.79 v/c Ratio 0.52 0.17 0.24 Control Delay 23.1 2.2 4.1 Queue Delay 0.0 0.0 0.0 0.0 Total Delay 23.1 2.2 4.1 LOS C A A A Approach Delay 23.1 2.2 4.1 LOS C A A A Approach Delay 23.1 2.2 4.1 LOS C A A A Approach LOS C A A A Cueue Length 50th (ft) 25 12 33 Queue Length 95th (ft) 71 34 76 Internal Link Dist (ft) 248 439 477 Turn Bay Length (ft) Base Capacity (vph) 663 1353 1161 Starvation Cap Reductn 0 0 0 Solitage Cap Reductn 0 0 0 Reduced v/c Ratio 0.19 0.17 0.24 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow
Lead-Lag Optimize? Vehicle Extension (s) 3.0 3
Vehicle Extension (s) 3.0 8.0 62.9 62.9 62.9 62.9 62.9 62.9 62.9 62.9 62.9 62.9 62.9 62.9 62.9 62.9 62.9 62.9
Minimum Gap (s) 3.0 3.0 3.0 3.0 Time Before Reduce (s) 0.0 0.0 0.0 0.0 Time To Reduce (s) 0.0 0.0 0.0 0.0 Recall Mode None C-Max C-Max C-Max Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effect Green (s) 8.6 62.9 62.9 Actuated g/C Ratio 0.11 0.79 0.79 V/c Ratio 0.52 0.17 0.24 Control Delay 23.1 2.2 4.1 Queue Delay 0.0 0.0 0.0 Total Delay 23.1 2.2 4.1 LOS C A A Approach Los C A A Approach LoS C A A Queue Length 50th (ft) 25 12 33 Queue Length 95th (ft) 71 34 76 Interna
Time Before Reduce (s) 0.0 0.0 0.0 0.0 0.0 Cime To Reduce (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Time To Reduce (s) 0.0 0.0 0.0 0.0 Recall Mode None C-Max C-Max C-Max Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) 8.6 62.9 62.9 Actuated g/C Ratio 0.11 0.79 0.79 v/c Ratio 0.52 0.17 0.24 Control Delay 23.1 2.2 4.1 Queue Delay 0.0 0.0 0.0 Total Delay 23.1 2.2 4.1 LOS C A A A Approach Delay 23.1 2.2 4.1 Approach LOS C A A A Approach LOS C A A A Queue Length 50th (ft) 25 12 33 Queue Length 95th (ft) 71 34 76 Internal Link Dist (ft) 248 439 477 Turn Bay Length (ft) Base Capacity (vph) 663 1353 1161 Starvation Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0 Reduced v/c Ratio 0.19 0.17 0.24 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow
Time To Reduce (s) 0.0 0.0 0.0 0.0 0.0 Recall Mode None C-Max C-Max C-Max Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) 8.6 62.9 62.9 Actuated g/C Ratio 0.11 0.79 0.79 v/c Ratio 0.52 0.17 0.24 Control Delay 23.1 2.2 4.1 Queue Delay 0.0 0.0 0.0 Total Delay 23.1 2.2 4.1 LOS C A AApproach Delay 23.1 2.2 4.1 Approach LOS C A AApproach Delay 23.1 2.2 4.1 Approach LOS C A AApproach LOS C A AAApproach LOS C A AAApproach LOS C A AAAA AAAA AAAAAAAAAAAAAAAAAAAAAAA
Recall Mode None C-Max C-Max C-Max Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) 8.6 62.9 62.9 Actuated g/C Ratio 0.11 0.79 0.79 v/c Ratio 0.52 0.17 0.24 Control Delay 23.1 2.2 4.1 Queue Delay 0.0 0.0 0.0 Total Delay 23.1 2.2 4.1 LOS C A A A Approach Delay 23.1 2.2 4.1 Approach LOS C A A A Approach LOS C A A A Queue Length 50th (ft) 25 12 33 Queue Length 95th (ft) 71 34 76 Internal Link Dist (ft) 248 439 477 Turn Bay Length (ft) Base Capacity (vph) 663 1353 1161 Starvation Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0 Reduced v/c Ratio 0.19 0.17 0.24 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow
Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) 8.6 62.9 62.9 Actuated g/C Ratio 0.11 0.79 0.79 v/c Ratio 0.52 0.17 0.24 Control Delay 23.1 2.2 4.1 Queue Delay 0.0 0.0 0.0 0.0 Total Delay 23.1 2.2 4.1 LOS C A A A Approach Delay 23.1 2.2 4.1 Approach LOS C A A A Approach LOS C A A A Queue Length 50th (ft) 25 12 33 Queue Length 95th (ft) 71 34 76 Internal Link Dist (ft) 248 439 477 Turn Bay Length (ft) Base Capacity (vph) 663 1353 1161 Starvation Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0 Reduced v/c Ratio 0.19 0.17 0.24 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow
Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) 8.6 62.9 62.9 Actuated g/C Ratio 0.11 0.79 0.79 v/c Ratio 0.52 0.17 0.24 Control Delay 23.1 2.2 4.1 Queue Delay 0.0 0.0 0.0 Total Delay 23.1 2.2 4.1 LOS C A A A Approach Delay 23.1 2.2 4.1 Approach LOS C A A A Approach LOS C A A A Queue Length 50th (ft) 25 12 33 Queue Length 95th (ft) 71 34 76 Internal Link Dist (ft) 248 439 477 Turn Bay Length (ft) Base Capacity (vph) 663 1353 1161 Starvation Cap Reductn 0 0 0 Spillback Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0 Reduced v/c Ratio 0.19 0.17 0.24 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow
Pedestrian Calls (#/hr) Act Effct Green (s) 8.6 62.9 62.9 Actuated g/C Ratio 0.11 0.79 0.79 v/c Ratio 0.52 0.17 0.24 Control Delay 23.1 2.2 4.1 Queue Delay 0.0 0.0 0.0 Total Delay 23.1 2.2 4.1 LOS C A A Approach Delay 23.1 2.2 4.1 Approach LOS C A A Approach LOS C A Queue Length 50th (ft) 25 12 33 Queue Length 95th (ft) 71 34 76 Internal Link Dist (ft) 248 439 477 Turn Bay Length (ft) Base Capacity (vph) 663 1353 1161 Starvation Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0 Reduced v/c Ratio 0.19 0.17 0.24 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow
Act Effct Green (s) 8.6 62.9 62.9 Actuated g/C Ratio 0.11 0.79 0.79 V/c Ratio 0.52 0.17 0.24 Control Delay 23.1 2.2 4.1 Queue Delay 0.0 0.0 0.0 Total Delay 23.1 2.2 4.1 LOS C A A Approach Delay 23.1 2.2 4.1 Approach LOS C A A Approach LOS C A A Queue Length 50th (ft) 25 12 33 Queue Length 95th (ft) 71 34 76 Internal Link Dist (ft) 248 439 477 Turn Bay Length (ft) Base Capacity (vph) 663 1353 1161 Starvation Cap Reductn 0 0 0 Storage Cap Reductn 0 0 Storage Cap Reductn 0 0 Reduced v/c Ratio 0.19 0.17 0.24 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow
Actuated g/C Ratio 0.11 0.79 0.79 v/c Ratio 0.52 0.17 0.24 Control Delay 23.1 2.2 4.1 Queue Delay 0.0 0.0 0.0 Total Delay 23.1 2.2 4.1 LOS C A A Approach Delay 23.1 2.2 4.1 Approach LOS C A A Queue Length 50th (ft) 25 12 33 Queue Length 95th (ft) 71 34 76 Internal Link Dist (ft) 248 439 477 Turn Bay Length (ft) Base Capacity (vph) 663 1353 1161 Starvation Cap Reductn 0 0 0 Spillback Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0 Reduced v/c Ratio 0.19 0.17 0.24 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow
v/c Ratio 0.52 0.17 0.24 Control Delay 23.1 2.2 4.1 Queue Delay 0.0 0.0 0.0 Total Delay 23.1 2.2 4.1 LOS C A A Approach Delay 23.1 2.2 4.1 Approach LOS C A A Queue Length 50th (ft) 25 12 33 Queue Length 95th (ft) 71 34 76 Internal Link Dist (ft) 248 439 477 Turn Bay Length (ft) 8 439 477 Turn Bay Length (ft) 8 8 439 477 Turn Bay Length (ft) 8 1353 1161 Starvation Cap Reductn 0 0 0 Spillback Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0 Reduced v/c Ratio 0.19 0.17 0.24 Intersection Summary Area Type: Other Cycle Length: 80
Control Delay 23.1 2.2 4.1 Queue Delay 0.0 0.0 0.0 Total Delay 23.1 2.2 4.1 LOS C A A A Approach Delay 23.1 2.2 4.1 Approach LOS C A A A Queue Length 50th (ft) 25 12 33 Queue Length 95th (ft) 71 34 76 Internal Link Dist (ft) 248 439 477 Turn Bay Length (ft) Base Capacity (vph) 663 1353 1161 Starvation Cap Reductn 0 0 0 Spillback Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0 Reduced v/c Ratio 0.19 0.17 0.24 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow
Queue Delay 0.0 0.0 0.0 Total Delay 23.1 2.2 4.1 LOS C A A Approach Delay 23.1 2.2 4.1 Approach LOS C A A Queue Length 50th (ft) 25 12 33 Queue Length 95th (ft) 71 34 76 Internal Link Dist (ft) 248 439 477 Turn Bay Length (ft) 8ase Capacity (vph) 663 1353 1161 Starvation Cap Reductn 0 0 0 Spillback Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0 Reduced v/c Ratio 0.19 0.17 0.24 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow
Total Delay 23.1 2.2 4.1 LOS C A A A Approach Delay 23.1 2.2 4.1 Approach LOS C A A A Queue Length 50th (ft) 25 12 33 Queue Length 95th (ft) 71 34 76 Internal Link Dist (ft) 248 439 477 Turn Bay Length (ft) Base Capacity (vph) 663 1353 1161 Starvation Cap Reductn 0 0 0 0 Spillback Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0 Reduced v/c Ratio 0.19 0.17 0.24 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow
C
Approach Delay 23.1 2.2 4.1 Approach LOS C A A A Queue Length 50th (ft) 25 12 33 Queue Length 95th (ft) 71 34 76 Internal Link Dist (ft) 248 439 477 Turn Bay Length (ft) Base Capacity (vph) 663 1353 1161 Starvation Cap Reductn 0 0 0 0 Spillback Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0 Reduced v/c Ratio 0.19 0.17 0.24 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow
Approach LOS C A A A Queue Length 50th (ft) 25 12 33 Queue Length 95th (ft) 71 34 76 Internal Link Dist (ft) 248 439 477 Turn Bay Length (ft) Base Capacity (vph) 663 1353 1161 Starvation Cap Reductn 0 0 0 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.19 0.17 0.24 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow
Queue Length 50th (ft) 25 12 33 Queue Length 95th (ft) 71 34 76 Internal Link Dist (ft) 248 439 477 Turn Bay Length (ft) 888 439 477 Base Capacity (vph) 663 1353 1161 Starvation Cap Reductn 0 0 0 Spillback Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0 Reduced v/c Ratio 0.19 0.17 0.24 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow
Queue Length 50th (ft) 25 12 33 Queue Length 95th (ft) 71 34 76 Internal Link Dist (ft) 248 439 477 Turn Bay Length (ft) 888 439 477 Base Capacity (vph) 663 1353 1161 Starvation Cap Reductn 0 0 0 Spillback Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0 Reduced v/c Ratio 0.19 0.17 0.24 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow
Queue Length 95th (ft) 71 34 76 Internal Link Dist (ft) 248 439 477 Turn Bay Length (ft) 888 439 477 Base Capacity (vph) 663 1353 1161 Starvation Cap Reductn 0 0 0 Spillback Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0 Reduced v/c Ratio 0.19 0.17 0.24 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow
Internal Link Dist (ft) 248 439 477 Turn Bay Length (ft) Base Capacity (vph) 663 1353 1161 Starvation Cap Reductn 0 0 0 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.19 0.17 0.24 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow
Turn Bay Length (ft) Base Capacity (vph) 663 1353 1161 Starvation Cap Reductn 0 0 0 Spillback Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0 Reduced v/c Ratio 0.19 0.17 0.24 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow
Base Capacity (vph) 663 1353 1161 Starvation Cap Reductn 0 0 0 Spillback Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0 Reduced v/c Ratio 0.19 0.17 0.24 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow
Starvation Cap Reductn 0 0 0 Spillback Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0 Reduced v/c Ratio 0.19 0.17 0.24 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow
Spillback Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0 Reduced v/c Ratio 0.19 0.17 0.24 Intersection Summary Area Type: Other Cycle Length: 80 Octuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow
Storage Cap Reductn 0 0 0 Reduced v/c Ratio 0.19 0.17 0.24 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow
Reduced v/c Ratio 0.19 0.17 0.24 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow
Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow
Area Type: Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow
Area Type: Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow
Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow
Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow
Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow
Natural Cycle: 40
0 1 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.52
Intersection Signal Delay: 7.2 Intersection LOS: A
Intersection Capacity Utilization 49.0% ICU Level of Service A
Analysis Period (min) 15

	•	•	†	~	\	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ሻ	7	<u> </u>	T.DIX		<u> </u>
Traffic Volume (vph)	245	46	173	0	0	238
Future Volume (vph)	245	46	173	0	0	238
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1900	1300	1300	1300	1300	1300
Grade (%)	-2%	13	1%	- ' '	11	1%
Storage Length (ft)	-2 /0	175	1 /0	0	0	1 /0
	1	1/3		0	0	
Storage Lanes	25	I		U		
Taper Length (ft)		1.00	1.00	1.00	25	1.00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.050				
Frt	0.0=0	0.850				
Flt Protected	0.950		,			
Satd. Flow (prot)	1770	1686	1740	0	0	1692
Flt Permitted	0.950					
Satd. Flow (perm)	1770	1686	1740	0	0	1692
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)		49				
Link Speed (mph)	30		55			55
Link Distance (ft)	321		928			519
Travel Time (s)	7.3		11.5			6.4
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	3%	0%	5%	0%	0%	8%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)	00/		00/			001
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	263	49	186	0	0	256
Shared Lane Traffic (%)						
Lane Group Flow (vph)	263	49	186	0	0	256
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12		0			0
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane	. •		. •			
Headway Factor	0.99	0.95	1.05	1.05	1.05	1.05
Turning Speed (mph)	15	9	1.00	9	1.05	1.00
Number of Detectors	1	1	2	9	10	2
Detector Template	ı	ı	۷			
	25	25	83			02
Leading Detector (ft)	35	35				83
Trailing Detector (ft)	-5	-5	-5			-5
Turn Type	Prot	Perm	NA			NA
Protected Phases	3		1			5
Permitted Phases		3				
Detector Phase	3	3	1			5


	•	•	†	<i>></i>	\	↓	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Minimum Initial (s)	5.0	5.0	5.0			5.0	
Minimum Split (s)	10.0	10.0	12.0			12.0	
Total Split (s)	35.0	35.0	45.0			45.0	
Total Split (%)	43.8%	43.8%	56.3%			56.3%	
Maximum Green (s)	30.0	30.0	38.0			38.0	
Yellow Time (s)	4.0	4.0	5.0			5.0	
All-Red Time (s)	1.0	1.0	2.0			2.0	
Lost Time Adjust (s)	0.0	0.0	0.0			0.0	
Total Lost Time (s)	5.0	5.0	7.0			7.0	
Lead/Lag	0.0	0.0	1.0			1.0	
Lead-Lag Optimize?							
Vehicle Extension (s)	3.0	3.0	3.0			3.0	
Minimum Gap (s)	3.0	3.0	3.0			3.0	
Time Before Reduce (s)	0.0	0.0	0.0			0.0	
Time To Reduce (s)	0.0	0.0	0.0			0.0	
Recall Mode	None	None	C-Max			C-Max	
Walk Time (s)	110110	. 10/10	C Max			- Max	
Flash Dont Walk (s)							
Pedestrian Calls (#/hr)							
Act Effct Green (s)	17.4	17.4	50.6			50.6	
Actuated g/C Ratio	0.22	0.22	0.63			0.63	
v/c Ratio	0.68	0.12	0.17			0.24	
Control Delay	37.6	7.7	7.5			6.5	
Queue Delay	0.0	0.0	0.0			0.0	
Total Delay	37.6	7.7	7.5			6.5	
LOS	D	A	Α.			A	
Approach Delay	32.9		7.5			6.5	
Approach LOS	C		Α.			A	
Queue Length 50th (ft)	122	0	34			27	
Queue Length 95th (ft)	180	23	75			103	
Internal Link Dist (ft)	241	20	848			439	
Turn Bay Length (ft)		175	0.10			100	
Base Capacity (vph)	663	662	1101			1071	
Starvation Cap Reductn	0	0	0			0	
Spillback Cap Reductn	0	0	0			0	
Storage Cap Reductn	0	0	0			0	
Reduced v/c Ratio	0.40	0.07	0.17			0.24	
Intersection Summary	0.40	0.01	0.11			V.ET	
	Other						
Area Type:	Other						
Cycle Length: 80							
Actuated Cycle Length: 80		1.NDT -	nd E-CDT	Ctart of V	'allow		
Offset: 13 (16%), Reference Natural Cycle: 40	eu to pnase	I:INB I a	na 5:5BT,	Start of Y	ellow		
•	ordinated						
Control Type: Actuated-Co	oraniatea						
Maximum v/c Ratio: 0.68	17 7			I	loroostis.	a L OC. D	
Intersection Signal Delay:						n LOS: B	۸
Intersection Capacity Utiliz	ation 36.1%			IC	U Level	of Service A	Α

Analysis Period (min) 15

	۶	→	•	•	•	•	4	†	/	>	ļ	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	, j	4					7	∱ }		ř	<u></u>	7
Traffic Volume (vph)	116	298	76	0	0	0	83	57	45	33	98	353
Future Volume (vph)	116	298	76	0	0	0	83	57	45	33	98	353
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	16	16	16	12	12	12	12	12	12
Grade (%)		1%			-4%			-1%			1%	
Storage Length (ft)	0		0	0		0	385		0	190		460
Storage Lanes	1		0	0		0	1		0	1		1
Taper Length (ft)	25			25			86			86		
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.970						0.934				0.850
Flt Protected	0.950	0.998					0.950			0.950		
Satd. Flow (prot)	1595	1670	0	0	0	0	1711	3297	0	1694	1750	1545
Flt Permitted	0.950	0.998	•		•		0.583	0_0.		0.682		.0.0
Satd. Flow (perm)	1595	1670	0	0	0	0	1050	3297	0	1216	1750	1545
Right Turn on Red	1000	1010	Yes	•	J	Yes	1000	0201	Yes	1210	1700	Yes
Satd. Flow (RTOR)		16	100			100		49	100			384
Link Speed (mph)		30			30			55			55	004
Link Distance (ft)		176			314			586			596	
Travel Time (s)		4.0			7.1			7.3			7.4	
Confl. Peds. (#/hr)		т.0			7.1			7.5			7.7	
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	7%	4%	4%	0%	0%	0%	6%	5%	0%	6%	8%	4%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)	U	U	U	- U	U		U	U		U	U	
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	126	324	83	0	0 /8	0	90	62	49	36	107	384
Shared Lane Traffic (%)	10%	324	03	U	U	U	30	02	43	30	107	304
Lane Group Flow (vph)	113	420	0	0	0	0	90	111	0	36	107	384
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Leit	12	Rigit	Leit	12	Rigiit	Leit	12	Rigit	Leit	12	Right
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.01	1.01	1.01	0.82	0.82	0.82	0.99	0.99	0.99	1.01	1.01	1.01
Turning Speed (mph)	1.01	1.01	9	15	0.02	9	15	0.55	9	1.01	1.01	9
Number of Detectors	13	2	9	15		9	13	2	9	13	2	9
Detector Template	ı									ı		ı
Leading Detector (ft)	35	83					35	83		35	83	35
	-5						ან -5	-5		ან -5	-5	
Trailing Detector (ft)		-5										-5
Turn Type	Split	NA					pm+pt	NA		pm+pt	NA	pm+ov
Protected Phases	3	3					6	1		2	5	3
Permitted Phases	•	•					1	4		5	-	5
Detector Phase	3	3					6	1		2	5	3
Switch Phase												

	٠	→	•	•	←	•	•	†	~	/	+	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	5.0					3.0	8.0		3.0	20.0	5.0
Minimum Split (s)	10.0	10.0					10.0	15.0		10.0	27.0	10.0
Total Split (s)	65.0	65.0					22.0	27.0		22.0	27.0	65.0
Total Split (%)	57.0%	57.0%					19.3%	23.7%		19.3%	23.7%	57.0%
Maximum Green (s)	60.0	60.0					15.0	20.0		15.0	20.0	60.0
Yellow Time (s)	4.0	4.0					5.0	5.0		5.0	5.0	4.0
All-Red Time (s)	1.0	1.0					2.0	2.0		2.0	2.0	1.0
Lost Time Adjust (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0					7.0	7.0		7.0	7.0	5.0
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0					2.0	2.0		2.0	2.0	3.0
Minimum Gap (s)	3.0	3.0					2.0	2.0		2.0	2.0	3.0
Time Before Reduce (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Recall Mode	None	None					None	Min		None	Min	None
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)	24.8	24.8					31.7	28.3		25.4	21.1	54.9
Actuated g/C Ratio	0.35	0.35					0.45	0.40		0.36	0.30	0.78
v/c Ratio	0.20	0.70					0.16	0.08		0.08	0.20	0.30
Control Delay	17.2	26.0					13.5	12.4		13.8	25.4	1.0
Queue Delay	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Total Delay	17.2	26.0					13.5	12.4		13.8	25.4	1.0
LOS	В	С					В	В		В	С	Α
Approach Delay		24.1						12.9			6.8	
Approach LOS		С						В			Α	
Queue Length 50th (ft)	36	162					20	7		8	36	0
Queue Length 95th (ft)	75	272					59	34		29	97	20
Internal Link Dist (ft)		96			234			506			516	
Turn Bay Length (ft)							385			190		460
Base Capacity (vph)	1330	1396					638	1355		661	525	1537
Starvation Cap Reductn	0	0					0	0		0	0	0
Spillback Cap Reductn	0	0					0	0		0	0	0
Storage Cap Reductn	0	0					0	0		0	0	0
Reduced v/c Ratio	0.08	0.30					0.14	0.08		0.05	0.20	0.25
Intersection Summary												
Area Type:	Other											
Cycle Length: 114												
Actuated Cycle Length: 70	0.3											
Natural Cycle: 60												
Control Type: Actuated-U	ncoordinated											
Maximum v/c Ratio: 0.70												
Intersection Signal Delay:	15.1				tersection							
Intersection Capacity Utiliz	zation 42.8%			IC	U Level o	of Service	: A					
Analysis Period (min) 15												

11.	1 694 NB	Off-Ramp/	1 694 NB	On Pamp	8. Airport	Pood
11.	1-004 IND	OII-Ramp/	1-004 IVD	On-Ramp	& All port	Roau

	۶	→	\rightarrow	•	←	•	4	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્ન			f)				7			
Traffic Volume (vph)	6	176	0	0	256	180	0	0	315	0	0	0
Future Volume (vph)	6	176	0	0	256	180	0	0	315	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	15	15	15	12	12	12	13	13	13	16	16	16
Grade (%)		1%			-1%			1%			2%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	0		0	0		0	0		1	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt					0.944				0.865			
Flt Protected		0.998										
Satd. Flow (prot)	0	1980	0	0	1720	0	0	0	1594	0	0	0
Flt Permitted		0.998										
Satd. Flow (perm)	0	1980	0	0	1720	0	0	0	1594	0	0	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		331			176			301			377	
Travel Time (s)		7.5			4.0			6.8			8.6	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	5%	0%	0%	4%	6%	0%	0%	6%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	7	191	0	0	278	196	0	0	342	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	198	0	0	474	0	0	0	342	0	0	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	0.89	0.89	0.89	0.99	0.99	0.99	0.96	0.96	0.96	0.86	0.86	0.86
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Free			Free			Stop			Stop	
Intersection Summary												

Area Type: Other

Control Type: Unsignalized

ICU Level of Service A

Intersection Capacity Utilization 35.8% Analysis Period (min) 15

-												
Intersection												
Int Delay, s/veh	4.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			f)				7			
Traffic Vol, veh/h	6	176	0	0	256	180	0	0	315	0	0	0
Future Vol, veh/h	6	176	0	0	256	180	0	0	315	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	_	_	None	_	_	None	_	-	None
Storage Length	_	-	-	-	-	-	-	-	0	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	16983	-
Grade, %	-	1	-	-	-1	-	-	1	-	-	2	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	0	5	0	0	4	6	0	0	6	0	0	0
Mvmt Flow	7	191	0	0	278	196	0	0	342	0	0	0
Major/Minor N	/lajor1			Major2		Λ	/linor1					
Conflicting Flow All	474	0		-	_	0	-		191			
Stage 1		-	_	_	_	-	_	_	-			
Stage 2	_	_	_	_	_	_	_	_	_			
Critical Hdwy	4.1	_	_	_	_	_	_	_	6.36			
Critical Hdwy Stg 1	-	_	_	_	_	_	_	_	-			
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-			
Follow-up Hdwy	2.2	-	_	_	_	-	-	-	3.354			
Pot Cap-1 Maneuver	1099	-	0	0	_	-	0	0	836			
Stage 1	-	-	0	0	-	-	0	0	-			
Stage 2	-	-	0	0	-	-	0	0	-			
Platoon blocked, %		-			-	-						
Mov Cap-1 Maneuver	1099	-	-	-	-	-	-	0	836			
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	0	-			
Stage 1	-	-	-	-	-	-	-	0	-			
Stage 2	-	-	-	-	-	-	-	0	-			
-												
Approach	EB			WB			NB					
HCM Control Delay, s	0.3			0			12.3					
HCM LOS							В					
							_					
Minor Lane/Major Mvmt		NBLn1	EBL	EBT	WBT	WBR						
Capacity (veh/h)		836	1099	_	_	_						
HCM Lane V/C Ratio			0.006	_	_	_						
HCM Control Delay (s)		12.3	8.3	0	_	_						
HCM Lane LOS		В	A	A	-	-						
HCM 95th %tile Q(veh)		2	0	-	_	-						
(VOII)		_										

	•	→	•	•	+	•	•	†	~	/	↓	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					ર્ન						4	
Traffic Volume (vph)	0	0	0	256	Ö	0	0	0	0	182	Ö	0
Future Volume (vph)	0	0	0	256	0	0	0	0	0	182	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	14	14	13	13	12
Grade (%)		0%			-1%			2%			1%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	0		0	0		0	0		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt												
Flt Protected					0.950						0.950	
Satd. Flow (prot)	0	0	0	0	1744	0	0	0	0	0	1767	0
Flt Permitted					0.950						0.950	
Satd. Flow (perm)	0	0	0	0	1744	0	0	0	0	0	1767	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		71			331			377			345	
Travel Time (s)		1.6			7.5			8.6			7.8	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	0%	4%	0%	0%	0%	0%	0%	5%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	0	0	0	267	0	0	0	0	0	190	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	0	0	0	267	0	0	0	0	0	190	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	0.99	0.99	0.99	1.01	0.93	0.93	0.96	0.96	1.01
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Free			Free			Stop			Stop	
Intersection Summary												
, i	Other											
Control Type: Unsignalized												
Intersection Capacity Utilizati	on 30.9%			IC	CU Level	of Service	Α					
Analysis Period (min) 15												

Synchro 10 Report Page 30

Intersection												
Int Delay, s/veh	7.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					र्स						स	
Traffic Vol, veh/h	0	0	0	256	0	0	0	0	0	182	0	0
Future Vol, veh/h	0	0	0	256	0	0	0	0	0	182	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	16974	-	-	0	-
Grade, %	-	0	-	-	-1	-	-	2	-	-	1	-
Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96
Heavy Vehicles, %	0	0	0	4	0	0	0	0	0	5	0	0
Mvmt Flow	0	0	0	267	0	0	0	0	0	190	0	0
Major/Minor				Major2					<u> </u>	Minor2		
Conflicting Flow All				0	0	0				534	534	-
Stage 1				-	-	-				534	534	-
Stage 2				-	-	-				0	0	-
Critical Hdwy				4.14	-	-				6.65	6.7	-
Critical Hdwy Stg 1				-	-	-				5.65	5.7	-
Critical Hdwy Stg 2				-	-	-				-	-	-
Follow-up Hdwy				2.236	-	-				3.545	4	-
Pot Cap-1 Maneuver				-	-	0				487	442	0
Stage 1				-	-	0				565	512	0
Stage 2				-	-	0				-	-	0
Platoon blocked, %					-							
Mov Cap-1 Maneuver				-	-	-				487	0	-
Mov Cap-2 Maneuver				-	-	-				487	0	-
Stage 1				-	-	-				565	0	-
Stage 2				-	-	-				-	0	-
Approach				WB						SB		
HCM Control Delay, s										17		
HCM LOS										С		
Minor Lane/Major Mvmt		WBL	WBT :	SBLn1								
Capacity (veh/h)		-	-	487								
HCM Lane V/C Ratio		-	-	0.389								
HCM Control Delay (s)		-	-	17								
HCM Lane LOS		-	-	С								
HCM 95th %tile Q(veh)		-	-	1.8								

	•	\mathbf{x}	À	F	*	₹	ን	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		ર્ન	7	Ť	†	7	7	^	7	7	^	7
Traffic Volume (vph)	118	9	172	26	19	68	176	319	29	58	346	87
Future Volume (vph)	118	9	172	26	19	68	176	319	29	58	346	87
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	15	12	12	12	12	11	12	12	12	12	12
Grade (%)		0%			0%			0%			0%	
Storage Length (ft)	0		250	0		225	680		250	400		250
Storage Lanes	0		1	1		1	1		1	1		1
Taper Length (ft)	25			25			86			86		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Ped Bike Factor			0.99	1.00								
Frt			0.850			0.850			0.850			0.850
Flt Protected		0.955		0.950			0.950			0.950		
Satd. Flow (prot)	0	1890	1583	1543	1900	1615	1678	3343	1615	1805	3438	1482
Flt Permitted		0.726		0.673			0.950			0.950		
Satd. Flow (perm)	0	1437	1563	1092	1900	1615	1678	3343	1615	1805	3438	1482
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			179			79			79			91
Link Speed (mph)		30			30			55			55	
Link Distance (ft)		610			598			1191			735	
Travel Time (s)		13.9			13.6			14.8			9.1	
Confl. Peds. (#/hr)			1	1								
Confl. Bikes (#/hr)												
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	6%	0%	2%	17%	0%	0%	4%	8%	0%	0%	5%	9%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	123	9	179	27	20	71	183	332	30	60	360	91
Shared Lane Traffic (%)		-										
Lane Group Flow (vph)	0	132	179	27	20	71	183	332	30	60	360	91
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	20.0	12	rugiit	20.0	12	rugiit	Lon	12	i ugiit	Lon	12	i ugiit
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10						10			10	
Headway Factor	1.00	0.88	1.00	1.00	1.00	1.00	1.04	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	0.00	9	15	1.00	9	15	1.00	9	15	1.00	9
Number of Detectors	1	1	1	1	1	1	2	1	1	2	1	1
Detector Template	Left	'							'		'	
Leading Detector (ft)	20	43	6	6	6	6	83	6	6	83	6	6
Trailing Detector (ft)	0	0	0	0	0	0	-5	0	0	-5	0	0
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	i Giiii	3	i Giiii	i Giiii	3	i Giiii	6	1	i Giiii	2	5	i Giiii
Permitted Phases	3	J	3	3	J	3	U		1		J	5
Detector Phase	3	3	3	3	3	3	6	1	1	2	5	5 5
	J	J	J	J	J	J	0	I		Z	5	5
Switch Phase												

	-	\mathbf{x}	Ž	~	*	₹	7	*	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	2.0	10.0	10.0	2.0	10.0	10.0
Minimum Split (s)	31.0	31.0	31.0	31.0	31.0	31.0	16.0	42.0	42.0	16.0	42.0	42.0
Total Split (s)	46.0	46.0	46.0	46.0	46.0	46.0	36.0	42.0	42.0	36.0	42.0	42.0
Total Split (%)	37.1%	37.1%	37.1%	37.1%	37.1%	37.1%	29.0%	33.9%	33.9%	29.0%	33.9%	33.9%
Maximum Green (s)	40.0	40.0	40.0	40.0	40.0	40.0	30.0	36.0	36.0	30.0	36.0	36.0
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	6.0	6.0	6.0	6.0	6.0	6.0	2.0	6.0	6.0	2.0	6.0	6.0
Minimum Gap (s)	3.0	3.0	3.0	3.0	3.0	3.0	2.0	3.0	3.0	2.0	4.0	4.0
Time Before Reduce (s)	20.0	20.0	20.0	20.0	20.0	20.0	0.0	20.0	20.0	0.0	20.0	20.0
Time To Reduce (s)	10.0	10.0	10.0	10.0	10.0	10.0	0.0	10.0	10.0	0.0	10.0	10.0
Recall Mode	Min	Min	Min	Min	Min	Min	None	Max	Max	None	Max	Max
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		17.2	17.2	17.2	17.2	17.2	13.9	45.3	45.3	7.5	36.4	36.4
Actuated g/C Ratio		0.20	0.20	0.20	0.20	0.20	0.16	0.53	0.53	0.09	0.42	0.42
v/c Ratio		0.46	0.39	0.12	0.05	0.18	0.68	0.19	0.03	0.38	0.25	0.13
Control Delay		36.1	7.4	30.0	28.3	7.3	47.6	13.0	0.1	46.3	18.2	5.3
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		36.1	7.4	30.0	28.3	7.3	47.6	13.0	0.1	46.3	18.2	5.3
LOS		D	Α	С	С	Α	D	В	Α	D	В	Α
Approach Delay		19.6			16.1			23.9			19.2	
Approach LOS		В			В			С			В	
Queue Length 50th (ft)		62	0	12	9	0	92	48	0	31	62	0
Queue Length 95th (ft)		125	51	36	29	30	176	96	0	77	123	33
Internal Link Dist (ft)		530			518			1111			655	
Turn Bay Length (ft)			250			225	680		250	400		250
Base Capacity (vph)		678	832	515	897	804	594	1767	891	639	1461	682
Starvation Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio		0.19	0.22	0.05	0.02	0.09	0.31	0.19	0.03	0.09	0.25	0.13

Intersection Summary

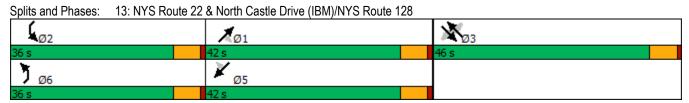
Area Type: Other

Cycle Length: 124

Actuated Cycle Length: 85.7

Natural Cycle: 90

Control Type: Semi Act-Uncoord


Maximum v/c Ratio: 0.68

Intersection Signal Delay: 20.8 Intersection Capacity Utilization 48.0%

Intersection LOS: C ICU Level of Service A

Analysis Period (min) 15

18002018A - N.T. Page 33 13: NYS Route 22 & North Castle Drive (IBM)/NYS Route 128

	•	≭	\rightarrow	•	†	7	(w	ļ	4	€	✓	
Lane Group	EBL2	EBL	EBR	NBL	NBT	NBR	SBL	SBT	SBR	SWL	SWR	
Lane Configurations		ă	7		ર્ન	7		4T>		444		
Traffic Volume (vph)	3	0	6	4	400	177	0	375	2	178	0	
Future Volume (vph)	3	0	6	4	400	177	0	375	2	178	0	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Lane Width (ft)	10	10	10	11	11	11	10	10	10	11	11	
Grade (%)		0%			4%			1%		0%		
Storage Length (ft)		0	0	0		0	0		0	0	0	
Storage Lanes		1	1	0		1	0		0	2	0	
Taper Length (ft)		25		25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	*0.67	*0.67	*0.67	0.97	0.95	
Ped Bike Factor					1.00			1.00				
Frt			0.850			0.850		0.999				
Flt Protected		0.950								0.950		
Satd. Flow (prot)	0	1685	1133	0	1744	1391	0	2229	0	3164	0	
Flt Permitted	•	0.950		•	0.996					0.950	•	
Satd. Flow (perm)	0	1685	1133	0	1737	1391	0	2229	0	3164	0	
Right Turn on Red	•		Yes	•		Yes			No	0.0.	•	
Satd. Flow (RTOR)			74			184						
Link Speed (mph)		30			35	101		35		35		
Link Distance (ft)		155			796			597		511		
Travel Time (s)		3.5			15.5			11.6		10.0		
Confl. Peds. (#/hr)		0.0		1	10.0			11.0	1	10.0	1	
Confl. Bikes (#/hr)				•					•		•	
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	
Heavy Vehicles (%)	0%	0%	33%	25%	3%	10%	0%	6%	0%	7%	0%	
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%		0%		
Adj. Flow (vph)	3	0	6	4	417	184	0	391	2	185	0	
Shared Lane Traffic (%)	J	· ·	U	т.	717	104	U	001	_	100	U	
Lane Group Flow (vph)	0	3	6	0	421	184	0	393	0	185	0	
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Right	
Median Width(ft)	LOIL	10	ragnt	LOIL	0	rtigitt	LOIL	0	rtigiit	22	rtigitt	
Link Offset(ft)		0			0			0		0		
Crosswalk Width(ft)		16			16			16		16		
Two way Left Turn Lane		10			10			10		10		
Headway Factor	1.09	1.09	1.09	1.07	1.07	1.07	1.10	1.10	1.10	1.04	1.04	
Turning Speed (mph)	1.03	1.03	9	1.07	1.07	9	1.10	1.10	9	1.04	9	
Number of Detectors	13	13	1	13	2	1	1	2	9	13	9	
Detector Template	Left	'	, I	Left		· ·	Left	۷				
Leading Detector (ft)	20	35	35	20	83	35	20	83		35		
	0	-5	-5	0	-5	-5	0	-5		-5		
Trailing Detector (ft)		-ⴢ Prot	-5 Perm	Perm	c- NA		U	-5 NA		-ი Prot		
Turn Type Protected Phases	Perm	3	r eiiii	FEIIII		pm+ov						
	2	3	2	1	1	4	E	5		4		
Permitted Phases	3	2	3	1	1	1	5	-				
Detector Phase	3	3	3	1	1	4	5	5		4		
Switch Phase												

	•	_#	•	4	†	7	₩.	↓	4	₹	1	
Lane Group	EBL2	EBL	EBR	NBL	NBT	NBR	SBL	SBT	SBR	SWL	SWR	
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0		
Minimum Split (s)	10.0	10.0	10.0	11.0	11.0	11.0	11.0	11.0		11.0		
Total Split (s)	25.0	25.0	25.0	51.0	51.0	56.0	51.0	51.0		56.0		
Total Split (%)	18.9%	18.9%	18.9%	38.6%	38.6%	42.4%	38.6%	38.6%		42.4%		
Maximum Green (s)	20.0	20.0	20.0	45.0	45.0	50.0	45.0	45.0		50.0		
Yellow Time (s)	4.0	4.0	4.0	5.0	5.0	5.0	5.0	5.0		5.0		
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0		
Lost Time Adjust (s)		0.0	0.0		0.0	0.0		0.0		0.0		
Total Lost Time (s)		5.0	5.0		6.0	6.0		6.0		6.0		
Lead/Lag	Lag	Lag	Lag			Lead				Lead		
Lead-Lag Optimize?	Yes	Yes	Yes			Yes				Yes		
Vehicle Extension (s)	5.0	5.0	5.0	5.0	5.0	3.0	5.0	5.0		3.0		
Minimum Gap (s)	5.0	5.0	5.0	5.0	5.0	3.0	5.0	5.0		3.0		
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0		
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0		
Recall Mode	None	None	None	Max	Max	None	Max	Max		None		
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		7.9	7.9		45.4	66.0		45.4		9.5		
Actuated g/C Ratio		0.11	0.11		0.66	0.95		0.66		0.14		
v/c Ratio		0.02	0.03		0.37	0.14		0.27		0.43		
Control Delay		30.7	0.3		7.8	0.5		6.7		31.4		
Queue Delay		0.0	0.0		0.0	0.0		0.0		0.0		
Total Delay		30.7	0.3		7.8	0.5		6.7		31.4		
LOS		С	Α		Α	Α		Α		С		
Approach Delay		10.4			5.6			6.7		31.4		
Approach LOS		В			Α			Α		С		
Queue Length 50th (ft)		1	0		59	0		37		36		
Queue Length 95th (ft)		10	0		192	12		119		76		
Internal Link Dist (ft)		75			716			517		431		
Turn Bay Length (ft)												
Base Capacity (vph)		491	382		1139	1391		1462		2306		
Starvation Cap Reductn		0	0		0	0		0		0		
Spillback Cap Reductn		0	0		0	0		0		0		
Storage Cap Reductn		0	0		0	0		0		0		
Reduced v/c Ratio		0.01	0.02		0.37	0.13		0.27		0.08		
Intersection Summary												
7 1	Other											
Cycle Length: 132												

Intersection LOS: A

ICU Level of Service A

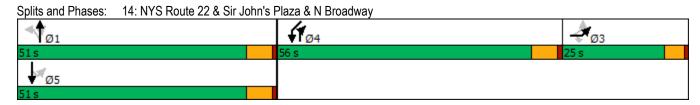
Actuated Cycle Length: 69.2

Natural Cycle: 40

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.43

Intersection Signal Delay: 10.0


Intersection Capacity Utilization 47.7%

Analysis Period (min) 15

* User Entered Value

Synchro 10 Report Page 36

18002018A - N.T.

Year 2024 Build Traffic Volumes Weekday Peak Mid-Day Hour 15: Central Westchester Expressway & NYS Route 22 & Reservoir Road & Church Street 20/2020

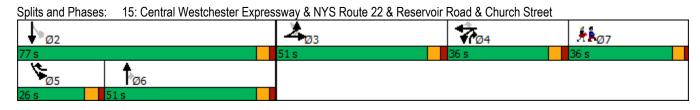
	>	۶	→	\rightarrow	•	←	*_	•	†	<i>></i>	-	ţ
Lane Group	EBL2	EBL	EBT	EBR	WBL	WBT	WBR	WBR2	NBT	NBR	SBL	SBT
Lane Configurations		ሻ	f)			ર્ન		7	^	7	ሻ	↑ ↑
Traffic Volume (vph)	1	217	148	94	64	106	1	71	342	68	47	368
Future Volume (vph)	1	217	148	94	64	106	1	71	342	68	47	368
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	11	11	12	12	12	12	11	11	12	12
Grade (%)			2%			2%			4%			-6%
Storage Length (ft)		115		0	0		180			160	110	
Storage Lanes		1		0	0		1			1	1	
Taper Length (ft)		86			25						86	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95
Ped Bike Factor		0.99	0.99			1.00		0.99				0.99
Frt			0.942			0.999		0.850		0.850		0.944
Flt Protected						0.982					0.950	
Satd. Flow (prot)	0	1639	1683	0	0	1834	0	1599	3353	1443	1859	3249
Flt Permitted				-	-	0.982	•	, , ,			0.264	
Satd. Flow (perm)	0	1627	1683	0	0	1825	0	1576	3353	1443	517	3249
Right Turn on Red				No	•	.020		Yes		Yes	• • • • • • • • • • • • • • • • • • • •	02.0
Satd. Flow (RTOR)								76		76		
Link Speed (mph)			35			30			45	10		35
Link Distance (ft)			532			475			529			778
Travel Time (s)			10.4			10.8			8.0			15.2
Confl. Peds. (#/hr)	3	2	10.1	10	10	10.0	3	2	0.0			10.2
Confl. Bikes (#/hr)		_		10	10		· ·	_				
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	11%	1%	0%	0%	1%	0%	0%	2%	6%	0%	3%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)			0%			0%			0%			0%
Adj. Flow (vph)	1	231	157	100	68	113	1	76	364	72	50	391
Shared Lane Traffic (%)	•	201	107	100	00	110		10	001		00	001
Lane Group Flow (vph)	0	232	257	0	0	182	0	76	364	72	50	622
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Left	Right	Right	Left	Right	Left	Left
Median Width(ft)	Loit	LOIL	11	ragin	Loit	11	ragne	rugiit	12	rtigit	LOIL	12
Link Offset(ft)			0			0			0			0
Crosswalk Width(ft)			16			16			16			16
Two way Left Turn Lane			10			10			10			10
Headway Factor	1.06	1.06	1.06	1.06	1.01	1.01	1.01	1.01	1.07	1.07	0.96	0.96
Turning Speed (mph)	1.00	1.00	1.00	9	1.01	1.01	9	9	1.07	9	15	0.90
Number of Detectors	1	13	2	9	13	2	9	1	2	1	13	2
Detector Template	Left				Left			ı		ı	ı	
Leading Detector (ft)	20	35	83		20	83		35	83	35	35	83
Trailing Detector (ft)	0	-5	-5		0	-5		-5	-5	-5	-5	-5
• ,												
Turn Type	Perm	Split	NA		Split	NA 4		pm+ov	NA	pm+ov	pm+pt	NA 2
Protected Phases Permitted Phases	2	3	3		4	4		5	6	4	5 2	Z
	3	2	2		4	4		4	C	6		0
Detector Phase	3	3	3		4	4		5	6	4	5	2
Switch Phase												

Synchro 10 Report Page 38 18002018A - N.T.

Lane Group	SBR	Ø7
LareConfigurations		
Traffic Volume (vph)	217	
Future Volume (vph)	217	
Ideal Flow (vphpl)	1900	
Lane Width (ft)	12	
Grade (%)		
Storage Length (ft)	0	
Storage Lanes	0	
Taper Length (ft)	•	
Lane Util. Factor	0.95	
Ped Bike Factor	0.00	
Frt		
Flt Protected		
Satd. Flow (prot)	0	
Flt Permitted	U	
Satd. Flow (perm)	0	
 ,	U	
Right Turn on Red		
Satd. Flow (RTOR)		
Link Speed (mph)		
Link Distance (ft)		
Travel Time (s)	1	
Confl. Peds. (#/hr)	1	
Confl. Bikes (#/hr)	201	
Peak Hour Factor	0.94	
Growth Factor	100%	
Heavy Vehicles (%)	14%	
Bus Blockages (#/hr)	0	
Parking (#/hr)		
Mid-Block Traffic (%)		
Adj. Flow (vph)	231	
Shared Lane Traffic (%)		
Lane Group Flow (vph)	0	
Enter Blocked Intersection	No	
Lane Alignment	Right	
Median Width(ft)		
Link Offset(ft)		
Crosswalk Width(ft)		
Two way Left Turn Lane		
Headway Factor	0.96	
Turning Speed (mph)	9	
Number of Detectors		
Detector Template		
Leading Detector (ft)		
Trailing Detector (ft)		
Turn Type		
Protected Phases		7
Permitted Phases		1
Detector Phase		
Switch Phase		

Synchro 10 Report Page 39

		•	•
15: Central Westchester Expressw	ay & NYS Route 22 & Reservoir F	Road & Church	Stre@51/20/2020


	>	۶	→	\rightarrow	•	←	*_	•	†	<i>></i>	>	ţ
Lane Group	EBL2	EBL	EBT	EBR	WBL	WBT	WBR	WBR2	NBT	NBR	SBL	SBT
Minimum Initial (s)	5.0	5.0	5.0		5.0	5.0		5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	39.0	39.0	39.0		11.0	11.0		11.0	11.0	11.0	11.0	31.0
Total Split (s)	51.0	51.0	51.0		36.0	36.0		26.0	51.0	36.0	26.0	77.0
Total Split (%)	25.5%	25.5%	25.5%		18.0%	18.0%		13.0%	25.5%	18.0%	13.0%	38.5%
Maximum Green (s)	45.0	45.0	45.0		30.0	30.0		20.0	45.0	30.0	20.0	71.0
Yellow Time (s)	4.0	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)		0.0	0.0			0.0		0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		6.0	6.0			6.0		6.0	6.0	6.0	6.0	6.0
Lead/Lag	Lead	Lead	Lead		Lag	Lag		Lead	Lag	Lag	Lead	
Lead-Lag Optimize?	Yes	Yes	Yes		Yes	Yes		Yes	Yes	Yes	Yes	
Vehicle Extension (s)	3.0	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0
Minimum Gap (s)	3.0	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0
Time Before Reduce (s)	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0
Recall Mode	None	None	None		None	None		None	Min	None	None	Min
Walk Time (s)	8.0	8.0	8.0									8.0
Flash Dont Walk (s)	25.0	25.0	25.0									17.0
Pedestrian Calls (#/hr)	6	6	6									0
Act Effct Green (s)		27.8	27.8			20.1		29.0	21.4	41.6	36.5	36.5
Actuated g/C Ratio		0.20	0.20			0.14		0.21	0.15	0.30	0.26	0.26
v/c Ratio		0.72	0.77			0.69		0.20	0.71	0.15	0.23	0.73
Control Delay		66.7	70.0			73.2		6.7	66.0	4.2	45.0	54.1
Queue Delay		0.0	0.0			0.0		0.0	0.0	0.0	0.0	0.0
Total Delay		66.7	70.0			73.2		6.7	66.0	4.2	45.0	54.1
LOS		Е	Е			Е		Α	Е	Α	D	D
Approach Delay			68.4			53.6			55.8			53.5
Approach LOS			Е			D			Е			D
Queue Length 50th (ft)		195	219			156		0	164	0	34	267
Queue Length 95th (ft)		335	370			282		30	264	18	81	408
Internal Link Dist (ft)			452			395			449			698
Turn Bay Length (ft)		115						180		160	110	
Base Capacity (vph)		536	555			403		515	1106	586	331	1691
Starvation Cap Reductn		0	0			0		0	0	0	0	0
Spillback Cap Reductn		0	0			0		0	0	0	0	0
Storage Cap Reductn		0	0			0		0	0	0	0	0
Reduced v/c Ratio		0.43	0.46			0.45		0.15	0.33	0.12	0.15	0.37
Intersection Summary												
Area Type:	Other											
Cycle Length: 200												
Actuated Cycle Length: 139	9.7											
Natural Cycle: 120												
Control Type: Actuated-Und	coordinated											

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.77 Intersection Signal Delay: 58.0 Intersection Capacity Utilization 70.1%

Intersection LOS: E ICU Level of Service C

15: Central Westchester Expressway & NYS Route 22 & Reservoir Road & Church Street 20/20/2020

Synchro 10 Report 18002018A - N.T. Page 41

Lane Group	SBR Ø7	
Minimum Initial (s)	8.0	
Minimum Split (s)	36.0	
Total Split (s)	36.0	
Total Split (%)	18%	
Maximum Green (s)	31.0	
Yellow Time (s)	3.5	
All-Red Time (s)	1.5	
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag		
Lead-Lag Optimize?		
Vehicle Extension (s)	3.0	
Minimum Gap (s)	3.0	
Time Before Reduce (s)	0.0	
Time To Reduce (s)	0.0	
Recall Mode	Ped	
Walk Time (s)	8.0	
Flash Dont Walk (s)	23.0	
Pedestrian Calls (#/hr)	2	
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (ft)		
Queue Length 95th (ft)		
Internal Link Dist (ft)		
Turn Bay Length (ft)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		

Synchro 10 Report Page 42 18002018A - N.T.

	ሽ	†	ļ	» J	•	>
Lane Group	NBL	NBT	SBT	SBR	SEL	SER
Lane Configurations	ች	^	^	7	ች	7
Traffic Volume (vph)	189	520	786	226	524	780
Future Volume (vph)	189	520	786	226	524	780
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1900	1900	1900	1900	1900	1900
	10	0%	0%	10	0%	10
Grade (%)	050	0%	0%	F00		^
Storage Length (ft)	250			500	250	0
Storage Lanes	1			1	1	1
Taper Length (ft)	86				86	
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00
Ped Bike Factor						
Frt				0.850		0.850
Flt Protected	0.950				0.950	
Satd. Flow (prot)	1478	3209	3303	1478	1604	1436
Flt Permitted	0.950			-	0.950	
Satd. Flow (perm)	1478	3209	3303	1478	1604	1436
Right Turn on Red	1710	0200	0000	Yes	1007	Yes
				231		479
Satd. Flow (RTOR)		EE	EE	231	20	4/9
Link Speed (mph)		55 767	55		30	
Link Distance (ft)		767	1064		872	
Travel Time (s)		9.5	13.2		19.8	
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	14%	5%	2%	2%	5%	5%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)				•		
Mid-Block Traffic (%)		0%	0%		0%	
Adj. Flow (vph)	193	531	802	231	535	796
	193	551	002	231	555	130
Shared Lane Traffic (%)	402	E24	000	004	EDE	706
Lane Group Flow (vph)	193	531	802	231	535	796
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width(ft)		10	15		10	
Link Offset(ft)		0	0		0	
Crosswalk Width(ft)		16	16		16	
Two way Left Turn Lane						
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (mph)	15			9	15	9
Number of Detectors	1	2	2	1	2	0
Detector Template	I			ı		U
· ·	25	104	104	0	104	0
Leading Detector (ft)	35	104	104	0	104	0
Trailing Detector (ft)	-5	0	0	_ 0	0	_ 0
Turn Type	Prot	NA	NA	Free	Prot	Free
Protected Phases	2	5	1		3	
Permitted Phases				Free		Free
Detector Phase	2	5	1		3	
Switch Phase						
- Intornation						

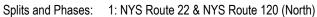
	ሻ	<u></u>		W J	•	\
Lane Group	NBL	NBT	SBT	SBR	SEL	SER
Minimum Initial (s)	12.0	12.0	12.0		10.0	
Minimum Split (s)	36.0	36.0	36.0		26.0	
Total Split (s)	41.0	82.0	41.0		41.0	
Total Split (%)	33.3%	66.7%	33.3%		33.3%	
Maximum Green (s)	34.0	75.0	34.0		35.0	
Yellow Time (s)	5.0	5.0	5.0		4.0	
All-Red Time (s)	2.0	2.0	2.0		2.0	
Lost Time Adjust (s)	0.0	0.0	0.0		0.0	
Total Lost Time (s)	7.0	7.0	7.0		6.0	
Lead/Lag	Lead		Lag			
Lead-Lag Optimize?	Yes		Yes			
Vehicle Extension (s)	6.0	6.0	6.0		6.0	
Minimum Gap (s)	4.0	4.0	4.0		4.0	
Time Before Reduce (s)	20.0	20.0	20.0		20.0	
Time To Reduce (s)	8.0	8.0	8.0		5.0	
Recall Mode	None	Min	Min		None	
Walk Time (s)						
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)						
Act Effct Green (s)	22.3	62.1	32.7	110.3	35.2	110.3
Actuated g/C Ratio	0.20	0.56	0.30	1.00	0.32	1.00
v/c Ratio	0.65	0.29	0.82	0.16	1.05	0.55
Control Delay	51.0	12.9	44.6	0.2	91.0	1.5
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	51.0	12.9	44.6	0.2	91.0	1.5
LOS	D	В	D	Α	F	Α
Approach Delay		23.1	34.7		37.5	
Approach LOS		С	С		D	
Queue Length 50th (ft)	128	97	275	0	~422	0
Queue Length 95th (ft)	204	128	#397	0	#701	0
Internal Link Dist (ft)		687	984		792	
Turn Bay Length (ft)	250			500	250	
Base Capacity (vph)	457	2192	1023	1478	511	1436
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.42	0.24	0.78	0.16	1.05	0.55
Intersection Summary						
Area Type:	Other					
Cycle Length: 123						
Actuated Cycle Length: 11	0.3					
Natural Cycle: 110						
Control Type: Actuated-Ur	ncoordinated					
Maximum v/c Ratio: 1.05						

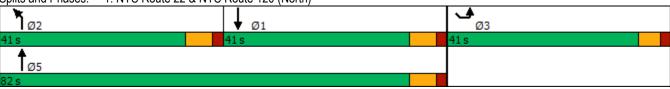
Intersection LOS: C

ICU Level of Service D

~ Volume exceeds capacity, queue is theoretically infinite.

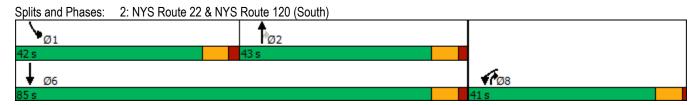
Intersection Signal Delay: 33.2


Analysis Period (min) 15


Intersection Capacity Utilization 77.9%

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.


Queue shown is maximum after two cycles.

	•	•	†	~	\	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W	11511	^	7	ሻሻ	† †
Traffic Volume (vph)	48	0	478	179	911	655
Future Volume (vph)	48	0	478	179	911	655
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1300	12	10	10	11	11
Grade (%)	-8%	14	-2%	10	11	-1%
Storage Length (ft)	0	0	- Z /0	200	215	-1 /0
Storage Lanes	1	0		200	213	
Taper Length (ft)	25	U		ı	86	
Lane Util. Factor	1.00	1.00	0.95	1.00	0.97	0.95
Ped Bike Factor	1.00	1.00	0.93	1.00	0.31	0.30
Frt				0.850		
	0.050			0.000	0.050	
Flt Protected	0.950	^	2204	4.470	0.950	2405
Satd. Flow (prot)	1707	0	3304	1478	3368	3405
Flt Permitted	0.950		0007	4 470	0.950	0.40=
Satd. Flow (perm)	1707	0	3304	1478	3368	3405
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)				9		
Link Speed (mph)	30		50			50
Link Distance (ft)	334		905			488
Travel Time (s)	7.6		12.3			6.7
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	10%	0%	3%	3%	1%	3%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	51	0	503	188	959	689
Shared Lane Traffic (%)	O1	•	000	100	000	000
Lane Group Flow (vph)	51	0	503	188	959	689
Enter Blocked Intersection	No	No	No	No	No	No
	Left	Right	Left	Right	Left	Left
Lane Alignment		Right		Rigiil	Leit	
Median Width(ft)	12		22			22
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane						
Headway Factor	0.95	0.95	1.08	1.08	1.04	1.04
Turning Speed (mph)	15	9		9	15	
Number of Detectors	1		2	1	1	2
Detector Template	Left		Thru	Right	Left	Thru
Leading Detector (ft)	20		100	20	20	100
Trailing Detector (ft)	0		0	0	0	0
Turn Type	Prot		NA	pm+ov	Prot	NA
Protected Phases	8		2	8	1	6
Permitted Phases				2		
Detector Phase	8		2	8	1	6
Switch Phase	U			U		U
SWILLII FIIASE						

	•	•	†	<i>></i>	/	Ţ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Minimum Initial (s)	10.0		12.0	10.0	12.0	12.0
Minimum Split (s)	26.0		36.0	26.0	36.0	36.0
Total Split (s)	41.0		43.0	41.0	42.0	85.0
Total Split (%)	32.5%		34.1%	32.5%	33.3%	67.5%
Maximum Green (s)	35.0		36.0	35.0	35.0	78.0
Yellow Time (s)	5.0		5.0	5.0	5.0	5.0
All-Red Time (s)	1.0		2.0	1.0	2.0	2.0
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0		7.0	6.0	7.0	7.0
Lead/Lag			Lag		Lead	
Lead-Lag Optimize?			Yes		Yes	
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0
Minimum Gap (s)	3.0		3.0	3.0	3.0	3.0
Time Before Reduce (s)	0.0		0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0		0.0	0.0	0.0	0.0
Recall Mode	None		Min	None	Min	Min
Walk Time (s)	INOTIE		IVIIII	NOHE	IVIIII	IVIIII
` ,						
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)	10.2		10.0	25.0	246	E0 6
Act Effct Green (s)			18.0	35.2	34.6	59.6
Actuated g/C Ratio	0.12		0.22	0.43	0.42	0.72
v/c Ratio	0.24		0.70	0.30	0.68	0.28
Control Delay	37.5		35.6	16.2	23.3	4.4
Queue Delay	0.0		0.0	0.0	0.0	0.0
Total Delay	37.5		35.6	16.2	23.3	4.4
LOS	D		D	В	С	A
Approach Delay	37.5		30.3			15.4
Approach LOS	D		С			В
Queue Length 50th (ft)	24		126	58	199	53
Queue Length 95th (ft)	61		181	105	304	76
Internal Link Dist (ft)	254		825			408
Turn Bay Length (ft)				200	215	
Base Capacity (vph)	723		1439	1075	1427	3211
Starvation Cap Reductn	0		0	0	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductn	0		0	0	0	0
Reduced v/c Ratio	0.07		0.35	0.17	0.67	0.21
Intersection Summary						
Area Type:	Other					
Cycle Length: 126						
Actuated Cycle Length: 82	2.8					
Natural Cycle: 100						
Control Type: Semi Act-Ur	ncoord					
Maximum v/c Ratio: 0.70						
Intersection Signal Delay:	20.2			lr	ntersectio	n LOS: C
Intersection Capacity Utiliz						of Service
Analysis Period (min) 15					2 20.01	55. 1100
range of Ground (min) 10						

	۶	→	•	•	←	•	1	†	/	/	+	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					₽			4				
Traffic Volume (vph)	0	0	0	0	25	6	1	225	45	0	0	0
Future Volume (vph)	0	0	0	0	25	6	1	225	45	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	13	12	12	12	12
Grade (%)		0%			-5%			-7%			0%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	0		0	0		0	0		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt					0.973			0.978				
Flt Protected												
Satd. Flow (prot)	0	0	0	0	1836	0	0	1746	0	0	0	0
Flt Permitted												
Satd. Flow (perm)	0	0	0	0	1836	0	0	1746	0	0	0	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		124			297			300			404	
Travel Time (s)		2.8			6.8			6.8			9.2	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	0%	0%	4%	0%	0%	16%	3%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	0	0	0	0	28	7	1	256	51	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	0	0	0	35	0	0	308	0	0	0	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	0.97	0.97	0.97	0.96	0.92	0.96	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15	_	9	15		9
Sign Control		Stop			Stop			Free			Stop	
Intersection Summary												
	Other											
Control Type: Unsignalized												
Intersection Capacity Utilizati	on 24.6%			IC	U Level	of Service	Α					
Analysis Period (min) 15												

Intersection												
Int Delay, s/veh	1											
			500	14/51	MOT	14/55	NE	NET	NDD	0.01	0.0.7	000
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					f)	_		4				
Traffic Vol, veh/h	0	0	0	0	25	6	1	225	45	0	0	0
Future Vol, veh/h	0	0	0	0	25	6	1	225	45	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	2	-	-	0	-	-	0	-	-	16965	-
Grade, %	-	0	-	-	-5	-	-	-7	-	-	0	-
Peak Hour Factor	88	88	88	88	88	88	88	88	88	88	88	88
Heavy Vehicles, %	0	0	0	0	4	0	0	16	3	0	0	0
Mvmt Flow	0	0	0	0	28	7	1	256	51	0	0	0
Major/Minor			N	Minor1		N	/lajor1					
Conflicting Flow All				-	284	282	0	0	0			
Stage 1				_	284	-	-	-	-			
Stage 2				_	0	<u>-</u>	_	_	<u>-</u>			
Critical Hdwy				_	5.54	5.7	4.1	_	_			
Critical Hdwy Stg 1				_	4.54	-	-	_	<u>-</u>			
Critical Hdwy Stg 2				_	5-		_		_			
Follow-up Hdwy				_	4.036	3.3	2.2	_	_			
Pot Cap-1 Maneuver				0	673	792	2.2					
Stage 1				0	728	- 102	_	_	_			
Stage 2				0	720		_					
Platoon blocked, %				U				_	_			
Mov Cap-1 Maneuver				_	0	792	_		_			
Mov Cap-1 Maneuver				_	0	- 102	_	_	_			
Stage 1					0							
Stage 2				_	0	_	_	_	_			
Olugo Z					J							
				1675								
Approach				WB			NB					
HCM Control Delay, s				9.8								
HCM LOS				Α								
Minor Lane/Major Mvmt		NBL	NBT	NBRV	VBLn1							
Capacity (veh/h)		-		-	792							
HCM Lane V/C Ratio		-	-	_	0.044							
HCM Control Delay (s)		-	-	-	9.8							
HCM Lane LOS		-	-	-	Α							
HCM 95th %tile Q(veh)		-	-	-	0.1							

	۶	→	•	•	+	•	•	†	~	/	↓	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	7		र्स	7	ሻ	1	7	ሻ	*	7
Traffic Volume (vph)	16	1	18	4	0	3	146	300	28	27	774	289
Future Volume (vph)	16	1	18	4	0	3	146	300	28	27	774	289
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (%)		4%			-1%			7%			-4%	
Storage Length (ft)	0		315	0		125	280		445	150		275
Storage Lanes	0		1	0		1	1		1	1		1
Taper Length (ft)	25			25			86			86		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt			0.850			0.850			0.850			0.850
Flt Protected		0.955			0.950		0.950			0.950		
Satd. Flow (prot)	0	1309	1190	0	1814	1623	1675	1667	1558	1841	1882	1631
Flt Permitted	•	.000				.020	0.203			0.563		
Satd. Flow (perm)	0	1370	1190	0	1909	1623	358	1667	1558	1091	1882	1631
Right Turn on Red	•		Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			37			37			83			204
Link Speed (mph)		30	•		30	•		55			55	
Link Distance (ft)		601			392			1478			1166	
Travel Time (s)		13.7			8.9			18.3			14.5	
Confl. Peds. (#/hr)					0.0			10.0				
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	38%	0%	33%	0%	0%	0%	4%	10%	0%	0%	3%	1%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)					, ,							
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	17	1	20	4	0	3	159	326	30	29	841	314
Shared Lane Traffic (%)	• • •	•	20	•			100	020	00	20	011	011
Lane Group Flow (vph)	0	18	20	0	4	3	159	326	30	29	841	314
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	LOIL	0	ragiit	LOIL	0	ragni	LOIL	12	rtigrit	LOIL	12	ragiit
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.03	1.03	1.03	0.99	0.99	0.99	1.05	1.05	1.05	0.97	0.97	0.97
Turning Speed (mph)	1.03	1.03	9	15	0.55	9	1.03	1.03	1.03	15	0.31	9
Number of Detectors	1	2	1	1	2	1	1	2	1	1	2	1
Detector Template	Left	2	ı	Left		ı	ı		ı	ı		ı
Leading Detector (ft)	20	83	35	20	83	35	35	83	35	35	83	35
Trailing Detector (ft)	0	-5	-5	0	-5	-5	-5	-5	-5	-5	-5	-5
. ,												
Turn Type	Perm	NA Q	pm+ov	Perm	NA 4	pm+ov	pm+pt	NA 6	Perm	pm+pt	NA 2	Perm
Protected Phases	0	8	1	4	4	5	1	6	6	5	2	0
Permitted Phases	8	0	8	4	,	4	6		6	2	0	2
Detector Phase	8	8	1	4	4	5	1	6	6	5	2	2
Switch Phase												

	۶	→	•	•	←	*	4	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	5.0	3.0	5.0	5.0	3.0	3.0	5.0	5.0	3.0	5.0	5.0
Minimum Split (s)	13.0	13.0	10.0	13.0	13.0	10.0	10.0	12.0	12.0	10.0	12.0	12.0
Total Split (s)	45.0	45.0	27.0	45.0	45.0	27.0	27.0	47.0	47.0	27.0	47.0	47.0
Total Split (%)	37.8%	37.8%	22.7%	37.8%	37.8%	22.7%	22.7%	39.5%	39.5%	22.7%	39.5%	39.5%
Maximum Green (s)	40.0	40.0	20.0	40.0	40.0	20.0	20.0	40.0	40.0	20.0	40.0	40.0
Yellow Time (s)	4.0	4.0	5.0	4.0	4.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	1.0	1.0	2.0	1.0	1.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		5.0	7.0		5.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
Lead/Lag			Lead			Lead	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?			Yes			Yes	Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0	2.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Minimum Gap (s)	3.0	3.0	2.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Recall Mode	None	None	None	None	None	None	None	Max	Max	None	Max	Max
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		6.8	8.4		6.3	7.1	52.3	53.8	53.8	45.4	40.5	40.5
Actuated g/C Ratio		0.11	0.13		0.10	0.11	0.83	0.85	0.85	0.72	0.64	0.64
v/c Ratio		0.12	0.11		0.02	0.01	0.37	0.23	0.02	0.03	0.70	0.28
Control Delay		29.8	4.8		28.5	0.0	4.1	4.4	0.0	2.4	13.9	3.4
Queue Delay		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		29.8	4.8		28.5	0.0	4.1	4.4	0.0	2.4	13.9	3.4
LOS		С	Α		С	Α	Α	Α	Α	Α	В	Α
Approach Delay		16.7			16.3			4.0			10.8	
Approach LOS		В			В			Α			В	
Queue Length 50th (ft)		6	0		1	0	1	0	0	0	140	11
Queue Length 95th (ft)		27	9		10	0	33	127	0	9	#590	69
Internal Link Dist (ft)		521			312			1398			1086	
Turn Bay Length (ft)			315			125	280		445	150		275
Base Capacity (vph)		880	447		1226	602	727	1420	1340	1170	1208	1120
Starvation Cap Reductn		0	0		0	0	0	0	0	0	0	0
Spillback Cap Reductn		0	0		0	0	0	0	0	0	0	0
Storage Cap Reductn		0	0		0	0	0	0	0	0	0	0
Reduced v/c Ratio		0.02	0.04		0.00	0.00	0.22	0.23	0.02	0.02	0.70	0.28

Intersection Summary

Area Type: Other

Cycle Length: 119

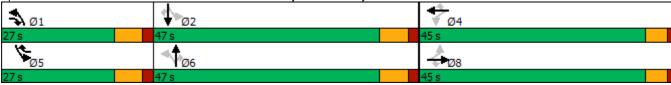
Actuated Cycle Length: 63.1

Natural Cycle: 60

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.70

Intersection Signal Delay: 9.0 Intersection Capacity Utilization 72.3%


Intersection LOS: A ICU Level of Service C

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

18002018A - N.T. Page 10 Queue shown is maximum after two cycles.

Splits and Phases: 4: NYS Route 120 & SwissRe Driveway/IBM Driveway

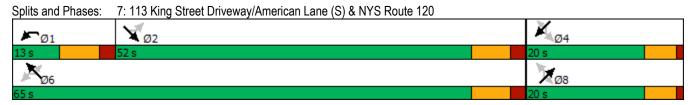
	•	•	†	~	>	ţ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*	7	†	7	ሻ	†
Traffic Volume (vph)	11	11	463	5	167	629
Future Volume (vph)	11	11	463	5	167	629
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	12	12	10	10
Grade (%)	-3%		2%			-1%
Storage Length (ft)	0	0		15	175	
Storage Lanes	1	1		1	1	
Taper Length (ft)	25	4.00	4.00	4.00	86	4.00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.050		0.050		
Frt	0.050	0.850		0.850	0.050	
Flt Protected	0.950	4000	4=40	4500	0.950	4744
Satd. Flow (prot)	1771	1320	1742	1599	1676	1714
Flt Permitted	0.950	1000	4= 40	4500	0.950	4-11
Satd. Flow (perm)	1771	1320	1742	1599	1676	1714
Link Speed (mph)	25		55			55
Link Distance (ft)	589		993			1478
Travel Time (s)	16.1		12.3			18.3
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)	0.04	0.04	0.04	0.04	0.04	0.04
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	20%	8%	0%	1%	4%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)	201		201			001
Mid-Block Traffic (%)	0%	40	0%	_	4=0	0%
Adj. Flow (vph)	12	12	493	5	178	669
Shared Lane Traffic (%)			/00	_	4-0	000
Lane Group Flow (vph)	12	12	493	5	178	669
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	11		12			12
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane						
Headway Factor	1.02	1.02	1.01	1.01	1.09	1.09
Turning Speed (mph)	15	9	_	9	15	_
Sign Control	Stop		Free			Free
Intersection Summary						
J 1	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizat	ion 47.0%			IC	CU Level	of Service A
Analysis Period (min) 15						

Intersection						
Int Delay, s/veh	1.6					
		WDD	NDT	NDD	ODL	CDT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ች	7	100	7	107	†
Traffic Vol, veh/h	11	11	463	5	167	629
Future Vol, veh/h	11	11	463	5	167	629
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	Yield	-	Free	-	None
Storage Length	0	0	-	15	175	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	-3	-	2	-	-	-1
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	0	20	8	0	1	4
Mvmt Flow	12	12	493	5	178	669
WWW.CT IOW		12	100	Ū	170	000
Major/Minor	Minor1	N	Major1		Major2	
Conflicting Flow All	1518	493	0	-	493	0
Stage 1	493	-	-	-	-	-
Stage 2	1025	-	-	-	-	-
Critical Hdwy	5.8	6.1	-	-	4.11	-
Critical Hdwy Stg 1	4.8	-	-	_	_	_
Critical Hdwy Stg 2	4.8	_	_	_	_	_
Follow-up Hdwy	3.5	3.48	_	_	2.209	_
Pot Cap-1 Maneuver	171	564	_	0	1076	_
Stage 1	671	-	_	0	-	_
Stage 2	414	_	_	0	_	-
	414	-	-	U	-	-
Platoon blocked, %	440	FC4	-		4070	-
Mov Cap-1 Maneuver	143	564	-	-	1076	-
Mov Cap-2 Maneuver	143	-	-	-	-	-
Stage 1	671	-	-	-	-	-
Stage 2	346	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	21.9		0		1.9	
HCM LOS	С					
Minor Lane/Major Mvm	nt	NBTV	VBLn1V	VBLn2	SBL	SBT
Capacity (veh/h)			143	564	1076	-
HCM Lane V/C Ratio				0.021		_
HCM Control Delay (s)			32.4	11.5	9	
HCM Lane LOS		-	32.4 D	11.5 B	A	-
	\	-				
HCM 95th %tile Q(veh))	-	0.3	0.1	0.6	-

	۶	•	1	†	↓	1
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			4	f)	
Traffic Volume (vph)	3	7	1	465	636	4
Future Volume (vph)	3	7	1	465	636	4
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	11	11	11	11
Grade (%)	3%			5%	-2%	
Storage Length (ft)	0	0	0			0
Storage Lanes	1	0	0			0
Taper Length (ft)	25		25			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt	0.905				0.999	
Flt Protected	0.985					
Satd. Flow (prot)	1283	0	0	1643	1782	0
Flt Permitted	0.985					
Satd. Flow (perm)	1283	0	0	1643	1782	0
Link Speed (mph)	30			55	55	
Link Distance (ft)	639			1813	993	
Travel Time (s)	14.5			22.5	12.3	
Confl. Peds. (#/hr)	11.0			22.0	12.0	
Confl. Bikes (#/hr)						
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	100%	0%	0%	9%	4%	0%
Bus Blockages (#/hr)	0	0 /0	0 %	9 /0	4 /0	0 %
	U	U	U	U	U	U
Parking (#/hr)	0%			0%	0%	
Mid-Block Traffic (%)		7	1			1
Adj. Flow (vph)	3	7	I	489	669	4
Shared Lane Traffic (%)	40	0	0	400	670	0
Lane Group Flow (vph)	10	0	0	490	673	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12			0	0	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	1.02	1.02	1.08	1.08	1.03	1.03
Turning Speed (mph)	15	9	15			9
Sign Control	Stop			Free	Free	
Intersection Summary						
Area Type:	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizat	tion 43.7%			IC	CU Level	of Service
Analysis Period (min) 15						

Intersection						
Int Delay, s/veh	0.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥	LDIX	NDL	4) }	אומט
Traffic Vol, veh/h	3	7	1	465	636	4
Future Vol, veh/h	3	7	1	465	636	4
Conflicting Peds, #/hr	0	0	0	403	030	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	Slop -	None	-		-	None
Storage Length	0	NOHE -	_	-		NOHE -
Veh in Median Storage,		-	-	0	0	-
Grade, %	# 0 3	-	-	5	-2	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	100	0	0	9	4	0
Mvmt Flow	3	7	1	489	669	4
Major/Minor M	linor2	Λ	/lajor1	N	/lajor2	
Conflicting Flow All	1162	671	673	0	-	0
Stage 1	671	-	-	-	-	-
Stage 2	491	-	-	-	-	-
Critical Hdwy	8	6.5	4.1	-	_	-
Critical Hdwy Stg 1	7	-	-	_	_	_
Critical Hdwy Stg 2	7	_	_	_	_	_
Follow-up Hdwy	4.4	3.3	2.2	_	_	_
Pot Cap-1 Maneuver	116	435	927	_	_	_
Stage 1	325	-	-	_	_	_
Stage 2	419	_	_	_	_	_
Platoon blocked, %	110			_	_	_
Mov Cap-1 Maneuver	116	435	927	_	_	_
Mov Cap-2 Maneuver	116	400	JZ1			
	325	-	-	-	-	-
		_	-	-	-	-
Stage 1						
Stage 1 Stage 2	419	-	-	-	-	-
•		-	-	-	-	-
•		-	NB	-	SB	-
Stage 2 Approach	419 EB	-	NB 0	-		-
Stage 2	419	-		-	SB	
Stage 2 Approach HCM Control Delay, s	419 EB 20.8				SB	
Stage 2 Approach HCM Control Delay, s HCM LOS	419 EB 20.8 C		0	- - 	SB 0	CDD
Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt	419 EB 20.8 C	NBL	0 NBT	EBLn1	SB	SBR
Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h)	419 EB 20.8 C	NBL 927	0 NBT	238	SB 0	-
Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio	419 EB 20.8 C	NBL 927 0.001	0 NBT -	238 0.044	SB 0	-
Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	419 EB 20.8 C	NBL 927 0.001 8.9	0 NBT - - 0	238 0.044 20.8	SB 0 SBT -	- - -
Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio	419 EB 20.8 C	NBL 927 0.001	0 NBT -	238 0.044	SB 0	-

	₩	\mathbf{x}	À	*	*	₹	ን	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		4		ሻ	†	7		ર્ન	7		ર્ન	7
Traffic Volume (vph)	1	576	65	88	435	158	32	0	62	26	0	0
Future Volume (vph)	1	576	65	88	435	158	32	0	62	26	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	11	11	11	11	10	10	10	11	11	11
Grade (%)		-4%			1%			-5%			1%	
Storage Length (ft)	0		0	120		200	0		95	0		0
Storage Lanes	0		0	1		1	0		1	0		1
Taper Length (ft)	25			86			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.986				0.850			0.850			
Flt Protected				0.950				0.950			0.950	
Satd. Flow (prot)	0	1783	0	1736	1677	1494	0	1727	1545	0	1536	1827
Flt Permitted			•	0.308			•	0.739		•	0.735	
Satd. Flow (perm)	0	1783	0	563	1677	1494	0	1343	1545	0	1189	1827
Right Turn on Red			Yes			Yes	•		Yes	•		Yes
Satd. Flow (RTOR)		10				170			141			
Link Speed (mph)		55			55	110		30			25	
Link Distance (ft)		1813			2280			328			518	
Travel Time (s)		22.5			28.3			7.5			14.1	
Confl. Peds. (#/hr)		LL.U			20.0							
Confl. Bikes (#/hr)												
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	4%	0%	0%	9%	4%	0%	0%	0%	13%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	1	619	70	95	468	170	34	0	67	28	0	0
Shared Lane Traffic (%)	•	013	10	30	400	170	04	U	01	20	U	U
Lane Group Flow (vph)	0	690	0	95	468	170	0	34	67	0	28	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	LOIL	11	rtigitt	LOIL	11	rtigit	LOIL	0	ragnt	LOIL	0	rtigrit
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.02	1.02	1.02	1.05	1.05	1.05	1.06	1.06	1.06	1.05	1.05	1.05
Turning Speed (mph)	1.02	1.02	9	1.03	1.00	9	1.00	1.00	9	1.03	1.03	9
Number of Detectors	13	2	9	13	2	1	13	2	1	10	2	1
Detector Template	Left			1		'	Left		ı	Left		ı
Leading Detector (ft)	20	83		35	83	35	20	83	35	20	83	35
Trailing Detector (ft)	0	-5		-5	-5	-5	0	-5	-5	0	-5	-5
		NA			NA		Perm	NA			NA	Perm
Turn Type Protected Phases	Perm	NA 2		pm+pt		Perm	r eiiii	NA 8	Perm	Perm	NA 4	reiiii
	2	Z		1	6	G	0	Ō	0	1	4	Λ
Permitted Phases	2	0		6	6	6	8	0	8	4	4	4
Detector Phase	2	2		1	6	6	8	8	8	4	4	4
Switch Phase												

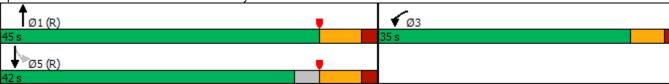

	J	×	À	~	×	₹	ን	×	~	Ĺ	¥	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Minimum Initial (s)	10.0	10.0		3.0	10.0	10.0	3.0	3.0	3.0	5.0	5.0	5.0
Minimum Split (s)	17.0	17.0		10.0	17.0	17.0	10.0	10.0	10.0	10.0	10.0	10.0
Total Split (s)	52.0	52.0		13.0	65.0	65.0	20.0	20.0	20.0	20.0	20.0	20.0
Total Split (%)	61.2%	61.2%		15.3%	76.5%	76.5%	23.5%	23.5%	23.5%	23.5%	23.5%	23.5%
Maximum Green (s)	45.0	45.0		6.0	58.0	58.0	15.0	15.0	15.0	15.0	15.0	15.0
Yellow Time (s)	5.0	5.0		5.0	5.0	5.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)		0.0		0.0	0.0	0.0		0.0	0.0		0.0	0.0
Total Lost Time (s)		7.0		7.0	7.0	7.0		5.0	5.0		5.0	5.0
Lead/Lag	Lag	Lag		Lead								
Lead-Lag Optimize?	Yes	Yes		Yes								
Vehicle Extension (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Minimum Gap (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Time Before Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Recall Mode	Max	Max		None	Max							
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		47.7		58.0	58.0	58.0		15.0	15.0		15.0	
Actuated g/C Ratio		0.56		0.68	0.68	0.68		0.18	0.18		0.18	
v/c Ratio		0.69		0.21	0.41	0.16		0.14	0.17		0.13	
Control Delay		18.7		5.6	7.2	1.1		31.4	1.0		31.5	
Queue Delay		0.0		0.0	0.0	0.0		0.0	0.0		0.0	
Total Delay		18.7		5.6	7.2	1.1		31.4	1.0		31.5	
LOS		В		Α	Α	Α		С	Α		С	
Approach Delay		18.7			5.6			11.2			31.5	
Approach LOS		В			Α			В			С	
Queue Length 50th (ft)		262		15	95	0		16	0		13	
Queue Length 95th (ft)		400		29	147	17		41	0		37	
Internal Link Dist (ft)		1733			2200			248			438	
Turn Bay Length (ft)				120		200			95			
Base Capacity (vph)		1004		466	1144	1073		237	388		209	
Starvation Cap Reductn		0		0	0	0		0	0		0	
Spillback Cap Reductn		0		0	0	0		0	0		0	
Storage Cap Reductn		0		0	0	0		0	0		0	
Reduced v/c Ratio		0.69		0.20	0.41	0.16		0.14	0.17		0.13	
Intersection Summary												
Area Type:	Other											
Cycle Length: 85												
Actuated Cycle Length: 85												
Natural Cycle: 55												

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.69 Intersection Signal Delay: 12.3 Intersection Capacity Utilization 81.5%

Intersection LOS: B ICU Level of Service D

7: 113 King Street Driveway/American Lane (S) & NYS Route 120



	•	•	†	~	\	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		1			4
Traffic Volume (vph)	54	215	465	44	213	452
Future Volume (vph)	54	215	465	44	213	452
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	11	11	11	11
Grade (%)	-6%	12	2%	11	11	0%
	0	0	Z /0	0	0	0 /0
Storage Length (ft)	1	0		0	0	
Storage Lanes		U		U		
Taper Length (ft)	25	4.00	4.00	4.00	25	4.00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.000		0.000			
Frt	0.892		0.988			0.55:
Flt Protected	0.990					0.984
Satd. Flow (prot)	1694	0	1628	0	0	1743
Flt Permitted	0.990					0.663
Satd. Flow (perm)	1694	0	1628	0	0	1174
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)	229		8			
Link Speed (mph)	30		55			55
Link Distance (ft)	328		519			557
Travel Time (s)	7.5		6.4			6.9
Confl. Peds. (#/hr)	1.5		0.4			0.5
Confl. Bikes (#/hr)						
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	2%	10%	14%	3%	4%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	57	229	495	47	227	481
Shared Lane Traffic (%)						
Lane Group Flow (vph)	286	0	542	0	0	708
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12		0			0
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane	10		10			10
	0.06	0.06	1.06	1.06	1.04	1.04
Headway Factor	0.96	0.96	1.06	1.06	1.04	1.04
Turning Speed (mph)	15	9	^	9	15	^
Number of Detectors	1		2		1	2
Detector Template					Left	
Leading Detector (ft)	35		83		20	83
Trailing Detector (ft)	-5		-5		0	-5
Turn Type	Prot		NA		Perm	NA
Protected Phases	3		1			5
Permitted Phases					5	
Detector Phase	3		1		5	5
Switch Phase	•		•			
- CWILGIT HOSE						

	•	•	†	/	>	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Minimum Initial (s)	5.0		5.0		5.0	5.0
Minimum Split (s)	10.0		12.0		12.0	12.0
Total Split (s)	35.0		45.0		42.0	42.0
Total Split (%)	43.8%		56.3%		52.5%	52.5%
Maximum Green (s)	30.0		38.0		35.0	35.0
Yellow Time (s)	4.0		5.0		5.0	5.0
All-Red Time (s)	1.0		2.0		2.0	2.0
Lost Time Adjust (s)	0.0		0.0		2.0	0.0
Total Lost Time (s)	5.0		7.0			7.0
` ,	5.0		7.0			7.0
Lead/Lag						
Lead-Lag Optimize?	2.2		0.0		0.0	2.2
Vehicle Extension (s)	3.0		3.0		3.0	3.0
Minimum Gap (s)	3.0		3.0		3.0	3.0
Time Before Reduce (s)	0.0		0.0		0.0	0.0
Time To Reduce (s)	0.0		0.0		0.0	0.0
Recall Mode	None		C-Max		C-Max	C-Max
Walk Time (s)						
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)						
Act Effct Green (s)	9.6		58.4			58.4
Actuated g/C Ratio	0.12		0.73			0.73
v/c Ratio	0.12		0.73			0.73
Control Delay	18.0		3.1			20.1
•	0.0		0.0			
Queue Delay						0.0
Total Delay	18.0		3.1			20.1
LOS	В		Α			С
Approach Delay	18.0		3.1			20.1
Approach LOS	В		Α			С
Queue Length 50th (ft)	27		26			181
Queue Length 95th (ft)	92		43			#554
Internal Link Dist (ft)	248		439			477
Turn Bay Length (ft)						
Base Capacity (vph)	778		1190			856
Starvation Cap Reductn	0		22			0
Spillback Cap Reductn	0		0			0
Storage Cap Reductn	0		0			0
Reduced v/c Ratio	0.37		0.46			0.83
	0.37		0.40			0.03
Intersection Summary	0.0					
) -	Other					
Cycle Length: 80						
Actuated Cycle Length: 80						
Offset: 13 (16%), Reference	ed to phase	1:NBT ar	nd 5:SBTL	, Start of	Yellow	
Natural Cycle: 60						
Control Type: Actuated-Coo	ordinated					
Maximum v/c Ratio: 0.83						
Intersection Signal Delay: 1	3.7			In	tersection	n LOS: B
Intersection Capacity Utiliza						of Service
	34.0%			IC	O Level	or service
nalysis Period (min) 15						

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.



	•	•	†	/	>	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ች	7	†			†
Traffic Volume (vph)	157	24	485	0	0	506
Future Volume (vph)	157	24	485	0	0	506
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1900	1300	1900	1900	1900	1900
		13		11	11	
Grade (%)	-2%	475	1%	^	^	1%
Storage Length (ft)	0	175		0	0	
Storage Lanes	1	1		0	0	
Taper Length (ft)	25				25	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt		0.850				
Flt Protected	0.950					
Satd. Flow (prot)	1688	1492	1646	0	0	1757
FIt Permitted	0.950					
Satd. Flow (perm)	1688	1492	1646	0	0	1757
Right Turn on Red	1000	Yes	10-10	Yes	0	1.01
Satd. Flow (RTOR)		25		163		
	30	20	55			55
Link Speed (mph)						
Link Distance (ft)	321		928			519
Travel Time (s)	7.3		11.5			6.4
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	8%	13%	11%	0%	0%	4%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	165	25	511	0	0	533
Shared Lane Traffic (%)	100	20	311	- 0	0	300
Lane Group Flow (vph)	165	25	511	0	0	533
Enter Blocked Intersection						
	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12		0			0
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane						
Headway Factor	0.99	0.95	1.05	1.05	1.05	1.05
Turning Speed (mph)	15	9		9	15	
Number of Detectors	1	1	2			2
Detector Template						
Leading Detector (ft)	35	35	83			83
Trailing Detector (ft)	-5	-5	-5			-5
Turn Type	Prot	Perm	NA			NA
		r eiiii				
Protected Phases	3	^	1			5
Permitted Phases		3				
Detector Phase	3	3	1			5
Switch Phase						

	•	4	†	<i>></i>	/	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Minimum Initial (s)	5.0	5.0	5.0			5.0
Minimum Split (s)	10.0	10.0	12.0			12.0
Total Split (s)	35.0	35.0	45.0			45.0
Total Split (%)	43.8%	43.8%	56.3%			56.3%
Maximum Green (s)	30.0	30.0	38.0			38.0
Yellow Time (s)	4.0	4.0	5.0			5.0
All-Red Time (s)	1.0	1.0	2.0			2.0
Lost Time Adjust (s)	0.0	0.0	0.0			0.0
Total Lost Time (s)	5.0	5.0	7.0			7.0
Lead/Lag	0.0	0.0	1.0			7.0
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0	3.0	3.0			3.0
Minimum Gap (s)	3.0	3.0	3.0			3.0
Time Before Reduce (s)	0.0	0.0	0.0			0.0
Time To Reduce (s)	0.0	0.0	0.0			0.0
Recall Mode	None	None	C-Max			C-Max
Walk Time (s)	INOHE	INOHE	O-IVIAX			O-IVIAX
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)						
Act Effct Green (s)	13.3	13.3	54.7			54.7
Actuated g/C Ratio	0.17	0.17	0.68			0.68
v/c Ratio	0.17	0.17	0.45			0.00
Control Delay	38.9	11.3	8.1			3.6
Queue Delay	0.0	0.0	0.0			0.3
	38.9	11.3	8.1			3.9
Total Delay LOS	36.9 D	11.3 B				
	35.2	В	A 8.1			A 3.9
Approach LOS						
Approach LOS	D	0	A			Α
Queue Length 50th (ft)	77	0	99			34
Queue Length 95th (ft)	127	19	199			m66
Internal Link Dist (ft)	241	475	848			439
Turn Bay Length (ft)	000	175	4405			1004
Base Capacity (vph)	633	575	1125			1201
Starvation Cap Reductn	0	0	0			208
Spillback Cap Reductn	0	0	0			0
Storage Cap Reductn	0	0	0			0
Reduced v/c Ratio	0.26	0.04	0.45			0.54
Intersection Summary						
Area Type:	Other					
Cycle Length: 80						
Actuated Cycle Length: 80						
Offset: 13 (16%), Reference		1:NBT a	nd 5:SBT,	Start of Y	'ellow	
Natural Cycle: 40						
Control Type: Actuated-Co	ordinated					
Maximum v/c Ratio: 0.59						
Intersection Signal Delay:	10.5			Int	tersection	LOS: B
Intersection Capacity Utiliz						of Service
Analysis Pariod (min) 15				.0		

m Volume for 95th percentile queue is metered by upstream signal.

	۶	→	•	•	←	•	4	†	/	>	ţ	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	4					ň	∱ }		Ť	<u></u>	7
Traffic Volume (vph)	366	413	307	0	0	0	89	119	55	49	158	455
Future Volume (vph)	366	413	307	0	0	0	89	119	55	49	158	455
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	16	16	16	12	12	12	12	12	12
Grade (%)		1%			-4%			-1%			1%	
Storage Length (ft)	0		0	0		0	385		0	190		460
Storage Lanes	1		0	0		0	1		0	1		1
Taper Length (ft)	25			25			86			86		
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.939						0.952				0.850
Flt Protected	0.950	0.998					0.950			0.950		
Satd. Flow (prot)	1580	1615	0	0	0	0	1695	3175	0	1727	1734	1530
Flt Permitted	0.950	0.998	•	•	•		0.599	00		0.635		.000
Satd. Flow (perm)	1580	1615	0	0	0	0	1069	3175	0	1154	1734	1530
Right Turn on Red	1000	1010	Yes	•	J	Yes	1000	0170	Yes	1101	1101	Yes
Satd. Flow (RTOR)		33	100			100		59	100			484
Link Speed (mph)		30			30			55			55	707
Link Distance (ft)		176			314			586			596	
Travel Time (s)		4.0			7.1			7.3			7.4	
Confl. Peds. (#/hr)		4.0			7.1			1.5			7.4	
Confl. Bikes (#/hr)												
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	8%	4%	4%	0%	0%	0%	7%	11%	4%	4%	9%	5%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)		00/			00/			00/			00/	
Mid-Block Traffic (%)	000	0%	007	^	0%	•	0.5	0%		50	0%	40.4
Adj. Flow (vph)	389	439	327	0	0	0	95	127	59	52	168	484
Shared Lane Traffic (%)	10%	005	^	^	^	•	0.5	400	•	50	400	40.4
Lane Group Flow (vph)	350	805	0	0	0	0	95	186	0	52	168	484
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.01	1.01	1.01	0.82	0.82	0.82	0.99	0.99	0.99	1.01	1.01	1.01
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2					1	2		1	2	1
Detector Template												
Leading Detector (ft)	35	83					35	83		35	83	35
Trailing Detector (ft)	-5	-5					-5	-5		-5	-5	-5
Turn Type	Split	NA					pm+pt	NA		pm+pt	NA	pm+ov
Protected Phases	3	3					6	1		2	5	. 3
Permitted Phases							1			5		5
Detector Phase	3	3					6	1		2	5	3
Switch Phase												

	۶	→	•	•	•	•	4	†	/	/	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	5.0					3.0	8.0		3.0	25.0	5.0
Minimum Split (s)	10.0	10.0					10.0	15.0		10.0	32.0	10.0
Total Split (s)	45.0	45.0					22.0	47.0		22.0	47.0	45.0
Total Split (%)	39.5%	39.5%					19.3%	41.2%		19.3%	41.2%	39.5%
Maximum Green (s)	40.0	40.0					15.0	40.0		15.0	40.0	40.0
Yellow Time (s)	4.0	4.0					5.0	5.0		5.0	5.0	4.0
All-Red Time (s)	1.0	1.0					2.0	2.0		2.0	2.0	1.0
Lost Time Adjust (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0					7.0	7.0		7.0	7.0	5.0
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0					2.0	2.0		2.0	2.0	3.0
Minimum Gap (s)	3.0	3.0					2.0	2.0		2.0	2.0	3.0
Time Before Reduce (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Recall Mode	None	None					None	Min		None	Min	None
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)	40.2	40.2					34.8	27.4		30.2	25.1	73.6
Actuated g/C Ratio	0.45	0.45					0.39	0.30		0.33	0.28	0.82
v/c Ratio	0.50	1.09					0.20	0.18		0.12	0.35	0.36
Control Delay	22.2	87.0					16.6	16.9		16.2	30.1	1.1
Queue Delay	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Total Delay	22.2	87.0					16.6	16.9		16.2	30.1	1.1
LOS	С	F					В	В		В	С	Α
Approach Delay		67.4						16.8			9.1	
Approach LOS		Ε						В			Α	
Queue Length 50th (ft)	153	~570					32	28		17	80	0
Queue Length 95th (ft)	255	#850					62	55		39	144	21
Internal Link Dist (ft)		96			234			506			516	
Turn Bay Length (ft)							385			190		460
Base Capacity (vph)	704	738					553	1448		564	773	1337
Starvation Cap Reductn	0	0					0	0		0	0	0
Spillback Cap Reductn	0	0					0	0		0	0	0
Storage Cap Reductn	0	0					0	0		0	0	0
Reduced v/c Ratio	0.50	1.09					0.17	0.13		0.09	0.22	0.36
Intersection Summary												
Area Tyne:	Other											

Area Type: Other

Cycle Length: 114

Actuated Cycle Length: 90.2

Natural Cycle: 90

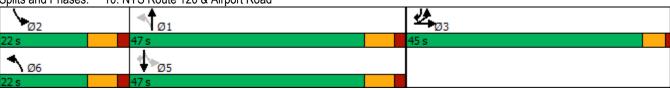
Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 1.09 Intersection Signal Delay: 41.6 Intersection Capacity Utilization 72.0%

Intersection LOS: D ICU Level of Service C

Analysis Period (min) 15

Synchro 10 Report Page 26


[~] Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	•	→	\rightarrow	•	←	•	1	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્ન			f)				7			
Traffic Volume (vph)	1	599	0	0	407	138	0	0	487	0	0	0
Future Volume (vph)	1	599	0	0	407	138	0	0	487	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	15	15	15	12	12	12	13	13	13	16	16	16
Grade (%)		1%			-1%			1%			2%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	0		0	0		0	0		1	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt					0.966				0.865			
Flt Protected												
Satd. Flow (prot)	0	2039	0	0	1761	0	0	0	1565	0	0	0
Flt Permitted												
Satd. Flow (perm)	0	2039	0	0	1761	0	0	0	1565	0	0	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		331			176			301			377	
Travel Time (s)		7.5			4.0			6.8			8.6	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	2%	0%	0%	4%	7%	0%	0%	8%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	1	666	0	0	452	153	0	0	541	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	667	0	0	605	0	0	0	541	0	0	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	0.89	0.89	0.89	0.99	0.99	0.99	0.96	0.96	0.96	0.86	0.86	0.86
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Free			Free			Stop			Stop	
Intersection Summary												

Intersection Summary

Area Type: Control Type: Unsignalized

Intersection Capacity Utilization 68.4% Analysis Period (min) 15

ICU Level of Service C

Intersection													
Int Delay, s/veh	44.3												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4	LDIX	1102	1	11511	TIBL	1101	7	052	051	ODIT	
Traffic Vol, veh/h	1	599	0	0	407	138	0	0	487	0	0	0	
Future Vol, veh/h	1	599	0	0	407	138	0	0	487	0	0	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	_	_	_	_	_	-	_	0	-	-	-	
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	16983	-	
Grade, %	-	1	-	-	-1	-	-	1	_	-	2	-	
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90	
Heavy Vehicles, %	0	2	0	0	4	7	0	0	8	0	0	0	
Mvmt Flow	1	666	0	0	452	153	0	0	541	0	0	0	
									-				
Major/Minor	Majar1		N	Majora			Minor1						
	Major1	^		Major2			VIIIIOI I		600				
Conflicting Flow All	605	0	-	-	-	0	-	-	666				
Stage 1	-	-	-	-	-	-	-	-	-				
Stage 2	-	-	-	-	-	-	-	-	-				
Critical Hdwy	4.1	-	-	-	-	-	-	-	6.38				
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-				
Critical Hdwy Stg 2	2.2	-	-	-	-	-	-	-	2 272				
Follow-up Hdwy	983	-	-	-	-	-	-	-	3.372 ~ 441				
Pot Cap-1 Maneuver		-	0	0	-	-	0		~ 44 1				
Stage 1 Stage 2	-	-	0	0	-	-	0	0					
Platoon blocked, %	-	-	U	U	_	-	U	U	-				
Mov Cap-1 Maneuver	983	-	_	_	-		_	٥	~ 441				
Mov Cap-1 Maneuver	903	-	_	-	_	-	-	0	~ 441				
Stage 1	_				_		_	0	_				
Stage 2	_	_	_	_	_	_	-	0	_				
Olage 2								U					
				MD			ND						
Approach	EB			WB			NB						
HCM Control Delay, s	0			0			148.6						
HCM LOS							F						
Minor Lane/Major Mvm	nt	NBLn1	EBL	EBT	WBT	WBR							
Capacity (veh/h)		441	983	-	-	-							
HCM Lane V/C Ratio		1.227	0.001	-	-	-							
HCM Control Delay (s)		148.6	8.7	0	-	-							
HCM Lane LOS		F	Α	Α	-	-							
HCM 95th %tile Q(veh))	21.8	0	-	-	-							
Notes													
~: Volume exceeds cap	nacity	\$· De	elay exc	eeds 30)Os -	+: Comp	outation	Not De	efined	*· ΔII ·	maior v	olume in	nlatoon
. Volumo Groceus Ca	pacity	ψ. De	hay ext	ocus ot	700	· . Ouril	Jalalion	THUL DE	micu	. 📶	najoi v		piatoon

Synchro 10 Report 18002018A - N.T. Page 29

	•	→	•	•	←	•	1	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					र्स						4	
Traffic Volume (vph)	0	0	0	407	0	0	0	0	0	600	0	0
Future Volume (vph)	0	0	0	407	0	0	0	0	0	600	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	14	14	13	13	12
Grade (%)		0%			-1%			2%			1%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	0		0	0		0	0		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt												
Flt Protected					0.950						0.950	
Satd. Flow (prot)	0	0	0	0	1744	0	0	0	0	0	1819	0
Flt Permitted					0.950						0.950	
Satd. Flow (perm)	0	0	0	0	1744	0	0	0	0	0	1819	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		71			331			377			345	
Travel Time (s)		1.6			7.5			8.6			7.8	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	0%	4%	0%	0%	0%	0%	0%	2%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)		201			00/			00/			00/	
Mid-Block Traffic (%)	•	0%	•	400	0%	•	•	0%	•	200	0%	0
Adj. Flow (vph)	0	0	0	468	0	0	0	0	0	690	0	0
Shared Lane Traffic (%)	•	•	•	•	400	•	•	•	•	•	200	0
Lane Group Flow (vph)	0	0	0	0	468	0	0	0	0	0	690	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane	4.00	4.00	4.00	0.00	0.00	0.00	4.04	0.00	0.00	0.00	0.00	4.04
Headway Factor	1.00	1.00	1.00	0.99	0.99	0.99	1.01	0.93	0.93	0.96	0.96	1.01
Turning Speed (mph)	15		9	15	_	9	15	01	9	15	01	9
Sign Control		Free			Free			Stop			Stop	
Intersection Summary												
, i	Other											
Control Type: Unsignalized	00 =0:											
Intersection Capacity Utilizati	on 62.5%			IC	CU Level of	of Service	; B					

Synchro 10 Report Page 30

Intersection														
Int Delay, s/veh	417.9													
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		
Lane Configurations					र्स						स			
Traffic Vol, veh/h	0	0	0	407	0	0	0	0	0	600	0	0		
Future Vol, veh/h	0	0	0	407	0	0	0	0	0	600	0	0		
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0		
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop		
RT Channelized	-	-		-	-	None	- -	-	None	-	-	None		
Storage Length	_	_	-	_	_	-	_	_	-	_	_	-		
Veh in Median Storage		0	_	_	0	_		16974	_	_	0	_		
Grade, %	-, π - -	0	<u>-</u>	_	-1	_	_	2	<u>-</u>	<u>-</u>	1	<u>-</u>		
Peak Hour Factor	87	87	87	87	87	87	87	87	87	87	87	87		
Heavy Vehicles, %	0	0	0	4	0	0	0	0	0	2	0	0		
Mvmt Flow	0	0	0	468	0	0	0	0	0	690	0	0		
IVIVIIIL FIOW	U	U	U	400	U	U	U	U	U	090	U	U		
Major/Minor			ı	Major2					N	Minor2				
Conflicting Flow All			ľ	0	0	^			ľ	936	936			
						0				936	936	-		
Stage 1				-	-	-						-		
Stage 2				-	-	-				0	0	-		
Critical Hdwy				4.14	-	-				6.62	6.7	-		
Critical Hdwy Stg 1				-	-	-				5.62	5.7	-		
Critical Hdwy Stg 2				-	-	-					-	-		
Follow-up Hdwy				2.236	-	-				3.518	4	-		
Pot Cap-1 Maneuver				-	-	0				~ 279	254	0		
Stage 1				-	-	0				~ 362	329	0		
Stage 2				-	-	0				-	-	0		
Platoon blocked, %					-									
Mov Cap-1 Maneuver				-	-	-				~ 279	0	-		
Mov Cap-2 Maneuver				-	-	-				~ 279	0	-		
Stage 1				-	-	-				~ 362	0	-		
Stage 2				-	-	-				-	0	-		
Approach				WB						SB				
HCM Control Delay, s									\$	701.3				
HCM LOS										F				
Minor Lane/Major Mvm	ıt	WBL	WBT S											
Capacity (veh/h)		-	-	279										
HCM Lane V/C Ratio		-		2.472										
HCM Control Delay (s)		-	-\$	701.3										
HCM Lane LOS		-	-	F										
HCM 95th %tile Q(veh)		-	-	56										
Notes														
~: Volume exceeds cap	oacity	\$: De	lay exc	eeds 30)0s	+: Comp	outation	Not De	efined	*: All r	najor v	olume ir	n platoon	

Synchro 10 Report 18002018A - N.T. Page 31

Lane Configurations		₩	\mathbf{x}	À	F	×	₹	7	×	~	Ĺ	×	*
Traffic Volume (vph)	Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Traffic Volume (vph)	Lane Configurations		ર્ની	7	ሻ	^	7	ሻ	^	7	ሻ	^	7
Future Volume (vph) 136	Traffic Volume (vph)	136		223	35			191		152	420		
Lane Worldhy (fth)	Future Volume (vph)	136	26	223	35	7	57	191	522	152	420	860	177
Storage Length (ft)	Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)		12	15	12	12	12	12	11	12	12	12	12	12
Storage Lanes	Grade (%)		0%			0%			0%			0%	
Storage Lanes		0		250	0		225	680		250	400		250
Lane Utili, Factor	Storage Lanes	0		1	1		1	1		1	1		1
Ped Bike Factor Frt Froing Frt Taper Length (ft)	25			25			86			86			
Fit Protected 0.950 0.850 0.950 0.	Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Filt Protected 0.960 0.950 0.9	Ped Bike Factor												
Satd. Flow (prot) 0 1929 1495 1357 1429 1455 1662 3471 1553 1787 3539 1553 1518 1187 1187 1418	Frt			0.850			0.850			0.850			0.850
Fit Permitted	Flt Protected		0.960		0.950			0.950			0.950		
Satid. Flow (perm)	Satd. Flow (prot)	0	1929	1495	1357	1429	1455	1662	3471	1553	1787	3539	1553
Processor Proc			0.756		0.568			0.950			0.950		
Page	Satd. Flow (perm)	0	1519	1495	811	1429	1455	1662	3471	1553	1787	3539	1553
Said. Flow (RTOR)				Yes			Yes			Yes			Yes
Link Speed (mph)				230			79			157			175
Link Distance (ft)			30			30			55			55	
Confl. Peds. (#/hr)			610			598			1191			735	
Confl. Peds. (#/hr)	` ,		13.9			13.6			14.8			9.1	
Confl. Bikes (#hr)	. ,												
Growth Factor 100%	Confl. Bikes (#/hr)												
Heavy Vehicles (%)	Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Bus Blockages (#/hr) 0 0 0 0 0 0 0 0 0	Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Bus Blockages (#/hr) 0 0 0 0 0 0 0 0 0	Heavy Vehicles (%)	4%	4%	8%	33%	33%	11%	5%	4%	4%	1%	2%	4%
Parking (#/hr) Mid-Block Traffic (%) 0% 0% 0% 0% 0% 0% 0%		0	0	0	0	0	0	0	0	0	0	0	0
Mid-Block Traffic (%) 0% 0% 0% 0% 0% 0% Adj. Flow (vph) 140 27 230 36 7 59 197 538 157 433 887 182 Shared Lane Traffic (%) Lane Group Flow (vph) 0 167 230 36 7 59 197 538 157 433 887 182 Enter Blocked Intersection No <													
Adj. Flow (vph) 140 27 230 36 7 59 197 538 157 433 887 182 Shared Lane Traffic (%) Lane Group Flow (vph) 0 167 230 36 7 59 197 538 157 433 887 182 Enter Blocked Intersection Low Intersection Intersection Intersection Intersection Low Intersection Intersec			0%			0%			0%			0%	
Shared Lane Traffic (%) Lane Group Flow (vph) 0 167 230 36 7 59 197 538 157 433 887 182		140	27	230	36	7	59	197	538	157	433	887	182
Lane Group Flow (vph) 0 167 230 36 7 59 197 538 157 433 887 182													
Lane Alignment Left Left Right Median Width(ft) 12		0	167	230	36	7	59	197	538	157	433	887	182
Median Width(ft) 12 12 12 12 12 Link Offset(ft) 0 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 Two way Left Turn Lane 1.00 <td>Enter Blocked Intersection</td> <td>No</td>	Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Link Offset(ft) 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 Two way Left Turn Lane Headway Factor 1.00 0.88 1.00 1.00 1.00 1.04 1.00 1.00 1.00 1.00 Turning Speed (mph) 15 9 15 0 0 0	Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Link Offset(ft) 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 Two way Left Turn Lane Headway Factor 1.00 0.88 1.00 1.00 1.00 1.04 1.00 1.00 1.00 1.00 Turning Speed (mph) 15 9 15 0 0 0	Median Width(ft)		12			12	•		12	•		12	
Two way Left Turn Lane Headway Factor 1.00 0.88 1.00			0			0			0			0	
Headway Factor 1.00 0.88 1.00	Crosswalk Width(ft)		16			16			16			16	
Turning Speed (mph) 15 9 15 9 15 9 15 9 15 9 15 9 15 9 Number of Detectors 9 15 9 15 9 15 9 15 9 15 9 15 9 15 9 15 9 10 10 11 2 1 1 1 2 1 1 2 1 1 2 1 1 2 2 5 1 1 2 5 5 2 5 2	Two way Left Turn Lane												
Turning Speed (mph) 15 9 15 9 15 9 15 9 Number of Detectors 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 2 1	Headway Factor	1.00	0.88	1.00	1.00	1.00	1.00	1.04	1.00	1.00	1.00	1.00	1.00
Detector Template Left Leading Detector (ft) 20 43 6 6 6 83 6 6 83 6 6 6 7 6 6 83 6 7 8 7 8 7 7 7 7 7 7 7 7 7 7 </td <td></td> <td>15</td> <td></td> <td>9</td> <td>15</td> <td></td> <td>9</td> <td>15</td> <td></td> <td>9</td> <td>15</td> <td></td> <td>9</td>		15		9	15		9	15		9	15		9
Leading Detector (ft) 20 43 6 6 6 6 83 6 6 83 6 6 Trailing Detector (ft) 0 0 0 0 0 0 -5 0 0 -5 0 0 Turn Type Perm NA Perm Perm NA Perm Prot	Number of Detectors	1	1	1	1	1	1	2	1	1	2	1	1
Leading Detector (ft) 20 43 6 6 6 6 83 6 6 83 6 6 Trailing Detector (ft) 0 0 0 0 0 0 -5 0 0 -5 0 0 Turn Type Perm NA Perm Perm NA Perm Prot	Detector Template	Left											
Trailing Detector (ft) 0 0 0 0 0 0 0 -5 0 0 -5 0 0 Turn Type Perm NA Perm Prot NA Perm Prot NA Perm Prot NA Perm Prot NA Perm	· ·	20	43	6	6	6	6	83	6	6	83	6	6
Turn Type Perm NA Perm Perm NA Perm Prot NA Perm Permitted Phases 3 3 3 3 3 1 5 5 Detector Phase 3 3 3 3 3 6 1 1 2 5 5		0		0	0	0	0			0		0	0
Protected Phases 3 3 6 1 2 5 Permitted Phases 3 3 3 3 1 5 Detector Phase 3 3 3 3 6 1 1 2 5 5		Perm	NA	Perm	Perm	NA	Perm	Prot		Perm	Prot	NA	Perm
Permitted Phases 3 3 3 3 1 5 Detector Phase 3 3 3 3 6 1 1 2 5 5													
Detector Phase 3 3 3 3 3 6 1 1 2 5 5		3		3	3		3		-	1			5
			3			3		6	1		2	5	
	Switch Phase	-									_		

	₩.	\mathbf{x}	Ž	F	×	₹	7	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	2.0	10.0	10.0	2.0	10.0	10.0
Minimum Split (s)	31.0	31.0	31.0	31.0	31.0	31.0	16.0	42.0	42.0	16.0	42.0	42.0
Total Split (s)	46.0	46.0	46.0	46.0	46.0	46.0	36.0	42.0	42.0	36.0	42.0	42.0
Total Split (%)	37.1%	37.1%	37.1%	37.1%	37.1%	37.1%	29.0%	33.9%	33.9%	29.0%	33.9%	33.9%
Maximum Green (s)	40.0	40.0	40.0	40.0	40.0	40.0	30.0	36.0	36.0	30.0	36.0	36.0
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	6.0	6.0	6.0	6.0	6.0	6.0	2.0	6.0	6.0	2.0	6.0	6.0
Minimum Gap (s)	3.0	3.0	3.0	3.0	3.0	3.0	2.0	3.0	3.0	2.0	4.0	4.0
Time Before Reduce (s)	20.0	20.0	20.0	20.0	20.0	20.0	0.0	20.0	20.0	0.0	20.0	20.0
Time To Reduce (s)	10.0	10.0	10.0	10.0	10.0	10.0	0.0	10.0	10.0	0.0	10.0	10.0
Recall Mode	Min	Min	Min	Min	Min	Min	None	Max	Max	None	Max	Max
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		20.5	20.5	20.5	20.5	20.5	16.6	36.1	36.1	30.1	49.5	49.5
Actuated g/C Ratio		0.20	0.20	0.20	0.20	0.20	0.16	0.34	0.34	0.29	0.47	0.47
v/c Ratio		0.56	0.48	0.23	0.03	0.17	0.75	0.45	0.25	0.84	0.53	0.22
Control Delay		45.4	8.2	38.4	32.9	5.4	59.6	28.8	5.3	52.6	22.7	4.4
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		45.4	8.2	38.4	32.9	5.4	59.6	28.8	5.3	52.6	22.7	4.4
LOS		D	Α	D	С	Α	Е	С	Α	D	С	Α
Approach Delay		23.8			18.9			31.5			29.1	
Approach LOS		С			В			С			С	
Queue Length 50th (ft)		102	0	20	4	0	128	146	0	274	215	2
Queue Length 95th (ft)		169	61	50	16	22	203	213	46	#481	340	47
Internal Link Dist (ft)		530			518			1111			655	
Turn Bay Length (ft)			250			225	680		250	400		250
Base Capacity (vph)		581	714	310	546	605	477	1195	638	513	1674	826
Starvation Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio		0.29	0.32	0.12	0.01	0.10	0.41	0.45	0.25	0.84	0.53	0.22

Intersection Summary

Area Type: Other

Cycle Length: 124

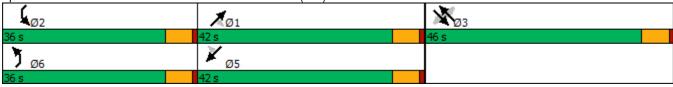
Actuated Cycle Length: 104.7

Natural Cycle: 100

Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.84

Intersection Signal Delay: 28.8

Intersection Capacity Utilization 68.3%


Intersection LOS: C ICU Level of Service C

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

18002018A - N.T. Page 33

Splits and Phases: 13: NYS Route 22 & North Castle Drive (IBM)/NYS Route 128

	_#	•	•	†	7	L.	↓	4	€	</th <th>ŧ</th> <th></th>	ŧ	
Lane Group	EBL	EBR	NBL	NBT	NBR	SBL	SBT	SBR	SWL	SWR	SWR2	
Lane Configurations	Ä	7		ર્ન	7		413		A AA			
Traffic Volume (vph)	2	4	3	495	241	0	1216	2	307	2	1	
Future Volume (vph)	2	4	3	495	241	0	1216	2	307	2	1	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Lane Width (ft)	10	10	11	11	11	10	10	10	11	11	11	
Grade (%)	0%			4%			1%		0%			
Storage Length (ft)	0	0	0		0	0		0	0	0		
Storage Lanes	1	1	0		1	0		0	2	0		
Taper Length (ft)	25		25			25			25			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	*0.67	*0.67	*0.67	0.97	0.95	0.95	
Ped Bike Factor				1.00			1.00		1.00			
Frt		0.850			0.850				0.999			
Flt Protected	0.950								0.953			
Satd. Flow (prot)	1685	1507	0	1667	1342	0	2296	0	3058	0	0	
Flt Permitted	0.950			0.989					0.953			
Satd. Flow (perm)	1685	1507	0	1649	1342	0	2296	0	3058	0	0	
Right Turn on Red		Yes			Yes			No			No	
Satd. Flow (RTOR)		72			246							
Link Speed (mph)	30			35			35		35			
Link Distance (ft)	155			796			597		998			
Travel Time (s)	3.5			15.5			11.6		19.4			
Confl. Peds. (#/hr)	0.0		1				•	1		1		
Confl. Bikes (#/hr)			•					•		•		
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	
Heavy Vehicles (%)	0%	0%	0%	8%	14%	0%	3%	0%	11%	0%	0%	
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	
Parking (#/hr)												
Mid-Block Traffic (%)	0%			0%			0%		0%			
Adj. Flow (vph)	2	4	3	505	246	0	1241	2	313	2	1	
Shared Lane Traffic (%)	_	•		000	2.0			_	0.0	_	•	
Lane Group Flow (vph)	2	4	0	508	246	0	1243	0	316	0	0	
Enter Blocked Intersection	No	No.	No	No	No	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Left	Right	Left	Left	Right	Left	Right	Right	
Median Width(ft)	10	ragne	Loit	0	ragne	Loit	0	rugiit	22	rugiit	rugiit	
Link Offset(ft)	0			0			0		0			
Crosswalk Width(ft)	16			16			16		16			
Two way Left Turn Lane	10			10			10		10			
Headway Factor	1.09	1.09	1.07	1.07	1.07	1.10	1.10	1.10	1.04	1.04	1.04	
Turning Speed (mph)	1.05	9	1.07	1.07	9	1.10	1.10	9	1.04	9	9	
Number of Detectors	1	1	10	2	1	1	2	3	10	3	3	
Detector Template	ı	'	Left		'	Left			'			
Leading Detector (ft)	35	35	20	83	35	20	83		35			
Trailing Detector (ft)	-5	-5	0	-5	-5	0	-5		-5			
Turn Type	Prot	Perm	Perm	NA	-ა pm+ov	U	NA		Prot			
Protected Phases	3	FEIIII	FEIIII	1 1	μπ+ον 4		5		4			
Permitted Phases	3	3	1	I I	1	5	Ü		4			
	2			1	-				1			
Detector Phase	3	3	1	1	4	5	5		4			
Switch Phase												

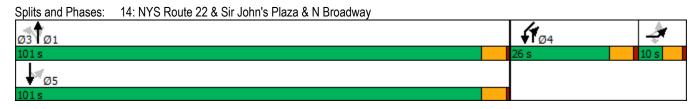
	_#	•	1	†	7	(w	↓	4	4	~	t	
Lane Group	EBL	EBR	NBL	NBT	NBR	SBL	SBT	SBR	SWL	SWR	SWR2	
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0			
Minimum Split (s)	10.0	10.0	11.0	11.0	11.0	11.0	11.0		11.0			
Total Split (s)	10.0	10.0	101.0	101.0	26.0	101.0	101.0		26.0			
Total Split (%)	7.3%	7.3%	73.7%	73.7%	19.0%	73.7%	73.7%		19.0%			
Maximum Green (s)	5.0	5.0	95.0	95.0	20.0	95.0	95.0		20.0			
Yellow Time (s)	4.0	4.0	5.0	5.0	5.0	5.0	5.0		5.0			
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0			
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0		0.0			
Total Lost Time (s)	5.0	5.0		6.0	6.0		6.0		6.0			
Lead/Lag	Lag	Lag			Lead				Lead			
Lead-Lag Optimize?	Yes	Yes			Yes				Yes			
Vehicle Extension (s)	5.0	5.0	5.0	5.0	3.0	5.0	5.0		3.0			
Minimum Gap (s)	5.0	5.0	5.0	5.0	3.0	5.0	5.0		3.0			
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0			
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0			
Recall Mode	None	None	Max	Max	None	Max	Max		None			
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)	5.0	5.0		95.2	123.5		95.2		17.4			
Actuated g/C Ratio	0.04	0.04		0.75	0.98		0.75		0.14			
v/c Ratio	0.03	0.03		0.41	0.19		0.72		0.75			
Control Delay	62.5	0.5		7.5	0.4		12.5		64.6			
Queue Delay	0.0	0.0		0.0	0.0		0.0		0.0			
Total Delay	62.5	0.5		7.5	0.4		12.5		64.6			
LOS	Е	Α		Α	Α		В		Ε			
Approach Delay	21.2			5.2			12.5		64.6			
Approach LOS	С			Α			В		Е			
Queue Length 50th (ft)	2	0		124	0		339		127			
Queue Length 95th (ft)	12	0		254	7		652		192			
Internal Link Dist (ft)	75			716			517		918			
Turn Bay Length (ft)												
Base Capacity (vph)	66	128		1240	1305		1727		484			
Starvation Cap Reductn	0	0		0	0		0		0			
Spillback Cap Reductn	0	0		0	0		0		0			
Storage Cap Reductn	0	0		0	0		0		0			
Reduced v/c Ratio	0.03	0.03		0.41	0.19		0.72		0.65			
Intersection Summary												

Area Type: Other

Cycle Length: 137

Actuated Cycle Length: 126.5

Natural Cycle: 80


Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.75 Intersection Signal Delay: 17.2

Intersection Capacity Utilization 60.9%

Analysis Period (min) 15

* User Entered Value

Intersection LOS: B ICU Level of Service B

Year 2024 Build Traffic Volumes Weekday Peak AM Hour 15: Central Westchester Expressway & NYS Route 22 & Reservoir Road & Church Street (20/20/2020)

	ᄼ	-	•	•	•	•	†	/	>	ţ	4	×
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR2	NBT	NBR	SBL	SBT	SBR	SBR2
Lane Configurations	ř	f)			ર્ન	*	^	7	ř	↑ 1>		
Traffic Volume (vph)	270	77	213	73	66	34	519	49	34	1228	248	1
Future Volume (vph)	270	77	213	73	66	34	519	49	34	1228	248	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	11	12	12	12	11	11	12	12	12	12
Grade (%)		2%			2%		4%			-6%		
Storage Length (ft)	115		0	0				160	110		0	
Storage Lanes	1		0	0				1	1		0	
Taper Length (ft)	86			25					86			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	0.95	0.95
Ped Bike Factor	1.00	0.98			1.00	0.99						
Frt		0.890				0.850		0.850		0.975		
Flt Protected					0.974				0.950			
Satd. Flow (prot)	1595	1555	0	0	1755	1508	3257	1500	1805	3475	0	0
Flt Permitted			•	•	0.974		0_0.		0.282	00		· ·
Satd. Flow (perm)	1590	1555	0	0	1748	1487	3257	1500	536	3475	0	0
Right Turn on Red	1000	1000	No		11 10	Yes	0201	Yes	000	0110	· ·	No
Satd. Flow (RTOR)						76		76				
Link Speed (mph)		35			30		45	10		35		
Link Distance (ft)		532			475		529			778		
Travel Time (s)		10.4			10.8		8.0			15.2		
Confl. Peds. (#/hr)	2	10.1	6	6	10.0	2	0.0			10.2		
Confl. Bikes (#/hr)	_		J	•		_						
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	14%	6%	1%	3%	6%	6%	5%	2%	3%	3%	11%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%		0%			0%		
Adj. Flow (vph)	284	81	224	77	69	36	546	52	36	1293	261	1
Shared Lane Traffic (%)	204	01		- 11	00	00	0+0	02	00	1230	201	•
Lane Group Flow (vph)	284	305	0	0	146	36	546	52	36	1555	0	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Right	Left	Left	Right	Right
Median Width(ft)	LOIL	11	rtigitt	LOIL	11	rtigrit	12	rtigitt	LOIL	12	rtigitt	rtigitt
Link Offset(ft)		0			0		0			0		
Crosswalk Width(ft)		16			16		16			16		
Two way Left Turn Lane		10			10		10			10		
Headway Factor	1.06	1.06	1.06	1.01	1.01	1.01	1.07	1.07	0.96	0.96	0.96	0.96
Turning Speed (mph)	1.00	1.00	9	1.01	1.01	9	1.07	9	15	0.30	9	9
Number of Detectors	13	2	9	13	2	1	2	1	15	2	9	9
Detector Template	1			Left		ı		'	ı			
Leading Detector (ft)	35	83		20	83	35	83	35	35	83		
Trailing Detector (ft)	-5	-5		0	-5	-5	-5	-5	-5	-5		
										NA		
Turn Type Protected Phases	Split	NA		Split 4	NA 4	pm+ov	NA 6	pm+ov	pm+pt	NA 2		
	3	3		4	4	5	O	4	5	2		
Permitted Phases	2	2		4	4	4	^	6	2	0		
Detector Phase	3	3		4	4	5	6	4	5	2		
Switch Phase												

Synchro 10 Report Page 38 18002018A - N.T.

1	
Lane Group	Ø7
Lane Configurations	
Traffic Volume (vph)	
Future Volume (vph)	
Ideal Flow (vphpl)	
Lane Width (ft)	
Grade (%)	
Storage Length (ft)	
Storage Lanes	
Taper Length (ft)	
Lane Util. Factor	
Ped Bike Factor	
Frt	
Flt Protected	
Satd. Flow (prot)	
Flt Permitted	
Satd. Flow (perm)	
Right Turn on Red	
Satd. Flow (RTOR)	
Link Speed (mph)	
Link Distance (ft)	
Travel Time (s)	
Confl. Peds. (#/hr)	
Confl. Bikes (#/hr)	
Peak Hour Factor	
Growth Factor	
Heavy Vehicles (%)	
Bus Blockages (#/hr)	
Parking (#/hr)	
Mid-Block Traffic (%)	
Adj. Flow (vph)	
Shared Lane Traffic (%)	
Lane Group Flow (vph)	
Enter Blocked Intersection	
Lane Alignment	
Median Width(ft)	
Link Offset(ft)	
Crosswalk Width(ft)	
Two way Left Turn Lane	
Headway Factor	
Turning Speed (mph)	
Number of Detectors	
Detector Template	
Leading Detector (ft)	
Trailing Detector (ft)	
Turn Type	
Protected Phases	7
Permitted Phases	
Detector Phase	
Switch Phase	

Synchro 10 Report Page 39 18002018A - N.T.

15: Central Westchester Expressway & NYS Route 22 & Reservoir Road & Church Street/20/2020

	۶	→	•	•	←	4	†	~	>	ļ	1	» J
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR2	NBT	NBR	SBL	SBT	SBR	SBR2
Minimum Initial (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0	5.0		
Minimum Split (s)	39.0	39.0		11.0	11.0	11.0	11.0	11.0	11.0	31.0		
Total Split (s)	51.0	51.0		36.0	36.0	26.0	51.0	36.0	26.0	77.0		
Total Split (%)	25.5%	25.5%		18.0%	18.0%	13.0%	25.5%	18.0%	13.0%	38.5%		
Maximum Green (s)	45.0	45.0		30.0	30.0	20.0	45.0	30.0	20.0	71.0		
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0		
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0		
Lost Time Adjust (s)	0.0	0.0			0.0	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	6.0	6.0			6.0	6.0	6.0	6.0	6.0	6.0		
Lead/Lag	Lead	Lead		Lag	Lag	Lead	Lag	Lag	Lead			
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes			
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0		
Minimum Gap (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0		
Time Before Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Time To Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Recall Mode	None	None		None	None	None	Min	None	None	Min		
Walk Time (s)	8.0	8.0								8.0		
Flash Dont Walk (s)	25.0	25.0								17.0		
Pedestrian Calls (#/hr)	6	6								0		
Act Effct Green (s)	40.4	40.4			20.9	28.9	59.9	80.8	71.3	71.3		
Actuated g/C Ratio	0.22	0.22			0.11	0.15	0.32	0.43	0.38	0.38		
v/c Ratio	0.83	0.91			0.74	0.12	0.52	0.08	0.14	1.17		
Control Delay	90.1	101.8			103.4	0.9	56.7	1.2	41.3	135.3		
Queue Delay	0.0	0.0			0.0	0.0	0.0	0.0	0.0	0.0		
Total Delay	90.1	101.8			103.4	0.9	56.7	1.2	41.3	135.3		
LOS	F	F			F	Α	Е	Α	D	F		
Approach Delay		96.1			83.1		51.9			133.2		
Approach LOS		F			F		D			F		
Queue Length 50th (ft)	336	370			181	0	307	0	29	~1245		
Queue Length 95th (ft)	#486	#566			267	0	402	6	62	#1469		
Internal Link Dist (ft)		452			395		449			698		
Turn Bay Length (ft)	115					180		160	110			
Base Capacity (vph)	385	376			283	388	1043	761	340	1325		
Starvation Cap Reductn	0	0			0	0	0	0	0	0		
Spillback Cap Reductn	0	0			0	0	0	0	0	0		
Storage Cap Reductn	0	0			0	0	0	0	0	0		
Reduced v/c Ratio	0.74	0.81			0.52	0.09	0.52	0.07	0.11	1.17		
Intersection Summary												
Area Tyne:	Other											

Area Type: Other

Cycle Length: 200

Actuated Cycle Length: 186.8

Natural Cycle: 150

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 1.17 Intersection Signal Delay: 106.3 Intersection Capacity Utilization 92.3%

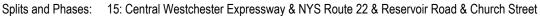
Intersection LOS: F
ICU Level of Service F

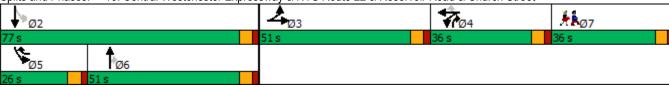
Analysis Period (min) 15

Synchro 10 Report 18002018A - N.T. Page 40

[~] Volume exceeds capacity, queue is theoretically infinite.

Lane Group	Ø7
Minimum Initial (s)	8.0
Minimum Split (s)	36.0
Total Split (s)	36.0
Total Split (%)	18%
Maximum Green (s)	31.0
Yellow Time (s)	3.5
All-Red Time (s)	1.5
Lost Time Adjust (s)	
Total Lost Time (s)	
Lead/Lag	
Lead-Lag Optimize?	
Vehicle Extension (s)	3.0
Minimum Gap (s)	3.0
Time Before Reduce (s)	0.0
Time To Reduce (s)	0.0
Recall Mode	Ped
Walk Time (s)	8.0
Flash Dont Walk (s)	23.0
Pedestrian Calls (#/hr)	2
Act Effct Green (s)	
Actuated g/C Ratio	
v/c Ratio	
Control Delay	
Queue Delay	
Total Delay	
LOS	
Approach Delay	
Approach LOS	
Queue Length 50th (ft)	
Queue Length 95th (ft)	
Internal Link Dist (ft)	
Turn Bay Length (ft)	
Base Capacity (vph)	
Starvation Cap Reductn	
Spillback Cap Reductn	
Storage Cap Reductn	
Reduced v/c Ratio	
Intersection Summary	
intersection summary	

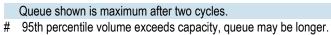

Synchro 10 Report Page 41 18002018A - N.T.

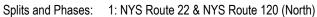

15: Central Westchester Expressway & NYS Route 22 & Reservoir Road & Church Street/20/2020

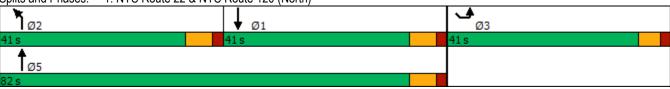
Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

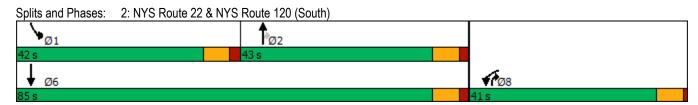



18002018A - N.T. Page 42


	ሻ	†	ţ	W	•	>
Lane Group	NBL	NBT	SBT	SBR	SEL	SER
Lane Configurations	ሻ	^	† †	7	ሻ	7
Traffic Volume (vph)	709	721	656	603	281	244
Future Volume (vph)	709	721	656	603	281	244
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	10	10	10	10	10	10
Grade (%)	10	0%	0%	10	0%	10
Storage Length (ft)	250	0 /0	0 /0	500	250	0
Storage Lanes	1			1	1	1
	86			I	86	I
Taper Length (ft) Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00
	1.00	0.95	0.95	1.00	1.00	1.00
Ped Bike Factor				0.050		0.050
Frt	0.050			0.850	0.050	0.850
Flt Protected	0.950	0000	0000	4507	0.950	4507
Satd. Flow (prot)	1685	3336	3336	1507	1685	1507
Flt Permitted	0.950				0.950	
Satd. Flow (perm)	1685	3336	3336	1507	1685	1507
Right Turn on Red				Yes		Yes
Satd. Flow (RTOR)				641		260
Link Speed (mph)		55	55		30	
Link Distance (ft)		767	1064		872	
Travel Time (s)		9.5	13.2		19.8	
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	1%	1%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)	0		<u> </u>		<u> </u>	
Mid-Block Traffic (%)		0%	0%		0%	
Adj. Flow (vph)	754	767	698	641	299	260
Shared Lane Traffic (%)	7 04	101	090	041	299	200
	75.4	767	600	644	200	000
Lane Group Flow (vph)	754	767	698	641	299	260
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width(ft)		10	15		10	
Link Offset(ft)		0	0		0	
Crosswalk Width(ft)		16	16		16	
Two way Left Turn Lane						
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (mph)	15			9	15	9
Number of Detectors	1	2	2	1	2	0
Detector Template						
Leading Detector (ft)	35	104	104	0	104	0
Trailing Detector (ft)	-5	0	0	0	0	0
Turn Type	Prot	NA	NA	Free	Prot	Free
Protected Phases	2	5	1	1166	3	1166
Permitted Phases		- 0	ı	Free	J	Free
	0		4	rree	2	rree
Detector Phase	2	5	1		3	
Switch Phase						

	ሻ	†	Ţ	» J	•	\
Lane Group	NBL	NBT	SBT	SBR	SEL	SER
Minimum Initial (s)	12.0	12.0	12.0		10.0	
Minimum Split (s)	36.0	36.0	36.0		26.0	
Total Split (s)	41.0	82.0	41.0		41.0	
Total Split (%)	33.3%	66.7%	33.3%		33.3%	
Maximum Green (s)	34.0	75.0	34.0		35.0	
Yellow Time (s)	5.0	5.0	5.0		4.0	
All-Red Time (s)	2.0	2.0	2.0		2.0	
Lost Time Adjust (s)	0.0	0.0	0.0		0.0	
Total Lost Time (s)	7.0	7.0	7.0		6.0	
Lead/Lag	Lead		Lag			
Lead-Lag Optimize?	Yes		Yes			
Vehicle Extension (s)	6.0	6.0	6.0		6.0	
Minimum Gap (s)	4.0	4.0	4.0		4.0	
Time Before Reduce (s)	20.0	20.0	20.0		20.0	
Time To Reduce (s)	8.0	8.0	8.0		5.0	
Recall Mode	None	Min	Min		None	
Walk Time (s)	. 10110	.*****			110110	
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)						
Act Effct Green (s)	34.3	71.8	30.5	112.0	27.1	112.0
Actuated g/C Ratio	0.31	0.64	0.27	1.00	0.24	1.00
v/c Ratio	1.46	0.36	0.27	0.43	0.73	0.17
Control Delay	250.4	10.5	44.5	0.43	50.9	0.17
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	250.4	10.5	44.5	0.0	50.9	0.0
LOS	230.4 F	10.5 B	44.5 D	0.9 A	50.9 D	0.2 A
Approach Delay	ı ı	129.4	23.6		27.3	
Approach LOS		123.4 F	23.0 C		27.3 C	
Queue Length 50th (ft)	~777	127	245	0	204	0
Queue Length 95th (ft)	#1100	192	340	0	307	0
Internal Link Dist (ft)	#1100	687	984	U	792	U
Turn Bay Length (ft)	250	007	304	500	250	
, , ,	250 515	2251	1020	1507	530	1507
Base Capacity (vph)	_			_		_
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	-	
Storage Cap Reductn	1 46	0 24	0.69	0 43	0.56	0
Reduced v/c Ratio	1.46	0.34	0.68	0.43	0.56	0.17
Intersection Summary	Other					
Area Type:	Other					
Cycle Length: 123	0					
Actuated Cycle Length: 11	2					
Natural Cycle: 120	P ()					
Control Type: Actuated-Ur	ncoordinated					
Maximum v/c Ratio: 1.46	740					100 =
Intersection Signal Delay:					tersection	
Intersection Capacity Utiliz	ation 89.6%			IC	CU Level of	of Service
Analysis Period (min) 15						

~ Volume exceeds capacity, queue is theoretically infinite.



	•	•	†	/	\	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	**	.,,,,,,	^	7	ሻሻ	↑ ↑
Traffic Volume (vph)	310	16	531	33	257	643
Future Volume (vph)	310	16	531	33	257	643
` ' '	1900	1900	1900	1900	1900	1900
Ideal Flow (vphpl)	1900					
Lane Width (ft)		12	10	10	11	11
Grade (%)	-8%	_	-2%	000	045	-1%
Storage Length (ft)	0	0		200	215	
Storage Lanes	1	0		1	2	
Taper Length (ft)	25				86	
Lane Util. Factor	1.00	1.00	0.95	1.00	0.97	0.95
Ped Bike Factor						
Frt	0.993			0.850		
Flt Protected	0.955				0.950	
Satd. Flow (prot)	1856	0	3403	1464	3335	3472
Flt Permitted	0.955				0.950	
Satd. Flow (perm)	1856	0	3403	1464	3335	3472
Right Turn on Red	.000	Yes	3 100	Yes	0000	UIIE
Satd. Flow (RTOR)	2	100		39		
Link Speed (mph)	30		50	33		50
						488
Link Distance (ft)	334		905			
Travel Time (s)	7.6		12.3			6.7
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	1%	0%	0%	4%	2%	1%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	365	19	625	39	302	756
Shared Lane Traffic (%)	000	13	020	00	302	7 00
Lane Group Flow (vph)	384	0	625	39	302	756
Enter Blocked Intersection						
	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12		22			22
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane						
Headway Factor	0.95	0.95	1.08	1.08	1.04	1.04
Turning Speed (mph)	15	9		9	15	
Number of Detectors	1		2	1	1	2
Detector Template	Left		Thru	Right	Left	Thru
Leading Detector (ft)	20		100	20	20	100
Trailing Detector (ft)	0		0	0	0	0
Turn Type	Prot		NA	pm+ov	Prot	NA
Protected Phases	8		2	8 Pill+0V	1	6
	U					U
Permitted Phases	0			2	4	
Detector Phase	8		2	8	1	6
Switch Phase						

	•	•	†	<i>></i>	/	Ţ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Minimum Initial (s)	10.0		12.0	10.0	12.0	12.0
Minimum Split (s)	26.0		36.0	26.0	36.0	36.0
Total Split (s)	41.0		43.0	41.0	42.0	85.0
Total Split (%)	32.5%		34.1%	32.5%	33.3%	67.5%
Maximum Green (s)	35.0		36.0	35.0	35.0	78.0
Yellow Time (s)	5.0		5.0	5.0	5.0	5.0
All-Red Time (s)	1.0		2.0	1.0	2.0	2.0
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0		7.0	6.0	7.0	7.0
Lead/Lag			Lag		Lead	
Lead-Lag Optimize?			Yes		Yes	
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0
Minimum Gap (s)	3.0		3.0	3.0	3.0	3.0
Time Before Reduce (s)	0.0		0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0		0.0	0.0	0.0	0.0
Recall Mode	None		Min	None	Min	Min
Walk Time (s)	. 10110					741117
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)						
Act Effct Green (s)	22.6		21.4	51.3	14.5	43.2
Actuated g/C Ratio	0.28		0.27	0.65	0.18	0.54
v/c Ratio	0.72		0.68	0.04	0.50	0.40
Control Delay	34.8		31.0	1.8	34.7	11.9
Queue Delay	0.0		0.0	0.0	0.0	0.0
Total Delay	34.8		31.0	1.8	34.7	11.9
LOS	34.0 C		31.0 C	1.0 A	34. <i>1</i>	11.9 B
	34.8		29.3	A	U	18.4
Approach LOS	34.8 C		29.3 C			10.4 B
Approach LOS				0	60	
Queue Length 50th (ft)	164		138	0	68	103
Queue Length 95th (ft)	291		233	8	129	177
Internal Link Dist (ft)	254		825	000	045	408
Turn Bay Length (ft)	050		4005	200	215	0040
Base Capacity (vph)	852		1605	1207	1529	3218
Starvation Cap Reductn	0		0	0	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductn	0		0	0	0	0
Reduced v/c Ratio	0.45		0.39	0.03	0.20	0.23
Intersection Summary						
Area Type:	Other					
Cycle Length: 126						
Actuated Cycle Length: 79	0.3					
Natural Cycle: 100						
Control Type: Semi Act-Ur	ncoord					
Maximum v/c Ratio: 0.72						
Intersection Signal Delay:	24.8			lr	ntersectio	n LOS: C
Intersection Capacity Utiliz	zation 59.5%			I	CU Level	of Service
Analysis Period (min) 15						
, , , , ,						

	۶	→	•	•	←	•	4	†	/	\	ļ	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					f)			4				
Traffic Volume (vph)	0	0	0	0	50	7	2	875	29	0	0	0
Future Volume (vph)	0	0	0	0	50	7	2	875	29	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	13	12	12	12	12
Grade (%)		0%			-5%			-7%			0%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	0		0	0		0	0		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt					0.983			0.996				
Flt Protected												
Satd. Flow (prot)	0	0	0	0	1850	0	0	2002	0	0	0	0
Flt Permitted												
Satd. Flow (perm)	0	0	0	0	1850	0	0	2002	0	0	0	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		124			297			300			404	
Travel Time (s)		2.8			6.8			6.8			9.2	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	0%	0%	4%	0%	0%	1%	4%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	0	0	0	0	62	9	2	1080	36	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	0	0	0	71	0	0	1118	0	0	0	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	0.97	0.97	0.97	0.96	0.92	0.96	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Stop			Stop			Free			Stop	
Intersection Summary												
	Other											
Control Type: Unsignalized												
Intersection Capacity Utilizati	on 57.9%			IC	CU Level	of Service	B B					
Analysis Daried (min) 15												

Analysis Period (min) 15

Intersection												
Int Delay, s/veh	1.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					1			4				
Traffic Vol, veh/h	0	0	0	0	50	7	2	875	29	0	0	0
Future Vol, veh/h	0	0	0	0	50	7	2	875	29	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Stop	Stop	Stop
RT Channelized	<u>.</u>	-	None	-	-	None	-	-	None	<u>-</u>	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	2	-	-	0	-	-	0	-	-	16965	-
Grade, %	-	0	-	-	-5	-	-	-7	-	-	0	-
Peak Hour Factor	81	81	81	81	81	81	81	81	81	81	81	81
Heavy Vehicles, %	0	0	0	0	4	0	0	1	4	0	0	0
Mvmt Flow	0	0	0	0	62	9	2	1080	36	0	0	0
Major/Minor			1	Minor1		ľ	Major1					
Conflicting Flow All				-	1102	1098	0	0	0			
Stage 1				-	1102	-	-	-	-			
Stage 2				-	0	-	-	-	-			
Critical Hdwy				-	5.54	5.7	4.1	-	-			
Critical Hdwy Stg 1				-	4.54	-	-	-	-			
Critical Hdwy Stg 2				-	-	-	-	-	-			
Follow-up Hdwy				-	4.036	3.3	2.2	-	-			
Pot Cap-1 Maneuver				0	285	304	-	-	-			
Stage 1				0	387	-	-	-	-			
Stage 2				0	-	-	-	-	-			
Platoon blocked, %						204		-	-			
Mov Cap-1 Maneuver				-	0	304	-	-	-			
Mov Cap-2 Maneuver				-	0	-	-	-	-			
Stage 1 Stage 2				-	0	-	-	_	-			
Slaye 2				-	U	-		-	<u>-</u>			
A				\ A / P			N.D.					
Approach				WB			NB					
HCM Control Delay, s				20.4								
HCM LOS				С								
N. 1 (2.1)		NE	Not	NES	VDL 4							
Minor Lane/Major Mvmt		NBL	NBT		VBLn1							
Capacity (veh/h)		-	-	-								
HCM Lane V/C Ratio		-	-		0.231							
HCM Control Delay (s)		-	-	-								
HCM C5th % tile O(vah)		-	-	-	С							
HCM 95th %tile Q(veh)		-	-	-	0.9							

	۶	→	•	•	←	•	•	†	~	/	ţ	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	7		4	7	7	†	7	7	†	7
Traffic Volume (vph)	205	0	146	25	2	23	35	1004	0	1	279	10
Future Volume (vph)	205	0	146	25	2	23	35	1004	0	1	279	10
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (%)		4%			-1%			7%			-4%	
Storage Length (ft)	0		315	0		125	280		445	150		275
Storage Lanes	0		1	0		1	1		1	1		1
Taper Length (ft)	25			25			86			86		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt			0.850			0.850						0.850
Flt Protected		0.950			0.955		0.950			0.950		
Satd. Flow (prot)	0	1769	1479	0	1767	1623	1476	1815	1834	1841	1882	1647
Flt Permitted		0.737			0.666		0.489			0.090		
Satd. Flow (perm)	0	1372	1479	0	1232	1623	760	1815	1834	174	1882	1647
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			168			37						83
Link Speed (mph)		30			30			55			55	
Link Distance (ft)		601			392			1478			1166	
Travel Time (s)		13.7			8.9			18.3			14.5	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	7%	0%	50%	0%	18%	1%	0%	0%	3%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)			-				-	-	-	-	-	
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	236	0	168	29	2	26	40	1154	0	1	321	11
Shared Lane Traffic (%)					_					•	V	
Lane Group Flow (vph)	0	236	168	0	31	26	40	1154	0	1	321	11
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No.	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Lon	0	rugiit	2010	0	rugiit	2010	12	rugiit	2010	12	i tigitt
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane					10			10			10	
Headway Factor	1.03	1.03	1.03	0.99	0.99	0.99	1.05	1.05	1.05	0.97	0.97	0.97
Turning Speed (mph)	15	1.00	9	15	0.00	9	15	1.00	9	15	0.57	9
Number of Detectors	1	2	1	1	2	1	1	2	1	1	2	1
Detector Template	Left		ı ı	Left		ı ı	Į.		Į.	Į.		!
Leading Detector (ft)	20	83	35	20	83	35	35	83	35	35	83	35
Trailing Detector (ft)	0	-5	-5	0	-5	-5	-5	-5	-5	-5	-5	-5
Turn Type	Perm	NA	pm+ov	Perm	NA	pm+ov	pm+pt	NA	Perm		NA	Perm
Protected Phases	i- Cilli	NA 8	pm+ov 1	i eiiii	1NA 4	pm+ov 5	ртт+рt 1	1NA 6	r ellli	pm+pt 5	2	r ellii
Permitted Phases	8	0	8	4	4	4	6	U	6	2	Z	2
	8	8	0 1	4	4		1	6	6	5	2	2
Detector Phase	ď	ď		4	4	5		б	р	5	2	2
Switch Phase												

Lane Group EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT Minimum Initial (s) 5.0 5.0 3.0 5.0 3.0 3.0 5.0 5.0 3.0 5.0 Minimum Split (s) 10.0 10.0 10.0 10.0 10.0 10.0 12.0 12.0 10.0 12.0 Total Split (s) 45.0 45.0 27.0 45.0 27.0 27.0 47.0 47.0 27.0 47.0	5.0 12.0 47.0 39.5% 40.0 5.0 2.0
Minimum Split (s) 10.0 10.0 10.0 10.0 10.0 10.0 12.0 12.0	12.0 47.0 39.5% 40.0 5.0
1 \ /	47.0 39.5% 40.0 5.0
Total Split (c) 45.0 45.0 27.0 45.0 27.0 27.0 47.0 47.0 27.0 47.0	39.5% 40.0 5.0
	40.0 5.0
Total Split (%) 37.8% 37.8% 22.7% 37.8% 22.7% 22.7% 39.5% 39.5% 22.7% 39.5% 3	5.0
Maximum Green (s) 40.0 40.0 20.0 40.0 20.0 20.0 40.0 40.0	
Yellow Time (s) 4.0 4.0 5.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0	2.0
All-Red Time (s) 1.0 1.0 2.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0	
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0
Total Lost Time (s) 5.0 7.0 5.0 7.0 7.0 7.0 7.0 7.0	7.0
Lead/Lag Lead Lead Lag Lag Lead Lag	Lag
Lead-Lag Optimize? Yes Yes Yes Yes Yes Yes	Yes
Vehicle Extension (s) 3.0 3.0 2.0 3.0 2.0 2.0 2.0 2.0 2.0 2.0	2.0
Minimum Gap (s) 3.0 3.0 2.0 3.0 2.0 2.0 2.0 2.0 2.0 2.0	2.0
Time Before Reduce (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0
Time To Reduce (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0
Recall Mode None None None None None Max Max None Max	Max
Walk Time (s)	
Flash Dont Walk (s)	
Pedestrian Calls (#/hr)	
Act Effct Green (s) 19.7 30.4 19.7 29.4 51.1 48.6 44.9 40.2	40.2
Actuated g/C Ratio 0.23 0.36 0.23 0.35 0.60 0.57 0.53 0.47	0.47
v/c Ratio 0.74 0.26 0.11 0.04 0.08 1.11 0.01 0.36	0.01
Control Delay 44.6 4.0 25.7 4.3 8.1 84.7 8.0 16.9	0.0
Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0
Total Delay 44.6 4.0 25.7 4.3 8.1 84.7 8.0 16.9	0.0
LOS D A C A A F A B	Α
Approach Delay 27.7 16.0 82.1 16.3	
Approach LOS C B F B	
Queue Length 50th (ft) 116 0 13 0 7 ~594 0 102	0
Queue Length 95th (ft) 190 33 34 11 23 #1133 2 194	0
Internal Link Dist (ft) 521 312 1398 1086	
Turn Bay Length (ft) 315 125 280 150	275
Base Capacity (vph) 651 862 584 876 644 1041 504 893	825
Starvation Cap Reductn 0 0 0 0 0 0 0	0
Spillback Cap Reductn 0 0 0 0 0 0 0	0
Storage Cap Reductn 0 0 0 0 0 0 0	0
Reduced v/c Ratio 0.36 0.19 0.05 0.03 0.06 1.11 0.00 0.36	0.01

Area Type: Other

Cycle Length: 119

Actuated Cycle Length: 84.7

Natural Cycle: 110

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 1.11

Intersection Signal Delay: 58.1 Intersection Capacity Utilization 83.4%

Intersection LOS: E ICU Level of Service E

Analysis Period (min) 15


~ Volume exceeds capacity, queue is theoretically infinite.

18002018A - N.T. Page 10

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Lane Group WBL WBR NBT NBR SBL SBT
Lane Configurations 7 7 7 7 7
Traffic Volume (vph) 6 136 903 1 8 442
Future Volume (vph) 6 136 903 1 8 442
Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900
Lane Width (ft) 11 11 12 12 10 10
Grade (%) -3% 2% -1%
Storage Length (ft) 0 0 15 175
Storage Lanes 1 1 1 1
Taper Length (ft) 25 86
Lane Util. Factor 1.00 1.00 1.00 1.00 1.00
Ped Bike Factor
Frt 0.850 0.850
Fit Protected 0.950 0.950
Satd. Flow (prot) 1771 1554 1862 1599 1512 1714
Fit Permitted 0.950 0.950
"
Link Speed (mph) 25 55 55
Link Distance (ft) 589 993 1478
Travel Time (s) 16.1 12.3 18.3
Confl. Peds. (#/hr)
Confl. Bikes (#/hr)
Peak Hour Factor 0.88 0.88 0.88 0.88 0.88
Growth Factor 100% 100% 100% 100% 100% 100%
Heavy Vehicles (%) 0% 2% 1% 0% 12% 4%
Bus Blockages (#/hr) 0 0 0 0 0
Parking (#/hr)
Mid-Block Traffic (%) 0% 0%
Adj. Flow (vph) 7 155 1026 1 9 502
Shared Lane Traffic (%)
Lane Group Flow (vph) 7 155 1026 1 9 502
Enter Blocked Intersection No No No No No No
Lane Alignment Left Right Left Right Left Left
Median Width(ft) 11 12 12
Link Offset(ft) 0 0
Crosswalk Width(ft) 16 16 16
Two way Left Turn Lane
Headway Factor 1.02 1.02 1.01 1.01 1.09 1.09
Turning Speed (mph) 15 9 9 15
Intersection Summary
Area Type: Other
Control Type: Unsignalized
Intersection Capacity Utilization 62.6% ICU Level of Service Analysis Period (min) 15

Tolelay, s/veh 2.7							
WBL WBR NBT NBR SBL SB SB SB SB SB SB S	Intersection						
ane Configurations araffic Vol, veh/h 6 136 903 1 8 44: atture Vol, veh/h 6 136 903 1 8 44: atture Vol, veh/h 6 136 903 1 8 44: atture Vol, veh/h 6 136 903 1 8 44: atture Vol, veh/h 6 136 903 1 8 44: atture Vol, veh/h 6 136 903 1 8 44: atture Vol, veh/h 6 136 903 1 8 44: atture Vol, veh/h 6 136 903 1 8 44: atture Vol, veh/h 6 136 903 1 8 44: atture Vol, veh/h 6 136 903 1 8 44: atture Vol, veh/h 6 136 903 1 8 44: atture Vol, veh/h 6 136 903 1 8 44: atture Vol, veh/h 6 136 903 1 8 44: atture Vol, veh/h 6 136 903 1 8 44: atture Vol, veh/h 6 136 903 1 8 44: atture Vol, veh/h 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Int Delay, s/veh	2.7					
ane Configurations araffic Vol, veh/h 6 136 903 1 8 44: atture Vol, veh/h 6 136 903 1 8 44: atture Vol, veh/h 6 136 903 1 8 44: atture Vol, veh/h 6 136 903 1 8 44: atture Vol, veh/h 6 136 903 1 8 44: atture Vol, veh/h 6 136 903 1 8 44: atture Vol, veh/h 6 136 903 1 8 44: atture Vol, veh/h 6 136 903 1 8 44: atture Vol, veh/h 6 136 903 1 8 44: atture Vol, veh/h 6 136 903 1 8 44: atture Vol, veh/h 6 136 903 1 8 44: atture Vol, veh/h 6 136 903 1 8 44: atture Vol, veh/h 6 136 903 1 8 44: atture Vol, veh/h 6 136 903 1 8 44: atture Vol, veh/h 6 136 903 1 8 44: atture Vol, veh/h 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Movement	WBL	WBR	NBT	NBR	SBL	SBT
raffic Vol, veh/h ruture Vol,	Lane Configurations						
Stage 1	Traffic Vol, veh/h						442
onflicting Peds, #/hr	Future Vol, veh/h						442
gn Control	· · · · · · · · · · · · · · · · · · ·						0
T Channelized							Free
torage Length							
eh in Median Storage, # 0 - 0 0 1 1 1 1 1 1 1 1 1							-
rade, %							0
eak Hour Factor 88 88 88 88 88 88 88 88 88 88 88 88 88							-1
eavy Vehicles, % 0 2 1 0 12 4 vmt Flow 7 155 1026 1 9 503 vmt Flow All 1546 1026 0 - 1026 0 Stage 1 1026							
Approach							4
Agior/Minor Minor1 Major1 Major2							
Stage 1	IVIVMT FIOW	1	155	1026	1	9	502
Stage 1							
Stage 1	Major/Minor	Minor1	1	Major1	ı	Major2	
Stage 1 1026 -							0
Stage 2 520 - - - - ritical Hdwy 5.8 5.92 - 4.22 ritical Hdwy Stg 1 4.8 - - - ritical Hdwy Stg 2 4.8 - - - bollow-up Hdwy 3.5 3.318 - - 2.308 bot Cap-1 Maneuver 165 310 - 0 639 Stage 1 414 - - 0 - stage 2 655 - - 0 - atoon blocked, % - - - - - ov Cap-1 Maneuver 163 310 - - 639 ov Cap-2 Maneuver 163 - - - - Stage 1 414 - - - - Stage 2 646 - - - - Stage 2 646 - - - - opproach WB NB SB SB CM Control Delay, s 27.6					_		-
ritical Hdwy Stg 1	•				_	_	_
ritical Hdwy Stg 1					_		_
ritical Hdwy Stg 2					_		_
Stage 1							_
ot Cap-1 Maneuver 165 310 - 0 639 Stage 1 414 - - 0 - Stage 2 655 - - 0 - Iatoon blocked, % - - 639 - - 639 - - 639 -							_
Stage 1 414 - - 0 - Stage 2 655 - - 0 - Iatoon blocked, % - - - 639 ov Cap-1 Maneuver 163 310 - - 639 ov Cap-2 Maneuver 163 - - - - Stage 1 414 - - - - Stage 2 646 - - - - OPPROACH WB NB NB SB CM Control Delay, s 27.6 0 0.2 0.2 CM LOS D D 0 0.2 0.2 CM Lane/Major Mvmt NBTWBLn1WBLn2 SBL SB' apacity (veh/h) - 163 310 639 CM Lane V/C Ratio - 0.042 0.499 0.014 CM Control Delay (s) - 28 27.6 10.7 CM Lane LOS - D D B							
Stage 2 655 - - 0 - atoon blocked, % ov Cap-1 Maneuver 163 310 - - 639 ov Cap-2 Maneuver 163 - - - - Stage 1 414 - - - - Stage 2 646 - - - - opproach WB NB SB CM Control Delay, s 27.6 0 0.2 CM LOS D D B SBL SB' SBL SB' Inor Lane/Major Mvmt NBTWBLn1WBLn2 SBL SB' Approach NBTWBLn1WBLn2 SBL SB' SBL SB' Approach NBTWBLn1WBLn2 SBL SB' Approach Approach NBTWBLn1WBLn2 SBL SB' Approach Approach NBTWBLn1WBLn2 SBL SB' <	•						
Stage 1							-
ov Cap-1 Maneuver 163 310 - - 639 ov Cap-2 Maneuver 163 -		000	-	-	U	-	-
ov Cap-2 Maneuver 163 -		400	0.40	-		000	-
Stage 1 414 -			310	-	-	639	-
Stage 2 646 -			-	-	-	-	-
pproach WB NB SB CM Control Delay, s 27.6 0 0.2 CM LOS D inor Lane/Major Mvmt NBTWBLn1WBLn2 SBL SB apacity (veh/h) - 163 310 639 CM Lane V/C Ratio - 0.042 0.499 0.014 CM Control Delay (s) - 28 27.6 10.7 CM Lane LOS - D D B			-	-	-	-	-
CM Control Delay, s 27.6 0 0.2 CM LOS D inor Lane/Major Mvmt NBTWBLn1WBLn2 SBL SB apacity (veh/h) - 163 310 639 CM Lane V/C Ratio - 0.042 0.499 0.014 CM Control Delay (s) - 28 27.6 10.7 CM Lane LOS - D D B	Stage 2	646	-	-	-	-	-
CM Control Delay, s 27.6 0 0.2 CM LOS D inor Lane/Major Mvmt NBTWBLn1WBLn2 SBL SB apacity (veh/h) - 163 310 639 CM Lane V/C Ratio - 0.042 0.499 0.014 CM Control Delay (s) - 28 27.6 10.7 CM Lane LOS - D D B							
CM Control Delay, s 27.6 0 0.2 CM LOS D inor Lane/Major Mvmt NBTWBLn1WBLn2 SBL SB apacity (veh/h) - 163 310 639 CM Lane V/C Ratio - 0.042 0.499 0.014 CM Control Delay (s) - 28 27.6 10.7 CM Lane LOS - D D B	Annroach	\A/D		NID		Q.D.	
CM LOS D inor Lane/Major Mvmt NBTWBLn1WBLn2 SB SB apacity (veh/h) - 163 310 639 CM Lane V/C Ratio - 0.042 0.499 0.014 CM Control Delay (s) - 28 27.6 10.7 CM Lane LOS - D D B							
inor Lane/Major Mvmt NBTWBLn1WBLn2 SBL SB apacity (veh/h) - 163 310 639 CM Lane V/C Ratio - 0.042 0.499 0.014 CM Control Delay (s) - 28 27.6 10.7 CM Lane LOS - D D B				Ü		0.2	
apacity (veh/h) - 163 310 639 CM Lane V/C Ratio - 0.042 0.499 0.014 CM Control Delay (s) - 28 27.6 10.7 CM Lane LOS - D B	HCM LOS	D					
apacity (veh/h) - 163 310 639 CM Lane V/C Ratio - 0.042 0.499 0.014 CM Control Delay (s) - 28 27.6 10.7 CM Lane LOS - D B							
apacity (veh/h) - 163 310 639 CM Lane V/C Ratio - 0.042 0.499 0.014 CM Control Delay (s) - 28 27.6 10.7 CM Lane LOS - D B	Minor Lane/Maior Mym	nt	NBTV	VBLn1V	VBLn2	SBI	SBT
CM Lane V/C Ratio - 0.042 0.499 0.014 CM Control Delay (s) - 28 27.6 10.7 CM Lane LOS - D D B							-
CM Control Delay (s) - 28 27.6 10.7 CM Lane LOS - D D B							_
CM Lane LOS - D D B			-				-
			-				
OIVI 90(11 %tile Q(ven) - 0.1 2.6 0		١	-				-
	HCIVI 95th %tile Q(ven)	-	0.1	2.0	U	-

	•	•	4	†	ļ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			र्स	f)	
Traffic Volume (vph)	2	3	6	902	445	2
Future Volume (vph)	2	3	6	902	445	2
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	11	11	11	11
Grade (%)	3%			5%	-2%	
Storage Length (ft)	0	0	0			0
Storage Lanes	1	0	0			0
Taper Length (ft)	25		25			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt	0.910				0.999	
Flt Protected	0.984					
Satd. Flow (prot)	1676	0	0	1756	1799	0
Flt Permitted	0.984					
Satd. Flow (perm)	1676	0	0	1756	1799	0
Link Speed (mph)	30			55	55	
Link Distance (ft)	639			1813	993	
Travel Time (s)	14.5			22.5	12.3	
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.83	0.83	0.83	0.83	0.83	0.83
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	0%	2%	3%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%			0%	0%	
Adj. Flow (vph)	2	4	7	1087	536	2
Shared Lane Traffic (%)						
Lane Group Flow (vph)	6	0	0	1094	538	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12			0	0	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	1.02	1.02	1.08	1.08	1.03	1.03
Turning Speed (mph)	15	9	15			9
Sign Control	Stop			Free	Free	
Intersection Summary						
Area Type:	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizat	tion 62 2%			10	CU Level	of Service
Analysis Period (min) 15					CO LOVOI (C. CC/ VIOC
raidiyolo i oriod (iliili) 10						

Intersection						
Int Delay, s/veh	0.2					
		EDD	ND	NDT	ODT	000
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			4	ĵ.	
Traffic Vol, veh/h	2	3	6	902	445	2
Future Vol, veh/h	2	3	6	902	445	2
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	3	-	-	5	-2	-
Peak Hour Factor	83	83	83	83	83	83
Heavy Vehicles, %	0	0	0	2	3	0
Mvmt Flow	2	4	7	1087	536	2
WWW. TOW	_	-		1001	000	_
Major/Minor	Minor2	N	Major1	Λ	/lajor2	
Conflicting Flow All	1638	537	538	0	-	0
Stage 1	537	-	-	-	-	-
Stage 2	1101	-	-	-	-	-
Critical Hdwy	7	6.5	4.1	-	_	-
Critical Hdwy Stg 1	6	-	_	_	_	_
Critical Hdwy Stg 2	6	_	_	_	_	_
Follow-up Hdwy	3.5	3.3	2.2	<u>_</u>	_	_
Pot Cap-1 Maneuver	85	524	1040	_	_	_
Stage 1	539	J2 4	1040	-	_	_
			-	-		
Stage 2	267	-	-	-	-	-
Platoon blocked, %			1010	-	-	-
Mov Cap-1 Maneuver	84	524	1040	-	-	-
Mov Cap-2 Maneuver	84	-	-	-	-	-
Stage 1	530	-	-	-	-	-
Stage 2	267	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	27.1		0.1		0	
HCM LOS	D					
Minor Lane/Major Mvm	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1040	-		-	CDIT
HCM Lane V/C Ratio		0.007		0.036	_	_
HCM Control Delay (s)		8.5	0	27.1	-	-
HCM Lane LOS		A	Α	D	-	-
HCM 95th %tile Q(veh))	0	-	0.1	-	-

	7	*	À	~	*	₹	ን	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		4		ሻ	†	7		ર્ન	7		4	7
Traffic Volume (vph)	2	409	37	73	839	20	69	0	95	124	0	0
Future Volume (vph)	2	409	37	73	839	20	69	0	95	124	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	11	11	11	11	10	10	10	11	11	11
Grade (%)		-4%			1%			-5%			1%	
Storage Length (ft)	0	.,,	0	120		200	0		95	0	.,,	0
Storage Lanes	0		0	1		1	0		1	0		1
Taper Length (ft)	25			86		•	25		•	25		•
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.989		1.00		0.850			0.850			
Flt Protected		0.000		0.950		0.000		0.950	0.000		0.950	
Satd. Flow (prot)	0	1800	0	1736	1792	1412	0	1727	1545	0	1702	1827
Flt Permitted	•	0.997		0.384	1102	1112	J	0.612	10 10		0.705	1021
Satd. Flow (perm)	0	1795	0	702	1792	1412	0	1112	1545	0	1263	1827
Right Turn on Red	U	1130	Yes	102	1102	Yes	U	1112	Yes	U	1200	Yes
Satd. Flow (RTOR)		8	103			26			141			103
Link Speed (mph)		55			55	20		30	171		25	
Link Distance (ft)		1813			2280			328			518	
Travel Time (s)		22.5			28.3			7.5			14.1	
Confl. Peds. (#/hr)		22.0	1	1	20.0			7.5			17.1	
Confl. Bikes (#/hr)												
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	3%	0%	0%	2%	10%	0%	0%	0%	2%	0%	0%
Bus Blockages (#/hr)	0	0	0 /0	0	0	0	0	0	0	0	0	0
Parking (#/hr)	U	U	· ·	U	U	U	U	U	U	J	U	J
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	2	476	43	85	976	23	80	0 /0	110	144	0	0
Shared Lane Traffic (%)		410	70	00	310	20	00	U	110	177	U	U
Lane Group Flow (vph)	0	521	0	85	976	23	0	80	110	0	144	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	LOIL	11	rtigitt	LOIL	11	rtigitt	LOIL	0	rtigiit	LOIL	0	rtigiit
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.02	1.02	1.02	1.05	1.05	1.05	1.06	1.06	1.06	1.05	1.05	1.05
Turning Speed (mph)	15	1.02	9	1.05	1.00	9	1.00	1.00	9	1.05	1.00	9
Number of Detectors	10	2	3	1	2	1	13	2	1	10	2	1
Detector Template	Left			ı		ı	Left		ı	Left		
Leading Detector (ft)	20	83		35	83	35	20	83	35	20	83	35
Trailing Detector (ft)	0	-5		-5	-5	-5	0	-5	-5	0	-5	-5
										-		
Turn Type	Perm	NA 2		pm+pt	NA 6	Perm	Perm	NA 8	Perm	Perm	NA 4	Perm
Protected Phases	2	2		1	O	G	0	Ŏ	0	Λ	4	1
Permitted Phases	2	0		6	6	6	8	0	8	4	4	4
Detector Phase	2	2		1	6	6	8	8	8	4	4	4
Switch Phase												

	₩.	\mathbf{x}	À	~	×	₹	7	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Minimum Initial (s)	10.0	10.0		3.0	10.0	10.0	3.0	3.0	3.0	5.0	5.0	5.0
Minimum Split (s)	17.0	17.0		10.0	17.0	17.0	10.0	10.0	10.0	10.0	10.0	10.0
Total Split (s)	52.0	52.0		13.0	65.0	65.0	20.0	20.0	20.0	20.0	20.0	20.0
Total Split (%)	61.2%	61.2%		15.3%	76.5%	76.5%	23.5%	23.5%	23.5%	23.5%	23.5%	23.5%
Maximum Green (s)	45.0	45.0		6.0	58.0	58.0	15.0	15.0	15.0	15.0	15.0	15.0
Yellow Time (s)	5.0	5.0		5.0	5.0	5.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)		0.0		0.0	0.0	0.0		0.0	0.0		0.0	0.0
Total Lost Time (s)		7.0		7.0	7.0	7.0		5.0	5.0		5.0	5.0
Lead/Lag	Lag	Lag		Lead								
Lead-Lag Optimize?	Yes	Yes		Yes								
Vehicle Extension (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Minimum Gap (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Time Before Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Recall Mode	Max	Max		None	Max							
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		47.7		58.0	58.0	58.0		15.0	15.0		15.0	
Actuated g/C Ratio		0.56		0.68	0.68	0.68		0.18	0.18		0.18	
v/c Ratio		0.52		0.16	0.80	0.02		0.41	0.28		0.65	
Control Delay		14.5		5.2	15.9	1.7		38.3	5.2		47.9	
Queue Delay		0.0		0.0	0.0	0.0		0.0	0.0		0.0	
Total Delay		14.5		5.2	15.9	1.7		38.3	5.2		47.9	
LOS		В		Α	В	Α		D	Α		D	
Approach Delay		14.5			14.7			19.1			47.9	
Approach LOS		В			В			В			D	
Queue Length 50th (ft)		170		13	314	0		38	0		72	
Queue Length 95th (ft)		242		25	444	6		78	23		#138	
Internal Link Dist (ft)		1733			2200			248			438	
Turn Bay Length (ft)				120		200			95			
Base Capacity (vph)		1011		552	1222	971		196	388		222	
Starvation Cap Reductn		0		0	0	0		0	0		0	
Spillback Cap Reductn		0		0	0	0		0	0		0	
Storage Cap Reductn		0		0	0	0		0	0		0	
Reduced v/c Ratio		0.52		0.15	0.80	0.02		0.41	0.28		0.65	
Intersection Summary												

Area Type: Other

Cycle Length: 85

Actuated Cycle Length: 85

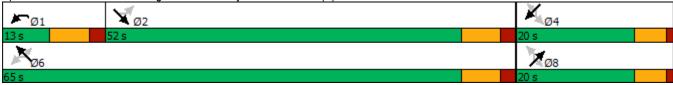
Natural Cycle: 60

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.80

Intersection Signal Delay: 17.6 Intersection Capacity Utilization 80.4%

Intersection LOS: B ICU Level of Service D

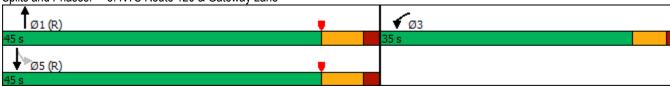

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

18002018A - N.T. Page 17 7: 113 King Street Driveway/American Lane (S) & NYS Route 120

Queue shown is maximum after two cycles.

Splits and Phases: 7: 113 King Street Driveway/American Lane (S) & NYS Route 120


	•	•	†	-	-	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		1			4
Traffic Volume (vph)	82	310	622	41	218	410
Future Volume (vph)	82	310	622	41	218	410
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1300	12	11	11	11	11
Grade (%)	-6%	12	2%			0%
Storage Length (ft)	0	0	Z /0	0	0	0 /0
Storage Lanes	1	0		0	0	
Taper Length (ft)	25	U		U	25	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	1.00	1.00	1.00	1.00	1.00
	0.002		0.000			
Frt	0.893		0.992			0.000
Flt Protected	0.990	^	4707	^	^	0.983
Satd. Flow (prot)	1709	0	1767	0	0	1754
Flt Permitted	0.990		,			0.393
Satd. Flow (perm)	1709	0	1767	0	0	701
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)	154		6			
Link Speed (mph)	30		55			55
Link Distance (ft)	328		519			557
Travel Time (s)	7.5		6.4			6.9
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	6%	0%	2%	3%	1%	4%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)	<u> </u>	<u> </u>	<u> </u>	J	<u> </u>	J
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	93	352	707	47	248	466
	90	352	101	41	240	400
Shared Lane Traffic (%)	445	0	75.4	0	0	74.4
Lane Group Flow (vph)	445	0	754	0	0	714
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12		0			0
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane						
Headway Factor	0.96	0.96	1.06	1.06	1.04	1.04
Turning Speed (mph)	15	9		9	15	
Number of Detectors	1		2		1	2
Detector Template					Left	
Leading Detector (ft)	35		83		20	83
Trailing Detector (ft)	-5		-5		0	-5
Turn Type	Prot		NA		Perm	NA
Protected Phases	3		1		i Giiii	5
Permitted Phases	J		I		5	5
	0		1		5	
Detector Phase	3		1		5	5
Switch Phase						

	•	•	†	~	/	ţ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Minimum Initial (s)	5.0	.,,,,,,	5.0		5.0	5.0
Minimum Split (s)	10.0		12.0		12.0	12.0
Total Split (s)	35.0		45.0		45.0	45.0
Total Split (%)	43.8%		56.3%		56.3%	56.3%
Maximum Green (s)	30.0		38.0		38.0	38.0
Yellow Time (s)	4.0		5.0		5.0	5.0
All-Red Time (s)	1.0		2.0		2.0	2.0
Lost Time Adjust (s)	0.0		0.0		2.0	0.0
, ,	5.0		7.0			7.0
Total Lost Time (s)	5.0		7.0			7.0
Lead/Lag						
Lead-Lag Optimize?	2.0		2.0		2.0	2.0
Vehicle Extension (s)	3.0		3.0		3.0	3.0
Minimum Gap (s)	3.0		3.0		3.0	3.0
Time Before Reduce (s)	0.0		0.0		0.0	0.0
Time To Reduce (s)	0.0		0.0		0.0	0.0
Recall Mode	None		C-Max		C-Max	C-Max
Walk Time (s)						
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)						
Act Effct Green (s)	20.3		47.7			47.7
Actuated g/C Ratio	0.25		0.60			0.60
v/c Ratio	0.81		0.71			1.71
Control Delay	29.5		10.5			349.8
Queue Delay	0.0		0.0			0.0
Total Delay	29.5		10.5			349.8
LOS	C		В			F
Approach Delay	29.5		10.5			349.8
Approach LOS	C		В			0-13.0 F
Queue Length 50th (ft)	137		57			~331
Queue Length 95th (ft)	202		#506			#603
Internal Link Dist (ft)	248		439			477
Turn Bay Length (ft)	240		403			411
Base Capacity (vph)	737		1056			417
Starvation Cap Reductn	0		0			0
Spillback Cap Reductn	0		0			0
Storage Cap Reductn	0		0			0
Reduced v/c Ratio	0.60		0.71			1.71
Intersection Summary	Other					
Area Type:	Other					
Cycle Length: 80						
Actuated Cycle Length: 80						
Offset: 13 (16%), Reference	ced to phase	1:NBT ar	nd 5:SBTL	., Start o	f Yellow	
Natural Cycle: 55						
Control Type: Actuated-Co	oordinated					
Maximum v/c Ratio: 1.71						
Intersection Signal Delay:	141.6			lr	ntersectio	n LOS: F
Intersection Capacity Utiliz)				of Service
Analysis Daried (min) 15					2 20101	2. 23. 1100

Analysis Period (min) 15

- Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

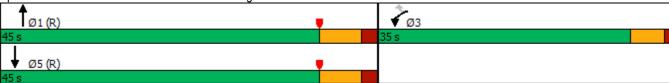
	•	•	†	/	>	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ች	7	†			†
Traffic Volume (vph)	486	95	568	0	0	492
Future Volume (vph)	486	95	568	0	0	492
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1900	1300	1900	1900	1900	1900
	-2%	13	1%	11	11	1%
Grade (%)		475	1 70	^	^	1 70
Storage Length (ft)	0	175		0	0	
Storage Lanes	1	1		0	0	
Taper Length (ft)	25	4.00	4.00	4.00	25	4.00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt		0.850				
Flt Protected	0.950					
Satd. Flow (prot)	1805	1669	1792	0	0	1740
Flt Permitted	0.950					
Satd. Flow (perm)	1805	1669	1792	0	0	1740
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)		102				
Link Speed (mph)	30		55			55
Link Distance (ft)	321		928			519
Travel Time (s)	7.3		11.5			6.4
Confl. Peds. (#/hr)	1.5		11.5			0.4
Confl. Bikes (#/hr)	0.02	0.02	0.02	0.02	0.02	0.02
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	1%	1%	2%	0%	0%	5%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	523	102	611	0	0	529
Shared Lane Traffic (%)						
Lane Group Flow (vph)	523	102	611	0	0	529
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12		0	9		0
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
` '	10		10			10
Two way Left Turn Lane	0.00	0.05	4.05	4.05	4.05	4.05
Headway Factor	0.99	0.95	1.05	1.05	1.05	1.05
Turning Speed (mph)	15	9		9	15	
Number of Detectors	1	1	2			2
Detector Template						
Leading Detector (ft)	35	35	83			83
Trailing Detector (ft)	-5	-5	-5			-5
Turn Type	Prot	Perm	NA			NA
Protected Phases	3		1			5
Permitted Phases		3				
Detector Phase	3	3	1			5
Switch Phase	- 3	- 0				-
SWILCH FHASE						

	•	•	†	/	-	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Minimum Initial (s)	5.0	5.0	5.0		UJL	5.0
Minimum Split (s)	10.0	10.0	12.0			12.0
Total Split (s)	35.0	35.0	45.0			45.0
Total Split (%)	43.8%	43.8%	56.3%			56.3%
Maximum Green (s)	30.0	30.0	38.0			38.0
Yellow Time (s)	4.0	4.0	5.0			5.0
All-Red Time (s)	1.0	1.0	2.0			2.0
Lost Time Adjust (s)	0.0	0.0	0.0			0.0
Total Lost Time (s)	5.0	5.0	7.0			7.0
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0	3.0	3.0			3.0
Minimum Gap (s)	3.0	3.0	3.0			3.0
Time Before Reduce (s)	0.0	0.0	0.0			0.0
Time To Reduce (s)	0.0	0.0	0.0			0.0
Recall Mode	None	None	C-Max			C-Max
Walk Time (s)						
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)						
Act Effct Green (s)	26.9	26.9	41.1			41.1
Actuated g/C Ratio	0.34	0.34	0.51			0.51
v/c Ratio	0.86	0.16	0.66			0.59
Control Delay	40.1	4.5	19.7			8.7
Queue Delay	0.0	0.0	0.2			0.2
Total Delay	40.1	4.5	19.9			8.9
LOS	D	Α	В			Α
Approach Delay	34.3		19.9			8.9
Approach LOS	С		В			Α
Queue Length 50th (ft)	232	0	223			91
Queue Length 95th (ft)	#380	29	359			m59
Internal Link Dist (ft)	241		848			439
Turn Bay Length (ft)		175				
Base Capacity (vph)	676	689	921			894
Starvation Cap Reductn	0	0	0			59
Spillback Cap Reductn	0	2	38			0
Storage Cap Reductn	0	0	0			0
Reduced v/c Ratio	0.77	0.15	0.69			0.63
Intersection Summary						
Area Type:	Other					
Cycle Length: 80						
Actuated Cycle Length: 80						
Offset: 13 (16%), Reference	ced to phase	1:NBT a	nd 5:SBT,	Start of Y	ellow	
Natural Cycle: 60						
Control Type: Actuated-Co	ordinated					
Maximum v/c Ratio: 0.86	04.7					~ I OC: C

Intersection LOS: C

ICU Level of Service C

Synchro 10 Report Page 23


Intersection Capacity Utilization 66.8%

Intersection Signal Delay: 21.7

Analysis Period (min) 15

- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
- m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 9: NYS Route 120 & New King Street

	۶	→	•	•	—	•	•	†	<i>></i>	/	ţ	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ň	4					ň	∱ }		ř	<u></u>	7
Traffic Volume (vph)	416	268	130	0	0	0	297	152	23	33	274	671
Future Volume (vph)	416	268	130	0	0	0	297	152	23	33	274	671
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	16	16	16	12	12	12	12	12	12
Grade (%)		1%			-4%			-1%			1%	
Storage Length (ft)	0		0	0		0	385		0	190		460
Storage Lanes	1		0	0		0	1		0	1		1
Taper Length (ft)	25			25			86			86		
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.956						0.981				0.850
Flt Protected	0.950	0.995					0.950			0.950		
Satd. Flow (prot)	1689	1686	0	0	0	0	1796	3382	0	1633	1800	1575
Flt Permitted	0.950	0.995	•	•	•		0.317	0002	•	0.635		
Satd. Flow (perm)	1689	1686	0	0	0	0	599	3382	0	1091	1800	1575
Right Turn on Red	1000	1000	Yes	· ·	J	Yes	000	0002	Yes	1001	1000	Yes
Satd. Flow (RTOR)		28	. 00					12				121
Link Speed (mph)		30			30			55			55	
Link Distance (ft)		176			314			586			596	
Travel Time (s)		4.0			7.1			7.3			7.4	
Confl. Peds. (#/hr)		7.0			7.1			7.0			7.7	
Confl. Bikes (#/hr)												
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	1%	2%	0%	0%	0%	0%	1%	6%	0%	10%	5%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)	•											Ū
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	443	285	138	0	0	0	316	162	24	35	291	714
Shared Lane Traffic (%)	10%	200	100	· ·	J		0.0	102		00		
Lane Group Flow (vph)	399	467	0	0	0	0	316	186	0	35	291	714
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.01	1.01	1.01	0.82	0.82	0.82	0.99	0.99	0.99	1.01	1.01	1.01
Turning Speed (mph)	15		9	15	VU_	9	15	0.00	9	15		9
Number of Detectors	1	2	J	10		Ū	1	2	J	1	2	1
Detector Template	·	_					•			•	_	
Leading Detector (ft)	35	83					35	83		35	83	35
Trailing Detector (ft)	-5	-5					-5	-5		-5	-5	-5
Turn Type	Split	NA					pm+pt	NA		pm+pt	NA	pm+ov
Protected Phases	3	3					6	1		2	5	3
Permitted Phases							1			5	J	5
Detector Phase	3	3					6	1		2	5	3
Switch Phase	- 0	- 0					- 0				- 0	- 3

	۶	→	•	•	←	•	4	†	<i>></i>	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	5.0					3.0	8.0		3.0	20.0	5.0
Minimum Split (s)	10.0	10.0					10.0	15.0		10.0	27.0	10.0
Total Split (s)	65.0	65.0					22.0	27.0		22.0	27.0	65.0
Total Split (%)	57.0%	57.0%					19.3%	23.7%		19.3%	23.7%	57.0%
Maximum Green (s)	60.0	60.0					15.0	20.0		15.0	20.0	60.0
Yellow Time (s)	4.0	4.0					5.0	5.0		5.0	5.0	4.0
All-Red Time (s)	1.0	1.0					2.0	2.0		2.0	2.0	1.0
Lost Time Adjust (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0					7.0	7.0		7.0	7.0	5.0
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0					2.0	2.0		2.0	2.0	3.0
Minimum Gap (s)	3.0	3.0					2.0	2.0		2.0	2.0	3.0
Time Before Reduce (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Recall Mode	None	None					None	Min		None	Min	None
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)	38.2	38.2					42.8	35.3		26.3	20.4	65.8
Actuated g/C Ratio	0.41	0.41					0.46	0.38		0.28	0.22	0.71
v/c Ratio	0.58	0.66					0.67	0.14		0.10	0.74	0.62
Control Delay	23.8	24.7					28.8	24.0		20.7	49.7	8.1
Queue Delay	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Total Delay	23.8	24.7					28.8	24.0		20.7	49.7	8.1
LOS	С	С					С	С		С	D	Α
Approach Delay		24.3						27.1			20.2	
Approach LOS		С						С			С	
Queue Length 50th (ft)	183	211					117	37		11	159	149
Queue Length 95th (ft)	268	309					#262	86		39	#376	230
Internal Link Dist (ft)		96			234			506			516	
Turn Bay Length (ft)							385			190		460
Base Capacity (vph)	1107	1115					471	1285		506	393	1452
Starvation Cap Reductn	0	0					0	0		0	0	0
Spillback Cap Reductn	0	0					0	0		0	0	0
Storage Cap Reductn	0	0					0	0		0	0	0
Reduced v/c Ratio	0.36	0.42					0.67	0.14		0.07	0.74	0.49

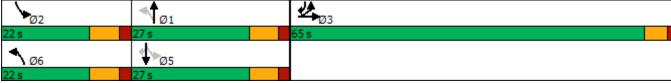
Area Type: Other

Cycle Length: 114

Actuated Cycle Length: 93.3

Natural Cycle: 70

Control Type: Actuated-Uncoordinated


Maximum v/c Ratio: 0.74

Intersection Signal Delay: 23.1 Intersection LOS: C
Intersection Capacity Utilization 71.5% ICU Level of Service C

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

11. I-884 NR	Off_Ramn/I_68/	I NR On₋Ramn	& Airport Road
11.1-00 4 11D	Oll-Mailip/1-00-	r ND Oll-Mailip	A All Port Noau

	۶	→	\rightarrow	•	←	•	1	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્ન			f.				7			
Traffic Volume (vph)	3	255	0	0	381	588	0	0	559	0	0	0
Future Volume (vph)	3	255	0	0	381	588	0	0	559	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	15	15	15	12	12	12	13	13	13	16	16	16
Grade (%)		1%			-1%			1%			2%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	0		0	0		0	0		1	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt					0.918				0.865			
Flt Protected		0.999										
Satd. Flow (prot)	0	2037	0	0	1712	0	0	0	1690	0	0	0
Flt Permitted		0.999										
Satd. Flow (perm)	0	2037	0	0	1712	0	0	0	1690	0	0	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		331			176			301			377	
Travel Time (s)		7.5			4.0			6.8			8.6	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	2%	0%	0%	3%	2%	0%	0%	0%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	3	271	0	0	405	626	0	0	595	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	274	0	0	1031	0	0	0	595	0	0	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	0.89	0.89	0.89	0.99	0.99	0.99	0.96	0.96	0.96	0.86	0.86	0.86
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Free			Free			Stop			Stop	
Intersection Summary												

Area Type: Other Control Type: Unsignalized

Intersection Capacity Utilization 59.4% Analysis Period (min) 15

ICU Level of Service B

Intersection												
Int Delay, s/veh	7.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			ĵ.				1			
Traffic Vol, veh/h	3	255	0	0	381	588	0	0	559	0	0	0
Future Vol, veh/h	3	255	0	0	381	588	0	0	559	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	_	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	0	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	16983	-
Grade, %	-	1	-	-	-1	-	-	1	-	-	2	-
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles, %	0	2	0	0	3	2	0	0	0	0	0	0
Mvmt Flow	3	271	0	0	405	626	0	0	595	0	0	0
Major/Minor M	1ajor1			Major2		N	/linor1					
Conflicting Flow All	1031	0	_	-	-	0	-	-	271			
Stage 1	-	-	-	-	-	-	-	-	-			
Stage 2	-	-	-	-	-	-	-	-	-			
Critical Hdwy	4.1	-	-	-	-	-	-	-	6.3			
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-			
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-			
Follow-up Hdwy	2.2	-	-	-	-	-	-	-	3.3			
Pot Cap-1 Maneuver	682	-	0	0	-	-	0	0	767			
Stage 1	-	-	0	0	-	-	0	0	-			
Stage 2	-	-	0	0	-	-	0	0	-			
Platoon blocked, %		-			-	-						
Mov Cap-1 Maneuver	682	-	-	-	-	-	-	0	767			
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	0	-			
Stage 1	-	-	-	-	-	-	-	0	-			
Stage 2	-	-	-	-	-	-	-	0	-			
Approach	EB			WB			NB					
HCM Control Delay, s	0.1			0			23.9					
HCM LOS							С					
Minor Lane/Major Mvmt	<u> </u>	NBLn1	EBL	EBT	WBT	WBR						
Capacity (veh/h)		767	682	-	-	-						
HCM Lane V/C Ratio		0.775	0.005	-	-	-						
HCM Control Delay (s)		23.9	10.3	0	-	-						
HCM Lane LOS		С	В	Α	-	-						
HCM 95th %tile Q(veh)		7.6	0	-	-	-						

	۶	→	•	•	←	4	1	†	~	/	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					ર્ન						ર્ન	
Traffic Volume (vph)	0	0	0	381	Ō	0	0	0	0	259	Ö	0
Future Volume (vph)	0	0	0	381	0	0	0	0	0	259	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	14	14	13	13	12
Grade (%)		0%			-1%			2%			1%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	0		0	0		0	0		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt												
Flt Protected					0.950						0.950	
Satd. Flow (prot)	0	0	0	0	1761	0	0	0	0	0	1819	0
FIt Permitted					0.950						0.950	
Satd. Flow (perm)	0	0	0	0	1761	0	0	0	0	0	1819	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		182			331			377			345	
Travel Time (s)		4.1			7.5			8.6			7.8	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	0%	3%	0%	0%	0%	0%	0%	2%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	0	0	0	410	0	0	0	0	0	278	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	0	0	0	410	0	0	0	0	0	278	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0	_		0	_		0	_		0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	0.99	0.99	0.99	1.01	0.93	0.93	0.96	0.96	1.01
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Free			Free			Stop			Stop	
Intersection Summary												
	ther											
Control Type: Unsignalized												
Intersection Capacity Utilization	on 42.1%			IC	CU Level	of Service	A					
Analysis Period (min) 15												

Synchro 10 Report Page 30

Intersection												
Int Delay, s/veh	22.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					र्स						र्स	
Traffic Vol, veh/h	0	0	0	381	0	0	0	0	0	259	0	0
Future Vol, veh/h	0	0	0	381	0	0	0	0	0	259	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-		<u>-</u>	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	,# -	0	-	-	0	-	-	16974	-	-	0	-
Grade, %	-	0	-	-	-1	-	-	2	-	-	1	-
Peak Hour Factor	93	93	93	93	93	93	93	93	93	93	93	93
Heavy Vehicles, %	0	0	0	3	0	0	0	0	0	2	0	0
Mvmt Flow	0	0	0	410	0	0	0	0	0	278	0	0
Major/Minor				Major2					ľ	Minor2		
Conflicting Flow All				0	0	0				820	820	-
Stage 1				-	-	-				820	820	-
Stage 2				-	-	-				0	0	-
Critical Hdwy				4.13	-	-				6.62	6.7	-
Critical Hdwy Stg 1				-	-	-				5.62	5.7	-
Critical Hdwy Stg 2				-	-	-				-	-	-
Follow-up Hdwy				2.227	-	-				3.518	4	-
Pot Cap-1 Maneuver				-	-	0				329	298	0
Stage 1				-	-	0				414	374	0
Stage 2				-	-	0				-	-	0
Platoon blocked, %					-							
Mov Cap-1 Maneuver				-	-	-				329	0	-
Mov Cap-2 Maneuver				-	-	-				329	0	-
Stage 1				-	-	-				414	0	-
Stage 2				-	-	-				-	0	-
Approach				WB						SB		
HCM Control Delay, s										54.6		
HCM LOS										F		
Minor Lane/Major Mvm	t _	WBL	WBT:	SBLn1								
Capacity (veh/h)		-	-	329								
HCM Lane V/C Ratio		-	-	0.846								
HCM Control Delay (s)		-	-	54.6								
HCM Lane LOS		-	-	F								
HCM 95th %tile Q(veh)		-	-	7.5								

	4	\mathbf{x}	À	*	×	₹	ን	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		ર્ન	7	Ť	†	7	7	† †	7	Ť	^	7
Traffic Volume (vph)	171	6	211	147	32	350	313	743	35	62	729	124
Future Volume (vph)	171	6	211	147	32	350	313	743	35	62	729	124
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	15	12	12	12	12	11	12	12	12	12	12
Grade (%)		0%			0%			0%			0%	
Storage Length (ft)	0		250	0		225	680		250	400		250
Storage Lanes	0		1	1		1	1		1	1		1
Taper Length (ft)	25			25			86			86		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Ped Bike Factor			0.99	1.00								
Frt			0.850			0.850			0.850			0.850
Flt Protected		0.954		0.950			0.950			0.950		
Satd. Flow (prot)	0	1956	1615	1770	1900	1615	1711	3574	1324	1805	3539	1599
Flt Permitted		0.710		0.577			0.950			0.950		
Satd. Flow (perm)	0	1456	1594	1074	1900	1615	1711	3574	1324	1805	3539	1599
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			213			354			79			125
Link Speed (mph)		30			30			55			55	
Link Distance (ft)		610			598			1191			735	
Travel Time (s)		13.9			13.6			14.8			9.1	
Confl. Peds. (#/hr)			1	1				•			• • • • • • • • • • • • • • • • • • • •	
Confl. Bikes (#/hr)			•	•								
Peak Hour Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	0%	0%	2%	0%	0%	2%	1%	22%	0%	2%	1%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	173	6	213	148	32	354	316	751	35	63	736	125
Shared Lane Traffic (%)												-
Lane Group Flow (vph)	0	179	213	148	32	354	316	751	35	63	736	125
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	0.88	1.00	1.00	1.00	1.00	1.04	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1	1	1	1	1	2	1	1	2	1	1
Detector Template	Left											
Leading Detector (ft)	20	43	6	6	6	6	83	6	6	83	6	6
Trailing Detector (ft)	0	0	0	0	0	0	-5	0	0	-5	0	0
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	. 5.111	3			3	. 5	6	1		2	5	
Permitted Phases	3		3	3		3			1	_		5
Detector Phase	3	3	3	3	3	3	6	1	1	2	5	5
Switch Phase	-	-	-	-	- 0	0	0		-	_	- 0	U

	₩.	\mathbf{x}	Ž	F	×	₹	7	*	~	Ĺ	K	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	2.0	10.0	10.0	2.0	10.0	10.0
Minimum Split (s)	31.0	31.0	31.0	31.0	31.0	31.0	16.0	42.0	42.0	16.0	42.0	42.0
Total Split (s)	46.0	46.0	46.0	46.0	46.0	46.0	36.0	42.0	42.0	36.0	42.0	42.0
Total Split (%)	37.1%	37.1%	37.1%	37.1%	37.1%	37.1%	29.0%	33.9%	33.9%	29.0%	33.9%	33.9%
Maximum Green (s)	40.0	40.0	40.0	40.0	40.0	40.0	30.0	36.0	36.0	30.0	36.0	36.0
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	6.0	6.0	6.0	6.0	6.0	6.0	2.0	6.0	6.0	2.0	6.0	6.0
Minimum Gap (s)	3.0	3.0	3.0	3.0	3.0	3.0	2.0	3.0	3.0	2.0	4.0	4.0
Time Before Reduce (s)	20.0	20.0	20.0	20.0	20.0	20.0	0.0	20.0	20.0	0.0	20.0	20.0
Time To Reduce (s)	10.0	10.0	10.0	10.0	10.0	10.0	0.0	10.0	10.0	0.0	10.0	10.0
Recall Mode	Min	Min	Min	Min	Min	Min	None	Max	Max	None	Max	Max
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		26.5	26.5	26.5	26.5	26.5	23.2	54.3	54.3	8.3	36.6	36.6
Actuated g/C Ratio		0.25	0.25	0.25	0.25	0.25	0.22	0.52	0.52	0.08	0.35	0.35
v/c Ratio		0.49	0.38	0.55	0.07	0.53	0.83	0.41	0.05	0.44	0.59	0.20
Control Delay		38.4	6.3	42.5	30.4	6.4	59.2	18.5	0.1	59.0	32.7	6.2
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		38.4	6.3	42.5	30.4	6.4	59.2	18.5	0.1	59.0	32.7	6.2
LOS		D	Α	D	С	Α	Е	В	Α	Е	С	Α
Approach Delay		21.0			17.8			29.6			30.9	
Approach LOS		С			В			С			С	
Queue Length 50th (ft)		103	0	87	16	0	208	173	0	43	224	0
Queue Length 95th (ft)		179	56	160	42	69	#337	266	0	92	336	45
Internal Link Dist (ft)		530			518			1111			655	
Turn Bay Length (ft)			250			225	680		250	400		250
Base Capacity (vph)		566	750	417	739	844	499	1853	724	526	1239	641
Starvation Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio		0.32	0.28	0.35	0.04	0.42	0.63	0.41	0.05	0.12	0.59	0.20

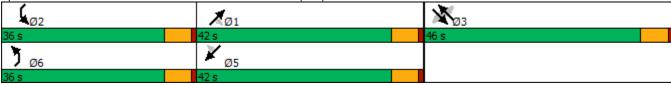
Area Type: Other

Cycle Length: 124

Actuated Cycle Length: 104.6

Natural Cycle: 90

Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.83


Intersection Signal Delay: 26.7
Intersection Capacity Utilization 68.9%

Intersection LOS: C
ICU Level of Service C

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Splits and Phases: 13: NYS Route 22 & North Castle Drive (IBM)/NYS Route 128

	۶	⊸	•	•	†	7	(w	ļ	4	€	✓	
Lane Group	EBL2	EBL	EBR	NBL	NBT	NBR	SBL	SBT	SBR	SWL	SWR	
Lane Configurations		Ä	7		ર્ન	7		414		A AA		
Traffic Volume (vph)	8	2	16	5	1214	289	0	551	5	251	2	
Future Volume (vph)	8	2	16	5	1214	289	0	551	5	251	2	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Lane Width (ft)	10	10	10	11	11	11	10	10	10	11	11	
Grade (%)		0%			4%			1%		0%		
Storage Length (ft)		0	0	0		0	0		0	0	0	
Storage Lanes		1	1	0		1	0		0	2	0	
Taper Length (ft)		25		25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	*0.67	*0.67	*0.67	0.97	0.95	
Ped Bike Factor					1.00			1.00		1.00		
Frt			0.850			0.850		0.999		0.999		
Flt Protected		0.950								0.953		
Satd. Flow (prot)	0	1685	1507	0	1782	1500	0	2316	0	3294	0	
Flt Permitted		0.950			0.997					0.953		
Satd. Flow (perm)	0	1685	1507	0	1777	1500	0	2316	0	3294	0	
Right Turn on Red			Yes			Yes			No			
Satd. Flow (RTOR)			63			304						
Link Speed (mph)		30			35			35		35		
Link Distance (ft)		155			796			597		511		
Travel Time (s)		3.5			15.5			11.6		10.0		
Confl. Peds. (#/hr)				2					2		2	
Confl. Bikes (#/hr)												
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	
Heavy Vehicles (%)	0%	0%	0%	0%	1%	2%	0%	2%	0%	3%	0%	
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%		0%		
Adj. Flow (vph)	8	2	17	5	1278	304	0	580	5	264	2	
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	10	17	0	1283	304	0	585	0	266	0	
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Right	
Median Width(ft)		10			0			0		22		
Link Offset(ft)		0			0			0		0		
Crosswalk Width(ft)		16			16			16		16		
Two way Left Turn Lane												
Headway Factor	1.09	1.09	1.09	1.07	1.07	1.07	1.10	1.10	1.10	1.04	1.04	
Turning Speed (mph)	15	15	9	15		9	15		9	15	9	
Number of Detectors	1	1	1	1	2	1	1	2		1		
Detector Template	Left			Left			Left					
Leading Detector (ft)	20	35	35	20	83	35	20	83		35		
Trailing Detector (ft)	0	-5	-5	0	-5	-5	0	-5		-5		
Turn Type	Perm	Prot	Perm	Perm	NA	pm+ov		NA		Prot		
Protected Phases		3			1	4		5		4		
Permitted Phases	3		3	1		1	5					
Detector Phase	3	3	3	1	1	4	5	5		4		
Switch Phase												

	۶	_#	\rightarrow	\blacktriangleleft	†	7	4	↓	4	€	✓
Lane Group	EBL2	EBL	EBR	NBL	NBT	NBR	SBL	SBT	SBR	SWL	SWR
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	
Minimum Split (s)	10.0	10.0	10.0	11.0	11.0	11.0	11.0	11.0		11.0	
Total Split (s)	20.0	20.0	20.0	106.0	106.0	31.0	106.0	106.0		31.0	
Total Split (%)	12.7%	12.7%	12.7%	67.5%	67.5%	19.7%	67.5%	67.5%		19.7%	
Maximum Green (s)	15.0	15.0	15.0	100.0	100.0	25.0	100.0	100.0		25.0	
Yellow Time (s)	4.0	4.0	4.0	5.0	5.0	5.0	5.0	5.0		5.0	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	
Lost Time Adjust (s)		0.0	0.0		0.0	0.0		0.0		0.0	
Total Lost Time (s)		5.0	5.0		6.0	6.0		6.0		6.0	
Lead/Lag	Lag	Lag	Lag			Lead				Lead	
Lead-Lag Optimize?	Yes	Yes	Yes			Yes				Yes	
Vehicle Extension (s)	5.0	5.0	5.0	5.0	5.0	3.0	5.0	5.0		3.0	
Minimum Gap (s)	5.0	5.0	5.0	5.0	5.0	3.0	5.0	5.0		3.0	
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	
Recall Mode	None	None	None	Max	Max	None	Max	Max		None	
Walk Time (s)											
Flash Dont Walk (s)											
Pedestrian Calls (#/hr)											
Act Effct Green (s)		8.6	8.6		100.6	126.1		100.6		16.8	
Actuated g/C Ratio		0.06	0.06		0.73	0.92		0.73		0.12	
v/c Ratio		0.10	0.11		0.99	0.22		0.35		0.66	
Control Delay		67.0	1.5		42.4	0.5		8.6		66.7	
Queue Delay		0.0	0.0		0.0	0.0		0.0		0.0	
Total Delay		67.0	1.5		42.4	0.5		8.6		66.7	
LOS		Е	Α		D	Α		Α		Е	
Approach Delay		25.8			34.4			8.6		66.7	
Approach LOS		С			С			Α		Е	
Queue Length 50th (ft)		9	0		~1264	0		147		123	
Queue Length 95th (ft)		30	0		#1667	11		229		173	
Internal Link Dist (ft)		75			716			517		431	
Turn Bay Length (ft)											
Base Capacity (vph)		184	221		1300	1426		1694		602	
Starvation Cap Reductn		0	0		0	0		0		0	
Spillback Cap Reductn		0	0		0	0		0		0	
Storage Cap Reductn		0	0		0	0		0		0	
Reduced v/c Ratio		0.05	0.08		0.99	0.21		0.35		0.44	
Intersection Summary											

Area Type: Other

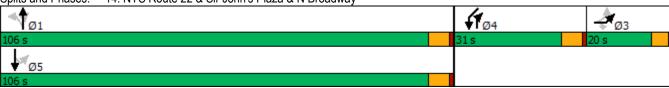
Cycle Length: 157

Actuated Cycle Length: 137.5

Natural Cycle: 100

Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.99

Intersection Signal Delay: 31.6


Intersection Capacity Utilization 93.4%

Intersection LOS: C ICU Level of Service F

Analysis Period (min) 15 User Entered Value

- Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 14: NYS Route 22 & Sir John's Plaza & N Broadway

Year 2024 Build Traffic Volumes Weekday Peak PM Hour 15: Central Westchester Expressway & NYS Route 22 & Reservoir Road & Church Street (20/20/2020)

	۶	→	•	•	←	*_	•	†	/	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	WBR2	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ň	f)			ર્ન		7	^	7	ř	♦ ₽	
Traffic Volume (vph)	315	148	95	79	142	3	115	1185	129	75	577	207
Future Volume (vph)	315	148	95	79	142	3	115	1185	129	75	577	207
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	11	12	12	12	12	11	11	12	12	12
Grade (%)		2%			2%			4%			-6%	
Storage Length (ft)	115		0	0		180			160	110		0
Storage Lanes	1		0	0		1			1	1		0
Taper Length (ft)	86			25						86		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	0.95
Ped Bike Factor					1.00							
Frt		0.941			0.998		0.850		0.850		0.960	
Flt Protected					0.983					0.950		
Satd. Flow (prot)	1732	1688	0	0	1810	0	1599	3420	1515	1859	3516	0
Flt Permitted					0.983					0.078		
Satd. Flow (perm)	1732	1688	0	0	1810	0	1599	3420	1515	153	3516	0
Right Turn on Red			No				Yes		Yes			
Satd. Flow (RTOR)							102		76			
Link Speed (mph)		35			30			45			35	
Link Distance (ft)		532			475			529			778	
Travel Time (s)		10.4			10.8			8.0			15.2	
Confl. Peds. (#/hr)						2						
Confl. Bikes (#/hr)												
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	5%	1%	2%	0%	3%	0%	0%	0%	1%	0%	1%	3%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	325	153	98	81	146	3	119	1222	133	77	595	213
Shared Lane Traffic (%)												
Lane Group Flow (vph)	325	251	0	0	230	0	119	1222	133	77	808	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Right	Left	Right	Left	Left	Right
Median Width(ft)		11			11			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.06	1.06	1.06	1.01	1.01	1.01	1.01	1.07	1.07	0.96	0.96	0.96
Turning Speed (mph)	15		9	15		9	9		9	15		9
Number of Detectors	1	2		1	2		1	2	1	1	2	
Detector Template				Left								
Leading Detector (ft)	35	83		20	83		35	83	35	35	83	
Trailing Detector (ft)	-5	-5		0	-5		-5	-5	-5	-5	-5	
Turn Type	Split	NA		Split	NA		pm+ov	NA	pm+ov	pm+pt	NA	
Protected Phases	3	3		4	4		5	6	4	5	2	
Permitted Phases							4		6	2		
Detector Phase	3	3		4	4		5	6	4	5	2	
Switch Phase												

Synchro 10 Report Page 38 18002018A - N.T.

Lane Group Ø7 Lane Configurations Traffic Volume (vph) Future Volume (vph) Ideal Flow (vphpl) Lane Width (ft) Grade (%) Storage Length (ft) Storage Lanes Taper Length (ft)
Traffic Volume (vph) Future Volume (vph) Ideal Flow (vphpl) Lane Width (ft) Grade (%) Storage Length (ft) Storage Lanes
Future Volume (vph) Ideal Flow (vphpl) Lane Width (ft) Grade (%) Storage Length (ft) Storage Lanes
Ideal Flow (vphpl) Lane Width (ft) Grade (%) Storage Length (ft) Storage Lanes
Lane Width (ft) Grade (%) Storage Length (ft) Storage Lanes
Grade (%) Storage Length (ft) Storage Lanes
Storage Length (ft) Storage Lanes
Storage Lanes
•
TADELLE HOULT HO
Lane Util. Factor
Ped Bike Factor
Frt
Flt Protected
Satd. Flow (prot)
Flt Permitted
Satd. Flow (perm)
Right Turn on Red
Satd. Flow (RTOR)
Link Speed (mph)
Link Distance (ft)
Travel Time (s)
Confl. Peds. (#/hr)
Confl. Bikes (#/hr)
Peak Hour Factor
Growth Factor
Heavy Vehicles (%)
Bus Blockages (#/hr)
Parking (#/hr)
Mid-Block Traffic (%)
Adj. Flow (vph)
Shared Lane Traffic (%)
Lane Group Flow (vph)
Enter Blocked Intersection
Lane Alignment
Median Width(ft)
Link Offset(ft)
Crosswalk Width(ft)
Two way Left Turn Lane
Headway Factor
Turning Speed (mph)
Number of Detectors
Detector Template
Leading Detector (ft)
Trailing Detector (ft)
Turn Type
Protected Phases 7
Permitted Phases
Detector Phase
Switch Phase

Synchro 10 Report Page 39 18002018A - N.T.

15: Central Westchester Expressway & NYS Route 22 & Reservoir Road & Church Street/20/2020

	•	→	\rightarrow	•	←	*_	•	†	/	>	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	WBR2	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	39.0	39.0		11.0	11.0		11.0	11.0	11.0	11.0	31.0	
Total Split (s)	51.0	51.0		36.0	36.0		26.0	51.0	36.0	26.0	77.0	
Total Split (%)	25.5%	25.5%		18.0%	18.0%		13.0%	25.5%	18.0%	13.0%	38.5%	
Maximum Green (s)	45.0	45.0		30.0	30.0		20.0	45.0	30.0	20.0	71.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0			0.0		0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0			6.0		6.0	6.0	6.0	6.0	6.0	
Lead/Lag	Lead	Lead		Lag	Lag		Lead	Lag	Lag	Lead		
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes	Yes	Yes		
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Minimum Gap (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Time Before Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Recall Mode	None	None		None	None		None	Min	None	None	Min	
Walk Time (s)	8.0	8.0									8.0	
Flash Dont Walk (s)	25.0	25.0									17.0	
Pedestrian Calls (#/hr)	6	6									0	
Act Effct Green (s)	38.7	38.7			27.0		38.5	45.3	72.3	62.8	62.8	
Actuated g/C Ratio	0.21	0.21			0.15		0.21	0.25	0.40	0.34	0.34	
v/c Ratio	0.89	0.70			0.86		0.29	1.44	0.21	0.48	0.67	
Control Delay	96.0	78.6			105.3		10.0	252.2	9.1	53.4	55.4	
Queue Delay	0.0	0.0			0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay	96.0	78.6			105.3		10.0	252.2	9.1	53.4	55.4	
LOS	F	Ε			F		Α	F	Α	D	Ε	
Approach Delay		88.5			72.8			228.4			55.2	
Approach LOS		F			Ε			F			Ε	
Queue Length 50th (ft)	391	288			280		12	~1101	22	67	460	
Queue Length 95th (ft)	#552	407			#436		55	#1298	51	114	550	
Internal Link Dist (ft)		452			395			449			698	
Turn Bay Length (ft)	115						180		160	110		
Base Capacity (vph)	428	417			298		488	846	669	240	1373	
Starvation Cap Reductn	0	0			0		0	0	0	0	0	
Spillback Cap Reductn	0	0			0		0	0	0	0	0	
Storage Cap Reductn	0	0			0		0	0	0	0	0	
Reduced v/c Ratio	0.76	0.60			0.77		0.24	1.44	0.20	0.32	0.59	
Intersection Summary												

Intersection Summary

Area Type: Other

Cycle Length: 200

Actuated Cycle Length: 182.8

Natural Cycle: 150

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 1.44 Intersection Signal Delay: 137.3 Intersection Capacity Utilization 86.4%

Intersection LOS: F ICU Level of Service E

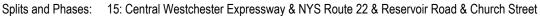
Analysis Period (min) 15

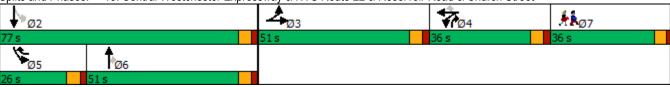
Synchro 10 Report 18002018A - N.T. Page 40

[~] Volume exceeds capacity, queue is theoretically infinite.

Year 2024 Build Traffic Volumes Weekday Peak PM Hour 15: Central Westchester Expressway & NYS Route 22 & Reservoir Road & Church Street (20/2020)

Lane Group	Ø7
Minimum Initial (s)	8.0
Minimum Split (s)	36.0
Total Split (s)	36.0
Total Split (%)	18%
Maximum Green (s)	31.0
Yellow Time (s)	3.5
All-Red Time (s)	1.5
Lost Time Adjust (s)	
Total Lost Time (s)	
Lead/Lag	
Lead-Lag Optimize?	
Vehicle Extension (s)	3.0
Minimum Gap (s)	3.0
Time Before Reduce (s)	0.0
Time To Reduce (s)	0.0
Recall Mode	Ped
Walk Time (s)	8.0
Flash Dont Walk (s)	23.0
Pedestrian Calls (#/hr)	2
Act Effct Green (s)	
Actuated g/C Ratio	
v/c Ratio	
Control Delay	
Queue Delay	
Total Delay	
LOS	
Approach Delay	
Approach LOS	
Queue Length 50th (ft)	
Queue Length 95th (ft)	
Internal Link Dist (ft)	
Turn Bay Length (ft)	
Base Capacity (vph)	
Starvation Cap Reductn	
Spillback Cap Reductn	
Storage Cap Reductn	
Reduced v/c Ratio	
Intersection Summary	


Synchro 10 Report Page 41 18002018A - N.T.


15: Central Westchester Expressway & NYS Route 22 & Reservoir Road & Church Street/20/2020

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

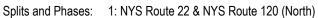
Queue shown is maximum after two cycles.

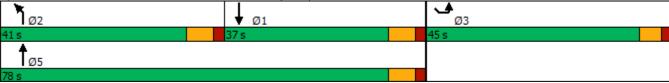
WITH IMPROVEMENTS

	ሻ	†	ļ	» J	•	>
Lane Group	NBL	NBT	SBT	SBR	SEL	SER
Lane Configurations	ች	^	^	7	ች	7
Traffic Volume (vph)	186	514	818	226	524	807
Future Volume (vph)	186	514	818	226	524	807
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	10	10	10	10	10	10
	10	0%	0%	10	0%	10
Grade (%)	050	0%	0%	F00		^
Storage Length (ft)	250			500	250	0
Storage Lanes	1			1	1	1
Taper Length (ft)	86	0.05	0.0-	4.00	86	4.00
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00
Ped Bike Factor						
Frt				0.850		0.850
Flt Protected	0.950				0.950	
Satd. Flow (prot)	1478	3209	3303	1478	1604	1436
Flt Permitted	0.950				0.950	
Satd. Flow (perm)	1478	3209	3303	1478	1604	1436
Right Turn on Red	, 🗸		2000	Yes		Yes
Satd. Flow (RTOR)				231		495
Link Speed (mph)		55	55	201	30	700
Link Distance (ft)		767	1064		872	
Travel Time (s)		9.5	13.2		19.8	
. ,		9.5	13.2		19.6	
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)	0.00	0.00	0.00	0.00	0.00	0.00
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	14%	5%	2%	2%	5%	5%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)		0%	0%		0%	
Adj. Flow (vph)	190	524	835	231	535	823
Shared Lane Traffic (%)						
Lane Group Flow (vph)	190	524	835	231	535	823
Enter Blocked Intersection	No	No	No	No	No	No
	Left	Left	Left		Left	
Lane Alignment	Leit			Right		Right
Median Width(ft)		10	15		10	
Link Offset(ft)		0	0		0	
Crosswalk Width(ft)		16	16		16	
Two way Left Turn Lane						
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (mph)	15			9	15	9
Number of Detectors	1	2	2	1	2	0
Detector Template						
Leading Detector (ft)	35	104	104	0	104	0
Trailing Detector (ft)	-5	0	0	0	0	0
Turn Type	Prot	NA	NA	Free	Prot	Free
Protected Phases	2	5	1	1 100	3	1100
Permitted Phases		J		Free	J	Free
	0		1	гіее	2	гіее
Detector Phase	2	5	1		3	
Switch Phase						

	ሻ	†	ļ	W J	•	>
Lane Group	NBL	NBT	SBT	SBR	SEL	SER
Minimum Initial (s)	12.0	12.0	12.0		10.0	
Minimum Split (s)	36.0	36.0	36.0		26.0	
Total Split (s)	41.0	78.0	37.0		45.0	
Total Split (%)	33.3%	63.4%	30.1%		36.6%	
Maximum Green (s)	34.0	71.0	30.0		39.0	
Yellow Time (s)	5.0	5.0	5.0		4.0	
All-Red Time (s)	2.0	2.0	2.0		2.0	
Lost Time Adjust (s)	0.0	0.0	0.0		0.0	
Total Lost Time (s)	7.0	7.0	7.0		6.0	
Lead/Lag	Lead		Lag			
Lead-Lag Optimize?	Yes		Yes			
Vehicle Extension (s)	6.0	6.0	6.0		6.0	
Minimum Gap (s)	4.0	4.0	4.0		4.0	
Time Before Reduce (s)	20.0	20.0	20.0		20.0	
Time To Reduce (s)	8.0	8.0	8.0		5.0	
Recall Mode	None	Min	Min		None	
Walk Time (s)						
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)						
Act Effct Green (s)	22.1	59.2	30.1	111.3	39.1	111.3
Actuated g/C Ratio	0.20	0.53	0.27	1.00	0.35	1.00
v/c Ratio	0.65	0.31	0.94	0.16	0.95	0.57
Control Delay	51.5	15.0	58.9	0.2	64.3	1.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	51.5	15.0	58.9	0.2	64.3	1.7
LOS	D	В	Е	Α	Е	Α
Approach Delay		24.7	46.2		26.4	
Approach LOS		С	D		С	
Queue Length 50th (ft)	126	105	306	0	368	0
Queue Length 95th (ft)	202	139	#482	0	#655	0
Internal Link Dist (ft)		687	984		792	
Turn Bay Length (ft)	250			500	250	
Base Capacity (vph)	452	2051	892	1478	563	1436
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.42	0.26	0.94	0.16	0.95	0.57
Intersection Summary						
Area Type:	Other					
Cycle Length: 123						
Actuated Cycle Length: 11	1.3					
Natural Cycle: 110						
Control Type: Actuated-Un	coordinated					
Maximum v/c Ratio: 0.95						
						1000

Intersection LOS: C


ICU Level of Service D


Analysis Period (min) 15

Intersection Capacity Utilization 78.6%

Intersection Signal Delay: 32.7

95th percentile volume exceeds capacity, queue may be longer.

	۶	-	•	•	←	•	•	†	/	\	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	, j	4					, j	∱ }		Ť	+	7
Traffic Volume (vph)	393	413	307	0	0	0	89	127	55	49	148	429
Future Volume (vph)	393	413	307	0	0	0	89	127	55	49	148	429
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	16	16	16	12	12	12	12	12	12
Grade (%)		1%			-4%			-1%			1%	
Storage Length (ft)	0		0	0		0	385		0	190		460
Storage Lanes	1		0	0		0	1		0	1		1
Taper Length (ft)	25			25			86			86		
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.939						0.954				0.850
Flt Protected	0.950	0.997					0.950			0.950		
Satd. Flow (prot)	1580	1613	0	0	0	0	1695	3179	0	1727	1734	1530
Flt Permitted	0.950	0.997					0.600			0.630		
Satd. Flow (perm)	1580	1613	0	0	0	0	1071	3179	0	1145	1734	1530
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		35						59				456
Link Speed (mph)		30			30			55			55	
Link Distance (ft)		176			314			586			596	
Travel Time (s)		4.0			7.1			7.3			7.4	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	8%	4%	4%	0%	0%	0%	7%	11%	4%	4%	9%	5%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	418	439	327	0	0	0	95	135	59	52	157	456
Shared Lane Traffic (%)	10%											
Lane Group Flow (vph)	376	808	0	0	0	0	95	194	0	52	157	456
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.01	1.01	1.01	0.82	0.82	0.82	0.99	0.99	0.99	1.01	1.01	1.01
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2					1	2		1	2	1
Detector Template												
Leading Detector (ft)	35	83					35	83		35	83	35
Trailing Detector (ft)	-5	-5					-5	-5		-5	-5	-5
Turn Type	Split	NA					pm+pt	NA		pm+pt	NA	pm+ov
Protected Phases	3	3					6	1		2	5	3
Permitted Phases							1	-		5		5
Detector Phase	3	3					6	1		2	5	3
Switch Phase		- 0										- 0

	۶	-	•	•	←	•	4	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	5.0					3.0	8.0		3.0	25.0	5.0
Minimum Split (s)	10.0	10.0					10.0	15.0		10.0	32.0	10.0
Total Split (s)	50.0	50.0					22.0	42.0		22.0	42.0	50.0
Total Split (%)	43.9%	43.9%					19.3%	36.8%		19.3%	36.8%	43.9%
Maximum Green (s)	45.0	45.0					15.0	35.0		15.0	35.0	45.0
Yellow Time (s)	4.0	4.0					5.0	5.0		5.0	5.0	4.0
All-Red Time (s)	1.0	1.0					2.0	2.0		2.0	2.0	1.0
Lost Time Adjust (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0					7.0	7.0		7.0	7.0	5.0
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0					2.0	2.0		2.0	2.0	3.0
Minimum Gap (s)	3.0	3.0					2.0	2.0		2.0	2.0	3.0
Time Before Reduce (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Recall Mode	None	None					None	Min		None	Min	None
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)	45.3	45.3					35.2	27.5		30.4	25.1	78.6
Actuated g/C Ratio	0.47	0.47					0.37	0.29		0.32	0.26	0.82
v/c Ratio	0.50	1.03					0.21	0.20		0.13	0.34	0.34
Control Delay	21.6	67.7					18.8	19.0		18.3	32.8	1.0
Queue Delay	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Total Delay	21.6	67.7					18.8	19.0		18.3	32.8	1.0
LOS	С	Ε					В	В		В	С	Α
Approach Delay		53.1						19.0			9.9	
Approach LOS		D						В			Α	
Queue Length 50th (ft)	169	~576					36	33		19	80	0
Queue Length 95th (ft)	277	#862					67	62		42	144	20
Internal Link Dist (ft)		96			234			506			516	
Turn Bay Length (ft)							385			190		460
Base Capacity (vph)	748	782					526	1208		531	639	1340
Starvation Cap Reductn	0	0					0	0		0	0	0
Spillback Cap Reductn	0	0					0	0		0	0	0
Storage Cap Reductn	0	0					0	0		0	0	0
Reduced v/c Ratio	0.50	1.03					0.18	0.16		0.10	0.25	0.34
Intersection Summary												

Area Type: Other

Cycle Length: 114

Actuated Cycle Length: 95.5

Natural Cycle: 90

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 1.03 Intersection Signal Delay: 35.0

Intersection Capacity Utilization 72.7%

Analysis Period (min) 15

~ Volume exceeds capacity, queue is theoretically infinite.

Intersection LOS: D
ICU Level of Service C

Synchro 10 Report Page 5

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Lane Group
Traffic Volume (vph) 270 77 213 73 66 34 524 49 34 1225 248 1 Future Volume (vph) 270 77 213 73 66 34 524 49 34 1225 248 1 Ideal Flow (vphpl) 1900 1200 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 <t< th=""></t<>
Traffic Volume (vph) 270 77 213 73 66 34 524 49 34 1225 248 1 Future Volume (vph) 270 77 213 73 66 34 524 49 34 1225 248 1 Ideal Flow (vphpl) 1900 1200 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 <t< td=""></t<>
Future Volume (vph) 270 77 213 73 66 34 524 49 34 1225 248 1 Ideal Flow (vphpl) 1900
Ideal Flow (vphph)
Lane Width (ft)
Grade (%) 2% 2% 4% -6% Storage Length (ft) 115 0 0 160 110 0 Storage Lanes 1 0 0 1 1 0 0 Taper Length (ft) 86 25 86 80 95
Storage Length (ft)
Storage Lanes
Taper Length (ft) 86 25 86 Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 0.95 1.00 1.00 0.95
Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.95 0.95 0.95 Ped Bike Factor 1.00 0.98 1.00 0.98 0.850 0.850 0.975 1.00 0.95 <
Ped Bike Factor 1.00 0.98 1.00 0.98 Frt 0.890 0.850 0.850 0.975 Flt Protected 0.974 0.950 Satd. Flow (prot) 1595 1555 0 0 1755 1508 3257 1500 1805 3474 0 0 Fit Permitted 0.974 0.330 0.330 0 0 1590 1555 0 0 1748 1482 3257 1500 627 3474 0 0 Right Turn on Red No Yes Yes Yes No No No Satd. Flow (RTOR) 76 76 76 Link Speed (mph) 35 30 45 35 35 Link Distance (ft) 532 475 529 778 Travel Time (s) 10.4 10.8 8.0 15.2 Confl. Peds. (#/hr) 2 6 6 2 Confl. Bikes (#/hr) 2 6 6 2 2 0.95 0.95 0.95<
Frt 0.890 0.850 0.850 0.975 Fit Protected 0.974 0.950 Satd. Flow (prot) 1595 1555 0 0 1755 1508 3257 1500 1805 3474 0 0 Fit Permitted 0.974 0.330 0.350 0.347 0.00 0.00 0.00 0.030 0.330 0.350 0.350 0.050 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 </td
Fit Protected Satd. Flow (prot) 1595 1555 0 0 1755 1508 3257 1500 1805 3474 0 0 0
Satd. Flow (prot) 1595 1555 0 0 1755 1508 3257 1500 1805 3474 0 0 Flt Permitted 0.974 0.974 0.330 0.330 0 <t< td=""></t<>
Fit Permitted 0.974 0.330 Satd. Flow (perm) 1590 1555 0 0 1748 1482 3257 1500 627 3474 0 0 Right Turn on Red No Yes Yes Yes No Satd. Flow (RTOR) 76 76 76 Link Speed (mph) 35 30 45 35 Link Distance (ft) 532 475 529 778 Travel Time (s) 10.4 10.8 8.0 15.2 Confl. Peds. (#/hr) 2 6 6 2 Confl. Bikes (#/hr) 2 6 6 2 Confl. Bikes (#/hr) 0.95 0
Satd. Flow (perm) 1590 1555 0 0 1748 1482 3257 1500 627 3474 0 0 Right Turn on Red No Yes Yes Yes No Satd. Flow (RTOR) 76 76 76 Link Speed (mph) 35 30 45 35 Link Distance (ft) 532 475 529 778 Travel Time (s) 10.4 10.8 8.0 15.2 Confl. Peds. (#/hr) 2 6 2 2 Confl. Bikes (#/hr) 2 6 2 2 Confl. Bikes (#/hr) 2 0.95
Right Turn on Red No Yes Yes No Satd. Flow (RTOR) 76 76 76 Link Speed (mph) 35 30 45 35 Link Distance (ft) 532 475 529 778 Travel Time (s) 10.4 10.8 8.0 15.2 Confl. Peds. (#/hr) 2 6 6 2 Confl. Bikes (#/hr) 2 6 6 2 Confl. Bikes (#/hr) 2 0.95
Satd. Flow (RTOR) 76 76 Link Speed (mph) 35 30 45 35 Link Distance (ft) 532 475 529 778 Travel Time (s) 10.4 10.8 8.0 15.2 Confl. Peds. (#/hr) 2 6 6 2 Confl. Bikes (#/hr) 2 0.95
Link Speed (mph) 35 30 45 35 Link Distance (ft) 532 475 529 778 Travel Time (s) 10.4 10.8 8.0 15.2 Confl. Peds. (#/hr) 2 6 6 2 Confl. Bikes (#/hr) 2 0.95
Link Distance (ft) 532 475 529 778 Travel Time (s) 10.4 10.8 8.0 15.2 Confl. Peds. (#/hr) 2 6 6 2 Confl. Bikes (#/hr) Peak Hour Factor 0.95 0.
Travel Time (s) 10.4 10.8 8.0 15.2 Confl. Peds. (#/hr) 2 6 6 6 2 Confl. Bikes (#/hr) Peak Hour Factor 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
Confl. Peds. (#/hr) 2 6 6 2 Confl. Bikes (#/hr) Confl. Bikes (#/hr) 0.95
Confl. Bikes (#/hr) Peak Hour Factor 0.95 <
Peak Hour Factor 0.95
Growth Factor 100%
Heavy Vehicles (%) 14% 6% 1% 3% 6% 6% 5% 2% 3% 3% 11% 0% Bus Blockages (#/hr) 0 0 0 0 0 0 0 0 0 0 0 0 Parking (#/hr)
Bus Blockages (#/hr) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Parking (#/hr)
Parking (#/hr)
MIG-BIOCK Traffic (%) 0% 0% 0%
· /
Adj. Flow (vph) 284 81 224 77 69 36 552 52 36 1289 261 1
Shared Lane Traffic (%)
Lane Group Flow (vph) 284 305 0 0 146 36 552 52 36 1551 0 0
Enter Blocked Intersection No
Lane Alignment Left Left Right Left Right Left Right Right Right Right
Median Width(ft) 11 11 12 12
Link Offset(ft) 0 0 0
Crosswalk Width(ft) 16 16 16
Two way Left Turn Lane
Headway Factor 1.06 1.06 1.06 1.01 1.01 1.01 1.07 1.07 0.96 0.96 0.96 0.96
Turning Speed (mph) 15 9 15 9 9 9
Number of Detectors 1 2 1 2 1 2 1 2
Detector Template Left
Leading Detector (ft) 35 83 20 83 35 83 35 83
Trailing Detector (ft) -5 -5 -5 -5 -5 -5
Turn Type Split NA Split NA pm+ov NA pm+ov pm+pt NA
Protected Phases 3 3 4 4 5 6 4 5 2
Permitted Phases 4 6 2
Detector Phase 3 3 4 4 5 6 4 5 2
Switch Phase

Lane Group	Ø7
Lane Configurations	
Traffic Volume (vph)	
Future Volume (vph)	
Ideal Flow (vphpl)	
Lane Width (ft)	
Grade (%)	
Storage Length (ft)	
Storage Lanes Taper Length (ft)	
Lane Util. Factor	
Ped Bike Factor	
Frt	
Flt Protected	
Satd. Flow (prot)	
Flt Permitted	
Satd. Flow (perm)	
Right Turn on Red	
Satd. Flow (RTOR)	
Link Speed (mph)	
Link Distance (ft)	
Travel Time (s)	
Confl. Peds. (#/hr)	
Confl. Bikes (#/hr)	
Peak Hour Factor	
Growth Factor	
Heavy Vehicles (%)	
Bus Blockages (#/hr)	
Parking (#/hr)	
Mid-Block Traffic (%)	
Adj. Flow (vph)	
Shared Lane Traffic (%)	
Lane Group Flow (vph)	
Enter Blocked Intersection	
Lane Alignment	
Median Width(ft)	
Link Offset(ft)	
Crosswalk Width(ft)	
Two way Left Turn Lane	
Headway Factor	
Turning Speed (mph)	
Number of Detectors	
Detector Template	
Leading Detector (ft)	
Trailing Detector (ft)	
Turn Type	
Protected Phases	7
Permitted Phases	
Detector Phase	
Switch Phase	

	۶	→	\rightarrow	•	←	•	†	/	-	ţ	4	¥J
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR2	NBT	NBR	SBL	SBT	SBR	SBR2
Minimum Initial (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0	5.0		
Minimum Split (s)	39.0	39.0		11.0	11.0	11.0	11.0	11.0	11.0	31.0		
Total Split (s)	45.0	45.0		22.0	22.0	11.0	86.0	22.0	11.0	97.0		
Total Split (%)	22.5%	22.5%		11.0%	11.0%	5.5%	43.0%	11.0%	5.5%	48.5%		
Maximum Green (s)	39.0	39.0		16.0	16.0	5.0	80.0	16.0	5.0	91.0		
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0		
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0		
Lost Time Adjust (s)	0.0	0.0			0.0	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	6.0	6.0			6.0	6.0	6.0	6.0	6.0	6.0		
Lead/Lag	Lead	Lead		Lag	Lag	Lead	Lag	Lag	Lead			
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes			
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0		
Minimum Gap (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0		
Time Before Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Time To Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Recall Mode	None	None		None	None	None	Min	None	None	Min		
Walk Time (s)	8.0	8.0								8.0		
Flash Dont Walk (s)	25.0	25.0								17.0		
Pedestrian Calls (#/hr)	6	6								0		
Act Effct Green (s)	39.0	39.0			16.0	21.0	82.2	98.2	91.0	91.0		
Actuated g/C Ratio	0.20	0.20			0.08	0.10	0.41	0.49	0.46	0.46		
v/c Ratio	0.91	1.01			1.04	0.16	0.41	0.07	0.11	0.98		
Control Delay	110.4	130.3			170.9	1.5	43.4	1.0	31.3	71.5		
Queue Delay	0.0	0.0			0.0	0.0	0.0	0.0	0.0	0.0		
Total Delay	110.4	130.3			170.9	1.5	43.4	1.0	31.3	71.5		
LOS	F	F			F	Α	D	Α	С	Е		
Approach Delay		120.7			137.4		39.8			70.6		
Approach LOS		F			F		D			Е		
Queue Length 50th (ft)	372	~411			~206	0	276	0	26	1055		
Queue Length 95th (ft)	#562	#633			#372	0	334	5	52	#1222		
Internal Link Dist (ft)		452			395		449			698		
Turn Bay Length (ft)	115					180		160	110			
Base Capacity (vph)	311	303			140	224	1338	775	314	1580		
Starvation Cap Reductn	0	0			0	0	0	0	0	0		
Spillback Cap Reductn	0	0			0	0	0	0	0	0		
Storage Cap Reductn	0	0			0	0	0	0	0	0		
Reduced v/c Ratio	0.91	1.01			1.04	0.16	0.41	0.07	0.11	0.98		

Area Type: Other

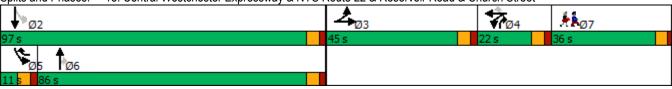
Cycle Length: 200 Actuated Cycle Length: 200 Natural Cycle: 150

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 1.04 Intersection Signal Delay: 78.4 Intersection Capacity Utilization 92.2% Analysis Period (min) 15

Intersection LOS: E ICU Level of Service F

~ Volume exceeds capacity, queue is theoretically infinite.

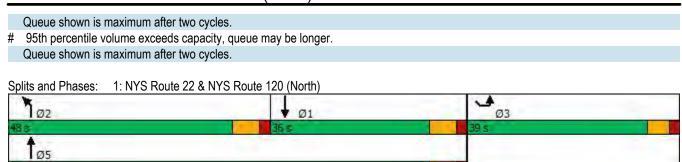

Minimum Initial (s) 8.0 Minimum Split (s) 36.0 Total Split (%) 18% Maximum Green (s) 31.0 Yellow Time (s) 3.5 All-Red Time (s) 1.5 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio V/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Tum Bay Length (ft) Base Capacity (v/ph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio Intersection Summary	Lane Group	Ø7		
Minimum Split (s) 36.0 Total Split (s) 36.0 Total Split (%) 18% Maximum Green (s) 31.0 Yellow Time (s) 3.5 All-Red Time (s) 1.5 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Spillback Cap Reductn Reduced v/c Ratio		8.0		
Total Split (s) 36.0 Total Split (%) 18% Maximum Green (s) 31.0 Yellow Time (s) 3.5 All-Red Time (s) 1.5 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Spillback Cap Reductn Reduced v/c Ratio				
Total Split (%) 18% Maximum Green (s) 31.0 Yellow Time (s) 3.5 All-Red Time (s) 1.5 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay Los Approach Los Queue Length 50th (ft) Queue Length 55th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Maximum Green (s) 31.0 Yellow Time (s) 3.5 All-Red Time (s) 1.5 Lost Time Adjust (s) 1.5 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Spillback Cap Reductn Reduced v/c Ratio				
Yellow Time (s) 3.5 All-Red Time (s) 1.5 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 55th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Reduced v/c Ratio				
All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) Minimum Gap (s) Jime Before Reduce (s) Jime Before Reduce (s) Jime To Reduce (s) Recall Mode Ped Walk Time (s) Pedestrian Calls (#/hr) Act Effct Green (s) Actuated g/C Ratio V/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Reduced v/c Ratio				
Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) Minimum Gap (s) Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio V/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) Minimum Gap (s) J. 0.0 Minimum Gap (s) J. 0.0 Time Before Reduce (s) J. 0.0 Recall Mode Ped Walk Time (s) Recall Mode Ped Walk Time (s) Resh Dont Walk (s) Pedestrian Calls (#/hr) Act Leftct Green (s) Actuated g/C Ratio V/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Reduced v/c Ratio				
Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Dolay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effet Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Reduced v/c Ratio		3.0		
Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Tum Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Reduced v/c Ratio				
Flash Dont Walk (s) Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Pedestrian Calls (#/hr) Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio		* *		
Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Reduced v/c Ratio		2		
v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Storage Cap Reductn Reduced v/c Ratio				
Reduced v/c Ratio				
Intersection Summary				
	Intersection Summary			

Synchro 10 Report Page 10 18002018A - N.T.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 15: Central Westchester Expressway & NYS Route 22 & Reservoir Road & Church Street



18002018A - N.T. Page 11

	ሻ	†	ļ	» J	•	>
Lane Group	NBL	NBT	SBT	SBR	SEL	SER
Lane Configurations	ች	^	† †	#	*	7
Traffic Volume (vph)	733	749	649	603	281	239
Future Volume (vph)	733	749	649	603	281	239
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	10	10	10	10	10	10
Grade (%)	10	0%	0%	10	0%	10
	250	0 %	U 70	500		0
Storage Length (ft)	250			500	250	0
Storage Lanes	1			1	1	1
Taper Length (ft)	86	0.05	0.05	4.00	86	4.00
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00
Ped Bike Factor						
Frt				0.850		0.850
Flt Protected	0.950				0.950	
Satd. Flow (prot)	1685	3336	3336	1507	1685	1507
Flt Permitted	0.950				0.950	
Satd. Flow (perm)	1685	3336	3336	1507	1685	1507
Right Turn on Red	1000	0000	0000	Yes	. 300	Yes
Satd. Flow (RTOR)				641		254
Link Speed (mph)		55	55	041	30	204
Link Distance (ft)		767	1064		872	
Travel Time (s)		9.5	13.2		19.8	
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	1%	1%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)		0%	0%		0%	
Adj. Flow (vph)	780	797	690	641	299	254
Shared Lane Traffic (%)	100	101	330	3 T I	200	201
Lane Group Flow (vph)	780	797	690	641	299	254
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width(ft)		10	15		10	
Link Offset(ft)		0	0		0	
Crosswalk Width(ft)		16	16		16	
Two way Left Turn Lane						
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (mph)	15			9	15	9
Number of Detectors	1	2	2	1	2	0
Detector Template						
Leading Detector (ft)	35	104	104	0	104	0
Trailing Detector (ft)	-5	0	0	0	0	0
Turn Type	Prot	NA	NA	Free	Prot	Free
Protected Phases	2			1166	3	1166
	2	5	1	F	3	Г
Permitted Phases	_	_		Free	_	Free
Detector Phase	2	5	1		3	
Switch Phase						

	ሻ	†	ţ	¥J	•	>
Lane Group	NBL	NBT	SBT	SBR	SEL	SER
Minimum Initial (s)	12.0	12.0	12.0		10.0	
Minimum Split (s)	36.0	36.0	36.0		26.0	
Total Split (s)	48.0	84.0	36.0		39.0	
Total Split (%)	39.0%	68.3%	29.3%		31.7%	
Maximum Green (s)	41.0	77.0	29.0		33.0	
Yellow Time (s)	5.0	5.0	5.0		4.0	
All-Red Time (s)	2.0	2.0	2.0		2.0	
Lost Time Adjust (s)	0.0	0.0	0.0		0.0	
Total Lost Time (s)	7.0	7.0	7.0		6.0	
Lead/Lag	Lead	-	Lag			
Lead-Lag Optimize?	Yes		Yes			
Vehicle Extension (s)	6.0	6.0	6.0		6.0	
Minimum Gap (s)	4.0	4.0	4.0		4.0	
Time Before Reduce (s)	20.0	20.0	20.0		20.0	
Time To Reduce (s)	8.0	8.0	8.0		5.0	
Recall Mode	None	Min	Min		None	
Walk Time (s)						
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)						
Act Effct Green (s)	41.1	76.6	28.5	117.0	27.4	117.0
Actuated g/C Ratio	0.35	0.65	0.24	1.00	0.23	1.00
v/c Ratio	1.32	0.36	0.85	0.43	0.76	0.17
Control Delay	188.0	10.3	54.0	0.9	54.9	0.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	188.0	10.3	54.0	0.9	54.9	0.2
LOS	F	В	D	Α	D	Α
Approach Delay		98.2	28.4		29.8	
Approach LOS		F	C		C	
Queue Length 50th (ft)	~776	135	265	0	212	0
Queue Length 95th (ft)	#1067	192	#381	0	314	0
Internal Link Dist (ft)		687	984		792	
Turn Bay Length (ft)	250		,	500	250	
Base Capacity (vph)	591	2201	829	1507	476	1507
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	1.32	0.36	0.83	0.43	0.63	0.17
Intersection Summary						
Area Type:	Other					
Cycle Length: 123						
Actuated Cycle Length: 11	17					
Natural Cycle: 130						
Control Type: Actuated-Ur	ncoordinated					
Maximum v/c Ratio: 1.32						
Intersection Signal Delay:	60.4			Ir	ntersection	LOS: E
Intersection Capacity Utiliz				IC	CU Level	of Service
Analysis Period (min) 15						
Valuma ayaaada aana	-14			1-		

~ Volume exceeds capacity, queue is theoretically infinite.

	۶	→	•	•	←	•	4	†	~	/	ļ	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	7		र्स	7	ሻ		7	*	1	7
Traffic Volume (vph)	205	0	146	25	2	23	35	1060	0	1	264	10
Future Volume (vph)	205	0	146	25	2	23	35	1060	0	1	264	10
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (%)		4%			-1%	·-		7%			-4%	
Storage Length (ft)	0	.,.	315	0		125	280	. , ,	445	150	.,•	275
Storage Lanes	0		1	0		1	1		1	1		1
Taper Length (ft)	25			25			86			86		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt			0.850			0.850						0.850
Flt Protected		0.950	0.000		0.955	0.000	0.950			0.950		0.000
Satd. Flow (prot)	0	1769	1479	0	1767	1623	1476	1815	1834	1841	1882	1647
Flt Permitted	· ·	0.737	1170	•	0.650	1020	0.509	1010	1001	0.081	1002	1017
Satd. Flow (perm)	0	1372	1479	0	1202	1623	791	1815	1834	157	1882	1647
Right Turn on Red	U	1012	Yes	U	1202	Yes	751	1010	Yes	107	1002	Yes
Satd. Flow (RTOR)			168			37			100			83
Link Speed (mph)		30	100		30	01		55			55	00
Link Distance (ft)		601			392			1478			1166	
Travel Time (s)		13.7			8.9			18.3			14.5	
Confl. Peds. (#/hr)		13.1			0.3			10.5			14.5	
Confl. Bikes (#/hr)												
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	7%	0%	50%	0%	18%	1%	0%	0%	3%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)	- U	· ·	- U	· ·	U	U	- U	- U	U		U	U
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	236	0 /0	168	29	2	26	40	1218	0	1	303	11
Shared Lane Traffic (%)	200	U	100	25		20	70	1210	U		000	
Lane Group Flow (vph)	0	236	168	0	31	26	40	1218	0	1	303	11
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Leit	0	ragnt	Leit	0	rtigiit	Leit	12	rtigrit	Leit	12	rtigrit
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.03	1.03	1.03	0.99	0.99	0.99	1.05	1.05	1.05	0.97	0.97	0.97
Turning Speed (mph)	1.03	1.00	9	15	0.33	9	1.05	1.00	9	15	0.31	9
Number of Detectors	1	2	1	1	2	1	1	2	1	1	2	1
Detector Template	Left		'	Left		ı	'		'	'		'
Leading Detector (ft)	20	83	35	20	83	35	35	83	35	35	83	35
Trailing Detector (ft)	0	-5	-5	0	-5	-5	-5	-5	-5	-5	-5	-5
					NA							
Turn Type Protected Phases	Perm	NA 8	pm+ov 1	Perm	NA 4	pm+ov 5	pm+pt	NA 6	Perm	pm+pt	NA 2	Perm
Protected Phases Permitted Phases	8	Ö	8	1	4		1 6	O	6	5 2		0
	8	8	1	4	4	4	1	6	6	5	2	2
Detector Phase	ð	ď	I	4	4	5	T	б	р	5	2	2
Switch Phase												

	۶	→	•	•	←	•	4	†	/	>	ļ	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	5.0	3.0	5.0	5.0	3.0	3.0	5.0	5.0	3.0	5.0	5.0
Minimum Split (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	12.0	12.0	10.0	12.0	12.0
Total Split (s)	42.0	42.0	25.0	42.0	42.0	25.0	25.0	52.0	52.0	25.0	52.0	52.0
Total Split (%)	35.3%	35.3%	21.0%	35.3%	35.3%	21.0%	21.0%	43.7%	43.7%	21.0%	43.7%	43.7%
Maximum Green (s)	37.0	37.0	18.0	37.0	37.0	18.0	18.0	45.0	45.0	18.0	45.0	45.0
Yellow Time (s)	4.0	4.0	5.0	4.0	4.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	1.0	1.0	2.0	1.0	1.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		5.0	7.0		5.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
Lead/Lag			Lead			Lead	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?			Yes			Yes	Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0	2.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Minimum Gap (s)	3.0	3.0	2.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Recall Mode	None	None	None	None	None	None	None	Max	Max	None	Max	Max
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		20.7	31.4		20.7	30.4	56.2	53.7		49.9	45.3	45.3
Actuated g/C Ratio		0.23	0.35		0.23	0.33	0.62	0.59		0.55	0.50	0.50
v/c Ratio		0.75	0.27		0.11	0.05	0.08	1.14		0.01	0.32	0.01
Control Delay		48.2	4.3		27.9	4.7	8.1	95.1		9.0	16.2	0.0
Queue Delay		0.0	0.0		0.0	0.0	0.0	0.0		0.0	0.0	0.0
Total Delay		48.2	4.3		27.9	4.7	8.1	95.1		9.0	16.2	0.0
LOS		D	Α		С	Α	Α	F		Α	В	Α
Approach Delay		29.9			17.3			92.3			15.6	
Approach LOS		С			В			F			В	
Queue Length 50th (ft)		126	0		14	0	8	~764		0	98	0
Queue Length 95th (ft)		202	35		36	11	24	#1265		3	185	0
Internal Link Dist (ft)		521			312			1398			1086	
Turn Bay Length (ft)			315			125	280			150		275
Base Capacity (vph)		562	801		492	803	641	1072		435	938	862
Starvation Cap Reductn		0	0		0	0	0	0		0	0	0
Spillback Cap Reductn		0	0		0	0	0	0		0	0	0
Storage Cap Reductn		0	0		0	0	0	0		0	0	0
Reduced v/c Ratio		0.42	0.21		0.06	0.03	0.06	1.14		0.00	0.32	0.01

Area Type: Other

Cycle Length: 119

Actuated Cycle Length: 90.8

Natural Cycle: 140

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 1.14 Intersection Signal Delay: 65.9 Intersection Capacity Utilization 86.3%

Intersection LOS: E ICU Level of Service E

Analysis Period (min) 15

[~] Volume exceeds capacity, queue is theoretically infinite.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 4: NYS Route 120 & SwissRe Driveway/IBM Driveway

	•	•	†	/	>	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		1			ની
Traffic Volume (vph)	82	298	579	41	223	433
Future Volume (vph)	82	298	579	41	223	433
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	11	11	11	11
Grade (%)	-6%	12	2%	11	11	0%
Storage Length (ft)	0	0	Z /0	0	0	0 70
Storage Lanes	1	0		0	0	
Taper Length (ft)	25	4.00	4.00	4.00	25	4.00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor			2 22 4			
Frt	0.894		0.991			
FIt Protected	0.989					0.983
Satd. Flow (prot)	1708	0	1765	0	0	1753
Flt Permitted	0.989					0.543
Satd. Flow (perm)	1708	0	1765	0	0	968
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)	*254		12			
Link Speed (mph)	30		55			55
Link Distance (ft)	328		519			557
Travel Time (s)	7.5		6.4			6.9
Confl. Peds. (#/hr)	7.0		0.4			0.5
Confl. Bikes (#/hr)						
, ,	Λ 00	0.00	0.00	0.00	0.00	0.00
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	6%	0%	2%	3%	1%	4%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	93	339	658	47	253	492
Shared Lane Traffic (%)						
Lane Group Flow (vph)	432	0	705	0	0	745
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12		0			0
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
	10		10			10
Two way Left Turn Lane	0.00	0.00	1.00	1.00	1.04	1.04
Headway Factor	0.96	0.96	1.06	1.06	1.04	1.04
Turning Speed (mph)	15	9	^	9	15	_
Number of Detectors	1		2		1	2
Detector Template					Left	
Leading Detector (ft)	35		83		20	83
Trailing Detector (ft)	-5		-5		0	-5
Turn Type	Prot		NA		Perm	NA
Protected Phases	3		1			5
Permitted Phases					5	
Detector Phase	3		1		5	5
Switch Phase						-

	•	4	†	~	>	ţ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Minimum Initial (s)	5.0		5.0		5.0	5.0
Minimum Split (s)	10.0		12.0		12.0	12.0
Total Split (s)	15.0		65.0		65.0	65.0
Total Split (%)	18.8%		81.3%		81.3%	81.3%
Maximum Green (s)	10.0		58.0		58.0	58.0
Yellow Time (s)	4.0		5.0		5.0	5.0
All-Red Time (s)	1.0		2.0		2.0	2.0
Lost Time Adjust (s)	0.0		0.0			0.0
Total Lost Time (s)	5.0		7.0			7.0
Lead/Lag			, .0			
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0		3.0		3.0	3.0
Minimum Gap (s)	3.0		3.0		3.0	3.0
Time Before Reduce (s)	0.0		0.0		0.0	0.0
Time To Reduce (s)	0.0		0.0		0.0	0.0
Recall Mode	None		C-Max		C-Max	C-Max
Walk Time (s)	140116		O-IVIAX		O-IVIAX	U-IVIAX
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)						
Act Effct Green (s)	10.0		58.0			58.0
Actuated g/C Ratio	0.12		0.72			0.72
v/c Ratio	0.12		0.72			1.06
Control Delay	58.6		8.7			67.1
•			0.1			
Queue Delay	0.0					0.0
Total Delay	58.6		8.9			67.1
LOS	E		A			E
Approach Delay	58.6		8.9			67.1
Approach LOS	E		A			E
Queue Length 50th (ft)	92		111			~416
Queue Length 95th (ft)	#265		229			#601
Internal Link Dist (ft)	248		439			477
Turn Bay Length (ft)						
Base Capacity (vph)	435		1282			701
Starvation Cap Reductn	0		80			0
Spillback Cap Reductn	0		0			0
Storage Cap Reductn	0		0			0
Reduced v/c Ratio	0.99		0.59			1.06
Intersection Summary						
Area Type:	Other					
Cycle Length: 80	Other					
Actuated Cycle Length: 80	1					
		IDT and	E-CDTI C	Start of V	allaur	
Offset: 0 (0%), Referenced	to phase 1:1	NB1 and	5:5B1L, 3	start of Y	ellow	
Natural Cycle: 90	P (1					
Control Type: Actuated-Co	ordinated					

Intersection LOS: D

ICU Level of Service G

Maximum v/c Ratio: 1.06 Intersection Signal Delay: 43.3

Analysis Period (min) 15

Intersection Capacity Utilization 106.8%

- * User Entered Value
- Volume exceeds capacity, queue is theoretically infinite.
 - Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.
 - Queue shown is maximum after two cycles.

Splits and Phases: 8: NYS Route 120 & Gateway Lane

18002018A - N.T.

	۶	→	•	•	+	*_	•	†	/	/	↓	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	WBR2	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ĥ			ર્ની		7	^	7	ሻ	↑ ↑	
Traffic Volume (vph)	315	148	95	79	142	3	115	1182	129	75	581	207
Future Volume (vph)	315	148	95	79	142	3	115	1182	129	75	581	207
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	11	12	12	12	12	11	11	12	12	12
Grade (%)		2%		· -	2%		· -	4%			-6%	
Storage Length (ft)	115	_,,	0	0	_,,	180		.,,	160	110	• , ,	0
Storage Lanes	1		0	0		1			1	1		0
Taper Length (ft)	86		J	25		•			•	86		•
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	0.95
Ped Bike Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00
Frt		0.941			0.998		0.850		0.850		0.961	
Flt Protected		0.541			0.983		0.000		0.000	0.950	0.501	
Satd. Flow (prot)	1732	1688	0	0	1810	0	1599	3420	1515	1859	3520	0
Flt Permitted	1702	1000	U	U	0.983	U	1000	0720	1010	0.051	0020	U
Satd. Flow (perm)	1732	1688	0	0	1810	0	1599	3420	1515	100	3520	0
Right Turn on Red	1702	1000	No	U	1010	U	Yes	J 1 20	Yes	100	3320	U
Satd. Flow (RTOR)			INO				90		76			
Link Speed (mph)		35			30		90	45	70		35	
Link Distance (ft)		532			475			529			778	
Travel Time (s)		10.4			10.8			8.0			15.2	
` ,		10.4			10.0	2		0.0			13.2	
Confl. Peds. (#/hr) Confl. Bikes (#/hr)						Z						
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	
			2%		3%	0%	0%	0%	100%		100%	100%
Heavy Vehicles (%)	5%	1% 0	2%	0%	3% 0	0%	0%	0%	1%	0%	1%	3% 0
Bus Blockages (#/hr)	0	U	U	0	U	U	U	U	U	0	U	U
Parking (#/hr)		00/			0%			00/			00/	
Mid-Block Traffic (%)	325	0%	98	04	146	3	110	0%	122	77	0%	040
Adj. Flow (vph)	325	153	90	81	140	3	119	1219	133	77	599	213
Shared Lane Traffic (%)	205	054	٥	0	020	0	110	1010	122	77	010	0
Lane Group Flow (vph)	325	251	0	0	230	0	119	1219	133	77 No.	812 No.	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Right	Left	Right	Left	Left	Right
Median Width(ft)		11			11			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane	4.00	4.00	4.00	4.04	4.04	4.04	4.04	4.07	4.07	0.00	0.00	0.00
Headway Factor	1.06	1.06	1.06	1.01	1.01	1.01	1.01	1.07	1.07	0.96	0.96	0.96
Turning Speed (mph)	15	_	9	15	^	9	9	0	9	15	0	9
Number of Detectors	1	2		1	2		1	2	1	1	2	
Detector Template	٥٢	00		Left	00		٥٦	00	٥٦	25	00	
Leading Detector (ft)	35	83		20	83		35	83	35	35	83	
Trailing Detector (ft)	-5	-5		0	-5		-5	-5	-5	-5	-5	
Turn Type	Split	NA		Split	NA		pm+ov	NA	pm+ov	pm+pt	NA	
Protected Phases	3	3		4	4		5	6	4	5	2	
Permitted Phases							4		6	2		
Detector Phase	3	3		4	4		5	6	4	5	2	
Switch Phase												

Synchro 10 Report Page 10

	17
	57
Lane Configurations	
Traffic Volume (vph)	
Future Volume (vph)	
Ideal Flow (vphpl)	
Lane Width (ft)	
Grade (%)	
Storage Length (ft)	
Storage Lanes	
Taper Length (ft)	
Lane Util. Factor	
Ped Bike Factor	
Frt	
Flt Protected	
Satd. Flow (prot)	
Flt Permitted	
Satd. Flow (perm)	
Right Turn on Red	
Satd. Flow (RTOR)	
Link Speed (mph)	
Link Distance (ft)	
Travel Time (s)	
Confl. Peds. (#/hr)	
Confl. Bikes (#/hr)	
Peak Hour Factor	
Growth Factor	
Heavy Vehicles (%)	
Bus Blockages (#/hr)	
Parking (#/hr)	
Mid-Block Traffic (%)	
Adj. Flow (vph)	
Shared Lane Traffic (%)	
Lane Group Flow (vph)	
Enter Blocked Intersection	
Lane Alignment	
Median Width(ft)	
Link Offset(ft)	
Crosswalk Width(ft)	
Two way Left Turn Lane	
Headway Factor	
Turning Speed (mph)	
Number of Detectors	
Detector Template	
Leading Detector (ft)	
Trailing Detector (ft)	
Turn Type	
	7
Permitted Phases	ı
Detector Phase	
Switch Phase	
- Switch Fliase	

Synchro 10 Report Page 11 18002018A - N.T.

15: Central Westchester Expressway & NYS Route 22 & Reservoir Road & Church Stree (28/2020)

		→	*	•	•	_		T		*	+	*
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	WBR2	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	39.0	39.0		11.0	11.0		11.0	11.0	11.0	11.0	31.0	
Total Split (s)	43.0	43.0		31.0	31.0		11.0	79.0	31.0	11.0	90.0	
Total Split (%)	21.5%	21.5%		15.5%	15.5%		5.5%	39.5%	15.5%	5.5%	45.0%	
Maximum Green (s)	37.0	37.0		25.0	25.0		5.0	73.0	25.0	5.0	84.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0			0.0		0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0			6.0		6.0	6.0	6.0	6.0	6.0	
Lead/Lag	Lead	Lead		Lag	Lag		Lead	Lag	Lag	Lead		
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes	Yes	Yes		
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Minimum Gap (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Time Before Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Recall Mode	None	None		None	None		None	Min	None	None	Min	
Walk Time (s)	8.0	8.0									8.0	
Flash Dont Walk (s)	25.0	25.0									17.0	
Pedestrian Calls (#/hr)	6	6									0	
Act Effct Green (s)	37.0	37.0			25.0		30.0	72.8	97.8	83.8	83.8	
Actuated g/C Ratio	0.19	0.19			0.13		0.15	0.36	0.49	0.42	0.42	
v/c Ratio	1.02	0.80			1.02		0.38	0.98	0.17	0.91	0.55	
Control Delay	131.2	97.3			146.4		17.4	82.6	6.5	113.4	45.5	
Queue Delay	0.0	0.0			0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay	131.2	97.3			146.4		17.4	82.6	6.5	113.4	45.5	
LOS	F	F			F		В	F	Α	F	D	
Approach Delay		116.4			102.4			75.1			51.4	
Approach LOS		F			F			Е			D	
Queue Length 50th (ft)	~449	322			~318		25	837	19	61	424	
Queue Length 95th (ft)	#669	#463			#514		78	#993	41	#167	493	
Internal Link Dist (ft)		452			395			449			698	
Turn Bay Length (ft)	115						180		160	110		
Base Capacity (vph)	320	312			226		316	1249	780	85	1480	
Starvation Cap Reductn	0	0			0		0	0	0	0	0	
Spillback Cap Reductn	0	0			0		0	0	0	0	0	
Storage Cap Reductn	0	0			0		0	0	0	0	0	
Reduced v/c Ratio	1.02	0.80			1.02		0.38	0.98	0.17	0.91	0.55	

Intersection Summary

Area Type: Other

Cycle Length: 200

Actuated Cycle Length: 199.8

Natural Cycle: 150

Control Type: Actuated-Uncoordinated

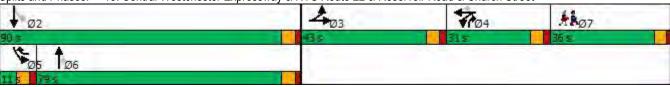
Maximum v/c Ratio: 1.02 Intersection Signal Delay: 79.0 Intersection Capacity Utilization 86.3%

Intersection LOS: E ICU Level of Service E

Analysis Period (min) 15

Synchro 10 Report Page 12

[~] Volume exceeds capacity, queue is theoretically infinite.


Minimum Initial (s) 8.0 Minimum Split (s) 36.0 Total Split (%) 18% Maximum Green (s) 31.0 Yellow Time (s) 3.5 All-Red Time (s) 1.5 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio V/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Tum Bay Length (ft) Base Capacity (v/ph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio Intersection Summary	Lane Group	Ø7		
Minimum Split (s) 36.0 Total Split (s) 36.0 Total Split (%) 18% Maximum Green (s) 31.0 Yellow Time (s) 3.5 All-Red Time (s) 1.5 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Spillback Cap Reductn Reduced v/c Ratio		8.0		
Total Split (s) 36.0 Total Split (%) 18% Maximum Green (s) 31.0 Yellow Time (s) 3.5 All-Red Time (s) 1.5 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Spillback Cap Reductn Reduced v/c Ratio				
Total Split (%) 18% Maximum Green (s) 31.0 Yellow Time (s) 3.5 All-Red Time (s) 1.5 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay Los Approach Los Queue Length 50th (ft) Queue Length 55th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Maximum Green (s) 31.0 Yellow Time (s) 3.5 All-Red Time (s) 1.5 Lost Time Adjust (s) 1.5 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Spillback Cap Reductn Reduced v/c Ratio				
Yellow Time (s) 3.5 All-Red Time (s) 1.5 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 55th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Reduced v/c Ratio				
All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) Minimum Gap (s) Jime Before Reduce (s) Jime Before Reduce (s) Jime To Reduce (s) Recall Mode Ped Walk Time (s) Pedestrian Calls (#/hr) Act Effct Green (s) Actuated g/C Ratio V/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Reduced v/c Ratio				
Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) Minimum Gap (s) Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio V/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) Minimum Gap (s) J. 0.0 Minimum Gap (s) J. 0.0 Time Before Reduce (s) J. 0.0 Recall Mode Ped Walk Time (s) Recall Mode Ped Walk Time (s) Resh Dont Walk (s) Pedestrian Calls (#/hr) Act Leftct Green (s) Actuated g/C Ratio V/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Reduced v/c Ratio				
Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Dolay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effet Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Reduced v/c Ratio		3.0		
Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Tum Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Reduced v/c Ratio				
Flash Dont Walk (s) Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Pedestrian Calls (#/hr) Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio		* *		
Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Reduced v/c Ratio		2		
v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Storage Cap Reductn Reduced v/c Ratio				
Reduced v/c Ratio				
Intersection Summary				
	Intersection Summary			

Synchro 10 Report Page 13 18002018A - N.T.

95th percentile volume exceeds capacity, queue may be longer.

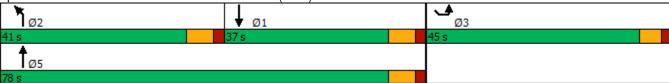
Queue shown is maximum after two cycles.

Splits and Phases: 15: Central Westchester Expressway & NYS Route 22 & Reservoir Road & Church Street

18002018A - N.T. Page 14

	ኘ	†	ļ	» J	•	>
Lane Group	NBL	NBT	SBT	SBR	SEL	SER
Lane Configurations	ሻ	^	† †	ĕ	<u> </u>	7
Traffic Volume (vph)	189	520	786	226	524	780
Future Volume (vph)	189	520	786	226	524	780
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
	1900	1900	1900	1900	1900	1900
Lane Width (ft)	10			10		10
Grade (%)	050	0%	0%	500	0%	0
Storage Length (ft)	250			500	250	0
Storage Lanes	1			1	1	1
Taper Length (ft)	86				86	
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00
Ped Bike Factor						
Frt				0.850		0.850
Flt Protected	0.950				0.950	
Satd. Flow (prot)	1478	3209	3303	1478	1604	1436
Flt Permitted	0.950			-	0.950	
Satd. Flow (perm)	1478	3209	3303	1478	1604	1436
Right Turn on Red	1110	3233	3000	Yes	1007	Yes
Satd. Flow (RTOR)				231		479
Link Speed (mph)		55	55	201	30	713
Link Distance (ft)		767	1064		872	
` ,						
Travel Time (s)		9.5	13.2		19.8	
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	14%	5%	2%	2%	5%	5%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)		0%	0%		0%	
Adj. Flow (vph)	193	531	802	231	535	796
Shared Lane Traffic (%)	100	001	UJL	231	000	, 30
Lane Group Flow (vph)	193	531	802	231	535	796
Enter Blocked Intersection	No	No	No	No	No	No
		Left				
Lane Alignment	Left		Left	Right	Left	Right
Median Width(ft)		10	15		10	
Link Offset(ft)		0	0		0	
Crosswalk Width(ft)		16	16		16	
Two way Left Turn Lane						
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (mph)	15			9	15	9
Number of Detectors	1	2	2	1	2	0
Detector Template						
Leading Detector (ft)	35	104	104	0	104	0
Trailing Detector (ft)	-5	0	0	0	0	0
Turn Type	Prot	NA	NA	Free	Prot	Free
Protected Phases	2	5	1	1166	3	1166
	Z	Ü	I	Eroo	J	Eraa
Permitted Phases	0	-	4	Free	2	Free
Detector Phase	2	5	1		3	
Switch Phase						

	ሻ	†	ţ	¥J	•	\
Lane Group	NBL	NBT	SBT	SBR	SEL	SER
Minimum Initial (s)	12.0	12.0	12.0		10.0	
Minimum Split (s)	36.0	36.0	36.0		26.0	
Total Split (s)	41.0	78.0	37.0		45.0	
Total Split (%)	33.3%	63.4%	30.1%		36.6%	
Maximum Green (s)	34.0	71.0	30.0		39.0	
Yellow Time (s)	5.0	5.0	5.0		4.0	
All-Red Time (s)	2.0	2.0	2.0		2.0	
Lost Time Adjust (s)	0.0	0.0	0.0		0.0	
Total Lost Time (s)	7.0	7.0	7.0		6.0	
Lead/Lag	Lead	-	Lag			
Lead-Lag Optimize?	Yes		Yes			
Vehicle Extension (s)	6.0	6.0	6.0		6.0	
Minimum Gap (s)	4.0	4.0	4.0		4.0	
Time Before Reduce (s)	20.0	20.0	20.0		20.0	
Time To Reduce (s)	8.0	8.0	8.0		5.0	
Recall Mode	None	Min	Min		None	
Walk Time (s)	. 10110				110110	
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)						
Act Effct Green (s)	22.4	59.5	30.1	111.6	39.1	111.6
Actuated g/C Ratio	0.20	0.53	0.27	1.00	0.35	1.00
v/c Ratio	0.20	0.33	0.90	0.16	0.95	0.55
Control Delay	51.6	15.0	54.5	0.10	64.9	1.5
Queue Delay	0.0	0.0	0.0	0.2	0.0	0.0
Total Delay	51.6	15.0	54.5	0.0	64.9	1.5
LOS	51.0 D	15.0 B	54.5 D	Α	04.9 E	1.5 A
Approach Delay	U	24.8	42.4	A	27.0	A
Approach LOS		24.0 C	42.4 D		27.0 C	
• •	128	106	291	0	370	0
Queue Length 50th (ft)	204				#658	0
Queue Length 95th (ft)	204	141	#455 984	0		0
Internal Link Dist (ft)	250	687	904	EOO	792	
Turn Bay Length (ft)	250	2046	000	500	250 562	1436
Base Capacity (vph)	451	2046	890	1478		
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.43	0.26	0.90	0.16	0.95	0.55
Intersection Summary						
Area Type:	Other					
Cycle Length: 123						
, ,	1.6					
	ncoordinated					
Maximum v/c Ratio: 0.95						
Intersection Signal Delay:					ntersection	
Actuated Cycle Length: 11 Natural Cycle: 110 Control Type: Actuated-Un Maximum v/c Ratio: 0.95	ncoordinated				ntersection	


ICU Level of Service D

95th percentile volume exceeds capacity, queue may be longer.

Analysis Period (min) 15

Intersection Capacity Utilization 77.9%

Splits and Phases: 1: NYS Route 22 & NYS Route 120 (North)

	ᄼ	-	•	•	←	•	•	†	/	\	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ť	4					, j	∱ }		ř	+	7
Traffic Volume (vph)	366	413	307	0	0	0	89	119	55	49	158	455
Future Volume (vph)	366	413	307	0	0	0	89	119	55	49	158	455
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	16	16	16	12	12	12	12	12	12
Grade (%)		1%			-4%			-1%			1%	
Storage Length (ft)	0		0	0		0	385		0	190		460
Storage Lanes	1		0	0		0	1		0	1		1
Taper Length (ft)	25			25			86			86		
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.939						0.952				0.850
Flt Protected	0.950	0.998					0.950			0.950		
Satd. Flow (prot)	1580	1615	0	0	0	0	1695	3175	0	1727	1734	1530
Flt Permitted	0.950	0.998					0.585			0.635		
Satd. Flow (perm)	1580	1615	0	0	0	0	1044	3175	0	1154	1734	1530
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		36						59				484
Link Speed (mph)		30			30			55			55	
Link Distance (ft)		176			314			586			596	
Travel Time (s)		4.0			7.1			7.3			7.4	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	8%	4%	4%	0%	0%	0%	7%	11%	4%	4%	9%	5%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	389	439	327	0	0	0	95	127	59	52	168	484
Shared Lane Traffic (%)	10%											
Lane Group Flow (vph)	350	805	0	0	0	0	95	186	0	52	168	484
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.01	1.01	1.01	0.82	0.82	0.82	0.99	0.99	0.99	1.01	1.01	1.01
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2					1	2		1	2	1
Detector Template												
Leading Detector (ft)	35	83					35	83		35	83	35
Trailing Detector (ft)	-5	-5					-5	-5		-5	-5	-5
Turn Type	Split	NA					pm+pt	NA		pm+pt	NA	pm+ov
Protected Phases	3	3					6	1		2	5	3
Permitted Phases		-					1			5		5
Detector Phase	3	3					6	1		2	5	3
Switch Phase	- 0	- 0					- 0			L	- 3	- 0
CTVICOTT TIGGO												

	•	→	\rightarrow	•	←	•	4	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	5.0					3.0	8.0		3.0	25.0	5.0
Minimum Split (s)	10.0	10.0					10.0	15.0		10.0	32.0	10.0
Total Split (s)	50.0	50.0					22.0	42.0		22.0	42.0	50.0
Total Split (%)	43.9%	43.9%					19.3%	36.8%		19.3%	36.8%	43.9%
Maximum Green (s)	45.0	45.0					15.0	35.0		15.0	35.0	45.0
Yellow Time (s)	4.0	4.0					5.0	5.0		5.0	5.0	4.0
All-Red Time (s)	1.0	1.0					2.0	2.0		2.0	2.0	1.0
Lost Time Adjust (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0					7.0	7.0		7.0	7.0	5.0
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0					2.0	2.0		2.0	2.0	3.0
Minimum Gap (s)	3.0	3.0					2.0	2.0		2.0	2.0	3.0
Time Before Reduce (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Recall Mode	None	None					None	Min		None	Min	None
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)	45.3	45.3					35.2	27.5		30.4	25.1	78.6
Actuated g/C Ratio	0.47	0.47					0.37	0.29		0.32	0.26	0.82
v/c Ratio	0.47	1.03					0.21	0.19		0.13	0.37	0.36
Control Delay	20.9	65.9					18.9	18.6		18.3	33.2	1.1
Queue Delay	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Total Delay	20.9	65.9					18.9	18.6		18.3	33.2	1.1
LOS	С	Е					В	В		В	С	Α
Approach Delay		52.3						18.7			10.0	
Approach LOS		D						В			В	
Queue Length 50th (ft)	154	~570					36	31		19	87	0
Queue Length 95th (ft)	254	#857					67	60		42	154	21
Internal Link Dist (ft)		96			234			506			516	
Turn Bay Length (ft)							385			190		460
Base Capacity (vph)	748	784					519	1207		533	639	1344
Starvation Cap Reductn	0	0					0	0		0	0	0
Spillback Cap Reductn	0	0					0	0		0	0	0
Storage Cap Reductn	0	0					0	0		0	0	0
Reduced v/c Ratio	0.47	1.03					0.18	0.15		0.10	0.26	0.36
Intersection Summary												

Area Type: Other

Cycle Length: 114

Actuated Cycle Length: 95.5

Natural Cycle: 90

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 1.03 Intersection Signal Delay: 34.0 Intersection Capacity Utilization 72.0%

Intersection LOS: C ICU Level of Service C

Analysis Period (min) 15

[~] Volume exceeds capacity, queue is theoretically infinite.

- # 95th percentile volume exceeds capacity, queue may be longer.
 - Queue shown is maximum after two cycles.

Splits and Phases: 10: NYS Route 120 & Airport Road

	۶	→	•	•	•	•	†	<i>></i>	/	↓	4	₩ J
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR2	NBT	NBR	SBL	SBT	SBR	SBR2
Lane Configurations	, j	f)			ર્ન	7	^	7	Ť	∱ }		
Traffic Volume (vph)	270	77	213	73	66	34	519	49	34	1228	248	1
Future Volume (vph)	270	77	213	73	66	34	519	49	34	1228	248	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	11	12	12	12	11	11	12	12	12	12
Grade (%)		2%			2%		4%			-6%		
Storage Length (ft)	115		0	0				160	110		0	
Storage Lanes	1		0	0				1	1		0	
Taper Length (ft)	86			25					86			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	0.95	0.95
Ped Bike Factor	1.00	0.98			1.00	0.98						
Frt		0.890				0.850		0.850		0.975		
Flt Protected					0.974				0.950			
Satd. Flow (prot)	1595	1555	0	0	1755	1508	3257	1500	1805	3475	0	0
Flt Permitted					0.974				0.333			
Satd. Flow (perm)	1590	1555	0	0	1748	1482	3257	1500	633	3475	0	0
Right Turn on Red			No			Yes		Yes				No
Satd. Flow (RTOR)						76		76				
Link Speed (mph)		35			30		45			35		
Link Distance (ft)		532			475		529			778		
Travel Time (s)		10.4			10.8		8.0			15.2		
Confl. Peds. (#/hr)	2		6	6		2						
Confl. Bikes (#/hr)												
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	14%	6%	1%	3%	6%	6%	5%	2%	3%	3%	11%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%		0%			0%		
Adj. Flow (vph)	284	81	224	77	69	36	546	52	36	1293	261	1
Shared Lane Traffic (%)												
Lane Group Flow (vph)	284	305	0	0	146	36	546	52	36	1555	0	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Right	Left	Left	Right	Right
Median Width(ft)		11			11		12			12		
Link Offset(ft)		0			0		0			0		
Crosswalk Width(ft)		16			16		16			16		
Two way Left Turn Lane												
Headway Factor	1.06	1.06	1.06	1.01	1.01	1.01	1.07	1.07	0.96	0.96	0.96	0.96
Turning Speed (mph)	15		9	15		9		9	15		9	9
Number of Detectors	1	2		1	2	1	2	1	1	2		
Detector Template				Left								
Leading Detector (ft)	35	83		20	83	35	83	35	35	83		
Trailing Detector (ft)	-5	-5		0	-5	-5	-5	-5	-5	-5		
Turn Type	Split	NA		Split	NA	pm+ov	NA	pm+ov	pm+pt	NA		
Protected Phases	3	3		4	4	5	6	4	5	2		
Permitted Phases						4		6	2			
Detector Phase	3	3		4	4	5	6	4	5	2		
Switch Phase												

Lane Group	Ø7
Lane Configurations	
Traffic Volume (vph)	
Future Volume (vph)	
Ideal Flow (vphpl)	
Lane Width (ft)	
Grade (%)	
Storage Length (ft)	
Storage Lanes Taper Length (ft)	
Lane Util. Factor	
Ped Bike Factor	
Frt	
Flt Protected	
Satd. Flow (prot)	
Flt Permitted	
Satd. Flow (perm)	
Right Turn on Red	
Satd. Flow (RTOR)	
Link Speed (mph)	
Link Distance (ft)	
Travel Time (s)	
Confl. Peds. (#/hr)	
Confl. Bikes (#/hr)	
Peak Hour Factor	
Growth Factor	
Heavy Vehicles (%)	
Bus Blockages (#/hr)	
Parking (#/hr)	
Mid-Block Traffic (%)	
Adj. Flow (vph)	
Shared Lane Traffic (%)	
Lane Group Flow (vph)	
Enter Blocked Intersection	
Lane Alignment	
Median Width(ft)	
Link Offset(ft)	
Crosswalk Width(ft)	
Two way Left Turn Lane	
Headway Factor	
Turning Speed (mph)	
Number of Detectors	
Detector Template	
Leading Detector (ft)	
Trailing Detector (ft)	
Turn Type	
Protected Phases	7
Permitted Phases	
Detector Phase	
Switch Phase	

	۶	→	•	•	←	•	†	~	/	ţ	4	W
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR2	NBT	NBR	SBL	SBT	SBR	SBR2
Minimum Initial (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0	5.0		
Minimum Split (s)	39.0	39.0		11.0	11.0	11.0	11.0	11.0	11.0	31.0		
Total Split (s)	45.0	45.0		22.0	22.0	11.0	86.0	22.0	11.0	97.0		
Total Split (%)	22.5%	22.5%		11.0%	11.0%	5.5%	43.0%	11.0%	5.5%	48.5%		
Maximum Green (s)	39.0	39.0		16.0	16.0	5.0	80.0	16.0	5.0	91.0		
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0		
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0		
Lost Time Adjust (s)	0.0	0.0			0.0	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	6.0	6.0			6.0	6.0	6.0	6.0	6.0	6.0		
Lead/Lag	Lead	Lead		Lag	Lag	Lead	Lag	Lag	Lead			
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes			
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0		
Minimum Gap (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0		
Time Before Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Time To Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Recall Mode	None	None		None	None	None	Min	None	None	Min		
Walk Time (s)	8.0	8.0								8.0		
Flash Dont Walk (s)	25.0	25.0								17.0		
Pedestrian Calls (#/hr)	6	6								0		
Act Effct Green (s)	39.0	39.0			16.0	21.0	82.2	98.2	91.0	91.0		
Actuated g/C Ratio	0.20	0.20			0.08	0.10	0.41	0.49	0.46	0.46		
v/c Ratio	0.91	1.01			1.04	0.16	0.41	0.07	0.11	0.98		
Control Delay	110.4	130.3			170.9	1.5	43.3	1.0	31.3	71.9		
Queue Delay	0.0	0.0			0.0	0.0	0.0	0.0	0.0	0.0		
Total Delay	110.4	130.3			170.9	1.5	43.3	1.0	31.3	71.9		
LOS	F	F			F	Α	D	Α	С	Е		
Approach Delay		120.7			137.4		39.6			71.0		
Approach LOS		F			F		D			Е		
Queue Length 50th (ft)	372	~411			~206	0	273	0	26	1059		
Queue Length 95th (ft)	#562	#633			#372	0	331	5	52	#1227		
Internal Link Dist (ft)		452			395		449			698		
Turn Bay Length (ft)	115					180		160	110			
Base Capacity (vph)	311	303			140	224	1338	775	317	1581		
Starvation Cap Reductn	0	0			0	0	0	0	0	0		
Spillback Cap Reductn	0	0			0	0	0	0	0	0		_
Storage Cap Reductn	0	0			0	0	0	0	0	0		
Reduced v/c Ratio	0.91	1.01			1.04	0.16	0.41	0.07	0.11	0.98		
Intersection Summary												

Intersection Summary

Area Type: Other

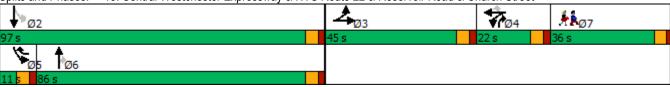
Cycle Length: 200 Actuated Cycle Length: 200 Natural Cycle: 150

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 1.04 Intersection Signal Delay: 78.6 Intersection Capacity Utilization 92.3% Analysis Period (min) 15

Intersection LOS: E ICU Level of Service F

~ Volume exceeds capacity, queue is theoretically infinite.

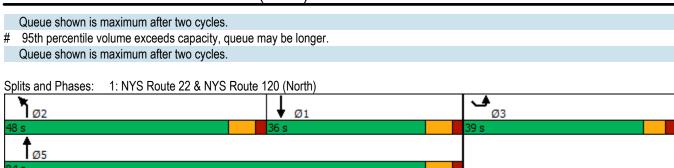

Minimum Initial (s) 8.0 Minimum Split (s) 36.0 Total Split (%) 18% Maximum Green (s) 31.0 Yellow Time (s) 3.5 All-Red Time (s) 1.5 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio V/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Tum Bay Length (ft) Base Capacity (v/ph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio Intersection Summary	Lane Group	Ø7		
Minimum Split (s) 36.0 Total Split (s) 36.0 Total Split (%) 18% Maximum Green (s) 31.0 Yellow Time (s) 3.5 All-Red Time (s) 1.5 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Spillback Cap Reductn Reduced v/c Ratio		8.0		
Total Split (s) 36.0 Total Split (%) 18% Maximum Green (s) 31.0 Yellow Time (s) 3.5 All-Red Time (s) 1.5 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Spillback Cap Reductn Reduced v/c Ratio				
Total Split (%) 18% Maximum Green (s) 31.0 Yellow Time (s) 3.5 All-Red Time (s) 1.5 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay Los Approach Los Queue Length 50th (ft) Queue Length 55th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Maximum Green (s) 31.0 Yellow Time (s) 3.5 All-Red Time (s) 1.5 Lost Time Adjust (s) 1.5 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Spillback Cap Reductn Reduced v/c Ratio				
Yellow Time (s) 3.5 All-Red Time (s) 1.5 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 55th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Reduced v/c Ratio				
All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) Minimum Gap (s) Jime Before Reduce (s) Jime Before Reduce (s) Jime To Reduce (s) Recall Mode Ped Walk Time (s) Pedestrian Calls (#/hr) Act Effct Green (s) Actuated g/C Ratio V/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Reduced v/c Ratio				
Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) Minimum Gap (s) Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio V/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) Minimum Gap (s) J. 0.0 Minimum Gap (s) J. 0.0 Time Before Reduce (s) J. 0.0 Recall Mode Ped Walk Time (s) Recall Mode Ped Walk Time (s) Resh Dont Walk (s) Pedestrian Calls (#/hr) Act Leftct Green (s) Actuated g/C Ratio V/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Reduced v/c Ratio				
Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Dolay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effet Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Reduced v/c Ratio		3.0		
Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Tum Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Reduced v/c Ratio				
Flash Dont Walk (s) Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Pedestrian Calls (#/hr) Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio		* *		
Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Reduced v/c Ratio		2		
v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Storage Cap Reductn Reduced v/c Ratio				
Reduced v/c Ratio				
Intersection Summary				
	Intersection Summary			

Synchro 10 Report Page 10 18002018A - N.T.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 15: Central Westchester Expressway & NYS Route 22 & Reservoir Road & Church Street


18002018A - N.T. Page 11

	ሽ	†	ţ	> J	•	>
Lane Group	NBL	NBT	SBT	SBR	SEL	SER
Lane Configurations	ኝ	^	^	7	ች	7
Traffic Volume (vph)	709	721	656	603	281	244
Future Volume (vph)	709	721	656	603	281	244
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1900	1900	1900	1900	1900	1900
	10	0%	0%	10	0%	10
Grade (%)	050	0%	0%	F00		^
Storage Length (ft)	250			500	250	0
Storage Lanes	1			1	1	1
Taper Length (ft)	86				86	
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00
Ped Bike Factor						
Frt				0.850		0.850
Flt Protected	0.950				0.950	
Satd. Flow (prot)	1685	3336	3336	1507	1685	1507
Flt Permitted	0.950				0.950	
Satd. Flow (perm)	1685	3336	3336	1507	1685	1507
Right Turn on Red	1000	0000	0000	Yes	1000	Yes
Satd. Flow (RTOR)				641		260
		C C	EE	041	20	200
Link Speed (mph)		55 767	55		30	
Link Distance (ft)		767	1064		872	
Travel Time (s)		9.5	13.2		19.8	
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	1%	1%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)		0%	0%		0%	
Adj. Flow (vph)	754	767	698	641	299	260
Shared Lane Traffic (%)	7 07	101	000	071	200	200
	754	767	698	641	299	260
Lane Group Flow (vph)						
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width(ft)		10	15		10	
Link Offset(ft)		0	0		0	
Crosswalk Width(ft)		16	16		16	
Two way Left Turn Lane						
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (mph)	15			9	15	9
Number of Detectors	1	2	2	1	2	0
Detector Template	•	_	_		_	
Leading Detector (ft)	35	104	104	0	104	0
Trailing Detector (ft)	-5	0	0	0	0	0
Turn Type	Prot	NA	NA	Free	Prot	Free
Protected Phases	2	5	1	_	3	_
Permitted Phases				Free		Free
Detector Phase	2	5	1		3	
Switch Phase						

Volume exceeds capacity, queue is theoretically infinite.

	ሻ	†	Ţ	≽ J	•	\		
Lane Group	NBL	NBT	SBT	SBR	SEL	SER		
Minimum Initial (s)	12.0	12.0	12.0		10.0			
Minimum Split (s)	36.0	36.0	36.0		26.0			
Total Split (s)	48.0	84.0	36.0		39.0			
Total Split (%)	39.0%	68.3%	29.3%		31.7%			
Maximum Green (s)	41.0	77.0	29.0		33.0			
Yellow Time (s)	5.0	5.0	5.0		4.0			
All-Red Time (s)	2.0	2.0	2.0		2.0			
Lost Time Adjust (s)	0.0	0.0	0.0		0.0			
Total Lost Time (s)	7.0	7.0	7.0		6.0			
Lead/Lag	Lead	1.0	Lag		0.0			
Lead-Lag Optimize?	Yes		Yes					
Vehicle Extension (s)	6.0	6.0	6.0		6.0			
Minimum Gap (s)	4.0	4.0	4.0		4.0			
Time Before Reduce (s)	20.0	20.0	20.0		20.0			
Time To Reduce (s)	8.0	8.0	8.0		5.0			
Recall Mode	None	Min	Min		None			
Walk Time (s)	NOTIE	IVIIII	IVIIII		INUITE			
Flash Dont Walk (s)								
Pedestrian Calls (#/hr)								
Act Effct Green (s)	41.1	76.7	28.6	117.1	27.4	117.1		
Actuated g/C Ratio	0.35	0.65	0.24	1.00	0.23	1.00		
v/c Ratio	1.28	0.05	0.24	0.43	0.23	0.17		
	170.8	10.1	54.6	0.43	54.9	0.17		
Control Delay	0.0	0.0	0.0		0.0	0.2		
Queue Delay	170.8		54.6	0.0	54.9	0.0		
Total Delay		10.1		0.9				
LOS Approach Delay	F	B	D	Α	D	Α		
Approach Delay		89.8	28.9		29.5			
Approach LOS	705	F	C	^	C	^		
Queue Length 50th (ft)	~735	128	268	0	212	0		
Queue Length 95th (ft)	#1021	183	#388	0	314	0		
Internal Link Dist (ft)		687	984		792			
Turn Bay Length (ft)	250			500	250			
Base Capacity (vph)	591	2198	828	1507	475	1507		
Starvation Cap Reductn	0	0	0	0	0	0		
Spillback Cap Reductn	0	0	0	0	0	0		
Storage Cap Reductn	0	0	0	0	0	0		
Reduced v/c Ratio	1.28	0.35	0.84	0.43	0.63	0.17		
Intersection Summary	0.11							
Area Type:	Other							
Cycle Length: 123								
Actuated Cycle Length: 117.1								
Natural Cycle: 120								
Control Type: Actuated-Ur	ncoordinated							
Maximum v/c Ratio: 1.28								
Intersection Signal Delay:	56.1			Ir	tersection	LOS: E		
Intersection Capacity Utiliz				IC	CU Level	of Service		
Analysis Period (min) 15								
Valuma ayaaada aana								

Synchro 10 Report 18002018A - N.T. Page 2

	۶	→	•	•	←	•	•	†	<i>></i>	>	ţ	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	7		4	7	7	†	7	7	†	7
Traffic Volume (vph)	205	0	146	25	2	23	35	1004	0	1	279	10
Future Volume (vph)	205	0	146	25	2	23	35	1004	0	1	279	10
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (%)		4%			-1%			7%			-4%	
Storage Length (ft)	0		315	0		125	280		445	150		275
Storage Lanes	0		1	0		1	1		1	1		1
Taper Length (ft)	25			25			86			86		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt			0.850			0.850						0.850
Flt Protected		0.950			0.955		0.950			0.950		
Satd. Flow (prot)	0	1769	1479	0	1767	1623	1476	1815	1834	1841	1882	1647
Flt Permitted		0.737			0.650		0.494			0.081		
Satd. Flow (perm)	0	1372	1479	0	1202	1623	768	1815	1834	157	1882	1647
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			168			37						83
Link Speed (mph)		30			30			55			55	
Link Distance (ft)		601			392			1478			1166	
Travel Time (s)		13.7			8.9			18.3			14.5	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	7%	0%	50%	0%	18%	1%	0%	0%	3%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	236	0	168	29	2	26	40	1154	0	1	321	11
Shared Lane Traffic (%)											-	
Lane Group Flow (vph)	0	236	168	0	31	26	40	1154	0	1	321	11
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		.0						.,				
Headway Factor	1.03	1.03	1.03	0.99	0.99	0.99	1.05	1.05	1.05	0.97	0.97	0.97
Turning Speed (mph)	15	1.00	9	15	0.00	9	15	1.00	9	15	0.01	9
Number of Detectors	1	2	1	1	2	1	1	2	1	1	2	1
Detector Template	Left			Left		•	'		,			'
Leading Detector (ft)	20	83	35	20	83	35	35	83	35	35	83	35
Trailing Detector (ft)	0	-5	-5	0	-5	-5	-5	-5	-5	-5	-5	-5
Turn Type	Perm	NA	pm+ov	Perm	NA	pm+ov	pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases	i Giiii	8	1	i Giiii	4	5	1	6	i Giiii	5 piii+pt	2	i Giiii
Permitted Phases	8	0	8	4	4	4	6	0	6	2		2
Detector Phase	8	8	1	4	4	5	1	6	6	5	2	2
Switch Phase	0	Ø		4	4	3		O	0	5		2
SWILCH FIIASE												

	•	→	•	•	←	•	4	†	<i>></i>	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	5.0	3.0	5.0	5.0	3.0	3.0	5.0	5.0	3.0	5.0	5.0
Minimum Split (s)	nimum Split (s) 10.0		10.0	10.0	10.0	10.0	10.0	12.0	12.0	10.0	12.0	12.0
Total Split (s)	42.0	42.0	25.0	42.0	42.0	25.0	25.0	52.0	52.0	25.0	52.0	52.0
Total Split (%)	35.3%	35.3%	21.0%	35.3%	35.3%	21.0%	21.0%	43.7%	43.7%	21.0%	43.7%	43.7%
Maximum Green (s)	37.0	37.0	18.0	37.0	37.0	18.0	18.0	45.0	45.0	18.0	45.0	45.0
Yellow Time (s)	4.0	4.0	5.0	4.0	4.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	1.0	1.0	2.0	1.0	1.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		5.0	7.0		5.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
Lead/Lag			Lead			Lead	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?			Yes			Yes	Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0	2.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Minimum Gap (s)	3.0	3.0	2.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Recall Mode	None	None	None	None	None	None	None	Max	Max	None	Max	Max
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		20.7	31.4		20.7	30.4	56.2	53.7		49.9	45.3	45.3
Actuated g/C Ratio		0.23	0.35		0.23	0.33	0.62	0.59		0.55	0.50	0.50
v/c Ratio		0.75	0.27		0.11	0.05	0.08	1.08		0.01	0.34	0.01
Control Delay		48.2	4.3		27.9	4.7	8.1	72.7		9.0	16.5	0.0
Queue Delay		0.0	0.0		0.0	0.0	0.0	0.0		0.0	0.0	0.0
Total Delay		48.2	4.3		27.9	4.7	8.1	72.7		9.0	16.5	0.0
LOS		D	Α		С	Α	Α	E		Α	В	Α
Approach Delay		29.9			17.3			70.5			15.9	
Approach LOS		С			В			E			В	
Queue Length 50th (ft)		126	0		14	0	8	586		0	105	0
Queue Length 95th (ft)		202	35		36	11	24	#1180		3	197	0
Internal Link Dist (ft)		521			312			1398			1086	
Turn Bay Length (ft)			315			125	280			150		275
Base Capacity (vph)		562	801		492	803	631	1072		435	938	862
Starvation Cap Reductn		0	0		0	0	0	0		0	0	0
Spillback Cap Reductn		0	0		0	0	0	0		0	0	0
Storage Cap Reductn		0	0		0	0	0	0		0	0	0
Reduced v/c Ratio		0.42	0.21		0.06	0.03	0.06	1.08		0.00	0.34	0.01

Intersection Summary

Area Type: Other

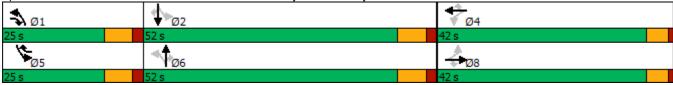
Cycle Length: 119

Actuated Cycle Length: 90.8

Natural Cycle: 110

Control Type: Actuated-Uncoordinated

Intersection Capacity Utilization 83.4%


Maximum v/c Ratio: 1.08 Intersection Signal Delay: 51.6

Intersection LOS: D ICU Level of Service E

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Splits and Phases: 4: NYS Route 120 & SwissRe Driveway/IBM Driveway

	•	•	†	~	>	ţ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		1>			4
Traffic Volume (vph)	82	310	622	41	218	410
Future Volume (vph)	82	310	622	41	218	410
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	11	11	11	11
Grade (%)	-6%	12	2%	11	11	0%
,		0	Z /0	٥	0	U /0
Storage Length (ft)	0	0		0	0	
Storage Lanes		U		U		
Taper Length (ft)	25	4.00	4.00	4.00	25	4.00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt	0.893		0.992			
Flt Protected	0.990					0.983
Satd. Flow (prot)	1709	0	1767	0	0	1754
Flt Permitted	0.990					0.505
Satd. Flow (perm)	1709	0	1767	0	0	901
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)	*265		11			
Link Speed (mph)	30		55			55
Link Distance (ft)	328		519			557
Travel Time (s)	7.5		6.4			6.9
Confl. Peds. (#/hr)	7.0		0.7			0.0
Confl. Bikes (#/hr)						
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	6%	0%	2%	3%	1%	4%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)	201					201
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	93	352	707	47	248	466
Shared Lane Traffic (%)						
Lane Group Flow (vph)	445	0	754	0	0	714
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12		0			0
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane	10		10			10
Headway Factor	0.96	0.96	1.06	1.06	1.04	1.04
Turning Speed (mph)	15	9	1.00	9	1.04	1.04
		9	0	9		0
Number of Detectors	1		2		1	2
Detector Template	٥٢		00		Left	00
Leading Detector (ft)	35		83		20	83
Trailing Detector (ft)	-5		-5		0	-5
Turn Type	Prot		NA		Perm	NA
Protected Phases	3		1			5
Permitted Phases					5	
Detector Phase	3		1		5	5
Switch Phase						

	•	•	†	~	>	ţ	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Minimum Initial (s)	5.0		5.0		5.0	5.0	
Minimum Split (s)	10.0		12.0		12.0	12.0	
Total Split (s)	15.0		65.0		65.0	65.0	
Total Split (%)	18.8%		81.3%		81.3%	81.3%	
Maximum Green (s)	10.0		58.0		58.0	58.0	
Yellow Time (s)	()				5.0	5.0	
All-Red Time (s)	1.0		2.0		2.0	2.0	
Lost Time Adjust (s)	0.0		0.0			0.0	
Total Lost Time (s)	5.0		7.0			7.0	
Lead/Lag							
Lead-Lag Optimize?							
Vehicle Extension (s)	3.0		3.0		3.0	3.0	
Minimum Gap (s)	3.0		3.0		3.0	3.0	
Time Before Reduce (s)	0.0		0.0		0.0	0.0	
Time To Reduce (s)	0.0		0.0		0.0	0.0	
Recall Mode	None		C-Max		C-Max	C-Max	
Walk Time (s)	140116		J-IVIAX		O-IVIAX	O-IVIAX	
Flash Dont Walk (s)							
Pedestrian Calls (#/hr)							
Act Effct Green (s)	10.0		58.0			58.0	
Actuated g/C Ratio	0.12		0.72			0.72	
v/c Ratio	1.00		0.72			1.09	
Control Delay	59.6		9.8		1.09 79.1		
•	0.0		0.2			0.0	
Queue Delay							
Total Delay	59.6		10.0			79.1	
LOS	E		A			E 70.4	
Approach Delay	59.6		10.0			79.1	
Approach LOS	E		A			E	
Queue Length 50th (ft)	93		140			~409	
Queue Length 95th (ft)	#271		261			#593	
Internal Link Dist (ft)	248		439			477	
Turn Bay Length (ft)			1001				
Base Capacity (vph)	445		1284			653	
Starvation Cap Reductn	0		81			0	
Spillback Cap Reductn	0		0			0	
Storage Cap Reductn	0		0			0	
Reduced v/c Ratio	1.00		0.63			1.09	
Intersection Summary							
Area Type:	Other						
Cycle Length: 80							
Actuated Cycle Length: 80							
Offset: 0 (0%), Referenced	to phase 1:N	IBT and	5:SBTL, S	Start of Y	ellow		
Natural Cycle: 90							
Control Type: Actuated-Co	ordinated						
Maximum v/c Ratio: 1.09							
Intersection Signal Delay:	17.2			le	torcoctio	n I OS: D	

Intersection LOS: D

ICU Level of Service G

Intersection Signal Delay: 47.3

Analysis Period (min) 15

Intersection Capacity Utilization 108.3%

- * User Entered Value
- Volume exceeds capacity, queue is theoretically infinite.
 - Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.
 - Queue shown is maximum after two cycles.

Splits and Phases: 8: NYS Route 120 & Gateway Lane

	۶	→	•	•	+	*_	•	†	~	/	↓	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	WBR2	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ĥ			ર્ન		7	^	7	ሻ	↑ Ъ	
Traffic Volume (vph)	315	148	95	79	142	3	115	1185	129	75	577	207
Future Volume (vph)	315	148	95	79	142	3	115	1185	129	75	577	207
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	11	12	12	12	12	11	11	12	12	12
Grade (%)		2%			2%			4%			-6%	
Storage Length (ft)	115		0	0		180			160	110	7,7	0
Storage Lanes	1		0	0		1			1	1		0
Taper Length (ft)	86		-	25		-			-	86		•
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	0.95
Ped Bike Factor					1.00			0.00			0.00	0.00
Frt		0.941			0.998		0.850		0.850		0.960	
Flt Protected		0.011			0.983		0.000		0.000	0.950	0.000	
Satd. Flow (prot)	1732	1688	0	0	1810	0	1599	3420	1515	1859	3516	0
Flt Permitted	1702	1000	U	U	0.983	U	1000	0420	1010	0.051	0010	O
Satd. Flow (perm)	1732	1688	0	0	1810	0	1599	3420	1515	100	3516	0
Right Turn on Red	1702	1000	No	U	1010	U	Yes	0420	Yes	100	0010	U
Satd. Flow (RTOR)			140				90		76			
Link Speed (mph)		35			30		30	45	70		35	
Link Distance (ft)		532			475			529			778	
Travel Time (s)		10.4			10.8			8.0			15.2	
Confl. Peds. (#/hr)		10.4			10.0	2		0.0			13.2	
Confl. Bikes (#/hr)						2						
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	5%	1%	2%	0%	3%	0%	0%	0%	1%	0%	1%	3%
Bus Blockages (#/hr)	0	0	0	0 %	0	0 /0	0 %	0 %	0	0 /8	0	0
Parking (#/hr)	U	U	U	U	U	U	U	U	U	U	U	U
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	325	153	98	81	146	3	119	1222	133	77	595	213
, , ,	323	155	90	01	140	3	119	1222	133	11	393	213
Shared Lane Traffic (%) Lane Group Flow (vph)	325	251	0	0	230	0	119	1222	133	77	808	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
	Left	Left	Right	Left	Left				Right	Left	Left	
Lane Alignment	Leit	11	Right	Leit	11	Right	Right	Left 12	Rigiil	Leit	12	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft) Crosswalk Width(ft)		16			16			16			16	
		10			10			10			10	
Two way Left Turn Lane	1.06	1.06	1.06	1 01	1.01	1.01	1.01	1.07	1.07	0.96	0.96	0.06
Headway Factor	1.06	1.00		1.01	1.01			1.07			0.96	0.96
Turning Speed (mph)	15	_	9	15	_	9	9	^	9	15	_	9
Number of Detectors	1	2		1	2		1	2	1	1	2	
Detector Template	٥٢	00		Left	00		٥٢	00	25	25	00	
Leading Detector (ft)	35	83		20	83		35	83	35	35	83	
Trailing Detector (ft)	-5	-5		0	-5		-5	-5	-5	-5	-5	
Turn Type	Split	NA		Split	NA		pm+ov	NA	pm+ov	pm+pt	NA	
Protected Phases 3 3 4 4 5 6 4			5	2								
Permitted Phases							4		6	2		
Detector Phase	3	3		4	4		5	6	4	5	2	
Switch Phase												

Synchro 10 Report Page 10 18002018A - N.T.

Lane Group	Ø7	
Lane Configurations	~1	
Traffic Volume (vph)		
Future Volume (vph)		
Ideal Flow (vphpl)		
Lane Width (ft)		
Grade (%)		
Storage Length (ft)		
Storage Lanes		
Taper Length (ft)		
Lane Util. Factor		
Ped Bike Factor		
Frt		
Flt Protected		
Satd. Flow (prot)		
Flt Permitted		
Satd. Flow (perm)		
Right Turn on Red		
Satd. Flow (RTOR)		
Link Speed (mph)		
Link Distance (ft)		
Travel Time (s)		
Confl. Peds. (#/hr)		
Confl. Bikes (#/hr)		
Peak Hour Factor		
Growth Factor		
Heavy Vehicles (%)		
Bus Blockages (#/hr)		
Parking (#/hr)		
Mid-Block Traffic (%)		
Adj. Flow (vph)		
Shared Lane Traffic (%)		
Lane Group Flow (vph)		
Enter Blocked Intersection		
Lane Alignment		
Median Width(ft)		
Link Offset(ft)		
Crosswalk Width(ft)		
Two way Left Turn Lane		
Headway Factor		
Turning Speed (mph)		
Number of Detectors		
Detector Template		
Leading Detector (ft)		
Trailing Detector (ft)		
Turn Type	_	
Protected Phases	7	
Permitted Phases		
Detector Phase		
Switch Phase		

Synchro 10 Report Page 11 18002018A - N.T.

	•	→	\rightarrow	•	←	*_	•	†	/	>	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	WBR2	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	39.0	39.0		11.0	11.0		11.0	11.0	11.0	11.0	31.0	
Total Split (s)	43.0	43.0		31.0	31.0		11.0	79.0	31.0	11.0	90.0	
Total Split (%)	21.5%	21.5%		15.5%	15.5%		5.5%	39.5%	15.5%	5.5%	45.0%	
Maximum Green (s)	37.0	37.0		25.0	25.0		5.0	73.0	25.0	5.0	84.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0			0.0		0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0			6.0		6.0	6.0	6.0	6.0	6.0	
Lead/Lag	Lead	Lead		Lag	Lag		Lead	Lag	Lag	Lead		
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes	Yes	Yes		
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Minimum Gap (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Time Before Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Recall Mode	None	None		None	None		None	Min	None	None	Min	
Walk Time (s)	8.0	8.0									8.0	
Flash Dont Walk (s)	25.0	25.0									17.0	
Pedestrian Calls (#/hr)	6	6									0	
Act Effct Green (s)	37.0	37.0			25.0		30.0	72.9	97.9	83.9	83.9	
Actuated g/C Ratio	0.19	0.19			0.13		0.15	0.36	0.49	0.42	0.42	
v/c Ratio	1.02	0.80			1.02		0.38	0.98	0.17	0.91	0.55	
Control Delay	131.3	97.4			146.6		17.3	82.9	6.5	113.4	45.4	
Queue Delay	0.0	0.0			0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay	131.3	97.4			146.6		17.3	82.9	6.5	113.4	45.4	
LOS	F	F			F		В	F	Α	F	D	
Approach Delay		116.5			102.5			75.4			51.3	
Approach LOS		F			F			Ε			D	
Queue Length 50th (ft)	~449	322			~318		25	841	19	61	422	
Queue Length 95th (ft)	#669	#463			#514		78	#995	41	#167	490	
Internal Link Dist (ft)		452			395			449			698	
Turn Bay Length (ft)	115						180		160	110		
Base Capacity (vph)	320	312			226		316	1249	780	85	1477	
Starvation Cap Reductn	0	0			0		0	0	0	0	0	
Spillback Cap Reductn	0	0			0		0	0	0	0	0	
Storage Cap Reductn	0	0			0		0	0	0	0	0	
Reduced v/c Ratio	1.02	0.80			1.02		0.38	0.98	0.17	0.91	0.55	

Intersection Summary

Area Type: Other

Cycle Length: 200

Actuated Cycle Length: 199.9

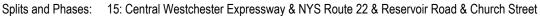
Natural Cycle: 150

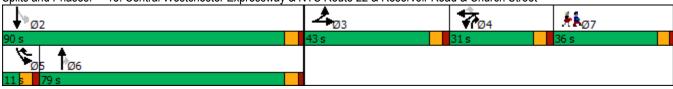
Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 1.02 Intersection Signal Delay: 79.2 Intersection Capacity Utilization 86.4% Analysis Period (min) 15

Intersection LOS: E ICU Level of Service E

~ Volume exceeds capacity, queue is theoretically infinite.


Synchro 10 Report 18002018A - N.T. Page 12

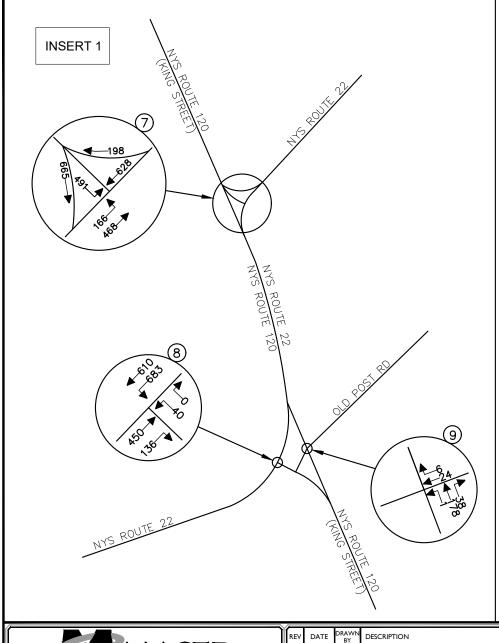

Lane Group	Ø7	
Minimum Initial (s)	8.0	
Minimum Split (s)	36.0	
Total Split (s)	36.0	
Total Split (%)	18%	
Maximum Green (s)	31.0	
Yellow Time (s)	3.5	
All-Red Time (s)	1.5	
Lost Time Adjust (s)	0	
Total Lost Time (s)		
Lead/Lag		
Lead-Lag Optimize?		
Vehicle Extension (s)	3.0	
Minimum Gap (s)	3.0	
Time Before Reduce (s)	0.0	
Time To Reduce (s)	0.0	
Recall Mode	Ped	
Walk Time (s)	8.0	
Flash Dont Walk (s)	23.0	
Pedestrian Calls (#/hr)	2	
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (ft)		
Queue Length 95th (ft)		
Internal Link Dist (ft)		
Turn Bay Length (ft)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductin		
Reduced v/c Ratio		
Intersection Summary		

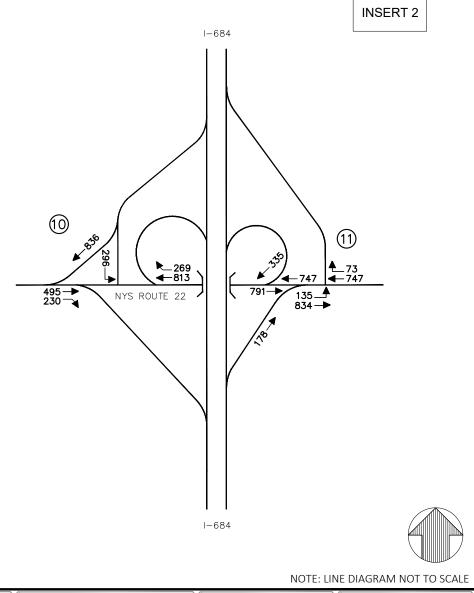
Synchro 10 Report Page 13 18002018A - N.T.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

18002018A - N.T. Page 14


AIRPORT CAMPUS (113 KING STREET)


APPENDIX E

TRAFFIC COUNT DATA

		County	End Mile	Section				2018	Estimate			<<<	Previous	Counts	>>>		
Station		Order	Point	Length	Road Name	Beginning Description	End Description	AADT	% Trucks	YEAR	AADT	YEAR	AADT	YEAR	AADT	YEAR	AADT
87_0428	16	01	0346	0116		WESTCHESTER AVE	RT 907W OVER HUTCHINSON RIVE	2998	3.7	2014	3071	2011	3848	2008	5721	2005	5998
87_0429	16	01	0449	0103		RT 907W OVER HUTCHINSON RIVE	CR 18 ANDERSON HILL RD	7227	3.1	2014	7403	2011	9942	2008	8773	2005	10008
87_0430	16	01	0659	0210		CR 18 ANDERSON HILL RD	LAKE ST	3681	3.7	2016	3725	2007	4547	2004	4378	2001	7135
87_0086	16	01	0759	0100		LAKE ST	ACC RT 684I	6554	3.7	2017	6593	2008	7772	2002	7576		
87_0431	16	01	0797	0038		ACC RT 684I	RT 120A	10670	3.7	2016	10799	2013	1122 <mark>0</mark>	2005	10386		
87_0155	16	01	0957	0160		RT 120A	START 22/120 OLAP	8003	3.1	2017	8051	2013	8627	2009	7171	2006	8169
87_0154	14	01	0982	0025		START 22/120 OLAP	END 22/120 OLAP	15473	4.6	2008	15995	2002	16339				
87_0432	16	01	1398	0416		END 22/120 OLAP	START 117/120 OLAP	9324	3.7	2017	9380	2011	4138	2008	8494	2005	13442
87_0146	14	01	1404	0006		START 117/120 OLAP	END 117/120 OLAP	13994	2.8	2018	13994	2014	9878	2011	11531	2007	10385
87_0433	16	01	1471	0067		END 117/120 OLAP	RT 987D UNDER SAW MILL RIVER	8844	3.5	2014	9060	2011	8698	2006	14164	2003	13583
87_0434	16	01	1663	0192		RT 987D UNDER SAW MILL RIVER	CR 21 SEVEN BRIDGE RD	5983	3.7	2015	6092	2013	7154	2009	7784	2006	6968
87_0435	16	01	1728	0065		CR 21 SEVEN BRIDGE RD	END 120/133 OLAP	5577	3.9	2016	5644	2013	6081	2009	6214	2006	7134
87_0092	16	01	1789	0061		END 120/133 OLAP	END 120/133 OLAP	9901	4.3	2014	10143	2011	9239	2008	11292	2005	12775
87_0094	16	01	1807	0018	MILLWOOD RD NY	END 120/133 OLAP	RT 100 END RT 120	1850	6.6	2017	1861	2011	2360	2008	2322	2003	2742
Rou	ıte M	NY120	Cou	inty 119	Westchester	Region 08											
1100		41120		mily All	Westerrester	vegion no											
	F	A															
87_0427	1 6	A 01	0012	0012		NY 120	END 120/120A OLAP	19463	3.7	2014	19938	2011	13441				
87_0427 87_0696	_	-	0012 0045	0012 0033		NY 120 END 120/120A OLAP	END 120/120A OLAP CR 64B LINCOLN AVE	19463 19627	3.7 3.4	2014 2017	19938 19745	2011 2011	13441 15174	2006	15329	2005	14522
	16	01			WESTCHESTER AVE									2006	15329	2005	14522
87_0696	16 16	01 01	0045	0033	WESTCHESTER AVE	END 120/120A OLAP	CR 64B LINCOLN AVE	19627	3.4	2017 2015	19745	2011	15174	2006	15329 8572	2005	14522 12512
87_0696 87_0687	16 16 16	01 01 01	0045 0205	0033 0160		END 120/120A OLAP CR 64B LINCOLN AVE	CR 64B LINCOLN AVE KING ST PORT CHESTER	19627 18013	3.4 4.3	2017 2015 2014	197 45 18341	2011 2011	15174 18450				E
87_0696 87_0687 87_0697	16 16 16 16	01 01 01 01	0045 0205 0282	0033 0160 0077	KING ST	END 120/120A OLAP CR 64B LINCOLN AVE KING ST PORT CHESTER	CR 64B LINCOLN AVE KING ST PORT CHESTER PUTNAM AVE	19627 18013 6636	3.4 4.3 3.7	2017 2015 2014	19745 18341 6798	2011 2011 2011	15174 18450 7255				ы
87_0696 87_0687 87_0697 87_0698	16 16 16 16 16	01 01 01 01 01	0045 0205 0282 0448	0033 0160 0077 0166	KING ST KING ST	END 120/120A OLAP CR 64B LINCOLN AVE KING ST PORT CHESTER PUTNAM AVE	CR 64B LINCOLN AVE KING ST PORT CHESTER PUTNAM AVE RT 907W HUTCHINSON RIVER PKW	19627 18013 6636 12910	3.4 4.3 3.7 3.7	2017 2015 2014 2017	19745 18341 6798 12987	2011 2011 2011 2009	15174 18450 7255 12255	2008	8572	2005	12512
87_0696 87_0687 87_0697 87_0698 87_0073	16 16 16 16 16 16	01 01 01 01 01	0045 0205 0282 0448 0496	0033 0160 0077 0166 0048	KING ST KING ST KING ST	END 120/120A OLAP CR 64B LINCOLN AVE KING ST PORT CHESTER PUTNAM AVE RT 907W HUTCHINSON RIVER PKW	CR 64B LINCOLN AVE KING ST PORT CHESTER PUTNAM AVE RT 907W HUTCHINSON RIVER PKW NY STATE LINE/CONN STATE LIN	19627 18013 6636 12910 13214	3.4 4.3 3.7 3.7 2.6	2017 2015 2014 2017 2016	19745 18341 6798 12987 13373	2011 2011 2011 2009 2009	15174 18450 7255 12255 16932	2008	8572 15666	2005	12512 17364
87_0696 87_0687 87_0697 87_0698 87_0073 87_0074 87_0699	16 16 16 16 16 16 16	01 01 01 01 01 01 01	0045 0205 0282 0448 0496 0641 0863	0033 0160 0077 0166 0048 0071 0002	KING ST KING ST KING ST KING ST KING ST	END 120/120A OLAP CR 64B LINCOLN AVE KING ST PORT CHESTER PUTNAM AVE RT 907W HUTCHINSON RIVER PKW CONNECTICUT STATE LINE CONNECTICUT STATE LINE	CR 64B LINCOLN AVE KING ST PORT CHESTER PUTNAM AVE RT 907W HUTCHINSON RIVER PKW NY STATE LINE/CONN STATE LIN NY STATE LINE/CONN STATE LIN	19627 18013 6636 12910 13214 12244	3.4 4.3 3.7 3.7 2.6 3.7	2017 2015 2014 2017 2016 2015	19745 18341 6798 12987 13373 12467	2011 2011 2011 2009 2009 2009	15174 18450 7255 12255 16932 12158	2008 2006 2006	8572 15666 10059	2005 2005 2005	12512 17364 16537
87_0696 87_0687 87_0697 87_0698 87_0073 87_0074 87_0699	16 16 16 16 16 16 16 16 16	01 01 01 01 01 01 01 01	0045 0205 0282 0448 0496 0641 0863	0033 0160 0077 0166 0048 0071 0002	KING ST KING ST KING ST KING ST	END 120/120A OLAP CR 64B LINCOLN AVE KING ST PORT CHESTER PUTNAM AVE RT 907W HUTCHINSON RIVER PKW CONNECTICUT STATE LINE CONNECTICUT STATE LINE REgion 08	CR 64B LINCOLN AVE KING ST PORT CHESTER PUTNAM AVE RT 907W HUTCHINSON RIVER PKW NY STATE LINE/CONN STATE LIN NY STATE LINE/CONN STATE LIN RT 120 END RT 120A	19627 18013 6636 12910 13214 12244 4186	3.4 4.3 3.7 3.7 2.6 3.7 3.7	2017 2015 2014 2017 2016 2015 2017	19745 18341 6798 12987 13373 12467 4211	2011 2011 2011 2009 2009 2009 2011	15174 18450 7255 12255 16932 12158 4159	2008 2006 2006 2008	8572 15666 10059 3827	2005 2005 2005 2005 2005	12512 17364 16537 3865
87_0696 87_0687 87_0697 87_0073 87_0074 87_0699	16 16 16 16 16 16 16 16 16 16	01 01 01 01 01 01 01 01 01	0045 0205 0282 0448 0496 0641 0863	0033 0160 0077 0166 0048 0071 0002	KING ST KING ST KING ST KING ST KING ST	END 120/120A OLAP CR 64B LINCOLN AVE KING ST PORT CHESTER PUTNAM AVE RT 907W HUTCHINSON RIVER PKW CONNECTICUT STATE LINE CONNECTICUT STATE LINE Region 08 RT 22 N OF BEDFORD VIL	CR 64B LINCOLN AVE KING ST PORT CHESTER PUTNAM AVE RT 907W HUTCHINSON RIVER PKW NY STATE LINE/CONN STATE LIN NY STATE LINE/CONN STATE LIN RT 120 END RT 120A	19627 18013 6636 12910 13214 12244 4186	3.4 4.3 3.7 3.7 2.6 3.7 3.7	2017 2015 2014 2017 2016 2015 2017	19745 18341 6798 12987 13373 12467 4211	2011 2011 2011 2009 2009 2009 2011	15174 18450 7255 12255 16932 12158 4159	2008 2006 2006 2008	8572 15666 10059 3827	2005 2005 2005 2005 2005	12512 17364 16537 3865
87_0696 87_0687 87_0698 87_0698 87_0074 87_0699 Rot 87_0436 87_0438	16 16 16 16 16 16 16 16 16 16 16 16 16 1	01 01 01 01 01 01 01 01 01 01	0045 0205 0282 0448 0496 0641 0863 Cou	0033 0160 0077 0166 0048 0071 0002 0174 0295	KING ST KING ST KING ST KING ST KING ST	END 120/120A OLAP CR 64B LINCOLN AVE KING ST PORT CHESTER PUTNAM AVE RT 907W HUTCHINSON RIVER PKW CONNECTICUT STATE LINE CONNECTICUT STATE LINE Region 08 RT 22 N OF BEDFORD VIL RT 137	CR 64B LINCOLN AVE KING ST PORT CHESTER PUTNAM AVE RT 907W HUTCHINSON RIVER PKW NY STATE LINE/CONN STATE LIN NY STATE LINE/CONN STATE LIN RT 120 END RT 120A RT 137 START 35/121 OLAP	19627 18013 6636 12910 13214 12244 4186	3.4 4.3 3.7 3.7 2.6 3.7 3.7 5.7	2017 2015 2014 2017 2016 2015 2017	19745 18341 6798 12987 13373 12467 4211	2011 2011 2011 2009 2009 2009 2011	15174 18450 7255 12255 16932 12158 4159	2008 2006 2006 2008 2005 2005	8572 15666 10059 3827 4648 3025	2005 2005 2005 2005 2005	12512 17364 16537 3865
87_0696 87_0697 87_0698 87_0073 87_0074 87_0699 Rou 87_0436 87_0438 87_0266	16 16 16 16 16 16 16 16 16 16 16 16 16 1	01 01 01 01 01 01 01 01 01	0045 0205 0282 0448 0496 0641 0863 Cou 0174 0469	0033 0160 0077 0166 0048 0071 0002 unity 119 0174 0295 0065	KING ST KING ST KING ST KING ST KING ST	END 120/120A OLAP CR 64B LINCOLN AVE KING ST PORT CHESTER PUTNAM AVE RT 907W HUTCHINSON RIVER PKW CONNECTICUT STATE LINE CONNECTICUT STATE LINE Region 08 RT 22 N OF BEDFORD VIL RT 137 START 35/121 OLAP	CR 64B LINCOLN AVE KING ST PORT CHESTER PUTNAM AVE RT 907W HUTCHINSON RIVER PKW NY STATE LINE/CONN STATE LIN NY STATE LINE/CONN STATE LIN RT 120 END RT 120A RT 137 START 35/121 OLAP END 35/121 OLAP	19627 18013 6636 12910 13214 12244 4186 4834 2540 14960	3.4 4.3 3.7 3.7 2.6 3.7 3.7 5.7 5.8	2017 2015 2014 2017 2016 2015 2017 2017 2014 2018	19745 18341 6798 12987 13373 12467 4211 4863 2602 14960	2011 2011 2011 2009 2009 2009 2011 2008 2008 2014	15174 18450 7255 12255 16932 12158 4159 4378 2672 15994	2008 2006 2006 2008 2005 2005 2011	8572 15666 10059 3827 4648 3025 15783	2005 2005 2005 2005 2002 2002 2002	12512 17364 16537 3865 3972 2764 16216
87_0696 87_0687 87_0697 87_0073 87_0074 87_0699 Rou 87_0436 87_0438 87_0266 87_0446	16 16 16 16 16 16 16 16 16 16 16 16 16 1	01 01 01 01 01 01 01 01 01 01 01	0045 0205 0282 0448 0496 0641 0863 Cou 0174 0469 0534	0033 0160 0077 0166 0048 0071 0002 0174 0295 0065 0251	KING ST KING ST KING ST KING ST KING ST	END 120/120A OLAP CR 64B LINCOLN AVE KING ST PORT CHESTER PUTNAM AVE RT 907W HUTCHINSON RIVER PKW CONNECTICUT STATE LINE CONNECTICUT STATE LINE Region 08 RT 22 N OF BEDFORD VIL RT 137 START 35/121 OLAP END 35/121 OLAP	CR 64B LINCOLN AVE KING ST PORT CHESTER PUTNAM AVE RT 907W HUTCHINSON RIVER PKW NY STATE LINE/CONN STATE LIN NY STATE LINE/CONN STATE LIN RT 120 END RT 120A RT 137 START 35/121 OLAP END 35/121 OLAP RT 138 - WACCABUC RD	19627 18013 6636 12910 13214 12244 4186 4834 2540 14960 3665	3.4 4.3 3.7 3.7 2.6 3.7 3.7 5.7 5.8 3.6 7.2	2017 2015 2014 2017 2016 2015 2017 2017 2014 2018 2015	19745 18341 6798 12987 13373 12467 4211 4863 2602 14960 3732	2011 2011 2011 2009 2009 2011 2008 2008 2014 2008	15174 18450 7255 12255 16932 12158 4159 4378 2672 15994 5348	2008 2006 2006 2008 2005 2005 2011 2005	8572 15666 10059 3827 4648 3025 15783 5991	2005 2005 2005 2005 2002 2002 2002 2008 2002	12512 17364 16537 3865 3972 2764 16216 5829
87_0696 87_0697 87_0698 87_0073 87_0074 87_0699 Rou 87_0436 87_0438 87_0266	16 16 16 16 16 16 16 16 16 16 16 16 16 1	01 01 01 01 01 01 01 01 01	0045 0205 0282 0448 0496 0641 0863 Cou 0174 0469	0033 0160 0077 0166 0048 0071 0002 unity 119 0174 0295 0065	KING ST KING ST KING ST KING ST KING ST	END 120/120A OLAP CR 64B LINCOLN AVE KING ST PORT CHESTER PUTNAM AVE RT 907W HUTCHINSON RIVER PKW CONNECTICUT STATE LINE CONNECTICUT STATE LINE Region 08 RT 22 N OF BEDFORD VIL RT 137 START 35/121 OLAP	CR 64B LINCOLN AVE KING ST PORT CHESTER PUTNAM AVE RT 907W HUTCHINSON RIVER PKW NY STATE LINE/CONN STATE LIN NY STATE LINE/CONN STATE LIN RT 120 END RT 120A RT 137 START 35/121 OLAP END 35/121 OLAP	19627 18013 6636 12910 13214 12244 4186 4834 2540 14960	3.4 4.3 3.7 3.7 2.6 3.7 3.7 5.7 5.8 3.6 7.2 5.7	2017 2015 2014 2017 2016 2015 2017 2017 2014 2018	19745 18341 6798 12987 13373 12467 4211 4863 2602 14960	2011 2011 2011 2009 2009 2009 2011 2008 2008 2014	15174 18450 7255 12255 16932 12158 4159 4378 2672 15994	2008 2006 2006 2008 2005 2005 2011	8572 15666 10059 3827 4648 3025 15783	2005 2005 2005 2005 2002 2002 2002	12512 17364 16537 3865 3972 2764 16216

Page 209 of 358

Customer Loyalty through Client Satisfaction www.maserconsulting.com

Engineers # Planners # Surveyors Landscape Architects # Environmental Scientists

State of N.Y. Cert. of Authorization: 0008671/0008821

ocations:

Lehigh Valley, PA
Exton, PA
Philadelphia, PA
Pittsburgh, PA
Tampa, FL
Orlando, FL
Miami, FL
Starling, VA

Office Lo
Red Bank, NJ
Clinton, NJ
Hamilton, NJ
Hamilton, NJ
Honorwale, NJ
Mc Arlington, NJ
Mt Laurel, NJ
Albany, NY
Newburgh, NY
Weschester, NY
Columbia, MD Albuquerque, NM
Charlotte, NC

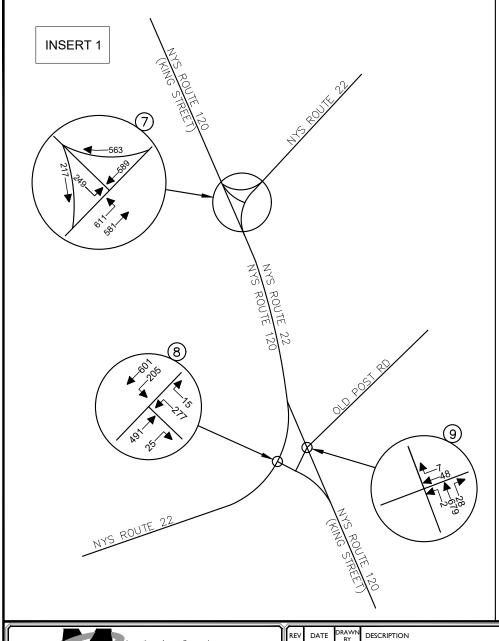
Ì	REV	DATE	DRAWN BY	DESCRIPTION
ı				
ı				
l				
ı				
l				
	lacksquare			

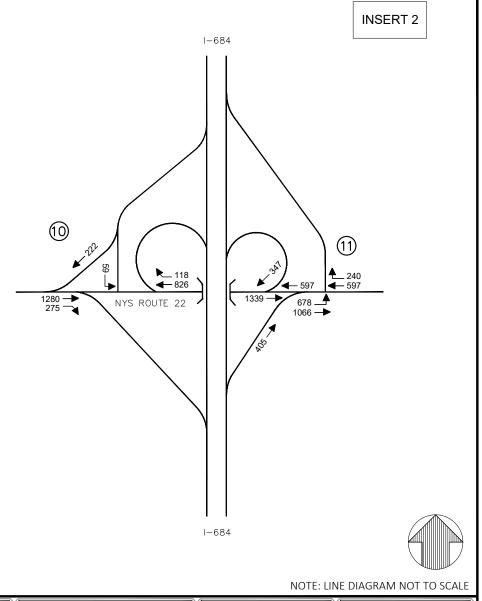
EAGLE RIDGE

NYS ROUTE 22 & NORTH CASTLE DRIVE TOWN OF NORTH CASTLE WESTCHESTER COUNTY **NEW YORK**

PROTECT YOURSELF ALL STATES REQUIRE NOTIFICATION OF EXCAVATORS, DESIGNERS, OR ANY PERSON PREPARING TO DISTURB THE EARTH'S SURFACE ANYWHERE IN ANY STATE

Know what's below. Call before you dig. FOR STATE SPECIFIC DIRECT PHONE NUMBERS VISIT: WWW.CALL811.COM


WESTCHESTER OFFICE 400 Columbus Avenue Suite 180E


Valhalla, NY 10595 Phone: 914.347.7500 Fax: 914.347.7266 TRAFFIC IMPACT STUDY

N.T.S. 2/18/2019 N.S.T. 17005657B 190218_NT_FIGURES

YEAR 2018 EXISTING TRAFFIC VOLUMES WEEKDAY PEAK AM HOUR

FIGURE NO. 2A

Customer Loyalty through Client Satisfaction www.maserconsulting.com

Engineers # Planners # Surveyors Landscape Architects # Environmental Scientists

State of N.Y. Cert. of Authorization: 0008671/0008821

Office Lo
Red Bank, NJ
Clinton, NJ
Hamilton, NJ
Hamilton, NJ
Honorwale, NJ
Mc Arlington, NJ
Mt Laurel, NJ
Albany, NY
Newburgh, NY
Weschester, NY
Columbia, MD ocations:

Lehigh Valley, PA
Exton, PA
Philadelphia, PA
Pittsburgh, PA
Tampa, FL
Orlando, FL
Miami, FL
Stociling VA

Albuquerque, NM
Charlotte, NC

Ì	REV	DATE	DRAWN BY	DESCRIPTION
ı				
ı				
l				
ı				
	$oxed{\cdot}$			

EAGLE RIDGE

NYS ROUTE 22 & NORTH CASTLE DRIVE TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK

PROTECT YOURSELF ALL STATES REQUIRE NOTIFICATION OF EXCAVATORS, DESIGNERS, OR ANY PERSON PREPARING TO DISTURB THE EARTH'S SURFACE ANYWHERE IN ANY STATE

Know what's below. Call before you dig.

FOR STATE SPECIFIC DIRECT PHONE NUMBERS VISIT: WWW.CALL811.COM

WESTCHESTER OFFICE 400 Columbus Avenue Suite 180E

Valhalla, NY 10595 Phone: 914.347.7500 Fax: 914.347.7266

YEAR 2018 EXISTING TRAFFIC VOLUMES WEEKDAY PEAK PM HOUR

TRAFFIC IMPACT STUDY

N.S.T.

190218_NT_FIGURES

2/18/2019

N.T.S.

17005657B

FIGURE NO. 3A

Maser Consulting, P.A. 400 Columbus Avenue - Suite 180E

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 1-ARMONK-BEDFORD_RD_AT_KING_ST_639108_04-02-2019

Site Code:

Start Date : 4/2/2019

Page No : 1
Groups Printed- Lights - Buses - Trucks - Pedestrians

			KING ST	r —			ARMONK-BEDFORD RD KING ST											1			
			rom Nort			i	F	rom Eas	st			F	rom Sout	th			F	rom Wes	st	!	ı !
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
06:30 AM	0	59	18	0	77	28	0	112	0	140	42	8	0	0	50	0	0	0	0	0	267
06:45 AM	0	57	39	0	96	29	0	101	0	130	44	23	0	0	67	0	0	0	0	0	293
Total	0	116	57	0	173	57	0	213	0	270	86	31	0	0	117	0	0	0	0	0	560
1 .																					Ţ
07:00 AM	0	68	77	0	145	34	0	129	0	163	42	22	0	0	64	0	0	0	0	0	372
07:15 AM	0	116	107	0	223	39	0	158	0	197	67	32	0	0	99	0	0	0	0	0	519
07:30 AM	0	130	83	0	213	43	0	217	0	260	72	38	0	0	110	0	0	0	0	0	583
07:45 AM	0	156	114	0	270	59	0	185	0	244	84	47	0	0	131	0	0	0	0	0	645
Total	0	470	381	0	851	175	0	689	0	864	265	139	0	0	404	0	0	0	0	0	2119
i .																					
08:00 AM	0	140	131	0	271	35	0	151	0	186	103	44	0	0	147	0	0	0	0	0	604
08:15 AM	0	169	116	0	285	62	0	145	0	207	124	64	0	0	188	0	0	0	0	0	680
08:30 AM	0	173	115	0	288	38	0	156	0	194	83	47	0	0	130	. 0	0	0	0	0	612
08:45 AM	0	164	125	0	289	54	0	161	0	215	136	37	0	0	173	0	0	0	0	0	677
Total	0	646	487	0	1133	189	0	613	0	802	446	192	0	0	638	0	0	0	0	0	2573
																					ļ
09:00 AM	0	113	98	0	211	57	0	160	0	217	93	36	0	0	129	0	0	0	0	0	557
09:15 AM	0	93	80	0	173	52	0	136	0	188	79	37	0	0	116	. 0	0	0	0	0	477
Grand Total	0	1438	1103	0	2541	530	0	1811	0	2341	969	435	0	0	1404	. 0	0	0	0	0	6286
Apprch %	0	56.6	43.4	0		22.6	0	77.4	0		69	31	0	0		0	0	0	0	1	1
Total %	0	22.9	17.5	0	40.4	8.4	0	28.8	0	37.2	15.4	6.9	0	0	22.3	0	0	0	0	0	ı <u> </u>
Lights	0	1407	1045	0	2452	479	0	1768	0	2247	922	388	0	0	1310	0	0	0	0	0	6009
% Lights	0	97.8	94.7	0	96.5	90.4	0	97.6	0	96	95.1	89.2	0	0	93.3	0	0	0	0	0	95.6
Buses	0	18	24	0	42	31	0	20	0	51	25	11	0	0	36	0	0	0	0	0	129
% Buses	0	1.3	2.2	0	1.7	5.8	0	1.1	0	2.2	2.6	2.5	0	0	2.6	0	0	0	0	0	2.1
Trucks	0	13	34	0	47	20	0	23	0	43	22	36	0	0	58	0	0	0	0	0	148
% Trucks	0	0.9	3.1	0	1.8	3.8	0	1.3	0	1.8	2.3	8.3	0	0	4.1	0	0	0	0	0	2.4
Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Maser Consulting, P.A. 400 Columbus Avenue - Suite 180E Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 1-ARMONK-BEDFORD_RD_AT_KING_ST_639108_04-02-2019

Site Code:

Start Date : 4/2/2019

Page No : 2

	1		KING ST			ARMONK-BEDFORD RD							KING ST								
		F	rom North	<u>n</u>		From East					From South					From West					
Start Time	Right	Thru	Left	Peds A	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysis					1 of 1																
Peak Hour for Entir	re Intersec	tion Begi	ns at 08:0	JO AM																	
08:00 AM	0	140	131	0	271	35	0	151	0	186	103	44	0	0	147	. 0	0	0	0	0	604
08:15 AM	0	169	116	0	285	62	0	145	0	207	124	64	0	0	188	. 0	0	0	0	0	680
08:30 AM	0	173	115	0	288	38	0	156	0	194	83	47	0	0	130	0	0	0	0	0	612
08:45 AM	0	164	125	0	289	54	0	161	0	215	136	37	0	0	173	0_	0	0	0	o	677
Total Volume	0	646	487	0	1133	189	0	613	0	802	446	192	0	0	638	0	0	0	0	0	2573
% App. Total	0_	57	43	0		23.6	0	76.4	0		69.9	30.1	0	0		0_	0	0	0		
PHF	.000	.934	.929	.000	.980	.762	.000	.952	.000	.933	.820	.750	.000	.000	.848	.000	.000	.000	.000	.000	.946
Lights	0	636	457	0	1093	174	0	591	0	765	423	165	0	0	588	. 0	0	0	0	0	2446
% Lights	0	98.5	93.8	0	96.5	92.1	0	96.4	0	95.4	94.8	85.9	0	0	92.2	. 0	0	0	0	0	95.1
Buses	0	5	11	0	16	10	0	12	0	22	13	9	0	0	22	, 0	0	0	0	0	60
% Buses	0	8.0	2.3	0	1.4	5.3	0	2.0	0	2.7	2.9	4.7	0	0	3.4	. 0	0	0	0	0	2.3
Trucks	0	5	19	0	24	5	0	10	0	15	10	18	0	0	28	0	0	0	0	0	67
% Trucks	0	8.0	3.9	0	2.1	2.6	0	1.6	0	1.9	2.2	9.4	0	0	4.4	. 0	0	0	0	0	2.6
Pedestrians	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0
% Pedestrians	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 1-ARMONK-BEDFORD_RD_AT_KING_ST_639108_04-02-2019

Site Code:

Start Date : 4/2/2019

		1	KING ST	Ī		(ARMON	NK-BEDFO	ORD RE	آ آر	·		KING ST	Ī							1
		F'	rom Nort	th				From Eas	<u>st</u>			F	rom Sou	<u>ıth</u>			F	rom Wes	st	'	
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
11:30 AM	0	36	39	0	75	44	0	56	0	100	68	25	0	0	93	0	0	0	0	0	268
11:45 AM	0	35	48	0	83	56	0_	52	0	108	67	42	0	0	109	00	0	0	0	0	300
Total	0	71	87	0	158	100	0	108	0	208	135	67	0	0	202	0	0	0	0	0	568
i																					
12:00 PM	0	39	41	0	80	56	0	68	0	124	70	28	0	0	98	0	0	0	0	0	302
12:15 PM	0	43	48	0	91	46	0	67	0	113	74	44	0	0	118	0	0	0	0	0	322
12:30 PM	0	45	36	0	81	53	0	80	0	133	65	28	0	0	93	0	0	0	0	0	307
12:45 PM	0	41	37	0	78	54	0	56	0	110	83	38	0	0	121	0	0	0	0	0	309
Total	0	168	162	0	330	209	0	271	0	480	292	138	0	0	430	0	0	0	0	0	1240
01:00 PM	0	43	42	0	85	37	0	55	0	92	69	37	0	0	106	0	0	0	0	0 1	283
01:15 PM	0	46	58	0	104	46	0	66	0	112	68	48	0	0	116	. 0	0	0	0	0 1	332
Grand Total	0	328	349	0	677	392	0	500	0	892	564	290	0	0	854	. 0	0	0	0	0 1	2423
Apprch %	0	48.4	51.6	0		43.9	0	56.1	0		66	34	0	0	J	. 0	0	0	0	ı	, ,
Total %	0	13.5	14.4	0	27.9	16.2	0	20.6	0	36.8	23.3	12	0	0	35.2	0_	0	0	0	0	ı <u> </u>
Lights	0	313	320	0	633	369	0	476	0	845	538	278	0	0	816	0	0	0	0	0	2294
% Lights	0	95.4	91.7	0	93.5	94.1	0_	95.2	0	94.7	95.4	95.9	0	0	95.6	0_	0	0	0	0	94.7
Buses	0	0	1	0	1	0	0	2	0	2	5	1	0	0	6	0	0	0	0	0	9
% Buses	0	0	0.3	0	0.1	0	0	0.4	0	0.2	0.9	0.3	0	0	0.7	. 0	0	0	0	0	0.4
Trucks	0	15	28	0	43	23	0	22	0	45	21	11	0	0	32	0	0	0	0	0	120
% Trucks	0	4.6	8	0	6.4	5.9	0	4.4	0	5	3.7	3.8	0	0	3.7	0_	0	0	0	0	5
Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Pedestrians	0	0	0	0	0	. 0	0	0	0	0	. 0	0	0	0	0	. 0	0	0	0	0	0

Customer Loyalty Through Client Satisfaction

File Name: 1-ARMONK-BEDFORD_RD_AT_KING_ST_639108_04-02-2019

Site Code:

Start Date : 4/2/2019

		<u>J</u>	KING ST				ARMON	K-BEDFC	JRD RΓ	ر			KING ST								1
		F,	rom North	<u>a</u>			F	rom East	<u>t</u>			F	rom Sout	.th			F	rom Wes	st	!	'
Start Time	Right	Thru	Left	Peds A	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysis					1 of 1			_	_	_											
Peak Hour for Entir	re Intersec	tion Begi	ns at 12:0)0 PM																	
12:00 PM	0	39	41	0	80	56	0	68	0	124	70	28	0	0	98	0	0	0	0	0	302
12:15 PM	0	43	48	0	91	46	0	67	0	113	74	44	0	0	118	, 0	0	0	0	0	322
12:30 PM	, 0	45	36	0	81	53	0	80	0	133	65	28	0	0	93	. 0	0	0	0	0	307
12:45 PM	0	41	37	0	78	54	0	56	0	110	83	38	0	0	121	0	0_	0_	0	<u>_</u> 0	309_
Total Volume	0	168	162	0	330	209	0	271	0	480	292	138	0	0	430	. 0	0	0	0	0	1240
% App. Total	0	50.9	49.1	0		43.5	0	56.5	0		67.9	32.1	0	0		. 0	0	0	0		
PHF	.000	.933	.844	.000	.907	.933	.000	.847	.000	.902	.880	.784	.000	.000	.888	.000	.000	.000	.000	.000	.963
Lights	0	161	149	0	310	199	0	260	0	459	277	132	0	0	409	. 0	0	0	0	0	1178
% Lights	0	95.8	92.0	0	93.9	95.2	0	95.9	0	95.6	94.9	95.7	0	0	95.1	, 0	0	0	0	0	95.0
Buses	0	0	0	0	0	. 0	0	1	0	1	2	0	0	0	2	. 0	0	0	0	0	3
% Buses	0	0	0	0	0	. 0	0	0.4	0	0.2	0.7	0	0	0	0.5	. 0	0	0	0	0	0.2
Trucks	0	7	13	0	20	10	0	10	0	20	13	6	0	0	19	. 0	0	0	0	0	59
% Trucks	0	4.2	8.0	0	6.1	4.8	0	3.7	0	4.2	4.5	4.3	0	0	4.4	. 0	0	0	0	0	4.8
Pedestrians	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0
% Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	, 0

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 1-ARMONK-BEDFORD_RD_AT_KING_ST_639108_04-02-2019

Site Code:

Start Date : 4/2/2019

			KING ST					NK-BEDF		ngrits - buse:	3 - HUCKS		KING ST								1
	1		rom Nort					From Eas		´			From Sou				F	rom Wes	st	,	1
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left		App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
04:00 PM	0	49	71	0	120	103	0	80	0	183	127	74	0	0	201	0	0	0	0	0	504
04:15 PM	0	47	73	0	120	94	0	89	0	183	120	100	0	0	220	0	0	0	0	0	523
04:30 PM	0	57	68	0	125	84	0	99	0	183	115	98	0	0	213	0	0	0	0	0	521
04:45 PM	0	39	82	0	121	96	0	109	0	205	128	91	0	0	219	0	0	0_	0	<u>_</u> 0	545
Total	0	192	294	0	486	377	0	377	0	754	490	363	0	0	853	0	0	0	0	0	2093
05:00 PM	0	33	55	0	88	120	0	160	0	280	125	105	0	0	230	0	0	0	0	0	598
05:15 PM	0	47	58	0	105	104	0	95	0	199	124	135	0	0	259	0	0	0	0	0	563
05:30 PM	0	41	49	0	90	122	0	169	0	291	152	154	0	0	306	0	0	0	0	0	687
05:45 PM	0	41	71	0	112	112	0	117	0	229	156	152	0	0	308	0	0	0	0	0	649
Total	0	162	233	0	395	458	0	541	0	999	557	546	0	0	1103	0	0	0	0	0	2497
1					,					1											
06:00 PM		43	60	0	103	111	0	102	0	213	134	133	0	1	268	0	0	0	0	0	584
06:15 PM	0	39	53	0	92	89	0	79	0	168	182	118	0	0	300	0	0	0	0	0	560
Grand Total	0	436	640	0	1076	1035	0	1099	0	2134	1363	1160	0	1	2524	0	0	0	0	0	5734
Apprch %	0	40.5	59.5	0		48.5	0	51.5	0		54	46	0	0		0	0	0	0	1	í
Total %	0	7.6	11.2	0	18.8	18.1	0	19.2	0	37.2	23.8	20.2	00	0	44	0	0	0	0	0	·
Lights	0	411	627	0	1038	1018	0	1083	0	2101	1346	1147	0	0	2493	0	0	0	0	0	5632
% Lights	0	94.3	98	0	96.5	98.4	0	98.5	0	98.5	98.8	98.9	0	0	98.8	0	0	0	0	0	98.2
Buses	0	1	8	0	9	5	0	6	0	11	11	5	0	0	16	0	0	0	0	0	36
% Buses	0	0.2	1.2	0	0.8	0.5	0	0.5	0	0.5	0.8	0.4	0	0_	0.6	0	0	0_	0	0	0.6
Trucks	0	24	5	0	29	12	0	10	0	22	6	8	0	0	14	0	0	0	0	0	65
% Trucks	0	5.5	0.8	0	2.7	1.2	0	0.9	0	1	0.4	0.7	0	0	0.6	0	0	0	0	0	1.1
Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	, 1
% Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	100	0	0	0	0	0	0	, 0

Customer Loyalty Through Client Satisfaction

File Name: 1-ARMONK-BEDFORD_RD_AT_KING_ST_639108_04-02-2019

Site Code:

Start Date : 4/2/2019

			KING ST					K-BEDFO		,			KING ST								
		Fr	rom North	<u>n</u>			F	From East	<u>,t</u>			F	rom Sout	<u>.th</u>			F	From Wes			<i>'</i>
Start Time	Right	Thru	Left		App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysis					1 of 1																
Peak Hour for Entir	re Intersec	tion Begir	ns at 05:0	J0 PM																	
05:00 PM	0	33	55	0	88	120	0	160	0	280	125	105	0	0	230	0	0	0	0	0	598
05:15 PM	0	47	58	0	105	104	0	95	0	199	124	135	0	0	259	0	0	0	0	0	563
05:30 PM	0	41	49	0	90	122	0	169	0	291	152	154	0	0	306	0	0	0	0	0	687
05:45 PM	0	41	71	0	112	112	0	117	0	229	156	152	0	0	308	0	0	0	0	o	649
Total Volume	0	162	233	0	395	458	0	541	0	999	557	546	0	0	1103	0	0	0	0	0	2497
% App. Total	. 0	41	59	0		45.8	0	54.2	0		50.5	49.5	0	0		0	0	0	0		
PHF	.000	.862	.820	.000	.882	.939	.000	.800	.000	.858	.893	.886	.000	.000	.895	.000	.000	.000	.000	.000	.909
Lights	0	157	232	0	389	453	0	537	0	990	551	544	0	0	1095	0	0	0	0	0	2474
% Lights	0	96.9	99.6	0	98.5	98.9	0	99.3	0	99.1	98.9	99.6	0	0	99.3	0	0	0	0	0	99.1
Buses	0	1	1	0	2	. 2	0	2	0	4	6	0	0	0	6	0	0	0	0	0	12
% Buses	0	0.6	0.4	0	0.5	0.4	0	0.4	0	0.4	1.1	0	0	0	0.5	0	0	0	0	0	0.5
Trucks	0	4	0	0	4	, 3	0	2	0	5	0	2	0	0	2	0	0	0	0	0	11
% Trucks	0	2.5	0	0	1.0	0.7	0	0.4	0	0.5	0	0.4	0	0	0.2	0	0	0	0	0	0.4
Pedestrians	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Pedestrians	0	0	0	0	0	, 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 2-MT_KISCO_RD_AT_KING_ST_639110_04-02-2019

Site Code:

Start Date : 4/2/2019

										igilis - buse	3 - 11ucks										
	1					ı		KING ST					KING ST					KISCO I		I	
	<u> </u>		rom Nort					From Eas					rom Sout					rom Wes			· '
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
06:30 AM	0	0	0	0	0	0	125	47	0	172	0	0	2	0	2	8	38	0	0	46	220
06:45 AM	0	0	0	0	0	0	104	51	0	155	0	0	2	0	2	22	45	0	0	67	224
Total	0	0	0	0	0	0	229	98	0	327	0	0	4	0	4	30	83	0	0	113	444
										•											ŗ
07:00 AM	0	0	0	0	0	0	140	58	0	198	0	0	7	0	7	20	39	0	0	59	264
07:15 AM	0	0	0	0	0	0	168	100	0	268	0	0	8	0	8	13	67	0	0	80	356
07:30 AM	0	0	0	0	0	0	193	143	0	336	0	0	10	0	10	21	80	0	0	101	447
07:45 AM	0	0	0	0	0	0	191	132	0	323	0	0	8	0	8	26	83	0	0	109	440_
Total	0	0	0	0	0	0	692	433	0	1125	0	0	33	0	33	80	269	0	0	349	1507
i																					,
08:00 AM	0	0	0	0	0	0	154	136	0	290	0	0	14	0	14	32	97	0	0	129	433
08:15 AM	0	0	0	0	0	0	151	168	0	319	0	0	13	0	13	35	126	0	0	161	493
08:30 AM	0	0	0	0	0	0	154	174	0	328	0	0	7	0	7	43	81	0	0	124	459
08:45 AM	0	0	0	0	ō	0	141	172	0	313	0	0	9	0	9	49	125	0	0	174	496
Total	0	0	0	0	0	0	600	650	0	1250	0	0	43	0	43	159	429	0	0	588	1881
,	-	-	-	-	= 1	-			-		-	-	-	-				-	-	,	**= =
09:00 AM	0	0	0	0	0	0	124	148	0	272	0	0	10	0	10	44	94	0	0	138	420
09:15 AM	0	0	Ō	0	o l	0	129	114	0	243	Ō	0	3	0	3	34	84	Ö	0	118	364
Grand Total	0	0	0	0	ō	0	1774	1443	0	3217	0	0	93	Ö	93	347	959	0	0	1306	4616
Apprch %	0	0	0	0		Ö	55.1	44.9	0	_	0	0	100	0		26.6	73.4	0	0		
Total %	0	0	Ö	Ö	0	Ö	38.4	31.3	Ö	69.7	Ö	Ö	2	Ö	2	7.5	20.8	Ö	Ö	28.3	,
Lights	0	0	0	0	0	0	1739	1404	0	3143	0	0	81	0	81	339	908	0	0	1247	4471
% Lights	0	0	0	0	o l	0	98	97.3	0	97.7	0	Ō	87.1	Ö	87.1	97.7	94.7	0	0	95.5	96.9
Buses	0	0	0	0	0	0	17	20	0	37	0	0	10	0	10	3	18	0	0	21	68
% Buses	0	0	0	0	0	0	1	1.4	0	1.2	0	0	10.8	0	10.8	0.9	1.9	0	0	1.6	1.5
Trucks	0	0	0	0	0	0	18	19	0	37	0	0	2	0	2	5	33	0	0	38	77
% Trucks	0	Ō	Ö	0	ō	0	1	1.3	0	1.2	Ö	Ö	2.2	Ö	2.2	1.4	3.4	0	0	2.9	1.7
Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Pedestrians	0	0	0	0	o l	0	Ö	0	0	0	0	Ō	Ö	Ö	o l	0	0	0	0	0	Ō
, , , , , , , , , , , , , , , , , , , ,	-	-	-	*	- 1	-	-	-	-	- 1	-	-	-	~	- 1	-	-	-	-	- 1	- 1

Customer Loyalty Through Client Satisfaction

File Name: 2-MT_KISCO_RD_AT_KING_ST_639110_04-02-2019

Site Code:

Start Date : 4/2/2019

Ī								KING ST					KING ST	Г			MT	T KISCO F	RD		1
		<u>F</u> r	rom North	. <u>h</u>			F	From Eas	<u>t</u>			F	rom Sout	<u>ıth</u>			F	rom Wes	st		'
Start Time	Right	Thru	Left		App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysis					1 of 1																
Peak Hour for Entir	re Intersec	tion Begir	ns at 08:0	JO AM												,					
08:00 AM	0	0	0	0	0	, 0	154	136	0	290	0	0	14	0	14	32	97	0	0	129	433
08:15 AM	0	0	0	0	0	, 0	151	168	0	319	0	0	13	0	13	35	126	0	0	161	493
08:30 AM	0	0	0	0	0	0	154	174	0	328	0	0	7	0	7	43	81	0	0	124	459
08:45 AM	0	0	0	0	0	0	141	172	0	313	0	0	9	0	9	49	125	0	0	174	496
Total Volume	0	0	0	0	0	, 0	600	650	0	1250	0	0	43	0	43	159	429	0	0	588	1881
% App. Total	0	0	0	0		0	48	52	0		0	0	100	0		27	73	0	0		'
PHF	.000	.000	.000	.000	.000	.000	.974	.934	.000	.953	.000	.000	.768	.000	.768	.811	.851	.000	.000	.845	.948
Lights	0	0	0	0	0	0	584	635	0	1219	0	0	37	0	37	154	402	0	0	556	1812
% Lights	0	0	0	0	0	, 0	97.3	97.7	0	97.5	0	0	86.0	0	86.0	96.9	93.7	0	0	94.6	96.3
Buses	0	0	0	0	0	0	9	6	0	15	0	0	5	0	5	3	11	0	0	14	34
% Buses	0	0	0	0	0	, 0	1.5	0.9	0	1.2	0	0	11.6	0	11.6	1.9	2.6	0	0	2.4	1.8
Trucks	0	0	0	0	0	0	7	9	0	16	0	0	1	0	1	2	16	0	0	18	35
% Trucks	0	0	0	0	0	, 0	1.2	1.4	0	1.3	0	0	2.3	0	2.3	1.3	3.7	0	0	3.1	1.9
Pedestrians	0	0	0	0	0	, 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1 0
% Pedestrians	0	0	0	0	0	, 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 2-MT_KISCO_RD_AT_KING_ST_639110_04-02-2019

Site Code:

Start Date : 4/2/2019

	1		-					KING ST		ignio Base.	1		KING ST			1		T KISCO I			
		F	rom Nort	th			F	From Eas	<u>st</u>			F	rom Sou	uth			F	From Wes	st		'
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
11:30 AM	0	0	0	0	0	0	60	31	0	91	0	0	9	0	9	6	52	0	0	58	158
11:45 AM	0	0	0	0	0	. 0	52	30	0	82	0	0	10	0	10	4	62	0	0	66	158
Total	0	0	0	0	0	0	112	61	0	173	0	0	19	0	19	10	114	0	0	124	316
i																					
12:00 PM	0	0	0	0	0	0	68	35	0	103	0	0	14	0	14	, 7	61	0	0	68	185
12:15 PM	0	0	0	0	0	0	63	40	0	103	0	0	5	0	5	6	70	0	0	76	184
12:30 PM	0	0	0	0	0	0	74	53	0	127	. 0	0	12	0	12	10	52	0	0	62	201
12:45 PM	0	0	0	0	0	0	53	41	0	94	0	0	8	0	8	9	64	0	0	73	175
Total	0	0	0	0	0	0	258	169	0	427	0	0	39	0	39	32	247	0	0	279	745
i .																					
01:00 PM	0	0	0	0	0	0	47	55	0	102	0	0	13	0	13	8	57	0	0	65	180
01:15 PM	0	0	0	0	0	0	66	42	0	108	0	0	6	0	6	9	58	0	0	67	181
Grand Total	0	0	0	0	0	0	483	327	0	810	0	0	77	0	77	59	476	0	0	535	1422
Apprch %	0	0	0	0		0	59.6	40.4	0		, 0	0	100	0	ļ	11	89	0	0	I	1
Total %	0	0	0	0	0	0	34	23	0	57	. 0	0	5.4	0	5.4	4.1	33.5	0	0	37.6	1
Lights	0	0	0	0	0	0	462	307	0	769	0	0	75	0	75	57	452	0	0	509	1353
% Lights	0	0	0	0	0	0	95.7	93.9	0	94.9	0	0	97.4	0	97.4	96.6	95	0	0	95.1	95.1
Buses	0	0	0	0	0	0	1	1	0	2	0	0	0	0	0	0	4	0	0	4	6
% Buses	0	0	0	0	0	0	0.2	0.3	0	0.2	0	0	0	0	0	0	0.8	0	0	0.7	0.4
Trucks	0	0	0	0	0	0	20	19	0	39	0	0	2	0	2	2	20	0	0	22	63
% Trucks	0	0	0	0	0	0	4.1	5.8	0	4.8	0	0_	2.6	0	2.6	3.4	4.2	0	0	4.1	4.4
Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Pedestrians	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	, 0

Customer Loyalty Through Client Satisfaction

File Name: 2-MT_KISCO_RD_AT_KING_ST_639110_04-02-2019

Site Code:

Start Date : 4/2/2019

							-	KING ST	:				KING ST	ī			MT	T KISCO F	RD		1
		<u>F</u> r	rom North	n			F	From Eas	t			F	rom Sout	ıth			F	From Wes	st		<u> </u>
Start Time	Right	Thru	Left	Peds A	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysis					1 of 1															_	
Peak Hour for Entir	re Intersec	tion Begir	ns at 12:0	J0 РМ																	· .
12:00 PM	0	0	0	0	0	0	68	35	0	103	0	0	14	0	14	7	61	0	0	68	185
12:15 PM	0	0	0	0	0	0	63	40	0	103	0	0	5	0	5	6	70	0	0	76	184
12:30 PM	0	0	0	0	0	0	74	53	0	127	0	0	12	0	12	10	52	0	0	62	201
12:45 PM	0	0	0	0	0	0	53	41	0	94	0	0	8	0	8	9	64	0	0	73	175
Total Volume	0	0	0	0	0	0	258	169	0	427	0	0	39	0	39	32	247	0	0	279	745
% App. Total	0	0	0	0		0	60.4	39.6	0		0	0	100	0		11.5	88.5	0	0		<u> </u>
PHF	.000	.000	.000	.000	.000	.000	.872	.797	.000	.841	.000	.000	.696	.000	.696	.800	.882	.000	.000	.918	.927
Lights	0	0	0	0	0	0	248	158	0	406	0	0	38	0	38	31	232	0	0	263	707
% Lights	0	0	0	0	0	0	96.1	93.5	0	95.1	0	0	97.4	0	97.4	96.9	93.9	0	0	94.3	94.9
Buses	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	2	0	0	2	3
% Buses	0	0	0	0	0	0	0	0.6	0	0.2	0	0	0	0	0	0	0.8	0	0	0.7	0.4
Trucks	0	0	0	0	0	0	10	10	0	20	0	0	1	0	1	. 1	13	0	0	14	35
% Trucks	0	0	0	0	0	0	3.9	5.9	0	4.7	0	0	2.6	0	2.6	3.1	5.3	0	0	5.0	4.7
Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 2-MT_KISCO_RD_AT_KING_ST_639110_04-02-2019

Site Code:

Start Date : 4/2/2019

								KING ST					KING ST					KISCO			
			om Nort	h			F	rom Eas	t			Fr	rom Sou	th			F	rom Wes	st		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
04:00 PM	0	0	0	0	0	0	78	48	0	126	2	0	27	0	29	8	116	0	0	124	279
04:15 PM	0	0	0	0	0	0	96	36	0	132	0	0	33	0	33	2	98	0	0	100	265
04:30 PM	0	0	0	0	0	0	91	53	0	144	0	0	25	0	25	8	105	0	0	113	282
04:45 PM	0	0	0	0	0	0	108	42	0	150	11	0	42	0	43	5	125	0	0	130	323
Total	0	0	0	0	0	0	373	179	0	552	3	0	127	0	130	23	444	0	0	467	1149
1																					
05:00 PM	0	0	0	0	0	0	141	33	0	174	0	0	50	0	50	3	111	0	0	114	338
05:15 PM	0	0	0	0	0	0	119	42	0	161	0	0	52	0	52	5	124	0	0	129	342
05:30 PM	0	0	0	0	0	0	151	45	0	196	0	0	63	0	63	4	126	0	0	130	389
05:45 PM	0	0	0	0	0	0	130	35	0	165	0	0	49	0_	49	9	147	0	0_	156	370_
Total	0	0	0	0	0	0	541	155	0	696	0	0	214	0	214	21	508	0	0	529	1439
1	_	_	_	_	- 1	_			_	1	_	_		_	1	_		_	_	1	
06:00 PM	0	0	0	0	0	0	97	45	0	142	0	0	54	0	54	4	113	0	0	117	313
06:15 PM	0	0	0	0	0	0	88	42	0	130	0	0	39	0	39	8	177	0	0	185	354
Grand Total	0	0	0	0	0	0	1099	421	0	1520	3	0	434	0	437	56	1242	0	0	1298	3255
Apprch %	0	0	0	0	_	0	72.3	27.7	0		0.7	0	99.3	0		4.3	95.7	0	0		
Total %	0	0	0	0_	0	0	33.8	12.9	0	46.7	0.1	0	13.3	0	13.4	1.7	38.2	0	0	39.9	
Lights	0	0	0	0	0	0	1079	399	0	1478	3	0	424	0	427	55	1233	0	0	1288	3193
% Lights	0	0	0	0	0	0	98.2	94.8	0	97.2	100	0	97.7	0	97.7	98.2	99.3	0	0	99.2	98.1
Buses	0	0	0	0	0	0	4	3	0	7	0	0	8	0	8	0	6	0	0	6	21
% Buses	0	0	0	0	0	0	0.4	0.7	0	0.5	0	0	1.8	0	1.8	0	0.5	0	0	0.5	0.6
Trucks	0	0	0	0	0	0	16	19	0	35	0	0	2	0	2	1	3	0	0	4	41
% Trucks	0	0	0	0	0	0	1.5	4.5	0	2.3	0	00	0.5	0	0.5	1.8	0.2	0	0	0.3	1.3
Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ü	0	0	0	0	0

Customer Loyalty Through Client Satisfaction

File Name: 2-MT_KISCO_RD_AT_KING_ST_639110_04-02-2019

Site Code:

Start Date : 4/2/2019

Ţ								KING ST					KING ST	r —			MT	T KISCO I	RD		
		Fr	rom North	.n			F	From Eas	st			F	From Sout	ith			F	From Wes	st	!	
Start Time	Right	Thru	Left		App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysis					1 of 1																
Peak Hour for Entir	re Intersec	tion Begir	ns at 05:0	JO PM											,	,					
05:00 PM	0	0	0	0	0	, 0	141	33	0	174	0	0	50	0	50	3	111	0	0	114	338
05:15 PM	0	0	0	0	0	, 0	119	42	0	161	0	0	52	0	52	5	124	0	0	129	342
05:30 PM	0	0	0	0	0	0	151	45	0	196	0	0	63	0	63	4	126	0	0	130	389
05:45 PM	0	0	0	0	0	0	130	35	0	165	0	0	49	0	49	9	147	0	0	156	370
Total Volume	0	0	0	0	0	0	541	155	0	696	0	0	214	0	214	21	508	0	0	529	1439
% App. Total	0	0	0	0		. 0	77.7	22.3	0		0	0	100	0		4	96	0	0		<u> </u>
PHF	.000	.000	.000	.000	.000	.000	.896	.861	.000	.888	.000	.000	.849	.000	.849	.583	.864	.000	.000	.848	.925
Lights	0	0	0	0	0	0	537	150	0	687	0	0	209	0	209	20	504	0	0	524	1420
% Lights	0	0	0	0	0	0	99.3	96.8	0	98.7	0	0	97.7	0	97.7	95.2	99.2	0	0	99.1	98.7
Buses	0	0	0	0	0	0	1	2	0	3	0	0	3	0	3	0	3	0	0	3	9
% Buses	0	0	0	0	0	0	0.2	1.3	0	0.4	0	0	1.4	0	1.4	0	0.6	0	0	0.6	0.6
Trucks	0	0	0	0	0	0	3	3	0	6	0	0	2	0	2	. 1	1	0	0	2	10
% Trucks	0	0	0	0	0	0	0.6	1.9	0	0.9	0	0	0.9	0	0.9	4.8	0.2	0	0	0.4	0.7
Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Pedestrians	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Customer Loyalty Through Client Satisfaction

File Name: 2A-KING_ST_AT_OLD_POST_RD_639109_04-02-2019

Site Code:

Start Date : 4/2/2019

|--|

			ZINIO 07							ignis - buse	5 - Hucks						0.1	DOOT			, '
	ĺ		KING ST					D POST					KING ST					D POST		Ţ	, ,
A:			rom Nort					rom Eas					om Sout					rom Wes			<u> </u>
Start Time	Right	Thru	Left	Peds		Right	Thru	Left	Peds		Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
06:30 AM	0	0	0	0	0	0	0	0	0	0	4	13	0	0	17	0	0	0	0	0	17
06:45 AM	0	0	0	0	0	0	1	0	0	1	10	23	1	0	34	0	1	0	0	1	36
Total	0	0	0	0	0	0	1	0	0	1	14	36	1	0	51	0	1	0	0	1	53
		_	_	_			_	_	_	_ 1	_		_	_		_	_		_	_	, , , , , , , , , , , , , , , , , , ,
07:00 AM	0	0	0	0	0	0	5	0	Ü	5	7	25	0	Ü	32	0	0	0	Ü	0	37
07:15 AM	0	0	0	0	0	. 0	2	0	0	2	8	36	0	0	44	0	0	0	0	0	46
07:30 AM	0	0	0	0	0	, 1	7	0	0	8	8	36	0	0	44	0	0	0	0	0	52
07:45 AM	0	0	00	0	0	0	10	0	0	10	8	43	00	0	51	00	0	0_	0	0	61_
Total	0	0	0	0	0	. 1	24	0	0	25	31	140	0	0	171	0	0	0	0	0	196
1 ,																					, <i>,</i>
08:00 AM	0	0	0	0	0	0	7	0	0	7	8	51	0	0	59	0	0	0	0	0	66
08:15 AM	0	0	0	0	0	, 1	9	0	0	10	11	60	0	0	71	0	0	0	0	0	81
08:30 AM	0	0	0	0	0	, 1	8	0	0	9	17	59	0	0	76	0	0	0	0	0	85
08:45 AM	0	0	0	0	0	1	8	0	0	9	14	41	0	0	55	0	0	0	0	0	64
Total	0	0	0	0	0	3	32	0	0	35	50	211	0	0	261	0	0	0	0	0	296
																					l
09:00 AM	0	0	0	0	0	. 1	9	0	0	10	7	41	0	0	48	0	0	0	0	0	58
09:15 AM	0	0	0	0	0	. 0	4	0	0	4	6	41	0	0	47	0	0	0	0	0	51
Grand Total	0	0	0	0	0	5	70	0	0	75	108	469	1	0	578	0	1	0	0	1	654
Apprch %	0	0	0	0		6.7	93.3	0	0		18.7	81.1	0.2	0		0	100	0	0	I	, P
Total %	0	0	0	0	0	0.8	10.7	0	0	11.5	16.5	71.7	0.2	0	88.4	0	0.2	0	0	0.2	, P
Lights	0	0	0	0	0	5	65	0	0	70	106	417	1	0	524	0	1	0	0	1	595
% Lights	0	0	0	0	0	100	92.9	0	0	93.3	98.1	88.9	100	0	90.7	0	100	0	0	100	91
Buses	0	0	0	0	0	0	4	0	0	4	0	18	0	0	18	0	0	0	0	0	22
% Buses	0	0	0	0	0	0	5.7	0	0	5.3	0	3.8	0	0	3.1	0	0	0	0	0	3.4
Trucks	0	0	0	0	0	0	1	0	0	1	2	34	0	0	36	0	0	0	0	0	37
% Trucks	0	0	0	0	0	0	1.4	0	0	1.3	1.9	7.2	0	0	6.2	0	0	0	0	0	5.7
Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ı 0 '
4					·																

Customer Loyalty Through Client Satisfaction

File Name: 2A-KING_ST_AT_OLD_POST_RD_639109_04-02-2019

Site Code:

Start Date : 4/2/2019

	1		KING ST					D POST I					KING ST			·		D POST I			
		<u>+</u> r	rom North	<u>n</u>				From Eas	<u>.t</u>			<u></u>	rom Sout	<u>íh</u>				rom Wes			!
Start Time	Right	Thru	Left	Peds A	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysis					1 of 1																, , , , , , , , , , , , , , , , , , ,
Peak Hour for Entir	re Intersec	tion Begir;	∩s at 08:0	JO AM																	
08:00 AM	0	0	0	0	0	. 0	7	0	0	7	8	51	0	0	59	. 0	0	0	0	0	66
08:15 AM	0	0	0	0	0	, 1	9	0	0	10	11	60	0	0	71	0	0	0	0	0	81
08:30 AM	0	0	0	0	0	, 1	8	0	0	9	17	59	0	0	76	. 0	0	0	0	0	85
08:45 AM	0_	0	0	0	0	. 1	8	0	0	9	14	41	0	0	55	. 0	0	0_	0	0	64
Total Volume	0	0	0	0	0	3	32	0	0	35	50	211	0	0	261	0	0	0	0	0	296
% App. Total	0_	0	0	0		8.6	91.4	0	0		19.2	80.8	0	0		. 0	0	0	0	!	
PHF	.000	.000	.000	.000	.000	.750	.889	.000	.000	.875	.735	.879	.000	.000	.859	.000	.000	.000	.000	.000	.871
Lights	0	0	0	0	0	3	29	0	0	32	48	185	0	0	233	0	0	0	0	0	265
% Lights	0	0	0	0	0	100	90.6	0	0	91.4	96.0	87.7	0	0	89.3	0	0	0	0	0	89.5
Buses	0	0	0	0	0	. 0	2	0	0	2	0	10	0	0	10	. 0	0	0	0	0	12
% Buses	0	0	0	0	0	. 0	6.3	0	0	5.7	0	4.7	0	0	3.8	. 0	0	0	0	0	4.1
Trucks	0	0	0	0	0	. 0	1	0	0	1	2	16	0	0	18	. 0	0	0	0	0	19
% Trucks	0	0	0	0	0	. 0	3.1	0	0	2.9	4.0	7.6	0	0	6.9	. 0	0	0	0	0	6.4
Pedestrians	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0
% Pedestrians	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0

Customer Loyalty Through Client Satisfaction

File Name: 2A-KING_ST_AT_OLD_POST_RD_639109_04-02-2019

Site Code:

Start Date : 4/2/2019

Groups Printed- Lights - Buses -	- Trucks - Pedestrians
----------------------------------	------------------------

			KING ST				OLI	D POST	RD	g-110	1		KING ST					D POST			1
			rom Nort					From Eas					From Sou					rom Wes			'
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
11:30 AM	0	0	0	0	0	. 0	1	0	0	1	, 1	32	0	0	33	_ 0	0	0	0	0 '	34
11:45 AM	0	0	0	0	0	0	6	0	0	6	3	50	1_	0	54	00	0	0	0	0	60_
Total	0	0	0	0	0	0	7	0	0	7	4	82	1	0	87	0	0	0	0	0	94
i																					,
12:00 PM	0	0	0	0	0	. 1	3	0	0	4	, 1	47	0	0	48	. 0	0	0	0	0 '	52
12:15 PM	0	0	0	0	0	. 0	2	0	0	2	, 1	56	0	0	57	. 0	0	0	0	0 '	59
12:30 PM	0	0	0	0	0	. 0	2	0	0	2	. 1	41	0	0	42	. 0	0	0	0	0 '	44
12:45 PM	0	0	_0_	0	0	_ 0_	_1_	_0_	0	1	0_	54	0_	0	54	0_	_0_	_0_	0	0 '	55
Total	0	0	0	0	0	1	8	0	0	9	3	198	0	0	201	0	0	0	0	0	210
1					•					•											,
01:00 PM	0	0	0	0	0	2	0	0	0	2	3	44	0	0	47	. 0	0	0	0	0 '	49
01:15 PM	0	0	0	0	0	. 0	1	0	0	1	. 1	58	0	0	59	. 0	0	0	0	0 '	60
Grand Total	0	0	0	0	0	3	16	0	0	19	11	382	1	0	394	0	0	0	0	0 '	413
Apprch %	0	0	0	0		15.8	84.2	0	0	J	2.8	97	0.3	0	J	. 0	0	0	0	1	1 '
Total %	0	0	0	0	0	0.7	3.9	Ö	0	4.6	2.7	92.5	0.2	0	95.4	. 0	0	0	0	0 '	1
Lights	0	0	0	0	0	3	14	0	0	17	11	371	0	0	382	0	0	0	0	0	399
% Lights	0	0	Ō	0	0	100	87.5	Ö	0	89.5	1	97.1	Ö	0	97	. 0	0	0	0	0 '	96.6
Buses	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1 1
% Buses	0	0	Ō	0	0	. 0	0	Ö	0	0	0	0.3	0	0	0.3	. 0	0	0	0	0 '	0.2
Trucks	0	0	0	0	0	0	2	0	0	2	0	10	1	0	11	0	0	0	0	0	13
% Trucks	0	0	Ö	0	0	Ö	12.5	Ö	0	10.5	0	2.6	100	0	2.8	. 0	0	0	0	0 '	3.1
Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Pedestrians	0	0	0	0	o l	. 0	0	0	0	o l	. 0	0	0	0	0	. 0	0	0	0	ő	1 0
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-	-	-	-	- 1	-	-	-	-	- 1	-	-	-	-	- 1	-	-	-	-	- 1	- '

Customer Loyalty Through Client Satisfaction

File Name: 2A-KING_ST_AT_OLD_POST_RD_639109_04-02-2019

Site Code:

Start Date : 4/2/2019

			KING ST					D POST I					KING ST					D POST F			
		<u>F</u> r	rom North	<u>n</u>				From East	<u>t</u>			<u></u>	rom Sout	<u>.th</u>				rom Wes			!
Start Time	Right	Thru	Left	Peds A	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysis					1 of 1	-					-					_					7
Peak Hour for Entir	re Intersec	tion Begir	ns at 11:4	45 AM																	
11:45 AM	0	0	0	0	0	. 0	6	0	0	6	3	50	1	0	54	. 0	0	0	0	0	60
12:00 PM	. 0	0	0	0	0	, 1	3	0	0	4	1	47	0	0	48	0	0	0	0	0	52
12:15 PM	, 0	0	0	0	0	0	2	0	0	2	1	56	0	0	57	. 0	0	0	0	0	59
12:30 PM	0	0	0	0	0	. 0_	2	0	0	2	1_	41	0	0	42	. 0	0	0	0	0	44_
Total Volume	0	0	0	0	0	1	13	0	0	14	6	194	1	0	201	0	0	0	0	0	215
% App. Total	. 0	0	0	0		7.1	92.9	0	0		3	96.5	0.5	0		. 0	0	0	0	!	
PHF	.000	.000	.000	.000	.000	.250	.542	.000	.000	.583	.500	.866	.250	.000	.882	.000	.000	.000	.000	.000	.896
Lights	0	0	0	0	0	1	12	0	0	13	6	188	0	0	194	_ 0	0	0	0	0	207
% Lights	, 0	0	0	0	0	100	92.3	0	0	92.9	100	96.9	0	0	96.5	. 0	0	0	0	0	96.3
Buses	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1 1
% Buses	0	0	0	0	0	. 0	0	0	0	0	0	0.5	0	0	0.5	. 0	0	0	0	0	0.5
Trucks	0	0	0	0	0	0	1	0	0	1	0	5	1	0	6	0	0	0	0	0	7
% Trucks	0	0	0	0	0	. 0	7.7	0	0	7.1	0	2.6	100	0	3.0	. 0	0	0	0	0	3.3
Pedestrians	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0
% Pedestrians	. 0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0

Customer Loyalty Through Client Satisfaction

File Name: 2A-KING_ST_AT_OLD_POST_RD_639109_04-02-2019

Site Code:

Start Date : 4/2/2019

|--|

		K	ING ST	•				POST		grito Buoo			KING ST	•			OLD	POST	RD		
		Fr	om Nort				Fi	rom Eas	t			Fı	om Sout	th			Fi	om Wes	st		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
04:00 PM	0	0	0	0	0	1	12	0	0	13	3	92	2	0	97	0	0	0	0	0	110
04:15 PM	0	0	0	0	0	0	9	0	0	9	3	105	0	0	108	0	0	0	0	0	117
04:30 PM	0	0	0	0	0	0	8	0	0	8	3	110	0	0	113	0	0	0	0	0	121
04:45 PM	0	0	0	0	0	4	12	0	0	16	3	96	0	0	99	0	0	0	0	0	115_
Total	0	0	0	0	0	5	41	0	0	46	12	403	2	0	417	0	0	0	0	0	463
05:00 PM	0	0	0	0	0	0	12	0	0	12	5	126	0	0	131	0	0	0	0	0	143
05:15 PM	0	0	0	0	0	2	14	0	0	16	9	138	0	0	147	0	0	0	0	0	163
05:30 PM	0	0	0	0	0	2	11	0	0	13	11	187	0	0	198	0	0	0	0	0	211
05:45 PM	0	0	0	0	0	3	15	00	0	18	6	149	0	0_	155	0	0	0	0	0	173_
Total	0	0	0	0	0	7	52	0	0	59	31	600	0	0	631	0	0	0	0	0	690
00 00 004	0	0	0	0	0	0	0	0	0	44.1	•	454	0	0	400	0	0	0	0	0	470
06:00 PM	0	0	0	0	0	2	9	0	0	11	8	154	0	0	162	0	0	0	0	0	173
06:15 PM	0	0	0	0	0	0	13	0	0	13 129	3	127	0	0	130	0	0	0	0	0	143
Grand Total	0	0	0	0	0	14	115	0	0	129	54	1284	2	0	1340	0	0	0	0	0	1469
Apprch %	0	0	0	0		10.9	89.1	0	0	0.0	2 7	95.8	0.1	0	04.0	0	0	0	0	0	
Total %	0	0	0	0	0	14	7.8 109	0	0	8.8 123	3.7 53	87.4 1264	<u>0.1</u> 2	0	91.2 1319	0	0	0	0	0	1442
Lights % Lights	0	0	0	0	0	100	94.8	0	0	95.3	98.1	98.4	100	0	98.4	0	0	0	0	0	98.2
Buses	0	0	0	0	0	100	94.6 5	0	0	95.5	90.1	12	0	0	12	0	0	0	0	0	17
% Buses	0	0	0	0	0	0	4.3	0	0	3.9	0	0.9	0	0	0.9	0	0	0	0	0	1.2
70 Buses Trucks	0	0	0	0	0	0	4.5	0	0	3.9	1	8	0	0	0.9	0	0	0	0	0	1.2
% Trucks	0	٥	0	0	0	0	0.9	0	0	0.8	1.9	0.6	0	0	0.7	0	0	0	0	0	0.7
Pedestrians	0		0	0	0		0.5	0	0	0.0	1.9	0.0	0	0	0.7			0	0	0	0.7
% Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
/o i cucsilidils	U	U	U	U	0	U	U	U	U	0	U	U	U	J	0	U	U	U	U	0	U

Customer Loyalty Through Client Satisfaction

File Name: 2A-KING_ST_AT_OLD_POST_RD_639109_04-02-2019

Site Code:

Start Date : 4/2/2019

	1		KING ST					D POST					KING ST					D POST I			
		<u>-</u> -r	rom North	<u>n</u>				From Eas	<u>t</u>			<u>F</u>	rom Sout	th			<u>F</u>	rom Wes			'
Start Time	Right	Thru	Left	Peds A	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysis					1 of 1																, , , , , , , , , , , , , , , , , , ,
Peak Hour for Entir	re Intersec	tion Begir;	ns at 05:1	15 PM																	
05:15 PM	0	0	0	0	0	2	14	0	0	16	9	138	0	0	147	0	0	0	0	0	163
05:30 PM	0	0	0	0	0	2	11	0	0	13	11	187	0	0	198	0	0	0	0	0	211
05:45 PM	0	0	0	0	0	3	15	0	0	18	6	149	0	0	155	0	0	0	0	0	173
06:00 PM	0	0	0	0	0	2_	9	0	0	11	8	154	0	0	162	0	0	0	0	o	173_
Total Volume	0	0	0	0	0	9	49	0	0	58	34	628	0	0	662	0	0	0	0	0	720
% App. Total	0	0	0	0		15.5	84.5	0	0		5.1	94.9	0	0		0	0	0	0		
PHF	.000	.000	.000	.000	.000	.750	.817	.000	.000	.806	.773	.840	.000	.000	.836	.000	.000	.000	.000	.000	.853
Lights	0	0	0	0	0	9	47	0	0	56	34	623	0	0	657	0	0	0	0	0	713
% Lights	0	0	0	0	0	100	95.9	0	0	96.6	100	99.2	0	0	99.2	0	0	0	0	0	99.0
Buses	0	0	0	0	0	. 0	2	0	0	2	0	4	0	0	4	0	0	0	0	0	6
% Buses	0	0	0	0	0	. 0	4.1	0	0	3.4	0	0.6	0	0	0.6	0	0	0	0	0	0.8
Trucks	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1 1
% Trucks	0	0	0	0	0	. 0	0	0	0	0	0	0.2	0	0	0.2	0	0	0	0	0	0.1
Pedestrians	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Pedestrians	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 3-KING_ST_AT_HIGH_HILL_RD_NEW_ORCHARD_RD_639111_04-02-2019

Site Code:

Start Date : 4/2/2019

Page No : 1

					T					gnis - buse:	s - ITUCKS										
			(ING ST					RCHAF					KING ST					3H HILL			
		Fr	om Nort	h			F	rom Eas	t			Fr	rom Sout	:h			F	rom We	st		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
06:30 AM	10	42	1	0	53	0	0	1	0	1	1	17	6	0	24	0	0	0	0	0	78
06:45 AM	17	48	5	0	70	0	0	0	0	0	3	31	15	0	49	3	1	0	0	4	123
Total	27	90	6	0	123	0	0	1	0	1	4	48	21	0	73	3	1	0	0	4	201
07:00 AM	9	58	8	0	75	4	0	1	0	5	11	32	18	0	61	1	0	0	0	1	142
07:15 AM	14	94	3	0	111	3	0	2	0	5	11	41	18	0	70	2	0	3	0	5	191
07:30 AM	18	141	5	0	164	1	0	0	0	1	5	51	14	0	70	0	0	1	0	1	236
07:45 AM	19	145	4	0	168	1	0	2	0	3	18	50	21	0	89	1	1	0	0	2	262
Total	60	438	20	0	518	9	0	5	0	14	45	174	71	0	290	4	1	4	0	9	831
08:00 AM	21	140	1	0	162	2	0	2	0	4	6	59	15	0	80	6	1	1	0	8	254
08:15 AM	34	164	7	0	205	0	0	2	0	2	5	74	15	0	94	0	0	4	0	4	305
08:30 AM	39	166	9	0	214	1	0	1	0	2	10	77	20	0	107	3	1	0	0	4	327
08:45 AM	38	183	6	0	227	1	0	0	0	1	7	52	23	0	82	1	0	3	0	4	314
Total	132	653	23	0	808	4	0	5	0	9	28	262	73	0	363	10	2	8	0	20	1200
,															·					,	
09:00 AM	30	153	4	0	187	1	0	1	0	2	5	48	13	0	66	5	0	1	0	6	261
09:15 AM	20	126	7	0	153	1	0	0	0	1	9	47	20	0	76	2	0	1	0	3	233
Grand Total	269	1460	60	0	1789	15	0	12	0	27	91	579	198	0	868	24	4	14	0	42	2726
Apprch %	15	81.6	3.4	0		55.6	0	44.4	0		10.5	66.7	22.8	0		57.1	9.5	33.3	0		
Total %	9.9	53.6	2.2	0	65.6	0.6	0	0.4	0	1	3.3	21.2	7.3	0	31.8	0.9	0.1	0.5	0	1.5	
Lights	268	1414	60	0	1742	15	0	12	0	27	90	525	185	0	800	17	1	8	0	26	2595
% Lights	99.6	96.8	100	0	97.4	100	0	100	0	100	98.9	90.7	93.4	0	92.2	70.8	25	57.1	0	61.9	95.2
Buses	0	24	0	0	24	0	0	0	0	0	0	19	11	0	30	5	3	3	0	11	65
% Buses	0	1.6	0	0	1.3	0	0	0	0	0	0	3.3	5.6	0	3.5	20.8	75	21.4	0	26.2	2.4
Trucks	1	22	0	0	23	0	0	0	0	0	1	35	2	0	38	2	0	3	0	5	66
% Trucks	0.4	1.5	0	0	1.3	0	0	0	0	0	1.1	6	1	0	4.4	8.3	0	21.4	0	11.9	2.4
Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 3-KING_ST_AT_HIGH_HILL_RD_NEW_ORCHARD_RD_639111_04-02-2019

Site Code:

Start Date : 4/2/2019

			KING ST					ORCHAR					KING ST					GH HILL I			
		Fr	<u>rom North</u>	<u>n</u>			F	From Eas	<u>.t</u>			F	From Sout	<u>.th</u>			F	From Wes			
Start Time	Right	Thru	Left	Peds A	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysis	s From 06	:30 AM to	09:15 Al	M - Peak '	1 of 1	_					-					-					, , , , , , , , , , , , , , , , , , ,
Peak Hour for Entir	re Intersec	tion Begir;	ns at 08:1	15 AM																	
08:15 AM	34	164	7	0	205	. 0	0	2	0	2	5	74	15	0	94	0	0	4	0	4	305
08:30 AM	39	166	9	0	214	. 1	0	1	0	2	10	77	20	0	107	3	1	0	0	4	327
08:45 AM	38	183	6	0	227	, 1	0	0	0	1	7	52	23	0	82	1	0	3	0	4	314
09:00 AM	30	153	4	0	187	. 1_	0	1_	0	2	5_	48	13	0	66	5	0	1	0	<u>6</u>	261
Total Volume	141	666	26	0	833	3	0	4	0	7	27	251	71	0	349	9	1	8	0	18	1207
% App. Total	16.9	80	3.1	0		42.9	0	57.1	0		7.7	71.9	20.3	0		50	5.6	44.4	0		
PHF	.904	.910	.722	.000	.917	.750	.000	.500	.000	.875	.675	.815	.772	.000	.815	.450	.250	.500	.000	.750	.923
Lights	140	647	26	0	813	3	0	4	0	7	27	226	68	0	321	6	1	5	0	12	1153
% Lights	99.3	97.1	100	0	97.6	100	0	100	0	100	100	90.0	95.8	0	92.0	66.7	100	62.5	0	66.7	95.5
Buses	0	7	0	0	7	. 0	0	0	0	0	0	9	3	0	12	2	0	2	0	4	23
% Buses	0	1.1	0	0	0.8	. 0	0	0	0	0	0	3.6	4.2	0	3.4	22.2	0	25.0	0	22.2	1.9
Trucks	1	12	0	0	13	. 0	0	0	0	0	0	16	0	0	16	1	0	1	0	2	31
% Trucks	0.7	1.8	0	0	1.6	0	0	0	0	0	0	6.4	0	0	4.6	11.1	0	12.5	0	11.1	2.6
Pedestrians	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Pedestrians	0	0	0	0	0	, 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 3-KING_ST_AT_HIGH_HILL_RD_NEW_ORCHARD_RD_639111_04-02-2019

Site Code:

Start Date : 4/2/2019

	1		KING ST	Ī				ORCHAR		gino Buoo	23 TTUCKS		KING ST	٢			HIC	GH HILL	RD		1
		<u> </u>	rom Nort	th			<u>F</u>	From Eas	<u>st</u>			F	rom Sou	<u>ıth</u>			F	From Wes	st		'
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
11:30 AM	0	38	1	0	39	0	0	3	0	3	2	40	2	0	44	· 1	0	4	0	5	91
11:45 AM	3	32	0	0	35	1_	0	3	0	4	1_	52	1_	0	54	2_	0	4	0	6	99
Total	3	70	1	0	74	1	0	6	0	7	3	92	3	0	98	3	0	8	0	11	190
12:00 PM	2	38	2	0	42	0	0	2	0	2	1	51	2	0	54	2	0	7	0	9	107
12:15 PM	2	44	1	0	47	2	0	1	0	3	0	55	0	0	55	, 1	0	6	0	7	112
12:30 PM	2	59	1	0	62	0	0	1	0	1	1	49	3	0	53	6	0	1	2	9	125
12:45 PM	2	49	1_	0	52	1_	0	0	0	1	1_	58	1_	0	60	0_	0	2	2	4	117
Total	8	190	5	0	203	3	0	4	0	7	3	213	6	0	222	9	0	16	4	29	461
01:00 PM	9	53	1	0	63	2	0	2	0	4	0	58	1	0	59	, 1	0	2	0	3	129
01:15 PM	6	43	1	0	50	. 1	0	3	0	4	1	56	3	0	60	, 2	0	4	0	6	120
Grand Total	26	356	8	0	390	7	0	15	0	22	7	419	13	0	439	15	0	30	4	49	900
Apprch %	6.7	91.3	2.1	0		31.8	0	68.2	0	J	1.6	95.4	3	0		30.6	0	61.2	8.2	J	1
Total %	2.9	39.6	0.9	0	43.3	0.8	0	1.7	0	2.4	0.8	46.6	1.4	0	48.8	1.7	0	3.3	0.4	5.4	'
Lights	26	336	8	0	370	7	0	15	0	22	6	407	13	0	426	15	0	30	0	45	863
% Lights	100	94.4	100	0	94.9	100	0	100	0	100	85.7	97.1	100	0	97	100	0	100	0	91.8	95.9
Buses	0	2	0	0	2	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	3
% Buses	0	0.6	0	0	0.5	0	0	0	0	0	0	0.2	0	0	0.2	0_	0	0	0	0	0.3
Trucks	0	18	0	0	18	0	0	0	0	0	1	11	0	0	12	0	0	0	0	0	30
% Trucks	0	5.1	0	0	4.6	0	0	0	0	0	14.3	2.6	0	0	2.7	0_	0	0	0	<u>0</u>	3.3
Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4
% Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	8.2	0.4

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 3-KING_ST_AT_HIGH_HILL_RD_NEW_ORCHARD_RD_639111_04-02-2019

Site Code:

Start Date : 4/2/2019

	Ī		KING ST				NEW (ORCHAR	₹D RD				KING ST			·	HIC	GH HILL	RD		1
		F	rom North	<u>n</u>			F	rom Eas	<u>t</u>			F	rom Sout	.th			F	rom Wes	<u>st</u>		!
Start Time	Right	Thru	Left	Peds A	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysis					1 of 1																
Peak Hour for Entir	re Intersec	tion Begi	ns at 12:?	30 PM																	, <i>1</i>
12:30 PM	2	59	1	0	62	. 0	0	1	0	1	1	49	3	0	53	, 6	0	1	2	9	125
12:45 PM	2	49	1	0	52	, 1	0	0	0	1	1	58	1	0	60	. 0	0	2	2	4	117
01:00 PM	9	53	1	0	63	. 2	0	2	0	4	0	58	1	0	59	, 1	0	2	0	3	129
01:15 PM	6	43	1	0	50	1	0	3_	0	4	1_	56	3_	0	60	2	0_	4_	0	6	120_
Total Volume	19	204	4	0	227	4	0	6	0	10	3	221	8	0	232	9	0	9	4	22	491
% App. Total	8.4	89.9	1.8	0		40	0	60	0		1.3	95.3	3.4	0		40.9	0	40.9	18.2	I	, <u> </u>
PHF	.528	.864	1.00	.000	.901	.500	.000	.500	.000	.625	.750	.953	.667	.000	.967	.375	.000	.563	.500	.611	.952
Lights	19	191	4	0	214	4	0	6	0	10	3	216	8	0	227	9	0	9	0	18	469
% Lights	100	93.6	100	0	94.3	100	0	100	0	100	100	97.7	100	0	97.8	100	0	100	0	81.8	95.5
Buses	0	2	0	0	2	. 0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	2
% Buses	0	1.0	0	0	0.9	. 0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0.4
Trucks	0	11	0	0	11	. 0	0	0	0	0	0	5	0	0	5	. 0	0	0	0	0	16
% Trucks	0	5.4	0	0	4.8	. 0	0	0	0	0	0	2.3	0	0	2.2	. 0	0	0	0	0	3.3
Pedestrians	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	. 0	0	0	4	4	4
% Pedestrians	0	0	0	0	0	, 0	0	0	0	0	0	0	0	0	0	0	0	0	100	18.2	0.8

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 3-KING_ST_AT_HIGH_HILL_RD_NEW_ORCHARD_RD_639111_04-02-2019

Site Code:

Start Date : 4/2/2019

		k	KING ST					DRCHAR		grito Buoci	, maone		KING ST	-			HIC	H HILL	RD		
			om Nort					rom Eas					rom Sou					rom We			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
04:00 PM	1	58	0	0	59	2	0	3	0	5	3	89	3	0	95	12	0	20	0	32	191
04:15 PM	0	43	0	0	43	1	0	5	0	6	0	121	1	0	122	13	0	19	0	32	203
04:30 PM	4	55	1	0	60	3	0	1	0	4	0	107	0	0	107	17	0	22	0	39	210
04:45 PM	3	53	0	0	56	3	1	2	0	6	0	103	3	0	106	12	0	22	0	34	202
Total	8	209	1	0	218	9	1	11	0	21	3	420	7	0	430	54	0	83	0	137	806
05:00 PM	2	40	0	0	42	4	0	4	0	8	0	142	2	0	144	15	0	29	0	44	238
05:15 PM	0	50	0	0	50	4	1	6	0	11	0	165	3	0	168	18	0	25	0	43	272
05:30 PM	3	52	0	0	55	7	0	7	0	14	0	211	3	0	214	22	0	32	0	54	337
05:45 PM	11	48	0	0	49	7	0	4	0	11	0	165	9	0	174	18	0	23	0	41	275
Total	6	190	0	0	196	22	1	21	0	44	0	683	17	0	700	73	0	109	0	182	1122
1					1										1						
06:00 PM	1	51	1	0	53	4	1	7	0	12	0	187	2	0	189	13	0	20	0	33	287
06:15 PM	1	52	2	0	55	6	1	9	0	16	0	141	2	0	143	17	0	19	0	36	250
Grand Total	16	502	4	0	522	41	4	48	0	93	3	1431	28	0	1462	157	0	231	0	388	2465
Apprch %	3.1	96.2	8.0	0		44.1	4.3	51.6	0		0.2	97.9	1.9	0		40.5	0	59.5	0		
Total %	0.6	20.4	0.2	0	21.2	1.7	0.2	1.9	0	3.8	0.1	58.1	1.1	0	59.3	6.4	0	9.4	0	15.7	
Lights	13	482	4	0	499	41	1	47	0	89	3	1406	21	0	1430	145	0	228	0	373	2391
% Lights	81.2	96	100	0	95.6	100	25	97.9	0	95.7	100	98.3	75	0	97.8	92.4	0	98.7	0	96.1	97
Buses	0	4	0	0	4	0	3	0	0	3	0	16	5	0	21	11	0	1	0	12	40
% Buses	0	0.8	0	0	0.8	0	75	0	0	3.2	0	1.1	17.9	0	1.4		0	0.4	0	3.1	1.6
Trucks	3	16	0	0	19	0	0	1	0	. 1	0	9	_ 2	0	11	1	0	2	0	3	34
% Trucks	18.8	3.2	0	0	3.6	0	0	2.1	0_	1.1	0	0.6	7.1	0	0.8	0.6	0	0.9	0	0.8	1.4
Pedestrians	0	0	0	0	0	0	U	0	0	0	0	U	0	0	0	0	U	0	0	0	0
% Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 3-KING_ST_AT_HIGH_HILL_RD_NEW_ORCHARD_RD_639111_04-02-2019

Site Code:

Start Date : 4/2/2019

		<u> </u>	KING ST				NEW (ORCHAR	₹D RD				KING ST	Γ			HIC	GH HILL F	RD		1
		<u>F</u> r	rom North	<u>n</u>			F	From Eas	<u>t</u>			F	From Sout	<i>i</i> th			F	rom Wes	st	!	
Start Time	Right	Thru	Left	Peds /	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysis					1 of 1	_					-					-					,
Peak Hour for Entir	re Intersec	tion Begir;	กร at 05:1	5 PM																	
05:15 PM	0	50	0	0	50	4	1	6	0	11	0	165	3	0	168	18	0	25	0	43	272
05:30 PM	3	52	0	0	55	7	0	7	0	14	0	211	3	0	214	22	0	32	0	54	337
05:45 PM	1	48	0	0	49	, 7	0	4	0	11	0	165	9	0	174	18	0	23	0	41	275
06:00 PM	1	51	1	0	53	4	1_	7	0	12	0	187	2	0	189	13	0	20	0	33	287
Total Volume	5	201	1	0	207	22	2	24	0	48	0	728	17	0	745	71	0	100	0	171	1171
% App. Total	2.4	97.1	0.5	0		45.8	4.2	50	0		0	97.7	2.3	0		41.5	0	58.5	0		
PHF	.417	.966	.250	.000	.941	.786	.500	.857	.000	.857	.000	.863	.472	.000	.870	.807	.000	.781	.000	.792	.869
Lights	5	195	1	0	201	22	1	24	0	47	0	722	14	0	736	66	0	100	0	166	1150
% Lights	100	97.0	100	0	97.1	100	50.0	100	0	97.9	0	99.2	82.4	0	98.8	93.0	0	100	0	97.1	98.2
Buses	0	3	0	0	3	. 0	1	0	0	1	0	6	2	0	8	5	0	0	0	5	17
% Buses	0	1.5	0	0	1.4	. 0	50.0	0	0	2.1	0	0.8	11.8	0	1.1	7.0	0	0	0	2.9	1.5
Trucks	0	3	0	0	3	. 0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	4
% Trucks	0	1.5	0	0	1.4	. 0	0	0	0	0	0	0	5.9	0	0.1	0	0	0	0	0	0.3
Pedestrians	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Pedestrians	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	, 0

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 4-KING_ST_AT_AMERICAN_LANE_639112_04-02-2019

Site Code:

Start Date : 4/2/2019

Groups Printed- Lights - Buse	es - Trucks - Pedestrians
AMERICAN LANE	KING S

			/INIO 0T							giila - buse	5 - HUCKS										
			KING ST					RICAN L					KING ST				_				
			rom Nort					rom Eas					rom Sout					om Wes			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
06:30 AM	0	41	1	0	42	0	0	0	0	0	0	24	0	0	24	0	0	0	0	0	66
06:45 AM	0	39	4	0	43	0	0	0	0	0	0	48	0	0	48	0	0	0	0	0	91_
Total	0	80	5	0	85	0	0	0	0	0	0	72	0	0	72	0	0	0	0	0	157
07:00 AM	0	52	5	0	57	2	0	0	0	2	0	58	0	0	58	0	0	0	0	0	117
07:15 AM	0	78	9	0	87	1	0	1	0	2	0	68	0	0	68	0	0	0	0	0	157
07:30 AM	0	134	7	0	141	0	0	0	0	0	0	66	0	0	66	0	0	0	0	0	207
07:45 AM	0	137	5	0	142	1	0	1	1	3	0	90	0	0	90	0	0	0	0	0	235
Total	0	401	26	0	427	4	0	2	1	7	0	282	0	0	282	0	0	0	0	0	716
08:00 AM	0	130	16	0	146	2	0	0	0	2	0	73	0	0	73	0	0	0	0	0	221
08:15 AM	0	151	17	0	168	2	0	0	0	2	0	95	0	0	95	0	0	0	0	0	265
08:30 AM	l о	132	38	0	170	5	0	0	0	5	0	101	0	0	101	0	0	0	0	0	276
08:45 AM	0	136	41	0	177	1	0	2	0	3	0	83	0	0	83	0	0	0	0	0	263
Total	0	549	112	0	661	10	0	2	0	12	0	352	0	0	352	0	0	0	0	0	1025
				-		-	-		_		-		_	-		-		-	_	- '	
09:00 AM	0	99	63	0	162	2	0	1	0	3	0	64	0	0	64	0	0	0	0	0	229
09:15 AM	0	80	53	0	133	2	0	0	0	2	0	75	0	0	75	0	0	0	0	0	210
Grand Total	0	1209	259	0	1468	18	0	5	1	24	0	845	0	0	845	0	0	0	0	0	2337
Apprch %	0	82.4	17.6	0		75	0	20.8	4.2		0	100	0	0		0	0	0	0		
Total %	0	51.7	11.1	0	62.8	0.8	0	0.2	0	1	Ö	36.2	0	0	36.2	0	0	0	0	0	
Lights	0	1161	255	0	1416	12	0	5	0	17	0	781	0	0	781	0	0	0	0	0	2214
% Lights	0	96	98.5	0	96.5	66.7	0	100	0	70.8	0	92.4	0	0	92.4	0	0	0	0	0	94.7
Buses	0	28	3	0	31	5	0	0	0	5	0	29	0	0	29	0	0	0	0	0	65
% Buses	0	2.3	1.2	0	2.1	27.8	0	0	0	20.8	0	3.4	0	0	3.4	0	0	0	0	0	2.8
Trucks	0	20	1	0	21	1	0	0	0	1	0	35	0	0	35	0	0	0	0	0	57
% Trucks	0	1.7	0.4	0	1.4	5.6	0	0	0	4.2	0	4.1	0	0	4.1	0	0	0	0	0	2.4
Pedestrians	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	1
% Pedestrians	0	0	0	0	0	0	0	0	100	4.2	0	0	0	0	0	0	0	0	0	0	0

Customer Loyalty Through Client Satisfaction

File Name: 4-KING_ST_AT_AMERICAN_LANE_639112_04-02-2019

Site Code:

Start Date : 4/2/2019

	1		KING ST					RICAN L					KING ST								1
		F	rom North	<u>n</u>			F	From Eas	<u>,t</u>			F	rom Sout	<u>.th</u>			F	From Wes			<i>'</i>
Start Time	Right	Thru	Left	Peds /	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysis					1 of 1																
Peak Hour for Entir	re Intersec	tion Begi	ns at 08:1	15 AM						,											
08:15 AM	0	151	17	0	168	2	0	0	0	2	0	95	0	0	95	. 0	0	0	0	0	265
08:30 AM	0	132	38	0	170	5	0	0	0	5	0	101	0	0	101	, 0	0	0	0	0	276
08:45 AM	0	136	41	0	177	1	0	2	0	3	0	83	0	0	83	0	0	0	0	0	263
09:00 AM	0	99	63	0	162	2	0	1	0	3	0	64	0	0	64	0_	0	0	0	0	229
Total Volume	0	518	159	0	677	10	0	3	0	13	0	343	0	0	343	. 0	0	0	0	0	1033
% App. Total	0	76.5	23.5	0		76.9	0	23.1	0		0	100	0	0		0_	0	0	0		
PHF	.000	.858	.631	.000	.956	.500	.000	.375	.000	.650	.000	.849	.000	.000	.849	.000	.000	.000	.000	.000	.936
Lights	0	498	158	0	656	8	0	3	0	11	0	315	0	0	315	0	0	0	0	0	982
% Lights	0	96.1	99.4	0	96.9	80.0	0	100	0	84.6	0	91.8	0	0	91.8	0	0	0	0	0	95.1
Buses	0	10	1	0	11	2	0	0	0	2	0	13	0	0	13	. 0	0	0	0	0	26
% Buses	0	1.9	0.6	0	1.6	20.0	0	0	0	15.4	0	3.8	0	0	3.8	. 0	0	0	0	0	2.5
Trucks	0	10	0	0	10	0	0	0	0	0	0	15	0	0	15	0	0	0	0	0	25
% Trucks	0	1.9	0	0	1.5	0	0	0	0	0	0	4.4	0	0	4.4	. 0	0	0	0	0	2.4
Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	, 0	0	0	0	0	0
% Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 4-KING_ST_AT_AMERICAN_LANE_639112_04-02-2019

Site Code:

Start Date : 4/2/2019

Page No : 1

							G	roups Pr	inted- Li	ghts - Buse	s - Trucks	- Pedes	trians								
			KING ST	•			AME	RICAN L	ANE				KING ST	•							
		F	rom Nort	:h			F	rom Eas	t			F	rom Sou	th			F	rom Wes	st		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
11:30 AM	0	41	3	0	44	2	0	0	0	2	0	42	0	0	42	0	0	0	0	0	88
11:45 AM	0	35	2	0	37	6	0	2	0	8	1_	48	0	0	49	0	0	0	0	0	94
Total	0	76	5	0	81	8	0	2	0	10	1	90	0	0	91	0	0	0	0	0	182
12:00 PM	0	37	1	0	38	6	0	0	1	7	0	44	0	0	44	0	0	0	0	0	89
12:15 PM	0	42	5	0	47	9	0	2	0	11	0	49	0	0	49	0	0	0	0	0	107
12:30 PM	0	56	7	0	63	15	0	2	0	17	0	40	0	0	40	0	0	0	0	0	120
12:45 PM	0	41	9	0	50	15	0	2	0	17	0	44	0	0	44	0	0	0	0	0	111_
Total	0	176	22	0	198	45	0	6	1	52	0	177	0	0	177	0	0	0	0	0	427
01:00 PM	0	50	11	0	61	11	0	2	0	13	0	48	0	0	48	0	0	0	0	0	122
01:15 PM	0	39	6	0	45	7	0	3	1	11	0	54	0	0	54	0	0	0	0	0	110
Grand Total	0	341	44	0	385	71	0	13	2	86	1	369	0	0	370	0	0	0	0	0	841
Apprch %	0	88.6	11.4	0		82.6	0	15.1	2.3		0.3	99.7	0	0		0	0	0	0		
Total %	0	40.5	5.2	0	45.8	8.4	0	1.5	0.2	10.2	0.1	43.9	0	0	44	0	0	0	0	0	
Lights	0	322	42	0	364	71	0	12	0	83	1	357	0	0	358	0	0	0	0	0	805
% Lights	0	94.4	95.5	0	94.5	100	0	92.3	0	96.5	100	96.7	0	0	96.8	0	0	0	0	0	95.7
Buses	0	1	1	0	2	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	3
% Buses	0	0.3	2.3	0	0.5	0	0	0	0	0	0	0.3	0	0	0.3	0	0	0	0	0	0.4
Trucks	0	18	1	0	19	0	0	1	0	1	0	11	0	0	11	0	0	0	0	0	31
% Trucks	0	5.3	2.3	0	4.9	0	0	7.7	0	1.2	0	3	0	0	3	0	0	0	0	0	3.7
Pedestrians	0	0	0	0	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	2
% Pedestrians	0	0	0	0	0	0	0	0	100	2.3	0	0	0	0	0	0	0	0	0	0	0.2

Customer Loyalty Through Client Satisfaction

File Name: 4-KING_ST_AT_AMERICAN_LANE_639112_04-02-2019

Site Code:

Start Date : 4/2/2019

			KING ST				AME	RICAN L	ANE				KING ST								
		<u> </u>	rom North	<u>n</u>			F	From East	,t			F	rom Sout	th			F	rom Wes	st	!	!
Start Time	Right	Thru	Left	Peds A	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysis					1 of 1																
Peak Hour for Entir	re Intersec	tion Begi	ns at 12:3	30 PM																	
12:30 PM	. 0	56	7	0	63	15	0	2	0	17	0	40	0	0	40	0	0	0	0	0	120
12:45 PM	. 0	41	9	0	50	15	0	2	0	17	0	44	0	0	44	. 0	0	0	0	0	111
01:00 PM	. 0	50	11	0	61	, 11	0	2	0	13	0	48	0	0	48	. 0	0	0	0	0	122
01:15 PM	0	39	6	0	45	7	0	3	1	11	0	54	0	0	54	. 0	0	0	0	0	110_
Total Volume	0	186	33	0	219	48	0	9	1	58	0	186	0	0	186	0	0	0	0	0	463
% App. Total	0	84.9	15.1	0		82.8	0	15.5	1.7		0	100	0	0		. 0	0	0	0		!
PHF	.000	.830	.750	.000	.869	.800	.000	.750	.250	.853	.000	.861	.000	.000	.861	.000	.000	.000	.000	.000	.949
Lights	0	173	32	0	205	48	0	9	0	57	0	181	0	0	181	0	0	0	0	0	443
% Lights	0	93.0	97.0	0	93.6	100	0	100	0	98.3	0	97.3	0	0	97.3	0	0	0	0	0	95.7
Buses	. 0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1 '
% Buses	. 0	0.5	0	0	0.5	. 0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0.2
Trucks	. 0	12	1	0	13	. 0	0	0	0	0	0	5	0	0	5	. 0	0	0	0	0	18
% Trucks	. 0	6.5	3.0	0	5.9	. 0	0	0	0	0	0	2.7	0	0	2.7	. 0	0	0	0	0	3.9
Pedestrians	. 0	0	0	0	0	. 0	0	0	1	1	0	0	0	0	0	. 0	0	0	0	0	1
% Pedestrians	0	0	0	0	0	0	0	0	100	1.7	0	0	0	0	0	0	0	0	0	0	0.2

Customer Loyalty Through Client Satisfaction

File Name: 4-KING_ST_AT_AMERICAN_LANE_639112_04-02-2019

Site Code:

Start Date : 4/2/2019

Groups Printed- Lig	hts - Buses -	- Trucks - Pedestrians
MERICAN LANE		KING S

		1	KING ST	<i>-</i>				RICAN L		igino Bacci			KING ST	r							1
			rom Nort	th			F	From Eas	<u>t</u>			F'	rom Sout	<u>ıth</u>			F	From Wes	st	'	'
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
04:00 PM	0	72	2	0	74	5	0	0	0	5	. 0	92	0	0	92	0	0	0	0	0 '	171
04:15 PM	0	61	0	0	61	7	0	0	0	7	, 1	114	0	0	115	. 0	0	0	0	0 '	183
04:30 PM	0	78	1	0	79	3	0	0	0	3	. 0	104	0	0	104	. 0	0	0	0	0 '	186
04:45 PM	0	61	1_	0	62	5	0	0	0	5	0_	99	0	0	99	0	0	0	0	0 '	166
Total	0	272	4	0	276	20	0	0	0	20	, 1	409	0	0	410	0	0	0	0	0	706
																					· .
05:00 PM	0	58	0	0	58	22	0	1	0	23	, 1	125	0	0	126	. 0	0	0	0	0	207
05:15 PM	0	73	1	0	74	9	0	1	0	10	. 0	158	0	0	158	. 0	0	0	0	0 '	242
05:30 PM	0	77	2	0	79	31	0	1	0	32	. 0	188	0	0	188	. 0	0	0	0	0 '	299
05:45 PM	0	68	4	0	72	25	0	2_	0	27	1_	150	0	0	151	0	0	0	0	0	250
Total	0	276	7	0	283	87	0	5	0	92	2	621	0	0	623	0	0	0	0	0	998
06:00 PM	0	71	1	0	72	64	0	2	0	66	0	126	0	0	126	. 0	0	0	0	0 '	264
06:15 PM	0	76	2	0	78	41	0	2	0	43	2	102	0	0	104	. 0	0	0	0	0 '	225
Grand Total	0	695	14	0	709	212	0	9	0	221	5	1258	0	0	1263	. 0	0	0	0	0	2193
Apprch %	0	98	2	0		95.9	0	4.1	0		0.4	99.6	0	0	J	. 0	0	0	0	1	1 '
Total %	0	31.7	0.6	0	32.3	9.7	0	0.4	0	10.1	0.2	57.4	0	0	57.6	0	0	0	0	0 '	'
Lights	0	663	13	0	676	209	0	9	0	218	5	1229	0	0	1234	0	0	0	0	0	2128
% Lights	0	95.4	92.9	0	95.3	98.6	0	100	0	98.6	100	97.7	0	0	97.7	0	0	0	0	0	97
Buses	0	15	1	0	16	, 1	0	0	0	1	0	19	0	0	19	0	0	0	0	0	36
% Buses	0	2.2	7.1	0_	2.3	0.5	0	0	0	0.5	0	1.5	0	0	1.5	0	0	0	0	0	1.6
Trucks	0	17	0	0	17	2	0	0	0	2	0	10	0	0	10	0	0	0	0	0	29
% Trucks	0	2.4	0	0	2.4	0.9	0	0	0	0.9	0	0.8	0	0	0.8	0	0	0	0	0	1.3
Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Pedestrians	0	0	0	0	0	. 0	0	0	0	0	. 0	0	0	0	0	, 0	0	0	0	0	0

Customer Loyalty Through Client Satisfaction

File Name: 4-KING_ST_AT_AMERICAN_LANE_639112_04-02-2019

Site Code:

Start Date : 4/2/2019

		<u> </u>	KING ST				AME	RICAN L	ANE				KING ST								1
		F	rom North	n			F	rom East	<u>t</u>			F	rom Sout	.th			F	From Wes	st		
Start Time	Right	Thru	Left	Peds A	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysis					1 of 1				_			_		_				_		_	
Peak Hour for Entir	re Intersec	tion Begir	ns at 05:1	15 PM																	· · · · · · · · · · · · · · · · · · ·
05:15 PM	0	73	1	0	74	9	0	1	0	10	0	158	0	0	158	0	0	0	0	0	242
05:30 PM	, 0	77	2	0	79	31	0	1	0	32	0	188	0	0	188	. 0	0	0	0	0	299
05:45 PM	0	68	4	0	72	25	0	2	0	27	. 1	150	0	0	151	0	0	0	0	0	250
06:00 PM	0	71	1	0	72	64	0	2	0	66	0	126	0	0	126	. 0	0	0	0	<u>0</u>	264
Total Volume	0	289	8	0	297	129	0	6	0	135	1	622	0	0	623	_ 0	0	0	0	0	1055
% App. Total	0	97.3	2.7	0		95.6	0	4.4	0		0.2	99.8	0	0		. 0	0	0	0		
PHF	.000	.938	.500	.000	.940	.504	.000	.750	.000	.511	.250	.827	.000	.000	.828	.000	.000	.000	.000	.000	.882
Lights	0	279	7	0	286	126	0	6	0	132	1	616	0	0	617	_ 0	0	0	0	0	1035
% Lights	0	96.5	87.5	0	96.3	97.7	0	100	0	97.8	100	99.0	0	0	99.0	0	0	0	0	0	98.1
Buses	0	7	1	0	8	, 1	0	0	0	1	0	6	0	0	6	0	0	0	0	0	15
% Buses	0	2.4	12.5	0	2.7	0.8	0	0	0	0.7	0	1.0	0	0	1.0	. 0	0	0	0	0	1.4
Trucks	0	3	0	0	3	2	0	0	0	2	0	0	0	0	0	0	0	0	0	0	5
% Trucks	0	1.0	0	0	1.0	1.6	0	0	0	1.5	0	0	0	0	0	. 0	0	0	0	0	0.5
Pedestrians	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0
% Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 5-KING_ST_AT_COONEY_HILL_RD_639113_04-02-2019

Site Code:

Start Date : 4/2/2019

							Gi	oups Fi	iiileu- Li	giilo - Duse	5 - HUCKS										
		k	(ING ST		1							ŀ	KING ST				COO	NEY HIL	L RD		
		Fr	om Nort	.h			F	om Eas	t			Fr	om Sout	h			F	rom Wes	st		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
06:30 AM	0	42	0	0	42	0	0	0	0	0	0	32	0	0	32	0	0	0	0	0	74
06:45 AM	0	48	0	0	48	0	0	0	0	0	0	48	0	0	48	0	0	0	0	0	96
Total	0	90	0	0	90	0	0	0	0	0	0	80	0	0	80	0	0	0	0	0	170
07:00 AM	0	54	0	0	54	0	0	0	0	0	0	63	0	0	63	0	0	0	0	0	117
07:15 AM	0	87	0	0	87	0	0	0	0	0	0	76	0	0	76	0	0	0	0	0	163
07:30 AM	0	134	0	0	134	0	0	0	0	0	0	74	0	0	74	0	0	0	0	0	208
07:45 AM	0	138	0	0	138	0	0	0	0	0	0	77	0	0	77	0	0	0	0	0	215
Total	0	413	0	0	413	0	0	0	0	0	0	290	0	0	290	0	0	0	0	0	703
08:00 AM	0	136	0	0	136	0	0	0	0	0	0	86	0	0	86	0	0	0	0	0	222
08:15 AM	1	147	0	0	148	0	0	0	0	0	0	91	0	0	91	0	0	0	0	0	239
08:30 AM	1	129	0	0	130	0	0	0	0	0	0	99	0	0	99	0	0	1	0	1	230
08:45 AM	1	138	0	0	139	0	0	0	0	0	0	82	0	0	82	1	0	0	0	1	222
Total	3	550	0	0	553	0	0	0	0	0	0	358	0	0	358	1	0	1	0	2	913
09:00 AM	2	88	0	0	90	0	0	0	0	0	0	68	0	0	68	0	0	0	0	0	158
09:15 AM	3	79	0	0	82	0	0	0	0	0	0	68	0	0	68	0	0	1	0	1	151
Grand Total	8	1220	0	0	1228	0	0	0	0	0	0	864	0	0	864	1	0	2	0	3	2095
Apprch %	0.7	99.3	0	0		0	0	0	0		0	100	0	0		33.3	0	66.7	0		
Total %	0.4	58.2	0	0	58.6	0	0	0	0	0	0	41.2	0	0	41.2	0	0	0.1	0	0.1	
Lights	8	1171	0	0	1179	0	0	0	0	0	0	802	0	0	802	1	0	1	0	2	1983
% Lights	100	96	0	0	96	0	0	0	0	0	0	92.8	0	0	92.8	100	0	50	0	66.7	94.7
Buses	0	25	0	0	25	0	0	0	0	0	0	28	0	0	28	0	0	0	0	0	53
% Buses	0	2	0	0	2	0	0	0	0	0	0	3.2	0	0	3.2	0	0	0	0	0	2.5
Trucks	0	24	0	0	24	0	0	0	0	0	0	34	0	0	34	0	0	1	0	1	59
% Trucks	0	2	0	0	2	0	0	0	0	0	0	3.9	0	0	3.9	0	0	50	0	33.3	2.8
Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Customer Loyalty Through Client Satisfaction

File Name: 5-KING_ST_AT_COONEY_HILL_RD_639113_04-02-2019

Site Code:

Start Date : 4/2/2019

	1		KING ST										KING ST					NEY HILI			1
		Fr	rom North	<u>n</u>			F	From Eas	t			F	rom Sout	<u>.th</u>			F	rom Wes		!	<i>'</i>
Start Time	Right	Thru	Left	Peds A	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysis					1 of 1				_												
Peak Hour for Entir	re Intersec	tion Begir;	ns at 08:0	JO AM																	. ,
08:00 AM	0	136	0	0	136	. 0	0	0	0	0	0	86	0	0	86	. 0	0	0	0	0	222
08:15 AM	1	147	0	0	148	0	0	0	0	0	0	91	0	0	91	0	0	0	0	0	239
08:30 AM	1	129	0	0	130	0	0	0	0	0	0	99	0	0	99	0	0	1	0	1	230
08:45 AM	1	138	0	0	139	. 0	0	0	0	0	0	82	0	0	82	1	0	0	0	1	222
Total Volume	3	550	0	0	553	0	0	0	0	0	0	358	0	0	358	 1	0	1	0	2	913
% App. Total	0.5	99.5	0	0		0_	0	0	0		0	100	0	0		50	0	50	0		[!]
PHF	.750	.935	.000	.000	.934	.000	.000	.000	.000	.000	.000	.904	.000	.000	.904	.250	.000	.250	.000	.500	.955
Lights	3	528	0	0	531	. 0	0	0	0	0	0	326	0	0	326	,	0	0	0	1	858
% Lights	100	96.0	0	0	96.0	. 0	0	0	0	0	0	91.1	0	0	91.1	100	0	0	0	50.0	94.0
Buses	0	8	0	0	8	0	0	0	0	0	0	14	0	0	14	0	0	0	0	0	22
% Buses	0	1.5	0	0	1.4	. 0	0	0	0	0	0	3.9	0	0	3.9	0	0	0	0	0	2.4
Trucks	0	14	0	0	14	. 0	0	0	0	0	0	18	0	0	18	. 0	0	1	0	1	33
% Trucks	0	2.5	0	0	2.5	. 0	0	0	0	0	0	5.0	0	0	5.0	. 0	0	100	0	50.0	3.6
Pedestrians	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0
% Pedestrians	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0

Customer Loyalty Through Client Satisfaction

File Name: 5-KING_ST_AT_COONEY_HILL_RD_639113_04-02-2019

Site Code:

Start Date : 4/2/2019

	Groups Printed-	Lights - Buses -	Trucks - Pedestrians
--	-----------------	------------------	----------------------

								Toups FT	IIILEU- LI	KING ST COONEY HILL RD											1
	1	ŀ	KING ST	·		i							KING ST	Γ	J	1	COC	ONEY HIL	_L RD	,	1 '
Į	1	F'	rom Nort	th		(F	From Eas	st				From Sout		J	1	F	From Wes	st	,	1 '
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru		Peds	App. Total	Int. Total
11:30 AM	0	41	0	0	41	0	0	0	0	0	. 0	41	0	0	41	0	0	1	0	1 '	83
11:45 AM	0	37	0	0	37	0	0	0	0	0	. 0	53	0	0	53	0	0	0	0	0 '	90
Total	0	78	0	0	78	0	0	0	0	0	0	94	0	0	94	0	0	1	0	1	173
	-	-	-	•		-	-	-			-	-	-			-	-				- 1
12:00 PM	0	41	0	0	41	0	0	0	0	0	. 0	51	0	0	51	. 0	0	0	0	0 '	92
12:15 PM	1	44	0	0	45	0	0	0	0	0	. 0	41	0	0	41	, 1	0	0	0	1 '	87
12:30 PM	1	56	0	0	57	. 0	0	0	0	0	. 0	44	0	0	44	0	0	0	1	1 '	102
12:45 PM	0	49	0	0	49	0_	0	0	0	0	0	43	0	0	43	0_	0	1_	0	1	93
Total	2	190	0	0	192	0	0	0	0	0	0	179	0	0	179	, 1	0	1	1	3	374
1																					,
01:00 PM	0	46	0	0	46	0	0	0	0	0	. 0	45	0	0	45	. 0	0	1	0	1 '	92
01:15 PM	0	44	0	0	44	. 0	0	0	0	0	. 0	54	0	0	54	. 0	0	0	0	0 '	98
Grand Total	2	358	0	0	360	. 0	0	0	0	0	. 0	372	0	0	372	, 1	0	3	1	5	737
Apprch %	0.6	99.4	0	0		0	0	0	0		. 0	100	0	0	J	20	0	60	20	ı	1 '
Total %	0.3	48.6	0	0	48.8	_ 0_	_0_	_ 0	0	0	_ 0_	50.5	0	0	50.5	0.1	0	0.4	0.1	0.7	ı <u> </u>
Lights	2	338	0	0	340	0	0	0	0	0	0	358	0	0	358	, 1	0	3	0	4	702
% Lights	100	94.4	0	0	94.4	0	0	0	0	0	0	96.2	0	0	96.2	100	0	100	0	80	95.3
Buses	0	1	0	0	1	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0 '	2
% Buses	0	0.3	0	0	0.3	0_	0	0	0	0	0	0.3	0	0	0.3	0_	0	0	0	0	0.3
Trucks	0	19	0	0	19	0	0	0	0	0	0	13	0	0	13	0	0	0	0	0 '	32
% Trucks	0	5.3	0	0	5.3	0_	0	0	0	0	0	3.5	0	0	3.5	0_	0	0	0	0	4.3
Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
% Pedestrians	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	. 0	0	0	100	20	0.1
4																					

Customer Loyalty Through Client Satisfaction

File Name: 5-KING_ST_AT_COONEY_HILL_RD_639113_04-02-2019

Site Code:

Start Date : 4/2/2019

	1		KING ST										KING ST					NEY HIL			
		Fr	rom North	<u>n</u>			F	From Eas	t			F	rom Sout	<u>.th</u>			F	From Wes			<i>'</i>
Start Time	Right	Thru	Left	Peds A	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysis					1 of 1	_					-										,
Peak Hour for Entir	re Intersec	tion Begir;	is at 12:3	30 PM																	
12:30 PM	1	56	0	0	57	. 0	0	0	0	0	0	44	0	0	44	. 0	0	0	1	1	102
12:45 PM	0	49	0	0	49	. 0	0	0	0	0	0	43	0	0	43	0	0	1	0	1	93
01:00 PM	0	46	0	0	46	. 0	0	0	0	0	0	45	0	0	45	0	0	1	0	1	92
01:15 PM	0	44	0	0	44	. 0_	0	0	0	0	0	54	0	0	54	. 0	0	0	0	0	98_
Total Volume	1	195	0	0	196	0	0	0	0	0	0	186	0	0	186	0	0	2	1	3	385
% App. Total	0.5	99.5	0	0		0	0	0	0		0_	100	0	0		. 0	0	66.7	33.3	!	
PHF	.250	.871	.000	.000	.860	.000	.000	.000	.000	.000	.000	.861	.000	.000	.861	.000	.000	.500	.250	.750	.944
Lights	1	183	0	0	184	. 0	0	0	0	0	0	178	0	0	178	_ 0	0	2	0	2	364
% Lights	100	93.8	0	0	93.9	, 0	0	0	0	0	0	95.7	0	0	95.7	. 0	0	100	0	66.7	94.5
Buses	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1 '
% Buses	0	0.5	0	0	0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.3
Trucks	0	11	0	0	11	, 0	0	0	0	0	0	8	0	0	8	. 0	0	0	0	0	19
% Trucks	0	5.6	0	0	5.6	. 0	0	0	0	0	0	4.3	0	0	4.3	. 0	0	0	0	0	4.9
Pedestrians	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	. 0	0	0	1	1	1
% Pedestrians	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0	100	33.3	0.3

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 5-KING_ST_AT_COONEY_HILL_RD_639113_04-02-2019

Site Code:

Start Date : 4/2/2019

							OI.	oups i i	iiileu- Li	giilo - Duoc	3 - HUUKS										
		ŀ	(ING ST									I	KING ST	-							
		Fr	om Nort	h			F	rom Eas	t			Fı	rom Sou	th			F	rom We	st		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
04:00 PM	0	72	0	0	72	0	0	0	0	0	0	93	0	0	93	0	0	0	0	0	165
04:15 PM	0	60	0	0	60	0	0	0	0	0	0	111	0	0	111	0	0	0	0	0	171
04:30 PM	1	73	0	0	74	0	0	0	0	0	0	109	1	0	110	0	0	0	0	0	184
04:45 PM	11	64	0	0	65	0	0	0	0	0	0	96	0	0	96	1_	0	1_	0	2	163_
Total	2	269	0	0	271	0	0	0	0	0	0	409	1	0	410	1	0	1	0	2	683
05:00 PM	0	59	0	0	59	0	0	0	0	0	0	127	0	0	127	0	0	1	0	1	187
05:15 PM	0	73	0	0	73	0	0	0	0	0	0	161	0	0	161	0	0	0	0	0	234
05:30 PM	0	82	0	0	82	0	0	0	0	0	0	191	0	0	191	0	0	0	0	0	273
05:45 PM	0	67	0	0	67	0	0	0	0	0	0	148	0	0	148	0	0	1_	0	1	216
Total	0	281	0	0	281	0	0	0	0	0	0	627	0	0	627	0	0	2	0	2	910
06:00 PM	0	71	0	0	71	0	0	0	0	0	0	117	0	0	117	0	0	0	0	0	188
06:15 PM	0	80	0	0	80	0	0	0	0	0	0	93	0	0	93	0	0	0	0	0	173
Grand Total	2	701	0	0	703	0	0	0	0	0	0	1246	1	0	1247	1	0	3	0	4	1954
Apprch %	0.3	99.7	0	0		0	0	0	0		0	99.9	0.1	0		25	0	75	0		
Total %	0.1	35.9	0	0	36	0	0	0	0	0	0	63.8	0.1	0	63.8	0.1	0	0.2	0	0.2	
Lights	2	672	0	0	674	0	0	0	0	0	0	1216	1	0	1217	1	0	3	0	4	1895
% Lights	100	95.9	0	0	95.9	0	0	0	0	0	0	97.6	100	0	97.6	100	0	100	0	100	97_
Buses	0	13	0	0	13	0	0	0	0	0	0	17	0	0	17	0	0	0	0	0	30
% Buses	0	1.9	0	0	1.8	0	0	0	0	0	0	1.4	0	0	1.4	0	0	0	0	0	1.5
Trucks	0	16	0	0	16	0	0	0	0	0	0	13	0	0	13	0	0	0	0	0	29
% Trucks	0	2.3	0	0	2.3	0	0	0	0	0	0	1_	0	0	1	0	0	0	0	0	1.5
Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Customer Loyalty Through Client Satisfaction

File Name: 5-KING_ST_AT_COONEY_HILL_RD_639113_04-02-2019

Site Code:

Start Date : 4/2/2019

		<u>k</u>	KING ST										KING ST	Γ T							
			rom North				F	From Eas	st				rom Sout				F	rom Wes	st	J	
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysis					(1 of 1																
Peak Hour for Entir	re Intersec	tion Begir	∩s at 05:1	15 PM																	. ,
05:15 PM	0	73	0	0	73	0	0	0	0	0	0	161	0	0	161	0	0	0	0	0	234
05:30 PM	0	82	0	0	82	0	0	0	0	0	0	191	0	0	191	. 0	0	0	0	0	273
05:45 PM	0	67	0	0	67	0	0	0	0	0	0	148	0	0	148	0	0	1	0	1	216
06:00 PM	0	71	0	0	71	0	0	0	0	0	0	117	0	0	117	0	0	0	0	0	188
Total Volume	0	293	0	0	293	0	0	0	0	0	0	617	0	0	617	. 0	0	1	0	1	911
% App. Total	0	100	0	0		0	0	0	0		0	100	0	0		0_	0	100	0		
PHF	.000	.893	.000	.000	.893	.000	.000	.000	.000	.000	.000	.808	.000	.000	.808	.000	.000	.250	.000	.250	.834
Lights	0	284	0	0	284	0	0	0	0	0	0	607	0	0	607	. 0	0	1	0	1	892
% Lights	0	96.9	0	0	96.9	0	0	0	0	0	0	98.4	0	0	98.4	. 0	0	100	0	100	97.9
Buses	0	6	0	0	6	0	0	0	0	0	0	6	0	0	6	. 0	0	0	0	0	12
% Buses	0	2.0	0	0	2.0	0	0	0	0	0	0	1.0	0	0	1.0	. 0	0	0	0	0	1.3
Trucks	0	3	0	0	3	0	0	0	0	0	0	4	0	0	4	. 0	0	0	0	0	, 7
% Trucks	0	1.0	0	0	1.0	0	0	0	0	0	0	0.6	0	0	0.6	. 0	0	0	0	0	0.8
Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0
% Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	, 0	0	0	0	0	0

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 6-KING_ST_AT_AMERICAN_LANE_113_KING_ST_DRIVEWAY_639114_04-02-2019

Site Code:

Start Date : 4/2/2019

Page No : 1

			KING ST					RICAN L		ignis - buse:	5 - HUCKS		KING ST		1		<u></u>	, '			
	1		rom Nort					From East					rom Sou		[113 KINC	rom Wes			, ,
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
	Right			Peus		Right 0	nru O	Leit	Peus	App. rotai	Kigrit	32	Leit	Peus_		Right 0	nnru j O	Lent O	Peus	App. rotar	
06:30 AM 06:45 AM		37 44	0 0	0	37	"	0	0	0	1	9	32 48	1	0	40 58	1	0	0	1	2	78 104
Total	0	81	0	0	81	0	0	1	0	0	16	80 80	2	0		1	0	0			104 182
างเลา	, 0	δı	U	U	01	U	U	ı	U	1	10	δυ	2	U	98	1	U	U	I	2	102
07:00 AM	0	56	0	0	56	l o	0	1	0	1	12	60	0	0	72	0	0	0	0	0	129
07:15 AM	0	87	0	0	87	. 0	0	3	0	3	10	77	0	0	87	0	0	0	0	0	177
07:30 AM	0	132	0	0	132	Ō	0	1	0	1	19	68	0	0	87	0	0	0	0	0	220
07:45 AM	Ō	139	1	0	140	0	0	0	1	1	16	83	2	0	101	0	Ō	0	0	0	242
Total	0	414	1	0	415	0	0	5	1	6	57	288	2	0	347	0	0	0	0	0	768
i ·					•																ŗ
08:00 AM	0	129	0	0	129	0	0	6	0	6	24	85	1	0	110	0	0	1	0	1	246
08:15 AM	0	141	0	0	141	0	0	3	0	3	22	90	0	0	112	0	0	0	0	0	256
08:30 AM	0	133	1	0	134	0	0	4	0	4	33	96	1	0	130	1	0	0	0	1	269
08:45 AM	0	142	0	0	142	0	0	2	0	2	56	85	0	0	141	0	0	0	0	0	285
Total	0	545	1	0	546	0	0	15	0	15	135	356	2	0	493	1	0	1	0	2	
i ·					•					•											l
09:00 AM	1	96	0	0	97	0	0	7	0	7	61	65	0	0	126	1	0	0	0	1	231
09:15 AM	0	78	0	0	78	. 0	0	4	0	4	53	71	0	0	124	0	0	0	0	0	206
Grand Total	1	1214	2	0	1217	. 0	0	32	1	33	322	860	6	0	1188	3	0	1	1	5	2443
Apprch %	0.1	99.8	0.2	0		. 0	0	97	3		27.1	72.4	0.5	0	1	60	0	20	20	ļ	1
Total %	0	49.7	0.1	0	49.8	. 0	0	1.3	0	1.4	13.2	35.2	0.2	0	48.6	0.1	0	0	0	0.2	1
Lights	1	1171	2	0	1174	0	0	28	0	28	314	797	6	0	1117	3	0	1	0	4	2323
% Lights	100	96.5	100	0	96.5	0	0	87.5	0	84.8	97.5	92.7	100	0	94	100	0	100	0	80	95.1
Buses	0	24	0	0	24	0	0	1	0	1	1	29	0	0	30	0	0	0	0	0	55
% Buses	0	2	0	0	2	0	0	3.1	0	3	0.3	3.4	0	0	2.5	0	0	0	0	0	2.3
Trucks	0	19	0	0	19	0	0	3	0	3	7	34	0	0	41	0	0	0	0	0	63
% Trucks	0	1.6	0	0	1.6	0	0	9.4	0	9.1	2.2	4	0	0	3.5	0	0	0	0	0	2.6
Pedestrians	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	1	1	2
% Pedestrians	0	0	0	0	0	0	0	0	100	3	0	0	0	0	0	0	0	0	100	20	0.1
4																					

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 6-KING_ST_AT_AMERICAN_LANE_113_KING_ST_DRIVEWAY_639114_04-02-2019

Site Code:

Start Date : 4/2/2019

Ī		F	KING ST				AME	RICAN L	ANE				KING ST	Γ			Υ	1			
		F	rom North	Λ			F	From Eas	t			F	rom Sout	ith			F	rom Wes	st	!	
Start Time	Right	Thru	Left	Peds /	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysis					1 of 1				_												
Peak Hour for Entir	re Intersec	tion Begir;	ns at 08:€	JO AM																	
08:00 AM	0	129	0	0	129	, 0	0	6	0	6	24	85	1	0	110	0	0	1	0	1	246
08:15 AM	0	141	0	0	141	0	0	3	0	3	22	90	0	0	112	0	0	0	0	0	256
08:30 AM	0	133	1	0	134	, 0	0	4	0	4	33	96	1	0	130	. 1	0	0	0	1	269
08:45 AM	0	142	0	0	142	. 0	0	2	0	2	56	85	0	0	141	0	0	0	0	<u>0</u>	285
Total Volume	0	545	1	0	546	0	0	15	0	15	135	356	2	0	493	1	0	1	0	2	1056
% App. Total	0	99.8	0.2	0		0	0	100	0		27.4	72.2	0.4	0		50	0	50	0		<u> </u>
PHF	.000	.960	.250	.000	.961	.000	.000	.625	.000	.625	.603	.927	.500	.000	.874	.250	.000	.250	.000	.500	.926
Lights	0	526	1	0	527	0	0	13	0	13	130	323	2	0	455	1	0	1	0	2	997
% Lights	0	96.5	100	0	96.5	0	0	86.7	0	86.7	96.3	90.7	100	0	92.3	100	0	100	0	100	94.4
Buses	0	9	0	0	9	, 0	0	0	0	0	1	15	0	0	16	0	0	0	0	0	25
% Buses	0	1.7	0	0	1.6	0	0	0	0	0	0.7	4.2	0	0	3.2	0	0	0	0	0	2.4
Trucks	0	10	0	0	10	, 0	0	2	0	2	4	18	0	0	22	0	0	0	0	0	34
% Trucks	0	1.8	0	0	1.8	, 0	0	13.3	0	13.3	3.0	5.1	0	0	4.5	0	0	0	0	0	3.2
Pedestrians	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 6-KING_ST_AT_AMERICAN_LANE_113_KING_ST_DRIVEWAY_639114_04-02-2019

Site Code:

Start Date : 4/2/2019

Page No : 1

		 1	KING ST		$\overline{}$			RICAN L		igilis - Duse:	5 - TIUCKS		KING ST	-			113 KIN	IG ST DRI	VEWA	<u></u>	1
			rom Nort					From Eas					rom Sout					From Wes			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
11:30 AM	0	43	0	0	43	1	0	2	0	3	5	42	0	0	47	0	0	0	0	0	93
11:45 AM	0	37	0	0	37	. 0	0	4	0	4	5	53	0	0	58	1	0	0	0	1_	100
Total	0	80	0	0	80	. 1	0	6	0	7	10	95	0	0	105	1	0	0	0	1	193
1																					. ,
12:00 PM	0	36	0	0	36	0	0	0	1	1	1	52	0	0	53	0	0	0	0	0	90
12:15 PM	0	45	2	0	47	, 1	0	5	0	6	4	41	0	0	45	0	0	0	0	0	98
12:30 PM	0	59	0	0	59	. 0	0	5	0	5	4	43	0	0	47	0	0	0	0	0	111
12:45 PM	0	44	11	0	45	0_	0	5	0	5	7	44	0	0	51	0	0	0	0	0	101
Total	0	184	3	0	187	. 1	0	15	1	17	16	180	0	0	196	0	0	0	0	0	400
01:00 PM	0	49	1	0	50	0	0	5	0	5	3	42	0	0	45	0	0	0	0	0	100
01:15 PM	0	39	0	0	39	. 0	0	3	1	4	7	56	0	0	63	0	0	0	0	0	106
Grand Total	0	352	4	0	356	2	0	29	2	33	36	373	0	0	409	1	0	0	0	1	799
Apprch %	0	98.9	1.1	0		6.1	0	87.9	6.1		8.8	91.2	0	0		100	0	0	0	J	1
Total %	0	44.1	0.5	0	44.6	0.3	0	3.6	0.3	4.1	4.5	46.7	0	0	51.2	0.1	0	0	0	0.1	
Lights	0	333	3	0	336	2	0	27	0	29	33	359	0	0	392	1	0	0	0	1	758
% Lights	0	94.6	75	0	94.4	100	0	93.1	0	87.9	91.7	96.2	0	0	95.8	100	0	0	0	100	94.9
Buses	0	1	0	0	1	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	2
% Buses	0	0.3	0	0	0.3	. 0	0	0	0	0	0	0.3	0	0	0.2	0	0	0	0	0	0.3
Trucks	0	18	1	0	19	0	0	2	0	2	3	13	0	0	16	0	0	0	0	0	37
% Trucks	0	5.1	25	0	5.3	0_	0	6.9	0	6.1	8.3	3.5	0	0	3.9	0	0	0	0	0	4.6
Pedestrians	0	0	0	0	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	2
% Pedestrians	0	0	0	0	0	. 0	0	0	100	6.1	0	0	0	0	0	0	0	0	0	0	0.3

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 6-KING_ST_AT_AMERICAN_LANE_113_KING_ST_DRIVEWAY_639114_04-02-2019

Site Code:

Start Date : 4/2/2019

Ţ		1	KING ST				AME	RICAN L	ANE				KING ST	ī			113 KIN ⁽	G ST DRI	IVEWA	7	1
		<u> </u>	rom North	.n			F	rom Eas	t			F	rom Sout	ıth			F	rom Wes	<u>st</u>		'
Start Time	Right	Thru	Left	Peds /	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysis					1 of 1			_	_								_		_		
Peak Hour for Entir	re Intersec	tion Begi	ns at 12:?	30 PM																	
12:30 PM	0	59	0	0	59	0	0	5	0	5	4	43	0	0	47	. 0	0	0	0	0	111
12:45 PM	0	44	1	0	45	0	0	5	0	5	7	44	0	0	51	. 0	0	0	0	0	101
01:00 PM	0	49	1	0	50	, 0	0	5	0	5	3	42	0	0	45	. 0	0	0	0	0	100
01:15 PM	0	39	0	0	39	0	0	3_	1_	4	7	56	0	0	63	0	0	0	0	0	106
Total Volume	0	191	2	0	193	0	0	18	1	19	21	185	0	0	206	, 0	0	0	0	0	418
% App. Total	0	99	11	0		0	0	94.7	5.3		10.2	89.8	0	0		0_	0	0	0		!
PHF	.000	.809	.500	.000	.818	.000	.000	.900	.250	.950	.750	.826	.000	.000	.817	.000	.000	.000	.000	.000	.941
Lights	0	179	1	0	180	0	0	17	0	17	21	179	0	0	200	, 0	0	0	0	0	397
% Lights	0	93.7	50.0	0	93.3	0	0	94.4	0	89.5	100	96.8	0	0	97.1	. 0	0	0	0	0	95.0
Buses	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	1 '
% Buses	0	0.5	0	0	0.5	, 0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0.2
Trucks	0	11	1	0	12	0	0	1	0	1	0	6	0	0	6	. 0	0	0	0	0	19
% Trucks	0	5.8	50.0	0	6.2	, 0	0	5.6	0	5.3	0	3.2	0	0	2.9	. 0	0	0	0	0	4.5
Pedestrians	0	0	0	0	0	, 0	0	0	1	1	0	0	0	0	0	. 0	0	0	0	0	1
% Pedestrians	0	0	0	0	0	. 0	0	0	100	5.3	0	0	0	0	0	0	0	0	0	0	0.2

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 6-KING_ST_AT_AMERICAN_LANE_113_KING_ST_DRIVEWAY_639114_04-02-2019

Site Code:

Start Date : 4/2/2019

Page No : 1

			KING ST					RICAN L		ignto Baset	<u> </u>		KING ST				113 KINC	2 ST DB	Ι\/Ε\Λ/Δ\	<i>y</i>	
			rom Nortl					rom Eas					rom Sout					rom We		' I	, 7
Start Time	Right	Thru	Left		App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
04:00 PM	0	72	0	0	7.50. 10.0.	0	0	11	0	11	5	89	0	0	94	0	0	0	0	0	177
04:15 PM	Õ	59	0	0	59	Õ	0	7	0	7	0	112	0	0	112	0	0	0	0	ŏ	178
04:30 PM	0	77	1	0	78	0	0	11	0	11	2	108	0	0	110	0	0	0	0	ŏ	199
04:45 PM	0	58	0	0	58	1	0	6	0	7	4	95	0	0	99	0	0	0	0	ŏ	164
Total	0	266	1	0	267	<u></u>	0	35	0	36	11	404	0	0	415	0	0	0	0	0	718
10.0.	•	200	•	Ü	20.	•	J	00		00			Ū	·	1101	J	Ü	Č	·	~ 1	
05:00 PM	0	63	0	0	63	0	0	16	0	16	3	129	0	0	132	0	0	0	0	0	211
05:15 PM	0	68	0	0	68	0	0	16	0	16	5	157	0	0	162	0	0	0	1	1	247
05:30 PM	0	83	0	0	83	0	0	26	0	26	4	193	0	0	197	0	0	0	0	0	306
05:45 PM	0	67	0	0	67	0	0	33	0	33	6	146	0	0	152	0	0	0	0	0	252
Total	0	281	0	0	281	0	0	91	0	91	18	625	0	0	643	0	0	0	1	1	1016
06:00 PM	1	74	2	0	77	0	0	43	0	43	4	121	0	0	125	0	0	0	0	0	245
06:15 PM	0	76	0	0	76	0	0	36	0	36	2	88	0	0	90	0	0	1	0	1	203
Grand Total	1	697	3	0	701	1	0	205	0	206	35	1238	0	0	1273	0	0	1	1	2	2182
Apprch %	0.1	99.4	0.4	0		0.5	0	99.5	0		2.7	97.3	0	0		0	0	50	50	I	, 7
Total %	0	31.9	0.1	0	32.1	0	00	9.4	0	9.4	1.6	56.7	0	0	58.3	0	0	0	0	0.1	<i>[</i>
Lights	1	666	3	0	670	1	0	201	0	202	32	1212	0	0	1244	0	0	1	0	1	2117
% Lights	100	95.6	100	0	95.6	100	0	98	0	98.1	91.4	97.9	0	0	97.7	0	0	100	0	50	97
Buses	0	13	0	0	13	0	0	3	0	3	1	17	0	0	18	0	0	0	0	0	34
% Buses	0	1.9	0	0	1.9	0	0	1.5	0	1.5	2.9	1.4	0	0	1.4	0	0	0	0	0	1.6
Trucks	0	18	0	0	18	0	0	1	0	1	2	9	0	0	11	0	0	0	0	0	30
% Trucks	0	2.6	0	0	2.6	0	00	0.5	0	0.5	5.7	0.7	0	0	0.9	0	0	0	0	0	1.4
Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	. 1
% Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	50	, 0

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 6-KING_ST_AT_AMERICAN_LANE_113_KING_ST_DRIVEWAY_639114_04-02-2019

Site Code:

Start Date : 4/2/2019

		<u>F</u>	KING ST				AME	RICAN L	ANE				KING ST	<u>-</u>			113 KIN ⁽	G ST DRI	IVEWA	<u></u>	
		<u>F</u> r	rom North	n			F	From Eas	<u>t</u>			F	From Sout	.th			F	rom Wes	<u>st</u>		
Start Time	Right	Thru	Left	Peds /	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysis					1 of 1							_		_					_	_	
Peak Hour for Entir																					. ,
05:15 PM	0	68	0	0	68	0	0	16	0	16	5	157	0	0	162	. 0	0	0	1	1	247
05:30 PM	0	83	0	0	83	0	0	26	0	26	4	193	0	0	197	. 0	0	0	0	0	306
05:45 PM	0	67	0	0	67	, 0	0	33	0	33	6	146	0	0	152	. 0	0	0	0	0	252
06:00 PM	1	74	2	0	77	0	0	43	0	43	4	121	0	0	125	0	0	0	0	0	245
Total Volume	1	292	2	0	295	0	0	118	0	118	19	617	0	0	636	, 0	0	0	1	1	1050
% App. Total	0.3	99	0.7	0		0	0	100	0		3	97	0	0		0_	0	0	100		<u> </u>
PHF	.250	.880	.250	.000	.889	.000	.000	.686	.000	.686	.792	.799	.000	.000	.807	.000	.000	.000	.250	.250	.858
Lights	1	282	2	0	285	0	0	116	0	116	17	608	0	0	625	, 0	0	0	0	0	1026
% Lights	100	96.6	100	0	96.6	0	0	98.3	0	98.3	89.5	98.5	0	0	98.3	. 0	0	0	0	0	97.7
Buses	0	6	0	0	6	, 0	0	1	0	1	1	6	0	0	7	. 0	0	0	0	0	14
% Buses	0	2.1	0	0	2.0	. 0	0	0.8	0	0.8	5.3	1.0	0	0	1.1	. 0	0	0	0	0	1.3
Trucks	0	4	0	0	4	, 0	0	1	0	1	1	3	0	0	4	. 0	0	0	0	0	9
% Trucks	0	1.4	0	0	1.4	, 0	0	0.8	0	0.8	5.3	0.5	0	0	0.6	. 0	0	0	0	0	0.9
Pedestrians	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	. 0	0	0	1	1	1
% Pedestrians	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0	100	100	0.1

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 7-KING_ST-PURCHASE_ST_AT_GATEWAY_LANE_639115_04-02-2019

Site Code:

Start Date : 4/2/2019

		IZINIO OT	- DUDOI	1405.05	- -					ignis - buse					- 1						, ,
	ĺ	KING ST			i		_	EWAY LA				KING ST					_				, P
			rom Nort					From Eas					om Sout					rom Wes			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
06:30 AM	0	37	5	0	42	10	0	12	0	22	12	36	0	0	48	0	0	0	0	0	112
06:45 AM	0	35	6	0	41	19	00	6	0	25	11	45	0	0	56	00	0	0	0	0	122
Total	0	72	11	0	83	29	0	18	0	47	23	81	0	0	104	0	0	0	0	0	234
	ı				1															r	, <i>,</i>
07:00 AM	0	35	16	0	51	23	0	9	0	32	4	44	0	0	48	0	0	0	0	0	131
07:15 AM	0	62	26	0	88	25	0	15	0	40	9	66	0	0	75	0	0	0	0	0	203
07:30 AM	0	91	48	0	139	30	0	17	0	47	8	65	0	0	73	0	0	0	0	0	259
07:45 AM	0	90	42	0	132	35	0	19	0	54	11	57	0	0	68	0	0	0	0	0	254
Total	0	278	132	0	410	113	0	60	0	173	32	232	0	0	264	0	0	0	0	0	847
i .																					
08:00 AM	0	81	50	0	131	44	0	23	0	67	13	67	0	0	80	0	0	0	0	0	278
08:15 AM	0	105	44	0	149	47	0	8	0	55	8	74	0	0	82	0	0	0	0	0	286
08:30 AM	0	88	44	0	132	43	0	11	0	54	4	86	0	0	90	0	0	0	0	0	276
08:45 AM	0	92	47	0	139	50	0	9	0	59	17	90	0	0	107	0	0	0	0	0	305
Total	0	366	185	0	551	184	0	51	0	235	42	317	0	0	359	0	0	0	0	0	1145
										•											ŀ
09:00 AM	0	73	34	0	107	49	0	17	0	66	8	72	0	0	80	0	0	0	0	0	253
09:15 AM	0	56	30	Ō	86	39	0	12	0	51	8	84	Ö	0	92	Ō	0	0	0	o l	229
Grand Total	Ö	845	392	0	1237	414	0	158	0	572	113	786	Ō	0	899	0	0	0	0	o l	2708
Apprch %	0	68.3	31.7	0		72.4	0	27.6	0	-	12.6	87.4	0	0		0	0	0	0	-	
Total %	Ö	31.2	14.5	Ö	45.7	15.3	Ō	5.8	0	21.1	4.2	29	Ö	Ō	33.2	Ō	Ō	Ō	0	0	. !
Lights	0	808	377	0	1185	406	0	150	0	556	97	726	0	0	823	0	0	0	0	0	2564
% Lights	o o	95.6	96.2	0	95.8	98.1	0	94.9	0	97.2	85.8	92.4	0	0	91.5	0	0	0	0	0	94.7
Buses	0	22	7	0	29	7	0	5	0	12	1	23	0	0	24	0	0	0	0	0	65
% Buses	0	2.6	1.8	0	2.3	1.7	0	3.2	0	2.1	0.9	2.9	0	0	2.7	0	0	0	0	0	2.4
Trucks	0	15	8	0	23	1	0	3	0	4	15	37	0	0	52	0	0	0	0	0	79
% Trucks	0	1.8	2	0	1.9	0.2	0	1.9	0	0.7	13.3	4.7	0	0	5.8	0	0	0	0	ő	2.9
Pedestrians	0	0	0	0	0	0.2	0	0	0	0.7	0	0	0	0	0.0	0	0	0	0	0	
% Pedestrians	0	0	0	0	ő	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0
70 T edesiriaris	, 0	U	U	U	0	U	U	U	U	O	U	U	U	U	0	U	U	U	U	0	U I

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 7-KING_ST-PURCHASE_ST_AT_GATEWAY_LANE_639115_04-02-2019

Site Code:

Start Date : 4/2/2019

		KING ST	-PURCH	ASE ST			GAT	EWAY L	ANE			KING S7	T-PURCH	ASE S7	r						1
		E'	rom North	n			F	From Eas	st			F	rom Sout	th			F	rom Wes	st	!	·
Start Time	Right	Thru	Left		App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysis					1 of 1																
Peak Hour for Entir	re Intersec	tion Begi [,]	ns at 08:0	JO AM		,															
08:00 AM	0	81	50	0	131	44	0	23	0	67	13	67	0	0	80	0	0	0	0	0	278
08:15 AM	0	105	44	0	149	47	0	8	0	55	8	74	0	0	82	. 0	0	0	0	0	286
08:30 AM	0	88	44	0	132	43	0	11	0	54	4	86	0	0	90	. 0	0	0	0	0	276
08:45 AM	0	92	47	0	139	50	0	9	0	59	17	90	0	0	107	0	0	0	0	0	305
Total Volume	0	366	185	0	551	184	0	51	0	235	42	317	0	0	359	. 0	0	0	0	0	1145
% App. Total	0	66.4	33.6	0		78.3	0	21.7	0		11.7	88.3	0	0		0	0	0	0		[!]
PHF	.000	.871	.925	.000	.924	.920	.000	.554	.000	.877	.618	.881	.000	.000	.839	.000	.000	.000	.000	.000	.939
Lights	0	352	179	0	531	180	0	50	0	230	36	286	0	0	322	, 0	0	0	0	0	1083
% Lights	0	96.2	96.8	0	96.4	97.8	0	98.0	0	97.9	85.7	90.2	0	0	89.7	. 0	0	0	0	0	94.6
Buses	0	8	3	0	11	4	0	1	0	5	0	13	0	0	13	, 0	0	0	0	0	29
% Buses	0	2.2	1.6	0	2.0	2.2	0	2.0	0	2.1	0	4.1	0	0	3.6	. 0	0	0	0	0	2.5
Trucks	0	6	3	0	9	0	0	0	0	0	6	18	0	0	24	. 0	0	0	0	0	33
% Trucks	0	1.6	1.6	0	1.6	. 0	0	0	0	0	14.3	5.7	0	0	6.7	. 0	0	0	0	0	2.9
Pedestrians	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0
% Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	, 0

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 7-KING_ST-PURCHASE_ST_AT_GATEWAY_LANE_639115_04-02-2019

Site Code:

Start Date : 4/2/2019

										ignis - buse											1
	1	KING ST	-PURCH	HASE ST	f l	(GAT'	TEWAY L	_ANE			KING S7	T-PURCH	HASE ST	f l					,	1 '
	1	F	rom Nort	th			F	From Eas	st			F	rom Sou	<i>i</i> th				From Wes	t	'	'
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
11:30 AM	0	34	12	0	46	16	0	12	0	28	10	36	0	0	46	0	0	0	0	0 '	120
11:45 AM	0	25	19	0	44	16	0	13	0	29	13	39	0	0	52	. 0	0	0	0	0 '	125
Total	0	59	31	0	90	32	0	25	0	57	23	75	0	0	98	0	0	0	0	0	245
·										•											,
12:00 PM	0	27	9	0	36	15	0	14	0	29	7	37	0	0	44	. 0	0	0	0	0 '	109
12:15 PM	0	39	10	0	49	15	0	6	0	21	10	30	0	0	40	. 0	0	0	0	0 '	110
12:30 PM	0	51	14	0	65	10	0	10	0	20	7	32	0	0	39	. 0	0	0	0	0 '	124
12:45 PM	0	36	13	0	49	21	_0_	10	0	31	9	29	0_	0	38	_ 0	_ 0_	_0_	_ 0	0	118
Total	0	153	46	0	199	61	0	40	0	101	33	128	0	0	161	0	0	0	0	0	461
<i>i</i>										•					,						ļ
01:00 PM	0	29	17	0	46	11	0	16	0	27	10	34	0	0	44	0	0	0	0	0	117
01:15 PM	0	30	18	0	48	17	0	12	0	29	6	44	0	0	50	. 0	0	0	0	0 '	127
Grand Total	0	271	112	0	383	121	0	93	0	214	72	281	0	0	353	. 0	0	0	0	0 '	950
Apprch %	0	70.8	29.2	0		56.5	0	43.5	0		20.4	79.6	0	0		. 0	0	0	0	1	1
Total %	0	28.5	11.8	0	40.3	12.7	0	9.8	0	22.5	7.6	29.6	0	0	37.2	. 0	0	0	0	0 '	1
Lights	0	253	109	0	362	114	0	83	0	197	61	274	0	0	335	0	0	0	0	0	894
% Lights	0	93.4	97.3	0	94.5	94.2	0	89.2	0	92.1	84.7	97.5	0	0	94.9	0	0	0	0	0 '	94.1
Buses	0	1	0	0	1	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	2
% Buses	0	0.4	0	0	0.3	ı O	0	0	0	0	0	0.4	0	0	0.3	. 0	0	0	0	0 '	0.2
Trucks	0	17	3	0	20	7	0	10	0	17	11	6	0	0	17	0	0	0	0	0	54
% Trucks	Ö	6.3	2.7	0	5.2	5.8	0	10.8	0	7.9	15.3	2.1	0	0	4.8	0	0	0	0	0 '	5.7
Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Pedestrians	0	0	0	0	0	ı O	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0
1	_	_	_	_	- 1	-	_	_	_	- 1	_	_	_	_	- '	-	_	-	_	- 1	_

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 7-KING_ST-PURCHASE_ST_AT_GATEWAY_LANE_639115_04-02-2019

Site Code:

Start Date : 4/2/2019

ļ		KING ST-					_	EWAY L					T-PURCH		ī						1
		Fr	rom North	Λ			F	From Eas	<u>t</u>			F	rom Sout	.th			F	rom Wes			
Start Time	Right	Thru	Left	Peds A	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysis					1 of 1				_	_		_					_	_			
Peak Hour for Entir	re Intersec	tion Begir	∩s at 12:3	30 PM						,											. ,
12:30 PM	, 0	51	14	0	65	10	0	10	0	20	7	32	0	0	39	. 0	0	0	0	0	124
12:45 PM	0	36	13	0	49	21	0	10	0	31	9	29	0	0	38	, 0	0	0	0	0	118
01:00 PM	0	29	17	0	46	11	0	16	0	27	10	34	0	0	44	. 0	0	0	0	0	117
01:15 PM	0	30	18	0	48	17	0	12	0	29	6	44	0	0	50	0_	0	0	0	0	127
Total Volume	0	146	62	0	208	59	0	48	0	107	32	139	0	0	171	0	0	0	0	0	486
% App. Total	. 0	70.2	29.8	0		55.1	0	44.9	0		18.7	81.3	0	0		0_	0	0	0		·
PHF	.000	.716	.861	.000	.800	.702	.000	.750	.000	.863	.800	.790	.000	.000	.855	.000	.000	.000	.000	.000	.957
Lights	0	134	61	0	195	55	0	44	0	99	26	138	0	0	164	0	0	0	0	0	458
% Lights	0	91.8	98.4	0	93.8	93.2	0	91.7	0	92.5	81.3	99.3	0	0	95.9	0	0	0	0	0	94.2
Buses	, 0	1	0	0	1	, 0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	1 '
% Buses	, 0	0.7	0	0	0.5	, 0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0.2
Trucks	0	11	1	0	12	4	0	4	0	8	6	1	0	0	7	0	0	0	0	0	27
% Trucks	, 0	7.5	1.6	0	5.8	6.8	0	8.3	0	7.5	18.8	0.7	0	0	4.1	. 0	0	0	0	0	5.6
Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	, 0	0	0	0	0	0
% Pedestrians	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 7-KING_ST-PURCHASE_ST_AT_GATEWAY_LANE_639115_04-02-2019

Site Code:

Start Date : 4/2/2019

1		KING ST		HASES	г			ΓEWAY L		gine Baco	o madica	KING ST		HASES	r T						1
			rom Nort			(From Eas					rom Sou		1	ı	г	From Wes	ct	1	1
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
04:00 PM		51	32	0	83	33	0	18	0	51	9	62	0	0	71	ntight	0	0	0	0	205
04:15 PM		42	25	Õ	67	44	Õ	17	0	61	11	80	Õ	Õ	91	. 0	0	Õ	0	0	219
04:30 PM	0	62	26	0	88	35	0	17	0	52	5	64	Ô	0	69	. 0	0	0	0	0	209
04:35 PM	0	39	25	0	64	42	0	21	0	63	16	60	0	0	76	. 0	0	0	0	0	203
Total		194	108	0	302	154	0	73	0	227	41	266	0	0	307	0	0	0	0	0	836
101	, ,	10-7	100	J	002	10-7	J	, 0	J		71	200	J	J	001	J	J	J	J	C 1	000
05:00 PM	0	42	33	0	75	56	0	30	0	86	11	82	0	0	93	0	0	0	0	0	254
05:15 PM	0	42	36	0	78	63	0	19	0	82	9	110	0	0	119	. 0	0	0	0	0 '	279
05:30 PM	0	68	49	0	117	66	0	17	0	83	7	121	0	0	128	0	0	0	0	0 '	328
05:45 PM	0	50	47	0	97	55	0	24	0	79	12	98	0	0	110	_ 0_	_0_	0	0	0 '	286
Total	0	202	165	0	367	240	0	90	0	330	39	411	0	0	450	0	0	0	0	0	1147
i																					
06:00 PM	0	78	33	0	111	40	0	18	0	58	11	80	0	0	91	. 0	0	0	0	0 '	260
06:15 PM	0	79	41	0	120	24	0	10	0	34	12	66	0	0	78	. 0	0	0	0	0 '	232
Grand Total	0	553	347	0	900	458	0	191	0	649	103	823	0	0	926	0	0	0	0	0 '	2475
Apprch %	0	61.4	38.6	0		70.6	0	29.4	0		11.1	88.9	0	0	J	. 0	0	0	0	1	1
Total %	0	22.3	14	0	36.4	18.5	0	7.7	0	26.2	4.2	33.3	0	0	37.4	0	0	0	0	0	1 '
Lights	0	522	343	0	865	451	0	178	0	629	101	801	0	0	902	0	0	0	0	0	2396
% Lights	0	94.4	98.8	0	96.1	98.5	0	93.2	0	96.9	98.1	97.3	0	0	97.4	0	0	0	0	0 '	96.8
Buses	0	15	1	0	16	4	0	2	0	6	0	13	0	0	13	0	0	0	0	0 '	35
% Buses	0	2.7	0.3	0	1.8	0.9	0	1_	0	0.9	0	1.6	0	0	1.4	0	0	0	0	0	1.4
Trucks	0	16	3	0	19	3	0	11	0	14	2	9	0	0	11	0	0	0	0	0	44
% Trucks	0	2.9	0.9	0	2.1	0.7	0	5.8	0	2.2	1.9	1.1	0	0	1.2	0	0	0_	0	0	1.8
Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0
4																					

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 7-KING_ST-PURCHASE_ST_AT_GATEWAY_LANE_639115_04-02-2019

Site Code:

Start Date : 4/2/2019

	1	KING ST-	-PURCH	ASE ST			GAT	TEWAY LA	ANE			KING S	T-PURCH	HASE ST	Г	·					1
		F,	rom North	<u>n</u>			F	From East	t			F	rom Sout	₁th			F	rom Wes	st	'	'
Start Time	Right	Thru	Left	Peds A	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysis	s From 04	:00 PM tc	06:15 Pl د	M - Peak	1 of 1					_				_							
Peak Hour for Entir																					, , , , , , , , , , , , , , , , , , ,
05:15 PM	0	42	36	0	78	63	0	19	0	82	9	110	0	0	119	. 0	0	0	0	0	279
05:30 PM	0	68	49	0	117	66	0	17	0	83	, 7	121	0	0	128	0	0	0	0	0	328
05:45 PM	0	50	47	0	97	55	0	24	0	79	12	98	0	0	110	. 0	0	0	0	0	286
06:00 PM	0	78	33	0	111	40	0	18	0	58	11	80	0	0	91	. 0	0	0	0	<u>0</u>	260
Total Volume	0	238	165	0	403	224	0	78	0	302	39	409	0	0	448	0	0	0	0	0	1153
% App. Total	. 0	59.1	40.9	0		74.2	0	25.8	0		8.7	91.3	0	0		0_	0	0	0		<u> </u>
PHF	.000	.763	.842	.000	.861	.848	.000	.813	.000	.910	.813	.845	.000	.000	.875	.000	.000	.000	.000	.000	.879
Lights	0	228	163	0	391	223	0	73	0	296	38	402	0	0	440	0	0	0	0	0	1127
% Lights	0	95.8	98.8	0	97.0	99.6	0	93.6	0	98.0	97.4	98.3	0	0	98.2	0	0	0	0	0	97.7
Buses	0	7	1	0	8	, 0	0	1	0	1	. 0	5	0	0	5	. 0	0	0	0	0	14
% Buses	0	2.9	0.6	0	2.0	0	0	1.3	0	0.3	. 0	1.2	0	0	1.1	0	0	0	0	0	1.2
Trucks	0	3	1	0	4	, 1	0	4	0	5	, 1	2	0	0	3	0	0	0	0	0	12
% Trucks	0	1.3	0.6	0	1.0	0.4	0	5.1	0	1.7	2.6	0.5	0	0	0.7	. 0	0	0	0	0	1.0
Pedestrians	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
% Pedestrians	0	0	0	0	0	, 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 8-PURCHASE_ST_AT_NEW_KING_ST_639116_04-02-2019

Site Code:

Start Date : 4/2/2019

		DUD	011405	OT.						giilo Dusc.	3 HUGKS			OT.							
			CHASE					V KING					RCHASE				_				
			om Nort					rom Eas					om Sout					om Wes			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
06:30 AM	0	45	0	0	45	5	0	36	0	41	0	43	0	0	43	0	0	0	0	0	129
06:45 AM	00	45	0	0	45	5	00	25	0	30	0	45	0	0	45	0	0	0	0	0	120_
Total	0	90	0	0	90	10	0	61	0	71	0	88	0	0	88	0	0	0	0	0	249
										1											
07:00 AM	0	45	0	0	45	7	0	27	0	34	0	45	0	0	45	0	0	0	0	0	124
07:15 AM	0	75	0	0	75	5	0	26	0	31	0	71	0	0	71	0	0	0	0	0	177
07:30 AM	0	104	0	0	104	5	0	26	0	31	0	61	0	0	61	0	0	0	0	0	196
07:45 AM	0	106	0	0	106	2	0	39	0	41	0	68	0	0	68	0	0	0	0	0	215
Total	0	330	0	0	330	19	0	118	0	137	0	245	0	0	245	0	0	0	0	0	712
08:00 AM	0	114	0	0	114	10	0	47	0	57	0	71	0	0	71	0	0	0	0	0	242
08:15 AM	0	110	0	0	110	4	0	41	0	45	0	77	0	0	77	0	0	0	0	0	232
08:30 AM	0	95	0	0	95	5	0	32	0	37	0	83	0	0	83	0	0	0	0	0	215
08:45 AM	0	107	0	0	107	4	0	29	0	33	0	106	0	0	106	0	0	0	0	0	246
Total	0	426	0	0	426	23	0	149	0	172	0	337	0	0	337	0	0	0	0	0	935
					·															,	
09:00 AM	0	92	0	0	92	2	0	46	0	48	0	78	0	0	78	0	0	0	0	0	218
09:15 AM	0	67	0	0	67	9	0	24	0	33	0	79	0	0	79	0	0	0	0	0	179
Grand Total	0	1005	0	0	1005	63	0	398	0	461	0	827	0	0	827	0	0	0	0	0	2293
Apprch %	0	100	0	0		13.7	0	86.3	0		0	100	0	0		0	0	0	0		
Total %	0	43.8	0	0	43.8	2.7	0	17.4	0	20.1	0	36.1	0	0	36.1	0	0	0	0	0	
Lights	0	961	0	0	961	55	0	361	0	416	0	758	0	0	758	0	0	0	0	0	2135
% Lights	0	95.6	0	0	95.6	87.3	0	90.7	0	90.2	0	91.7	0	0	91.7	0	0	0	0	0	93.1
Buses	0	27	0	0	27	5	0	10	0	15	0	21	0	0	21	0	0	0	0	0	63
% Buses	0	2.7	0	0	2.7	7.9	0	2.5	0	3.3	0	2.5	0	0	2.5	0	0	0	0	0	2.7
Trucks	0	17	0	0	17	3	0	27	0	30	0	48	0	0	48	0	0	0	0	0	95
% Trucks	0	1.7	0	0	1.7	4.8	0	6.8	0	6.5	0	5.8	0	0	5.8	0	0	0	0	0	4.1
Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Customer Loyalty Through Client Satisfaction

File Name: 8-PURCHASE_ST_AT_NEW_KING_ST_639116_04-02-2019

Site Code:

Start Date : 4/2/2019

			RCHASE			1		W KING	_				RCHASE								
		Fr	rom North	<u>n</u>			F	From Eas	t			F	rom Sout	<u>.th</u>			F	From Wes		!	<i>'</i>
Start Time	Right	Thru	Left	Peds /	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysis					1 of 1																
Peak Hour for Entir	re Intersec	tion Begir;	ns at 08:0	JO AM																	
08:00 AM	0	114	0	0	114	10	0	47	0	57	0	71	0	0	71	. 0	0	0	0	0	242
08:15 AM	0	110	0	0	110	4	0	41	0	45	0	77	0	0	77	, 0	0	0	0	0	232
08:30 AM	0	95	0	0	95	, 5	0	32	0	37	0	83	0	0	83	. 0	0	0	0	0	215
08:45 AM	0	107	0	0	107	4	0	29	0	33	0	106	0	0	106	0_	0	0	0	0	246
Total Volume	0	426	0	0	426	23	0	149	0	172	0	337	0	0	337	0	0	0	0	0	935
% App. Total	. 0	100	0	0		13.4	0	86.6	0		0	100	0	0		0_	0	0	0		<i>!</i>
PHF	.000	.934	.000	.000	.934	.575	.000	.793	.000	.754	.000	.795	.000	.000	.795	.000	.000	.000	.000	.000	.950
Lights	0	411	0	0	411	20	0	137	0	157	0	300	0	0	300	0	0	0	0	0	868
% Lights	0	96.5	0	0	96.5	87.0	0	91.9	0	91.3	0	89.0	0	0	89.0	0	0	0	0	0	92.8
Buses	0	7	0	0	7	, 2	0	3	0	5	0	12	0	0	12	. 0	0	0	0	0	24
% Buses	0	1.6	0	0	1.6	8.7	0	2.0	0	2.9	0	3.6	0	0	3.6	. 0	0	0	0	0	2.6
Trucks	0	8	0	0	8	, 1	0	9	0	10	0	25	0	0	25	0	0	0	0	0	43
% Trucks	0	1.9	0	0	1.9	4.3	0	6.0	0	5.8	0	7.4	0	0	7.4	. 0	0	0	0	0	4.6
Pedestrians	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	, 0	0	0	0	0	0
% Pedestrians	0	0	0	0	0	, 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 8-PURCHASE_ST_AT_NEW_KING_ST_639116_04-02-2019

Site Code:

Start Date : 4/2/2019

	1	PUF	RCHASE	ST				EW KING		.gr.to			RCHASE	ST							1 '
		F	rom Nort	th				From Eas	<u>st</u>			F	rom Sou	th			F	rom Wes	st	'	'
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
11:30 AM	0	44	0	0	44	14	0	62	0	76	0	30	0	0	30	0	0	0	0	0 1	150
11:45 AM	0	43	0	0	43	12	0	55	0	67	0	46	0	0	46	0	0	0	0	0	156
Total	0	87	0	0	87	26	0	117	0	143	0	76	0	0	76	0	0	0	0	0	306
										1											
12:00 PM	0	40	0	0	40	7	0	60	0	67	0	37	0	0	37	0	0	0	0	0 1	144
12:15 PM	0	45	0	0	45	7	0	49	0	56	0	34	0	0	34	0	0	0	0	0	135
12:30 PM	0	57	0	0	57	11	0	55	0	66	0	29	0	0	29	0	0	0	0	0 '	152
12:45 PM	0	51	0	0	51	11	0	57	0	68	0	28	0	0	28	0	00	0	0	0	147
Total	0	193	0	0	193	36	0	221	0	257	0	128	0	0	128	0	0	0	0	0	578
i										1											
01:00 PM	0	47	0	0	47	13	0	68	0	81	0	34	0	0	34	0	0	0	0	0 1	162
01:15 PM	0	40	0	0	40	9	0	53	0	62	0	39	0	0	39	0	0	0	0	0 '	141
Grand Total	0	367	0	0	367	84	0	459	0	543	0	277	0	0	277	0	0	0	0	0	1187
Apprch %	0	100	0	0		15.5	0	84.5	0		0	100	0	0		0	0	0	0	ı	1 '
Total %	0	30.9	0	0	30.9	7.1	0	38.7	0	45.7	0	23.3	0	0	23.3	0	0	0	0	0	'
Lights	0	338	0	0	338	80	0	444	0	524	0	263	0	0	263	0	0	0	0	0	1125
% Lights	0	92.1	0	0	92.1	95.2	0	96.7	0	96.5	0	94.9	0	0	94.9	0	00	0	0	0	94.8
Buses	0	1	0	0	1	, 1	0	0	0	1	0	0	0	0	0	0	0	0	0	0 1	2
% Buses	0	0.3	0	0	0.3	1.2	0	0	0	0.2	0	0	0	0	0	0	0	0	0	0	0.2
Trucks	0	28	0	0	28	3	0	15	0	18	0	14	0	0	14	0	0	0	0	0 1	60
% Trucks	0	7.6	0	0	7.6	3.6	0	3.3	0	3.3	0	5.1	0	0	5.1	0	0	0	0	0	5.1
Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Pedestrians	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Customer Loyalty Through Client Satisfaction

File Name: 8-PURCHASE_ST_AT_NEW_KING_ST_639116_04-02-2019

Site Code:

Start Date : 4/2/2019

			RCHASE					W KING	-				RCHASE								
		Fr	rom North	<u>n</u>			F	From Eas	<u>t</u>			F	rom Sout	<u>.th</u>			F	From Wes	<u>st</u>		
Start Time	Right	Thru	Left	Peds A	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysis					1 of 1																
Peak Hour for Entir	re Intersec	tion Begir	ns at 12:?	30 PM																	,
12:30 PM	, 0	57	0	0	57	11	0	55	0	66	0	29	0	0	29	. 0	0	0	0	0	152
12:45 PM	0	51	0	0	51	11	0	57	0	68	0	28	0	0	28	, 0	0	0	0	0	147
01:00 PM	0	47	0	0	47	13	0	68	0	81	0	34	0	0	34	. 0	0	0	0	0	162
01:15 PM	0	40	0	0	40	9	0	53	0	62	0	39	0	0	39	0_	0	0	0	0	141
Total Volume	0	195	0	0	195	44	0	233	0	277	0	130	0	0	130	. 0	0	0	0	0	602
% App. Total	. 0	100	0	0		15.9	0	84.1	0		0	100	0	0		0_	0	0	0		!
PHF	.000	.855	.000	.000	.855	.846	.000	.857	.000	.855	.000	.833	.000	.000	.833	.000	.000	.000	.000	.000	.929
Lights	0	179	0	0	179	44	0	226	0	270	0	124	0	0	124	0	0	0	0	0	573
% Lights	0	91.8	0	0	91.8	100	0	97.0	0	97.5	0	95.4	0	0	95.4	. 0	0	0	0	0	95.2
Buses	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	, 0	0	0	0	0	1 '
% Buses	0	0.5	0	0	0.5	0	0	0	0	0	0	0	0	0	0	, 0	0	0	0	0	0.2
Trucks	, 0	15	0	0	15	. 0	0	7	0	7	0	6	0	0	6	. 0	0	0	0	0	28
% Trucks	0	7.7	0	0	7.7	0	0	3.0	0	2.5	0	4.6	0	0	4.6	, 0	0	0	0	0	4.7
Pedestrians	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	i O
% Pedestrians	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 8-PURCHASE_ST_AT_NEW_KING_ST_639116_04-02-2019

Site Code:

Start Date : 4/2/2019

		PUF	RCHASE	ST				EW KING		gine Baco	o maone		RCHASE	- ST							1
	1		rom Nort			i		From Eas					rom Sou			ı	F	From Wes	st	,	1
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
04:00 PM	0	68	0	0	68	22	0	93	0	115	0	49	0	0	49	0	0	0	0	0	232
04:15 PM	0	56	0	0	56	19	0	93	0	112	. 0	73	0	0	73	0	0	0	0	0 '	241
04:30 PM	0	83	0	0	83	11	0	65	0	76	0	54	0	0	54	0	0	0	0	0 '	213
04:45 PM	0	57	0	0	57	17	0	121	0	138	0	62	0	0	62	00	0	0	0	0	257
Total	0	264	0	0	264	69	0	372	0	441	0	238	0	0	238	0	0	0	0	0	943
05:00 PM	0	75	0	0	75	17	0	128	0	145	0	72	0	0	72	0	0	0	0	0	292
05:15 PM	0	56	0	0	56	24	0	115	0	139	0	90	0	0	90	. 0	0	0	0	0 '	285
05:30 PM	0	80	0	0	80	17	0	98	0	115	0	114	0	0	114	. 0	0	0	0	0 '	309
05:45 PM	0	82	0	0	82	8	0	59	0	67	0	108	0	0	108	0	0	0	0	0	257
Total	0	293	0	0	293	66	0	400	0	466	0	384	0	0	384	0	0	0	0	0	1143
i .															,						
06:00 PM	0	100	0	0	100	9	0	66	0	75	0	83	0	0	83	. 0	0	0	0	0 '	258
06:15 PM	0	83	0	0	83	17	0	74	0	91	0	55	0	0	55	. 0	0	0	0	0 '	229
Grand Total	0	740	0	0	740	161	0	912	0	1073	0	760	0	0	760	. 0	0	0	0	0 '	2573
Apprch %		100	0	0		15	0	85	0		0	100	0	0		. 0	0	0	0	1	1
Total %	0	28.8	0	0	28.8	6.3	0	35.4	0	41.7	0	29.5	0	0	29.5	0	0	0	0	0	↓ '
Lights	0	698	0	0	698	157	0	900	0	1057	0	738	0	0	738	0	0	0	0	0	2493
% Lights	0	94.3	0	0	94.3	97.5	0_	98.7	0	98.5	0	97.1	0	0	97.1	0	0_	0	0	0	96.9
Buses	0	15	0	0	15	3	0	3	0	6	0	10	0	0	10	. 0	0	0	0	0 '	31
% Buses	0	2	0	0	2	1.9	0	0.3	0	0.6	0	1.3	0	0	1.3	0	0	0	0	0	1.2
Trucks	0	27	0	0	27	, 1	0	9	0	10	0	12	0	0	12	0	0	0	0	0	49
% Trucks	0	3.6	0	0	3.6	0.6	0	1_	0	0.9	0	1.6	0	0	1.6	0	0	0	0	0	1.9
Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0

Customer Loyalty Through Client Satisfaction

File Name: 8-PURCHASE_ST_AT_NEW_KING_ST_639116_04-02-2019

Site Code:

Start Date : 4/2/2019

	1		RCHASE			1		W KING	_		1		JRCHASE								1
		<u>Fr</u>	rom North	<u>a</u>			F	From Eas	t			F	From Sout	ith			F	rom Wes	st	'	
Start Time	Right	Thru	Left	Peds A	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysis	s From 04	:00 PM to	06:15 PI	И - Peak	1 of 1																
Peak Hour for Entir	re Intersec	tion Begir	ns at 04:4	₽5 PM																	· .
04:45 PM	0	57	0	0	57	17	0	121	0	138	. 0	62	0	0	62	. 0	0	0	0	0	257
05:00 PM	0	75	0	0	75	17	0	128	0	145	. 0	72	0	0	72	. 0	0	0	0	0	292
05:15 PM	0	56	0	0	56	24	0	115	0	139	. 0	90	0	0	90	0	0	0	0	0	285
05:30 PM	0	80	0	0	80	17	0	98	0	115	0	114	0	0	114	0_	0	0_	0	<u>0</u>	309
Total Volume	0	268	0	0	268	75	0	462	0	537	0	338	0	0	338	_ 0	0	0	0	0	1143
% App. Total	. 0	100	0	0		14	0	86	0		0	100	0	0		0_	0	0	0		<u> </u>
PHF	.000	.838	.000	.000	.838	.781	.000	.902	.000	.926	.000	.741	.000	.000	.741	.000	.000	.000	.000	.000	.925
Lights	0	255	0	0	255	74	0	457	0	531	0	333	0	0	333	_ 0	0	0	0	0	1119
% Lights	0	95.1	0	0	95.1	98.7	0	98.9	0	98.9	. 0	98.5	0	0	98.5	0	0	0	0	0	97.9
Buses	0	5	0	0	5	, 1	0	3	0	4	. 0	4	0	0	4	. 0	0	0	0	0	13
% Buses	0	1.9	0	0	1.9	1.3	0	0.6	0	0.7	. 0	1.2	0	0	1.2	0	0	0	0	0	1.1
Trucks	0	8	0	0	8	0	0	2	0	2	0	1	0	0	1	0	0	0	0	0	11
% Trucks	0	3.0	0	0	3.0	. 0	0	0.4	0	0.4	. 0	0.3	0	0	0.3	. 0	0	0	0	0	1.0
Pedestrians	0	0	0	0	0	. 0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
% Pedestrians	0	0	0	0	0	, 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 9-PURCHASE_ST_AT_AIRPORT_RD_639121_04-02-2019

Site Code:

Start Date : 4/2/2019

Craupa Drintad	Lighto Dugge	Trucko	Dodootriono
Groups Printed-	Lights - buses -	- TTUCKS -	Pedesilians

		PUF	RCHASE	ST				RPORT F		gino Base.			RCHASE	ST			All	RPORT	RD		
		Fı	rom Nort	<u>، h</u>			F	rom Eas	st			F!	rom Sou	th			F	rom We	st		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
06:30 AM	55	10	13	0	78	0	0	0	0	0	9	3	3	0	15	41	102	40	0	183	276
06:45 AM	50	12	10	0	72	0	0	0	0	0	6	7	11	0	24	34	80	40	0	154	250
Total	105	22	23	0	150	0	0	0	0	0	15	10	14	0	39	75	182	80	0	337	526
1						i				1											
07:00 AM	55	8	5	0	68	0	0	0	0	0	6	5	13	0	24	37	81	42	0	160	252
07:15 AM	81	13	12	0	106	0	0	0	0	0	5	7	26	0	38	34	106	64	0	204	348
07:30 AM	94	20	11	0	125	0	0	0	0	0	9	12	32	0	53	42	83	55	0	180	358
07:45 AM	121	18	11	0	150	0	0	0	0	0	13	19	32	0	64	53	131	48	0	232	446_
Total	351	59	39	0	449	0	0	0	0	0	33	43	103	0	179	166	401	209	0	776	1404
1					1	ı				1					1					1	
08:00 AM	124	28	8	0	160	0	0	0	0	0	14	17	19	0	50	63	88	53	0	204	414
08:15 AM	110	32	10	0	152	0	0	0	0	0	14	15	17	0	46	69	79	61	0	209	407
08:30 AM	79	34	7	0	120	. 0	0	0	0	0	16	19	17	0	52	59	82	67	0	208	380
08:45 AM	97	25	16	0	138	0	0	0	0	0	7	29	33	0	69	74	97	71	0	242	449_
Total	410	119	41	0	570	0	0	0	0	0	51	80	86	0	217	265	346	252	0	863	1650
										1											
09:00 AM	102	22	14	0	138	0	0	0	0	0	15	20	18	0	53	90	110	57	0	257	448
09:15 AM	64	16	12	0	92	0	0	0	0	0	10	20	19	0	49	63	101	63	0	227	368
Grand Total	1032	238	129	0	1399	0	0	0	0	0	124	173	240	0	537	659	1140	661	0	2460	4396
Apprch %	73.8	17	9.2	0		0	0	0	0		23.1	32.2	44.7	0		26.8	46.3	26.9	0	I	ı
Total %	23.5	5.4	2.9	0	31.8	. 0	0	0	0	0	2.8	3.9	5.5	0	12.2	15	25.9	15	0	56	
Lights	978	218	123	0	1319	0	0	0	0	0	119	151	221	0	491	632	1094	621	0	2347	4157
% Lights	94.8	91.6	95.3	0	94.3	0	0	0	0	0	96	87.3	92.1	0	91.4	95.9	96	93.9	0	95.4	94.6
Buses	23	12	3	0	38	0	0	0	0	0	0	11	4	0	15	5	17	6	0	28	81
% Buses	2.2	5	2.3	0	2.7	. 0	0	0	0	0	0	6.4	1.7	0	2.8	0.8	1.5	0.9	0	1.1	1.8
Trucks	31	8	3	0	42	0	0	0	0	0	5	11	15	0	31	22	29	34	0	85	158
% Trucks	3	3.4	2.3	0	3	0	0	0	0	0	4	6.4	6.2	0	5.8	3.3	2.5	5.1	0	3.5	3.6
Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
																					ŗ

Customer Loyalty Through Client Satisfaction

File Name: 9-PURCHASE_ST_AT_AIRPORT_RD_639121_04-02-2019

Site Code:

Start Date : 4/2/2019

			RCHASE					RPORT F					RCHASE			· · · · · · · · · · · · · · · · · · ·		RPORT F			
		<u>F</u> r	rom North	<u>.ı</u>				From Eas	<u>.t</u>			<u>_</u>	rom Sout	<u>.m</u>				rom Wes			<i>'</i>
Start Time	Right	Thru	Left	Peds A	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysis					1 of 1																, , , , , , , , , , , , , , , , , , ,
Peak Hour for Entir	re Intersec	tion Begir	ns at 08:1	15 AM																	
08:15 AM	110	32	10	0	152	0	0	0	0	0	14	15	17	0	46	69	79	61	0	209	407
08:30 AM	79	34	7	0	120	. 0	0	0	0	0	16	19	17	0	52	59	82	67	0	208	380
08:45 AM	97	25	16	0	138	. 0	0	0	0	0	7	29	33	0	69	74	97	71	0	242	449
09:00 AM	102	22	14	0	138	. 0_	0	0	0	0	15	20	18	0	53	90	110	57	0	257	448_
Total Volume	388	113	47	0	548	0	0	0	0	0	52	83	85	0	220	292	368	256	0	916	1684
% App. Total	70.8	20.6	8.6	0		0_	0	0	0		23.6	37.7	38.6	0	J	31.9	40.2	27.9	0		
PHF	.882	.831	.734	.000	.901	.000	.000	.000	.000	.000	.813	.716	.644	.000	.797	.811	.836	.901	.000	.891	.938
Lights	370	103	45	0	518	0	0	0	0	0	50	74	79	0	203	281	354	235	0	870	1591
% Lights	95.4	91.2	95.7	0	94.5	0	0	0	0	0	96.2	89.2	92.9	0	92.3	96.2	96.2	91.8	0	95.0	94.5
Buses	5	5	1	0	11	. 0	0	0	0	0	0	2	1	0	3	, 3	6	5	0	14	28
% Buses	1.3	4.4	2.1	0	2.0	. 0	0	0	0	0	0	2.4	1.2	0	1.4	1.0	1.6	2.0	0	1.5	1.7
Trucks	13	5	1	0	19	. 0	0	0	0	0	2	7	5	0	14	. 8	8	16	0	32	65
% Trucks	3.4	4.4	2.1	0	3.5	. 0	0	0	0	0	3.8	8.4	5.9	0	6.4	2.7	2.2	6.3	0	3.5	3.9
Pedestrians	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0
% Pedestrians	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0

Customer Loyalty Through Client Satisfaction

File Name: 9-PURCHASE_ST_AT_AIRPORT_RD_639121_04-02-2019

Site Code:

Start Date : 4/2/2019

Groups Printed-	Lights - Buses -	Trucks - Pedestrians

			RCHASE				All	IRPÓRT F	RD			PUI	JRCHASE					IRPORT F			1
		F	rom Nort	th				From Eas	<u>st</u>			F	From Sou	uth			F	From Wes	st	I	'
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
11:30 AM	81	16	7	0	104	0	0	0	0	0	9	10	14	0	33	6	49	21	0	76	213
11:45 AM	80	19	3_	0	102	0	0	0	0	0	11	11	10	0	32	19	68	30	0	117	251
Total	161	35	10	0	206	0	0	0	0	0	20	21	24	0	65	25	117	51	0	193	464
i																					
12:00 PM	78	12	7	0	97	0	0	0	0	0	8	15	21	0	44	22	42	22	0	86	227
12:15 PM	68	20	7	0	95	0	0	0	0	0	14	11	20	0	45	21	44	23	0	88	228
12:30 PM	69	25	10	0	104	0	0	1	0	1	, 7	8	18	0	33	10	67	22	0	99	237
12:45 PM	80	23	11	0	114	0	0	0	0	0	13	7	23	0	43	22	84	20	0	126	283
Total	295	80	35	0	410	0	0	1	0	1	42	41	82	0	165	75	237	87	0	399	975
i																					
01:00 PM	91	21	5	0	117	0	0	0	0	0	11	13	15	0	39	23	58	20	0	101	257
01:15 PM	74	11	5	0	90	, O	0	0	0	0	12	14	23	0	49	17	75	28	0	120	259
Grand Total	621	147	55	0	823	, O	0	1	0	1	85	89	144	0	318	140	487	186	0	813	1955
Apprch %	75.5	17.9	6.7	0		i 0	0	100	0	J	26.7	28	45.3	0		17.2	59.9	22.9	0	1	1 '
Total %	31.8	7.5	2.8	0	42.1	0	0	0.1	0	0.1	4.3	4.6	7.4	0	16.3	7.2	24.9	9.5	0	41.6	<u> </u>
Lights	589	138	53	0	780	0	0	1	0	1	84	84	132	0	300	135	467	175	0	777	1858
% Lights	94.8	93.9	96.4	0	94.8	0	0_	100	0	100	98.8	94.4	91.7	0	94.3	96.4	95.9	94.1	0	95.6	95
Buses	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
% Buses	0	0	1.8	0	0.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.1
Trucks	32	9	1	0	42	0	0	0	0	0	,	5	12	0	18	5	20	11	0	36	96
% Trucks	5.2	6.1	1.8	0	5.1	0	0	0	0	0	1.2	5.6	8.3	0	5.7	3.6	4.1	5.9	0	4.4	4.9
Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0

Customer Loyalty Through Client Satisfaction

File Name: 9-PURCHASE_ST_AT_AIRPORT_RD_639121_04-02-2019

Site Code:

Start Date : 4/2/2019

		PUF	RCHASE	ST			AIF	RPORT R	₹D			PUF	RCHASE	: ST			All	RPORT F	₹D		1
		<u> </u>	rom North	n			F	rom East	it			F	rom Sout	th			F	rom Wes	غt		
Start Time	Right	Thru	Left	Peds A	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysis					1 of 1				_								_		_		
Peak Hour for Entir	re Intersec	tion Begir	ns at 12:3	30 PM																	· .
12:30 PM	69	25	10	0	104	0	0	1	0	1	7	8	18	0	33	10	67	22	0	99	237
12:45 PM	80	23	11	0	114	0	0	0	0	0	13	7	23	0	43	22	84	20	0	126	283
01:00 PM	91	21	5	0	117	. 0	0	0	0	0	11	13	15	0	39	23	58	20	0	101	257
01:15 PM	74	11	5	0	90	0	0	0	0	0	12	14	23	0	49	17	75	28	0_	120	259
Total Volume	314	80	31	0	425	. 0	0	1	0	1	43	42	79	0	164	72	284	90	0	446	1036
% App. Total	73.9	18.8	7.3	0		. 0	0	100	0		26.2	25.6	48.2	0		16.1	63.7	20.2	0		
PHF	.863	.800	.705	.000	.908	.000	.000	.250	.000	.250	.827	.750	.859	.000	.837	.783	.845	.804	.000	.885	.915
Lights	300	74	29	0	403	. 0	0	1	0	1	43	40	74	0	157	69	272	84	0	425	986
% Lights	95.5	92.5	93.5	0	94.8	0	0	100	0	100	100	95.2	93.7	0	95.7	95.8	95.8	93.3	0	95.3	95.2
Buses	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	, 0	0	0	0	0	1 '
% Buses	0	0	3.2	0	0.2	. 0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0.1
Trucks	14	6	1	0	21	. 0	0	0	0	0	0	2	5	0	7	, 3	12	6	0	21	49
% Trucks	4.5	7.5	3.2	0	4.9	. 0	0	0	0	0	0	4.8	6.3	0	4.3	4.2	4.2	6.7	0	4.7	4.7
Pedestrians	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0
% Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Customer Loyalty Through Client Satisfaction

File Name: 9-PURCHASE_ST_AT_AIRPORT_RD_639121_04-02-2019

Site Code:

Start Date : 4/2/2019

Groups Printed- Lights - Buses - Trucks - Pedestrians

		PUI	RCHASE	£ ST		1		IRPORT F		ignio Buco	1		IRCHASE	Ē ST		1	Alı	IRPORT F	RD		1
	L		rom Nort	.th			F	From Eas	st			<u> </u>	rom Sout	<u>uth</u>			F	From Wes	st		<u> </u>
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
04:00 PM	131	28	10	0	169	0	0	0	0	0	13	17	54	0	84	15	35	36	0	86	339
04:15 PM	120	22	7	0	149	0	0	0	0	0	3	22	59	0	84	22	56	46	0	124	357
04:30 PM	116	23	5	0	144	0	0	0	0	0	5	13	58	0	76	29	47	43	0	119	339
04:45 PM	157	19	6	0	182	0	0_	0	0	0	8	13	52	0	73	27	47	46	0	120	375_
Total	524	92	28	0	644	0	0	0	0	0	29	65	223	0	317	93	185	171	0	449	1410
	1					1															
05:00 PM		36	7	0	202	0	0	0	0	0	8	27	64	0	99	20	49	48	0	117	418
05:15 PM	136	27	5	0	168	, 0	0	0	0	0	, 5	28	84	0	117	31	61	68	0	160	445
05:30 PM	132	29	11	0	172	0	0	0	0	0	3	26	73	0	102	41	61	84	0	186	460
05:45 PM	103	29	8	0	140	0	0	0	0	0	6	22	62	0	90	32	73	81	0	186	416_
Total	530	121	31	0	682	0	0	0	0	0	22	103	283	0	408	124	244	281	0	649	1739
1	1					1					1					1					
06:00 PM	122	27	6	0	155	0	0	0	0	0	6	16	67	0	89	24	48	68	0	140	384
06:15 PM	137	22	7	0	166	, 0	0	0	0	0	, 7	19	37	0	63	26	30	38	0	94	323
Grand Total	1313	262	72	0	1647	0	0	0	0	0	64	203	610	0	877	267	507	558	0	1332	3856
Apprch %	79.7	15.9	4.4	0	J	, 0	0	0	0	J	7.3	23.1	69.6	0	J	20	38.1	41.9	0	I	1
Total %	34.1	6.8	1.9	0	42.7	0_	0	0	0	0	1.7	5.3	15.8	0	22.7	6.9	13.1	14.5	0	34.5	·
Lights	1288	243	67	0	1598	0	0	0	0	0	62	189	601	0	852	262	498	549	0	1309	3759
% Lights	98.1	92.7	93.1	0	97	0	0	0	0	0	96.9	93.1	98.5	0	97.1	98.1	98.2	98.4	0	98.3	
Buses	4	10	3	0	17	0	0	0	0	0	0	10	0	0	10	, 1	6	1	0	8	35
% Buses	0.3	3.8	4.2	0	1	0	0	0	0	0	0	4.9	0	0	1.1	0.4	1.2	0.2	0	0.6	0.9
Trucks	21	9	2	0	32	0	0	0	0	0	2	4	9	0	15	4	3	8	0	15	62
% Trucks	1.6	3.4	2.8	0	1.9	0	0	0	0	0	3.1	2	1.5	0	1.7	1.5	0.6	1.4	0	1.1	1.6
Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	, 0
4																					

Customer Loyalty Through Client Satisfaction

File Name: 9-PURCHASE_ST_AT_AIRPORT_RD_639121_04-02-2019

Site Code:

Start Date : 4/2/2019

		PUF	RCHASE	ST			AIF	RPORT R	₹D			PU	RCHASE	ST			Al'	RPORT F	RD		1
		F	rom North	.n			F	From East	it			F	rom Sout	ıth			F	rom Wes	<u>st</u>		<i>!</i>
Start Time	Right	Thru	Left	Peds A	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysis					1 of 1			_													
Peak Hour for Entir	re Intersec	tion Begi	ns at 05:0	JO PM																	
05:00 PM	159	36	7	0	202	0	0	0	0	0	8	27	64	0	99	20	49	48	0	117	418
05:15 PM	136	27	5	0	168	0	0	0	0	0	5	28	84	0	117	31	61	68	0	160	445
05:30 PM	132	29	11	0	172	0	0	0	0	0	3	26	73	0	102	41	61	84	0	186	460
05:45 PM	103	29	8	0	140	0	0_	0	0	0	6	22	62	0	90	32	73	81	0	186	416
Total Volume	530	121	31	0	682	0	0	0	0	0	22	103	283	0	408	124	244	281	0	649	1739
% App. Total	77.7	17.7	4.5	0		0	0	0	0		5.4	25.2	69.4	0		19.1	37.6	43.3	0		
PHF	.833	.840	.705	.000	.844	.000	.000	.000	.000	.000	.688	.920	.842	.000	.872	.756	.836	.836	.000	.872	.945
Lights	520	115	28	0	663	0	0	0	0	0	22	97	280	0	399	124	240	278	0	642	1704
% Lights	98.1	95.0	90.3	0	97.2	0	0	0	0	0	100	94.2	98.9	0	97.8	100	98.4	98.9	0	98.9	98.0
Buses	4	3	2	0	9	0	0	0	0	0	0	5	0	0	5	0	2	0	0	2	16
% Buses	0.8	2.5	6.5	0	1.3	0	0	0	0	0	0	4.9	0	0	1.2	0	8.0	0	0	0.3	0.9
Trucks	6	3	1	0	10	0	0	0	0	0	0	1	3	0	4	. 0	2	3	0	5	19
% Trucks	1.1	2.5	3.2	0	1.5	0	0	0	0	0	0	1.0	1.1	0	1.0	. 0	0.8	1.1	0	0.8	1.1
Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0
% Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 10-AIRPORT_RD_AT_I-684_NB_ON_0FF_RAMPS_639122_04-02-2019

Site Code:

Start Date : 4/2/2019

					——————————————————————————————————————					ignis - buse	5 - HUCKS										
			NB ON F					RPORT F					IB OFF I					RPORT F			
			rom Nort					rom Eas					om Sout					rom Wes			!
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
06:30 AM	0	0	0	0	0	24	40	0	0	64	84	0	0	0	84	0	99	0	0	99	247
06:45 AM	0	0	0	0	0	28	33	0	0	61	69	0	0	0	69	0	91	11	0	92	222
Total	0	0	0	0	0	52	73	0	0	125	153	0	0	0	153	0	190	1	0	191	469
																					. ,
07:00 AM	0	0	0	0	0	26	43	0	0	69	74	0	0	0	74	0	86	0	0	86	229
07:15 AM	0	0	0	0	0	29	78	0	0	107	102	0	0	0	102	0	102	0	0	102	311
07:30 AM	0	0	0	0	0	43	83	0	0	126	86	0	0	0	86	0	88	0	0	88	300
07:45 AM	0	0	0	0	0	47	106	0	0	153	97	0	0	0	97	0	131	11	0	132	382
Total	0	0	0	0	0	145	310	0	0	455	359	0	0	0	359	0	407	1	0	408	1222
08:00 AM	0	0	0	0	0	32	109	0	0	141	99	0	0	0	99	0	110	1	0	111	351
08:15 AM	0	0	0	0	0	27	101	0	0	128	85	0	0	0	85	0	124	0	0	124	337
08:30 AM	0	0	0	0	0	23	72	0	0	95	93	0	0	0	93	0	114	0	0	114	302
08:45 AM	0	0	0	0	0	41	88	0	0	129	101	0	0	0	101	0	153	0	0	153	383
Total	0	0	0	0	0	123	370	0	0	493	378	0	0	0	378	0	501	1	0	502	1373
·					•					•											ļ
09:00 AM	0	0	0	0	0	40	81	0	0	121	92	0	0	0	92	0	179	1	0	180	393
09:15 AM	0	0	0	0	0	28	55	0	0	83	95	1	0	0	96	0	137	0	0	137	316
Grand Total	0	0	0	0	0	388	889	0	0	1277	1077	1	0	0	1078	0	1414	4	0	1418	3773
Apprch %	0	0	0	0		30.4	69.6	0	0		99.9	0.1	0	0		0	99.7	0.3	0		, P
Total %	0	0	0	0	0	10.3	23.6	0	0	33.8	28.5	0	0	0	28.6	0	37.5	0.1	0	37.6	, !
Lights	0	0	0	0	0	363	839	0	0	1202	1006	0	0	0	1006	0	1371	4	0	1375	3583
% Lights	0	0	0	0	0	93.6	94.4	0	0	94.1	93.4	0	0	0	93.3	0	97	100	0	97	95
Buses	0	0	0	0	0	7	22	0	0	29	18	0	0	0	18	0	10	0	0	10	57
% Buses	0	0	0	0	0	1.8	2.5	0	0	2.3	1.7	0	0	0	1.7	0	0.7	0	0	0.7	1.5
Trucks	0	0	0	0	0	18	28	0	0	46	53	1	0	0	54	0	33	0	0	33	133
% Trucks	0	0	0	0	0	4.6	3.1	0	0	3.6	4.9	100	0	0	5	0	2.3	0	0	2.3	3.5
Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0
		-	-	_	- 1	-	-	-	_	- 1	_	-	-	_	- '	_	-	_	_	- 1	_

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 10-AIRPORT_RD_AT_I-684_NB_ON_0FF_RAMPS_639122_04-02-2019

Site Code:

Start Date : 4/2/2019

		I-684	NB ON R	₹AMP			Alr	RPORT R	₹D			I-684	NB OFF	RAMP			Al	IRPORT F	RD		1
		<u> </u>	rom North	<u>.h</u>			F	From East	<u>t</u>			F	rom Sout	ith			F	From Wes	<u>st</u>		<u> </u>
Start Time	Right	Thru	Left		App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysis					1 of 1																
Peak Hour for Entir	re Intersec	tion Begir	ns at 08:1	15 AM											,	,					. ,
08:15 AM	0	0	0	0	0	27	101	0	0	128	85	0	0	0	85	0	124	0	0	124	337
08:30 AM	0	0	0	0	0	23	72	0	0	95	93	0	0	0	93	0	114	0	0	114	302
08:45 AM	0	0	0	0	0	41	88	0	0	129	101	0	0	0	101	0	153	0	0	153	383
09:00 AM	0	0	0	0	0	40	81	0	0	121	92	0	0	0	92	0	179	1_	0	180	393
Total Volume	0	0	0	0	0	131	342	0	0	473	371	0	0	0	371	0	570	1	0	571	1415
% App. Total	0	0	0	0		27.7	72.3	0	0		100	0	0	0		0	99.8	0.2	0		'
PHF	.000	.000	.000	.000	.000	.799	.847	.000	.000	.917	.918	.000	.000	.000	.918	.000	.796	.250	.000	.793	.900
Lights	0	0	0	0	0	122	327	0	0	449	343	0	0	0	343	0	556	1	0	557	1349
% Lights	0	0	0	0	0	93.1	95.6	0	0	94.9	92.5	0	0	0	92.5	0	97.5	100	0	97.5	95.3
Buses	0	0	0	0	0	2	5	0	0	7	7	0	0	0	7	0	3	0	0	3	17
% Buses	0	0	0	0	0	1.5	1.5	0	0	1.5	1.9	0	0	0	1.9	0	0.5	0	0	0.5	1.2
Trucks	0	0	0	0	0	, 7	10	0	0	17	21	0	0	0	21	0	11	0	0	11	49
% Trucks	0	0	0	0	0	5.3	2.9	0	0	3.6	5.7	0	0	0	5.7	0	1.9	0	0	1.9	3.5
Pedestrians	0	0	0	0	0	, 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Pedestrians	0	0	0	0	0	, 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	, 0

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 10-AIRPORT_RD_AT_I-684_NB_ON_0FF_RAMPS_639122_04-02-2019

Site Code:

Start Date : 4/2/2019

		I-684	NB ON F	RAMP				RPORT F		grito Buoo	o madica		NB OFF	RAMP			All	RPORT F	RD		1
		<u> </u>	rom Nort	th			F	rom Eas	t			F	rom Sout	<u>th</u>			F	rom Wes	st	!	
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
11:30 AM	0	0	0	0	0	31	65	0	0	96	52	0	0	0	52	0	21	2	0	23	171
11:45 AM	0	0	0	0	0	27	63	0	0	90	68	1	0	0	69	0	45	2	0	47	206
Total	0	0	0	0	0	58	128	0	0	186	120	1	0	0	121	0	66	4	0	70	377
i .																					
12:00 PM	0	0	0	0	0	44	55	0	0	99	55	0	2	0	57	0	35	0	0	35	191
12:15 PM	0	0	0	0	0	34	54	0	0	88	48	0	1	0	49	0	41	1	0	42	179
12:30 PM	0	0	0	0	0	33	53	0	0	86	62	0	0	0	62	0	38	1	0	39	187
12:45 PM	0	0	0	0	0	50	53	0	0	103	80	0	0	0	80	00	43	4	0	47	230
Total	0	0	0	0	0	161	215	0	0	376	245	0	3	0	248	0	157	6	0	163	787
01:00 PM	0	0	0	0	0	49	57	0	0	106	63	0	1	0	64	0	42	0	0	42	212
01:15 PM	0	0	0	0	0	39	58	0	0	97	72	0	1	0	73	0	44	1	0	45	215
Grand Total	0	0	0	0	0	307	458	0	0	765	500	1	5	0	506	0	309	11	0	320	1591
Apprch %	0	0	0	0		40.1	59.9	0	0		98.8	0.2	1	0		0	96.6	3.4	0	I	, ,
Total %	0	0	0	0	0	19.3	28.8	0	0	48.1	31.4	0.1	0.3	0	31.8	0	19.4	0.7	0	20.1	
Lights	0	0	0	0	0	287	438	0	0	725	474	1	5	0	480	0	297	11	0	308	1513
% Lights	0	0	0	0	0	93.5	95.6	0	0	94.8	94.8	100	100	0	94.9	0	96.1	100	0	96.2	95.1
Buses	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	1 '
% Buses	0	0	0	0	0	0_	0.2	0	0	0.1	0	0	0	0	0	0	0	0	0	0	0.1
Trucks	0	0	0	0	0	20	19	0	0	39	26	0	0	0	26	0	12	0	0	12	77
% Trucks	0	0	0	0	0	6.5	4.1	0	0	5.1	5.2	0	0	0	5.1	0	3.9	0	0	3.8	4.8
Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 10-AIRPORT_RD_AT_I-684_NB_ON_0FF_RAMPS_639122_04-02-2019

Site Code:

Start Date : 4/2/2019

			NB ON R					RPORT R					NB OFF I					RPORT F			
		Fr	rom North	<u>n</u>			F	From Eas	<u>t</u>			F'	rom Sout	th			F	rom Wes			'
Start Time	Right	Thru	Left	Peds /	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysis					1 of 1																
Peak Hour for Entir	re Intersec	tion Begir	າs at 12:?	30 PM																	. ,
12:30 PM	0	0	0	0	0	33	53	0	0	86	62	0	0	0	62	0	38	1	0	39	187
12:45 PM	0	0	0	0	0	50	53	0	0	103	80	0	0	0	80	0	43	4	0	47	230
01:00 PM	0	0	0	0	0	49	57	0	0	106	63	0	1	0	64	0	42	0	0	42	212
01:15 PM	0	0	0	0	0	39	58	0	0	97	72	0	1_	0	73	0	44	1	0	45	215
Total Volume	0	0	0	0	0	171	221	0	0	392	277	0	2	0	279	0	167	6	0	173	844
% App. Total	0	0	0	0		43.6	56.4	0	0		99.3	0	0.7	0		0	96.5	3.5	0		
PHF	.000	.000	.000	.000	.000	.855	.953	.000	.000	.925	.866	.000	.500	.000	.872	.000	.949	.375	.000	.920	.917
Lights	0	0	0	0	0	161	213	0	0	374	261	0	2	0	263	0	159	6	0	165	802
% Lights	0	0	0	0	0	94.2	96.4	0	0	95.4	94.2	0	100	0	94.3	0	95.2	100	0	95.4	95.0
Buses	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 '
% Buses	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 '
Trucks	0	0	0	0	0	10	8	0	0	18	16	0	0	0	16	0	8	0	0	8	42
% Trucks	0	0	0	0	0	5.8	3.6	0	0	4.6	5.8	0	0	0	5.7	0	4.8	0	0	4.6	5.0
Pedestrians	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 10-AIRPORT_RD_AT_I-684_NB_ON_0FF_RAMPS_639122_04-02-2019

Site Code:

Start Date : 4/2/2019

T		I-684 '	NB ON F	PAMP				RPORT F		gine Bacci	o madro		NB OFF	PAMP	$\overline{}$		Δ1'	RPORT F	BD.		, ,
1	1		rom Nort			í		From Eas					rom Sou		J	ı		From Wes		J	1
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
04:00 PM	0	0	0	1 603	0	116	69	0	1 Eu3	185	56	11114	1	1 603	57	Night	29			29	271
04:00 PM 04:15 PM	1 0	0	0	0	ŏ	110	68	0	0	178	73	1	2	0	76	' 0	50	1	0	51	305
04.15 PM 04:30 PM		0	0	0	0	103	70	0	0	178	73 62	0	0	0	62	. 0	50 56	0	0	-	291
	1	0	0	0	0	1103	70 101	0	0	211	62 69	0	1	0	- 1	· 0	56 48	1	0	56	
04:45 PM	0	0	<u>0</u> 0	0	0	439	308	0 0	0		69 260			0	70 265	0	48 183	1 2	0	49	330 1197
Total	U	U	U	U	0	439	300	U	U	747	26∪	ı	4	U	200 ∣	0	163	2	U	185	1197
05:00 DM	1 0	0	0	0	0	140	60	0	0	247	70	0	4	0	70 !		ΛE	0	0	45 '	1 244
05:00 PM	0	U	U	U	0	149	68	0	U	217	78 404	U	T	U	79	U	45	U	U	45	341
05:15 PM	0	U	U	U	0	161	61	0	U	222	101	U	U	U	101	Ü	63	U	U	63	386
05:30 PM	0	U	U	U	0	135	71	U	U	206	126	U	U	U	126	Ü	58	2	U	60	392
05:45 PM	0	0	0	0	0	106	60	0	0	166	131	0	2	0	133	0	58	1_	0	59	358_
Total	0	0	0	0	0	551	260	0	0	811	436	0	3	0	439	0	224	3	0	227	1477
1	1					ı				1					,	ı					
06:00 PM	0	0	0	0	0	107	84	0	0	191	93	0	0	0	93	, 0	45	0	0	45	329
06:15 PM	0	0	0	0	0	79	95	0	0	174	57	0	0	0	57	. 0	39	0	0	39	270
Grand Total	0	0	0	0	0	1176	747	0	0	1923	846	1	7	0	854	. 0	491	5	0	496	3273
Apprch %	0	0	0	0		61.2	38.8	0	0		99.1	0.1	8.0	0	J	. 0	99	1	0	J	1
Total %	00	0	0	0	0	35.9	22.8	0	0	58.8	25.8	0	0.2	0	26.1	0	15	0.2	0	15.2	('
Lights	0	0	0	0	0	1159	726	0	0	1885	837	0	7	0	844	0	481	5	0	486	3215
% Lights	00	0	0	0	0	98.6	97.2	0	0	98	98.9	0	100	0	98.8	0	98	100	0	98	98.2
Buses	0	0	0	0	0	2	1	0	0	3	3	0	0	0	3	0	5	0	0	5	11
% Buses	0	0	0	0	0	0.2	0.1	0	0	0.2	0.4	0	0	0	0.4	. 0	1	0	0	1	0.3
Trucks	0	0	0	0	0	15	20	0	0	35	6	1	0	0	7	0	5	0	0	5	47
% Trucks	0	_0_	0	0	0	1.3	2.7	0	0	1.8	0.7	100	0	0	0.8	0	_1_	_0_	0	1	1.4
Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Pedestrians	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0
<i>1</i>																					

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 10-AIRPORT_RD_AT_I-684_NB_ON_0FF_RAMPS_639122_04-02-2019

Site Code:

Start Date : 4/2/2019

		I-684 !	NB ON R	₹AMP			Alf	RPORT R	₹D			I-684 I	NB OFF I	RAMP			All	RPORT F	RD		1
		<u>F</u> r	rom North	. <u>n</u>			F	rom East	it			F	rom Sout	.th			F	rom Wes	st		<u> </u>
Start Time	Right	Thru	Left	Peds A	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysis					1 of 1							_								_	
Peak Hour for Entir	re Intersec	tion Begir	ns at 05:0	J0 РМ																	· .
05:00 PM	0	0	0	0	0	149	68	0	0	217	78	0	1	0	79	0	45	0	0	45	341
05:15 PM	0	0	0	0	0	161	61	0	0	222	101	0	0	0	101	. 0	63	0	0	63	386
05:30 PM	0	0	0	0	0	135	71	0	0	206	126	0	0	0	126	. 0	58	2	0	60	392
05:45 PM	0	0	0	0	0	106	60	0	0	166	131	0	2	0	133	. 0	58	1_	0	59	358
Total Volume	0	0	0	0	0	551	260	0	0	811	436	0	3	0	439	0	224	3	0	227	1477
% App. Total	0	0	0	0		67.9	32.1	0	0		99.3	0	0.7	0		. 0	98.7	1.3	0		<u> </u>
PHF	.000	.000	.000	.000	.000	.856	.915	.000	.000	.913	.832	.000	.375	.000	.825	.000	.889	.375	.000	.901	.942
Lights	0	0	0	0	0	542	253	0	0	795	435	0	3	0	438	0	219	3	0	222	1455
% Lights	0	0	0	0	0	98.4	97.3	0	0	98.0	99.8	0	100	0	99.8	0	97.8	100	0	97.8	98.5
Buses	0	0	0	0	0	2	1	0	0	3	1	0	0	0	1	. 0	2	0	0	2	6
% Buses	0	0	0	0	0	0.4	0.4	0	0	0.4	0.2	0	0	0	0.2	0	0.9	0	0	0.9	0.4
Trucks	0	0	0	0	0	7	6	0	0	13	0	0	0	0	0	. 0	3	0	0	3	16
% Trucks	0	0	0	0	0	1.3	2.3	0	0	1.6	0	0	0	0	0	0	1.3	0	0	1.3	1.1
Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 11-NYS_RT_22_AT_NYS_RT_128_IBM_DRIVEWAY_639124_04-02-2019

Site Code:

Start Date : 4/2/2019

							GI	oups Pri	ntea- Li	gnis - Buses	s - Trucks	- Pedesi	ınans								
		NY	'S RT 12	28			N,	YS RT 2	2			IBM	DRIVEV	VAY			N	YS RT 2	2		
		Fr	om Nort				F	rom Eas	t			Fr	rom Sout	th			F	rom Wes	st		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
06:30 AM	33	1	4	0	38	4	108	17	0	129	0	0	0	0	0	3	27	18	0	48	215
06:45 AM	26	11	10	0	37	10	120	33	0	163	0	0	1_	0	1	7	45	17	0	69	270_
Total	59	2	14	0	75	14	228	50	0	292	0	0	1	0	1	10	72	35	0	117	485
1					1					1					1						
07:00 AM	39	1	26	0	66	16	145	25	0	186	0	0	1	0	1	9	83	21	0	113	366
07:15 AM	36	1	42	0	79	16	161	46	0	223	0	0	0	0	0	12	119	12	0	143	445
07:30 AM	77	3	25	0	105	30	215	48	0	293	2	0	0	0	2	18	97	22	0	137	537
07:45 AM	53	2	21	0	76	40	168	49	0	257	1_	00	0	0	1	15	128	24	0	167	501_
Total	205	7	114	0	326	102	689	168	0	959	3	0	1	0	4	54	427	79	0	560	1849
										1					1						
08:00 AM	42	6	33	0	81	31	164	61	0	256	0	0	0	0	0	30	119	31	0	180	517
08:15 AM	50	6	32	0	88	25	184	76	0	285	2	0	2	0	4	34	135	35	0	204	581
08:30 AM	40	7	24	0	71	37	149	90	0	276	1	1	1	0	3	27	93	38	0	158	508
08:45 AM	46	6	56	0	108	61	162	84	0	307	2	0	4	0	6	45	96	38	0	179	600_
Total	178	25	145	0	348	154	659	311	0	1124	5	1	7	0	13	136	443	142	0	721	2206
09:00 AM	33	4	45	0	82	54	152	95	0	301	1	0	1	0	2	38	109	33	0	180	565
09:15 AM	40	1	18	0	59	25	155	49	0	229	0	0	2	0	2	21	99	34	0	154	444
Grand Total	515	39	336	0	890	349	1883	673	0	2905	9	1	12	0	22	259	1150	323	0	1732	5549
Apprch %	57.9	4.4	37.8	0		12	64.8	23.2	0		40.9	4.5	54.5	0		15	66.4	18.6	0		
Total %	9.3	0.7	6.1	0	16	6.3	33.9	12.1	0	52.4	0.2	0	0.2	0	0.4	4.7	20.7	5.8	0	31.2	
Lights	486	39	311	0	836	327	1816	670	0	2813	7	1	7	0	15	250	1067	311	0	1628	5292
% Lights	94.4	100	92.6	0	93.9	93.7	96.4	99.6	0	96.8	77.8	100	58.3	0	68.2	96.5	92.8	96.3	0	94	95.4
Buses	19	0	5	0	24	6	25	2	0	33	0	0	5	0	5	8	32	5	0	45	107
% Buses	3.7	0	1.5	0	2.7	1.7	1.3	0.3	0	1.1	0	0	41.7	0	22.7	3.1	2.8	1.5	0	2.6	1.9
Trucks	10	0	20	0	30	16	42	1	0	59	2	0	0	0	2	1	51	7	0	59	150
% Trucks	1.9	0	6	0	3.4	4.6	2.2	0.1	0	2	22.2	0	0	0	9.1	0.4	4.4	2.2	0	3.4	2.7
Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 11-NYS_RT_22_AT_NYS_RT_128_IBM_DRIVEWAY_639124_04-02-2019

Site Code:

Start Date : 4/2/2019

			YS RT 12	28			N.	NYS RT 2	2			IBM	1 DRIVEW	NAY			N	NYS RT 22	.2		1
		F,	rom North	. <u>n</u>			F	From Eas	t			F	rom Sout	ıth			F	rom Wes	<u>t</u>		<u> </u>
Start Time	Right	Thru	Left	Peds A	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysis					1 of 1				_			_									
Peak Hour for Entir	re Intersec	tion Begi	ns at 08:1	15 AM																	· .
08:15 AM	50	6	32	0	88	25	184	76	0	285	2	0	2	0	4	34	135	35	0	204	581
08:30 AM	40	7	24	0	71	37	149	90	0	276	. 1	1	1	0	3	27	93	38	0	158	508
08:45 AM	46	6	56	0	108	61	162	84	0	307	2	0	4	0	6	45	96	38	0	179	600
09:00 AM	33	4	45	0	82	54	152	95	0	301	1_	0	1_	0	2	38	109	33	0	180	565
Total Volume	169	23	157	0	349	177	647	345	0	1169	6	1	8	0	15	144	433	144	0	721	2254
% App. Total	48.4	6.6	45	0		15.1	55.3	29.5	0		40	6.7	53.3	0		20	60.1	20	0		<u> </u>
PHF	.845	.821	.701	.000	.808	.725	.879	.908	.000	.952	.750	.250	.500	.000	.625	.800	.802	.947	.000	.884	.939
Lights	159	23	143	0	325	170	620	343	0	1133	6	1	4	0	11	140	394	135	0	669	2138
% Lights	94.1	100	91.1	0	93.1	96.0	95.8	99.4	0	96.9	100	100	50.0	0	73.3	97.2	91.0	93.8	0	92.8	94.9
Buses	5	0	3	0	8	, 1	7	2	0	10	0	0	4	0	4	4	14	3	0	21	43
% Buses	3.0	0	1.9	0	2.3	0.6	1.1	0.6	0	0.9	0	0	50.0	0	26.7	2.8	3.2	2.1	0	2.9	1.9
Trucks	, 5	0	11	0	16	6	20	0	0	26	0	0	0	0	0	0	25	6	0	31	73
% Trucks	3.0	0	7.0	0	4.6	3.4	3.1	0	0	2.2	0	0	0	0	0	0	5.8	4.2	0	4.3	3.2
Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 11-NYS_RT_22_AT_NYS_RT_128_IBM_DRIVEWAY_639124_04-02-2019

Site Code:

Start Date : 4/2/2019

			YS RT 12	28				NYS RT 2		ignto busc.	5 Trucko		1 DRIVEV	Λ/ΔΥ				NYS RT 2	22		1
	Í		rom Nort			Í		From Eas					rom Sou					rom Wes		ļ	1
Start Time	Right	Thru	Left		App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
11:30 AM	32	1	23	0	56	19	61	4	0	84	4	3	1	0	8	1	67	29	0	97	245
11:45 AM	30	1	24	0	55	27	72	5	Ö	104	4	3	2	Ō	9	4	70	37	Ō	111	279
Total	62	2	47	0	111	46	133	9	0	188	8	6	3	0	17	5	137	66	0	208	524
,	-			-	,	-		-	-	1	-	-	-	-	'	-			-	1	-
12:00 PM	32	1	34	0	67	20	82	3	0	105	10	4	1	0	15	2	70	39	0	111	298
12:15 PM	38	0	21	0	59	21	68	3	0	92	5	5	0	0	10	2	84	46	0	132	293
12:30 PM	50	4	31	0	85	13	77	4	0	94	4	3	3	0	10	1	56	31	1	89	278
12:45 PM	27	4	24	0	55	27	55	3	0	85	3	1	0	0	4	2	66	50	0	118	262
Total	147	9	110	0	266	81	282	13	0	376	22	13	4	0	39	7	276	166	1	450	1131
i										•											,
01:00 PM	36	5	35	0	76	19	59	3	0	81	2	4	2	0	8	1	66	44	0	111	276
01:15 PM	36	7	24	0	67	16	55	4	0	75	1	2	1	0	4	2	84	40	0	126	272
Grand Total	281	23	216	0	520	162	529	29	0	720	33	25	10	0	68	15	563	316	1	895	2203
Apprch %	54	4.4	41.5	0		22.5	73.5	4	0		48.5	36.8	14.7	0		1.7	62.9	35.3	0.1	I	1
Total %	12.8	1_	9.8	0	23.6	7.4	24	1.3	0	32.7	1.5	1.1	0.5	0	3.1	0.7	25.6	14.3	0	40.6	ı <u> </u>
Lights	269	23	204	0	496	145	495	29	0	669	33	25	9	0	67	15	524	302	0	841	2073
% Lights	95.7	100	94.4	0	95.4	89.5	93.6	100	0	92.9	100	100	90	0	98.5	100	93.1	95.6	0	94	94.1
Buses	0	0	0	0	0	4	2	0	0	6	0	0	0	0	0	0	5	1	0	6	12
% Buses	0	0	0	0	0	2.5	0.4	0	0	0.8	0	0	0	0	0	0	0.9	0.3	0	0.7	0.5
Trucks	12	0	12	0	24	13	32	0	0	45	0	0	1	0	1	0	34	13	0	47	117
% Trucks	4.3	0	5.6	0	4.6	8	6	0	0	6.2	0	0	10	0	1.5	0	6	4.1	0	5.3	5.3
Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
% Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	0.1	. 0
4																					

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 11-NYS_RT_22_AT_NYS_RT_128_IBM_DRIVEWAY_639124_04-02-2019

Site Code:

Start Date : 4/2/2019

		N	YS RT 12	28			N	IYS RT 2	2			IBM	1 DRIVEV	NAY			<u>_</u>	NYS RT 2	22		1
		F'	rom North	.n			F	rom Eas	t			F	rom Sout	th			F	rom Wes	st	J	
Start Time	Right	Thru	Left	Peds /	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysis					1 of 1	_					_					_					,
Peak Hour for Entir	re Intersec	tion Begi	ns at 11:4	45 AM																	
11:45 AM	30	1	24	0	55	27	72	5	0	104	4	3	2	0	9	4	70	37	0	111	279
12:00 PM	32	1	34	0	67	20	82	3	0	105	10	4	1	0	15	2	70	39	0	111	298
12:15 PM	38	0	21	0	59	21	68	3	0	92	5	5	0	0	10	2	84	46	0	132	293
12:30 PM	50	4	31	0	85	13	77	4	0	94	4	3_	3_	0	10	1_	56	31	1_	89	278
Total Volume	150	6	110	0	266	81	299	15	0	395	23	15	6	0	44	9	280	153	1	443	1148
% App. Total	56.4	2.3	41.4	0		20.5	75.7	3.8	0		52.3	34.1	13.6	0		2	63.2	34.5	0.2		'
PHF	.750	.375	.809	.000	.782	.750	.912	.750	.000	.940	.575	.750	.500	.000	.733	.563	.833	.832	.250	.839	.963
Lights	147	6	103	0	256	74	283	15	0	372	23	15	5	0	43	9	258	147	0	414	1085
% Lights	98.0	100	93.6	0	96.2	91.4	94.6	100	0	94.2	100	100	83.3	0	97.7	100	92.1	96.1	0	93.5	94.5
Buses	0	0	0	0	0	, 1	2	0	0	3	0	0	0	0	0	0	1	1	0	2	5
% Buses	. 0	0	0	0	0	1.2	0.7	0	0	0.8	0	0	0	0	0	0	0.4	0.7	0	0.5	0.4
Trucks	3	0	7	0	10	6	14	0	0	20	0	0	1	0	1	0	21	5	0	26	57
% Trucks	2.0	0	6.4	0	3.8	7.4	4.7	0	0	5.1	0	0	16.7	0	2.3	0	7.5	3.3	0	5.9	5.0
Pedestrians	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1 1
% Pedestrians	0	0	0	0	0	, 0	0	0	0	0	0	0	0	0	0	0	0	0	100	0.2	0.1

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 11-NYS_RT_22_AT_NYS_RT_128_IBM_DRIVEWAY_639124_04-02-2019

Site Code:

Start Date : 4/2/2019

		- Nr	YS RT 12	20				NYS RT 2		ignis - Duse.	3 110013		1 DRIVEV	V				NYS RT 2	22		1
	1		rom Nort	-		í		From Eas					rom Sout		ļ	l .		From Wes		J	1
Start Time	Right	Thru	Left		Ann Total	Dight	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	Ann Total	Right	Thru	Left	Peds	App. Total	Int. Total
				Peds		Right	87		Peus				Lent	Peus_	App. Total	Kigiii			Peus		Int. Total 437
04:00 PM 04:15 PM	52 49	∠ 1	47 46	0	101	23 33	87 110	0	0	110 143	37 41	1	0 7	0	44	1 4	144 121	37 47	0	182 172	437 460
	1	1	46 33	0	96	9	101	0	0	143		1	1 1 1	0	49	4	130	47 51	0		
04:30 PM	55	2		0	90	_	-	2	0	1	40 51	0	14 17	0	54	4		_	0	185	441
04:45 PM	300		42	0	86	26 91	144 442	<u>3</u> 5	0	173	51 169			0	70 217	2	149	49	0	200	529
Total	200	5	168	U	373	91	44∠	Э	U	538	169	4	44	U	211	11	544	184	U	739	1867
05:00 PM	57	Λ	59	0	116	27	105	2	0	134	67	8	23	0	98	2	162	50	0	214	562
05.00 PM 05:15 PM	50	0	59 50	0	100	28	96	0	0	134	91	Ω Q	23 32	0	131	2	154	50 58	0	214	562 569
05.15 PM 05:30 PM	45	0	40	0	85	26	163	5	0	195	78	0 12	32 27	0	117	2	163	56 55	0	214	617
	52	0	_	0	85 85	27	103	5 2	0	195	78 66	3		0			172	55 61	0	220	544
05:45 PM			33	0								3_ 31	25	0	94	4					
Total	204	0	182	U	386	104	468	9	0	581	302	31	107	U	440	10	651	224	0	885	2292
06:00 PM	57	1	29	0	87	42	106	0	0	148	55	9	17	0	81	2	162	56	0	220	536
06:00 PM 06:15 PM	37	1	29 28	0	66	21	94	0	0	115	55 49	9 6	17	0	70	2	186	56 52	0	240	491
Grand Total	498	1 7	28 407	0	912	258	-	-	0	1382	49 575	50	183	0	808			5∠ 516	0	I	5186
		0.8	-	0	912	258 18.7	1110 80.3	14	0	1302	575 71.2	6.2		0	000	25	1543 74		0	2084	5100
Apprch %	54.6		44.6	0	17.6	18.7		1 0 3	0	26.6		ნ.∠	22.6	0	15.6	1.2		24.8	0	40.2	1
Total %	9.6 493	0.1 6	7.8 401	0	17.6 900	254	21.4 1085	0.3 12	0	26.6 1351	11.1 575	1 50	3.5 181	0	15.6 806	0.5 15	29.8 1526	9.9 512	0	40.2 2053	5110
Lights		85.7		0		_	97.7		0	1			-	0		_		-	0		
% Lights	99	<u>85.7</u>	98.5		98.7	98.4	97.7 6	85.7		97.8	100	100	98.9		99.8	60	98.9	99.2		98.5	98.5
Buses % Buses	0.6	0	4	0	0.8	0.8	0.5	2 14.3	0	10 0.7	0	0	2 1.1	0	0.2	10 40	7 0.5	0.6	0	20	39 0.8
	2					0.8	19	14.3		21	0		1.1			0	10	0.0		11	37
Trucks % Trucks	0.4	14.3	2 0.5	0	5 0.5	0.8	1.7	0	0	1.5	0	0	0	0	0		0.6	0.2	0	0.5	0.7
% Trucks Pedestrians	0.4	14.5	0.5		0.5	0.8	1.1	0			0		0		0	0	0.0			0.5	0.7
	0	0	-	0	-	0	0	0	0	0	0	0	0	0	- 1	1 0	0	0	0	- 1	1
% Pedestrians	, 0	U	0	U	0	U	U	U	U	0	U	U	U	U	0	, U	U	U	U	0	, 0

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 11-NYS_RT_22_AT_NYS_RT_128_IBM_DRIVEWAY_639124_04-02-2019

Site Code:

Start Date : 4/2/2019

								D/O DT (1					
	(YS RT 12	-		NYS RT 22							1 DRIVEV		J		NYS RT 22 From West					
		Fr	rom North	<u>.h</u>		From East						F	rom Sout	<u>ith</u>			'					
Start Time	Right	Thru	Left	Peds /	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total	
Peak Hour Analysis					1 of 1																	
Peak Hour for Entire Intersection Begins at 05:00 PM															. ,							
05:00 PM	57	0	59	0	116	27	105	2	0	134	67	8	23	0	98	2	162	50	0	214	562	
05:15 PM	50	0	50	0	100	28	96	0	0	124	91	8	32	0	131	2	154	58	0	214	569	
05:30 PM	45	0	40	0	85	27	163	5	0	195	78	12	27	0	117	2	163	55	0	220	617	
05:45 PM	52	0	33	0	85	22	104	2	0	128	66	3_	25	0	94	4	172	61	0	237	544	
Total Volume	204	0	182	0	386	104	468	9	0	581	302	31	107	0	440	10	651	224	0	885	2292	
% App. Total	52.8	0	47.2	0		17.9	80.6	1.5	0		68.6	7	24.3	0		1.1	73.6	25.3	0		'	
PHF	.895	.000	.771	.000	.832	.929	.718	.450	.000	.745	.830	.646	.836	.000	.840	.625	.946	.918	.000	.934	.929	
Lights	204	0	180	0	384	103	460	9	0	572	302	31	105	0	438	6	648	224	0	878	2272	
% Lights	100	0	98.9	0	99.5	99.0	98.3	100	0	98.5	100	100	98.1	0	99.5	60.0	99.5	100	0	99.2	99.1	
Buses	0	0	2	0	2	, 1	2	0	0	3	0	0	2	0	2	4	3	0	0	7	14	
% Buses	0	0	1.1	0	0.5	1.0	0.4	0	0	0.5	0	0	1.9	0	0.5	40.0	0.5	0	0	0.8	0.6	
Trucks	0	0	0	0	0	0	6	0	0	6	0	0	0	0	0	0	0	0	0	0	6	
% Trucks	0	0	0	0	0	0	1.3	0	0	1.0	0	0	0	0	0	0	0	0	0	0	0.3	
Pedestrians	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
% Pedestrians	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 12-NYS_RT_22_AT_N_BROADWAY_SIR_JOHN'S_PLAZA_639127_04-02-2019

Site Code:

Start Date : 4/2/2019

Start Time Right Thru Left Peds Ap. Total Right Thru Left			N B	ROADW	/AY				NYS RT 2		iginio Duoci	<u>o maone</u>		NYS RT 2	2			1				
Start Time								F	rom Eas	t			F	rom Sou	th	[OHN'S P			, P
OG:45 AM	Start Time	Right	Thru	Left	Peds	App. Total	Right				App. Total	Right				App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Total 1	06:30 AM	0	107	0	0	107	0	0	30	0	30	24	53	0	0	77	0	1	0	0	1	215
07:00 AM	06:45 AM	<u> </u>	142	0	0	143	0_	0	38	0	38	31	63	0	0	94	0	0	0	1	1	276
07:15 AM	Total	1	249	0	0	250	0	0	68	0	68	55	116	0	0	171	0	1	0	1	2	491
07:15 AM																						,
07:30 AM 0 271 0 0 295 0 0 295 0 0 295 0 0 295 0 0 295 0 0 295 0 0 295 0 0 295 0 0 295 0 0 295 0 0 295 0 0 224 0 225 203 382 7 0 592 6 4 1 0 11 1813 08:00 AM 1 285 0 0 286 1 1 70 0 72 56 108 1 0 165 2 1 0 0 3 526 08:15 AM 1 275 0 0 276 0 1 78 0 79 48 122 0 0 170 2 1 0 1 4 229 0 0 20 0 <td< td=""><td></td><td></td><td></td><td></td><td>_</td><td></td><td>0</td><td>0</td><td></td><td>0</td><td></td><td></td><td></td><td>_</td><td>0</td><td></td><td>2</td><td>0</td><td>0</td><td>0</td><td>1</td><td></td></td<>					_		0	0		0				_	0		2	0	0	0	1	
O7:45 AM		2	-	-	0		, 1	0		0	1			2	0	1	1	4	1	0	-	
Total 2 983 0 0 985 1 0 224 0 225 203 382 7 0 592 6 4 1 0 11 1813		0		0	0		0	0		0				1	0		3	0	0	0	3	
08:00 AM				0	0		0	0		0				11	0		0	0	0	0	0	
08:15 AM 1 275 0 0 276 0 1 78 0 79 48 122 0 0 170 2 1 0 1 4 529 08:30 AM 0 302 0 0 302 0 0 67 0 67 40 112 1 0 153 0 0 0 0 522 08:45 AM 0 283 0 0 283 0 1 60 6 61 49 137 1 0 187 0 0 0 0 531 Total 2 1145 0 0 1147 1 3 275 0 279 193 479 3 0 675 4 2 0 1 428 09:00 AM 0 229 0 0 59 0 59 45 92 2 0 133	Total	2	983	0	0	985	. 1	0	224	0	225	203	382	7	0	592	6	4	1	0	11	1813
08:15 AM 1 275 0 0 276 0 1 78 0 79 48 122 0 0 170 2 1 0 1 4 529 08:30 AM 0 302 0 0 302 0 0 67 0 67 40 112 1 0 153 0 0 0 0 522 08:45 AM 0 283 0 0 283 0 1 60 6 61 49 137 1 0 187 0 0 0 0 531 Total 2 1145 0 0 1147 1 3 275 0 279 193 479 3 0 675 4 2 0 1 428 09:00 AM 0 229 0 0 59 0 59 45 92 2 0 133	i .	i																				
08:30 AM 0 302 0 0 302 0 0 67 0 67 40 112 1 0 153 0 0 0 0 522 08:45 AM 0 283 0 0 283 0 1 60 0 61 49 137 1 0 187 0 0 0 0 0 0 0 0 0 0 531 Total 2 1145 0 0 1147 1 3 275 0 279 193 479 3 0 675 4 2 0 1 7 2108 09:00 AM 0 229 0 0 59 0 59 45 92 2 0 139 1 0 0 0 1428 09:15 AM 1 200 0 229 0 0 524 1 92		1		0	0		. 1	1		0				1	0			1	0	0	3	
08:45 AM 0 283 0 0 283 0 1 60 0 61 49 137 1 0 187 0 0 0 0 0 531 Total 2 1145 0 0 1147 1 3 275 0 279 193 479 3 0 675 4 2 0 1 7 2108 09:00 AM 0 229 0 0 59 0 59 45 92 2 0 139 1 0 0 0 1 428 09:15 AM 1 200 0 201 0 52 0 52 41 92 1 0 134 2 0 1 428 0 201 3 678 0 683 537 1161 13 0 1711 13 7 2 2 2 4 5230 44 <td></td> <td>1</td> <td></td> <td>0</td> <td>0</td> <td>- 1</td> <td>0</td> <td>1</td> <td>78</td> <td>0</td> <td>79</td> <td>48</td> <td></td> <td>0</td> <td>0</td> <td>-</td> <td>2</td> <td>1</td> <td>0</td> <td>1</td> <td>4</td> <td></td>		1		0	0	- 1	0	1	78	0	79	48		0	0	-	2	1	0	1	4	
Total 2 1145 0 0 1147 1 3 275 0 279 193 479 3 0 675 4 2 0 1 7 2108 09:00 AM 0 229 0 0 59 0 59 45 92 2 0 139 1 0 0 0 1 428 09:15 AM 1 200 0 0 201 0 0 52 41 92 1 0 134 2 0 1 428 09:15 AM 1 200 0 0 52 0 552 41 92 1 0 134 2 0 1 428 Grand Total 6 2806 0 0 2812 2 3 678 0 683 537 1161 13 0 1711 13 7 2 2 2 <t< td=""><td>08:30 AM</td><td>0</td><td>302</td><td>0</td><td>0</td><td>302</td><td>0</td><td>0</td><td>67</td><td>0</td><td>67</td><td>40</td><td>112</td><td>1</td><td>0</td><td>153</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>522</td></t<>	08:30 AM	0	302	0	0	302	0	0	67	0	67	40	112	1	0	153	0	0	0	0	0	522
09:00 AM 0 229 0 0 59 0 59 45 92 2 0 139 1 0 0 0 1 428 09:15 AM 1 200 0 0 201 0 0 52 41 92 1 0 134 2 0 1 0 3 390 Grand Total 6 2806 0 0 2812 2 3 678 0 683 537 1161 13 0 1711 13 7 2 2 24 5230 Apprich % 0.2 99.8 0 0 0.3 0.4 99.3 0 131.4 67.9 0.8 0 54.2 29.2 8.3 8.3 8.3 7 701.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	08:45 AM	0	283	0	0	283	0	1_		0	61	49	137	1	0	187	0	0	0	0	0	531_
09:15 AM 1 200 0 0 201 0 0 52 0 52 41 92 1 0 134 2 0 1 0 3 390 Grand Total 6 2806 0 0 2812 2 3 678 0 683 537 1161 13 0 1711 13 7 2 2 2 24 5230 Apprich % 0.2 99.8 0 0 0.3 0.4 99.3 0 31.4 67.9 0.8 0 54.2 29.2 8.3 8.3 -1 -1 10.1 10.3 22.2 0.2 0 32.7 0.2 0.1 0 0 0.5 -1 10.0 0 0 0 0.5 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </td <td>Total</td> <td>2</td> <td>1145</td> <td>0</td> <td>0</td> <td>1147</td> <td>1</td> <td>3</td> <td>275</td> <td>0</td> <td>279</td> <td>193</td> <td>479</td> <td>3</td> <td>0</td> <td>675</td> <td>4</td> <td>2</td> <td>0</td> <td>1</td> <td>7</td> <td>2108</td>	Total	2	1145	0	0	1147	1	3	275	0	279	193	479	3	0	675	4	2	0	1	7	2108
09:15 AM 1 200 0 0 201 0 0 52 0 52 41 92 1 0 134 2 0 1 0 3 390 Grand Total 6 2806 0 0 2812 2 3 678 0 683 537 1161 13 0 1711 13 7 2 2 2 24 5230 Apprich % 0.2 99.8 0 0 0.3 0.4 99.3 0 31.4 67.9 0.8 0 54.2 29.2 8.3 8.3 -1 -1 10.1 10.3 22.2 0.2 0 32.7 0.2 0.1 0 0 0.5 -1 10.0 0 0 0 0.5 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </td <td>i .</td> <td></td>	i .																					
Grand Total 6 2806 0 0 2812 2 3 678 0 683 537 1161 13 0 1711 13 7 2 2 2 24 5230 Apprich % 0.2 99.8 0 0 0.3 0.4 99.3 0 31.4 67.9 0.8 0 54.2 29.2 8.3 8.3 8.3 Total % 0.1 53.7 0 0 53.8 0 0.1 13 0 13.1 10.3 22.2 0.2 0 32.7 0.2 0.1 0 0 0.5 0 0 0.5 0 0 0 0 0.5 0 0 0 0.5 0 0 0 0.5 0 0 0 0.5 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0	09:00 AM	0	229	0	0	229	0	0	59	0	59	45	92	2	0	139	1	0	0	0	1	428
Apprich % 0.2 99.8 0 0 0.3 0.4 99.3 0 31.4 67.9 0.8 0 54.2 29.2 8.3 8.3 Total % 0.1 53.7 0 0 53.8 0 0.1 13 0 13.1 10.3 22.2 0.2 0 32.7 0.2 0.1 0 0 0.5 Lights 6 2719 0 0 2725 2 3 631 0 636 479 1090 11 0 1580 11 5 2 0 18 4959 % Lights 100 96.9 0 0 96.9 100 100 93.1 89.2 93.9 84.6 0 92.3 84.6 71.4 100 0 75 94.8 Buses 0 1.6 0 0 2.9 0 29 25 37 0 0 62 0 <th< td=""><td>09:15 AM</td><td>1</td><td>200</td><td>0</td><td>0</td><td>201</td><td>0</td><td>0</td><td>52</td><td>0</td><td>52</td><td>41</td><td>92</td><td>1</td><td>0</td><td>134</td><td>2</td><td>0</td><td>1</td><td>0</td><td>3 </td><td>390</td></th<>	09:15 AM	1	200	0	0	201	0	0	52	0	52	41	92	1	0	134	2	0	1	0	3	390
Total % 0.1 53.7 0 0 53.8 0 0.1 13 0 13.1 10.3 22.2 0.2 0 32.7 0.2 0.1 0 0 0.5 Lights 6 2719 0 0 2725 2 3 631 0 636 479 1090 11 0 1580 11 5 2 0 18 4959 % Lights 100 96.9 0 0 96.9 100 100 93.1 89.2 93.9 84.6 0 92.3 84.6 71.4 100 0 75 94.8 Buses 0 44 0 0 43 0 0 29 0 29 25 37 0 0 62 0 0 0 0 135 % Buses 0 1.6 0 0 4.3 0 4.2 4.7 3.2 0 0		6	2806	0	0	2812	2	3	678	0	683	537	1161	13	0	1711	13	7	2	2	24	5230
Total % 0.1 53.7 0 0 53.8 0 0.1 13 0 13.1 10.3 22.2 0.2 0 32.7 0.2 0.1 0 0 0.5 Lights 6 2719 0 0 2725 2 3 631 0 636 479 1090 11 0 1580 11 5 2 0 18 4959 % Lights 100 96.9 0 0 96.9 100 100 93.1 89.2 93.9 84.6 0 92.3 84.6 71.4 100 0 75 94.8 Buses 0 44 0 0 43 0 0 29 0 29 25 37 0 0 62 0 0 0 0 135 % Buses 0 1.6 0 0 4.3 0 4.2 4.7 3.2 0 0	Apprch %	0.2	99.8	0	0		0.3	0.4	99.3	0		31.4	67.9	8.0	0	[54.2	29.2	8.3	8.3		1
% Lights 100 96.9 0 0 96.9 100 100 93.1 0 93.1 89.2 93.9 84.6 0 92.3 84.6 71.4 100 0 75 94.8 Buses 0 44 0 0 29 0 29 25 37 0 0 62 0 0 0 0 0 135 % Buses 0 1.6 0 0 4.3 0 4.2 4.7 3.2 0 0 3.6 0 0 0 0 2.6 Trucks 0 43 0 0 18 0 18 33 34 2 0 69 2 2 0 0 4 134 % Trucks 0 1.5 0 0 2.7 0 2.6 6.1 2.9 15.4 0 4 15.4 28.6 0 0 16.7		0.1	53.7	0	0	53.8	0	0.1	13	0	13.1	10.3	22.2	0.2	0	32.7	0.2	0.1	0	0	0.5	
% Lights 100 96.9 0 0 96.9 100 100 93.1 89.2 93.9 84.6 0 92.3 84.6 71.4 100 0 75 94.8 Buses 0 44 0 0 44 0 0 29 0 29 25 37 0 0 62 0 0 0 0 0 135 % Buses 0 1.6 0 0 4.3 0 4.2 4.7 3.2 0 0 3.6 0 0 0 0 2.6 Trucks 0 43 0 0 18 0 18 33 34 2 0 69 2 2 0 0 4 134 % Trucks 0 1.5 0 0 2.7 0 2.6 6.1 2.9 15.4 0 4 15.4 28.6 0 0 16.7<	Lights	6	2719	0	0	2725	2	3	631	0	636	479	1090	11	0	1580	11	5	2	0	18	4959
% Buses 0 1.6 0 0 1.6 0 0 4.3 0 4.2 4.7 3.2 0 0 3.6 0 0 0 0 0 2.6 Trucks 0 43 0 0 18 0 18 33 34 2 0 69 2 2 0 0 4 134 % Trucks 0 1.5 0 0 2.7 0 2.6 6.1 2.9 15.4 0 4 15.4 28.6 0 0 16.7 2.6 Pedestrians 0	% Lights	100	96.9	0	0	96.9	100	100	93.1	0	93.1	89.2	93.9	84.6	0	92.3	84.6	71.4	100	0	75	94.8
Trucks 0 43 0 0 43 0 0 18 0 18 33 34 2 0 69 2 2 2 0 0 4 134 % Trucks 0 1.5 0 0 2.7 0 2.6 6.1 2.9 15.4 0 4 15.4 28.6 0 0 16.7 2.6 Pedestrians 0	Buses	0	44	0	0	44	0	0	29	0	29			0	0	62	0	0	0	0	0	135
% Trucks 0 1.5 0 0 1.5 0 0 2.7 0 2.6 6.1 2.9 15.4 0 4 15.4 28.6 0 0 16.7 2.6 Pedestrians 0 <td>% Buses</td> <td>0</td> <td>1.6</td> <td>0</td> <td>0</td> <td>1.6</td> <td>0</td> <td>0</td> <td>4.3</td> <td>0</td> <td>4.2</td> <td>4.7</td> <td>3.2</td> <td>0</td> <td>0</td> <td>3.6</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td>	% Buses	0	1.6	0	0	1.6	0	0	4.3	0	4.2	4.7	3.2	0	0	3.6	0	0	0	0	0	
Pedestrians 0 <th< td=""><td>Trucks</td><td>0</td><td>43</td><td>0</td><td>0</td><td>43</td><td>0</td><td>0</td><td>18</td><td>0</td><td>18</td><td>33</td><td>34</td><td>2</td><td>0</td><td>69</td><td>2</td><td>2</td><td>0</td><td>0</td><td>4</td><td>134</td></th<>	Trucks	0	43	0	0	43	0	0	18	0	18	33	34	2	0	69	2	2	0	0	4	134
	% Trucks	0	1.5	0	0	1.5	0	0	2.7	0	2.6	6.1	2.9	15.4	0	4	15.4	28.6	0	0	16.7	2.6
% Pedestrians 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	2	2
	% Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	8.3	, 0

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 12-NYS_RT_22_AT_N_BROADWAY_SIR_JOHN'S_PLAZA_639127_04-02-2019

Site Code:

Start Date : 4/2/2019

			ROADWA					NYS RT 2					NYS RT 2								
		Fr	rom North	<u>n</u>			F	From Eas	<u>,t</u>			F	rom Sout	<u>th</u>							
Start Time	Right	Thru	Left	Peds A	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysis					1 of 1	-					-					-					, , , , , , , , , , , , , , , , , , ,
Peak Hour for Entire Intersection Begins at 07:45 AM																					
07:45 AM	0	295	0	0	295	0	0	58	0	58	60	129	1	0	190	0	0	0	0	0	543
08:00 AM	1	285	0	0	286	1	1	70	0	72	56	108	1	0	165	2	1	0	0	3	526
08:15 AM	, 1	275	0	0	276	0	1	78	0	79	48	122	0	0	170	2	1	0	1	4	529
08:30 AM	0	302	0	0	302	0	0	67	0	67	40	112	1_	0	153	0	0	0	0	o	522
Total Volume	2	1157	0	0	1159	1	2	273	0	276	204	471	3	0	678	4	2	0	1	7	2120
% App. Total	0.2	99.8	0	0		0.4	0.7	98.9	0		30.1	69.5	0.4	0		57.1	28.6	0	14.3		
PHF	.500	.958	.000	.000	.959	.250	.500	.875	.000	.873	.850	.913	.750	.000	.892	.500	.500	.000	.250	.438	.976
Lights	2	1119	0	0	1121	1	2	243	0	246	176	434	3	0	613	4	2	0	0	6	1986
% Lights	100	96.7	0	0	96.7	100	100	89.0	0	89.1	86.3	92.1	100	0	90.4	100	100	0	0	85.7	93.7
Buses	0	19	0	0	19	0	0	21	0	21	17	23	0	0	40	0	0	0	0	0	80
% Buses	0	1.6	0	0	1.6	0	0	7.7	0	7.6	8.3	4.9	0	0	5.9	0	0	0	0	0	3.8
Trucks	0	19	0	0	19	0	0	9	0	9	11	14	0	0	25	0	0	0	0	0	53
% Trucks	0	1.6	0	0	1.6	0	0	3.3	0	3.3	5.4	3.0	0	0	3.7	0	0	0	0	0	2.5
Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
% Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	14.3	0.0

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 12-NYS_RT_22_AT_N_BROADWAY_SIR_JOHN'S_PLAZA_639127_04-02-2019

Site Code:

Start Date : 4/2/2019

Page No : 1
Groups Printed- Lights - Buses - Trucks - Pedestrians

			BROADW			1	N'	NYS RT 2	22	<u>jo 2 a o o</u>	o madica	N'	NYS RT 2			1		JOHN'S P			
			rom Nort					From Eas					rom Sout					From Wes		<u> </u> '	'
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
11:30 AM	0	73	1	0	74	, 0	1	32	0	33	23	80	2	0	105	, 1	0	1	1	3	215
11:45 AM	1	92	0	0	93	0_	0	29	0	29	44	100	1_	0	145	3	0	2	1	6	273
Total	1	165	1	0	167	0	1	61	0	62	67	180	3	0	250	4	0	3	2	9	488
l																					,
12:00 PM	0	81	0	0	81	0	0	52	0	52	25	91	2	0	118	, 1	0	0	0	1	252
12:15 PM	0	96	0	0	96	0	0	40	0	40	34	88	0	0	122	. 2	0	0	0	2	260
12:30 PM	1	88	0	0	89	. 0	0	32	0	32	50	102	1	0	153	. 0	0	1	0	1	275
12:45 PM	3	94	0	0	97	_ 0_	_0_	31	0	31	38	82	_0_	0	120	1_	_ 0_	0_	1	2	250
Total	4	359	0	0	363	0	0	155	0	155	147	363	3	0	513	4	0	1	1	6	1037
1					*					•					•						r
01:00 PM	0	80	0	0	80	0	0	24	0	24	37	71	0	0	108	. 1	0	1	1	3	215
01:15 PM	0	79	0	0	79	0	1	35	0	36	37	103	2	0	142	3	0	2	1	6	263
Grand Total	5	683	1	0	689	0	2	275	0	277	288	717	8	0	1013	12	0	7	5	24	2003
Apprch %	0.7	99.1	0.1	0	Ţ	0	0.7	99.3	0		28.4	70.8	0.8	0		50	0	29.2	20.8	I	1
Total %	0.2	34.1	0	0	34.4	0	0.1	13.7	0	13.8	14.4	35.8	0.4	0	50.6	0.6	0	0.3	0.2		1
Lights	5	650	1	0	656	0	2	257	0	259	262	689	7	0	958	10	0	7	0	17	1890
% Lights	100	95.2	100	0	95.2	0	100	93.5	0	93.5	91	96.1	87.5	0	94.6	83.3	0	100	0	70.8	94.4
Buses	0	13	0	0	13	0	0	0	0	0	4	9	0	0	13	, 1	0	0	0	1	27
% Buses	0	1.9	0	0	1.9	0	0	0	0	0	1.4	1.3	0	0	1.3	8.3	0	0	0	4.2	1.3
Trucks	0	20	0	0	20	0	0	18	0	18	22	19	1	0	42	1	0	0	0	1	81
% Trucks	0	2.9	0	0	2.9	0	0	6.5	0	6.5	7.6	2.6	12.5	0	4.1	8.3	0	0	0	4.2	1 4
Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	5	5
% Pedestrians	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	. 0	0	0	100	20.8	0.2

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 12-NYS_RT_22_AT_N_BROADWAY_SIR_JOHN'S_PLAZA_639127_04-02-2019

Site Code:

Start Date : 4/2/2019

	1	N BI	ROADWA	AY			N'	NYS RT 2	<u>.</u> 2				NYS RT 2	22		·	SIR J	IOHN'S PI	LAZA		1
		<u> </u>	rom North	<u>n</u>			F	From Eas	t			F	rom Sout	.th			F	rom Wes	<u>st</u>	'	'
Start Time	Right	Thru	Left	Peds /	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysis	is From 11	:30 AM to	01:15 PI	M - Peak	1 of 1				_												
Peak Hour for Entir																					· .
11:45 AM	1	92	0	0	93	. 0	0	29	0	29	44	100	1	0	145	, 3	0	2	1	6	273
12:00 PM	0	81	0	0	81	. 0	0	52	0	52	25	91	2	0	118	, 1	0	0	0	1	252
12:15 PM	0	96	0	0	96	. 0	0	40	0	40	34	88	0	0	122	, 2	0	0	0	2	260
12:30 PM	1	88	0	0	89	. 0	0	32	0	32	50	102	1_	0	153	. 0	0	1_	0	1	275
Total Volume	2	357	0	0	359	0	0	153	0	153	153	381	4	0	538	6	0	3	1	10	1060
% App. Total	0.6	99.4	0	0		0	0	100	0		28.4	70.8	0.7	0		60	0	30	10		<u> </u>
PHF	.500	.930	.000	.000	.935	.000	.000	.736	.000	.736	.765	.934	.500	.000	.879	.500	.000	.375	.250	.417	.964
Lights	2	336	0	0	338	0	0	142	0	142	138	368	3	0	509	4	0	3	0	7	996
% Lights	100	94.1	0	0	94.2	. 0	0	92.8	0	92.8	90.2	96.6	75.0	0	94.6	66.7	0	100	0	70.0	94.0
Buses	0	9	0	0	9	. 0	0	0	0	0	1	5	0	0	6	, 1	0	0	0	1	16
% Buses	0	2.5	0	0	2.5	. 0	0	0	0	0	0.7	1.3	0	0	1.1	16.7	0	0	0	10.0	1.5
Trucks	0	12	0	0	12	. 0	0	11	0	11	14	8	1	0	23	, 1	0	0	0	1	47
% Trucks	0	3.4	0	0	3.3	. 0	0	7.2	0	7.2	9.2	2.1	25.0	0	4.3	16.7	0	0	0	10.0	4.4
Pedestrians	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
% Pedestrians	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0	100	10.0	0.1

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 12-NYS_RT_22_AT_N_BROADWAY_SIR_JOHN'S_PLAZA_639127_04-02-2019

Site Code:

Start Date : 4/2/2019

Page No : 1
Groups Printed- Lights - Buses - Trucks - Pedestrians

		N D		14.1/				VC DT 1		giilo Daoc	o maone			2			CID I	ZI INIIC D	1 4 7 4		
			ROADW					IYS RT 2					YS RT 2					DHN'S P			
_			om Nort					rom Eas					rom Sou					rom Wes			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
04:00 PM	0	121	0	0	121	0	0	50	0	50	60	188	1	0	249	0	0	0	0	0	420
04:15 PM	0	134	0	0	134	0	1	41	0	42	41	238	4	0	283	0	0	1	1	2	461
04:30 PM	1	125	0	0	126	1	0	44	0	45	56	253	5	0	314	2	0	1	0	3	488
04:45 PM	0	113	0	0	113	0	0	49	0	49	49	277	0	0	326	1	1	0	0	2	490
Total	1	493	0	0	494	1	1	184	0	186	206	956	10	0	1172	3	1	2	1	7	1859
										·					·						
05:00 PM	2	117	0	0	119	0	0	55	0	55	71	248	1	0	320	2	0	1	0	3	497
05:15 PM	2	138	0	0	140	0	0	43	0	43	61	325	0	0	386	3	0	4	0	7	576
05:30 PM	0	144	0	0	144	0	0	60	0	60	53	294	1	0	348	6	1	0	0	7	559
05:45 PM	1	125	0	0	126	0	2	54	0	56	69	288	3	0	360	4	1	3	2	10	552
Total	5	524	0	0	529	0	2	212	0	214	254	1155	5	0	1414	15	2	8	2	27	2184
,					'																
06:00 PM	2	86	0	0	88	0	0	42	0	42	50	270	1	0	321	3	0	0	0	3	454
06:15 PM	0	89	0	0	89	0	1	45	0	46	111	211	1	0	323	1	0	0	0	1	459
Grand Total	8	1192	0	0	1200	1	4	483	0	488	621	2592	17	0	3230	22	3	10	3	38	4956
Apprch %	0.7	99.3	0	0		0.2	8.0	99	0		19.2	80.2	0.5	0		57.9	7.9	26.3	7.9		
Total %	0.2	24.1	0	0	24.2	0	0.1	9.7	0	9.8	12.5	52.3	0.3	0	65.2	0.4	0.1	0.2	0.1	0.8	
Lights	8	1161	0	0	1169	1	4	462	0	467	610	2559	17	0	3186	22	3	10	0	35	4857
% Lights	100	97.4	0	0	97.4	100	100	95.7	0	95.7	98.2	98.7	100	0	98.6	100	100	100	0	92.1	98
Buses	0	18	0	0	18	0	0	7	0	7	4	9	0	0	13	0	0	0	0	0	38
% Buses	0	1.5	0	0	1.5	0	0	1.4	0	1.4	0.6	0.3	0	0	0.4	0	0	0	0	0	0.8
Trucks	0	13	0	0	13	0	0	14	0	14	7	24	0	0	31	0	0	0	0	0	58
% Trucks	0	1.1	0	0	1.1	0	0	2.9	0	2.9	1.1	0.9	0	0	1	0	0	0	0	0	1.2
Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	3	3
% Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	7.9	0.1
'																					

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 12-NYS_RT_22_AT_N_BROADWAY_SIR_JOHN'S_PLAZA_639127_04-02-2019

Site Code:

Start Date : 4/2/2019

ļ		N B'	ROADWA	AY			N	NYS RT 2	<u>.</u> 2			<u></u>	NYS RT 2	22			SIR J	JOHN'S P	LAZA		
		<u>F</u> r	rom North	n			F	From Eas	t			F	rom Sout	₁th			F	rom Wes	st		
Start Time	Right	Thru	Left	Peds A	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysis					1 of 1									_					_	_	
Peak Hour for Entir	re Intersec	tion Begir	ns at 05:0	J0 РМ																	
05:00 PM	2	117	0	0	119	0	0	55	0	55	71	248	1	0	320	2	0	1	0	3	497
05:15 PM	2	138	0	0	140	. 0	0	43	0	43	61	325	0	0	386	3	0	4	0	7	576
05:30 PM	0	144	0	0	144	0	0	60	0	60	53	294	1	0	348	6	1	0	0	7	559
05:45 PM	11	125	0	0	126	. 0	2	54	0	56	69	288	3	0	360	4	1_	3_	2	10	552
Total Volume	5	524	0	0	529	. 0	2	212	0	214	254	1155	5	0	1414	15	2	8	2	27	2184
% App. Total	0.9	99.1	0	0		. 0	0.9	99.1	0		18	81.7	0.4	0		55.6	7.4	29.6	7.4		P
PHF	.625	.910	.000	.000	.918	.000	.250	.883	.000	.892	.894	.888	.417	.000	.916	.625	.500	.500	.250	.675	.948
Lights	5	513	0	0	518	0	2	206	0	208	250	1143	5	0	1398	15	2	8	0	25	2149
% Lights	100	97.9	0	0	97.9	0	100	97.2	0	97.2	98.4	99.0	100	0	98.9	100	100	100	0	92.6	98.4
Buses	0	6	0	0	6	0	0	4	0	4	2	4	0	0	6	0	0	0	0	0	16
% Buses	0	1.1	0	0	1.1	. 0	0	1.9	0	1.9	0.8	0.3	0	0	0.4	. 0	0	0	0	0	0.7
Trucks	0	5	0	0	5	0	0	2	0	2	2	8	0	0	10	0	0	0	0	0	17
% Trucks	0	1.0	0	0	0.9	. 0	0	0.9	0	0.9	0.8	0.7	0	0	0.7	. 0	0	0	0	0	0.8
Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0	2	2	. 2
% Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	7.4	0.1

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 13-NYS_RT_22_AT_CENTRAL_WESTCHESTER_PARKWAY_CHURCH_ST_639131_04-02-2019

Site Code:

Start Date : 4/2/2019

							ıaç	G IN	ι,	ı																					
											G	roups F						- Pede	strians												
			NYS	RT 22				R	ESER	VOIR	RD		C	CENTR	RAL WE		_	ER			NYS	RT 22				(CHUR	CH ST	Г		
			_	North					_	n East					-	WAY				F	_	outhwe:	st .				From		•		
				11101111						Last					From	South	1			•	10111 0	outi ivi c	J.			1	1 10111	******			
Start Time	Right	Bear Right	Thru	Left	Peds	App. Total	Right	Thru	Bear Left	Left	Peds	App. Total	Right	Thru	Left	Hard Left	Peds	App. Total	Hard Right	Bear Right	Bear Left	Hard Left	Peds	App. Total	Hard Right	Right	Thru	Left	Peds	App. Total	Int. Total
06:30 AM	0	38	90	7	0	135	2	0	9	2	0	13	3	47	0	0	3	53	10	8	34	0	0	52	0	0	0	0	2	2	255
06:45 AM	0	51	137	3	0	191	6	0	5	8	0	19	9	43	0	0	3	55	7	13	37	0	0	57	0	0	0	0	1	1	323
Total	0	89	227	10	0	326	8	0	14	10	0	32	12	90	0	0	6	108	17	21	71	0	0	109	0	0	0	0	3	3	578
07:00 AM	0	39	155	7	0	201	7	0	9	8	0	24	12	71	0	0	6	89	20	13	40	0	0	73	0	0	0	0	3	3	390
07:15 AM	0	64	206	7	2	279	7	0	8	10	0	25	6	77	0	0	5	88	29	13	50	0	0	92	0	0	0	0	1	1	485
07:30 AM	0	51	288	11	0	350	10	1	10	17	0	38	8	124	0	0	2	134	27	9	52	0	0	88	0	0	0	0	0	0	610
07:45 AM	0	57	270	7	2	336	12	0	13	21	0	46	14	135	0	0	1	150	42	11	53	0	0	106	0	0	0	0	1	1	639
Total	0	211	919	32	4	1166	36	1	40	56	0	133	40	407	0	0	14	461	118	46	195	0	0	359	0	0	0	0	5	5	2124
08:00 AM	0	56	323	15	0	394	9	0	13	9	0	31	17	109	0	0	1	127	40	17	72	0	0	129	0	0	0	0	0	0	681
08:15 AM	1	67	288	9	1	366	9	0	12	19	0	40	14	122	0	0	2	138	64	15	48	0	0	127	0	0	0	0	0	0	671
08:30 AM	0	45	257	5	1	308	9	0	19	21	0	49	8	97	0	0	2	107	48	16	65	0	0	129	1	0	0	0	0	1	594
08:45 AM	0	68	281	3	0	352	5	0	19	20	0	44	8	140	0	0	1	149	51	25	72	0	0	148	0	0	0	0	0	0	693
Total	1	236	1149	32	2	1420	32	0	63	69	0	164	47	468	0	0	6	521	203	73	257	0	0	533	1	0	0	0	0	1	2639
						•																									
09:00 AM	0	59	227	13	1	300	14	1	19	10	0	44	13	96	0	0	3	112	29	20	62	0	0	111	0	0	0	0	0	0	567
09:15 AM	0	54	195	13	0	262	8	0	6	11	0	25	20	82	0	0	3	105	23	17	55	0	0	95	0	0	0	0	0	0	487
Grand Total	1	649	2717	100	7	3474	98	2	142	156	0	398	132	1143	0	0	32	1307	390	177	640	0	0	1207	1	0	0	0	8	9	6395
Apprch %	0	18.7	78.2	2.9	0.2		24.6	0.5	35.7	39.2	0		10.1	87.5	0	0	2.4		32.3	14.7	53	0	0		11.1	0	0	0	88.9		
Total %	0	10.1	42.5	1.6	0.1	54.3	1.5	0	2.2	2.4	0	6.2	2.1	17.9	0	0	0.5	20.4	6.1	2.8	10	0	0	18.9	0	0	0	0	0.1	0.1	
Lights	1	583	2654	97	0	3335	94	2	134	153	0	383	128	1092	0	0	0	1220	382	162	565	0	0	1109	1	0	0	0	0	1	6048
% Lights	100	89.8	97.7	97	0	96	95.9	100	94.4	98.1	0	96.2	97	95.5	0	0	0	93.3	97.9	91.5	88.3	0	0	91.9	100	0	0	0	0	11.1	94.6
Buses	0	33	40	1	0	74	1	0	1	1	0	3	2	35	0	0	0	37	6	2	21	0	0	29	0	0	0	0	0	0	143
% Buses	Ö	5.1	1.5	1	Ö	2.1	1	Ö	0.7	0.6	Ö	0.8	1.5	3.1	Ö	Ö	Ö	2.8	1.5	1.1	3.3	0	Ō	2.4	Ö	Ö	Ō	Ō	Ö	ō	2.2
Trucks	0	33	23	2	0	58	3	0	7	2	0	12	2	16	0	0	0	18	2	13	54	0	0	69	0	0	0	0	0	0	157
% Trucks	Ö	5.1	0.8	2	Ö	1.7	3.1	Ó	4.9	1.3	0	3	1.5	1.4	0	Ō	Ö	1.4	0.5	7.3	8.4	0	Ō	5.7	0	0	0	0	Ō	ō	2.5
Pedestrians	0	0	0	0	7	7	0	0	0	0	0	0	0	0	0	0	32	32	0	0	0	0	0	0	0	0	0	0	8	8	47
0/ Dadadaia	م ا	Ô	0	Ô	100	0.2	مَ ا	Ô	Ô	Ô	ñ	ñ	Ó	Ô	ñ	n	100	2.4	0	Ô	Ô	ñ	Ô	ñ	Ō	n	ñ	Ô	100	990	0.7

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 13-NYS_RT_22_AT_CENTRAL_WESTCHESTER_PARKWAY_CHURCH_ST_639131_04-02-2019

Site Code:

Start Date : 4/2/2019

				RT 22 North				R	RESER\ From	VOIR I			с 	CENTR	OAR	ESTCH KWAY South	′	:R			NYS I rom So	RT 22 outhwe						RCH ST West			
Start Time	Right	Bear Right	Thru	Left	Peds	App. Total	Right	Thru	Bear Left	Left	Peds	App. Total	Right	Thru	Left	Hard Left	Peds	App. Total	Hard Right	Bear Right	Bear Left	Hard Left	Peds	App. Total	Hard Right	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A								 f 1			-												-				-				
Peak Hour fo	r Entirر	e Inter	section	า Begir	1s at 08	3:00 AM	1																				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
08:00 AM	0	56	323	15	0	394	9	0	13	9	0	31	17	109	0	0	1	127	40	17	72	0	0	129	0	0	0	0	0	0	681
08:15 AM	1	67	288	9	1	366	9	0	12	19	0	40	14	122	0	0	2	138	64	15	48	0	0	127	0	0	0	0	0	0	671
08:30 AM	0	45	257	5	1	308	9	0	19	21	0	49	8	97	0	0	2	107	48	16	65	0	0	129	, 1	0	0	0	0	1	594
08:45 AM	0	68	281	3	0	352	5	0	19	20	0	44	8	140	0	0	1	149	51	25	72	0	0	148	0	0	0	0	0	0	693
Total Volume	1	236	1149	32	2	1420	32	0	63	69	0	164	47	468	0	0	6	521	203	73	257	0	0	533	1	0	0	0	0	1	2639
% App. Total	0.1	16.6	80.9	2.3	0.1	'	19.5	0	38.4	42.1	0		9	89.8	0	0	1.2		38.1	13.7	48.2	0	0		100	0	0	0	0		'
PHF	.250	.868	.889	.533	.500	.901	.889	.000	.829	.821	.000	.837	.691	.836	.000	.000	.750	.874	.793	.730	.892	.000	.000	.900	.250	.000	.000	.000	.000	.250	.952
Lights	1	211	1117	31	0	1360	30	0	59	67	0	156	46	443	0	0	0	489	201	69	221	0	0	491	1	0	0	0	0	1	2497
% Lights	100	89.4	97.2	96.9	0	95.8	93.8	0	93.7	97.1	0	95.1	97.9	94.7	0	0	0	93.9	99.0	94.5	86.0	0	0	92.1	100	0	0	0	0	100	94.6
Buses	0	9	22	1	0	32	0	0	0	1	0	1	0	21	0	0	0	21	2	0	12	0	0	14	0	0	0	0	0	0	68
% Buses	0	3.8	1.9	3.1	0	2.3	0	0	0	1.4	0	0.6	0	4.5	0	0	0	4.0	1.0	0	4.7	0	0	2.6	0	0	0	0	0	0	2.6
Trucks	0	16	10	0	0	26	2	0	4	1	0	7	, 1	4	0	0	0	5	0	4	24	0	0	28	0	0	0	0	0	0	66
% Trucks	0	6.8	0.9	0	0	1.8	6.3	0	6.3	1.4	0	4.3	2.1	0.9	0	0	0	1.0	0	5.5	9.3	0	0	5.3	0	0	0	0	0	0	2.5
Pedestrians	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	6	6	0	0	0	0	0	0	0	0	0	0	0	0	8
% Pedestrians	0	0	0	0	100	0.1	0	0	0	0	0	0	. 0	0	0	0	100	1.2	, 0	0	0	0	0	0	0	0	0	0	0	0	0.3

Maser Consulting, P.A.

400 Columbus Avenue - Suite 180E Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 13-NYS_RT_22_AT_CENTRAL_WESTCHESTER_PARKWAY_CHURCH_ST_639131_04-02-2019

2.6

0 100

0.4

Site Code:

0 100

0.4

Start Date : 4/2/2019

Page No : 1

								•			G	roups F	Printed	l- Light	s - Bus	ses - T	Trucks	- Pedes	strians												
				RT 22 North				R		VOIR I	RD		C	ENTR	AL WE OARK From	WAY	•	R		F		RT 22 outhwe					From				
Start Time	Right	Bear Right	Thru	Left	Peds	App. Total	Right	Thru	Bear Left	Left	Peds	App. Total	Right	Thru	Left	Hard Left	Peds	App. Total	Hard Right	Bear Right	Bear Left	Hard Left	Peds	App. Total	Hard Right	Right	Thru	Left	Peds	App. Total	Int. Total
11:30 AM	0	41	73	11	1	126	15	0	26	14	0	55	19	71	0	0	1	91	16	33	45	0	0	94	0	0	0	0	0	0	366
11:45 AM	0	39	74	17	1	131	12	0	28	19	0	59	17	85	0	0	3	105	17	23	52	0	0	92	0	0	0	0	0	0	387
Total	0	80	147	28	2	257	27	0	54	33	0	114	36	156	0	0	4	196	33	56	97	0	0	186	0	0	0	0	0	0	753
12:00 PM	0	47	80	10	0	137	15	0	23	18	0	56	20	83	0	0	3	106	25	27	42	1	1	96	0	0	0	0	0	0	395
12:15 PM	0	59	78	18	1	156	14	0	26	10	0	50	17	79	0	0	3	99	30	42	62	0	0	134	0	0	0	0	0	0	439
12:30 PM	0	53	86	6	1	146	24	0	34	14	0	72	11	73	0	0	3	87	14	37	54	0	0	105	0	0	0	0	2	2	412
12:45 PM	0	47	90	11	0	148	15	1_	18	19	0	53	17	75	0	0	1	93	20	35	48	0	0	103	0	0	0	0	1_	1	398
Total	0	206	334	45	2	587	68	1	101	61	0	231	65	310	0	0	10	385	89	141	206	1	1	438	0	0	0	0	3	3	1644
01:00 PM	0	46	79	7	0	132	18	0	40	17	0	75	17	57	0	0	2	76	20	31	44	0	2	97	0	0	0	0	0	0	380
01:15 PM	0	42	91	11	1	145	10	0	29	10	0	49	20	90	0	0	4	114	21	33	52	0	0	106	0	0	0	0	1	1	415
Grand Total	0	374	651	91	5	1121	123	1	224	121	0	469	138	613	0	0	20	771	163	261	399	1	3	827	0	0	0	0	4	4	3192
Apprch %	0	33.4	58.1	8.1	0.4		26.2	0.2	47.8	25.8	0		17.9	79.5	0	0	2.6		19.7	31.6	48.2	0.1	0.4		0	0	0	0	100		
Total %	0	11.7	20.4	2.9	0.2	35.1	3.9	0_	7_	3.8	0	14.7	4.3	19.2	0	0	0.6	24.2	5.1	8.2	12.5	0	0.1	25.9	0	0	0	0	0.1	0.1	
Lights	0	328	635	90	0	1053	122	1	216	117	0	456	131	595	0	0	0	726	161	258	353	1	0	773	0	0	0	0	0	0	3008
% Lights	0	87.7	97.5	98.9	0	93.9	99.2	100	96.4	96.7	0	97.2	94.9	97.1	0	0_	00	94.2	98.8	98.9	88.5	100	0_	93.5	0	0	0	0	0	0	94.2
Buses	0	10	6	1	0	17	0	0	1	0	0	1	0	4	0	0	0	4	1	0	6	0	0	7	0	0	0	0	0	0	29
% Buses	0	2.7	0.9	1.1	0	1.5	0	0	0.4	0	0	0.2	0	0.7	0	0	0	0.5	0.6	0	1.5	0	0	0.8	0	0	0	0	0	0	0.9
Trucks	0	36	10	0	0	46	1	0	7	4	0	12	7	14	0	0	0	21	1	3	40	0	0	44	0	0	0	0	0	0	123
% Trucks	0	9.6	1.5	0	0_	4.1	0.8	0_	3.1	3.3	0	2.6	5.1	2.3	0	0_	0	2.7	0.6	1.1	10_	0	0_	5.3	0	0	0	0_	0	0	3.9
Pedestrians	0	0	0	0	5	5	0	0	0	0	0	0	0	0	0	0	20	20	0	0	0	0	3	3	0	0	0	0	4	4	32

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 13-NYS_RT_22_AT_CENTRAL_WESTCHESTER_PARKWAY_CHURCH_ST_639131_04-02-2019

Site Code:

Start Date : 4/2/2019

				RT 22 North				R	RESER\ From	VOIR I			с 	ENTR	-	ESTCH KWAY South	1	:R			NYS rom So	RT 22 Southwe				(RCH ST n West			
Start Time	Right	Bear Right	Thru	Left	Peds	App. Total	Right	Thru	Bear Left	Left	Peds	App. Total	Right	Thru	Left	Hard Left	Peds	App. Total	Hard Right	Bear Right	Bear Left	Hard Left	Peds	App. Total	Hard Right	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Ar	nalysis	s From	11:30	AM to	01:15	PM - Pe	eak 1 c	f 1																							
Peak Hour fo	r Entir	re Inter	section	า Begir	ıs at 12	2:00 PM	1																				0 0 0				. 7
12:00 PM	0	47	80	10	0	137	15	0	23	18	0	56	20	83	0	0	3	106	25	27	42	1	1	96	0	0	0	0	0	0	395
12:15 PM	0	59	78	18	1	156	14	0	26	10	0	50	17	79	0	0	3	99	30	42	62	0	0	134	0	0	0	0	0	0	439
12:30 PM	0	53	86	6	1	146	24	0	34	14	0	72	11	73	0	0	3	87	14	37	54	0	0	105	0	0	0	0	2	2	412
12:45 PM	0	47	90	11_	0	148	15	1	18	19	0	53	17	75	0	0	1	93	20	35	48	0	0	103	0	0	0	0	1_	1	398
Total Volume	0	206	334	45	2	587	68	1	101	61	0	231	65	310	0	0	10	385	89	141	206	1	1	438	0	0	0	0	3	3	1644
% App. Total	0	35.1	56.9	7.7	0.3		29.4	0.4	43.7	26.4	0		16.9	80.5	0	0	2.6		20.3	32.2	47	0.2	0.2		0	0	0	0	100		'
PHF	.000	.873	.928	.625	.500	.941	.708	.250	.743	.803	.000	.802	.813	.934	.000	.000	.833	.908	.742	.839	.831	.250	.250	.817	.000	.000	.000	.000	.375	.375	.936
Lights	0	177	323	45	0	545	68	1	100	61	0	230	61	304	0	0	0	365	89	139	184	1	0	413	0	0	0	0	0	0	1553
% Lights	0	85.9	96.7	100	0	92.8	100	100	99.0	100	0	99.6	93.8	98.1	0	0	0	94.8	100	98.6	89.3	100	0	94.3	0	0	0	0	0	0	94.5
Buses	0	5	4	0	0	9	0	0	0	0	0	0	0	3	0	0	0	3	0	0	1	0	0	1	0	0	0	0	0	0	13
% Buses	0	2.4	1.2	0	0	1.5	0	0	0	0	0	0	0	1.0	0	0	0	0.8	0	0	0.5	0	0	0.2	0	0	0	0	0	0	0.8
Trucks	0	24	7	0	0	31	0	0	1	0	0	1	4	3	0	0	0	7	0	2	21	0	0	23	0	0	0	0	0	0	62
% Trucks	0	11.7	2.1	0	0	5.3	0	0	1.0	0	0	0.4	6.2	1.0	0	0	0	1.8	0	1.4	10.2	0	0	5.3	0	0	0	0	0	0	3.8
Pedestrians	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	10	10	0	0	0	0	1	1	0	0	0	0	3	3	16
% Pedestrians	0	0	0	0	100	0.3	0	0	0	0	0	0	, 0	0	0	0	100	2.6	, 0	0	0	0	100	0.2	0	0	0	0	100	100	1.0

Valhalla, NY 10595

Customer Loyalty Through Client Satisfaction

File Name: 13-NYS_RT_22_AT_CENTRAL_WESTCHESTER_PARKWAY_CHURCH_ST_639131_04-02-2019

Site Code:

Start Date : 4/2/2019

Groups Printed-	∟ights - Buses -	Trucks - P	edestrians

				RT 22 North				R	RESER' From	VOIR n East	RD	310ups 1		CENTR	RAL WE		HESTE			F	_	RT 22 outhwe				-		CH ST West			
Start Time	Right	Bear Right	Thru	Left	Peds	App. Total	Right	Thru	Bear Left	Left	Peds	App. Total	Right	Thru	Left	Hard Left	Peds	App. Total	Hard Right	Bear Right	Bear Left	Hard Left	Peds	App. Total	Hard Right	Right	Thru	Left	Peds	App. Total	Int. Total
04:00 PM	0	44	114	14	0	172	13	1	22	12	0	48	21	184	0	0	3	208	28	27	81	0	0	136	0	0	0	0	0	0	564
04:15 PM	0	47	126	14	0	187	36	0	23	16	0	75	24	201	0	0	3	228	23	31	57	0	0	111	0	0	0	0	1	1	602
04:30 PM	0	51	113	7	0	171	36	1	25	18	0	80	21	250	0	0	0	271	21	31	80	0	0	132	0	0	0	0	5	5	659
04:45 PM	0	45	132	15	0	192	23	0	24	21	0	68	20	236	0	0	1	257	19	30	60	1	0	110	0	0	0	0	0	0	627
Total	0	187	485	50	0	722	108	2	94	67	0	271	86	871	0	0	7	964	91	119	278	1	0	489	0	0	0	0	6	6	2452
i												,																			. ,
05:00 PM	0	45	140	13	0	198	29	2	39	20	0	90	25	274	0	0	3	302	31	38	79	0	0	148	0	0	0	0	0	0	738
05:15 PM	0	41	133	17	0	191	25	0	35	17	0	77	30	259	0	0	4	293	23	46	73	0	0	142	0	0	0	0	0	0	703
05:30 PM	0	59	129	20	0	208	29	1	30	19	0	79	31	319	0	0	2	352	11	27	69	0	0	107	0	0	0	0	0	0	746
05:45 PM	0	52	120	21	0	193	26	0	31	19	0	76	37	255	0	0	2	294	25	30	79	0	0	134	0	0	0	0	2	2	699
Total	0	197	522	71	0	790	109	3	135	75	0	322	123	1107	0	0	11	1241	90	141	300	0	0	531	0	0	0	0	2	2	2886
1												,																			
06:00 PM	1	46	92	14	0	153	20	0	32	27	0	79	32	226	0	0	3	261	20	18	72	0	0	110	0	0	0	0	2	2	605
06:15 PM	1	38	87	18	0	144	19	0	25	22	0	66	20	197	0	1	5	223	17	30	107	0	0	154	0	0	0	0	1	1	588
Grand Total	2	468	1186	153	0	1809	256	5	286	191	0	738	261	2401	0	1	26	2689	218	308	757	1	0	1284	0	0	0	0	11	11	6531
Apprch %	0.1	25.9	65.6	8.5	0	1	34.7	0.7	38.8	25.9	0		9.7	89.3	0	0	1		17	24	59	0.1	0		0	0	0	0	100		i I
Total %	0	7.2	18.2	2.3	0	27.7	3.9	0.1	4.4	2.9	0	11.3	4	36.8	0	0	0.4	41.2	3.3	4.7	11.6	0	0	19.7	0	0	0	0	0.2	0.2	ļ
Lights	2	441	1174	153	0	1770	256	5	281	190	0	732	260	2389	0	1	0	2650	215	305	730	1	0	1251	0	0	0	0	0	0	6403
% Lights	100	94.2	99	100	0	97.8	100	100	98.3	99.5	0	99.2	99.6	99.5	0	100	0	98.5	98.6	99	96.4	100	0	97.4	0	0	0	0	0	0	98_
Buses	0	13	3	0	0	16	0	0	2	0	0	2	1	2	0	0	0	3	0	1	10	0	0	11	0	0	0	0	0	0	32
% Buses	0	2.8	0.3	0	0	0.9	0	0	0.7	0	0	0.3	0.4	0.1	0_	0	0	0.1	0	0.3	1.3	0_	0	0.9	0	0	0	0	0_	0	0.5
Trucks	0	14	9	0	0	23	0	0	3	1	0	4	0	10	0	0	0	10	3	2	17	0	0	22	0	0	0	0	0	0	59
% Trucks	0	3	0.8	0	0	1.3	0	0	1	0.5	0	0.5	0	0.4	0	0	0	0.4	1.4	0.6	2.2	0	0	1.7	0	0	0	0	0	0	0.9
Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	26	26	0	0	0	0	0	0	0	0	0	0	11	11	37
% Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	, 0	0	0	0	100	1	0	0	0	0	0	0	0	0	0	0	100	100	0.6

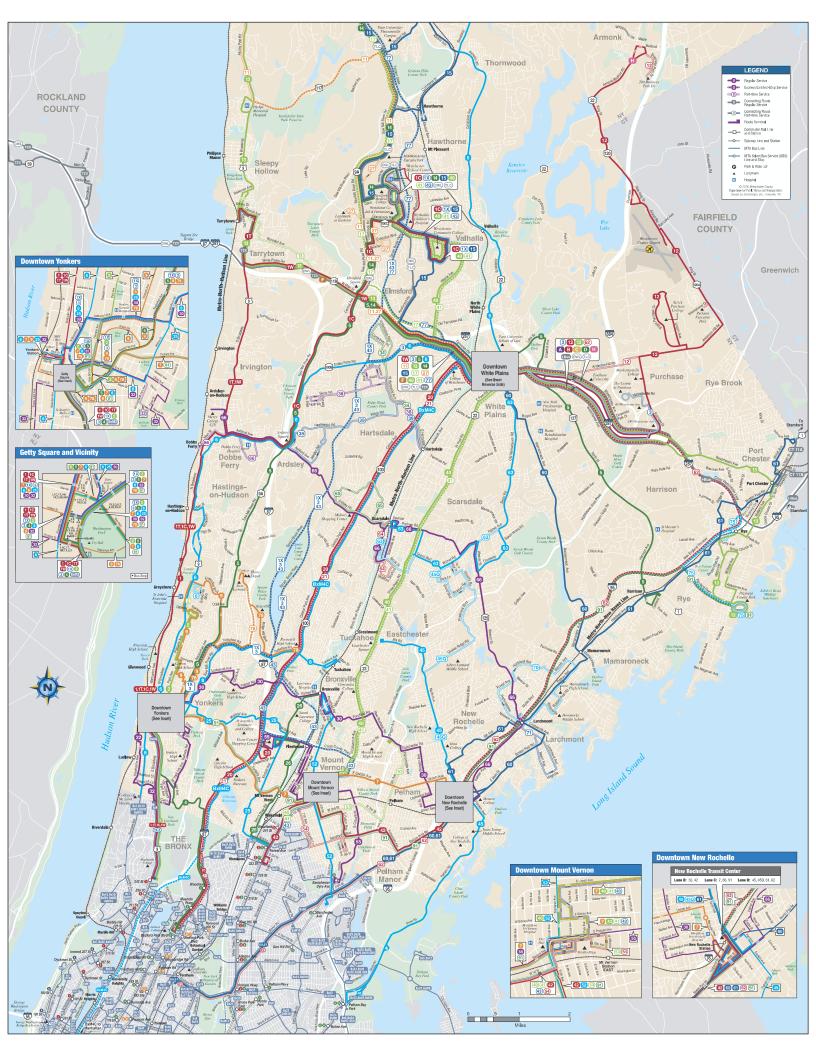
Valhalla, NY 10595

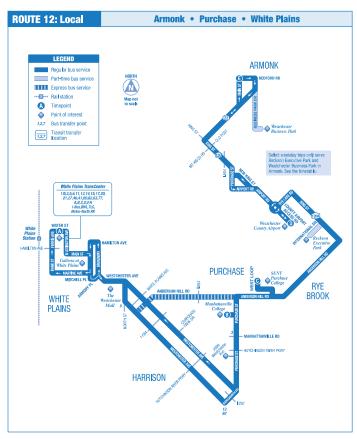
Customer Loyalty Through Client Satisfaction

File Name: 13-NYS_RT_22_AT_CENTRAL_WESTCHESTER_PARKWAY_CHURCH_ST_639131_04-02-2019

Site Code:

Start Date : 4/2/2019


			_	RT 22 North				R	RESER' From	RVOIR I			C	ENTR	_	ESTCH KWAY South	′	:R			NYS rom So	RT 22 Southwe					CHUR From	RCH ST			
Start Time	Right	Bear Right	Thru	Left	Peds	App. Total	Right	Thru	Bear Left	Left	Peds	App. Total	Right	Thru	Left	Hard Left	Peds	App. Total	Hard Right	Bear Right	Bear Left	Hard Left	Peds	App. Total	Hard Right	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	nalysis	s From	04:00	PM to	06:15 Г	PM - Pc	eak 1 c	f 1																							
Peak Hour fo	r Entir	e Inter	section	ı Begir	ıs at 05	:00 PM	1																								
05:00 PM	0	45	140	13	0	198	29	2	39	20	0	90	25	274	0	0	3	302	31	38	79	0	0	148	0	0	0	0	0	0	738
05:15 PM	0	41	133	17	0	191	25	0	35	17	0	77	30	259	0	0	4	293	23	46	73	0	0	142	0	0	0	0	0	0	703
05:30 PM	0	59	129	20	0	208	29	1	30	19	0	79	31	319	0	0	2	352	11	27	69	0	0	107	0	0	0	0	0	0	746
05:45 PM	0	52	120	21	0	193	26	0	31	19	0	76	37	255	0	0	2	294	25	30	79	0	0	134	0	0	0	0	2	2	699
Total Volume	0	197	522	71	0	790	109	3	135	75	0	322	123	1107	0	0	11	1241	90	141	300	0	0	531	0	0	0	0	2	2	2886
% App. Total	0	24.9	66.1	9	0	'	33.9	0.9	41.9	23.3	0		9.9	89.2	0	0	0.9		16.9	26.6	56.5	0	0		0	0	0	0	100		
PHF	.000	.835	.932	.845	.000	.950	.940	.375	.865	.938	.000	.894	.831	.868	.000	.000	.688	.881	.726	.766	.949	.000	.000	.897	.000	.000	.000	.000	.250	.250	.967
Lights	0	191	519	71	0	781	109	3	131	75	0	318	122	1102	0	0	0	1224	88	140	286	0	0	514	0	0	0	0	0	0	2837
% Lights		97.0	99.4	100	0	98.9	100	100	97.0	100	0	98.8	99.2	99.5	0	0	0	98.6	97.8	99.3	95.3	0	0	96.8	0	0	0	0	0	0	98.3
Buses	0	2	0	0	0	2	0	0	1	0	0	1	, 1	1	0	0	0	2	0	0	5	0	0	5	0	0	0	0	0	0	10
% Buses	0	1.0	0	0	0	0.3	0	0	0.7	0	0	0.3	0.8	0.1	0	0	0	0.2	0	0	1.7	0	0	0.9	0	0	0	0	0	0	0.3
Trucks	0	4	3	0	0	7 1	0	0	3	0	0	3	0	4	0	0	0	4	2	1	9	0	0	12	0	0	0	0	0	0	26
% Trucks	0	2.0	0.6	0	0	0.9	0	0	2.2	0	0	0.9	. 0	0.4	0	0	0	0.3	2.2	0.7	3.0	0	0	2.3	0	0	0	0	0	0	0.9
Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	11	11	0	0	0	0	0	0	0	0	0	0	2	2	13
% Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	100	0.9	0	0	0	0	0	0	0	0	0	0	100	100	0.5



AIRPORT CAMPUS (113 KING STREET)

APPENDIX F

WESTCHESTER BEE LINE BUS ROUTE 12 SHUTTLE LOOP H SCHEDULES AND ROUTE MAPS

	TransCenter (Lane B)	B Manhattanville College	SUNY Purchase College	Westchester County Airport	Bedford Ro at Main St
	WHITE PLAINS		PURCHASE		ARMONK
AM	6:20	6:38	_	6:52	_
1	7:15	_	_	7:48	8:00
2	7:30	7:53	7:59	8:13	8:30
2 2	8:05	8:28	8:34	8:48	9:05
0	8:35	8:58	9:04	9:18	9:35
	9:30	9:48	9:53	10:04	10:16
	11:30	11:48	11:53	12:04	12:16
PM	1:30	1:48	1:53	2:07	2:19
	2:30	2:48	2:53	3:07	3:19
	3:30	3:48	3:53	4:07	4:19
	4:30	4:49	4:54	5:08	5:22
	5:10	5:29	5:34	5:48	6:02
	6:10	6:28	6:33	6:43	6:55

- Trip operates via Anderson Hill Rd and serves Reckson Executive Park and Westchester Business Park only.
 Trip serves Morgan Stanley, Westchester Business Park and Reckson Executive Park.

	Bedford Rd at Main St	Westchester County Airport	SUNY Purchase College	B Manhattanville College	TransCenter (Lane B)
	ARMONK		PURCHASE		WHITE PLAINS
AM	7:15	7:26	7:37	7:43	8:03
	8:25	8:36	8:47	8:53	9:13
	10:25	10:36	10:47	10:53	11:13
PM	12:25	12:36	12:47	12:53	1:13
	2:25	2:36	2:50	2:56	3:16
2	3:30	3:48	4:02	4:09	4:33
2	4:30	4:48	5:02	5:09	5:33
2	5:30	5:48	6:02	6:09	6:33
	6:25	6:46	7:00	7:06	7:26

② Trip serves Westchester Business Park, Reckson Executive Park and Morgan Stanley. Train times are subject to change, Please check MetroNorth Railroad's website for the latest schedules: www.mta.info/mnr

INSTRUCTIONS					
The bus passes this location at listed times, book for the column of times below the matching symbol in the schedule.	EA	0		7	
Only certain trips operate along this portion of the oute. See the schedule for trips that operate here,				٦	0
The bus operates express along the route.			G		
to stops are made unless indicated by the F symbol.	ш		==		
No stops are made unless indicated by the F symbol. fransfer point. Shows where this bus intersects with other bus routes.	1,2,7	1,2	2,7	,	
Fransfer point. Shows where this bus intersects with		1,3 - 0 8:00 9:00	3 815	• • • • • • • • •	9:00

BEE-LINE HOLIDAY SCHEDULE					
HOLIDAY	SCHEDULE IN EFFECT				
New Years Day					
Martin Luther King, Jr.	Day Saturday				
Presidents' Day	Saturday				
Memorial Day	Sunday				
Independence Day	Sunday				
Labor Day	Sunday				
Columbus Day					
Election Day					
	Weekday				
	No Service				
	No Service				

	•	•	•	•
	A	B	G	U
	TransCenter	Manhattanville	SUNY	Westchester
	(Lane B)	College	Purchase	County
			College	Airport
	WHITE PLAINS		PURCHASE	
M.	8:00	8:16	8:21	8:32
	9:20	9:36	9:41	9:52
	11:00	11:16	11:21	11:32
PM	1:00	1:16	1:21	1:32
	3:10	3:26	3:31	3:42
	5:40	5:56	6:01	6:12

SOUTHBOUND FROM PURCHASE TO WHITE PLAINS / SATURDAY					
	Westchester County Airport	SUNY Purchase College	B Manhattanville College	TransCenter (Lane B)	
		PURCHASE		WHITE PLAINS	
AM	8:37 9:57	8:48 10:08	8:53 10:13	9:09 10:29	
PM	11:37 1:37	11:48 1:48	11:53 1:53	12:09 2:09	
	3:47	3:58	4:03	4:19	
	6:17	6:28	6:33	6:49	

	A	B	(A)	0
	TransCenter (Lane B)	Manhattanville College	SUNY Purchase College	Westchester County Airport
	WHITE PLAINS		PURCHASE	
M	8:00	8:16	8:21	8:32
	9:20	9:36	9:41	9:52
	11:00	11:16	11:21	11:32
PM	1:00	1:16	1:21	1:32
	3:00	3:16	3:21	3:32
	5:00	5:16	5:21	5:32

SOUTHBOUND FROM PURCHASE TO WHITE PLAINS / SUNDAY					
	U Westchester	SUNY	B Manhattanville	A TransCenter	
	County Airport	Purchase College	College	(Lane B)	
		PURCHASE		WHITE PLAINS	
AM	8:37	8:48	8:53	9:09	
	9:57	10:08	10:13	10:29	
	11:37	11:48	11:53	12:09	
PM	1:37	1:48	1:53	2:09	
	3:37	3:48	3:53	4:09	
	E-27	5:48	5-53	6:00	

Faster Boarding

- Check the arrival time of the next bus.

5. Transfers are issued only at the time of fare payment.
6. Children under 5 ride free when accompanied by a fare-paying adult.

MetroCard reduced fares are available only to holders of a personalized Reduced-Fare MetroCard. For more information call (718) 330-1234 or go to www.mta.info/metrocard. Reduced fares are available to riders at least 65 years of age, certified disabled persons and valid Medicare card holders with proper photo identification.

7. Check the route number on the sign above the windshield before boarding.

Enjoy Your Ride on the Bee-Line System! www.westchestergov.com/beelinebus For more information, visit us online at

Call (914) 813-7777

2. Check the route map for your desired stop. Check the route number and final destina

To speed boarding, have your MetroCard or exact coin fare ready.

Senior/Disabled Reduced Fares

www.westchestergov.com/beelinehus 24-hour Automated Schedule Information (914) 813-7777 Representatives are available 8 a.m. to 4 p.m. weekdays, Lost & Found (914) 376-6361 Large print timetables are available upon request.
Hard of hearing individuals can use the
Hard work State 711 Relay Service
Fares, schedule and equipment are subject to change.

Westchester gov.com

Bee-Line Cash and MetroCard Fares

the bee-line system

Effective April 21, 2019

Pay-Per-Ride MetroCard Fares
(Includes One Transfer to Bee-Line Buses, NYC Buses
& Subways) Cash Fares (Coins Only)

Unlimited Ride 30-Day MetroCard Fare...........\$127.00
Unlimited Ride 7-Day MetroCard Fare.......\$33.00 \$1.35

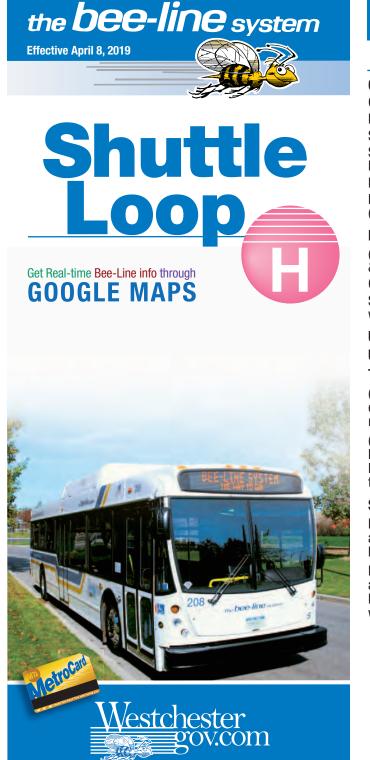
If Paper transfers will be accepted on all local manus, ways the same one initially beared. Paper transfers must be obtained at the time of initial bearding, of Pap-Per-Riche MetroCards will be accepted on all \$Pap-Per-Riche MetroCards will be accepted on all \$Pap-Per-Riche Metro

\$2.75

PepsiCo

Westchester Business Park
 Reckson Executive Park

ALSO SERVING


the bee-line system
Effective Systemator 2,2019
LOCAL ROUTE

SUNY Purchase College Manhattanville College

Bee-Line Cash and MetroCard Fares

Effective April 21, 2019

Cash Fares (Coins Only)	
One Ride	\$2.75
Paper Transfer to Bee-Line & NYC Buses	FREE
Senior/Disabled Reduced Fare One Ride	\$1.35
Senior/Disabled Paper Transfer to Bee-Line & NYC Buses	FREE
BXM4C One Ride	\$7.50
BXM4C Senior/Disabled Reduced Fare (Off-Peak Only)	\$3.75
Pay-Per-Ride MetroCard Fares	

•	
Pay-Per-Ride MetroCard Fares	
(Includes One Transfer to Bee-Line Buses, NYC & Subways)	Buses
One Ride with Transfer	\$2.75
Senior/Disabled Reduced Fare One Ride	
with Transfer	\$1.35
Unlimited Ride 30-Day MetroCard Fare	\$127.00
Unlimited Ride 7-Day MetroCard Fare	\$33.00
Transfers	

(1) Paper transfers will be accepted on all local routes, except the same route initially boarded. Paper transfers must be obtained at the time of initial boarding.

(2) Pay-Per-Ride MetroCards will be accepted on all Bee-Line routes, except the same route initially boarded, NYC local buses and subways with no additional fare charged to the card, within two hours of the initial boarding.

Senior/Disabled Reduced Fares

Reduced fares are available to riders at least 65 years of age, certified disabled persons and valid Medicare card holders with proper photo identification.

MetroCard reduced fares are available only to holders of a personalized Reduced-Fare MetroCard. For more information call (718) 330-1234 or go to www.mta.info/metrocard.

Customer Service

www.westchestergov.com/beeline 24-Hour Automated Schedule Information (914) 813-7777

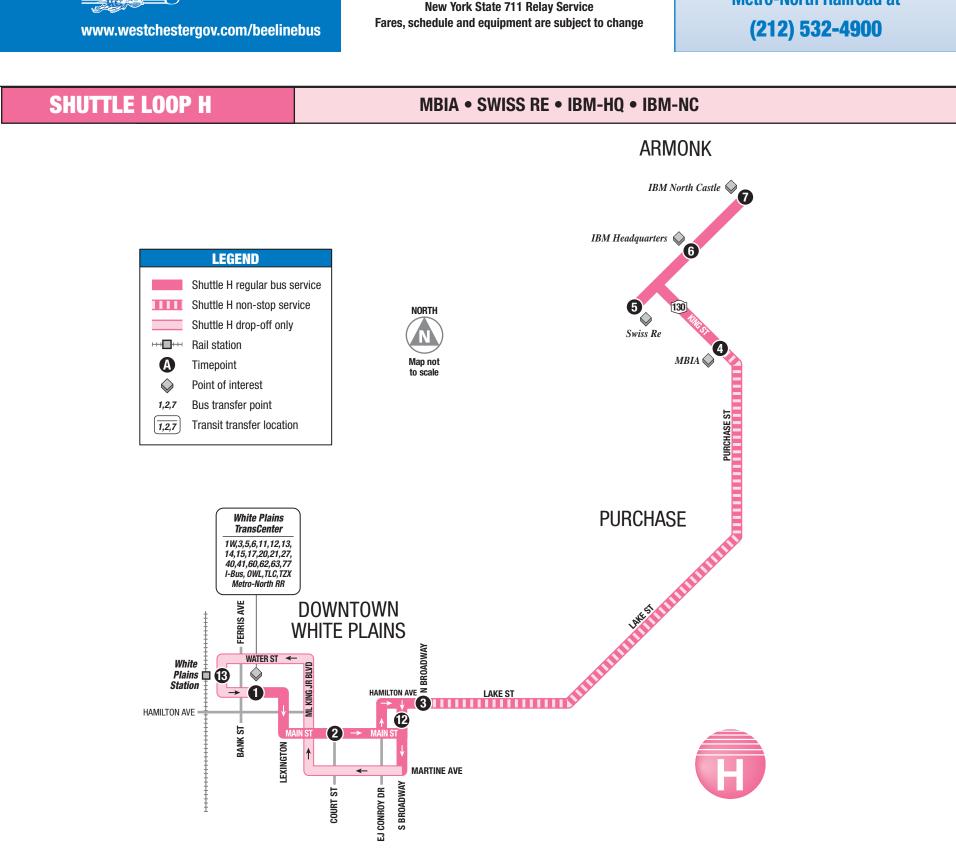
Representatives are available 8 a.m. to 4 p.m. weekdays Lost & Found (914) 376-6361 Large print timetables are available upon request.

Hard of hearing individuals can use the **New York State 711 Relay Service**

For Bee-Line Bus/ Metro-North Connections

Consider Combined Fare Discounts using

UniTicket


the Monthly Bus-to-Train Pass

UniTicket is a reduced-rate ticket combining monthly round-trip local bus fare with train fare.

UniTicket is available through any Metro-North ticket office. It is accepted for the bus fare to & from a railroad station listed on the ticket.

> For more information, call **Metro-North Railroad at** (212) 532-4900

SHUTTLE LOOP H Monday – Friday, AM Service • Northbound

	White Plains TransCenter (Lane A)	Main St at Court St	Hamilton Ave at N Broadway	4 MBIA	Swiss Re	IBM HQ	IBM North Castle	
		WHITE PLAINS			ARM	ONK		
AM	6:33	6:35	6:38	6:51	6:54	7:00	7:04	
	7:32	7:34	7:37	7:50	7:53	7:59	8:03	
	7:53	7:55	7:58	8:11	8:14	8:20	8:24	
	8:31	8:33	8:36	8:49	8:52	8:58	9:02	
	9:04	9:06	9:09	9:22	9:25	9:31	9:35	
	9:25	9:27	9:30	9:43	9:46	9:52	9:56	
	9:50	9:52	9:55	10:08	10:11	10:17	10:21	

SHUTTLE LOOP H Monday - Friday, PM Service • Southbound 6 12 6 4 13 0 White White **IBM IBM Swiss MBIA** N Broadway **Plains Plains** North Re at RR TransCenter Castle Main Station St ARMONK WHITE PLAINS 2:52 2:58 3:01 3:22 2:48 3:16 3:21 3:20 3:49 3:16 3:26 3:29 3:44 3:50 3:41 3:45 3:51 3:54 4:09 4:14 4:15 4:23 4:13 4:17 4:26 4:41 4:46 4:47 4:39 4:43 4:49 4:52 5:07 5:12 5:13 5:16 5:20 5:26 5:29 5:44 5:49 5:50 5:50 5:54 6:00 6:03 6:18 6:23 6:24 6:51 6:19 6:23 6:29 6:32 6:46 6:52

INSTRUCTIONS

The dus passes this location at listed times. Look for the column of times below the matching symbol in the schedule.

Only certain trips operate along this portion of the route. See the schedule for trips that operate here.

The bus operates express along the route. No stops are made unless indicated by the F symbol.

Transfer point. Shows where this bus intersects with

other bus routes. The bus stops at the times listed below the

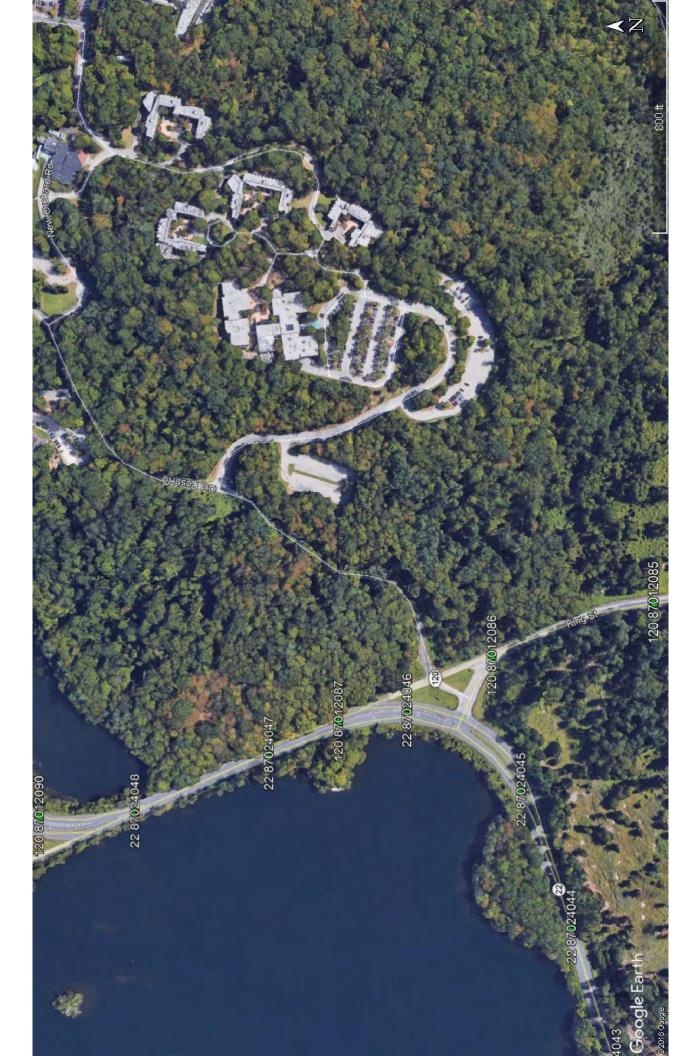
symbol. Light times are A.M.; bold times are P.M.

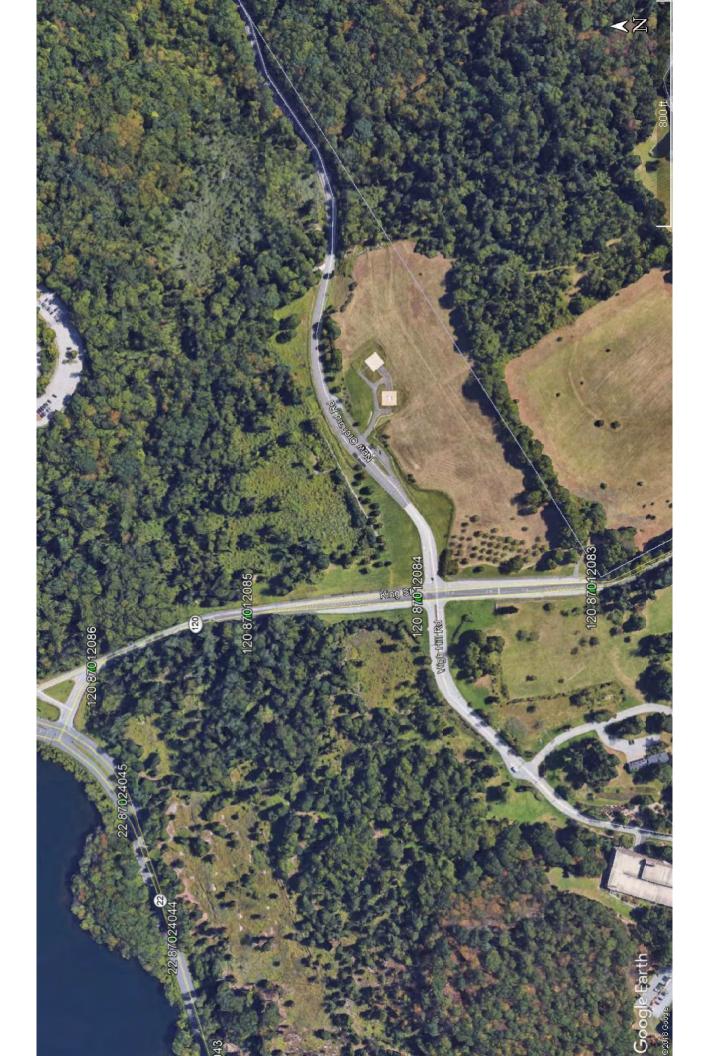
The timetable shows when the bus is scheduled to depart. Actual departure times may vary and depend upon traffic and weather conditions. Arrive at the bus stop about 5 minutes early to avoid missing the bus.

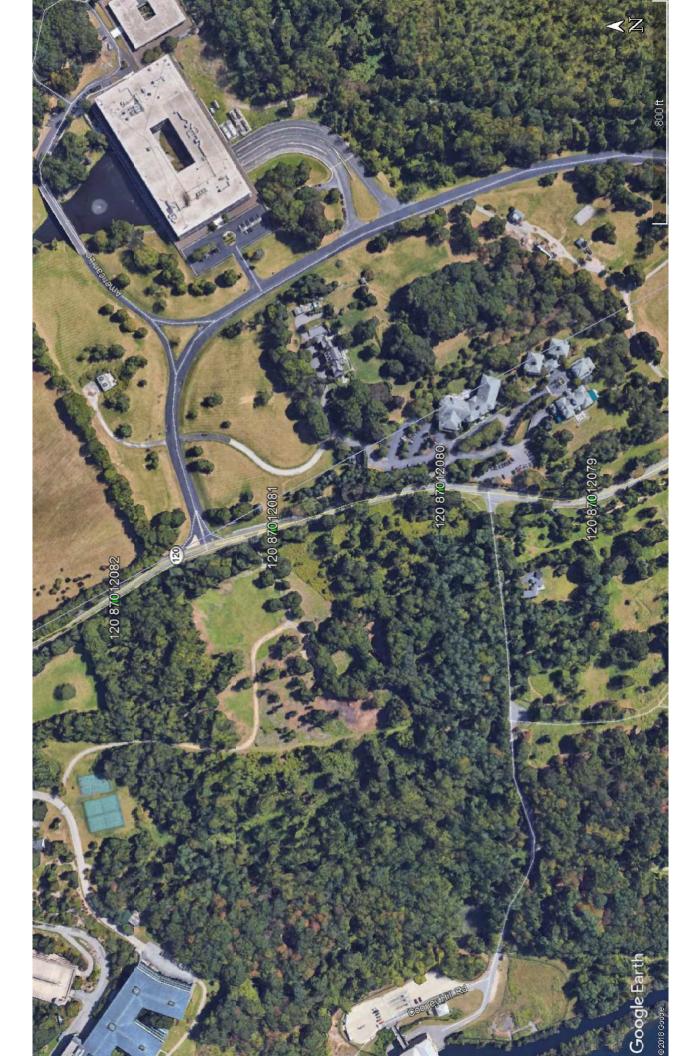
	A		7	
- -	8	©		
2,7	1,2	2,7	*	
,7 ———			• •	
),7	1,i	B —	♦ © 8:40	9:00
2,7 ———	A		_	_
2,7 ———	A 8:00	B	8:40	9:00
2,7 ———	8:00 9:00	B	8:40 9:40	9:00 10:00 11:00
2,7	8:00 9:00 10:00	9:15 —	8:40 9:40 10:40	9:00 10:00

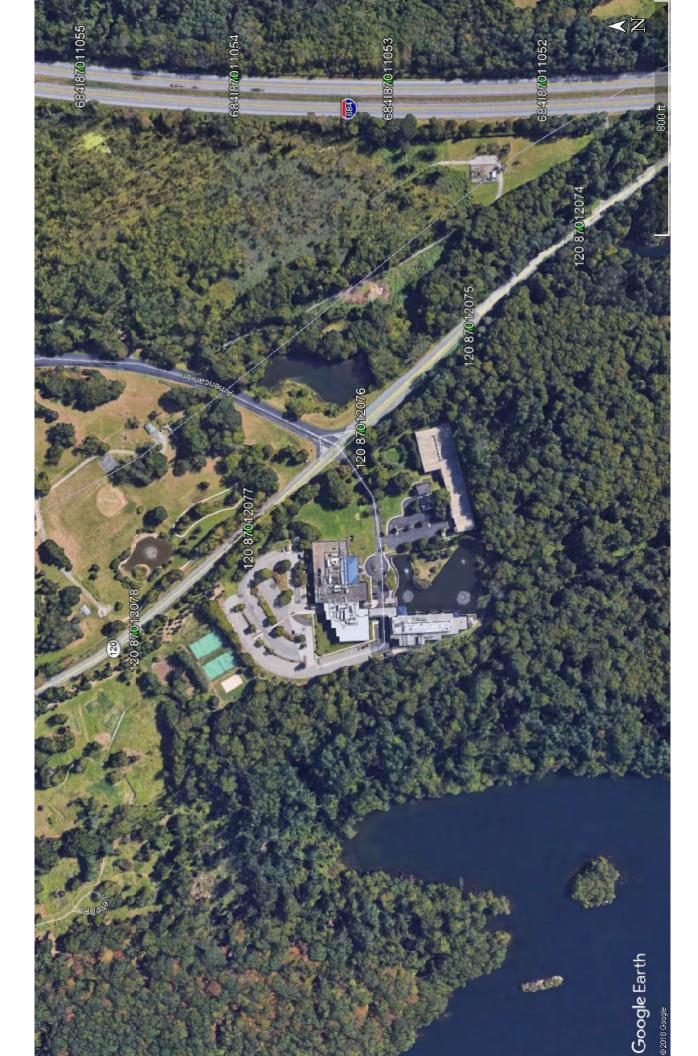
BEE-LINE HOLII	DAY SCHEDULE
HOLIDAY	SCHEDULE IN EFFECT
New Years Day	Sunday
Martin Luther King, Jr. Da	y Saturday
Presidents' Day	Saturday
Memorial Day	Sunday
Independence Day	Sunday
Labor Day	Sunday
Columbus Day	Weekday
Election Day	Weekday
Veterans Day	Weekday
Thanksgiving Day	No Service
Christmas Day	No Service

AIRPORT CAMPUS (113 KING STREET)

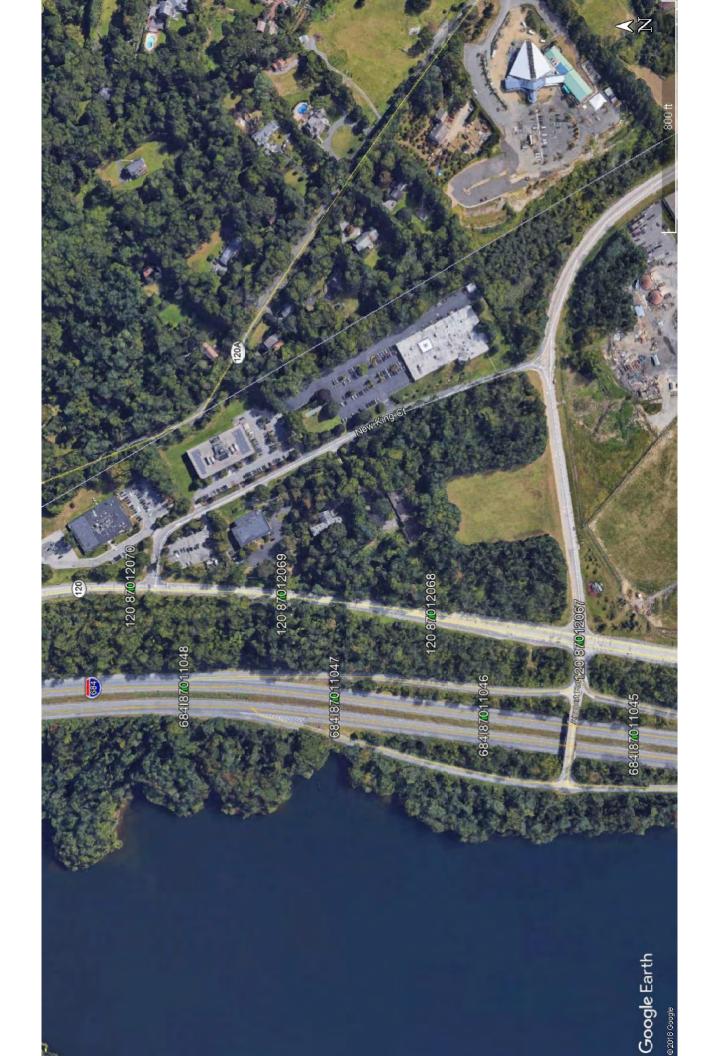

APPENDIX G

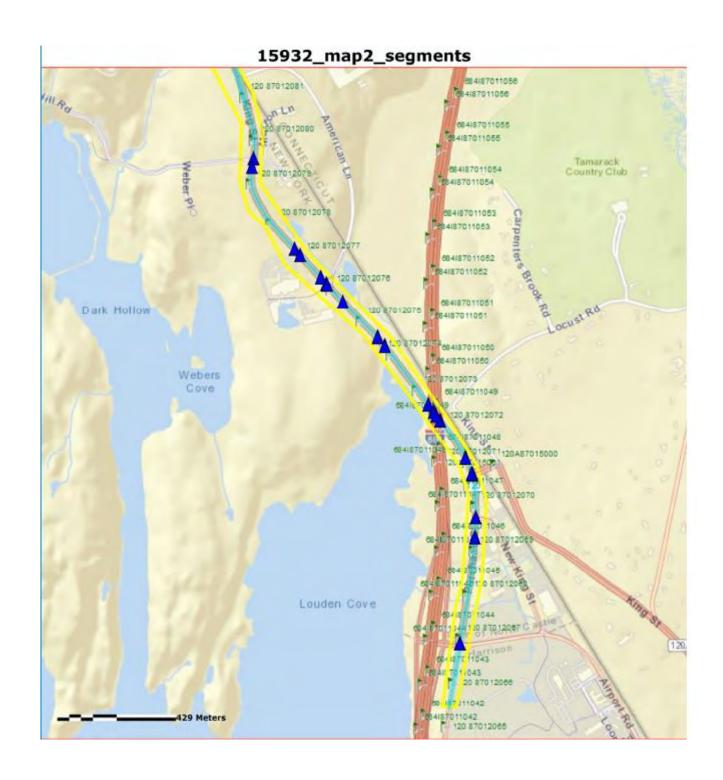

ACCIDENT DATA




NYSDOT ACCIDENT REPORTS


NYS ROUTE 120 (KING STREET) CORRIDOR





NYSDOT QRA ACCIDENT SEVERITY SUMMARY

			Print I	Date 4/9/2019 Print T	ime 10:53:06AM
Query Number/Name	Query Type		Query Sub Type	Accident Date Range	
45313 15932 segments	Attr	ibuteQuery	None 1/1	1/2015 12:00:00AM To 12/3	1/2018 12:00:00AM
Case Year	Injury	Fatality	Property Damage	Non-Reportables	Totals
<u>2015</u>	12	0	12	5	29
Case Year	Injury	Fatality	Property Damage	Non-Reportables	Totals
2016	7	0	14	7	28
Case Year	Injury	Fatality	Property Damage	Non-Reportables	Totals
2017	11	0	34	2	47
Case Year	Injury	Fatality	Property Damage	Non-Reportables	Totals
2018	10	0	23	2	35
Grand Total:	40	0	83	16	

Accident Location Information System(ALIS)

Date: 4/9/2019 10:46:06 AM

Accident Verbal Description

15932_VDR_segments

Date in this report covers the period - 1/1/2015-12/31/2018

Complete Accident data from NYSDMV is only available thru 12/31/2018 12:00:00 AM

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024045 Street: MOUNT KISCO RD

19 Meters South of King St

1/3/2015 Sat 14:18 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2015-35537291

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: TRAFFIC SIGNAL

Manner of Collision: REAR END Weather: SNOW

Road Surface Condition: SNOW/ICE Road Char.: CURVE AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 1 CAR/VAN/PICKUP Registered Weight: 4944 State of Registration: NY

Num of Occupants: 2 Driver's Age: 39 Sex: F Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: SLOWED OR STOPPING

Apparent Factors: PAVEMENT SLIPPERY, NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 4857 State of Registration: NY

Num of Occupants: 1 Driver's Age: 49 Sex: M Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012090 Street: [Route] 22

AT INTERSECTION WITH [Route] 120

1/7/2015 Wed 09:40 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2015-35543594

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: YIELD SIGN

Manner of Collision: REAR END Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 3413 State of Registration: NY

Num of Occupants: 1 Driver's Age: 66 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: SLOWED OR STOPPING

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh: 1 CAR/VAN/PICKUP Registered Weight: 4237 State of Registration: NY

Num of Occupants: 1 Driver's Age: 48 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: FOLLOWING TOO CLOSELY, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120A87015001 Street: [Route] 120

AT INTERSECTION WITH GATEWAY LN

1/14/2015 Wed 17:01 PM Persons Killed: 0 Persons Injured: 1 Extent of Injuries: C Case: 2015-35556874

Accident Class: PROPERTY DAMAGE AND INJURY Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: NONE

Manner of Collision: REAR END Weather: CLOUDY

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DARK-ROAD UNLIGHTED

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 4237 State of Registration: NY

Num of Occupants: 2 Driver's Age: 42 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 3300 State of Registration: NY

Num of Occupants: 1 Driver's Age: 24 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, FOLLOWING TOO CLOSELY

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012070 Street: PURCHASE ST

AT INTERSECTION WITH New King St

2/2/2015 Mon 15:32 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2015-35596909

Accident Class: NON-REPORTABLE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE
Manner of Collision: OVERTAKING
Traffic Control: TRAFFIC SIGNAL
Weather: SNOW

Road Surface Condition: SNOW/ICE Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE

Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: State of Registration: FL

 Num of Occupants: 1
 Driver's Age: 42
 Sex: M
 Citation Issued: N

 Direction of Travel: SOUTH
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: PAVEMENT SLIPPERY, NOT APPLICABLE

Veh: 1 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

Num of Occupants: 1 Driver's Age: 66 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MAKING LEFT TURN

Apparent Factors: NOT APPLICABLE, PAVEMENT SLIPPERY

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024047 Street: KING ST

20 Meters North of Ramp

Fri 14:55 PM 2/6/2015 Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2015-35598945

Accident Class: NON-REPORTABLE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: YIELD SIGN Weather: CLEAR

Manner of Collision: OVERTAKING

Road Surface Condition: DRY Road Char.: CURVE AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:2 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

> Num of Occupants: 1 Driver's Age: 61 Sex: F Citation Issued: N Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

> Num of Occupants: 1 Driver's Age: 29 Sex: M Citation Issued: Y Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MERGING

Apparent Factors: FAILURE TO YIELD RIGHT OF WAY, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024050 Street: ARMONK-BEDFORD RD

2/18/2015 Wed 08:39 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2015-35611817

Accident Class: NON-REPORTABLE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: TRAFFIC SIGNAL

Manner of Collision: REAR END Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:2 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

> Num of Occupants: 2 Driver's Age: 46 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

> Sex: M Num of Occupants: 1 Driver's Age: 67 Citation Issued: N Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MERGING

Apparent Factors: DRIVER INATTENTION, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012091 Street: KING ST

2/24/2015 Tue 09:12 AM Persons Killed: 0 Case: 2015-35621056 Persons Injured: 0 Extent of Injuries:

> Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: YIELD SIGN Manner of Collision: REAR END Weather: CLEAR

Road Surface Condition: DRY Road Char.: CURVE AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 3605 State of Registration: NY

Num of Occupants: 1 Driver's Age: 42 Sex: F Citation Issued: N

Direction of Travel: NORTH-WEST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: SLOWED OR STOPPING

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 4979 State of Registration: NY

Num of Occupants: 3 Driver's Age: 42 Sex: F Citation Issued: N

Direction of Travel: NORTH-WEST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: DRIVER INATTENTION, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012071 Street: PURCHASE ST

AT INTERSECTION WITH Gateway Ln

3/1/2015 Sun 15:23 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2015-35630118

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: TRAFFIC SIGNAL

Manner of Collision: REAR END Weather: SNOW

Road Surface Condition: SNOW/ICE Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 3182 State of Registration: NY

 Num of Occupants: 1
 Driver's Age: 25
 Sex: F
 Citation Issued: N

 Direction of Travel: WEST
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Direction of Travel, west Tubile Property Damage, Office

Pre-Accd Action: SLOWED OR STOPPING

Apparent Factors: NOT APPLICABLE, PAVEMENT SLIPPERY

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: CT

Num of Occupants: 1 Driver's Age: 24 Sex: M Citation Issued: N

Direction of Travel: WEST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: SLOWED OR STOPPING

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024044 Street: [Route] 22

4/2/2015 Thu 19:56 PM Persons Killed: 0 Persons Injured: 1 Extent of Injuries: C Case: 2015-35674959

Accident Class: PROPERTY DAMAGE AND INJURY Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Traffic Control: NO PASSING ZONE

Weather: CLOUDY

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Manner of Collision: REAR END

Road Surface Condition: DRY Road Char.: CURVE AND GRADE Light Condition: DARK-ROAD UNLIGHTED

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 OTHER Registered Weight: State of Registration: -3

Num of Occupants: 0 Driver's Age: Sex: Citation Issued:

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: SLOWED OR STOPPING

Apparent Factors: NOT APPLICABLE, UNKNOWN

Veh:1 CAR/VAN/PICKUP Registered Weight: 2546 State of Registration: NY

Num of Occupants: 1 Driver's Age: 40 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: SLOWED OR STOPPING

Apparent Factors: VIEW OBSTRUCTED/LIMITED, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024047 Street: KING ST

AT INTERSECTION WITH Ramp

4/10/2015 Fri 17:15 PM Persons Killed: 0 Persons Injured: 1 Extent of Injuries: C **Case: 2015-35682471**

Accident Class: PROPERTY DAMAGE AND INJURY Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: YIELD SIGN

Manner of Collision: REAR END Weather: CLOUDY

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 2729 State of Registration: NY

 Num of Occupants: 1
 Driver's Age: 59
 Sex: F
 Citation Issued: N

 Direction of Travel: NORTH
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Pre-Accd Action: SLOWED OR STOPPING

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 4605 State of Registration: NY

Num of Occupants: 2 Driver's Age: 31 Sex: M Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: FOLLOWING TOO CLOSELY, DRIVER INATTENTION

County: Westchester Muni: North Castle(T) Ref. Marker: 684I87011049 Street: I 684

AT INTERSECTION WITH King St

4/20/2015 Mon 13:30 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: **2015-35692796**

Accident Class: PROPERTY DAMAGE Police Agency: NYSP SOMERS Num of Veh: 1

Traffic Control: NONE

Type Of Accident: COLLISION WITH GUIDE RAIL

Manner of Collision: OTHER
Road Surface Condition: WET

Road Char.: STRAIGHT AND LEVEL

Weather: RAIN

Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 1 CAR/VAN/PICKUP Registered Weight: State of Registration: CT

Num of Occupants: 1 Driver's Age: 34 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: UNSAFE SPEED, PAVEMENT SLIPPERY

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024047 Street: KING ST

AT INTERSECTION WITH Ramp

4/27/2015 Mon 16:17 PM Persons Killed: 0 Persons Injured: 1 Extent of Injuries: C Case: 2015-35701364

Accident Class: INJURY Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: YIELD SIGN

Manner of Collision: REAR END Weather: CLOUDY

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: INVALID CODE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 4049 State of Registration: NY

Num of Occupants: 1 Driver's Age: 46 Sex: F Citation Issued: Y

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MERGING

Apparent Factors: NOT APPLICABLE, UNKNOWN

Veh: 2 CAR/VAN/PICKUP Registered Weight: 2877 State of Registration: NY

Num of Occupants: 1 Driver's Age: 58 Sex: F Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MERGING

Apparent Factors: FOLLOWING TOO CLOSELY, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 684I87011049 Street: I 684

AT INTERSECTION WITH King St

5/1/2015 Fri 03:08 AM Persons Killed: 0 Persons Injured: 3 Extent of Injuries: CCC Case: 2015-35708285

Accident Class: INJURY Police Agency: NYSP SOMERS Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: NONE

Manner of Collision: REAR END Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DARK-ROAD UNLIGHTED

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 1 CAR/VAN/PICKUP Registered Weight: 2615 State of Registration: NY

Num of Occupants: 1 Driver's Age: 22 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: FOLLOWING TOO CLOSELY, UNSAFE SPEED

Veh: 2 CAR/VAN/PICKUP Registered Weight: 4280 State of Registration: NY

Num of Occupants: 3 Driver's Age: 64 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012090 Street: [Route] 22

AT INTERSECTION WITH [Route] 120

5/20/2015 Wed 07:48 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2015-35730086

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: YIELD SIGN

Manner of Collision: REAR END Weather: CLOUDY

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 4960 State of Registration: NY

Num of Occupants: 1 Driver's Age: 36 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 3863 State of Registration: NY

Num of Occupants: 1 Driver's Age: 66 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: FOLLOWING TOO CLOSELY, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: Street:

5/27/2015 Wed 10:42 AM Persons Killed: 0 Persons Injured: 1 Extent of Injuries: C Case: 2015-35746910

Accident Class: PROPERTY DAMAGE AND INJURY Police Agency: NORTH CASTLE TOWN PD Num of Veh: 3

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: TRAFFIC SIGNAL

Manner of Collision: OTHER Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 3 CAR/VAN/PICKUP Registered Weight: 5513 State of Registration: NY

Num of Occupants: 1 Driver's Age: 61 Sex: M Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 23000 State of Registration: NY

Num of Occupants: 1 Driver's Age: 51 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: UNKNOWN, TRAFFIC CONTROL DEVICES DISREGARDED

Veh:1 CAR/VAN/PICKUP Registered Weight: 8550 State of Registration: NY

Num of Occupants: 1 Driver's Age: 55 Sex: M Citation Issued: N

Direction of Travel: NORTH-WEST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MAKING LEFT TURN

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: Street: KING ST

AT INTERSECTION WITH Ramp

6/26/2015 Fri 08:59 AM Persons Killed: 0 Persons Injured: 2 Extent of Injuries: CC Case: 2015-35774780

Accident Class: PROPERTY DAMAGE AND INJURY Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: YIELD SIGN

Manner of Collision: REAR END Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 4860 State of Registration: NY

Num of Occupants: 2 Driver's Age: 39 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MERGING

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 4605 State of Registration: NY

Num of Occupants: 1 Driver's Age: 47 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, FOLLOWING TOO CLOSELY

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012090 Street: KING ST

AT INTERSECTION WITH [Route] 22

7/6/2015 Mon 18:42 PM Persons Killed: 0 Persons Injured: 1 Extent of Injuries: C Case: 2015-35794869

Accident Class: PROPERTY DAMAGE AND INJURY Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: YIELD SIGN

Manner of Collision: REAR END Weather: CLOUDY

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: State of Registration: GA

Num of Occupants: 2 Driver's Age: 23 Sex: M Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, FOLLOWING TOO CLOSELY

Veh:1 CAR/VAN/PICKUP Registered Weight: 2965 State of Registration: NY

Num of Occupants: 1 Driver's Age: 41 Sex: F Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MERGING

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024047 Street: KING ST

AT INTERSECTION WITH Ramp

7/31/2015 Fri 19:42 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2015-35827598

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: YIELD SIGN

Manner of Collision: OVERTAKING Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 3269 State of Registration: NY

Num of Occupants: 1 Driver's Age: 67 Sex: F Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MERGING

Apparent Factors: FAILURE TO YIELD RIGHT OF WAY, NOT APPLICABLE

Veh:1 BUS Registered Weight: State of Registration: NY

 Num of Occupants: 1
 Driver's Age: 50
 Sex: M
 Citation Issued: N

 Direction of Travel: NORTH
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012090 Street: KING ST

20 Meters South of Ramp

8/8/2015 Sat 04:56 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2015-35834418

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 1

Type Of Accident: COLLISION WITH GUIDE RAIL Traffic Control: NONE

Manner of Collision: OTHER Weather: CLEAR

Road Surface Condition: DRY Road Char.: CURVE AND LEVEL Light Condition: DARK-ROAD LIGHTED

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 3761 State of Registration: NY

Num of Occupants: 1 Driver's Age: 20 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD Apparent Factors: UNSAFE SPEED, UNKNOWN

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024047 Street: KING ST

31 Meters South of Ramp

8/11/2015 Tue 09:41 AM Persons Killed: 0 Persons Injured: 1 Extent of Injuries: C Case: 2015-35841180

Accident Class: INJURY Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: YIELD SIGN

Manner of Collision: REAR END Weather: RAIN

Road Surface Condition: WET Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 3166 State of Registration: NY

Num of Occupants: 1 Driver's Age: 18 Sex: M Citation Issued: N

Direction of Travel: NORTH-WEST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MERGING

Apparent Factors: DRIVER INEXPERIENCE, FOLLOWING TOO CLOSELY

Veh : 2 CAR/VAN/PICKUP Registered Weight: State of Registration: CT

Num of Occupants: 1 Driver's Age: 44 Sex: F Citation Issued: N

Direction of Travel: NORTH-WEST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: SLOWED OR STOPPING

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012090 Street: [Route] 120

2 Meters West of Armonk-Bedford Rd

10/1/2015 Thu 20:23 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2015-35909083

Accident Class: NON-REPORTABLE Police Agency: NEW CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: NO PASSING ZONE

Manner of Collision: REAR END Weather: RAIN

Road Surface Condition: WET Road Char.: STRAIGHT AND LEVEL Light Condition: DARK-ROAD LIGHTED

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

Num of Occupants: 3 Driver's Age: Sex: Citation Issued:

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: PARKED

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

Num of Occupants: 1 Driver's Age: Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MAKING LEFT TURN

Apparent Factors: TURNING IMPROPER, CELL PHONE (HAND HELD)

County: Westchester Muni: North Castle(T) Ref. Marker: 120A87015001 Street: [Route] 120

AT INTERSECTION WITH GATEWAY LN

10/30/2015 Fri 12:44 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2015-35947248

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: TRAFFIC SIGNAL

Manner of Collision: RIGHT ANGLE Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 2235 State of Registration: NY

Num of Occupants: 2 Driver's Age: 28 Sex: F Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: FOLLOWING TOO CLOSELY, FAILURE TO YIELD RIGHT OF WAY

Veh:1 OTHER Registered Weight: State of Registration: NY

Num of Occupants: 1 Driver's Age: 33 Sex: M Citation Issued: N

Direction of Travel: NORTH-WEST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MAKING U TURN

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012090 Street: [Route] 120

AT INTERSECTION WITH [Route] 22

11/18/2015 Wed 09:09 AM Extent of Injuries: C Case: 2015-35970613 Persons Killed: 0 Persons Injured: 1

Num of Veh: 2 Police Agency: NORTH CASTLE TOWN PD Accident Class: PROPERTY DAMAGE AND INJURY

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: YIELD SIGN

Manner of Collision: REAR END Weather: CLOUDY

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Registered Weight: 3208 Veh:1 CAR/VAN/PICKUP State of Registration: NY

> Num of Occupants: 2 Driver's Age: 44 Sex: M Citation Issued: N Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MERGING

Apparent Factors: DRIVER INATTENTION, NOT APPLICABLE

Veh:2 CAR/VAN/PICKUP Registered Weight: State of Registration: CT

> Num of Occupants: 1 Driver's Age: 29 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: Street:

12/3/2015 Thu 22:54 PM Persons Killed: 0 Extent of Injuries: CC Case: 2015-35995856 Persons Injured: 2

Accident Class: PROPERTY DAMAGE AND INJURY Police Agency: NORTH CASTLE TOWN PD Num of Veh: 3

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: TRAFFIC SIGNAL

Manner of Collision: OTHER Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DARK-ROAD LIGHTED

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

CAR/VAN/PICKUP Veh:2 Registered Weight: State of Registration: NY

> Num of Occupants: 2 Driver's Age: 43 Sex: M Citation Issued: N Public Property Damage: OTHER School Bus Involved: OTHER Direction of Travel: WEST

Pre-Accd Action: GOING STRAIGHT AHEAD

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: CT

> Num of Occupants: 1 Driver's Age: 67 Sex: M Citation Issued: N School Bus Involved: OTHER

Direction of Travel: NORTH Public Property Damage: OTHER

Apparent Factors: TRAFFIC CONTROL DEVICES DISREGARDED, UNKNOWN

Veh:3 CAR/VAN/PICKUP Registered Weight: 4600 State of Registration: NY Num of Occupants: 2 Driver's Age: 57 Sex: M Citation Issued: N

Direction of Travel: SOUTH-WEST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MAKING LEFT TURN

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: Street: STATE HWY 120

AT INTERSECTION WITH Armonk-Bedford Rd

11/30/2015 Mon 21:09 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: **Case: 2015-36004650**

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 1

Type Of Accident: COLLISION WITH GUIDE RAIL

Traffic Control: YIELD SIGN

Manner of Collision: OTHER Weather: CLOUDY

Road Surface Condition: DRY Road Char.: CURVE AND LEVEL Light Condition: DARK-ROAD LIGHTED

Loc. of Ped/Bicycle: NOT APPLICABLE

Action of Ped/Bicycle: NOT APPLICABLE

Veh: 1 CAR/VAN/PICKUP Registered Weight: 3759 State of Registration: NY

Num of Occupants: 1 Driver's Age: 45 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, REACTION TO OTHER UNINVOLVED VEHICL

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012090 Street: KING ST

12/9/2015 Wed 08:58 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: **Case: 2015-36006131**

Accident Class: NON-REPORTABLE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: TRAFFIC SIGNAL

Manner of Collision: REAR END Weather: CLOUDY

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE

Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

Num of Occupants: 3 Driver's Age: 37 Sex: M Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: SLOWED OR STOPPING

Apparent Factors: NOT APPLICABLE, DRIVER INATTENTION

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

Num of Occupants: 1 Driver's Age: 35 Sex: M Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012084 Street: KING ST

AT INTERSECTION WITH Unnamed Street

12/8/2015 Tue 18:20 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2015-36006135

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 3

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: TRAFFIC SIGNAL

Manner of Collision: OTHER Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT/ GRADE Light Condition: DARK-ROAD LIGHTED

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: CT

 Num of Occupants: 1
 Driver's Age: 48
 Sex: M
 Citation Issued: N

 Direction of Travel: NORTH
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Pre-Accd Action: STARTING IN TRAFFIC

Apparent Factors: NOT APPLICABLE, FOLLOWING TOO CLOSELY

Veh: 3 CAR/VAN/PICKUP Registered Weight: State of Registration: CT

 Num of Occupants: 1
 Driver's Age: 53
 Sex: M
 Citation Issued: N

 Direction of Travel: NORTH
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 2645 State of Registration: NY

Num of Occupants: 1 Driver's Age: 41 Sex: M Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 684I87011049 Street: I 684

11 Meters South of King St

12/23/2015 Wed 16:35 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2015-36022124

Accident Class: PROPERTY DAMAGE Police Agency: NYSP SOMERS Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Manner of Collision: OVERTAKING

Traffic Control: NONE
Weather: RAIN

Road Surface Condition: WET Road Char.: STRAIGHT AND LEVEL Light Condition: DARK-ROAD UNLIGHTED

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 5313 State of Registration: NY

 Num of Occupants: 1
 Driver's Age: 66
 Sex: F
 Citation Issued: N

 Direction of Travel: SOUTH
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Pre-Accd Action: CHANGING LANES

Apparent Factors: NOT APPLICABLE, UNSAFE LANE CHANGE

Veh: 2 OTHER Registered Weight: State of Registration: PA

 Num of Occupants: 1
 Driver's Age: 42
 Sex: M
 Citation Issued: N

 Direction of Travel: SOUTH
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 684I87011049 Street: I 684

12/27/2015 Sun 00:57 AM Persons Killed: 0 Persons Injured: 1 Extent of Injuries: C **Case: 2015-36027150**

Accident Class: PROPERTY DAMAGE AND INJURY Police Agency: NYSP LEWISBORO SATELLITE Num of Veh: 1

Type Of Accident: COLL. W/EARTH ELE./ROCK CUT/DITCH

Traffic Control: NONE

Manner of Collision: OTHER Weather: RAIN

Road Surface Condition: WET Road Char.: STRAIGHT AND LEVEL Light Condition: DARK-ROAD UNLIGHTED

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: CT

 Num of Occupants: 2
 Driver's Age: 25
 Sex: F
 Citation Issued: N

 Direction of Travel: NORTH
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: UNSAFE SPEED, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: Street:

1/23/2016 Sat 07:42 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2016-36062049

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 1

Type Of Accident: COLLISION WITH GUIDERAIL - END

Traffic Control: TRAFFIC SIGNAL

Manner of Collision: OTHER Weather: SNOW

Road Surface Condition: SNOW/ICE Road Char.: CURVE AND LEVEL Light Condition: DAWN

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: CT

Num of Occupants: 1 Driver's Age: 55 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: PAVEMENT SLIPPERY, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012090 Street: [Route] 22

AT INTERSECTION WITH [Route] 120

1/6/2016 Wed 15:45 PM Persons Killed: 0 Persons Injured: 1 Extent of Injuries: C **Case: 2016-36063156**

Accident Class: PROPERTY DAMAGE AND INJURY Police Agency: Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: YIELD SIGN

Manner of Collision: REAR END Weather: CLEAR

Road Surface Condition: DRY Road Char.: CURVE AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 4438 State of Registration: NY

Num of Occupants: 1 Driver's Age: 29 Sex: F Citation Issued: N

Direction of Travel: SOUTH-WEST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STARTING IN TRAFFIC

Apparent Factors: NOT ENTERED, NOT ENTERED

Veh: 1 CAR/VAN/PICKUP Registered Weight: 3110 State of Registration: NY

Num of Occupants: 1 Driver's Age: 20 Sex: F Citation Issued: N

Direction of Travel: SOUTH-WEST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT ENTERED, NOT ENTERED

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012071 Street: PURCHASE ST

AT INTERSECTION WITH Gateway Ln

2/16/2016 Tue 12:57 PM Persons Killed: 0 Persons Injured: 1 Extent of Injuries: C Case: 2016-36099141

> Accident Class: PROPERTY DAMAGE AND INJURY Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

> > Traffic Control: TRAFFIC SIGNAL

Traffic Control: TRAFFIC SIGNAL

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Manner of Collision: REAR END Weather: RAIN

Road Surface Condition: WET Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: PA

> Num of Occupants: 1 Driver's Age: 61 Sex: M Citation Issued: N

Public Property Damage: OTHER School Bus Involved: OTHER Direction of Travel: NORTH

Pre-Accd Action: SLOWED OR STOPPING

Apparent Factors: PAVEMENT SLIPPERY, UNSAFE SPEED

Veh:2 CAR/VAN/PICKUP Registered Weight: 2932 State of Registration: NY

> Driver's Age: 62 Sex: F Citation Issued: N Num of Occupants: 1

Public Property Damage: OTHER School Bus Involved: OTHER Direction of Travel: NORTH

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012090 Street: [Route] 22

2/16/2016 Persons Injured: 0 Tue 01:18 AM Persons Killed: 0 Extent of Injuries: Case: 2016-36100837

> Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 1

Type Of Accident: COLL. W/EARTH ELE./ROCK CUT/DITCH Traffic Control: NONE

Weather: CLOUDY Manner of Collision: OTHER

Road Surface Condition: SLUSH Road Char.: CURVE AND LEVEL Light Condition: DARK-ROAD UNLIGHTED

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Registered Weight: 4357 Veh:1 CAR/VAN/PICKUP State of Registration: NY

> Driver's Age: 24 Sex: M Num of Occupants: 1 Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT ENTERED, PAVEMENT SLIPPERY

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012090 Street: [Route] 22

AT INTERSECTION WITH [Route] 120

2/15/2016 Mon 16:01 PM Persons Killed: 0 Extent of Injuries: Case: 2016-36105788

> Accident Class: NON-REPORTABLE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Manner of Collision: REAR END

Weather: SNOW

Road Surface Condition: SNOW/ICE Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:2 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

> Driver's Age: 18 Citation Issued: N Num of Occupants: 1 Sex: F

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER Pre-Accd Action: SLOWED OR STOPPING

Apparent Factors: NOT APPLICABLE, PAVEMENT SLIPPERY

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

 Num of Occupants: 1
 Driver's Age: 60
 Sex: M
 Citation Issued: N

 Direction of Travel: SOUTH
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012076 Street: KING ST

AT INTERSECTION WITH Driveway

2/29/2016 Mon 04:00 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2016-36114275

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 1

Type Of Accident: COLLISION WITH DEER

Manner of Collision: OTHER

Traffic Control: NO PASSING ZONE
Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DARK-ROAD LIGHTED

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 3810 State of Registration: NY

Num of Occupants: 1 Driver's Age: 60 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, ANIMAL'S ACTION

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012090 Street: KING ST

AT INTERSECTION WITH [Route] 22

3/1/2016 Tue 16:25 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2016-36118913

Accident Class; NON-REPORTABLE Police Agency: NORTH CASTLE TOWN PD Num of Veh; 2

Traffic Control: YIELD SIGN

Weather: CLEAR

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Manner of Collision: REAR END

Road Surface Condition: DRY Road Char.: CURVE AND LEVEL Light Condition: DUSK

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: State of Registration: CT

Num of Occupants: 1 Driver's Age: 29 Sex: F Citation Issued: Y

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

 Num of Occupants: 1
 Driver's Age: 63
 Sex: F
 Citation Issued: N

 Direction of Travel: NORTH
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Pre-Accd Action: MERGING

Apparent Factors: NOT APPLICABLE, FOLLOWING TOO CLOSELY

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024049 Street: STATE HWY 120

44 Meters North of Ramp

3/15/2016 Tue 08:59 AM Persons Killed: 0 Persons Injured: 0 Case: 2016-36137005 Extent of Injuries:

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: YIELD SIGN

Manner of Collision: REAR END Weather: CLOUDY

Road Surface Condition: WET Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 4812 State of Registration: NY

> Num of Occupants: 1 Driver's Age: 39 Sex: M Citation Issued: N Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh:2 CAR/VAN/PICKUP Registered Weight: 4455 State of Registration: NY

> Num of Occupants: 1 Driver's Age: 47 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: SLOWED OR STOPPING

Apparent Factors: NOT APPLICABLE, PAVEMENT SLIPPERY

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012067 Street: [Route] 120

AT INTERSECTION WITH AIRPORT RD

3/16/2016 Wed 06:30 AM Persons Killed: 0 Persons Injured: 3 Extent of Injuries: BCC Case: 2016-36143727

Accident Class: PROPERTY DAMAGE AND INJURY Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: TRAFFIC SIGNAL

Manner of Collision: RIGHT ANGLE Weather: CLEAR

Light Condition: DAYLIGHT Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Registered Weight: 3150 Veh:1 CAR/VAN/PICKUP State of Registration: NY

> Num of Occupants: 1 Driver's Age: 47 Sex: M Citation Issued: N

Direction of Travel: EAST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: UNKNOWN, TRAFFIC CONTROL DEVICES DISREGARDED

Veh:2 CAR/VAN/PICKUP Registered Weight: 3316 State of Registration: NY

> Num of Occupants: 2 Driver's Age: 43 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012087 Street: KING ST

AT INTERSECTION WITH Old Post Rd

Persons Killed: 0 3/24/2016 Thu 16:56 PM Extent of Injuries: Case: 2016-36146749

> Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Traffic Control: STOP SIGN Type Of Accident: COLLISION WITH MOTOR VEHICLE

Manner of Collision: RIGHT ANGLE Weather: CLOUDY

Road Surface Condition: DRY Road Char.: STRAIGHT/ GRADE Light Condition: DUSK

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:2 CAR/VAN/PICKUP Registered Weight: State of Registration: CT

> Driver's Age: 29 Citation Issued: N Num of Occupants: 1 Sex: M

School Bus Involved: OTHER Direction of Travel: WEST Public Property Damage: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 3076 State of Registration: NY

> Num of Occupants: 1 Driver's Age: 52 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STARTING IN TRAFFIC

Apparent Factors: DRIVER INATTENTION, FAILURE TO YIELD RIGHT OF WAY

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024045 Street: MOUNT KISCO RD

48 Meters South of King St

4/9/2016 Sat 04:22 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2016-36165342

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 1

Weather: CLEAR

Traffic Control: TRAFFIC SIGNAL

Type Of Accident: COLLISION WITH GUIDE RAIL Traffic Control: TRAFFIC SIGNAL

Manner of Collision: OTHER

Road Surface Condition: DRY Road Char.: CURVE AND LEVEL

Light Condition: DARK-ROAD UNLIGHTED

Action of Ped/Bicycle: NOT APPLICABLE Loc. of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 5762 State of Registration: NY

> Num of Occupants: 2 Driver's Age: 24 Sex: F Citation Issued: Y

School Bus Involved: OTHER Direction of Travel: NORTH Public Property Damage: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: ALCOHOL INVOLVEMENT, UNSAFE SPEED

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012087 Street: [Route] 22

AT INTERSECTION WITH Mount Kisco Rd

4/15/2016 Fri 18:50 PM Persons Killed: 0 Persons Injured: 4 Extent of Injuries: CCCC Case: 2016-36171958

> Accident Class: PROPERTY DAMAGE AND INJURY Police Agency: NORTH CASTLE TOWN PD Num of Veh: 3

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Manner of Collision: OTHER Weather: CLEAR

Road Surface Condition: DRY Road Char.: CURVE AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: CT

> Num of Occupants: 3 Driver's Age: 20 Sex: M Citation Issued: N Direction of Travel: WEST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: UNSAFE SPEED, FOLLOWING TOO CLOSELY

Veh:3 CAR/VAN/PICKUP Registered Weight: 3430 State of Registration: NY

> Driver's Age: 57 Citation Issued: N Num of Occupants: 2 Sex: M

Direction of Travel: WEST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh:2 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

> Num of Occupants: 1 Driver's Age: 35 Sex: M Citation Issued: N Direction of Travel: WEST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 684I87011049 Street: I 684

5/8/2016 Sun 08:35 AM Case: 2016-36198035 Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Num of Veh: 1

Police Agency: NYSP SOMERS Accident Class: PROPERTY DAMAGE

Type Of Accident: COLLISION WITH GUIDE RAIL Traffic Control: NONE

Manner of Collision: OTHER Weather: RAIN

Road Surface Condition: WET Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: CT

> Num of Occupants: 5 Driver's Age: 26 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: PAVEMENT SLIPPERY, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012087

AT INTERSECTION WITH Mount Kisco Rd

Thu 03:04 AM Persons Killed: 0 Case: 2016-36217572 5/19/2016 Persons Injured: 0 Extent of Injuries:

> Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 1

Type Of Accident: COLL. W/EARTH ELE./ROCK CUT/DITCH Traffic Control: NONE

Manner of Collision: OTHER Weather: CLOUDY

Road Char.: CURVE AND LEVEL Light Condition: DARK-ROAD LIGHTED Road Surface Condition: WET

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 2980 State of Registration: NY

> Driver's Age: 22 Citation Issued: N Num of Occupants: 1 Sex: M

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: ANIMAL'S ACTION, PAVEMENT SLIPPERY

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012090 Street: ARMONK-BEDFORD RD

AT INTERSECTION WITH Armonk-Bedford Rd

6/20/2016 Mon 16:11 PM Persons Killed: 0 Persons Injured: 1 Extent of Injuries: C Case: 2016-36263256

Accident Class: PROPERTY DAMAGE AND INJURY Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2 Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: TRAFFIC SIGNAL

Manner of Collision: REAR END Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 4993 State of Registration: NY

> Citation Issued: N Num of Occupants: 1 Driver's Age: 60 Sex: M

Public Property Damage: OTHER School Bus Involved: OTHER Direction of Travel: NORTH

Pre-Accd Action: MAKING LEFT TURN

Apparent Factors: DRIVER INATTENTION, NOT APPLICABLE

Veh:2 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

> Num of Occupants: 1 Driver's Age: 46 Sex: F Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 684I87011049 Street: [Route] 684

7/8/2016 Case: 2016-36288346 Fri 07:57 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries:

> Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: TRAFFIC SIGNAL

Manner of Collision: REAR END Weather: CLEAR

Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT Road Surface Condition: DRY

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:2 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

> Num of Occupants: 1 Driver's Age: 78 Sex: M Citation Issued: N Direction of Travel: EAST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: SLOWED OR STOPPING

Apparent Factors: NOT APPLICABLE, DRIVER INATTENTION

Veh:1 CAR/VAN/PICKUP Registered Weight: 3891 State of Registration: NY

> Sex: F Num of Occupants: 1 Driver's Age: 26 Citation Issued: N School Bus Involved: OTHER

Direction of Travel: EAST Public Property Damage: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012090 Street: [Route] 120

AT INTERSECTION WITH [Route] 22

7/6/2016 Wed 12:01 PM Case: 2016-36288347 Persons Killed: 0 Persons Injured: 0 Extent of Injuries:

Accident Class: NON-REPORTABLE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: YIELD SIGN

Manner of Collision: REAR END Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE Veh: 2 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

Num of Occupants: 2 Driver's Age: 21 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh: 1 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

Num of Occupants: 2 Driver's Age: 42 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STARTING IN TRAFFIC

Apparent Factors: DRIVER INATTENTION, UNKNOWN

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012076 Street: KING ST

AT INTERSECTION WITH Driveway

8/5/2016 Fri 08:08 AM Persons Killed: 0 Persons Injured: 2 Extent of Injuries: CC Case: 2016-36328373

Accident Class: PROPERTY DAMAGE AND INJURY Police Agency: NORTH CASTLE TOWN PD Num of Veh: 4

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: TRAFFIC SIGNAL

Manner of Collision: OTHER Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 4733 State of Registration: NY

Num of Occupants: 1 Driver's Age: 51 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: DRIVER INATTENTION, CELL PHONE (HAND HELD)

Veh: 4 CAR/VAN/PICKUP Registered Weight: 2723 State of Registration: NY

Num of Occupants: 1 Driver's Age: 28 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh: 3 CAR/VAN/PICKUP Registered Weight: 3585 State of Registration: NY

Num of Occupants: 1 Driver's Age: 64 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 4924 State of Registration: NY

Num of Occupants: 1 Driver's Age: 43 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012073 Street: [Route] 120

30 Meters North of [Route] 684

8/16/2016 Tue 16:45 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2016-36344798

Accident Class: NON-REPORTABLE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: TRAFFIC SIGNAL

Manner of Collision: REAR END Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

Num of Occupants: 1 Driver's Age: 57 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STARTING IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: MA

Num of Occupants: 1 Driver's Age: 57 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STARTING IN TRAFFIC

Apparent Factors: FOLLOWING TOO CLOSELY, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024047 Street: KING ST

88 Meters North of Mount Kisco Rd

9/8/2016 Thu 08:47 AM Persons Killed: 0 Persons Injured: 1 Extent of Injuries: C Case: 2016-36373806

Accident Class: PROPERTY DAMAGE AND INJURY Police Agency: NORTH CASTLE TOWN PD Num of Veh: 1

Type Of Accident: COLLISION WITH OTHER BARRIER Traffic Control: NONE

Manner of Collision: OTHER Weather: CLEAR

Road Surface Condition: DRY Road Char.: CURVE AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 1 CAR/VAN/PICKUP Registered Weight: 3564 State of Registration: NY

Num of Occupants: 1 Driver's Age: 45 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: REACTION TO OTHER UNINVOLVED VEHICL, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024048 Street: KING ST

9/15/2016 Thu 19:44 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: **Case: 2016-36400271**

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: NONE

Manner of Collision: REAR END Weather: CLEAR

Road Surface Condition: DRY Road Char.: CURVE AND GRADE Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 4505 State of Registration: NY

Num of Occupants: 1 Driver's Age: 23 Sex: F Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 3912 State of Registration: NY

> Driver's Age: 18 Citation Issued: N Num of Occupants: 1 Sex: M

Public Property Damage: OTHER School Bus Involved: OTHER Direction of Travel: NORTH

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: BRAKES DEFECTIVE, STEERING FAILURE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012086 Street: KING ST

AT INTERSECTION WITH Ramp

10/18/2016 Tue 14:34 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2016-36428676

Accident Class: NON-REPORTABLE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: OTHER Weather: CLEAR

Manner of Collision: OVERTAKING

Road Surface Condition: DRY Road Char.: CURVE AND GRADE Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

> Num of Occupants: 2 Driver's Age: 58 Sex: M Citation Issued: N Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MERGING

Apparent Factors: TRAFFIC CONTROL DEVICES DISREGARDED, FAILURE TO YIELD RIGHT OF WAY

Veh:2 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

> Num of Occupants: 1 Driver's Age: 40 Sex: M Citation Issued: N Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012069 Street: [Route] 120

73 Meters South of New King St

11/12/2016 Sat 02:15 AM Case: 2016-36469580 Persons Killed: 0 Persons Injured: 0 Extent of Injuries:

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 1

Traffic Control: NONE

Type Of Accident: COLLISION WITH TREE

Manner of Collision: OTHER Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DARK-ROAD UNLIGHTED

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 3585 State of Registration: NY

Driver's Age: 32 Sex: M Citation Issued: N Num of Occupants: 1

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: AVOIDING OBJECT IN ROADWAY Apparent Factors: NOT APPLICABLE, ANIMAL'S ACTION County: Westchester Muni: North Castle(T) Ref. Marker: 120A87015001 Street: GATEWAY LN

AT INTERSECTION WITH Purchase St

11/13/2016 Sun 11:16 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: **Case: 2016-36469583**

Accident Class: NON-REPORTABLE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: TRAFFIC SIGNAL

Manner of Collision: LEFT TURN (AGAINST OTHER CAR)

Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

 Num of Occupants: 1
 Driver's Age: 60
 Sex: M
 Citation Issued: N

 Direction of Travel: WEST
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: QC

Num of Occupants: 1 Driver's Age: 73 Sex: M Citation Issued: N

Direction of Travel: SOUTH-EAST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MAKING LEFT TURN

Apparent Factors: TURNING IMPROPER, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012090 Street: KING ST

11/26/2016 Sat 00:37 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2016-36489323

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: YIELD SIGN

Manner of Collision: REAR END Weather: CLEAR

Road Surface Condition: DRY Road Char.: CURVE AND GRADE Light Condition: DARK-ROAD UNLIGHTED

Loc. of Ped/Bicycle: NOT APPLICABLE

Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: VA

Num of Occupants: 1 Driver's Age: 67 Sex: M Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MERGING

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 3693 State of Registration: NY

Num of Occupants: 1 Driver's Age: 22 Sex: M Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MERGING

Apparent Factors: DRIVER INATTENTION, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012090 Street: STATE HWY 22

15 Meters North of Ramp

11/18/2016 Fri 13:23 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: **Case: 2016-36499630**

Accident Class: NON-REPORTABLE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: YIELD SIGN

Manner of Collision: OVERTAKING Weather: CLOUDY

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

Num of Occupants: 2 Driver's Age: 66 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: OTHER

Apparent Factors: UNKNOWN, NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

Num of Occupants: 1 Driver's Age: 65 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: OTHER

Apparent Factors: NOT APPLICABLE, UNKNOWN

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012090 Street: [Route] 120

AT INTERSECTION WITH [Route] 22

12/13/2016 Tue 15:02 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: **Case: 2016-36517805**

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: YIELD SIGN

Manner of Collision: REAR END Weather: CLOUDY

Road Surface Condition: DRY Road Char.: STRAIGHT/ GRADE Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 3034 State of Registration: NY

Num of Occupants: 1 Driver's Age: 20 Sex: F Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, FOLLOWING TOO CLOSELY

Veh: 2 CAR/VAN/PICKUP Registered Weight: State of Registration: CT

Num of Occupants: 1 Driver's Age: 36 Sex: M Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012080 Street: KING ST

AT INTERSECTION WITH COONEY HILL RD

12/15/2016 Thu 10:00 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: **Case: 2016-36522005**

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 1

Type Of Accident: COLLISION WITH DEER Traffic Control: NONE

Manner of Collision: OTHER Weather: CLOUDY

Road Surface Condition: WET Road Char.: STRAIGHT/ GRADE Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 3460 State of Registration: NY

Num of Occupants: 1 Driver's Age: 39 Sex: M Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, ANIMAL'S ACTION

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024050 Street: [Route] 22

1/16/2017 Mon 01:02 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2017-36572364

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 1

Type Of Accident: COLLISION WITH MEDIAN/BARRIER

Traffic Control: NONE

Manner of Collision: OTHER Weather: CLEAR

Road Surface Condition: WET Road Char.: CURVE AND LEVEL Light Condition: DARK-ROAD LIGHTED

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: NM

 Num of Occupants: 1
 Driver's Age: 26
 Sex: M
 Citation Issued: N

 Direction of Travel: NORTH
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: UNSAFE SPEED, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024044 Street: MOUNT KISCO RD

AT INTERSECTION WITH King St

1/23/2017 Mon 20:38 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2017-36577328

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Manner of Collision: LEFT TURN (AGAINST OTHER CAR)

Road Surface Condition: WET

Road Char.: CURVE AND LEVEL

Traffic Control: TRAFFIC SIGNAL

Weather: SLEET/HAIL/FREEZING RAIN

Light Condition: DARK-ROAD UNLIGHTED

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 1 CAR/VAN/PICKUP Registered Weight: 4438 State of Registration: NY

Num of Occupants: 1 Driver's Age: 55 Sex: F Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 3635 State of Registration: NY

Num of Occupants: 1 Driver's Age: 28 Sex: F Citation Issued: Y

Direction of Travel: EAST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MAKING LEFT TURN

Apparent Factors: TRAFFIC CONTROL DEVICES DISREGARDED, PAVEMENT SLIPPERY

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012074 Street: KING ST

1/30/2017 Mon 06:55 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2017-36586512

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: NONE

Manner of Collision: OTHER Weather: CLOUDY

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAWN

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Registered Weight: 2449 Veh:1 CAR/VAN/PICKUP State of Registration: NY

> Sex: M Driver's Age: 29 Citation Issued: N Num of Occupants: 1

Public Property Damage: OTHER Direction of Travel: NORTH-WEST School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh:2 OTHER State of Registration: -3 Registered Weight:

> Num of Occupants: 0 Driver's Age: Sex: Citation Issued:

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MAKING U TURN

Apparent Factors: TURNING IMPROPER, FAILURE TO YIELD RIGHT OF WAY

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012071 Street: [Route] 120

61 Meters North of Gateway Ln

Case: 2017-36605781 2/13/2017 Mon 18:24 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries:

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Weather: CLOUDY

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: TRAFFIC SIGNAL

Manner of Collision: REAR END

Road Char.: STRAIGHT AND LEVEL Light Condition: DARK-ROAD LIGHTED Road Surface Condition: WET

Action of Ped/Bicycle: NOT APPLICABLE Loc. of Ped/Bicycle: NOT APPLICABLE

CAR/VAN/PICKUP Registered Weight: 2253 State of Registration: NY Veh:1

> Num of Occupants: 1 Driver's Age: 54 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: FOLLOWING TOO CLOSELY, BRAKES DEFECTIVE

Veh:2 CAR/VAN/PICKUP Registered Weight: State of Registration: NJ

> Sex: M Num of Occupants: 1 Driver's Age: 45 Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024049 Street: KING ST

42 Meters South of Armonk-Bedford Rd

1/27/2017 Fri 20:00 PM Persons Killed: 0 Case: 2017-36614303 Persons Injured: 0 Extent of Injuries: Accident Class: PROPERTY DAMAGE Police Agency: Num of Veh: 1

Type Of Accident: RAN OFF ROAD ONLY

Traffic Control: NONE

Manner of Collision: OTHER Weather: CLEAR

Road Char.: CURVE AND GRADE Road Surface Condition: DRY Light Condition: DARK-ROAD UNLIGHTED

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE Veh:1 CAR/VAN/PICKUP Registered Weight: 3389 State of Registration: NY

Num of Occupants: 1 Driver's Age: 62 Sex: M Citation Issued: N

Direction of Travel: NORTH-EAST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: AVOIDING OBJECT IN ROADWAY Apparent Factors: NOT ENTERED, NOT ENTERED

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024049 Street: STATE HWY 22

AT INTERSECTION WITH King St

2/25/2017 Sat 18:35 PM Persons Killed: 0 Persons Injured: 1 Extent of Injuries: A Case: 2017-36621146

Accident Class: PROPERTY DAMAGE AND INJURY Police Agency: NORTH CASTLE TOWN PD Num of Veh: 1

Type Of Accident: COLL. W/LIGHT SUPPORT/UTILITY POLE

Traffic Control: TRAFFIC SIGNAL

Manner of Collision: OTHER Weather: RAIN

Road Surface Condition: WET Road Char.: STRAIGHT AND LEVEL Light Condition: DARK-ROAD LIGHTED

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 5178 State of Registration: NY

 Num of Occupants: 4
 Driver's Age: 35
 Sex: M
 Citation Issued: N

 Direction of Travel: SOUTH
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Pre-Accd Action: MAKING RIGHT TURN

Apparent Factors: PAVEMENT SLIPPERY, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 684I87011049 Street: [Route] 120

AT INTERSECTION WITH I 684

3/1/2017 Wed 11:05 AM Persons Killed: 0 Persons Injured: 2 Extent of Injuries: CC Case: 2017-36627148

Accident Class: PROPERTY DAMAGE AND INJURY Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: TRAFFIC SIGNAL

Manner of Collision: RIGHT ANGLE Weather: RAIN

Road Surface Condition: WET Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

Num of Occupants: 1 Driver's Age: 53 Sex: M Citation Issued: N

Direction of Travel: EAST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: TRAF CNTRL DEV IMPROPER/NON-WRKING, NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: State of Registration: CT

Num of Occupants: 1 Driver's Age: 67 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, TRAF CNTRL DEV IMPROPER/NON-WRKING

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012091 Street: KING ST

AT INTERSECTION WITH Ramp

2/20/2017 Mon 15:39 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2017-36627959

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 1

Type Of Accident: COLLISION WITH GUIDERAIL - END

Traffic Control: NONE

Manner of Collision: OTHER Weather: CLOUDY

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 3650 State of Registration: NY

Num of Occupants: 1 Driver's Age: 24 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, REACTION TO OTHER UNINVOLVED VEHICL

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024047 Street: KING ST

3/2/2017 Thu 09:31 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: **Case: 2017-36627961**

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 1

Type Of Accident: COLLISION WITH TREE

Traffic Control: NONE

Manner of Collision: OTHER Weather: OTHER

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 3980 State of Registration: NY

Num of Occupants: 1 Driver's Age: 61 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: OBSTRUCTION/DEBRIS, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012067 Street: PURCHASE ST

AT INTERSECTION WITH Westchester County Airport

3/10/2017 Fri 15:30 PM Persons Killed: 0 Persons Injured: 2 Extent of Injuries: CC Case: 2017-36637584

Accident Class: PROPERTY DAMAGE AND INJURY Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Traffic Control: TRAFFIC SIGNAL

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Manner of Collision: RIGHT ANGLE Weather: CLOUDY

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE

Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: CT

Num of Occupants: 1 Driver's Age: 63 Sex: M Citation Issued: N

Direction of Travel: EAST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: FAILURE TO YIELD RIGHT OF WAY, NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 4661 State of Registration: NY

Num of Occupants: 1 Driver's Age: 37 Sex: F Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012090 Street: KING ST

3/21/2017 Tue 18:15 PM Persons Killed: 0 Case: 2017-36652429 Persons Injured: 0 Extent of Injuries:

> Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Traffic Control: YIELD SIGN Type Of Accident: COLLISION WITH MOTOR VEHICLE

Manner of Collision: REAR END Weather: CLEAR

Road Surface Condition: DRY Road Char.: CURVE AND GRADE Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP State of Registration: CT Registered Weight:

> Driver's Age: 43 Num of Occupants: 1 Sex: F Citation Issued: N Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh:2 CAR/VAN/PICKUP Registered Weight: 3573 State of Registration: NY

> Num of Occupants: 1 Driver's Age: 42 Sex: M Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MERGING

Apparent Factors: DRIVER INATTENTION, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024049 Street: STATE HWY 22

AT INTERSECTION WITH King St

3/25/2017 Sat 07:08 AM Case: 2017-36657199 Persons Killed: 0 Persons Injured: 0 Extent of Injuries:

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 1

Type Of Accident: COLL. W/LIGHT SUPPORT/UTILITY POLE Traffic Control: TRAFFIC SIGNAL Manner of Collision: OTHER Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Registered Weight: 3915 Veh:1 CAR/VAN/PICKUP State of Registration: NY

> Sex: M Num of Occupants: 1 Driver's Age: 27 Citation Issued: N Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: SLOWED OR STOPPING

Apparent Factors: BRAKES DEFECTIVE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012067 Street: PURCHASE ST

AT INTERSECTION WITH Westchester County Airport

3/30/2017 Thu 13:18 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2017-36675844

> Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: TRAFFIC SIGNAL

Manner of Collision: REAR END Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:2 CAR/VAN/PICKUP Registered Weight: 5380 State of Registration: NY

> Driver's Age: 67 Citation Issued: N Num of Occupants: 1 Sex: M

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

 Veh:1
 CAR/VAN/PICKUP
 Registered Weight: 2922
 State of Registration: NY

 Num of Occupants: 1
 Driver's Age: 20
 Sex: F
 Citation Issued: N

 Direction of Travel: SOUTH
 Public Property Damage: OTHER
 School Bus Involved: OTHER

2 denote the second

Pre-Accd Action: STARTING IN TRAFFIC

Apparent Factors: DRIVER INATTENTION, TRAFFIC CONTROL DEVICES DISREGARDED

County: Westchester Muni: North Castle(T) Ref. Marker: Street: AIRPORT RD

AT INTERSECTION WITH Purchase St

4/6/2017 Thu 08:39 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2017-36679243
Accident Class: NON-REPORTABLE Police Agency: NYSP SOMERS Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: TRAFFIC SIGNAL

Manner of Collision: REAR END

Weather: RAIN

Road Surface Condition: WET Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

 Num of Occupants: 1
 Driver's Age: 23
 Sex: M
 Citation Issued: N

 Direction of Travel: EAST
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Pre-Accd Action: STARTING FROM PARKING

Apparent Factors: PAVEMENT SLIPPERY, DRIVER INATTENTION

Veh: 2 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

 Num of Occupants: 1
 Driver's Age: 46
 Sex: F
 Citation Issued: N

 Direction of Travel: EAST
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012087 Street: [Route] 22

AT INTERSECTION WITH Mount Kisco Rd

5/5/2017 Fri 13:46 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: **Case: 2017-36719110**

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: YIELD SIGN

Manner of Collision: REAR END Weather: RAIN

Road Surface Condition: WET Road Char.: CURVE AND GRADE Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 5196 State of Registration: NY

Num of Occupants: 1 Driver's Age: 27 Sex: M Citation Issued: N

Direction of Travel: NORTH-WEST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MERGING

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh: 1 CAR/VAN/PICKUP Registered Weight: 3457 State of Registration: NY

Num of Occupants: 1 Driver's Age: 43 Sex: F Citation Issued: N

Direction of Travel: NORTH-WEST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MERGING

Apparent Factors: UNKNOWN, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012090 Street: [Route] 120

AT INTERSECTION WITH [Route] 22

5/8/2017 Mon 07:36 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2017-36720135

Accident Class: NON-REPORTABLE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident; COLLISION WITH MOTOR VEHICLE

Traffic Control; YIELD SIGN

Manner of Collision: REAR END Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

Num of Occupants: 1 Driver's Age: 52 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

Num of Occupants: 2 Driver's Age: 57 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, FOLLOWING TOO CLOSELY

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024048 Street: KING ST

5/22/2017 Mon 14:11 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2017-36735432

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: TRAFFIC SIGNAL

Manner of Collision: REAR END Weather: RAIN

Road Surface Condition: WET Road Char.: CURVE AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 1 CAR/VAN/PICKUP Registered Weight: 3668 State of Registration: NY

Num of Occupants: 2 Driver's Age: 42 Sex: F Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: FOLLOWING TOO CLOSELY, PAVEMENT SLIPPERY

Veh: 2 CAR/VAN/PICKUP Registered Weight: 3436 State of Registration: NY

Num of Occupants: 2 Driver's Age: 81 Sex: M Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: SLOWED OR STOPPING

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012067 Street: PURCHASE ST

AT INTERSECTION WITH Westchester County Airport

5/23/2017 Tue 10:22 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: **Case: 2017-36735434**

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: TRAFFIC SIGNAL

Manner of Collision: RIGHT TURN (AGAINST OTHER CAR)

Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 4716 State of Registration: NY

Num of Occupants: 1 Driver's Age: 38 Sex: M Citation Issued: Y

Direction of Travel: SOUTH-EAST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STARTING IN TRAFFIC

Apparent Factors: FAILURE TO YIELD RIGHT OF WAY, PASSING OR LANE USAGE IMPROPERLY

Veh: 2 TRUCK Registered Weight: 25500 State of Registration: NY

Num of Occupants: 1 Driver's Age: 57 Sex: M Citation Issued: N

Direction of Travel: SOUTH-EAST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MAKING RIGHT TURN

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012086 Street: KING ST

42 Meters South of Ramp

5/16/2017 Tue 08:31 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: **Case: 2017-36736932**

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

School Bus Involved: OTHER

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: NONE

Manner of Collision: REAR END Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 3358 State of Registration: NY

Num of Occupants: 1 Driver's Age: 52 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 7000 State of Registration: NY

Num of Occupants: 4 Driver's Age: 44 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: FOLLOWING TOO CLOSELY, UNKNOWN

County: Westchester Muni: North Castle(T) Ref. Marker: Street: AIRPORT RD

AT INTERSECTION WITH Purchase St

6/11/2017 Sun 22:05 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2017-36768642

Accident Class: PROPERTY DAMAGE Police Agency: NYSP SOMERS Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Manner of Collision: OVERTAKING

Traffic Control: YIELD SIGN
Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DARK-ROAD UNLIGHTED

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

 Num of Occupants: 3
 Driver's Age: 19
 Sex: F
 Citation Issued: Y

 Direction of Travel: EAST
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Pre-Accd Action: MAKING RIGHT TURN

Apparent Factors: UNSAFE SPEED, FAILURE TO YIELD RIGHT OF WAY

Veh: 2 CAR/VAN/PICKUP Registered Weight: 3367 State of Registration: NY

Num of Occupants: 1 Driver's Age: 51 Sex: F Citation Issued: N

Direction of Travel: EAST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012084 Street: [Route] 120

AT INTERSECTION WITH NEW ORCHARD RD

7/6/2017 Thu 16:49 PM Persons Killed: 0 Persons Injured: 1 Extent of Injuries: C Case: 2017-36795263

Accident Class: PROPERTY DAMAGE AND INJURY Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Weather: CLOUDY

Traffic Control: TRAFFIC SIGNAL

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: TRAFFIC SIGNAL

Manner of Collision: REAR END

Road Surface Condition: DRY Road Char.: STRAIGHT/ GRADE Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

Num of Occupants: 1 Driver's Age: 59 Sex: F Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 3353 State of Registration: NY

Num of Occupants: 1 Driver's Age: 65 Sex: F Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: DRIVER INATTENTION, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012076 Street: KING ST

AT INTERSECTION WITH Driveway

7/20/2017 Thu 16:03 PM Persons Killed: 0 Persons Injured: 1 Extent of Injuries: A **Case: 2017-36834980**

Accident Class: PROPERTY DAMAGE AND INJURY Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Manner of Collision: REAR END Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 TRUCK Registered Weight: State of Registration: IN

Num of Occupants: 1 Driver's Age: 41 Sex: M Citation Issued: N

Direction of Travel: NORTH-WEST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STARTING IN TRAFFIC

Apparent Factors: NOT APPLICABLE, DRIVER INATTENTION

Veh: 2 CAR/VAN/PICKUP Registered Weight: 4142 State of Registration: NY

Num of Occupants: 1 Driver's Age: 59 Sex: F Citation Issued: N

Direction of Travel: NORTH-WEST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012070 Street: [Route] 120

AT INTERSECTION WITH NEW KING ST

7/31/2017 Mon 17:13 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: **Case: 2017-36834982**

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: TRAFFIC SIGNAL

Manner of Collision: RIGHT ANGLE Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE

Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: FL

Num of Occupants: 1 Driver's Age: 76 Sex: M Citation Issued: N

Direction of Travel: SOUTH-WEST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MAKING LEFT TURN

Apparent Factors: NOT APPLICABLE, FAILURE TO YIELD RIGHT OF WAY

Veh: 2 CAR/VAN/PICKUP Registered Weight: 5631 State of Registration: NY

Num of Occupants: 1 Driver's Age: 28 Sex: M Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024050 Street: ARMONK-BEDFORD RD

8/5/2017 Sat 01:56 AM Persons Killed: 0 Persons Injured: 1 Extent of Injuries: A Case: **2017-36835968**

Accident Class: PROPERTY DAMAGE AND INJURY Police Agency: NORTH CASTLE TOWN PD Num of Veh: 1

School Bus Involved: OTHER

Type Of Accident: COLLISION WITH TREE

Traffic Control: NONE

Manner of Collision: OTHER Weather: CLOUDY

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DARK-ROAD UNLIGHTED

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 1 CAR/VAN/PICKUP Registered Weight: State of Registration: NJ

Num of Occupants: 1 Driver's Age: 28 Sex: M Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: FELL ASLEEP, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012067 Street: [Route] 120

AT INTERSECTION WITH AIRPORT RD

8/6/2017 Sun 23:18 PM Persons Killed: 0 Persons Injured: 2 Extent of Injuries: BC Case: 2017-36838678

Accident Class: PROPERTY DAMAGE AND INJURY Police Agency: NORTH CASTLE TOWN PD Num of Veh: 3

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: NONE

Manner of Collision: OTHER Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DARK-ROAD LIGHTED

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: CT

Num of Occupants: 4 Driver's Age: 17 Sex: M Citation Issued: N

Direction of Travel: EAST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: TURNING IMPROPER, UNSAFE SPEED

Veh: 2 CAR/VAN/PICKUP Registered Weight: 3472 State of Registration: NY

Num of Occupants: 2 Driver's Age: 51 Sex: M Citation Issued: N

Direction of Travel: SOUTH-WEST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MAKING RIGHT TURN

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh: 3 CAR/VAN/PICKUP Registered Weight: State of Registration: CT

Num of Occupants: 2 Driver's Age: 54 Sex: F Citation Issued: N

Direction of Travel: SOUTH-WEST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012090 Street: [Route] 22

AT INTERSECTION WITH [Route] 120

8/10/2017 Thu 17:28 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: **2017-36844010**

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: YIELD SIGN

Manner of Collision: REAR END Weather: CLEAR

Road Surface Condition: DRY Road Char.: CURVE AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 3351 State of Registration: NY

Num of Occupants: 1 Driver's Age: 19 Sex: F Citation Issued: N

Direction of Travel: NORTH-EAST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MAKING RIGHT TURN

Apparent Factors: REACTION TO OTHER UNINVOLVED VEHICL, NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 4513 State of Registration: NY

Num of Occupants: 1 Driver's Age: 41 Sex: F Citation Issued: N

Direction of Travel: NORTH-EAST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MAKING RIGHT TURN

Apparent Factors: FOLLOWING TOO CLOSELY, REACTION TO OTHER UNINVOLVED VEHICL

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012076 Street: KING ST

33 Meters East of Ramp

8/16/2017 Wed 05:42 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2017-36853132

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 1

Type Of Accident: COLLISION WITH ANIMAL Traffic Control: NONE

Manner of Collision: OTHER Weather: CLOUDY

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAWN

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 2777 State of Registration: NY

 Num of Occupants: 2
 Driver's Age: 25
 Sex: M
 Citation Issued: N

 Direction of Travel: NORTH
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: ANIMAL'S ACTION, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012090 Street: [Route] 22

AT INTERSECTION WITH Armonk-Bedford Rd

9/8/2017 Fri 11:02 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: **Case: 2017-36880893**

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: TRAFFIC SIGNAL

Manner of Collision: OVERTAKING Weather: CLEAR

Road Surface Condition: DRY Road Char.: CURVE AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 1 CAR/VAN/PICKUP Registered Weight: State of Registration: CT

 Num of Occupants: 1
 Driver's Age: 56
 Sex: F
 Citation Issued: N

 Direction of Travel: NORTH
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Pre-Accd Action: MERGING

Apparent Factors: FAILURE TO YIELD RIGHT OF WAY, PASSING OR LANE USAGE IMPROPERLY

Veh: 2 CAR/VAN/PICKUP Registered Weight: 4613 State of Registration: NY

Num of Occupants: 1 Driver's Age: 71 Sex: F Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012090 Street: [Route] 22

AT INTERSECTION WITH [Route] 120

9/8/2017 Fri 17:54 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: **Case: 2017-36881682**

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: YIELD SIGN

Manner of Collision: REAR END Weather: CLEAR

Road Surface Condition: DRY Road Char.: CURVE AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 3298 State of Registration: NY

> Num of Occupants: 1 Driver's Age: 60 Sex: M Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh:2 CAR/VAN/PICKUP Registered Weight: 3704 State of Registration: NY

> Num of Occupants: 1 Driver's Age: 23 Sex: M Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: DRIVER INATTENTION, FOLLOWING TOO CLOSELY

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012087 Street: KING ST

41 Meters East of Old Post Rd

9/15/2017 Fri 08:15 AM Persons Killed: 0 Extent of Injuries: C Case: 2017-36890277 Persons Injured: 1

> Accident Class: PROPERTY DAMAGE AND INJURY Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: NONE

Manner of Collision: REAR END Weather: CLEAR

Road Surface Condition: DRY Road Char.: CURVE AND GRADE Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

CAR/VAN/PICKUP Veh:2 Registered Weight: 7200 State of Registration: NY

> Num of Occupants: 1 Driver's Age: 60 Sex: M Citation Issued: N

Direction of Travel: SOUTH-EAST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, ANIMAL'S ACTION

Veh:1 CAR/VAN/PICKUP Registered Weight: 4010 State of Registration: NY

> Num of Occupants: 1 Driver's Age: 48 Sex: F Citation Issued: N

Direction of Travel: SOUTH-EAST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012087 Street: MOUNT KISCO RD

AT INTERSECTION WITH KING ST

8/27/2017 Sun 00:00 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2017-36895142 Accident Class: PROPERTY DAMAGE Police Agency: Num of Veh: 1

Type Of Accident: COLLISION WITH DEER Traffic Control: NONE

Manner of Collision: OTHER Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DARK-ROAD UNLIGHTED

Action of Ped/Bicycle: NOT APPLICABLE Loc. of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 3316 State of Registration: NY Num of Occupants: 1 Driver's Age: 25 Sex: M Citation Issued: N

Direction of Travel: NORTH-EAST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD Apparent Factors: NOT ENTERED, NOT ENTERED

Street: PURCHASE ST County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012071

AT INTERSECTION WITH Gateway Ln

9/19/2017 Tue 16:50 PM Persons Killed: 0 Case: 2017-36897897 Persons Injured: 0 Extent of Injuries:

> Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 3

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: TRAFFIC SIGNAL

Manner of Collision: OTHER Weather: CLOUDY

Road Surface Condition: DRY Road Char.: CURVE AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:3 CAR/VAN/PICKUP Registered Weight: 2723 State of Registration: NY

> Num of Occupants: 1 Driver's Age: 41 Sex: M Citation Issued: N Direction of Travel: WEST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT ENTERED, NOT ENTERED

Veh:2 CAR/VAN/PICKUP Registered Weight: 3043 State of Registration: NY

> Num of Occupants: 1 Driver's Age: 30 Sex: M Citation Issued: N School Bus Involved: OTHER Direction of Travel: NORTH Public Property Damage: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD Apparent Factors: NOT ENTERED, NOT ENTERED

OTHER Veh:1 Registered Weight: State of Registration: -3

> Num of Occupants: 1 Driver's Age: Sex: Citation Issued:

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MAKING LEFT TURN

Apparent Factors: UNKNOWN, FAILURE TO YIELD RIGHT OF WAY

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024047 Street: STATE HWY 120

21 Meters South of Ramp

9/29/2017 Fri 17:33 PM Persons Killed: 0 Persons Injured: 2 Extent of Injuries: CC Case: 2017-36908186

> Police Agency: NORTH CASTLE TOWN PD Accident Class: PROPERTY DAMAGE AND INJURY Num of Veh: 3

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: YIELD SIGN Manner of Collision: OTHER Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT/ GRADE Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:2 CAR/VAN/PICKUP Registered Weight: 3330 State of Registration: NY

> Num of Occupants: 1 Driver's Age: 77 Sex: M Citation Issued: N

> Public Property Damage: OTHER School Bus Involved: OTHER Direction of Travel: NORTH

Pre-Accd Action: SLOWED OR STOPPING

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 3945 State of Registration: NY

Num of Occupants: 1 Driver's Age: 40 Sex: F Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, FOLLOWING TOO CLOSELY

Veh: 3 CAR/VAN/PICKUP Registered Weight: 4960 State of Registration: NY

Num of Occupants: 3 Driver's Age: 28 Sex: F Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012090 Street: STATE HWY 120

AT INTERSECTION WITH Ramp

10/4/2017 Wed 07:04 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: **Case: 2017-36915989**

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: YIELD SIGN

Manner of Collision: REAR END Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 2544 State of Registration: NY

Num of Occupants: 1 Driver's Age: 30 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: DRIVER INATTENTION, FOLLOWING TOO CLOSELY

Veh: 2 CAR/VAN/PICKUP Registered Weight: 3148 State of Registration: NY

Num of Occupants: 2 Driver's Age: 34 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: SLOWED OR STOPPING

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012076 Street: KING ST

AT INTERSECTION WITH Driveway

10/10/2017 Tue 07:33 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: **Case: 2017-36925810**

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Weather: CLEAR

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: TRAFFIC SIGNAL

Manner of Collision: REAR END

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 3186 State of Registration: NY

Num of Occupants: 1 Driver's Age: 63 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: DRIVER INATTENTION, FOLLOWING TOO CLOSELY

Veh: 2 OTHER Registered Weight: State of Registration: NY

Num of Occupants: 1 Driver's Age: 45 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STARTING IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012077 Street: KING ST

138 Meters North of Ramp

10/12/2017 Thu 18:40 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: **Case: 2017-36928634**

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 1

Weather: CLEAR

Type Of Accident: COLLISION WITH ANIMAL Traffic Control: NONE

Manner of Collision: OTHER

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DARK-ROAD UNLIGHTED

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 1 CAR/VAN/PICKUP Registered Weight: 2723 State of Registration: NY

 Num of Occupants: 2
 Driver's Age: 50
 Sex: M
 Citation Issued: N

 Direction of Travel: NORTH
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: ANIMAL'S ACTION, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012090 Street: ARMONK-BEDFORD RD

AT INTERSECTION WITH [Route] 120

11/2/2017 Thu 11:49 AM Persons Killed: 0 Persons Injured: 2 Extent of Injuries: CC Case: 2017-36961957

Accident Class: PROPERTY DAMAGE AND INJURY Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: TRAFFIC SIGNAL

Manner of Collision: REAR END Weather: CLOUDY

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE

Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 6425 State of Registration: NY

Num of Occupants: 1 Driver's Age: 32 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 3029 State of Registration: NY

Num of Occupants: 1 Driver's Age: 18 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STARTING IN TRAFFIC

Apparent Factors: DRIVER INEXPERIENCE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024045 Street: MOUNT KISCO RD

11 Meters South of King St

11/8/2017 Wed 08:37 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2017-36970089

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: TRAFFIC SIGNAL

Manner of Collision: REAR END Weather: CLEAR

Road Surface Condition: DRY Road Char.: CURVE AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 3457 State of Registration: NY

Num of Occupants: 1 Driver's Age: 61 Sex: F Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 3214 State of Registration: NY

 Num of Occupants: 1
 Driver's Age: 52
 Sex: M
 Citation Issued: N

 Direction of Travel: NORTH
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: DRIVER INATTENTION, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012071 Street: PURCHASE ST

AT INTERSECTION WITH Gateway Ln

11/9/2017 Thu 08:37 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2017-36972432

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: TRAFFIC SIGNAL

Manner of Collision: REAR END Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: State of Registration: FL

Num of Occupants: 1 Driver's Age: 21 Sex: M Citation Issued: N

Direction of Travel: SOUTH-EAST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: DRIVER INATTENTION, FOLLOWING TOO CLOSELY

Veh:1 CAR/VAN/PICKUP Registered Weight: 3459 State of Registration: NY

Num of Occupants: 1 Driver's Age: 70 Sex: F Citation Issued: N

Direction of Travel: SOUTH-EAST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: SLOWED OR STOPPING

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: Street: KING ST

11/8/2017 Wed 17:53 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2017-36973571

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: TRAFFIC SIGNAL

Manner of Collision: REAR END Weather: CLOUDY

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DARK-ROAD LIGHTED

Action of Ped/Bicycle: NOT APPLICABLE Loc. of Ped/Bicycle: NOT APPLICABLE

Veh:2 CAR/VAN/PICKUP Registered Weight: State of Registration: CT

> Num of Occupants: 1 Driver's Age: 62 Sex: M Citation Issued: N

Public Property Damage: OTHER School Bus Involved: OTHER Direction of Travel: NORTH

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 2690 State of Registration: NY

> Num of Occupants: 1 Driver's Age: 21 Sex: F Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: SLOWED OR STOPPING

Apparent Factors: BRAKES DEFECTIVE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024049 Street: KING ST

15 Meters South of Armonk-Bedford Rd

11/10/2017 Fri 10:05 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2017-36974506

> Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

> > Weather: CLEAR

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: TRAFFIC SIGNAL

Manner of Collision: REAR END

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:2 CAR/VAN/PICKUP Registered Weight: 3086 State of Registration: NY

> Driver's Age: 64 Sex: M Citation Issued: N Num of Occupants: 1

Direction of Travel: EAST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: SLOWED OR STOPPING

Apparent Factors: NOT APPLICABLE, UNKNOWN

Veh:1 CAR/VAN/PICKUP Registered Weight: 4104 State of Registration: NY

> Driver's Age: 57 Sex: F Citation Issued: N Num of Occupants: 1 School Bus Involved: OTHER Direction of Travel: EAST Public Property Damage: OTHER

Pre-Accd Action: SLOWED OR STOPPING

Apparent Factors: UNKNOWN, FOLLOWING TOO CLOSELY

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012071 Street: PURCHASE ST

AT INTERSECTION WITH Gateway Ln

11/14/2017 Tue 07:33 AM Extent of Injuries: C Case: 2017-36987712 Persons Killed: 0 Persons Injured: 1 Accident Class: INJURY Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: TRAFFIC SIGNAL

Manner of Collision: REAR END Weather: CLOUDY

Road Surface Condition: WET Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE Veh:1 CAR/VAN/PICKUP Registered Weight: 3460 State of Registration: NY

Num of Occupants: 1 Driver's Age: 42 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, DRIVER INATTENTION

Veh: 2 CAR/VAN/PICKUP Registered Weight: 2449 State of Registration: NY

Num of Occupants: 1 Driver's Age: 43 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012086 Street: KING ST

AT INTERSECTION WITH Ramp

11/21/2017 Tue 18:06 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: **Case: 2017-36992223**

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: NONE

Manner of Collision: OVERTAKING Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT/ GRADE Light Condition: DARK-ROAD UNLIGHTED

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 3395 State of Registration: NY

Num of Occupants: 1 Driver's Age: 22 Sex: F Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 3223 State of Registration: NY

Num of Occupants: 3 Driver's Age: 28 Sex: F Citation Issued: Y

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, PASSING OR LANE USAGE IMPROPERLY

County: Westchester Muni: North Castle(T) Ref. Marker: Street: RAMP

AT INTERSECTION WITH King St

12/1/2017 Fri 17:36 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2017-37010033

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: YIELD SIGN

Manner of Collision: REAR END Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DARK-ROAD LIGHTED

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 2813 State of Registration: NY

Num of Occupants: 1 Driver's Age: 25 Sex: M Citation Issued: N

Direction of Travel: NORTH-WEST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STARTING IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 3349 State of Registration: NY

Num of Occupants: 1 Driver's Age: 42 Sex: F Citation Issued: N

Direction of Travel: NORTH-WEST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: FOLLOWING TOO CLOSELY, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012090 Street: [Route] 120

11/19/2017 Sun 17:30 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: **2017-37014684**

Accident Class: PROPERTY DAMAGE Police Agency: Num of Veh: 1

Type Of Accident: COLLISION WITH DEER Traffic Control: NONE

Manner of Collision: OTHER Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DARK-ROAD UNLIGHTED

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 2877 State of Registration: NY

Num of Occupants: 2 Driver's Age: 16 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: SLOWED OR STOPPING

Apparent Factors: NOT ENTERED, NOT ENTERED

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012079 Street: [Route] 120

30 Meters South of COONEY HILL RD

12/27/2017 Wed 10:33 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2017-37052994

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: NONE

Manner of Collision: SIDESWIPE Weather: CLEAR

Wallier of Collision, SIDES WITE

Road Surface Condition: DRY

Road Char.: CURVE AND HILLCREST

Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 4947 State of Registration: NY

Num of Occupants: 1 Driver's Age: 42 Sex: M Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: DRIVER INATTENTION, FAILURE TO KEEP RIGHT

Veh: 2 CAR/VAN/PICKUP Registered Weight: 3504 State of Registration: NY

Num of Occupants: 1 Driver's Age: 27 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012074 Street: KING ST

12/29/2017 Fri 06:00 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: **Case: 2017-37058670**

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: NONE

Manner of Collision: REAR END Weather: CLOUDY

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DARK-ROAD UNLIGHTED

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 3473 State of Registration: NY

Num of Occupants: 1 Driver's Age: 23 Sex: M Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 5581 State of Registration: NY

Num of Occupants: 1 Driver's Age: 46 Sex: M Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, TURNING IMPROPER

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012090 Street: STATE HWY 22

AT INTERSECTION WITH Ramp

1/10/2018 Wed 08:49 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2018-37084976

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Weather: CLOUDY

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: YIELD SIGN

Manner of Collision: OVERTAKING

Road Surface Condition: DRY Road Char.: CURVE AND GRADE Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE

Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 TRUCK Registered Weight: 37780 State of Registration: NY

 Num of Occupants: 1
 Driver's Age: 29
 Sex: M
 Citation Issued: N

 Direction of Travel: SOUTH
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh: 1 CAR/VAN/PICKUP Registered Weight: 3150 State of Registration: NY

Num of Occupants: 1 Driver's Age: 62 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: FAILURE TO YIELD RIGHT OF WAY, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024044 Street: MOUNT KISCO RD

AT INTERSECTION WITH King St

1/26/2018 Fri 09:02 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2018-37108944

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: TRAFFIC SIGNAL

Manner of Collision: REAR END Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 4358 State of Registration: NY

Num of Occupants: 1 Driver's Age: 37 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STARTING IN TRAFFIC

Apparent Factors: DRIVER INATTENTION, EATING OR DRINKING

Veh: 2 CAR/VAN/PICKUP Registered Weight: 3771 State of Registration: NY

Num of Occupants: 1 Driver's Age: 45 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STARTING IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012090 Street: STATE HWY 22

AT INTERSECTION WITH Ramp

1/31/2018 Wed 08:18 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2018-37121327

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: YIELD SIGN

Manner of Collision: OVERTAKING Weather: CLEAR

Road Surface Condition: DRY Road Char.: CURVE AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 3649 State of Registration: NY

Num of Occupants: 1 Driver's Age: 65 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 4201 State of Registration: NY

Num of Occupants: 1 Driver's Age: 51 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MERGING

Apparent Factors: TRAFFIC CONTROL DEVICES DISREGARDED, FAILURE TO YIELD RIGHT OF WAY

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012090 Street: [Route] 22

AT INTERSECTION WITH [Route] 120

2/7/2018 Wed 09:47 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2018-37133572

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident; COLLISION WITH MOTOR VEHICLE Traffic Control: TRAFFIC SIGNAL

Type of Actuent. Collision with Motor vehicle

Manner of Collision: REAR END Weather: SLEET/HAIL/FREEZING RAIN

Road Surface Condition: SNOW/ICE Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 1 CAR/VAN/PICKUP Registered Weight: 3495 State of Registration: NY

Num of Occupants: 1 Driver's Age: 20 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, PAVEMENT SLIPPERY

Veh: 2 CAR/VAN/PICKUP Registered Weight: 3532 State of Registration: NY

Num of Occupants: 1 Driver's Age: 63 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024048 Street: KING ST

2/17/2018 Sat 21:04 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: **Case: 2018-37148152**

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 1

Type Of Accident: COLLISION WITH GUIDE RAIL

Traffic Control: NONE

Manner of Collision: OTHER Weather: SNOW

Road Surface Condition: SNOW/ICE Road Char.: STRAIGHT AND LEVEL Light Condition: DARK-ROAD LIGHTED

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 3177 State of Registration: NY

 Num of Occupants: 1
 Driver's Age: 27
 Sex: M
 Citation Issued: N

 Direction of Travel: SOUTH
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, PAVEMENT SLIPPERY

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012084 Street: KING ST

AT INTERSECTION WITH NEW ORCHARD RD

2/2/2018 Fri 16:30 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: **Case: 2018-37155645**

Accident Class: PROPERTY DAMAGE

Police Agency:
Num of Veh: 1

Type Of Accident: COLLISION WITH CURBING

Traffic Control: UNKNOWN

Manner of Collision: OTHER Weather: UNKNOWN

Road Surface Condition: UNKNOWN Road Char.: UNKNOWN Light Condition: UNKNOWN

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 1 CAR/VAN/PICKUP Registered Weight: State of Registration: NJ

Num of Occupants: 1 Driver's Age: 26 Sex: M Citation Issued: N

Direction of Travel: UNKNOWN Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT ENTERED, NOT ENTERED

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012067 Street: PURCHASE ST

AT INTERSECTION WITH Westchester County Airport

2/24/2018 Sat 16:05 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2018-37158536

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: TRAFFIC SIGNAL

Manner of Collision: LEFT TURN (WITH OTHER CAR)

Weather: RAIN

Road Surface Condition: WET Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: CT

Num of Occupants: 1 Driver's Age: 57 Sex: M Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MAKING U TURN

Apparent Factors: TURNING IMPROPER, NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 4113 State of Registration: NY

Num of Occupants: 2 Driver's Age: 53 Sex: M Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012090 Street: [Route] 120

2/16/2018 Fri 17:45 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: **Case: 2018-37169089**

Accident Class: PROPERTY DAMAGE Police Agency: Num of Veh: 1

Type Of Accident: COLLISION WITH DEER

Traffic Control: UNKNOWN

Manner of Collision: OTHER Weather: CLEAR

Road Surface Condition: WET Road Char.: CURVE AND GRADE Light Condition: DUSK

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 3141 State of Registration: NY

Num of Occupants: 2 Driver's Age: 38 Sex: M Citation Issued: N

Direction of Travel: NORTH-WEST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT ENTERED, NOT ENTERED

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024044 Street: MOUNT KISCO RD

AT INTERSECTION WITH King St

3/6/2018 Tue 18:14 PM Persons Killed: 0 Persons Injured: 1 Extent of Injuries: C Case: 2018-37177324

Accident Class: PROPERTY DAMAGE AND INJURY Police Agency: NORTH CASTLE TOWN PD Num of Veh: 3

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: TRAFFIC SIGNAL

Manner of Collision: OTHER Weather: CLOUDY

Road Surface Condition: DRY Road Char.: CURVE AND LEVEL Light Condition: DARK-ROAD LIGHTED

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 2921 State of Registration: NY

Num of Occupants: 2 Driver's Age: 68 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: CHANGING LANES

Apparent Factors: UNSAFE LANE CHANGE, NOT APPLICABLE

Veh: 3 CAR/VAN/PICKUP Registered Weight: 3185 State of Registration: NY

Num of Occupants: 1 Driver's Age: 48 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 2889 State of Registration: NY

Num of Occupants: 1 Driver's Age: 31 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: CHANGING LANES

Apparent Factors: REACTION TO OTHER UNINVOLVED VEHICL, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012090 Street: STATE HWY 22

AT INTERSECTION WITH Ramp

3/2/2018 Fri 11:36 AM Persons Killed: 0 Persons Injured: 2 Extent of Injuries: CC Case: 2018-37178080

Accident Class: PROPERTY DAMAGE AND INJURY Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: YIELD SIGN

Manner of Collision: OVERTAKING Weather: SLEET/HAIL/FREEZING RAIN

Road Surface Condition: SNOW/ICE Road Char.: CURVE AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 3230 State of Registration: NY

Num of Occupants: 3 Driver's Age: 61 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh: 1 CAR/VAN/PICKUP Registered Weight: 5178 State of Registration: NY

Num of Occupants: 1 Driver's Age: 43 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MERGING

Apparent Factors: DRIVER INATTENTION, FAILURE TO YIELD RIGHT OF WAY

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012076 Street: KING ST

AT INTERSECTION WITH Driveway

3/10/2018 Sat 10:02 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: **Case: 2018-37178085**

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: TRAFFIC SIGNAL

Manner of Collision: REAR END Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

Num of Occupants: 1 Driver's Age: 45 Sex: M Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh: 1 CAR/VAN/PICKUP Registered Weight: 4104 State of Registration: NY

 Num of Occupants: 1
 Driver's Age: 57
 Sex: F
 Citation Issued: N

 Direction of Travel: NORTH
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, DRIVER INATTENTION

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012090 Street: STATE HWY 22

AT INTERSECTION WITH Ramp

3/11/2018 Sun 18:03 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2018-37180128

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: YIELD SIGN

Manner of Collision: OVERTAKING Weather: CLEAR

Road Surface Condition: DRY Road Char.: CURVE AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 5130 State of Registration: NY

Num of Occupants: 3 Driver's Age: 40 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MERGING

Apparent Factors: FAILURE TO YIELD RIGHT OF WAY, DRIVER INATTENTION

Veh: 1 CAR/VAN/PICKUP Registered Weight: 4142 State of Registration: NY

Num of Occupants: 1 Driver's Age: 41 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012091 Street: KING ST

45 Meters North of Ramp

4/9/2018 Mon 08:15 AM Persons Killed: 0 Persons Injured: 2 Extent of Injuries: CC Case: 2018-37226282

Accident Class: PROPERTY DAMAGE AND INJURY Police Agency: NORTH CASTLE TOWN PD Num of Veh: 3

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: NONE

Manner of Collision: OTHER Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 TRUCK Registered Weight: 19500 State of Registration: NY

 Num of Occupants: 1
 Driver's Age: 36
 Sex: M
 Citation Issued: N

 Direction of Travel: SOUTH
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: FOLLOWING TOO CLOSELY, DRIVER INATTENTION

Veh: 2 CAR/VAN/PICKUP Registered Weight: 5248 State of Registration: NY

Num of Occupants: 1 Driver's Age: 29 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh: 3 CAR/VAN/PICKUP Registered Weight: 4201 State of Registration: NY

Num of Occupants: 1 Driver's Age: 50 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 684I87011049 Street: I 684

5/14/2018 Mon 19:55 PM Persons Killed: 0 Persons Injured: 1 Extent of Injuries: C Case: 2018-37290336

Accident Class: PROPERTY DAMAGE AND INJURY Police Agency: NYSP HAWTHORNE Num of Veh: 4

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: NONE

Manner of Collision: OTHER Weather: CLOUDY

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DUSK

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 1 CAR/VAN/PICKUP Registered Weight: 2995 State of Registration: NY

Num of Occupants: 2 Driver's Age: 47 Sex: F Citation Issued: Y

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: CHANGING LANES

Apparent Factors: PASSING OR LANE USAGE IMPROPERLY, UNSAFE LANE CHANGE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 4719 State of Registration: NY

Num of Occupants: 1 Driver's Age: 42 Sex: M Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: OVERTAKING

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh: 4 CAR/VAN/PICKUP Registered Weight: 3444 State of Registration: NY

Num of Occupants: 1 Driver's Age: 60 Sex: M Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh: 3 CAR/VAN/PICKUP Registered Weight: State of Registration: CT

Num of Occupants: 1 Driver's Age: 60 Sex: M Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012087 Street: [Route] 120

AT INTERSECTION WITH [Route] 22

5/24/2018 Thu 18:38 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2018-37299168

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: YIELD SIGN

Manner of Collision: REAR END Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 3432 State of Registration: NY

Num of Occupants: 5 Driver's Age: 17 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: SLOWED OR STOPPING

Apparent Factors: DRIVER INEXPERIENCE, FOLLOWING TOO CLOSELY

Veh:1 CAR/VAN/PICKUP Registered Weight: 2573 State of Registration: NY

Num of Occupants: 2 Driver's Age: 68 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024050 Street: ARMONK-BEDFORD RD

AT INTERSECTION WITH King St

5/11/2018 Fri 17:01 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: **Case: 2018-37307750**

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Weather: CLEAR

Traffic Control: NONE

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: TRAFFIC SIGNAL

Manner of Collision: REAR END

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE

Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 3944 State of Registration: NY

Num of Occupants: 1 Driver's Age: 56 Sex: F Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 5232 State of Registration: NY

Num of Occupants: 1 Driver's Age: 53 Sex: M Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STARTING IN TRAFFIC

Apparent Factors: NOT APPLICABLE, DRIVER INATTENTION

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012090 Street: [Route] 120

5/31/2018 Thu 18:04 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: **Case: 2018-37309370**

Accident Class: NON-REPORTABLE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Manner of Collision: REAR END Weather: RAIN

Road Surface Condition: WET Road Char.: STRAIGHT/ GRADE Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

> Num of Occupants: 1 Driver's Age: 32 Sex: F Citation Issued: N

School Bus Involved: OTHER Direction of Travel: NORTH-WEST Public Property Damage: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: FOLLOWING TOO CLOSELY, DRIVER INATTENTION

Registered Weight: Veh:2 CAR/VAN/PICKUP State of Registration: NY

> Sex: M Num of Occupants: 1 Driver's Age: 54 Citation Issued: N

Direction of Travel: NORTH-WEST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 684I87011049 Street: I 684

6/19/2018 Tue 16:48 PM Persons Killed: 0 Extent of Injuries: CC Case: 2018-37339124 Persons Injured: 2

Accident Class: INJURY Police Agency: NYSP SOMERS Num of Veh: 2 Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: NONE

Manner of Collision: REAR END Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Registered Weight: 3979 Veh:2 CAR/VAN/PICKUP State of Registration: NY

> Num of Occupants: 1 Driver's Age: 47 Sex: F Citation Issued: N Public Property Damage: OTHER School Bus Involved: OTHER Direction of Travel: NORTH

Pre-Accd Action: SLOWED OR STOPPING

Apparent Factors: FOLLOWING TOO CLOSELY, NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 3584 State of Registration: NY

> Driver's Age: 68 Citation Issued: N Num of Occupants: 1 Sex: M

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: SLOWED OR STOPPING

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024049 Street: [Route] 22

23 Meters South of [Route] 120

Wed 17:02 PM 6/13/2018 Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2018-37363264

> Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: TRAFFIC SIGNAL

Manner of Collision: REAR END Weather: CLEAR

Road Surface Condition: WET Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 4422 State of Registration: NY

> Num of Occupants: 3 Driver's Age: 43 Sex: F Citation Issued: N Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: SLOWED OR STOPPING

Apparent Factors: NOT APPLICABLE, REACTION TO OTHER UNINVOLVED VEHICL

Veh: 2 CAR/VAN/PICKUP Registered Weight: 4238 State of Registration: NY

Num of Occupants: 2 Driver's Age: 25 Sex: M Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: SLOWED OR STOPPING

Apparent Factors: FOLLOWING TOO CLOSELY, PAVEMENT SLIPPERY

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012090 Street: KING ST

AT INTERSECTION WITH Ramp

6/26/2018 Tue 08:34 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2018-37368353

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: YIELD SIGN

Manner of Collision: REAR END Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 2693 State of Registration: NY

 Num of Occupants: 1
 Driver's Age: 22
 Sex: M
 Citation Issued: N

 Direction of Travel: SOUTH
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: FAILURE TO YIELD RIGHT OF WAY, DRIVER INATTENTION

Veh: 2 CAR/VAN/PICKUP Registered Weight: 3817 State of Registration: NY

Num of Occupants: 1 Driver's Age: 57 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: SLOWED OR STOPPING

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012067 Street: AIRPORT RD

AT INTERSECTION WITH [Route] 120

7/11/2018 Wed 11:15 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2018-37376944

Accident Class: NON-REPORTABLE Police Agency: PD WESTCHESTER COUNTY DPS Num of Veh: 2

Traffic Control: TRAFFIC SIGNAL

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Manner of Collision: REAR END Weather: CLOUDY

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

Num of Occupants: 1 Driver's Age: 55 Sex: M Citation Issued: Y

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: DRIVER INATTENTION, CELL PHONE (HAND HELD)

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

Num of Occupants: 1 Driver's Age: 54 Sex: M Citation Issued: N

Weather: RAIN

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024045 Street: MOUNT KISCO RD

AT INTERSECTION WITH King St

7/17/2018 Tue 17:08 PM Persons Killed: 0 Persons Injured: 1 Extent of Injuries: C Case: 2018-37384277

Accident Class: PROPERTY DAMAGE AND INJURY Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: TRAFFIC SIGNAL

Manner of Collision: RIGHT ANGLE

Road Surface Condition: WET Road Char.: CURVE AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 4528 State of Registration: NY

Num of Occupants: 1 Driver's Age: 20 Sex: F Citation Issued: N

Direction of Travel: WEST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MAKING LEFT TURN

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 2550 State of Registration: NY

Num of Occupants: 1 Driver's Age: 60 Sex: M Citation Issued: Y

Direction of Travel: NORTH-EAST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: DRIVER INATTENTION, TRAFFIC CONTROL DEVICES DISREGARDED

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012076 Street: KING ST

AT INTERSECTION WITH Ramp

8/31/2018 Fri 08:26 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: **Case: 2018-37458865**

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: TRAFFIC SIGNAL

Manner of Collision: REAR END Weather: CLOUDY

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE

Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: CT

 Num of Occupants: 1
 Driver's Age: 52
 Sex: F
 Citation Issued: N

 Direction of Travel: NORTH
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 5513 State of Registration: NY

Num of Occupants: 1 Driver's Age: 30 Sex: M Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: DRIVER INATTENTION, FOLLOWING TOO CLOSELY

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012091 Street: KING ST

30 Meters South of Whippoorwill Rd

9/4/2018 Tue 08:51 AM Persons Killed: 0 Persons Injured: 1 Extent of Injuries: C Case: 2018-37470884

Accident Class: PROPERTY DAMAGE AND INJURY Police Agency: NORTH CASTLE TOWN PD Num of Veh: 3

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: NONE

Manner of Collision: OTHER Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 4513 State of Registration: NY

Num of Occupants: 1 Driver's Age: 18 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD
Apparent Factors: UNKNOWN, FELL ASLEEP

Veh: 2 CAR/VAN/PICKUP Registered Weight: 3547 State of Registration: NY

Num of Occupants: 1 Driver's Age: 45 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh: 3 CAR/VAN/PICKUP Registered Weight: 3946 State of Registration: NY

Num of Occupants: 1 Driver's Age: 46 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012071 Street: PURCHASE ST

AT INTERSECTION WITH Gateway Ln

9/26/2018 Wed 14:33 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2018-37500747

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: TRAFFIC SIGNAL

Manner of Collision: REAR END Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

Num of Occupants: 2 Driver's Age: 62 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 3468 State of Registration: NY

Num of Occupants: 1 Driver's Age: 24 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: UNKNOWN, FOLLOWING TOO CLOSELY

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012091 Street: KING ST

53 Meters South of Whippoorwill Rd

10/3/2018 Wed 07:16 AM Persons Killed: 0 Persons Injured: 1 Extent of Injuries: C Case: 2018-37514783

Accident Class: PROPERTY DAMAGE AND INJURY Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: NONE

Manner of Collision: REAR END Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 3135 State of Registration: NY

Num of Occupants: 1 Driver's Age: 35 Sex: F Citation Issued: Y
Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Direction of Travel: SOUTH Public Property Damage: OTHER Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: FOLLOWING TOO CLOSELY, NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 4124 State of Registration: NY

Num of Occupants: 3 Driver's Age: 18 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: SLOWED OR STOPPING

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012090 Street: [Route] 120

AT INTERSECTION WITH [Route] 22

10/16/2018 Tue 00:00 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: **Case: 2018-37564261**

Accident Class: PROPERTY DAMAGE Police Agency: Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: YIELD SIGN

Manner of Collision: REAR END Weather: CLEAR

Road Surface Condition: DRY Road Char.: CURVE AND GRADE Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 1 CAR/VAN/PICKUP Registered Weight: 3109 State of Registration: NY

 Num of Occupants: 1
 Driver's Age: 64
 Sex: F
 Citation Issued: N

 Direction of Travel: NORTH
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Pre-Accd Action: SLOWED OR STOPPING

Apparent Factors: NOT ENTERED, NOT ENTERED

Veh: 2 CAR/VAN/PICKUP Registered Weight: 3344 State of Registration: NY

Num of Occupants: 1 Driver's Age: 61 Sex: M Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: SLOWED OR STOPPING

Apparent Factors: NOT ENTERED, NOT ENTERED

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012090 Street: KING ST

11/11/2018 Sun 15:48 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: **2018-37576677**

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Manner of Collision: LEFT TURN (AGAINST OTHER CAR)

Road Surface Condition: DRY

Road Char.: CURVE AND LEVEL

Traffic Control: NONE

Weather: CLEAR

Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: CT

Num of Occupants: 1 Driver's Age: 66 Sex: F Citation Issued: Y

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MAKING U TURN

Apparent Factors: PASSING OR LANE USAGE IMPROPERLY, TRAFFIC CONTROL DEVICES DISREGARDED

Veh: 2 CAR/VAN/PICKUP Registered Weight: 3528 State of Registration: NY

Num of Occupants: 1 Driver's Age: 48 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120A87015001 Street: GATEWAY LN

AT INTERSECTION WITH Purchase St

11/8/2018 Thu 15:52 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2018-37581019

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: TRAFFIC SIGNAL

Manner of Collision: REAR END Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE

Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 4237 State of Registration: NY

Num of Occupants: 2 Driver's Age: 26 Sex: F Citation Issued: N

Direction of Travel: WEST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 3682 State of Registration: NY

Num of Occupants: 1 Driver's Age: 16 Sex: F Citation Issued: N

Direction of Travel: WEST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: DRIVER INATTENTION, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012077 Street: KING ST

106 Meters North of Ramp

11/19/2018 Mon 08:14 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: **Case: 2018-37593945**

Accident Class; PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh; 3

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: TRAFFIC SIGNAL

Manner of Collision: OTHER Weather: CLOUDY

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 2943 State of Registration: NY

Num of Occupants: 1 Driver's Age: 22 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, DRIVER INATTENTION

Veh: 2 CAR/VAN/PICKUP Registered Weight: 2950 State of Registration: NY

Num of Occupants: 1 Driver's Age: 45 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh: 3 CAR/VAN/PICKUP Registered Weight: 3305 State of Registration: NY

Num of Occupants: 1 Driver's Age: 22 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024049 Street: STATE HWY 22

AT INTERSECTION WITH King St

11/26/2018 Mon 07:37 AM Persons Killed: 0 Persons Injured: 2 Extent of Injuries: CC **Case: 2018-37606877**

Accident Class: PROPERTY DAMAGE AND INJURY Police Agency: NORTH CASTLE TOWN PD Num of Veh: 3

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: TRAFFIC SIGNAL

Manner of Collision: OTHER Weather: CLOUDY

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 3897 State of Registration: NY

Num of Occupants: 1 Driver's Age: 24 Sex: M Citation Issued: Y

Direction of Travel: NORTH-WEST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MAKING LEFT TURN

Apparent Factors: TRAFFIC CONTROL DEVICES DISREGARDED, NOT APPLICABLE

Veh: 3 CAR/VAN/PICKUP Registered Weight: 3404 State of Registration: NY

Num of Occupants: 1 Driver's Age: 62 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 2972 State of Registration: NY

Num of Occupants: 1 Driver's Age: 47 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012067 Street: PURCHASE ST

AT INTERSECTION WITH Westchester County Airport

11/14/2018 Wed 18:07 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2018-37609522

> Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: TRAFFIC SIGNAL

Manner of Collision: OVERTAKING Weather: CLOUDY

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DARK-ROAD LIGHTED

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Registered Weight: 3896 Veh:1 CAR/VAN/PICKUP State of Registration: NY

> Driver's Age: 18 Num of Occupants: 1 Sex: M Citation Issued: N

Direction of Travel: WEST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MAKING RIGHT TURN Apparent Factors: UNKNOWN, UNKNOWN

Veh:2 CAR/VAN/PICKUP Registered Weight: State of Registration: KY

> Num of Occupants: 1 Driver's Age: 53 Sex: F Citation Issued: N

Direction of Travel: WEST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MAKING LEFT TURN Apparent Factors: UNKNOWN, UNKNOWN

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012090 Street: STATE HWY 120

32 Meters North of Ramp

12/11/2018 Tue 07:59 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2018-37638264

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: YIELD SIGN

Manner of Collision: REAR END Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:2 BUS Registered Weight: State of Registration: NY

> Num of Occupants: 2 Driver's Age: 34 Sex: F Citation Issued: N Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: FOLLOWING TOO CLOSELY, NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 4092 State of Registration: NY

> Num of Occupants: 3 Driver's Age: 34 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: SLOWED OR STOPPING

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Traffic Control: NONE

County: Westchester Muni: North Castle(T) Ref. Marker: 120 87012072 Street: KING ST

AT INTERSECTION WITH [Route] 120

11/28/2018 Wed 21:50 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2018-37645169
Accident Class: PROPERTY DAMAGE Police Agency: Num of Veh: 1

Accident Class: PROPERTY DAMAGE
Type Of Accident: COLLISION WITH DEER

Manner of Collision: OTHER Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DARK-ROAD UNLIGHTED

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 3309 State of Registration: NY

Num of Occupants: 1 Driver's Age: 68 Sex: F Citation Issued: N

Direction of Travel: EAST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT ENTERED, NOT ENTERED

County: Westchester Muni: North Castle(T) Ref. Marker: 120A87015001 Street: [Route] 120

AT INTERSECTION WITH GATEWAY LN

12/28/2018 Fri 08:39 AM Persons Killed: 0 Persons Injured: 1 Extent of Injuries: C **Case: 2018-37660803**

Accident Class: PROPERTY DAMAGE AND INJURY Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Manner of Collision: RIGHT ANGLE

Traffic Control: TRAFFIC SIGNAL

Weather: RAIN

Manner of Collision: RIGHT ANGLE

Road Surface Condition: WET

Road Char.: STRAIGHT AND LEVEL

Weather: RAIN

Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 5550 State of Registration: NY

Num of Occupants: 1 Driver's Age: 72 Sex: M Citation Issued: N

Direction of Travel: EAST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MAKING LEFT TURN

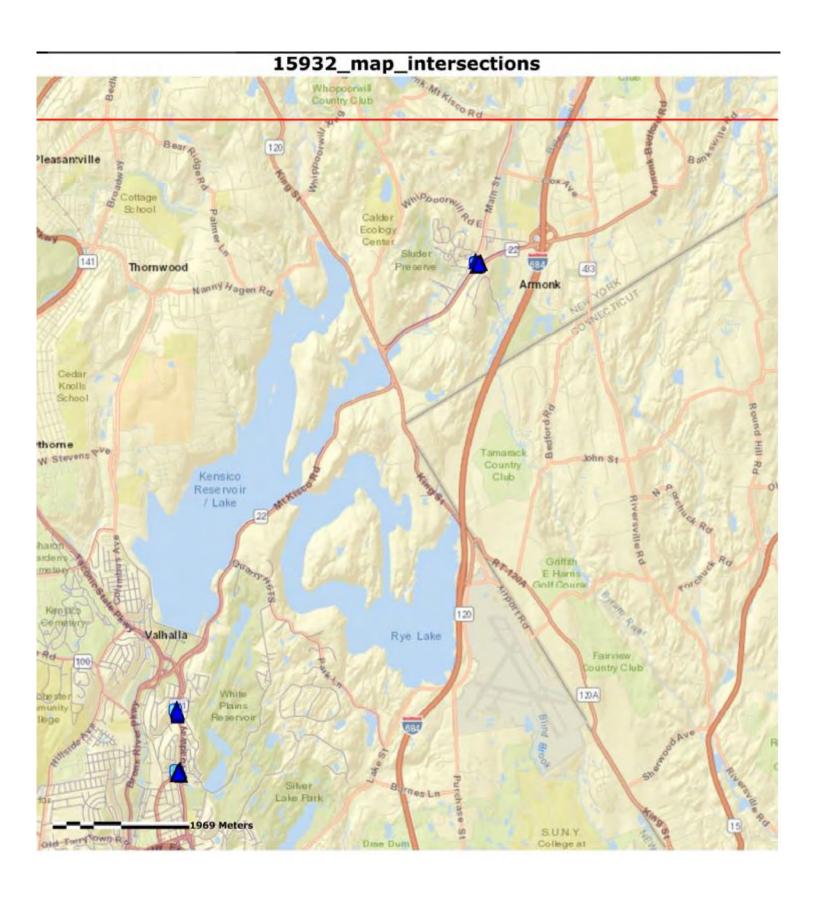
Apparent Factors: NOT APPLICABLE, FAILURE TO YIELD RIGHT OF WAY

Veh: 2 CAR/VAN/PICKUP Registered Weight: 3076 State of Registration: NY

Num of Occupants: 1 Driver's Age: 56 Sex: F Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD


Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

NYSDOT ACCIDENT REPORTS

NYS ROUTE 22 & NYS ROUTE 128 / NORTH CASTLE DRIVE

NYS ROUTE 22 / NORTH BROADWAY / SIR JOHN'S PLAZA
NYS ROUTE 22 / CENTRAL WESTCHESTER EXPRESSWAY / RESERVOIR ROAD
/ CHURCH STREET

NYSDOT QRA ACCIDENT SEVERITY SUMMARY

			Print Date	e 4/9/2019 Print Tir	ne 1:34:31PM
Query Number/Name	Query Type		Query Sub Type	Accident Date Range	
45325 15932 intersections	SpotQuery		1/1/20	015 12:00:00AM To 12/31/	/2018 12:00:00AM
Case Year	Injury	Fatality	Property Damage	Non-Reportables	Totals
2015	5	0	6	2	13
Case Year	Injury	Fatality	Property Damage	Non-Reportables	Totals
2016	5	0	11	3	19
Case Year	Injury	Fatality	Property Damage	Non-Reportables	Totals
2017	5	0	23	6	34
Case Year	Injury	Fatality	Property Damage	Non-Reportables	Totals
2018	5	0	11	4	20
Grand Total:	20	0	51	15	

Accident Location Information System(ALIS)

Date: 4/9/2019 1:30:07 PM

Accident Verbal Description

15932 VDR intersections

Date in this report covers the period - 1/1/2015-12/31/2018

Complete Accident data from NYSDMV is only available thru 12/31/2018 12:00:00 AM

County: Westchester Muni: North Castle(T) Ref. Marker: Street: CENTRAL WESTCHESTER PKWY

AT INTERSECTION WITH N Broadway

1/28/2015 Wed 09:14 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2015-35579609

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: TRAFFIC SIGNAL

Manner of Collision: REAR END Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT/ GRADE Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 3875 State of Registration: NY

Num of Occupants: 1 Driver's Age: 64 Sex: M Citation Issued: N

Direction of Travel: NORTH-EAST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh: 1 CAR/VAN/PICKUP Registered Weight: 3451 State of Registration: NY

Num of Occupants: 1 Driver's Age: 45 Sex: F Citation Issued: N

Direction of Travel: NORTH-EAST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, DRIVER INATTENTION

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024001 Street: CENTRAL WESTCHESTER PKWY

4/7/2015 Tue 16:35 PM Persons Killed: 0 Persons Injured: 1 Extent of Injuries: C Case: 2015-35679984

Accident Class: PROPERTY DAMAGE AND INJURY Police Agency: WHITE PLAINS CITY PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: TRAFFIC SIGNAL

Manner of Collision: REAR END Weather: RAIN

Road Surface Condition: WET Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 4613 State of Registration: NY

Num of Occupants: 1 Driver's Age: 48 Sex: F Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: FOLLOWING TOO CLOSELY, NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 5824 State of Registration: NY

Num of Occupants: 1 Driver's Age: 54 Sex: F Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024002 Street: N BROADWAY

AT INTERSECTION WITH CENTRAL WESTCHESTER PKWY

4/9/2015 Thu 07:15 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2015-35682467

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: TRAFFIC SIGNAL

Manner of Collision: RIGHT ANGLE Weather: CLOUDY

Road Surface Condition: WET Road Char.: STRAIGHT/ GRADE Light Condition: DAYLIGHT

Action of Ped/Bicycle: NOT APPLICABLE Loc. of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 2668 State of Registration: NY

> Driver's Age: 28 Sex: F Citation Issued: N Num of Occupants: 1 Public Property Damage: OTHER School Bus Involved: OTHER Direction of Travel: EAST

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: TRAFFIC CONTROL DEVICES DISREGARDED, NOT APPLICABLE

Veh:2 CAR/VAN/PICKUP Registered Weight: 3455 State of Registration: NY

> Num of Occupants: 3 Driver's Age: 36 Sex: F Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024007 Street: N BROADWAY

AT INTERSECTION WITH Mount Kisco Rd

4/21/2015 Tue 10:10 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2015-35701371

> Police Agency: NORTH CASTLE TOWN PD Accident Class: PROPERTY DAMAGE Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: TRAFFIC SIGNAL

Manner of Collision: RIGHT ANGLE

Weather: CLOUDY Road Surface Condition: WET Road Char.: STRAIGHT/ GRADE Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 BUS Registered Weight: 33 State of Registration: NY

> Num of Occupants: 1 Driver's Age: 56 Sex: M Citation Issued: N Direction of Travel: EAST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh:2 CAR/VAN/PICKUP Registered Weight: 3816 State of Registration: NY

> Num of Occupants: 2 Driver's Age: 35 Sex: M Citation Issued: N Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: TRAFFIC CONTROL DEVICES DISREGARDED, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024061 Street: BEDFORD RD

AT INTERSECTION WITH Ramp

5/9/2015 Sat 14:18 PM Persons Killed: 0 Persons Injured: 1 Case: 2015-35716086 Extent of Injuries: B

> Accident Class: PROPERTY DAMAGE AND INJURY Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: STOP SIGN Manner of Collision: LEFT TURN (WITH OTHER CAR) Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:2 CAR/VAN/PICKUP Registered Weight: 4743 State of Registration: NY

> Num of Occupants: 1 Driver's Age: 24 Sex: F Citation Issued: N

Public Property Damage: OTHER School Bus Involved: OTHER Direction of Travel: SOUTH

Pre-Accd Action: MAKING LEFT TURN

Apparent Factors: NOT APPLICABLE, DRIVER INATTENTION

Veh:1 CAR/VAN/PICKUP Registered Weight: 4889 State of Registration: NY

> Num of Occupants: 3 Driver's Age: 46 Sex: F Citation Issued: N

Public Property Damage: OTHER School Bus Involved: OTHER Direction of Travel: WEST

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024002 Street: N BROADWAY

31 Meters North of Central Westchester Pkwy

7/30/2015 Thu 17:58 PM Persons Killed: 0 Persons Injured: 1 Extent of Injuries: B Case: 2015-35822942

> Accident Class: PROPERTY DAMAGE AND INJURY Police Agency: NORTH CASTLE TOWN PD Num of Veh: 1

Type Of Accident: OVERTURNED Traffic Control: NONE Manner of Collision: OTHER Weather: CLOUDY

Road Surface Condition: WET Road Char.: STRAIGHT/ GRADE Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 4201 State of Registration: NY

> Num of Occupants: 1 Driver's Age: 17 Sex: F Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: TIRE FAILURE/INADEQUATE, UNKNOWN

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024002 Street: N BROADWAY

AT INTERSECTION WITH Central Westchester Pkwv

9/21/2015 Mon 19:09 PM Persons Killed: 0 Persons Injured: 0 Case: 2015-35895580 Extent of Injuries:

> Accident Class: NON-REPORTABLE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: TRAFFIC SIGNAL Manner of Collision: OVERTAKING

Weather: CLEAR Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DARK-ROAD LIGHTED

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

CAR/VAN/PICKUP State of Registration: NY Veh:2 Registered Weight:

Num of Occupants: 1 Driver's Age: 28 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER Pre-Accd Action: CHANGING LANES

Apparent Factors: FAILURE TO YIELD RIGHT OF WAY, NOT APPLICABLE

Veh: 1 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

Num of Occupants: 1 Driver's Age: 39 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024061 Street: ARMONK-BEDFORD RD

AT INTERSECTION WITH Main St

9/26/2015 Sat 10:55 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: **Case: 2015-35901388**

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Weather: CLEAR

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: TRAFFIC SIGNAL

Manner of Collision: REAR END

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: NJ

Num of Occupants: 1 Driver's Age: 55 Sex: F Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 3155 State of Registration: NY

Num of Occupants: 1 Driver's Age: 41 Sex: M Citation Issued: N
Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STARTING IN TRAFFIC

Apparent Factors: DRIVER INATTENTION, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024002 Street: N BROADWAY

AT INTERSECTION WITH CENTRAL WESTCHESTER PKWY

10/19/2015 Mon 09:08 AM Persons Killed: 0 Persons Injured: 1 Extent of Injuries: C **Case: 2015-35931160**

Accident Class: PROPERTY DAMAGE AND INJURY Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: TRAFFIC SIGNAL

Manner of Collision: OTHER Weather: CLOUDY

Road Surface Condition: DRY Road Char.: CURVE AND GRADE Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 TRUCK Registered Weight: State of Registration: CT

Num of Occupants: 1 Driver's Age: 38 Sex: M Citation Issued: N

Direction of Travel: SOUTH-WEST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: CHANGING LANES

Apparent Factors: UNSAFE LANE CHANGE, NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

Num of Occupants: 1 Driver's Age: 34 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024007 Street: BROADWAY

AT INTERSECTION WITH [Route] 22

10/22/2015 Thu 20:17 PM Persons Killed: 0 Persons Injured: 2 Extent of Injuries: CC Case: 2015-35937844

Accident Class: PROPERTY DAMAGE AND INJURY Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Traffic Control: TRAFFIC SIGNAL

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Manner of Collision: HEAD ON Weather: CLOUDY

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DARK-ROAD LIGHTED

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 2881 State of Registration: NY

 Num of Occupants: 1
 Driver's Age: 20
 Sex: M
 Citation Issued: N

 Direction of Travel: SOUTH
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Pre-Accd Action: STARTING IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 3027 State of Registration: NY

Num of Occupants: 1 Driver's Age: 33 Sex: F Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: FAILURE TO KEEP RIGHT, EATING OR DRINKING

County: Westchester Muni: North Castle(T) Ref. Marker: 128 87011000 Street: [Route] 22

AT INTERSECTION WITH MAIN ST

10/29/2015 Thu 19:00 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2015-35967016

Accident Class: PROPERTY DAMAGE

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Police Agency: Num of Veh: 2

Traffic Control: UNKNOWN

Manner of Collision: UNKNOWN Weather: UNKNOWN

Road Surface Condition: UNKNOWN Road Char.: UNKNOWN Light Condition: UNKNOWN

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 3035 State of Registration: NY

Num of Occupants: 1 Driver's Age: 23 Sex: M Citation Issued: N

Direction of Travel: UNKNOWN Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: UNKNOWN

Apparent Factors: NOT ENTERED, NOT ENTERED

Veh: 2 OTHER Registered Weight: State of Registration: -3

Num of Occupants: 0 Driver's Age: Sex: Citation Issued:

Direction of Travel: UNKNOWN Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: UNKNOWN

Apparent Factors: NOT ENTERED, NOT ENTERED

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024002 Street: N BROADWAY

AT INTERSECTION WITH Central Westchester Pkwy

12/15/2015 Tue 12:36 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: **Case: 2015-36010645**

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: TRAFFIC SIGNAL

Manner of Collision: OVERTAKING
Road Surface Condition: DRY
Road Char.: CURVE AND LEVEL
Weather: CLEAR
Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE

Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 BUS Registered Weight: State of Registration: NY

Num of Occupants: 1 Driver's Age: 47 Sex: F Citation Issued: N
Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 3888 State of Registration: NY

Num of Occupants: 1 Driver's Age: 49 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, REACTION TO OTHER UNINVOLVED VEHICL

County: Westchester Muni: North Castle(T) Ref. Marker: Street: CENTRAL WESTCHESTER PKWY

1/17/2016 Sun 21:00 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2016-36055300

Accident Class: PROPERTY DAMAGE Police Agency: WHITE PLAINS CITY PD Num of Veh: 1

Type Of Accident: COLLISION WITH BRIDGE STRUCTURE

Traffic Control: NONE

Manner of Collision: OTHER Weather: SNOW

Road Surface Condition: SNOW/ICE Road Char.: CURVE AND GRADE Light Condition: DARK-ROAD UNLIGHTED

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 1 CAR/VAN/PICKUP Registered Weight: State of Registration: CT

Num of Occupants: 2 Driver's Age: 18 Sex: M Citation Issued: N

Direction of Travel: SOUTH-EAST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MAKING RIGHT TURN

Apparent Factors: PAVEMENT SLIPPERY, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024007 Street: N BROADWAY

25 Meters South of Mount Kisco Rd

1/22/2016 Fri 16:35 PM Persons Killed: 0 Persons Injured: 1 Extent of Injuries: C Case: 2016-36071279

Accident Class: PROPERTY DAMAGE AND INJURY Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Manner of Collision: LEFT TURN (AGAINST OTHER CAR)

Road Surface Condition: DRY

Road Char.: STRAIGHT AND LEVEL

Traffic Control: NONE

Weather: CLEAR

Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE

Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 3232 State of Registration: NY

Num of Occupants: 1 Driver's Age: 63 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 2550 State of Registration: NY

Num of Occupants: 1 Driver's Age: 49 Sex: M Citation Issued: N

Direction of Travel: EAST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MAKING LEFT TURN

Apparent Factors: NOT APPLICABLE, DRIVER INATTENTION

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024002 Street: N BROADWAY

AT INTERSECTION WITH RESERVOIR RD

2/17/2016 Wed 12:15 PM Persons Killed: 0 Persons Injured: 1 Extent of Injuries: C Case: 2016-36100834

Accident Class: PROPERTY DAMAGE AND INJURY Police Agency: NORTH CASTLE TOWN PD Num of Veh: 1

Weather: CLOUDY

Type Of Accident: COLL. W/LIGHT SUPPORT/UTILITY POLE

Traffic Control: NONE

Manner of Collision: OTHER

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 3209 State of Registration: NY

Num of Occupants: 1 Driver's Age: 72 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, DRIVER INATTENTION

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024061 Street: ARMONK-BEDFORD RD

12 Meters West of Main St

2/24/2016 Wed 08:31 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2016-36129915

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: NONE

Manner of Collision: OVERTAKING Weather: RAIN

Road Surface Condition: WET Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 3760 State of Registration: NY

Num of Occupants: 1 Driver's Age: 28 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MERGING

Apparent Factors: FAILURE TO YIELD RIGHT OF WAY, NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: State of Registration: -3

Num of Occupants: 0 Driver's Age: Sex: Citation Issued:

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: UNKNOWN

Apparent Factors: UNKNOWN, UNKNOWN

County: Westchester Muni: North Castle(T) Ref. Marker: Street:

4/1/2016 Fri 16:01 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2016-36156865

Accident Class: NON-REPORTABLE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: NONE

Manner of Collision: UNKNOWN Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 OTHER Registered Weight: State of Registration:

Num of Occupants: 1 Driver's Age: Sex: U Citation Issued: N

Direction of Travel: UNKNOWN Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: UNKNOWN

Apparent Factors: UNKNOWN, UNKNOWN

Veh: 2 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

Num of Occupants: 2 Driver's Age: Sex: Citation Issued:

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: PARKED

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024002 Street: N BROADWAY

AT INTERSECTION WITH RESERVOIR RD

3/30/2016 Wed 12:53 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: **2016-36159811**

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: TRAFFIC SIGNAL

Manner of Collision: OVERTAKING Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT/ GRADE Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 3188 State of Registration: NY

Num of Occupants: 2 Driver's Age: 27 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STARTING IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 4108 State of Registration: NY

Num of Occupants: 1 Driver's Age: 30 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: CHANGING LANES

Apparent Factors: FAILURE TO YIELD RIGHT OF WAY, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 128 87011000 Street: MAIN ST

AT INTERSECTION WITH [Route] 22

4/8/2016 Fri 14:58 PM Persons Killed: 0 Persons Injured: 1 Extent of Injuries: C Case: 2016-36163870

Accident Class: PROPERTY DAMAGE AND INJURY Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: TRAFFIC SIGNAL Manner of Collision: RIGHT TURN (WITH OTHER CAR) Weather: CLOUDY

Road Surface Condition: DRY Road Char.: CURVE AND GRADE Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:2 CAR/VAN/PICKUP Registered Weight: 4719 State of Registration: NY

> Num of Occupants: 1 Driver's Age: 81 Sex: M Citation Issued: N

Direction of Travel: NORTH-WEST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MAKING RIGHT TURN

Apparent Factors: TURNING IMPROPER, NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: CT

> Num of Occupants: 1 Driver's Age: 56 Sex: F Citation Issued: N

Direction of Travel: SOUTH-EAST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024007 Street: N BROADWAY

AT INTERSECTION WITH [Route] 22

5/4/2016 Wed 17:11 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2016-36209322

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Weather: RAIN

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: TRAFFIC SIGNAL

Manner of Collision: REAR END

Road Char.: STRAIGHT AND LEVEL Road Surface Condition: WET Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:2 CAR/VAN/PICKUP Registered Weight: 3327 State of Registration: NY

Driver's Age: 68 Sex: M Citation Issued: N Num of Occupants: 1

School Bus Involved: OTHER Direction of Travel: NORTH Public Property Damage: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: PAVEMENT SLIPPERY, NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 3392 State of Registration: NY

> Driver's Age: 30 Sex: F Citation Issued: N Num of Occupants: 1

School Bus Involved: OTHER Direction of Travel: NORTH Public Property Damage: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024008 Street: MOUNT KISCO RD

AT INTERSECTION WITH [Route] 22

5/18/2016 Wed 04:00 AM Persons Killed: 0 Extent of Injuries: Case: 2016-36250473 Persons Injured: 0

Accident Class: PROPERTY DAMAGE Police Agency: Num of Veh: 1

Type Of Accident: COLLISION WITH DEER

Traffic Control: NONE Manner of Collision: OTHER

Weather: CLEAR

Road Surface Condition: DRY Road Char.: CURVE AND GRADE Light Condition: DARK-ROAD UNLIGHTED

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE Veh:1 CAR/VAN/PICKUP Registered Weight: 3390 State of Registration: NY

Num of Occupants: 1 Driver's Age: 36 Sex: M Citation Issued: N

Direction of Travel: UNKNOWN Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: AVOIDING OBJECT IN ROADWAY Apparent Factors: NOT ENTERED, NOT ENTERED

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024061 Street: BEDFORD RD

AT INTERSECTION WITH Main St

6/28/2016 Tue 09:10 AM Persons Killed: 0 Persons Injured: 1 Extent of Injuries: C Case: 2016-36274685

Accident Class: PROPERTY DAMAGE AND INJURY Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: TRAFFIC SIGNAL

Manner of Collision: REAR END Weather: CLOUDY

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 1 CAR/VAN/PICKUP Registered Weight: 3772 State of Registration: NY

 Num of Occupants: 1
 Driver's Age: 46
 Sex: M
 Citation Issued: N

 Direction of Travel: NORTH
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight; 3616 State of Registration: NY

Num of Occupants: 1 Driver's Age: 58 Sex: F Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STARTING IN TRAFFIC

Apparent Factors: NOT APPLICABLE, DRIVER INATTENTION

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024002 Street: N BROADWAY

AT INTERSECTION WITH RESERVOIR RD

6/22/2016 Wed 10:00 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2016-36307000
Accident Class: PROPERTY DAMAGE Police Agency: Num of Veh: 1

Accident Class: PROPERTY DAMAGE
Police Agency: Num of Veh: 1
Type Of Accident: COLLISION WITH OTHER FIXED OBJECT
Traffic Control: UNKNOWN

Manner of Collision: OTHER Weather: UNKNOWN

Road Surface Condition: UNKNOWN Road Char.: UNKNOWN Light Condition: UNKNOWN

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 3640 State of Registration: NY

Num of Occupants: 1 Driver's Age: 22 Sex: F Citation Issued: N

Direction of Travel: UNKNOWN Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: UNKNOWN

Apparent Factors: NOT ENTERED, NOT ENTERED

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024002 Street: N BROADWAY

AT INTERSECTION WITH Central Westchester Pkwy

8/24/2016 Wed 17:18 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: **Case: 2016-36356144**

Accident Class: NON-REPORTABLE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Manner of Collision: RIGHT ANGLE

Traffic Control: TRAFFIC SIGNAL Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT/ GRADE Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:2 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

> Num of Occupants: 1 Driver's Age: 25 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MAKING LEFT TURN

Apparent Factors: GLARE, FAILURE TO YIELD RIGHT OF WAY

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

> Driver's Age: 42 Sex: M Citation Issued: N Num of Occupants: 1

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: Street: N BROADWAY

25 Meters North of Mount Kisco Rd

Case: 2016-36397068 9/21/2016 Wed 07:56 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries:

> Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 3

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: NONE Weather: CLEAR

Manner of Collision: OTHER

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Action of Ped/Bicycle: NOT APPLICABLE Loc. of Ped/Bicycle: NOT APPLICABLE

Veh:2 CAR/VAN/PICKUP Registered Weight: State of Registration: MD

> Num of Occupants: 1 Driver's Age: 19 Sex: M Citation Issued: N

School Bus Involved: OTHER Direction of Travel: NORTH Public Property Damage: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh:3 CAR/VAN/PICKUP Registered Weight: 2548 State of Registration: NY

> Num of Occupants: 1 Driver's Age: 56 Sex: M Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 2332 State of Registration: NY

> Num of Occupants: 1 Driver's Age: 79 Sex: F Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: FOLLOWING TOO CLOSELY, BRAKES DEFECTIVE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024002 Street: N BROADWAY

AT INTERSECTION WITH RESERVOIR RD

9/28/2016 Wed 19:32 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2016-36420246

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: TRAFFIC SIGNAL

Manner of Collision: OVERTAKING Weather: CLOUDY

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DARK-ROAD LIGHTED

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: CT

Num of Occupants: 1 Driver's Age: 30 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: State of Registration: MA

Num of Occupants: 1 Driver's Age: 24 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: CHANGING LANES

Apparent Factors: FAILURE TO YIELD RIGHT OF WAY, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: Street: N BROADWAY

11 Meters North of Mount Kisco Rd

10/18/2016 Tue 13:08 PM Persons Killed: 0 Persons Injured: 2 Extent of Injuries: CC Case: 2016-36428666

Accident Class: PROPERTY DAMAGE AND INJURY Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: TRAFFIC SIGNAL

Manner of Collision: REAR END Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT/ GRADE Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 3028 State of Registration: NY

Num of Occupants: 1 Driver's Age: 22 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: DRIVER INATTENTION, DRIVER INEXPERIENCE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 3924 State of Registration: NY

Num of Occupants: 1 Driver's Age: 50 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: SLOWED OR STOPPING

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024008 Street: MOUNT KISCO RD

AT INTERSECTION WITH N Broadway

10/4/2016 Tue 13:35 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2016-36436752

Accident Class: PROPERTY DAMAGE Police Agency: Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: TRAFFIC SIGNAL

Manner of Collision: LEFT TURN (AGAINST OTHER CAR)

Weather: CLEAR

Road Surface Condition: DRY Road Char.: CURVE AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 OTHER Registered Weight: State of Registration: FL

Num of Occupants: 1 Driver's Age: 19 Sex: M Citation Issued: N

Direction of Travel: SOUTH-WEST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT ENTERED, NOT ENTERED

Veh: 2 CAR/VAN/PICKUP Registered Weight: 3776 State of Registration: NY

Num of Occupants: 1 Driver's Age: 75 Sex: M Citation Issued: N

Direction of Travel: NORTH-WEST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MAKING LEFT TURN

Apparent Factors: NOT ENTERED, NOT ENTERED

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024007 Street: MOUNT KISCO RD

AT INTERSECTION WITH Mount Kisco Rd

10/22/2016 Sat 12:42 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: **Case: 2016-36437590**

Accident Class: NON-REPORTABLE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: TRAFFIC SIGNAL

Manner of Collision: OVERTAKING Weather: RAIN

Road Surface Condition: WET Road Char.: STRAIGHT/ GRADE Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

Num of Occupants: 1 Driver's Age: 75 Sex: M Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: PASSING OR LANE USAGE IMPROPERLY, NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

Num of Occupants: 1 Driver's Age: 24 Sex: M Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, REACTION TO OTHER UNINVOLVED VEHICL

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024002 Street: CENTRAL WESTCHESTER PKWY

AT INTERSECTION WITH [Route] 22

10/24/2016 Mon 08:00 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2016-36482012
Accident Class: PROPERTY DAMAGE Police Agency: Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: NONE

Manner of Collision: REAR END Weather: CLEAR

Road Surface Condition: UNKNOWN Road Char.: CURVE AND GRADE Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 4125 State of Registration: NY

Num of Occupants: 1 Driver's Age: 56 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT ENTERED, NOT ENTERED

Veh: 2 CAR/VAN/PICKUP Registered Weight: 3596 State of Registration: NY

Num of Occupants: 1 Driver's Age: 41 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: ENTERING PARKED POSITION
Apparent Factors: NOT ENTERED, NOT ENTERED

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024007 Street: N BROADWAY

AT INTERSECTION WITH [Route] 22

12/12/2016 Mon 07:03 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: **Case: 2016-36516164**

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Manner of Collision: OVERTAKING

Traffic Control: TRAFFIC SIGNAL

Weather: RAIN

Road Surface Condition: WET Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 2548 State of Registration: NY

 Num of Occupants: 1
 Driver's Age: 49
 Sex: F
 Citation Issued: N

 Direction of Travel: NORTH
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh: 1 CAR/VAN/PICKUP Registered Weight: 3177 State of Registration: NY

Num of Occupants: 2 Driver's Age: 16 Sex: M Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: CHANGING LANES

Apparent Factors: UNSAFE LANE CHANGE, DRIVER INEXPERIENCE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024002 Street: N BROADWAY

AT INTERSECTION WITH Central Westchester Pkwy

1/11/2017 Wed 13:19 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2017-36559862

Accident Class: NON-REPORTABLE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: TRAFFIC SIGNAL

Manner of Collision: REAR END Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

 Num of Occupants: 1
 Driver's Age: 21
 Sex: F
 Citation Issued: N

 Direction of Travel: SOUTH
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

Num of Occupants: 1 Driver's Age: 66 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: SLOWED OR STOPPING

Apparent Factors: FOLLOWING TOO CLOSELY, BRAKES DEFECTIVE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024002 Street: N BROADWAY

AT INTERSECTION WITH Central Westchester Pkwv

2/1/2017 Wed 09:53 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2017-36590909

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: TRAFFIC SIGNAL

Manner of Collision: REAR END Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 4076 State of Registration: NY

Num of Occupants: 1 Driver's Age: 69 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: SLOWED OR STOPPING

Apparent Factors: UNSAFE SPEED, FOLLOWING TOO CLOSELY

Veh: 2 CAR/VAN/PICKUP Registered Weight: 3366 State of Registration: NY

Num of Occupants: 2 Driver's Age: 74 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024002 Street: N BROADWAY

AT INTERSECTION WITH CENTRAL WESTCHESTER PKWY

3/4/2017 Sat 16:34 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2017-36628790

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Manner of Collision: OVERTAKING

Traffic Control: TRAFFIC SIGNAL

Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT/ GRADE Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 1 CAR/VAN/PICKUP Registered Weight: 4126 State of Registration: NY

Num of Occupants: 2 Driver's Age: 57 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: CHANGING LANES

Apparent Factors: TRAFFIC CONTROL DEVICES DISREGARDED, NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 2949 State of Registration: NY

 Num of Occupants: 2
 Driver's Age: 20
 Sex: F
 Citation Issued: N

 Direction of Travel: SOUTH
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024061 Street: ARMONK-BEDFORD RD

AT INTERSECTION WITH Main St

4/6/2015 Mon 14:11 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2015-36644634

Accident Class: NON-REPORTABLE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: TRAFFIC SIGNAL

Manner of Collision: REAR END Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

 Num of Occupants: 2
 Driver's Age: 66
 Sex: F
 Citation Issued: N

 Direction of Travel: NORTH
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh: 2 OTHER Registered Weight: State of Registration: NY

 Num of Occupants: 1
 Driver's Age: 47
 Sex: M
 Citation Issued: N

 Direction of Travel: NORTH
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: DRIVER INATTENTION, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 128 87011000 Street: [Route] 128

AT INTERSECTION WITH [Route] 22

3/12/2017 Sun 10:00 AM Persons Killed: 0 Persons Injured: 2 Extent of Injuries: CC Case: 2017-36661936

Accident Class: PROPERTY DAMAGE AND INJURY Police Agency: LEWISBORO TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Manner of Collision: LEFT TURN (AGAINST OTHER CAR)

Traffic Control: TRAFFIC SIGNAL

Weather: CLEAR

Road Surface Condition: DRY

Road Char.: STRAIGHT AND LEVEL

Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 3025 State of Registration: NY

 Num of Occupants: 1
 Driver's Age: 61
 Sex: F
 Citation Issued: N

 Direction of Travel: EAST
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: TRAFFIC CONTROL DEVICES DISREGARDED, NOT ENTERED

Veh:1 CAR/VAN/PICKUP Registered Weight: 3413 State of Registration: NY

Num of Occupants: 1 Driver's Age: 38 Sex: F Citation Issued: N

Direction of Travel: NORTH-WEST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MAKING LEFT TURN

Num of Veh: 1

Weather: CLEAR

Apparent Factors: NOT ENTERED, NOT ENTERED

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024002 Street: N BROADWAY

AT INTERSECTION WITH CENTRAL WESTCHESTER PKWY

4/8/2017 Sat 09:17 AM Persons Killed: 0 Persons Injured: 1 Extent of Injuries: C **Case: 2017-36677188**

Accident Class: INJURY Police Agency: NORTH CASTLE TOWN PD Num of Veh: 1

Type Of Accident: COLLISION WITH PEDESTRIAN Traffic Control: TRAFFIC SIGNAL

Manner of Collision: OTHER Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: PED/BICYCLIST AT INTERSECTION Action of Ped/Bicycle: CROSSING AGAINST SIGNAL

Veh:1 CAR/VAN/PICKUP Registered Weight: 3115 State of Registration: NY

Num of Occupants: 1 Driver's Age: 62 Sex: M Citation Issued: N

Direction of Travel: NORTH-EAST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STARTING IN TRAFFIC

Apparent Factors: DRIVER INATTENTION, NOT APPLICABLE

Veh: 2 PEDESTRIAN Registered Weight: State of Registration:

Num of Occupants: 1 Driver's Age: 55 Sex: F Citation Issued: N

Direction of Travel: NOT APPLICABLE Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: NOT APPLICABLE

Apparent Factors: NOT APPLICABLE, PEDESTRIAN'S ERROR/CONFUSION

County: Westchester Muni: North Castle(T) Ref. Marker: 128 87011000 Street: MAIN ST

6 Meters North of Ramp

4/21/2017 Fri 15:03 PM Persons Killed: 0 Persons Injured: 1 Extent of Injuries: Case: 2017-36694248

Accident Class: PROPERTY DAMAGE AND INJURY

Police Agency: NORTH CASTLE TOWN PD

Type Of Accident: COLLISION WITH ANIMAL Traffic Control: NONE

Manner of Collision: OTHER Weather: CLOUDY

Road Surface Condition: DRY Road Char.: CURVE AND GRADE Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 1 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

Num of Occupants: 3 Driver's Age: 28 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024002 Street: N BROADWAY

AT INTERSECTION WITH RESERVOIR RD

4/12/2017 Wed 16:13 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: **2017-36694250**

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: TRAFFIC SIGNAL

Manner of Collision: OVERTAKING

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 3462 State of Registration: NY

Num of Occupants: 2 Driver's Age: 49 Sex: F Citation Issued: N

Direction of Travel: SOUTH-EAST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: PASSING OR LANE USAGE IMPROPERLY, NOT APPLICABLE

Veh:1 TRUCK Registered Weight: 25950 State of Registration: NY

Num of Occupants: 1 Driver's Age: 52 Sex: M Citation Issued: N

Direction of Travel: SOUTH-EAST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024002 Street: N BROADWAY

AT INTERSECTION WITH RESERVOIR RD

6/6/2017 Tue 17:49 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2017-36761381

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Manner of Collision: RIGHT TURN (WITH OTHER CAR)

Road Surface Condition: DRY

Road Char.: STRAIGHT AND LEVEL

Traffic Control: STOP SIGN

Weather: CLOUDY

Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE

Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 3457 State of Registration: NY

Num of Occupants: 1 Driver's Age: 83 Sex: M Citation Issued: N

Direction of Travel: NORTH-EAST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MAKING RIGHT TURN

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh:1 TRUCK Registered Weight: State of Registration: OK

Num of Occupants: 1 Driver's Age: 35 Sex: M Citation Issued: N

Direction of Travel: NORTH-EAST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MAKING RIGHT TURN

Apparent Factors: NOT APPLICABLE, PASSING OR LANE USAGE IMPROPERLY

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024001 Street: N BROADWAY

30 Meters West of RESERVOIR RD

6/20/2017 Tue 18:26 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2017-36776186

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Manner of Collision: LEFT TURN (AGAINST OTHER CAR)

Road Surface Condition: DRY

Road Char.: STRAIGHT AND LEVEL

Traffic Control: NONE

Weather: CLEAR

Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 3527 State of Registration: NY

Num of Occupants: 1 Driver's Age: 47 Sex: M Citation Issued: N

Direction of Travel: WEST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 3400 State of Registration: NY

Num of Occupants: 1 Driver's Age: 65 Sex: F Citation Issued: N

Direction of Travel: NORTH-EAST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MAKING LEFT TURN

Apparent Factors: NOT APPLICABLE, FAILURE TO YIELD RIGHT OF WAY

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024007 Street: N BROADWAY

AT INTERSECTION WITH Mount Kisco Rd

7/19/2017 Wed 09:22 AM Persons Killed: 0 Persons Injured: 1 Extent of Injuries: C Case: 2017-36834978

Accident Class: PROPERTY DAMAGE AND INJURY Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: TRAFFIC SIGNAL

Manner of Collision: REAR END Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT/ GRADE Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 8900 State of Registration: NY

 Num of Occupants: 1
 Driver's Age: 52
 Sex: M
 Citation Issued: N

 Direction of Travel: NORTH
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Pre-Accd Action: SLOWED OR STOPPING

Apparent Factors: DRIVER INATTENTION, NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 4092 State of Registration: NY

Num of Occupants: 1 Driver's Age: 59 Sex: M Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: Street: N BROADWAY

15 Meters North of Mount Kisco Rd

7/31/2017 Mon 17:45 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2017-36837151

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: TRAFFIC SIGNAL

Manner of Collision: SIDESWIPE Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: State of Registration: -3

Num of Occupants: 0 Driver's Age: Sex: Citation Issued:

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: UNKNOWN, UNKNOWN

Veh:1 CAR/VAN/PICKUP Registered Weight: 3138 State of Registration: NY

Num of Occupants: 1 Driver's Age: 21 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024002 Street: N BROADWAY

AT INTERSECTION WITH RESERVOIR RD

7/30/2017 Sun 15:15 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: **Case: 2017-36837674**

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: TRAFFIC SIGNAL

Manner of Collision: LEFT TURN (AGAINST OTHER CAR)
Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT/ GRADE Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 3192 State of Registration: NY

Num of Occupants: 2 Driver's Age: 31 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh: 1 CAR/VAN/PICKUP Registered Weight: 4129 State of Registration: NY

Num of Occupants: 1 Driver's Age: 40 Sex: F Citation Issued: Y

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MAKING LEFT TURN

Apparent Factors: TRAFFIC CONTROL DEVICES DISREGARDED, TURNING IMPROPER

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024061 Street: ARMONK-BEDFORD RD

AT INTERSECTION WITH Ramp

8/10/2017 Thu 09:01 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2017-36844011

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: TRAFFIC SIGNAL

Manner of Collision: REAR END Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE

Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 3560 State of Registration: NY

Num of Occupants: 1 Driver's Age: 45 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh: 1 CAR/VAN/PICKUP Registered Weight: State of Registration: NJ

Num of Occupants: 3 Driver's Age: 28 Sex: F Citation Issued: Y

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STARTING IN TRAFFIC

Apparent Factors: FOLLOWING TOO CLOSELY, DRIVER INATTENTION

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024007 Street: N BROADWAY

50 Meters South of Mount Kisco Rd

8/13/2017 Sun 08:55 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: **Case: 2017-36847066**

Accident Class: NON-REPORTABLE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 1

Type Of Accident: COLLISION WITH BICYCLIST

Traffic Control: NONE

Manner of Collision: OTHER Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: PED/BICYCLIST NOT AT INTERSECTION Action of Ped/Bicycle: ALONG HIGHWAY WITH TRAFFIC

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

Num of Occupants: 1 Driver's Age: 74 Sex: M Citation Issued: N

Direction of Travel: NORTH-WEST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MAKING LEFT TURN

Apparent Factors: FAILURE TO YIELD RIGHT OF WAY, NOT APPLICABLE

Veh: 2 BICYCLE Registered Weight: State of Registration:

Num of Occupants: 1 Driver's Age: 35 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024007 Street: N BROADWAY

AT INTERSECTION WITH Mount Kisco Rd

8/9/2017 Wed 22:50 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2017-36851554

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: TRAFFIC SIGNAL

Manner of Collision: REAR END Weather: CLEAR

Road Surface Condition: DRY

Road Char.: STRAIGHT AND LEVEL

Light Condition: DARK-ROAD LIGHTED

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 3316 State of Registration: NY

Num of Occupants: 1 Driver's Age: 50 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: FOLLOWING TOO CLOSELY, DRIVER INATTENTION

Veh: 2 CAR/VAN/PICKUP Registered Weight: 3638 State of Registration: NY

Num of Occupants: 1 Driver's Age: 60 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024002 Street: N BROADWAY

AT INTERSECTION WITH CENTRAL WESTCHESTER PKWY

8/5/2017 Sat 09:30 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: **Case: 2017-36852564**

Accident Class: PROPERTY DAMAGE

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Manner of Collision: UNKNOWN

Road Surface Condition: UNKNOWN

Loc. of Ped/Bicycle: NOT APPLICABLE

Police Agency: Num of Veh: 2

Traffic Control: TRAFFIC SIGNAL

Traffic Control: UNKNOWN

Weather: UNKNOWN

Road Char.: UNKNOWN Light Condition: UNKNOWN

Action of Ped/Bicycle: NOT APPLICABLE State of Registration: -3

Veh:2 OTHER Registered Weight:

> Num of Occupants: 1 Driver's Age: Sex: Citation Issued:

Direction of Travel: UNKNOWN Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: UNKNOWN

Apparent Factors: NOT ENTERED, NOT ENTERED

Veh:1 CAR/VAN/PICKUP Registered Weight: 3031 State of Registration: NY

> Driver's Age: 25 Sex: F Citation Issued: N Num of Occupants: 1

Direction of Travel: UNKNOWN Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: UNKNOWN

Apparent Factors: NOT ENTERED, NOT ENTERED

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024001 Street: N BROADWAY

30 Meters West of RESERVOIR RD

8/23/2017 Wed 16:54 PM Persons Killed: 0 Persons Injured: 0 Case: 2017-36867168 Extent of Injuries:

> Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: NONE

Manner of Collision: OVERTAKING

Weather: CLEAR Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:2 CAR/VAN/PICKUP Registered Weight: 3538 State of Registration: NY

> Num of Occupants: 1 Driver's Age: 31 Sex: M Citation Issued: N

School Bus Involved: OTHER Direction of Travel: NORTH Public Property Damage: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 4123 State of Registration: NY

> Num of Occupants: 1 Driver's Age: 84 Sex: F Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: CHANGING LANES

Apparent Factors: FAILURE TO YIELD RIGHT OF WAY, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024061 Street: ARMONK-BEDFORD RD

AT INTERSECTION WITH Main St

9/2/2017 Sat 19:46 PM Persons Killed: 0 Case: 2017-36873624 Persons Injured: 0 Extent of Injuries:

> Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Manner of Collision: RIGHT ANGLE Weather: RAIN

Road Surface Condition: WET Road Char.: STRAIGHT AND LEVEL Light Condition: DARK-ROAD LIGHTED Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:2 CAR/VAN/PICKUP Registered Weight: 3756 State of Registration: NY

> Num of Occupants: 1 Driver's Age: 59 Sex: M Citation Issued: N Direction of Travel: WEST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MAKING LEFT TURN

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 3076 State of Registration: NY

> Num of Occupants: 1 Driver's Age: 56 Citation Issued: N Sex: M

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, DRIVER INATTENTION

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024061 Street: ARMONK-BEDFORD RD

AT INTERSECTION WITH [Route] 128

8/28/2017 Mon 17:00 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2017-36888994

Accident Class: PROPERTY DAMAGE Police Agency: Num of Veh: 2 Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: UNKNOWN

Manner of Collision: REAR END Weather: UNKNOWN

Road Surface Condition: UNKNOWN Road Char.: UNKNOWN Light Condition: UNKNOWN

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:2 OTHER Registered Weight: State of Registration: -3

> Num of Occupants: 1 Driver's Age: Sex: F Citation Issued: N

School Bus Involved: OTHER Direction of Travel: UNKNOWN Public Property Damage: OTHER

Pre-Accd Action: MERGING

Apparent Factors: NOT ENTERED, NOT ENTERED

Veh:1 OTHER Registered Weight: State of Registration: VA

> Citation Issued: N Num of Occupants: 1 Driver's Age: 19 Sex: M

Direction of Travel: UNKNOWN Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MERGING

Apparent Factors: NOT ENTERED, NOT ENTERED

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024002 Street: N BROADWAY

AT INTERSECTION WITH Central Westchester Pkwy

9/15/2017 Fri 15:32 PM Persons Killed: 0 Case: 2017-36890248 Persons Injured: 0 Extent of Injuries:

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: TRAFFIC SIGNAL

Weather: CLEAR

Manner of Collision: OVERTAKING

Road Char.: STRAIGHT AND LEVEL Road Surface Condition: DRY Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:2 CAR/VAN/PICKUP Registered Weight: State of Registration: CT

> Num of Occupants: 1 Driver's Age: 40 Sex: M Citation Issued: N

Direction of Travel: SOUTH-WEST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh:1 TRUCK Registered Weight: State of Registration: NJ

Num of Occupants: 1 Driver's Age: 37 Sex: M Citation Issued: N

Direction of Travel: SOUTH-WEST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: CHANGING LANES

Apparent Factors: PASSING OR LANE USAGE IMPROPERLY, FAILURE TO YIELD RIGHT OF WAY

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024007 Street: N BROADWAY

AT INTERSECTION WITH Mount Kisco Rd

9/20/2017 Wed 17:11 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: **Case: 2017-36897253**

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: TRAFFIC SIGNAL

Manner of Collision: OVERTAKING Weather: CLOUDY

Road Surface Condition: DRY Road Char.: STRAIGHT/ GRADE Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 1 CAR/VAN/PICKUP Registered Weight: 5278 State of Registration: NY

 Num of Occupants: 1
 Driver's Age: 26
 Sex: M
 Citation Issued: N

 Direction of Travel: NORTH
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 2978 State of Registration: NY

 Num of Occupants: 1
 Driver's Age: 53
 Sex: M
 Citation Issued: N

 Direction of Travel: NORTH
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Pre-Accd Action: CHANGING LANES

Apparent Factors: PASSING OR LANE USAGE IMPROPERLY, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024007 Street: MOUNT KISCO RD

AT INTERSECTION WITH Mount Kisco Rd

9/12/2017 Tue 13:02 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2017-36903318

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: TRAFFIC SIGNAL

Manner of Collision: OTHER Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 3493 State of Registration: NY

Num of Occupants: 1 Driver's Age: 54 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Num of Veh: 2

Veh:1 TRUCK Registered Weight: State of Registration: NJ

 Num of Occupants: 1
 Driver's Age: 40
 Sex: M
 Citation Issued: N

 Direction of Travel: SOUTH
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Pre-Accd Action: BACKING

Apparent Factors: NOT APPLICABLE, BACKING UNSAFELY

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024002 Street: N BROADWAY

AT INTERSECTION WITH RESERVOIR RD

9/14/2017 Thu 15:27 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: **Case: 2017-36903325**

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: TRAFFIC SIGNAL

Manner of Collision: OVERTAKING Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 3490 State of Registration: NY

Num of Occupants: 2 Driver's Age: 38 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD Apparent Factors: UNKNOWN, UNKNOWN

Veh: 2 CAR/VAN/PICKUP Registered Weight: 3478 State of Registration: NY

 Num of Occupants: 1
 Driver's Age: 50
 Sex: M
 Citation Issued: N

 Direction of Travel: SOUTH
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD Apparent Factors: UNKNOWN, UNKNOWN

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024061 Street: ARMONK-BEDFORD RD

AT INTERSECTION WITH Main St

10/11/2017 Wed 09:06 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2017-36925802

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: TRAFFIC SIGNAL

Manner of Collision: REAR END Weather: CLOUDY

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 1 CAR/VAN/PICKUP Registered Weight: 3532 State of Registration: NY

Num of Occupants: 1 Driver's Age: 55 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: DRIVER INATTENTION, NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 2519 State of Registration: NY

Num of Occupants: 1 Driver's Age: 19 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024061 Street: ARMONK-BEDFORD RD

AT INTERSECTION WITH Main St

10/13/2017 Fri 17:27 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: **Case: 2017-36939684**

Accident Class; NON-REPORTABLE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 3

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: TRAFFIC SIGNAL

Manner of Collision: OTHER Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

 Num of Occupants: 1
 Driver's Age: 56
 Sex: F
 Citation Issued: N

 Direction of Travel: NORTH
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: CT

Num of Occupants: 1 Driver's Age: 43 Sex: F Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: DRIVER INATTENTION, NOT APPLICABLE

Veh: 3 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

Num of Occupants: 1 Driver's Age: 51 Sex: M Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024061 Street: ARMONK-BEDFORD RD

AT INTERSECTION WITH Main St

11/14/2017 Tue 00:40 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2017-36980110

Accident Class: NON-REPORTABLE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 1

Type Of Accident: COLLISION WITH DEER

Manner of Collision: OTHER

Traffic Control: TRAFFIC SIGNAL

Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DARK-ROAD LIGHTED

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 TRUCK Registered Weight: State of Registration: MD

 Num of Occupants: 1
 Driver's Age: 35
 Sex: M
 Citation Issued: N

 Direction of Travel: NORTH
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: ANIMAL'S ACTION, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024001 Street: CENTRAL WESTCHESTER PKWY

11/16/2017 Thu 10:43 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2017-36985402

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 1

Type Of Accident: COLLISION WITH GUIDE RAIL

Traffic Control: NONE

Manner of Collision: OTHER Weather: CLOUDY

Road Surface Condition: WET Road Char.: CURVE AND GRADE Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 2687 State of Registration: NY

Num of Occupants: 1 Driver's Age: 32 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: PAVEMENT SLIPPERY, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024001 Street: N BROADWAY

21 Meters West of Central Westchester Pkwy

11/21/2017 Tue 11:37 AM Persons Killed: 0 Persons Injured: 1 Extent of Injuries: C Case: 2017-37004212

Accident Class: PROPERTY DAMAGE AND INJURY Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: TRAFFIC SIGNAL

Manner of Collision: RIGHT TURN (AGAINST OTHER CAR)

Road Surface Condition: DRY

Road Char.: CURVE AND GRADE

Weather: CLEAR

Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE

Action of Ped/Bicycle: NOT APPLICABLE

Veh: 1 CAR/VAN/PICKUP Registered Weight: 4867 State of Registration: NY

 Num of Occupants: 1
 Driver's Age: 69
 Sex: F
 Citation Issued: N

 Direction of Travel: SOUTH
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Pre-Accd Action: MAKING RIGHT TURN

Apparent Factors: PASSING OR LANE USAGE IMPROPERLY, NOT APPLICABLE

Veh : 2 CAR/VAN/PICKUP Registered Weight: 2445 State of Registration: NY

Num of Occupants: 1 Driver's Age: 57 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024007 Street: N BROADWAY

26 Meters South of Mount Kisco Rd

12/6/2017 Wed 21:56 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2017-37023980

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 1

Type Of Accident: COLLISION WITH OTHER FIXED OBJECT

Traffic Control: NONE

Manner of Collision: OTHER Weather: CLOUDY

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DARK-ROAD LIGHTED

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: CT

 Num of Occupants: 1
 Driver's Age: 26
 Sex: F
 Citation Issued: Y

 Direction of Travel: EAST
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Pre-Accd Action: BACKING

Apparent Factors: NOT APPLICABLE, DRIVER INATTENTION

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024002 Street: N BROADWAY

35 Meters North of Central Westchester Pkwy

12/11/2017 Mon 09:34 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2017-37026166

> Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: TRAFFIC SIGNAL

Manner of Collision: RIGHT TURN (AGAINST OTHER CAR) Weather: CLEAR

Road Surface Condition: DRY Road Char.: CURVE AND GRADE Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Registered Weight: 4893 Veh:2 CAR/VAN/PICKUP State of Registration: NY

> Driver's Age: 52 Citation Issued: N Num of Occupants: 1 Sex: F

Public Property Damage: OTHER School Bus Involved: OTHER Direction of Travel: SOUTH

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh:1 TRUCK Registered Weight: 35000 State of Registration: NY

> Num of Occupants: 1 Driver's Age: 32 Sex: M Citation Issued: N Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MAKING RIGHT TURN

Apparent Factors: PASSING OR LANE USAGE IMPROPERLY, TRAFFIC CONTROL DEVICES DISREGARDED

County: Westchester Muni: North Castle(T) Ref. Marker: 128 87011000 Street: MAIN ST

AT INTERSECTION WITH Armonk-Bedford Rd

Persons Killed: 0 12/12/2017 Tue 11:06 AM Persons Injured: 0 Extent of Injuries: Case: 2017-37029928

Accident Class: NON-REPORTABLE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: TRAFFIC SIGNAL

Manner of Collision: REAR END Weather: RAIN

Road Surface Condition: WET Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:2 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

> Num of Occupants: 2 Driver's Age: 52 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: CT

> Num of Occupants: 1 Driver's Age: 22 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, FOLLOWING TOO CLOSELY

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024008 Street: MOUNT KISCO RD

11 Meters North of N Broadway

12/13/2017 Case: 2017-37033587 Wed 10:44 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries:

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: TRAFFIC SIGNAL

Manner of Collision: OVERTAKING Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: CT

> Num of Occupants: 1 Driver's Age: 80 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: CHANGING LANES

Apparent Factors: DRIVER INATTENTION, NOT APPLICABLE

Veh:2 CAR/VAN/PICKUP Registered Weight: 3629 State of Registration: NY

> Num of Occupants: 1 Driver's Age: 40 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024007 Street: N BROADWAY

20 Meters South of Mount Kisco Rd

12/18/2017 Mon 18:14 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2017-37043531

Accident Class: NON-REPORTABLE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: TRAFFIC SIGNAL

Manner of Collision: RIGHT ANGLE Weather: CLEAR Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DARK-ROAD LIGHTED

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:2 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

> Num of Occupants: 1 Driver's Age: 56 Sex: M Citation Issued: N Public Property Damage: OTHER Direction of Travel: SOUTH School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD Apparent Factors: UNKNOWN, NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

> Driver's Age: 78 Sex: F Num of Occupants: 2 Citation Issued: N

Direction of Travel: WEST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MAKING LEFT TURN

Apparent Factors: FAILURE TO YIELD RIGHT OF WAY, UNKNOWN

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024061 Street: [Route] 22

23 Meters West of MAIN ST

11/25/2017 Sat 05:45 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2017-37044692 Accident Class: PROPERTY DAMAGE Num of Veh: 1 Police Agency:

Type Of Accident: COLLISION WITH DEER Traffic Control: NONE

Manner of Collision: OTHER Weather: CLEAR Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DARK-ROAD UNLIGHTED

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

Num of Occupants: 1 Driver's Age: 66 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT ENTERED, NOT ENTERED

County: Westchester Muni: North Castle(T) Ref. Marker: Street: N BROADWAY

48 Meters North of Mount Kisco Rd

1/3/2018 Wed 09:07 AM Persons Killed: 0 Persons Injured: 2 Extent of Injuries: AC Case: 2018-37068135

Accident Class: PROPERTY DAMAGE AND INJURY Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH SIGN POST

Manner of Collision: HEAD ON

Traffic Control: NONE

Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE

Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 3816 State of Registration: NY

Num of Occupants: 1 Driver's Age: 40 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 2677 State of Registration: NY

 Num of Occupants: 1
 Driver's Age: 26
 Sex: M
 Citation Issued: N

 Direction of Travel: NORTH
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: LOST CONSCIOUSNESS, UNKNOWN

County: Westchester Muni: North Castle(T) Ref. Marker: Street: CENTRAL WESTCHESTER PKWY

AT INTERSECTION WITH N Broadway

1/9/2018 Tue 10:22 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2018-37079316

Accident Class: NON-REPORTABLE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: TRAFFIC SIGNAL

Manner of Collision: REAR END Weather: CLOUDY

Road Surface Condition: WET Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

Num of Occupants: 1 Driver's Age: 24 Sex: M Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: SLOWED OR STOPPING

Apparent Factors: PAVEMENT SLIPPERY, UNSAFE SPEED

Veh: 2 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

Num of Occupants: 1 Driver's Age: 37 Sex: F Citation Issued: N Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024002 Street: CENTRAL WESTCHESTER PKWY

AT INTERSECTION WITH N BROADWAY

1/22/2018 Mon 16:24 PM Case: 2018-37105589 Persons Killed: 0 Persons Injured: 0 Extent of Injuries:

> Accident Class: PROPERTY DAMAGE Police Agency: WHITE PLAINS CITY PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: TRAFFIC SIGNAL

Manner of Collision: REAR END Weather: CLOUDY

Road Surface Condition: WET Road Char.: STRAIGHT/ GRADE Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 2326 State of Registration: NY

> Driver's Age: 79 Sex: M Citation Issued: N Num of Occupants: 1 Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: FOLLOWING TOO CLOSELY, NOT APPLICABLE

Veh:2 CAR/VAN/PICKUP Registered Weight: 3739 State of Registration: NY

> Num of Occupants: 1 Driver's Age: 62 Sex: F Citation Issued: N School Bus Involved: OTHER

Direction of Travel: NORTH Public Property Damage: OTHER

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 128 87011000 Street: [Route] 22

AT INTERSECTION WITH [Route] 128

2/1/2018 Thu 18:33 PM Persons Killed: 0 Persons Injured: 1 Extent of Injuries: A Case: 2018-37119640

> Accident Class: PROPERTY DAMAGE AND INJURY Police Agency: NORTH CASTLE TOWN PD Num of Veh: 3

Traffic Control: TRAFFIC SIGNAL Type Of Accident: COLLISION WITH MOTOR VEHICLE

Weather: RAIN Manner of Collision: OTHER

Road Surface Condition: WET Road Char.: STRAIGHT AND LEVEL Light Condition: DARK-ROAD LIGHTED

Action of Ped/Bicycle: NOT APPLICABLE Loc. of Ped/Bicycle: NOT APPLICABLE

Veh:3 CAR/VAN/PICKUP Registered Weight: State of Registration: CT

> Driver's Age: 27 Sex: M Citation Issued: N Num of Occupants: 1

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 4448 State of Registration: NY

> Num of Occupants: 1 Driver's Age: 37 Sex: F Citation Issued: N

School Bus Involved: OTHER Direction of Travel: NORTH Public Property Damage: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: TRAFFIC CONTROL DEVICES DISREGARDED, NOT APPLICABLE

Veh:2 CAR/VAN/PICKUP Registered Weight: 4153 State of Registration: NY

> Driver's Age: 37 Sex: M Citation Issued: N Num of Occupants: 1

> Direction of Travel: WEST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024002 Street: N BROADWAY

AT INTERSECTION WITH Central Westchester Pkwv

1/28/2018 Sun 15:49 PM Case: 2018-37121335 Persons Killed: 0 Persons Injured: 0 Extent of Injuries:

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: TRAFFIC SIGNAL

Manner of Collision: OVERTAKING Weather: CLOUDY

Light Condition: DAYLIGHT Road Surface Condition: DRY Road Char.: STRAIGHT/ GRADE

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh ·1 CAR/VAN/PICKUP Registered Weight: 3845 State of Registration: NY

> Num of Occupants: 2 Driver's Age: 87 Sex: M Citation Issued: N Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: CHANGING LANES

Apparent Factors: PASSING OR LANE USAGE IMPROPERLY, NOT APPLICABLE

Veh:2 CAR/VAN/PICKUP Registered Weight: 4237 State of Registration: NY

> Num of Occupants: 1 Driver's Age: 21 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024007 Street: N BROADWAY

AT INTERSECTION WITH Mount Kisco Rd

2/15/2018 Thu 09:35 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2018-37156521

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: TRAFFIC SIGNAL Weather: CLOUDY

Manner of Collision: OVERTAKING

Road Surface Condition: WET Road Char.: STRAIGHT/ GRADE Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:2 CAR/VAN/PICKUP Registered Weight: State of Registration: FL

> Driver's Age: 50 Sex: M Citation Issued: N Num of Occupants: 1 Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: OVERTAKING

Apparent Factors: FAILURE TO YIELD RIGHT OF WAY, NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 3638 State of Registration: NY

Num of Occupants: 1 Driver's Age: 42 Citation Issued: N Sex: F

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: SLOWED OR STOPPING

Apparent Factors: NOT APPLICABLE, PASSING OR LANE USAGE IMPROPERLY

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024002 Street: N BROADWAY

AT INTERSECTION WITH Central Westchester Pkwy

3/10/2018 Sat 16:23 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: **Case: 2018-37178079**

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: TRAFFIC SIGNAL

Manner of Collision: OVERTAKING Weather: CLOUDY

Road Surface Condition: DRY Road Char.: CURVE AND GRADE Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 3547 State of Registration: NY

Num of Occupants: 2 Driver's Age: 23 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: CHANGING LANES

Apparent Factors: UNSAFE LANE CHANGE, PASSING OR LANE USAGE IMPROPERLY

Veh: 2 CAR/VAN/PICKUP Registered Weight: 4617 State of Registration: NY

Num of Occupants: 1 Driver's Age: 31 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024002 Street: N BROADWAY

AT INTERSECTION WITH RESERVOIR RD

3/3/2018 Sat 18:52 PM Persons Killed: 0 Persons Injured: 1 Extent of Injuries: C Case: 2018-37178972

Accident Class: INJURY Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: TRAFFIC SIGNAL

Manner of Collision: REAR END Weather: CLOUDY

Road Surface Condition: DRY Road Char.: STRAIGHT/ GRADE Light Condition: DUSK

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 3481 State of Registration: NY

Num of Occupants: 1 Driver's Age: 19 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STARTING IN TRAFFIC

Apparent Factors: NOT APPLICABLE, DRIVER INATTENTION

Veh: 2 CAR/VAN/PICKUP Registered Weight: 3131 State of Registration: NY

Num of Occupants: 2 Driver's Age: 40 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024002 Street: N BROADWAY

AT INTERSECTION WITH RESERVOIR RD

3/19/2018 Mon 17:27 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: **Case: 2018-37193603**

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: STOP SIGN

Manner of Collision: OVERTAKING Weather: CLEAR

Road Surface Condition: DRY Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 3390 State of Registration: NY

Num of Occupants: 1 Driver's Age: 76 Sex: F Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MAKING RIGHT TURN

Apparent Factors: NOT APPLICABLE, PASSING OR LANE USAGE IMPROPERLY

Veh: 2 CAR/VAN/PICKUP Registered Weight: 2826 State of Registration: NY

Num of Occupants: 1 Driver's Age: 47 Sex: M Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024007 Street: N BROADWAY

AT INTERSECTION WITH Mount Kisco Rd

3/28/2018 Wed 08:32 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: **2018-37217177**

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

School Bus Involved: OTHER

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: TRAFFIC SIGNAL

Manner of Collision: REAR END Weather: CLOUDY

Road Surface Condition: WET Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 4826 State of Registration: NY

Num of Occupants: 1 Driver's Age: 38 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 3527 State of Registration: NY

Num of Occupants: 1 Driver's Age: 24 Sex: M Citation Issued: Y

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: FOLLOWING TOO CLOSELY, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024002 Street: N BROADWAY

AT INTERSECTION WITH Central Westchester Pkwv

4/11/2018 Wed 09:25 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2018-37230838

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Manner of Collision: OVERTAKING

Traffic Control: TRAFFIC SIGNAL

Weather: CLEAR

Road Surface Condition: DRY Road Char.: CURVE AND GRADE Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 3272 State of Registration: NY

 Num of Occupants: 1
 Driver's Age: 31
 Sex: M
 Citation Issued: N

 Direction of Travel: NORTH
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 2548 State of Registration: NY

Num of Occupants: 1 Driver's Age: 73 Sex: F Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: DRIVER INATTENTION, PASSING OR LANE USAGE IMPROPERLY

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024002 Street: N BROADWAY

AT INTERSECTION WITH Central Westchester Pkwy

7/6/2018 Fri 12:08 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2018-37368345

Accident Class: NON-REPORTABLE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Weather: CLOUDY

Traffic Control: NONE

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: TRAFFIC SIGNAL

Manner of Collision: OVERTAKING

Road Surface Condition: WET Road Char.: STRAIGHT AND LEVEL Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

Num of Occupants: 1 Driver's Age: 75 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MAKING RIGHT TURN

Apparent Factors: TURNING IMPROPER, TRAFFIC CONTROL DEVICES DISREGARDED

Veh: 2 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

Num of Occupants: 1 Driver's Age: 37 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024001 Street: N BROADWAY

30 Meters East of Cloverdale Ave

6/27/2018 Wed 09:07 AM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2018-37368360

Accident Class; NON-REPORTABLE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Manner of Collision: OVERTAKING Weather: CLOUDY

Road Surface Condition: DRY Road Char.: STRAIGHT/ GRADE Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

Num of Occupants: 1 Driver's Age: 28 Sex: F Citation Issued: N

Direction of Travel: SOUTH-WEST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: DRIVER INATTENTION, NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

Num of Occupants: 2 Driver's Age: Sex: Citation Issued:

Direction of Travel: SOUTH-WEST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: PARKED

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024002 Street: N BROADWAY

AT INTERSECTION WITH CENTRAL WESTCHESTER PKWY

9/18/2018 Tue 18:22 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: **Case: 2018-37490523**

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: TRAFFIC SIGNAL

Manner of Collision: OVERTAKING Weather: RAIN

Road Surface Condition: WET Road Char.: CURVE AND GRADE Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 4078 State of Registration: NY

Num of Occupants: 2 Driver's Age: 48 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: PAVEMENT SLIPPERY, UNSAFE SPEED

Veh: 2 CAR/VAN/PICKUP Registered Weight: State of Registration: ME

Num of Occupants: 1 Driver's Age: 40 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, UNKNOWN

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024061 Street: ARMONK-BEDFORD RD

17 Meters East of Main St

9/28/2018 Fri 06:43 AM Persons Killed: 0 Persons Injured: 1 Extent of Injuries: C Case: 2018-37521077

Accident Class: PROPERTY DAMAGE AND INJURY Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: TRAFFIC SIGNAL

Manner of Collision: LEFT TURN (AGAINST OTHER CAR)

Weather: RAIN

Road Surface Condition: WET Road Char.: STRAIGHT AND LEVEL Light Condition: DAWN

Loc. of Ped/Bicycle: NOT APPLICABLE

Action of Ped/Bicycle: NOT APPLICABLE

Ede. of rearbitystic. Not at the cable

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: CT

Num of Occupants: 1 Driver's Age: 39 Sex: M Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: TRAFFIC CONTROL DEVICES DISREGARDED, DRIVER INATTENTION

Veh:2 CAR/VAN/PICKUP Registered Weight: 3580 State of Registration: NY

> Driver's Age: 62 Citation Issued: N Num of Occupants: 1 Sex: M

Public Property Damage: OTHER School Bus Involved: OTHER Direction of Travel: EAST

Pre-Accd Action: MAKING LEFT TURN

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024002 Street: N BROADWAY

AT INTERSECTION WITH Central Westchester Pkwy

10/11/2018 Thu 18:48 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2018-37527859

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: NONE Weather: RAIN

Manner of Collision: OVERTAKING

Road Surface Condition: WET Road Char.: CURVE AND GRADE Light Condition: DARK-ROAD LIGHTED

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:2 CAR/VAN/PICKUP Registered Weight: 3613 State of Registration: NY

> Num of Occupants: 2 Driver's Age: 64 Sex: F Citation Issued: N

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

Veh:1 CAR/VAN/PICKUP Registered Weight: 3340 State of Registration: NY

> Citation Issued: N Num of Occupants: 1 Driver's Age: 46 Sex: F

Direction of Travel: NORTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, PASSING OR LANE USAGE IMPROPERLY

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024002 Street: N BROADWAY

13 Meters North of Central Westchester Pkwy

10/12/2018 Fri 12:33 PM Persons Killed: 0 Case: 2018-37546109 Persons Injured: 0 Extent of Injuries:

> Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: TRAFFIC SIGNAL

Manner of Collision: OVERTAKING Weather: CLEAR

Road Surface Condition: DRY Road Char.: CURVE AND GRADE Light Condition: DAYLIGHT

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh:1 OTHER Registered Weight: State of Registration: -3

> Driver's Age: Sex: Citation Issued: Num of Occupants: 1

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MAKING RIGHT TURN

Apparent Factors: PASSING OR LANE USAGE IMPROPERLY, FAILURE TO YIELD RIGHT OF WAY

 Veh :2
 CAR/VAN/PICKUP
 Registered Weight: 4142
 State of Registration: NY

Num of Occupants: 1 Driver's Age: 48 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024007 Street: N BROADWAY

AT INTERSECTION WITH [Route] 22

10/27/2018 Sat 18:18 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: **2018-37553057**

Accident Class: PROPERTY DAMAGE Police Agency: NORTH CASTLE TOWN PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE Traffic Control: NONE

Manner of Collision: REAR END Weather: RAIN

Road Surface Condition: WET Road Char.: STRAIGHT AND LEVEL Light Condition: DARK-ROAD LIGHTED

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 1 CAR/VAN/PICKUP Registered Weight: 2449 State of Registration: NY

 Num of Occupants: 1
 Driver's Age: 24
 Sex: M
 Citation Issued: N

 Direction of Travel: NORTH
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: PAVEMENT SLIPPERY, NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 3010 State of Registration: NY

 Num of Occupants: 1
 Driver's Age: 37
 Sex: F
 Citation Issued: N

 Direction of Travel: NORTH
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Pre-Accd Action: STOPPED IN TRAFFIC

Apparent Factors: NOT APPLICABLE, NOT APPLICABLE

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024002 Street: CENTRAL WESTCHESTER PKWY

AT INTERSECTION WITH N BROADWAY

12/13/2018 Thu 18:30 PM Persons Killed: 0 Persons Injured: 0 Extent of Injuries: Case: 2018-37645020

Accident Class: NON-REPORTABLE Police Agency: WHITE PLAINS CITY PD Num of Veh: 2

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Traffic Control: TRAFFIC SIGNAL

Manner of Collision: OVERTAKING Weather: CLEAR

Road Surface Condition: WET Road Char.: CURVE AND GRADE Light Condition: DARK-ROAD LIGHTED

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

Num of Occupants: 1 Driver's Age: 25 Sex: M Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: NOT APPLICABLE, DRIVER INATTENTION

Veh:1 CAR/VAN/PICKUP Registered Weight: State of Registration: NY

 Num of Occupants: 1
 Driver's Age: 23
 Sex: F
 Citation Issued: N

 Direction of Travel: SOUTH
 Public Property Damage: OTHER
 School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

Apparent Factors: DRIVER INATTENTION, PASSING TOO CLOSELY

County: Westchester Muni: North Castle(T) Ref. Marker: 22 87024007 Street: [Route] 22

AT INTERSECTION WITH Mount Kisco Rd

1/3/2018 Wed 16:31 PM Persons Killed: 0 Persons Injured: 1 Extent of Injuries: C Case: 2018-37701717

Accident Class: PROPERTY DAMAGE AND INJURY

Type Of Accident: COLLISION WITH MOTOR VEHICLE

Police Agency: Num of Veh: 2

Traffic Control: NONE

Manner of Collision: UNKNOWN Weather: CLEAR

Road Surface Condition: DRY Road Char.: CURVE AND LEVEL Light Condition: DUSK

Loc. of Ped/Bicycle: NOT APPLICABLE Action of Ped/Bicycle: NOT APPLICABLE

Veh: 2 CAR/VAN/PICKUP Registered Weight: 2762 State of Registration: NY

Num of Occupants: 1 Driver's Age: 26 Sex: F Citation Issued: N

Direction of Travel: SOUTH Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: GOING STRAIGHT AHEAD

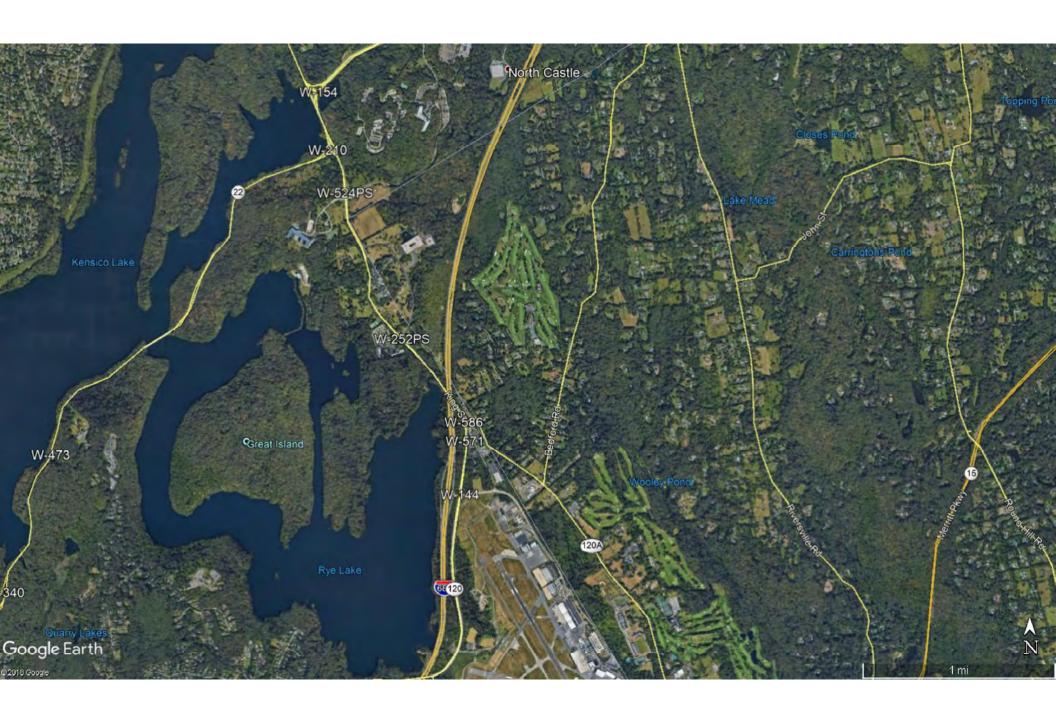
Apparent Factors: NOT ENTERED, NOT ENTERED

Veh:1 CAR/VAN/PICKUP Registered Weight: 4068 State of Registration: NY

Num of Occupants: 1 Driver's Age: 74 Sex: F Citation Issued: N

Direction of Travel: WEST Public Property Damage: OTHER School Bus Involved: OTHER

Pre-Accd Action: MAKING LEFT TURN


Apparent Factors: NOT ENTERED, NOT ENTERED

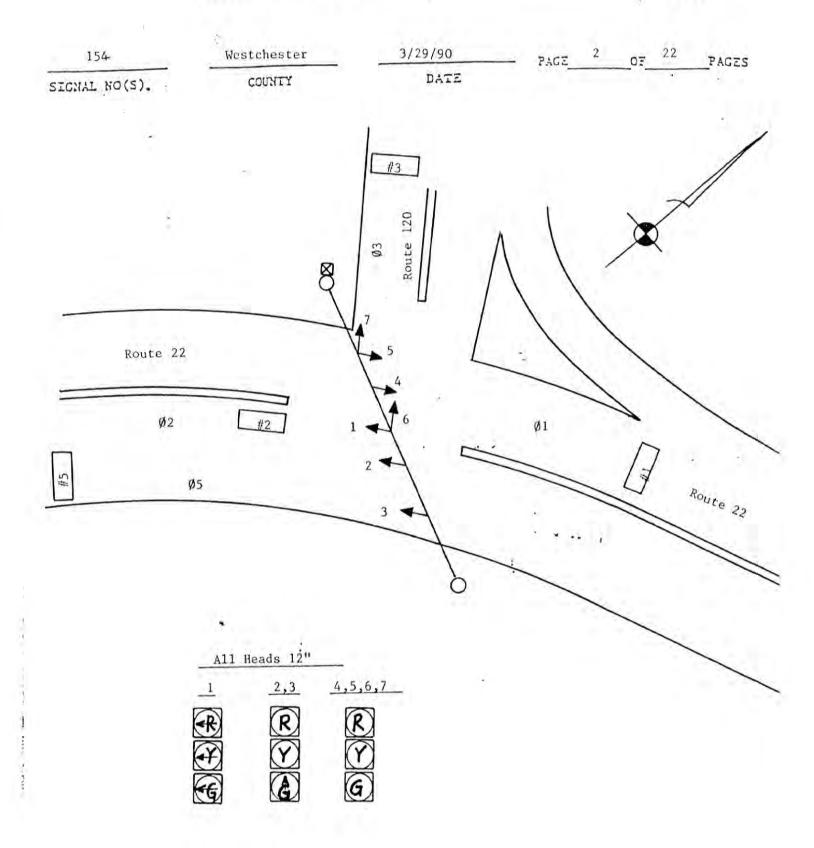
AIRPORT CAMPUS (113 KING STREET)

APPENDIX H

TRAFFIC SIGNAL TIMING PLANS

TE 4d(8/82)

STATE OF NEW YORK - DEPARTMENT OF TRANSPORTATION TRAFFIC AND SAFETY DIVISION TRAFFIC CONTROL SIGNAL SPECIFICATIONS


Study: Contract: P.I.W.: File:

____County ___ Westchester Signal No(s). 154 Page 1 of 22 Pages ☐ City, ☐ Village, ☑ Town of ___ North Castle Department Order filed 11-23-64 as Section 2055.18 Subdivision (h) July 17 Prior specifications hereby superceded:
None Install Micro 179 Purpose: These specifications will be effective upon the X installation, L modification of the necessary traffic control device(s) required by and conforming to the State Manual of Uniform Traffic Control Devices. I. This Signal shall: A. Operate in accordance with the Table of Operations and/or Change Intervals as shown on page(s) 3 ☐ Pretimed signal as a: ☐ Semi-traffic actuated signal ■ Full-traffic actuated signal Pedestrian actuated signal Other Display vehicular indications Display pedestrian indications Be equipped with vehicle detectors Be equipped with Pedestrian push buttons scaled drawing on page 2 as snown in the X schematic, C. Be equipped with | pre-emption, | interconnection and/or coordination which are described as follows:

		3/29/90 M. Monora RTE
è¢:	Main Office (2) ✓ Region 8 Traffic Engineer	(Date) (Signature) (Title) Installation Date Oct. 3, 1989
	x D. Sywyk (2) x Talay (1) Glover	Modification Date

STATE OF NEW YORK - DEFARMENT OF TRANSPORTATION TRAFFIC AND SAFETY DIVISION TRAFFIC CONTROL SIGNAL SPECIFICATIONS (CONTINUED)

Study: Contract: P.I.M.; File:

Phase Times [1.1.1	1													4] and																		
	1	2	3	4	5	6	7	8	Pat#	Сус	Off	Split	Seq	Pat#	Сус	Off	Split	Seq	Pat#	Сус	Off	Split	Seq	Pat#	Сус	Off	Split	Sec	1	12.5		
Min Green	10	3	5		10				1			1	(4)	13	0	0	13	1	25	0	0	0	1	37	0	0	0	1	1	SI	TD8	
Gap, Ext	3	2	2		3				2			2	1	14	0	0	14	1	26	0	0	0	1	38	0	0	0	1		•		١
Max 1	35	35	35		35				3			3	1	15	0	0	15	1	27	0	0	0	1	39	0	0	0	1				
Max 2									4			4	1	16	0	0	16	1	28	0	0	0	1	40	0	0	0	1	Ring	/Star	tup [1.	1.41
Yel Clearance	5	5	4		5				5			5	1	17	0	0	17	1	29	0	0	0	1	41	0	0	0	1		Ring		Enab
Red Clearance	2	2	2		2				6			6	1	18	0	0	18	1	30	0	0	0	1	42	0	0	0	1	1	1	GREEN	
Walk									7			7	1	19	0	0	19	1	31	0	0	0	1	43	0	0	0	1	2	1	RED	On
Ped Clearance									8			8	1	20	0	0	20	1	32	0	0	0	1	44	0	0	0	1	3	1	RED	On
Red Revert									9		-	9	1	21	0	0	21	1	33	0	0	0	1	45	0	0	0	1	4	1	RED	Off
Add Initial									10			10	1	22	0	0	22	1	34	0	0	0	1	46	0	0	0	1	5	2	RED	On
Max Initial									11			11	1	23	0	0	23	1	35	0	0	0	1	47	0	0	0	1	6	2	RED	Off
Time B4 Reduct									12			12	1	24	0	0	24	1	36	0	0	0	1	48	0	0	0	1	7	2	RED	Off
Cars B4 Reduct									Spli	t	1	2	3	4	5	6	7	8	Split		1	2	3	4	5	6	7	8	8	2	RED	Off
Time To Reduce									1	Coor	-			1 - 1		100			_	Coor				T			İ			-	es [2.1]	0,11
Reduce By																7	-												Test Op	_	0	
Min Gap									2	Coor			12.7			1			14	Coor									Correct		SHRT/L	NG
DyMaxLim												-				-		1											Maximu	-	MAX 1	-
Max Step									3	Coor									15	Coor									Force-C		FLOAT	
Options [1.1.2]	1	2	3	4	5	6	7	8			- 1						11												Closed	Loop	ON	
Enable	On	On	On		On				4	Coor									16	Coor									Stop-in-	_	OFF	
Min Recall	On				On																					-			Auto Re	eset	ON	
Max Recall									5	Coor									17	Coor									Expand	Splt	OFF	
Ped Recall										100							4												Ped Re	cycle	NO_REC	CYCLE
Soft Recall									6	Coor									18	Coor									Before		TIMED	
Lock Calls													XD.				- II												After		TIMED	
Auto Flash Entry									7	Coor									19	Coor									Auto	Flash	[1.4.1]	
Auto Flash Exit													100																Auto Fla		PH OVE	R
Dual Entry	On				On				8	Coor									20	Coor									Flash Y	el	45	
Enable Simul Gap	On	On	On	On	On	On	On	On																					Flash R	ed	0	
Gaurantee Passage									9	Coor									21	Coor									Unit F	arams	[1.2.1]	
Rest In Walk																								-					Phase I	Mode	STD8	
Conditon Service									10	Coor									22	Coor		Щ							IO Mod	е	USER	
Non-Actuated 1)					× _								-	11		Loc Fisi	h Start	ON	
Non-Actuated 2									11	Coor									23	Coor									Start Fla		0	
Add Init Calc												- 9	1 0					-			1								Start Al	Red(s)	0	
Options+ [1.1.3]	1	2	3	4	5	6	7	8	12	Coor			17 3						24	Coor									Yellow	< 3"	OFF	
Reservice									L																				Display	Time	20	
PedClr Thru Yel									Pa	ge#																			Red Re	vert	3	
Skip Red No Call										1				s/Opt															MCE Ti	meout	0	1
Red Rest									1A	&1B				s/Opt															Feature	Profile	0	No.
Max II														nnel S															Free Ri	ng Seq	1	
Call Phase														nple T															Auxswit		STOPT	1
Conflicting Phase														d Alte															SDLC F		0	
Omit Yellow											Annu																			t Faults	ON	
Ped Delay														ion Ta	ables:	Coc	rd Al	t Tab	le+ (value	s var	ed b	y time	e-of-d	lay)				Auto Pe			
Grn/Ped Delay														ns; Se															SDLC F		0	
ID: 7154	RTE 2	2 @ R	TE 12	0		-	_							Alarms					ct: F	P/OI A	PAII	to FI	ash.	CIC:	Misc	Unit	Para	m	12/2			ge 1

Phs	Concu	rrent Ph	nases					
1	5	6	0	0	0	0	0	0
2	5	6	0	0	0	0	0	0
3	7	8	0	0	0	0	0	0
4	7	8	0	0	0	0	0	0
5	1	2	0	0	0	0	0	0
6	1	2	0	0	0	0	0	0
7	3	4	0	0	0	0	0	0
8	3	4	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0
14	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0
16	0	0	0	0	0	0	0	0

Seq	Rng	Concu	rrent P	hases			7			Seq	Rng	Concu	rrent P	hases					
1	1	1	2	3	4	0	0	0	0	9	1	1	2	4	3	0	0	0	0
1	2	5	6	7	8	0	0	0	0	9	2	5	6	7	8	0	0	0	0
1	3	0	0	0	0	0	0	0	0	9	3	0	0	0	0	0	0	0	0
1	4	0	0	0	0	0	0	0	0	9	4	0	0	0	0	0	0	0	0
2	1	1	2	3	4	0	0	0	0	10	1	1	2	4	3	0	0	0	0
2	2	6	5	7	8	0	0	0	0	10	2	6	5	7	8	0	0	0	0
2	3	0	0	0	0	0	0	0	0	10	3	0	0	0	0	0	0	0	0
2	4	0	0	0	0	0	0	0	0	10	4	0	0	0	0	0	0	0	0
3	1	2	1	3	4	0	0	0	0	11	1	2	1	4	3	0	0	0	0
3	2	5	6	7	8	0	0	0	0	11	2	5	6	7	8	0	0	0	0
3	3	0	0	0	0	0	0	0	0	11	3	0	0	0	0	0	0	0	0
3	4	0	0	0	0	0	0	0	0	11	4	0	0	0	0	0	0	0	0
4	1	2	1	3	4	0	0	0	0	12	1	2	1	4	3	0	0	0	0
4	2	6	5	7	8	0	0	0	0	12	2	6	5	7	8	0	0	0	0
4	3	0	0	0	0	0	0	0	0	12	3	0	0	0	0	0	0	0	0
4	4	0	0	0	0	0	0	0	0	12	4	0	0	0	0	0	0	0	0
5	1	1	2	3	4	0	0	0	0	13	1	1	2	4	3	0	0	0	0
5	2	5	6	8	7	0	0	0	0	13	2	5	6	8	7	0	0	0	0
5	3	0	0	0	0	0	0	0	0	13	3	0	0	0	0	0	0	0	0
5	4	0	0	0	0	0	0	0	0	13	4	0	0	0	0	0	0	0	0
6	1	1	2	3	4	0	0	0	0	14	1	1	2	4	3	0	0	0	0
6	2	6	5	8	7	0	0	0	0	14	2	6	5	8	7	0	0	0	0
6	3	0	0	0	0	0	0	0	0	14	3	0	0	0	0	0	0	0	0
6	4	0	0	0	0	0	0	0	0	14	4	0	0	0	0	0	0	0	0
7	1	2	1	3	4	0	0	0	0	15	1	2	1	4	3	0	0	0	0
7	2	5	6	8	7	0	0	0	0	15	2	5	6	8	7	0	0	0	0
7	3	0	0	0	0	0	0	0	0	15	3	0	0	0	0	0	0	0	0
7	4	0	0	0	0	0	0	0	0	15	4	0	0	0	0	0	0	0	0
8	1	2	1	3	4	0	0	0	0	16	1	2	1	4	3	0	0	0	0
8	2	6	5	8	7	0	0	0	0	16	2	6	5	8	7	0	0	0	0
8	3	0	0	0	0	0	0	0	0	16	3	0	0	0	0	0	0	0	0
8	4	0	0	0	0	0	0	0	0	16	4	0	0	0	0	0	0	0	0

erlap 1-16 Pro erlap Conflict Loc	y C	EE	Overla	n l c	ok Joh	bit I	1	5.2.2	Dece	+ DF C	Macro		OH		orba - 2	and the state of	10:		1							sition								_		
	W. C		Overla	ib ro	CK INN	DIT	UF	27					ON	1	xtra Ir	ncluded	Ph	1 0	FF		100		Pa	at#			Dwell	No S	hortwa	Ø	E-Yld		RetHld	Float	Min Veh Perm	Min Ped Perr
Included Ø	-		-	-	-	-	-	_	IORM.			ncluded			_	_						RMAL		1	12	22					-	EndGRN	-			
Modifier Ø	-	\vdash		4	-	_	-		Gm			/lodifier									Gr			2	12	22			1 1 7	λe		EndGRN				
Conflict Ø		\vdash		-	_		_		Yel			Conflict	-									el 3.5		3	12	22				-		EndGRN				
Conflict Olap			_	4	-	_	1		Red	1.5	100	Conflict	-									ed 1.5	1	4	12	22					-	EndGRN				
Conflict Ped		1 1	_ ļ	Ţ	_ !		1	100	LG	Ų	299	Conflict				1					L		1	5	12	22	III,					EndGRN	1 = 1			
Included Ø				4	_		_	_	IORM.	AL	_	ncluded										RMAL	(6	12	22						EndGRN				
Modifier Ø		\perp		4			_		Grn	- 1		/lodifier									Gr		_	7	12	22						EndGRN				
Conflict Ø			_	4	_	_	_	_	Yel		_	Conflict										el 3.5		8	12	22		8-5				EndGRN		-		4
Conflict Olap				_	_		_			1.5		Conflict							2.71			ed 1.5		9	12	22						EndGRN				
Conflict Ped		1 1		1	_ !				LG		10	Conflict	Ped								LC	G		0	12	22	-					EndGRN	1 - 3			
Included Ø				_				_	IORM.	AL	_	ncluded									NO	RMAL		1	12	22), I I	1 7			EndGRN				
Modifier Ø									Grn		_	/lodifier							(a)		Gr			2	12	22					100	EndGRN				
Conflict Ø									Yel	3.5	(Conflict	Ø								Ye	el 3.5	1	3	12	22		>-				EndGRN				
Conflict Olap								F	Red	1.5	K	Conflict	Olap								Re	ed 1.5	1	4	12	22						EndGRN			5	
Conflict Ped									LG			Conflict	Ped							- 1	LO	G	1	5	12	22	-					EndGRN		00-1		
Included Ø								N	IORM.	AL	1	ncluded	Ø		1	1		1	1 1		INO	RMAL	1	6	12	22			d F			EndGRN		100		
Modifier Ø			= 2					(Grn		12	Modifier	Ø								Gr	m		7	12	22			3 1			EndGRN				
Conflict Ø								- 0	Yel	3.5	(Conflict	Ø			7 4					Ye	el 3.5	1	8	12	22			111			EndGRN				12
Conflict Olap					-1			F	Red	1.5	L	Conflict	Olap								Re	d 1.5		9	12	22			ñ i			EndGRN				
Conflict Ped							\neg		LG		(Conflict	Ped			900				11(0)	LC				12	22						EndGRN				
Included Ø		ĺÌ		1	Ĺ	i	Ĺ	ÎN	ORM	AL I		ncluded		İ	İ	Î	İ	Î	î î	T.		RMAL			12	22						EndGRN				
Modifier Ø	11(13)			1					Gm			Modifier									Gr			2	12	22						EndGRN				
Conflict Ø	I		0.77	\neg			\neg	_	Yel			Conflict									_	el 3.5		3	12	22		\vdash	1	\rightarrow	_	EndGRN				
Conflict Olap				\neg	\neg	\neg	\neg					Conflict								_		ed 1.5	2		12	22				-		EndGRN				
Conflict Ped				1	\neg	\neg	\neg	_	LG	-		Conflict								_	LC			5	-					-		BegGRN				
Included Ø	İ	i i	i	i	İ	i	Í	700	ORM	AL I	2.0	ncluded		ì	i	Î	Î	i	i i	- 1		RMAL	_	6			-	+	+	_		BegGRN				
Modifier Ø				1	\neg	\neg	\neg	_	Grn			Modifier				1			\vdash		Gr	_		7						1		BegGRN				
Conflict Ø				+			\neg		Yel			Conflict				1		_	\vdash	-	_	el 3.5		8					+	_		BegGRN				
Conflict Olap				\top	\neg	$\overline{}$	\rightarrow	_	Red			Conflict	_					-	\vdash			ed 1.5		9					+	_		BegGRN				
Conflict Ped		\vdash		+	\rightarrow	-	\rightarrow	_	LG	1.0		Conflict			-	+		1	\vdash		LC			0		-		+	+	\rightarrow		BegGRN				
Included Ø	i	î î	1	T)	- i	i	i	- 56	IORM	AL I	-	ncluded		i i	†	†		1	1	1	1000	RMAL		1	_		_	\vdash	+	-	_					
Modifier Ø		\vdash		+	\rightarrow	+	\rightarrow	_	Grn			Modifier		_	+	+			\vdash	-	Gr			2	-		-	+	+	-		BegGRN		1		
Conflict Ø				+	-	+	-+		Yel			Conflict			-	+		+	\vdash	-		el 3.5			-	-	-	\vdash	+	-	-	BegGRN				
Conflict Olap		\vdash	-	+	+	+	+	_	_					-	+	-		-	\vdash	\rightarrow				3			-		+	-		BegGRN		-		
Conflict Ped		\vdash	-	+	+	+	-	_	_	1.5		Conflict		-	-	-		-	\vdash	-		d 1.5		4		-		\vdash	+	-		BegGRN				
AND DESCRIPTION OF THE PARTY OF	1		-	÷	+	+	- 1		LG IORM	AL I				-	-	 	-	-	1	-	LC			5	-		-	\vdash	+	\rightarrow		BegGRN				
Included Ø	+	\vdash	-	+	-	-	+	_	_		_	ncluded	_	-	-	-	-	-	\vdash	-	_	RMAL		6		-		-	-	-		BegGRN				
Modifier Ø		\vdash	-	+	-	-	\rightarrow	_	Gm		_	Modifier		-	+	-	-	-	\vdash	-	Gr			7			_	\vdash	-	-		BegGRN				
Conflict Ø	4		-	+	-	-	+		Yel			Conflict			-	-	-	-	\vdash	-		el 3.5		8						_		BegGRN				
Conflict Olap		\vdash	-	+	-	-	4	_	Red	1.5	_	Conflict	_	_	-	-		-	\vdash	-	_	ed 1.5	_	9								BegGRN		-		
Conflict Ped		ليا					_		LG		(Conflict	Ped								LC	3		0								BegGRN		0_1		
annel Sett	ings	1.8.	1]	_	_	- 1	_								_	_							4	_								BegGRN				
.Channel ->	> 1	2	3			6	7	8	9	10	11	12 1	3 1	4 15	16	17	18	19	20	21 2	22 23	3 24		2								BegGRN				
ise / Olap #				\perp			_		_										\Box					3							- 1	BegGRN				
nnel Type	VEH	VEH	VEH V	EH \	/EH \	/EH V	EH \	/EH V	/EH \	VEH \	/EH \	/EH VI	HV	H VE	VEH	VEH	VEH	VEH	VEH	VEH V	EH VE	H VE									-	BegGRN				
nnel Flash	RED	RED	RED R	ED F	RED F	RED R	RED	RED R	REDIF	RED	REDI	RED RI	DR	ED RE	REI	DRK	DRK	DRK	DRK	DRK D	RK DR	K DR		5					1,6			BegGRN		,=-		
Hz																								6							1	BegGRN				
annel+ Set	ttings	5 [1.8	3.4]				_					- 2									ů,			7				7-7				BegGRN				
.Channel ->	> 1	2	3	4	5	6	7	8	9	10	11	12 1	3 1	4 15	16	17	18	19	20	21 2	22 23	3 24		8				1-1		-1		BegGRN				
sh Red+							\Box					7											CH	nanı		aram					,00					
sh Yellow+		1					\Box	\Box	T		\Box	4							100	- 1					C	110 1	Node	USE	R :	BIU	Мар	SINGLE		Inver	t Rail Input	OFF
sh Green+							T									111															-					
sh Inh Red+	90 1													-	1	17.0							1													
p Ovrd	1						\top	\neg					1										1													
ID: 7154 R	L 22	(2)	TE 4	20	_	_	_		_	_	_		_		_	_	_		2/20/1		Pag	_	_													

ven			04 [5.				-	- 2 -					r 1-6												s 1-64					Ve	hicle	e Or	tion	s 1-6	4 [5.:	21		IF	arar	nete	rs+	1-64	[5.3]		
	Call	Swi	i Dlay	E	d Qu			X E	m	Fail	Det			Dlay	Ext	Que	No	Max	Err	Fail	Def	Call	Ext	Que	Add	Red	Yell	OCC	vol	De	Cal	I Ex	t Que	Add	Red	Yell	occ	vol [et oc	OC	oc	Dlay	Dlay 2	Туре	Sro
#	Ø	Ø			1	Ac	t Pre			Time		Ø	Ø				Act	Pres		Time	#						Lock			#				AddIn					# G	Y	K	1	2		
1	1					4	45	5 5	50	2	33						110	45	50		1	On	On		On					33	On	10	1	On	-				1		1			NORN	1
2	2	5.5	2				45		50	2	34					13.5		45	50		2	On	On		On	0.0		7		34				On		-0.0			2					NORN	
3	3		3				45	5 5	50	2	35		15.7			. 1		45	50		3		On		On					35	On			On		-			3		1			NORN	
4				10				Т	\neg		36							45				On			On		-			36	On			On					4					NORN	
5	5			Т	1		4	5 5	50	2	37		1					45				On			On					37			_	On		-			5		+			NORM	
6											38							45				On			On					38				On			\vdash		6	1	+	1		NORM	
7											39								50		7		On		On					39				On					7	-	+	1		NORM	
8								1	7	-	40							45	50				On		On					40				On			+		8	1	+	+	1	NORM	
9					\top			+	7		41							45	50		q	On	On		On					41			_	On			\rightarrow		9	1	+	+	_	NORM	
10		-	1			1	1	+	\neg		42			\vdash				45	50		10	On	On	_	On	=				42			_	On	\rightarrow		-		10	+	+	+	+	NORM	
11					+	1	1	+	+		43			1		H		45	50				On		On	\dashv				43			_	On	-		+		11	+	+	+		NORM	
12			1	+	1			+	$^{+}$		44							45	50		12	On	On		On	\neg				44		Or		On	\dashv	-	-		2	-	+	+		NORM	-
13					1	1	+	+	+		45							45	50	-			On		On	-				45				On			-		13	+	+	+		NORM	
14					1	+	1	+	+		46		1	1	1			45			1/	On	On		On	1				46				On			-		14	1	+	1		NORM	
15			+	+	+	1	+	+	+	-	47	_		1	+				50				On		On	-				47				On		-	+		15	-	+	-			
16	\neg		1	+	+	+	+	+	1	-	48		-	+	-			45	50	100	16	On	On		On	-				48				On			-			-	+	-		NORM	
17		_	+	+	+	+	+	+	+		49		-	1	-	\vdash		45					On		On	-		_						On	\rightarrow	-			16	\vdash	+	-		NORM	
18			+	+	+	+	+	+	+		50		-	-							18	011	On		On	\rightarrow			-	49	On				-	-	+	-	7	-	-	-		NORM	
19	-	_	+	+	+	+	+	+	+		51			-	-		_	45	50	-	10	On			On	\rightarrow				50	On			On	-		-		18	-	-	-		NORM	
20	\dashv	-	+	+	+	+	+	+	+	-			-	-	-					-	19		On			-				51	On			On			-	-1	19		-	_		NORM	
	\dashv	_	+	+	+	+	+	+	+	-	52		\vdash	-	-	\vdash	_	45	50		20		On		On	-				52	On			On			-		20	_	-			NORM	
21	-	-	+-	⊢	+	+	+	-	-	_	53		-	-			-	45	50		21		On		On	-				53				On	_			- 12	21		-			NORM	
22	\rightarrow	_	-	-	+	+	+	+	-		54			-				45	50	_	22		On		On					54				On				12	22		_	_		NORM	
23	_		+	⊢	+	+	-	+	-		55		-	-				45	50	1-	23		On		On	\rightarrow				55				On		10.1			23					NORM	
24	_		-	⊢	\perp	4	-	-	-	-	56			-					50		24		On		On	_				56				On					24					NORM	
25	_		-	-	+	+	-	1	4	_	57		_	_					50		25		On		On					57				On					25		HE.			NORM	
26	_		-	_	\perp	_	-	_	_		58								50		26		On		On					58	On			On				12	26	-				NORM	1
27					1	_			4		59						-	45			27	On			On					59				On					27					NORM	
28								\perp			60								50		28		On		On					60			1	On					28					NORM	
29											61						-		50		29		On		On					61	On		1	On				12	29		1			NORM	
30						4				-	62					10.7			50		30	On	On		On				1	62		Or	1	On		H,		- 3	30					NORM	
31			1								63			1					50				On		On		1			63	On	Or	1	On					31		1/1			NORM	
32										1 = 1	64					100		45	50		32	On	On		On					64	On	Or	1	On				3	32	h-S	4	100	-	NORM	1
			5+ 1-1																										Pec	De	et Pa	rms	[5.4	1					Ur	it Pa	aran	nters	s [1.2	.11	
Det #	occ Grn	occ	OCC	Dla	Dla 2	y -	Гуре	S	Src	Det #	occ Grn	occ Yell	occ	Dlay	Dlay 2	Ту	ре	Src	Det #	occ	occ Yel	occ	Dlay	Dlay	Тур	е	Src		Det #	Cal	No Act	Ma	x Err						TS	2 De	t Fau	ults			ON
33		31	1		+		RM	+	+	44	- 12					NOI	SW		55						NOR	M			1	<u> </u>	IACI	15		4									t Par linutes	m [1.5	15
34	\neg					_	RM	1	1	45						NO			56						NOR				2			15		-									linutes		0
35			1	+	+		RM	+	1	46						NO			57						NOR				3			15		-					LVO	1/000	rei	iou iv	inutes	5	1 0
36	\neg	_	1	+	1		RM	+		47			+	-	-	NO	4117		58						NOR	_	_	13	4			15		-											
37		-	1	+	+		RM	+	-	48			-	1		NO			59		-				NOR				5			15		-											
38	\dashv		-	-	+		RM	+	-	49		-	-	+	1	NOI			60		\vdash	-				_			0	-															
30	-		-	+	+			+	-	49				-	-				61		-	_			NOR	_			6	-		15		-											
39	-		-	+	+		RM	+	-	50	-		-	-	-	NO					\vdash				NOR				7			15													
40	-		-	-	+		RM	+	-	51				-		NOI			62		-	_			NOR				8			15													
41			-	-	-		RM	-		52				-	-	NOI			63	-	-				NOR																				
42			-	-	-		RM	-	\perp	53		_	1	-		NO			64	_	_	-	- 66	_	NOR																1			. 20	
43						INC	RM	-		54						NO	RM			D: 7	154	RIE	: 22	(a) R	TE 12	.U															12	/20/2	2017	Pag	e 3

Preem	ntion Tir	nes [3.1],	Ontions	+ [3.6]	Tra	ck C	lear P	haeo	[3 2	Tra	ck Cl	oar C	vorla	ne+	3 51						
Pre#	Enable	Type		Delay MinDu			ack Pha		10.2		Over		70110	ь.	0.0]						
1	ON	RAIL	DWELL	Joint Million	1	7 116	301(1110	1		1100	T TOTAL	Оро									
2	ON	RAIL	DWELL		2		+														-
3	ON		DWELL		3		+							\vdash	-	\vdash			-	_	-
4	ON		DWELL		_	_	+	-									- 9			_	-
5					4	_	-				-										⊢
6	ON ON	EMERG EMERG	DWELL	_	5		+					\vdash								_	⊢
	MaxPres			PedClr Co+P			hases	[2 2]	and (Dun el		[2 E]		_		ш					ㅗ
1	MaxPles	WIIIGH	IVIIIIVVIK	ON			nases	[3.2]	and (Jveri	aps+	[3.5]									
2				ON			ases		-		_										
3				ON			erlaps	-													
4				ON		Pe		\vdash	-						_						
5				ON			ases	-			-	1 -5-1						-	-		
6				ON			erlaps														
	Track Gra	Min Dwell	Ext Duroll			Pe		\vdash											-		
1	Track GII	2	LXI DWEI	Tell Tell	3		ases							-				-			
2		2			- °		erlaps		-												
3		2			-	Pe		_													
4		2			4		ases														
5		2			- -		erlaps				\vdash									2	
6		2			-	Pe														-	
Pre#	Red	Pattern	Skip		5		ases													e e	
1	1100	i attom	OFF		J		erlaps							A							
2			OFF			Pe															
3			OFF		6		ases													=	
4			OFF				erlaps							773							
5			OFF			Pe						1								1	
6			OFF			-20-9-7				Pree	nptio	n Op	tions	+ [3.6	31				-		
	riority Pr	eempts			Exi	t Pha	ases [3	3.21			Lock		verrio			Overrid	le	Flsh		-	
Pre#	Type	Min	Max	HE I			it Phas						uto FI			Higher		Dwel	Link		
7	OFF				1		1000			1	ON		ON			ON		OFF			
8	OFF				2					2	ON		ON			ON		OFF			
9	OFF				3		1 3 1			3	ON		ON			ON		OFF			
10	OFF				4					4	ON		ON			ON		OFF			
					5					5	ON		ON			ON		OFF			
Unit P	arameter	s [1.2.1]			6					6	ON		ON			ON		OFF			
	mer Over I		OFF				- 7	-			E = 1					-					
	t or Ext O		PRE																		
	ek Track																				
	ek Dwell 1																				
		neters [1.	8.3]																		
	Mappings		NONE																		
	ert Rail Inp		OFF																		
				4																	
		ID: 7154	RTE 22	@ RTE 120																	
				X	$\overline{}$																

It# 1 Times Tal	ble [1.	1.6.1.2	2]						Alt# 1 Veh Para	ameter	s [5.5	1.11													-
Column#>		2	3	4	5	6	7	8	Column#>	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	1
Assign Ø						-			Assign Det#									-	-10		12	10	17	10	- 1
Min Grn									Call																
Gap, Ext		10							Swiitch																-
Max 1									Delay																
Max 2									Extend																
Yel Clr									Queue																Н
Red Clr	-								No Activity			-										-			-
Walk									Max Presence						-										-
Ped Clr									Erratic Count				-												-
# 2 Times Tal	nle [1	1612)]				_		Fail Time																-
Column#>		2	3	4	5	6	7	8	Alt# 1 Veh Opt	ione I5	512														-
Assign Ø	- (J	7	J	0	-1	0	Column#>		2	3	1	F	E	7	0		10	44	40	10	144	15	
Min Grn	-							\vdash		1	2	3	4	5	6	/	8	9	10	11	12	13	14	15	1
Gap, Ext									Assign Det#																
Max 1					_				Extend																_
Max 2	-								Queue				-												
Yel Cir	-								Added Initial		_														
Red Clr									Red Lock		_	_		-											
Walk	_			_					Yellow Lock		_		_												
Ped Clr	_										_														
	1 74	1010	,						Occupancy				_	_				-							
# 3 Times Tab	ole [1.						_		Volume									-							
Column#>	_1	2	3	4	5	6	- /	8	Alt# 1 Veh Para	ameters															
Assign Ø Min Grn	_	-							Column#>	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	1
The second secon									Assign Det#																
Gap, Ext									Occ-on-green																
Max 1									Occ-on-yellow																
Max 2									Occ-on-red							-77									
Yel Clr								1 1	Delay Phase 1																
Red Clr				- 1			1 = 1	2	Delay Phase 2				15.4											Le U	
Walk								3 3	Detector Mode	NORM I	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NO
Ped Clr								1	Source	0.00															
# 1 Options T									Alt# 1 Ped Para		_	5.1.4]													
Column # ->	1	2	3	4	5	6	7	8	Column#>	1	2	3	4	5	6	7	8								
Assign Ø								124	Assign Det#																
Lock Calls	On	On	On	On	On	On	On	On	Call	-															
Soft Recall									No Activity																
Dual Enrty									Max Presence																
	On	On	On	On	On	On	On	On	Erratic Count																
Guar Passage																		2							
Rest In Walk	1				- 1																				
Cond Service				- 1																					
Reservice			F 0																						
Non-Act 1																									
Red Rest			10.00																						
May																									
Max2 Ped Delay				1																					

It# 2 Options T	able	1.1.6.2	2.2]						Alt# 2 Veh Para	meters	s [5.5.	2.1]													
Column # ->	1	2	3	4	5	6	7	8	Column#>	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	1
Assign Ø	-								Assign Det#																
Lock Calls	On	On	On	On	On	On	On	On	Call																
Soft Recall									Swiitch																
Dual Enrty								= = 17	Delay							1 - 1							7.71		
Enabl SimGap	On	On	On	On	On	On	On	On	Extend				T												
Guar Passage							1	100	Queue				T												
Rest In Walk								100	No Activity																
Cond Service								7	Max Presence																
Reservice								- 3	Erratic Count																
Non-Act 1								5 = 10	Fail Time																
Red Rest		, L						1	Alt# 2 Veh Optio	ons [5.	5.2.21														_
Max2	-	-							Column#>	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
Ped Delay		2.1							Assign Det#										,,,			10		10	
Conflicting Ø1									Call																
t# 3 Options T	able I	1.1.6	2.31						Extend																
Column # ->	1	2	3	4	5	6	7	8	Queue																
Assign Ø	-	-	,	1	-	,	-		Added Initial																
Lock Calls	On	On	On	On	On	On	On	On	Red Lock																
Soft Recall	Oil	Oii	Oil	Oil	Oil	Oil	Oil	-011	Yellow Lock		_	_													\vdash
Dual Enrty				-				7	Occupancy																\vdash
Enabl SimGap	On	On	On	On	On	On	On	On	Volume	_	-														\vdash
Guar Passage	OII	Oil	Oil	Oil	Oil	Oil	Oil	Oil	Alt# 2 Veh Para	motore	- 15 F	5 2 21													_
Rest In Walk									Column#>	1	2	3	4	5	6	7	8	9	10	11	12	12	14	15	
Cond Service									Assign Det#	1	-	3	4	0	0	- 1	0	9	10	11	12	13	14	15	
Reservice									Occ-on-green		-	-													-
Non-Act 1	-								Occ-on-yellow	-	-											-			
Red Rest									Occ-on-red	-	-														\vdash
	-								Delay Phase 1		-														\vdash
Max2								-	Delay Phase 2	_	-	_									_			_	-
Ped Delay									The second section is a second section of the second section is a second section of the second section is a second section of the second section is a second section of the second section is a second section of the section of the sectio																-
Conflicting Ø1	CELE I	4400	. 41						Detector Mode	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	N
t# 4 Options T	able				-		-		Source			- 0 41													
Column # ->	1	2	3	4	5	6	7	8	Alt# 2 Ped Para	meters				-		-	0								
Assign Ø	_	•	_	•	_	_	_		Column#>	1	2	3	4	5	6	7	8								
Lock Calls	On	On	On	On	On	On	On	On	Assign Det#		_		1												
Soft Recall									Call		_														
Dual Enrty								- 2	No Activity			_													
Enabl SimGap	On	On	On	On	On	On	On	On	Max Presence																
Guar Passage						1			Erratic Count																
Rest In Walk																									
Cond Service	7.1																								
Reservice						1 1																			
Non-Act 1																									
Non-Act 1 Red Rest																									
Non-Act 1																									
Non-Act 1 Red Rest																									

nnı	ual	Sch	nedu	ile [4	4.3]	Mor	ith o	fΥ	ear						Day	of	Weel	K			Date	Э																								DayLi
1	J	F			M		J	A			0	N	D		М		W	T	F	S	1	2	-	4 5	6		-																			Plan T
	On				On			0	n C	n	On	On	On		On	On	On	On	On	On	On	On (On O	n Or	n On	On (On On	1
2	J	F	M	Α	M	J	J	Α	4 5	S	0	N	D	S	M	T	W	T	F	S	1	2	3 4	1 5	6	7	8	9 1	0 11	12	13 '	14 1	5 16	17	18	19 2	0 2	1 22	23	24	25 2	6 27	28	29	30 31	
	1	г		٨	14	1				0	^	N.C.	-	0		-	14/	+	-	0	Ļ	0	0		0		0	0 4	0 44	40	40		- 40		10											1
3	J	Г	IVI	A	M	J	J	P	4 ;	5	U	N	D	S	M	- 1	VV	- 1	F	S	1	2	3 4	1 5	6	7	8	9 1	0 11	12	13	14 1	5 16	17	18	19 2	0 2	1 22	23	24	25 2	6 27	28	29	30 31	
	1	F	М	Α	М	.1	.1	Δ	4 9	S	0	N	D	S	M	Т	W	Т	F	S	1	2	3 /	1 5	6	7	8	Q 1	0 11	12	13	14 1	5 16	17	18	10 2	0 2	1 22	23	24	25 2	6 27	28	20	30 31	1
4			181	1,	T.	T		T	Ţ,					T J	100		1		r	Ü		-				Ė	0	3 11	0 11	12	10	17 1	0 10	11	10	10 2	.0 2	1 22	20	24 .	25 2	0 21	20	25	30 31	1
5	J	F	M	Α	M	J	J	Α	4 5	S	0	N	D	S	М	T	W	T	F	S	1	2	3 4	1 5	6	7	8	9 1	0 11	12	13	14 1	5 16	17	18	19 2	0 2	1 22	23	24	25 2	6 27	28	29	30 31	-
,																																						T							T	1
6	J	F	M	Α	M	J	J	A	1 5	S	0	N	D	S	M	T	W	T	F	S	1	2	3 4	1 5	6	7	8	9 1	0 11	12	13 1	14 1	5 16	17	18	19 2	0 2	1 22	23	24	25 2	6 27	28	29	30 31	
	-	-			1.0			_	Ш,	0	0					_			L		L,			4	L.		_					1	1													1
7	J	F	M	A	M	J	J	A	1 :	S	0	N	D	S	M	1	W	T	F	S	1	2	3 4	1 5	6	7	8	9 10	0 11	12	13 1	14 1	5 16	17	18	19 2	0 2	1 22	23	24	25 2	6 27	28	29	30 31	
	J	F	M	Δ	M	.1	- 1	Δ	1 0	S	0	N	D	S	M	Т	\\/	Т	F	2	1	2	3	1 5	6	7	8	9 10	0 11	12	13 4	14 1	5 16	17	18	10 3	0 2	1 22	22	24	25 2	6 27	20	20	30 31	1
8	0	-	IAI		IVI	U	U	1	,		0	14	U	0	IVI	1	VV			0		_		, ,	U	,	0	J 11	0 11	12	13	14 1	J 10	17	10	15 2	0 2	1 22	23	24	25 2	0 21	20	29	30 31	1
0	J	F	М	A	М	J	J	A	1 5	S	0	N	D	S	M	T	W	T	F	S	1	2	3 4	1 5	6	7	8	9 10	0 11	12	13 1	14 1	5 16	17	18	19 2	0 2	1 22	23	24	25 2	6 27	28	29	30 31	
9																								T	T			T	T		T	T					T	T			T					1
0	J	F	М	Α	М	J	J	A	1 5	S	0	N	D	S	M	T	W	T	F	S	1	2	3 4	1 5	6	7	8	9 10	0 11	12	13 1	14 1	5 16	17	18	19 2	0 2	1 22	23	24	25 2	6 27	28	29	30 31	
		_			Ь.	_		L.						L		_			Ļ		Ļ							L				1														1
1	J	F	M	A	M	J	J	Α	1 5	S	0	N	D	S	M	T	W	T	F	S	1	2	3 4	1 5	6	7	8	9 10	0 11	12	13 1	14 1	5 16	17	18	19 2	0 2	1 22	23	24	25 2	6 27	28	29	30 31	
	1	F	M	Δ	M	1	- 1	Δ	1 (2	0	NI	D	9	NA.	Т	1/1/	Т	Е	C	1	2	2	1 5	6	7	Q	0 1	0 11	12	12	14 1	5 16	17	10	10 0	0 2	1 22	22	24	25 2	6 97	20	20	30 31	1
2	U	1	IAI		IVI	J	J		,	0	0	IN		0	IVI	ľ	VV	'	r	J		_	J -	, ,	U	-	0	9 11	0 11	12	13	14 1	3 10	17	10	15 2	0 2	1 22	25	24	25 2	0 21	20	29	30 31	1
2	J	F	М	Α	М	J	J	A	1 8	S	0	N	D	S	М	T	W	Т	F	S	1	2	3 4	1 5	6	7	8	9 10	0 11	12	13 1	14 1	5 16	17	18	19 2	0 2	1 22	23	24	25 2	6 27	28	29	30 31	
3																								I				T	T							T					T	T			T	1
4	J	F	М	Α	M	J	J	A	1 5	S	0	N	D	S	M	T	W	T	F	S	1	2	3 4	1 5	6	7	8	9 10	0 11	12	13 1	14 1	5 16	17	18	19 2	0 2	1 22	23	24	25 2	6 27	28	29	30 31	
7																												1																		1
5	J	F	M	Α	М	J	J	A	1 5	S	0	N	D	S	М	Т	W	T	F	S	1	2	3 4	1 5	6	7	8	9 10	0 11	12	13 1	14 1	5 16	17	18	19 2	0 2	1 22	23	24	25 2	6 27	28	29	30 31	
	1	_	M	٨	M	1	í	۸		0	0	NI	D	0	14	Т	141	т	-	0	4	0	2			7	0	0 4	0 44	40	40 4	4 4	F 40	47	40	40 0	0 0	. 00	00	04	05 0	0 07	00	00	00.04	1
6	J	Г	IVI	А	IVI	J	J	P	1 3	0	U	IN	U	5	IVI	1	VV	- 1	Г	5	-	2	3 4	1 0	0	1	0	9 11	0 11	12	13	14 1:	0 10	17	18	19 2	0 2	1 22	23	24	25 2	5 21	28	29	30 31	1
	J	F	М	A	М	J	J	A	1 5	S	0	N	D	S	М	T	W	Т	F	S	1	2	3 4	1 5	6	7	8	9 10	0 11	12	13 1	14 1	5 16	17	18	19 2	0 2	1 22	23	24	25 2	6 27	28	29	30 31	-
1						T	T		Т	Т							T						Ť	T	T		T	T	T									T		T						1
8	J	F	M	A	M	J	J	A	1 5	S	0	N	D	S	М	T	W	T	F	S	1	2	3 4	1 5	6	7	8	9 10	0 11	12	13 1	14 1	5 16	17	18	19 2	0 2	1 22	23	24	25 2	6 27	28	29	30 31	
•																																														1
9	J	F	M	Α	M	J	J	A	1 5	S	0	N	D	S	M	Т	W	T	F	S	1	2	3 4	1 5	6	7	8	9 10	0 11	12	13 1	14 1	5 16	17	18	19 2	0 2	1 22	23	24	25 2	6 27	28	29	30 31	
	P.	Г	M	۸	14	-	1			0	0	A1	D	0	14	т	SAL	-	-	0		0	2		0	7	0	0 4	0 44	40	40		- 40	47	40	40.0	0 0		00	04	05.0	0 07	00	00	00.04	1
0	J	r	M	Α	М	J	J	A	1 ;	5	0	N	D	5	М	T	W	-	F	S	1	2	3 4	1 5	6	1	8	9 10	0 11	12	13 1	14 1	5 16	1/	18	19 2	0 2	1 22	23	24	25 2	6 27	28	29	30 31	
	1	F	M	Δ	М	- 1	-1	A	1	S	0	N	D	S	М	Т	\A/	Т	F	S	1	2	3 4	1 5	6	7	8	0 10	0 11	12	13 1	1/ 1/	5 16	17	18	10 2	0 2	1 22	23	24	25 2	6 27	28	20	30 31	1
1	0	-	101	_	IVI	J	J		,		0	IN	U	J	IVI	1	**	-	1	J		-	, .	, ,	U	-	0	0 10	0 11	12	10	7 1	0 10	17	10	10 2	0 2	- 22	20	27	20 2	0 21	20	25	00 31	1
2	J	F	М	A	М	J	J	A	1 5	S	0	N	D	S	М	T	W	T	F	S	1	2	3 4	1 5	6	7	8	9 10	0 11	12	13 1	14 1	5 16	17	18	19 2	0 2	1 22	23	24	25 2	6 27	28	29	30 31	
2	-					T		ľ																				T					T			T	T	T		T	T	T				1
3	J	F	M	A	M	J	J	A	4 5	S	0	N	D	S	M	T	W	T	F	S	1	2	3 4	1 5	6	7	8	9 10	0 11	12	13 1	14 1	5 16	17	18	19 2	0 2	1 22	23	24	25 2	6 27	28	29	30 31	
								L		1																		1								1				1						1
4	J	F	M	Α	M	J	J	A	4 5	S	0	N	D	S	М	T	W	T	F	S	1	2	3 4	1 5	6	7	8	9 10	0 11	12	13 1	14 1	5 16	17	18	19 2	0 2	1 22	23	24	25 2	6 27	28	29	30 31	
		154			E 2																																								0/2017	1

ay Pi	ans [4.4]																						Ac	tior	Tab	ole [4.5]								Co	ord A	ltern	ate 1	Tabl	es - F	at+	[2.6]													
		Day	Plan	1				D	ay	Pla	an 2	2		Т				Da	v P	lan	3			1																						_	_	0	verlag	n Off	_	_	_	_		
Hou	m Min	Act	Ho	ur Min	Act	Hou	ır Mi	_	Act	_	_	Min	n /	ct	Н	our		Ac	_	_	_	Min	Ac	Ac	# 1	Pat#	A1	42 A	3 51	1 52	2 53	S4	S5	S6 5	S7 S8	Pat	# 00	ot ØT	ime	DetC	G Call	Inh I	CIC	CNA1	1		2	3	4	5		6	7	8	Dia	Max
1 0	0	1	9	1		0	0		0	9	0	0	T	0	1	0	0	0	19	=	==	0	0		$\overline{}$	1					1					1					T	T	5,0	Olati		Т	Ī	-	T	T	1	_	_	T	DFT	-
2			10			0	0		0	10	0	0	1	0	2	0	0	0	10	-	-	0	0	2		2	1	+	+	1	+	\vdash	Н	$^{+}$	+	2		+	\dashv			+				+	\rightarrow	_	_	+	+		-	1	DFT	-
3			11		1	0	0	1	0	11	0	0		0	3	0	0	0	1	1 0	1	0	0	3	_	3		+	+	1		1			+	3		-	+			+	-	-		+	+	-	+	+	+		-	+	DFT	+
1			12			0	0		0	12	0	0		0	4	0	0	0	13	2 0		0	0	-	_	4		1	+	1						4		1	1		1	+				1	_		-	+	+			1	DFT	+
5			13		- 1	0	0		0	13	0	0		0	5	0	0	0	13	3 (1	0	0	5		5	1	1	+	1	1			1	1	5			\dashv		1	+				+			1	+	+			1	DFT	+
6		1	14		- 6	0	0		0	14	0	0		0	6	0	0	0	1/	4 (1	0	0	6		6	1	1	+	1	1	Т			1	6		1	1			+				+	1	_	-	+	+			1	DFT	+
1			15		- 7	0	0	10	0	15	0	0		0	7	0	0	0	1	5 0	1	0	0	7		7	1	1	+						1	7			7			+				+			+	1	+			_	DFT	+
3		, EA	16			0	0		0	16	0	0		0	8	0	0	0	16	6 0	1	0	0	8	E	8	1	1	1					1		8			\neg			\top				+	_		-	1	+			+	DFT	+
	-	Day	Plan	4				D	ay	Pla	an f	5		1			_	Da	y P	lan	6	_		9		9	1	1	1		T			1	+	9			\neg		1	1				+	1		+		+			1	DFT	+
Hou	r Min	Act	Ho	ur Min	Act	Hou	r Mi	n A	Act	1	Hour	Mir	n A	ct	Н	our	Min	Ac	T	Ho	ur	Mín	Act	10	0	10		+	1							10		1	7		1	+	-9			+			-	1					DFT	+
1 0	0	0	9 0	0	0	0	0	1	0	9	0	0		0		===	0	0	-	1	1	0	0	_	_	11				1	1				1	11	_	1	7		1	1	-			+	7				-				DFT	+
2 0	0	0	10 0	0	0 2	0	0	10	0	10	0	0	1 5	0	2	0	0	0	10	0	1	0	0	12	2	12		1	T	T		Œ.				12			1			1				+	_								DFT	1
3 0	0	0	11 0	0	0 3	0	0		0	11	0	0	17	0	3	0	0	0	1	1 0	1	0	0	-	_	13					1			1		13			7			+				+								1	DFT	+
4 0	0	0	12 0	0	0 4	0	0	10	0	12	0	0		0	4	0	0	0	12	2 0	1	0	0	_	_	14	1	+	+	1		Н		1	+	14			1		1	+		_		+	7		\vdash		+			1	DFT	+
5 0	0	0	13 0	0	0 5	0	0		0	13	0	0		0	5	0	0	0	13	3 0	1	0	0	15	_	15	1	+	1					1		15	_		1			+				+	\dashv		\vdash	+	+		-	1	DFT	+
6 0	0	0	14 0	0	0 6	0	0	10	0	14	0	0		0	6	0	0	0	14	1 0	1	0	0	-	_	16		1	1	t	1			+	+	16	_		1		+	+	-			+	+			+	+	-		1	DFT	+
7 0	0	0	15 0	0	0	0	0		0	15	0	0		0	7	0	0	0	+	-	-	0	0	•	_	17	1	+	+	T	1			1		17	_		\dashv			+				+	1		_	+	+			1	DFT	+
8 0	0	0	16 0	0	0 8	0	0		0	16	0	0	-	0	-	0	0	0	16	-	-	0	0	-	_	18	+	+	+	+			\dashv	+	+	18	-		+			+			-	+	+		\vdash	-	+			-	DFT	+
		Day	Plan	7			_	_	ay	Pla	_	_	-	1		-	-	Da	_	_	_		_	15	_	19	+	+	+	†			\forall	+	+	19	_	+	1		+	+	= +			+	+		+	+	+	-		-	DFT	1
Hou	Min	_		_	Act	Hou	r Mi	_	_	_	Hour	_	n A	ct	Н	our	Min		4	_	_	Min	Act	-	-	20	+	+	$^{+}$	1		-		+	+	20	_	+	\dashv		+	+				+	-	-	_	+	+	-		1	DFT	+
0	=	0		_	0	0	-	\Rightarrow	0	===	0	0	=	0		0	0	0	19	\Rightarrow	\Rightarrow	0	0	21	_	21	1	+	+	+	+		\dashv	+	+	21			+	=	-	+				+	-	-	\vdash	+	+	\dashv		+	DFT	+
2 0	0	0	10 0	0	0 2	0	0	-	-	10	0	0	-	0	-	0	0	0	10	-	-	0	0	22	_	22	+	+	+	†	+		\dashv	+	+	22			+	=	+	+			\vdash	+	\rightarrow	-	_	+	+	-		-	DFT	+
3 0	0	0	11 0	0	0 3	0	0		0	11	0	0	-	0	-	0	0	0	111	0	-	0	0	23	_	23	+	+	+	1	1		\dashv	+	+	23		+	+		1	+		-		+	+	-	1	+	+	\dashv		1	DFT	+
4 0	0	0	12 0	0	0 4	0	0		0	12	0	0	-	0	-	0	0	0	12	+	-	0	0	24	_	24	+	+	+	1			\dashv	+	+	24	_	+	+	-	+	+				+	-	-	-	+	1	-	-		DFT	+
5 0	0	0	13 0	0	0 5	0	0	-	_	13	0	0	-	-	_	0	0	0	13	3 0	-	0	0	25	_	-		1	+	1	1	Н	+	+	+	25	_	+	+		1	+				+	=	-	+	+	+	\dashv			DFT	+
6 0	0	0	14 0	0	0 6	0	0	-	0	14	0	0		0	-	0	0	0	1/4	-	-	0	0	26	_		+	+	+	+	1	Н	+	+	+	26	_	-	+	-	+	+				+	-	-	-	+	+	\dashv		-	DFT	+
7 0	0	0	15 0	0	0 7	-	0		0	15	0	0	1	0	-	-	0	0	-	-	-	0	0	27	_		+	+	+	+		Н	+	+	+	27	_		+	=	1	+				+	-	-	-	+	+	-		-	DFT	+
8 0	0	0	16 0	_	0 8	-	0	-	_	16	0	0	_	-	_	0	0	0	16	+	-	0	0	28	_		+		+	+	1	Н		+	+	28	_	+	+	=	+	+				+	-	-	-	+	+	\rightarrow		-	DFT	1
-			Plan	_	+	-	·	_	y F	_		_	-	+	_	- 1		Day	-		_	-	_	29	_	1	+	+	+	+	+	Н	-	+	+	29	-	+	+		1	+				+	+	-		+	+	\dashv	-	-	DFT	+
Hou	Min	_	_	_	Act	Hou	Mil	_	Act	_	_	Mir	n A	ct	Н	our		Ac	_	_		Min	Act	_	_		+	+	+	1		Н	+	+	+	30	_	+	+	-	1	+				+	-		-	+	+	-	-		DFT	+
1 0	-	0		-	0 1	_	-	=	0	==	0	0	=	0	_	0	0	0	÷	=	=	0	0	31	_	1	+	+	+	+	+	Н		+	+	31			+		-	+				+	-	-	-	+	+	\dashv	-		DFT	+-
2 0	0	0	10 D	_	0 2	0	0	-	0	10	0	0		-	-	0	0	0	11	0	-	0	0	32		1	+	+	+	+	+	\vdash	+	+	+	32		+	1		1	+		_		+	+	-		+	+				DFT	+
3 0	0	0	11 0	-	0 3	0	0	-	0	11	0	0	-	0	-	0	0	0	111	0	_	0	0	33	_	1	+	+	+	+	+	\vdash	+	+	+	33		+	+		-	+				+	+	-	-	+	1	-	-	-	DFT	+
1 0	0	0	12 0	_	0 4	0	0	-	-	12	0	0	-	_	-	0	0	0	12	0	-	0	0	34	_	1	1	+	+	+	1	Н	1	+	+	34	-	+	+	-	1	+		_		+	+			+	+	-		-	DFT	\vdash
0	0	0	13 0	1	0 5	0	0	-	-	13	0	0	-	-	-	0	0	0	12	0	-	0	0	35	_	\dashv	+	+	+		+	\vdash	+	+	+	35		+	+	-	+	+					+		-	1	+	-			DFT	\vdash
0 0	0	0	14 0	_	0 6	-	-	-	_	14	0	0	-	0	-	-	0	0	1/4	0	-	0	0	36	_	+	+	+	+	+		Н	+	+	+	36		+	+		-	+				+	+			-	+	\dashv			DFT	+
7 0	0	0	15 0		0 7	0	0	-	_	15	0	0	-	-	-	0	0	0	15	0	-	0	0	37	_	-	+	+	+	+	+	\vdash	+	+	+	37		+	+	_	+	+		-		+	+		-	1	+	-	-	-	_	+
3 0	0	0	16 0	_	0 8	-	-	-	-	16	0	0	_	0	-	0	0	0	16	-	_	0	0	38	_	\dashv	+	+	+	+	-	\vdash	+	+	+	38		+	+		-	1				+	+		-	+	+	-		-	DFT	+
1 -	_		Plan '		+	, ,	1 0	_	v F	_	_	_	_	+	-1	- 1		Day	_	_	_	•	U	39	_	+	+	+	+	+	+	\vdash	+	+	+	39		+	+		+	+	-			+	+		-	+	+	-	-	-	DFT	+
Hou	_	_		ur Min	Act	Hou	d Mi						n A	ct	Н	huo		_	_		_	Min I	Act	_	_	-	+	+	+	+	+		+	+	+	40		+	+		+	+	-		-	+	+	-		-	+	-		-	DFT	\vdash
				0																			0	_	+	_		_	_	-	-	-	_	_		41		+	+		+	+				+	+			-		-		-	DFT	
2 0	0	0	10 0	\rightarrow	0 2	-	-	_	0	_	_	0	-	-	-	\rightarrow	0	0	-	+	-	0	0	-	1	T	T	T	T	T	T		Т	T	T	42		+	+		-	+				+	+		-	+	+	+		-	DFT	+
3 0	0	0	11 0		0 3	-	-	_	0	_	0	0	_	_	_	0	0	0	-	-		0	0	70	+	_1		T	1	_	_	ш	+	_	-	43		+	+		-	+				+	+	-	-	+	+	-			DFT	+
1 0	0	0		_	0 4	-	_	_	0	_	0	0	_	0	_	_	0	0	-	-	_		0	98	1	1	1	T	T	T			T	Т	T	44	_	+	+	-	-	+				+	+		-	1	+	-		-	DFT	
5 0	0	0			0 5		_		0		0	0		0			0		13	_		$\overline{}$	0			\dashv	+	+	+	+	+	\vdash	+	+	+	45		+	+		-	+				+	+		-	1	+	-		-		
5 0	_	0			0 6				0		0	0		_			0	0	_	_		0	0			255	+	+	+	+	1		-	+	+	46		+	+		+	+				+	+		_	1		-	_		DFT	
-	0	0			0 7		-		0		0	0		0	-		0	0	-	+		0	0	10		D: 71	54 5	TE	22	a	RT	E	20	_	1	47		+	+	_	+	+	-	-		+	+		-	+	+	-		-	DFT	
7 0					. (U	III 15	/I U		v	U		-	-	A. L			· W						4/		- 1	- 1			- 1	- 1									- 1			LUE	

1-I 1 Veh Call 1 1-2 2 Veh Call 2 1-3 3 Veh Call 3 1-4 189 Unused 1-5 5 Veh Call 5	O1-1 1 Ch1 Red O1-2 49 Ch1 Green	07-1 40 Ch16 Yellow	IO Logic [1.8.7] Result	Fcn Ope	ar .	Fon Oper	Fan Timer
1-3 3 Veh Call 3 1-4 189 Unused						rui Opei	Fcn Timer
1-4 189 Unused		07-2 16 Ch16 Red	1 0 =	1 0	1	0	1 0 DLY
	O1-3 2 Ch2 Red	07-3 64 Ch16 Green	1 0 =	1 0	1	0	1 0 DLY
1-5 5 Veh Call 5	O1-4 26 Ch2 Yellow	07-4 115 Not Used	1 0 =	1 0	1	0	I 0 DLY
	O1-5 50 Ch2 Green	07-5 115 Not Used	I 0 =	1 0	1	0	1 0 DLY
1-6 189 Unused	O1-6 3 Ch3 Red	07-6 115 Not Used	I 0 =	1 0	1	0	1 0 DLY
1-7 189 Unused	O1-7 27 Ch3 Yellow	07-7 115 Not Used	1 0 =	1 0	- 1	0	1 0 DLY
1-8 189 Unused	O1-8 51 Ch3 Green	O7-8 15 Ch15 Red	1 0 =	1 0	1	0	1 0 DLY
2-1 189 Unused	O2-1 4 Ch4 Red	C11S-USER IO Map [1.8.9.1 In]	1 0 =	1 0	TILL T	0	1 0 DLY
2-2 189 Unused	O2-2 52 Ch4 Green	I4-1 189 Unused	1 0 =	1 0	1	0	I 0 DLY
2-3 189 Unused	O2-3 5 Ch5 Red	14-2 189 Unused	1 0 =	0 1		0	1 0 DLY
2-4 189 Unused	O2-4 29 Ch5 Yellow	14-3 189 Unused	Security Access Levels [8.2]		43	NONE	Com Parameters [6.1]
2-5 189 Unused	O2-5 53 Ch5 Green	I4-4 189 Unused	1 SWLOAD	22 NONE	44	NONE	Station ID 7154
2-6 189 Unused	O2-6 6 Ch6 Red	17-1 189 Unused	2 SECURE	23 NONE	45	NONE	Group ID
2-7 189 Unused	O2-7 30 Ch6 Yellow	17-2 189 Unused	3 NONE	24 NONE	46	NONE	Master ID 0
2-8 189 Unused	O2-8 54 Ch6 Green	17-3 189 Unused	4 NONE	25 NONE	47	NONE	Backup Time 0
3-1 189 Unused	O3-1 7 Ch7 Red	17-4 189 Unused	5 NONE	26 NONE	48	NONE	SysUp Modem [6.1]
3-2 189 Unused	O3-2 55 Ch7 Green	17-5 189 Unused	6 NONE	27 NONE	49	NONE	Enable Modem OFF
3-3 189 Unused	O3-3 8 Ch8 Red	17-6 189 Unused	7 NONE	28 NONE	50	NONE	Idle Time 0
3-4 189 Unused	O3-4 32 Ch8 Yellow	17-7 189 Unused	8 NONE	29 NONE	51	NONE	Dial Time 0
3-5 189 Unused	O3-5 56 Ch8 Green	17-8 189 Unused	9 NONE	30 NONE	52	NONE	Tel: #N/A
3-6 189 Unused	O3-6 9 Ch9 Red	18-1 189 Unused	10 NONE	31 NONE	53	NONE	Alt: #N/A
3-7 189 Unused	O3-7 33 Ch9 Yellow	I8-2 189 Unused	11 NONE	32 NONE	54	NONE	
3-8 189 Unused	O3-8 57 Ch9 Green	18-3 189 Unused	12 NONE	33 NONE	55	NONE	2070 Port Parms [6.2]
4-1	O4-1 10 Ch10 Red	18-4 189 Unused	13 NONE	34 NONE	56	NONE	Port Baud Rate FCM
4-2 C11S Connector	O4-2 58 Ch10 Green	18-5 189 Unused	14 NONE	35 NONE	57	NONE	SP1 9600 MODE 6
4-3	O4-3 11 Ch11 Red	I8-6 189 Unused	15 NONE	36 NONE	58	NONE	SP2 9600 MODE 6
4-4	O4-4 35 Ch11 Yellow	18-7 189 Unused	16 NONE	37 NONE	59	NONE	SP3 19200 MODE 6
4-5 179 Door Open	O4-5 59 Ch11 Green	I8-8 189 Unused	17 NONE	38 NONE	60	NONE	SP4 38400 MODE 6
4-6 189 Unused	O4-6 12 Ch12 Red	C11S-USER IO Map [1.8.9.2 Out]	18 NONE	39 NONE	61	NONE	SP5 1200 AUTO
4-7 229 33xCMUStop	O4-7 36 Ch12 Yellow	O8-1 115 Not Used	19 NONE	40 NONE	62	NONE	SP6 1200 AUTO
4-8 228 33xFlashSns	O4-8 60 Ch12 Green	O8-2 115 Not Used	20 NONE	41 NONE	63	NONE	SP7 1200 AUTO
5-1 189 Unused	O5-1 28 Ch4 Yellow	O8-3 115 Not Used	21 NONE	42 NONE	64	NONE	SP8 1200 AUTO
5-2 189 Unused	O5-2 34 Ch10 Yellow	O8-4 115 Not Used					
5-3 189 Unused	O5-3 25 Ch1 Yellow	O8-5 115 Not Used	2070 IP 1 Addressing [6.5]		2070 IP 2 Addressin	g [6.5]	
5-4 189 Unused	O5-4 31 Ch7 Yellow	O8-6 115 Not Used	Addressing		Addressin		A CONTRACTOR OF THE CONTRACTOR
5-5 189 Unused	O5-5 39 Ch15 Yellow	O8-7 115 Not Used	Addr 0 0	0 0	Addr 0	0 0	0
5-6 189 Unused	O5-6 63 Ch15 Green	O8-8 115 Not Used	Mask 0 0	0 0	Mask 0	0 0	0
5-7 189 Unused	O5-7 115 Not Used		Brdcst 0 0	0 0	Brdcst 0	0 0	0
5-8 189 Unused	O5-8 114 Watchdog		GtWay 0 0	0 0	GtWay 0	0 0	0
6-1 189 Unused	O6-1 115 Not Used		Port 0		Port 0		
6-2 189 Unused	O6-2 115 Not Used		The Court of Park of			The Second	
6-3 189 Unused	O6-3 13 Ch13 Red		2070 Port Binding Ports [6.		2070 Port Binding F		
6-4 189 Unused	06-4 37 Ch13 Yellow		Port Echo	Mode	Function Channel		
6-5 189 Unused	O6-5 61 Ch13 Green		ASYNC1 SP1 OFF	0	TS2/CVM NONE		
6-6 189 Unused	O6-6 14 Ch14 Red		ASYNC2 SP2 OFF	0		SYSDown ASYNC1	
6-7 189 Unused	O6-7 38 Ch14 Yellow		ASYNC3 SP3 OFF	0	Opticom NONE	Shell NONE	
6-8 189 Unused	O6-8 62 Ch14 Green		ASYNC4 SP4 OFF	0	Loop Det. NONE		
			SYNC1 SP5S SYNC3	OFF	GPS NONE		
12 (2000)	DIE 00 G DIE 400		SYNC2 OFF SYNC4	OFF			dolonian Density
ID: 7154	RTE 22 @ RTE 120						12/20/17 Page 9

#	Event / Alarm	Ev Alr						Red	irect	Phas	ses[1	.1.5]						Inh	ibit P	hase	s[1.1	.5]												
1	Power Up Alarm.	On On		Phas	ses Ca	alled B	y Ø		Fron	To	From	То	From	To	From	То			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
2	Stop Timing	On On	1					1										1															1.77	
3	TS1 Cabinet Door		2					2										2													2.5			
4	Coordination Failure	On On						3										3																
5	External Alarm # 1	On On						4							,			4																
6	External Alarm # 2	On On	5					5										5						100										
7	External Alarm #3		6					6										6								J.								
8	External Alarm # 4		7					7										7								-								
9	Closed Loop Disabled	On On	41			-		8										8																
0	External Alarm # 5		9					9										9											i pi					
11	External Alarm # 6	2 1 1	10					10										10																
2	Manual Control Enable	On On	11					11										11											411					
13	Coord Free Input		12					12										12					1. 3		16									
4	Local Flash Input	On On	13					13	-			7			-			13																
15	MMU Flash		14	$\overline{}$				14								2		14																
16	CMU Flash	1	15					15										15																
	Cycle Fault	On On			1			16								1.1		16							1				19					
_	Cycle Failure	On On							6.3]									Alt	Inhib	it Ph	ases	#1[1.1.6.	3]										
	Coordination Fault	On On		Ø	Phas	ses Ca	lled B	y Ø		From	То	From	To	From	To	From	To		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	Controller Fault	On On	1						1									1												1				
1	Detector SDLC Failure	EE1	2	1					2									2												-				1
2	MMU SDLC Failure		3						3				1		7 (1)			3							1				[]					
23	Critical SDLC Failure		4						4					5-11				4				Į						100		$\pm \pm$				
24	Reserved		5						5	100								5												1				
25	EEPROM CRC Fault	On On	6						6									6											==	-1				-
26	Detector Diagnostic Failur		7						7					G I				7																
27	BIU Detector Failure	On On							8									8														-		
28	Queue detector alarm	On On				edirec			6.3]									Alt	Inhib	it Ph	ases	#2[1.1.6.	3]										
29	Ped Detector Fault	On On	Co	Ø	Phase	es Call	ed By	Ø		From	To	From	To	From	To	From	To		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
30	Coord Diagnostic Fault		1						1									1																
11	TempAlert Probe Ch. A		2				1.		2									2																
12	TempAlert Probe Ch. B		3				1		3					1				3								-								
17	Coord Active		4						4									4																
18	Preempt Active	On On					17		5									5																
19	Preempt 1 Input	On On	6	174					6									6														1		
	Preempt 2 Input	On On							7									7											1					
	Preempt 3 Input	On On	8						8									8												1 _ 1				
	Preempt 4 Input	On On	Co	ord,	CIC F	Plans	[2.3]									mete	rs [1	.2.1	1															
	Preempt 5 Input	On On				1	2	3	4	5	6	7	8	Allow	Skip	Yellov		OFF		Max (Cycle	Time												
	Preempt 6 Input	On On	1	OFF										TOD	Dim E	nable		OFF		Cycle	Fault	Actio	n	ALAF	M									
5	Preempt 7 Input	On On	2	OFF										Tone	Disab	ole		OFF					- 1											
6	Preempt 8 Input	On On												Diam	ond N	lode		4Ph																
	Preempt 9 Input	On On				1									up Tin			900																
	Preempt 10 Input	On On	Au	to FI	ash F	hase	Ola	p Set	tings	[1.4	.2]				ole Init			OFF																
	In Transition	On On									Ü.,			Cycle	Fault	t Actio	n	ALA	RM															
_	FIO Status Alarm			(olaps						_	_					n Time		ON			7154										0/17		Page	2 =

PAGE <u>20</u> OF <u>22</u> PAGES __

SIGNAL NO.		COUNTY		CAT	1	L. V. L. LYC.		
	-	Low Commission	FACE	TEPMINALY	VIRING ECARD	FACE	TERMINAL	MIRING BOAR
WITCH PACK	FUNCT.	INDICATIONS		Terminal	Wire Cater Gade		Terminal	Wire Calor C
				5P 1R			SPIR	
			10.5	57 1 Y	7		57 1 Y	
57 1	× ,		4,5			1	SP 1G .	
	91		,, -				Grad 303	
		Grna Wire	-	SP 2 P			25 2 d	
			1 - 0 -		1		SP ZY	
	10		1	SP 2 Y	-	17	SP 2G	
SP 2	\$2		/	SP 2G			Grna Bus	
	17,171	Grnd Wire		Grnd Bus	1		SP 3 R	
		F 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		SP 3 R			SP 3 Y	1
SP 3			17	SP 3 Y		V	SP 3G	
	Ø3		6,7	SP 3G		-	Grns Bus	
	61 14 14	Grna Wire		Gran Bus	+		S2 43	-
				SF 4.5			SP 4Y	+
SP 4				SP 14			SP 4G	
36 4	1	4		SP 4 G			Grna Bus	
		Grna Wire		Grna Eus			SP 5 R	
757777				SP 5 R			SP 5 Y	-
SP 5	1		0 0	S7 5 Y	1			-
37 3	\$5		2,3	SP 5 G			SP 5G	
	, ~	Grna Wire		Grna Bus		1	Gra Bus	-
				SP 6 R			SP 6 R	
02 V &				SP 6 Y			SP 6 Y	
SP 6				SP 6 G			SP 6 G	
		Gma Wire		Graa Bus			Grand Bus :	
		Cind wife		SP 7 R		:	SP 7 R	1
	2		-	SP 7 Y	19		SP 7 Y	
SP 7	-		1	SP 7G	2 1 - 1		SP 7G	/
	-	a /w		Gmd Sus			Grad Bus	
		Grnd Wire		SP 8 R			SP 3R	
			-	SP 8 Y			SP 8 Y	
SP B				SP 9 G			52 8 G	
				Grad Bus			Grnd Bus	
		Grnd Wire	-	SP 9 R			52 9 R	
			-	SP 9 Y			SP 9 Y	
SP 9			-	SP 9 G			SP 9 G	
0240.3	-		-	Grad Eus			Grnd Eus	
		- Grad Wire	+	SP 10 R			SP 10 R	
			-	SP 10 Y		- [SP 10 Y	
K65/85				SP 10 G			SP 10 G	KT-/-
SP 10						4	Grad 8us	
		Grnd Wire		Grnd Bus		•	SP 11 R	EN
				SP 11 R			SP 11 Y	
				SP 11 Y			SP 11 G	
SP 11			1	SP 11 G	1.		Grnd Bus	Table -
		Grna Wire		Grnd Bus		1	Grnd Bus	
				Grnd Bus	1000000		SP 12 R	
				SP 12 R	1 1 7/2 1 1 3/2 2		SP 12 Y	
				SP 12 Y			S7 12 G	
SP 12		in Interpret		SP 12 G			Gra Zus	100
		Grna Wire		Grna Sus			SP 138	
			1	SP 138			SP 13Y	
	1	15 -	4	SP 13 Y		1		
SP 13 -		T. T. T. T. T. T. T. T. T. T. T. T. T. T		SP 13G		1	SP 13G	-
		Grnd Wire	R	Grnd Sus	915		Grnd Sus	
			1	SP 14 R			SP 14 R	
abite .		25 4	H	SP 14 Y			S2 14 Y	
SP14			1	· 57 44 G			* SP 44 G	-
		· Grnd Wire		Grma Bus	AT THE REAL PROPERTY.		Grna Sus	

TABLE OF SWITCH PACKS

154 SIGNAL NO Waste

3/29/90 DATE PAGE 21 OF 22 PAGES _ .

CONFLICT / CURRENT MONITOR PROGRAMMING

CONFLICT	T MONITOR DIODES TO BE CUT	CONFLICT MONITOR YELLOW JUMPERS TO BE INSTALLED	CURRENT MONITOR DIODES TO BE CUT
SP1-SP5			
SP 1 - SP 5 SP 2 - SP 5			
			(<u> </u>
		\ \ \ \ \ \ \	

NOTES:

-	****	7/	(3/1/85	1
1 C	***	11	0/1/65	1

TAPS	МО	
FILE:		

TABLE OF INPUT WIRING

154 SIGNAL NO Waste

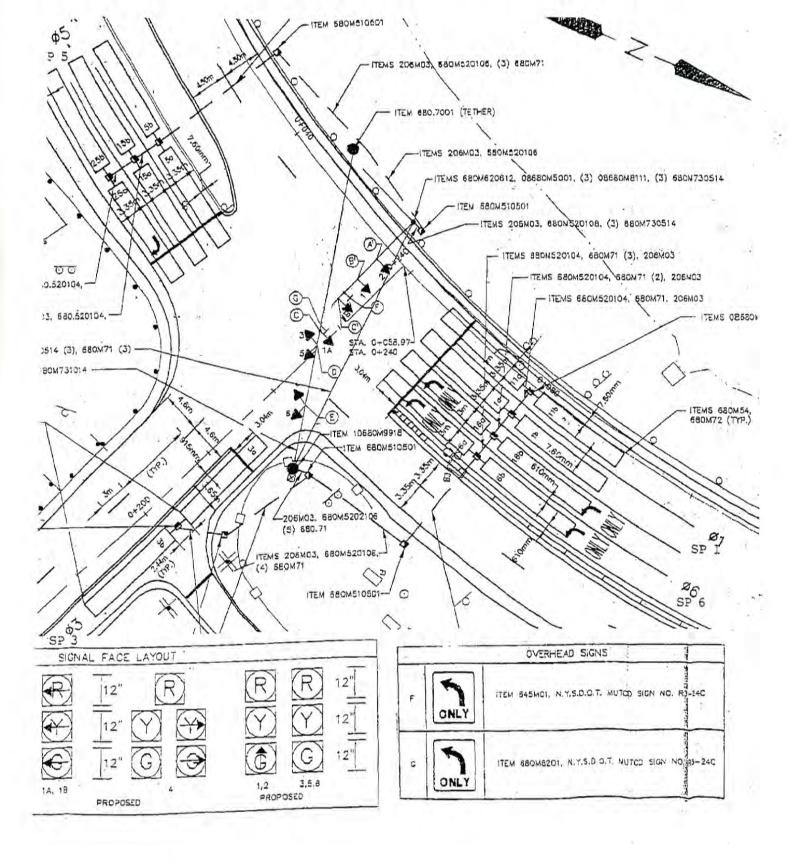
3/29/90 DATE PAGE 22 OF 22 PAGES

TERM.	FUNCTION	DET.	DET. TYPE	DET. AN.	DEMODIC
1A.18	01	1	100p		point det.
1A, 18 2A, 2B 3A, 3B 5A, 5B	p 2	2	1000		point det.
3A, 3B	\$3	3	1000		point dat.
5A,5B	\$5	5	1000		point det.
					- F + 4 .
					* * . * . *
					- X,
-= == ==					(J) (1)
				1	
1					
				1	
. garte					
				1	
22.4					
				11	
		92			

122

Ren

TE =d(5/82)


STATE OF NEW YORK - DELAYTOR TO A TRADED STATE NO.

TRAFFIC CONTROL SIGNAL SPECIF AND NO

Study: Naminaci: P.1.3.1

File: 5538.22

Signal No xxx . 210 Country	
	Westchester Page of § 8Pages New Castle
Devariant 2018 1111	to Secret 2055.38 Substitute (i)
A or specifications of the interesting	
dirpose: Install Micro Processor	
These specifications vill be effective upor the necessary traffic control device(s) rec of Uniform Traffic Control Devices.	the \mathbb{T}^n uniquelition, $\hat{\mathbf{x}}\hat{\mathbf{x}}$ moderication of suitad by the space Maruel
I. This Signal small:	
A. Operate in accordance with the Tab shown on page(s) 283 as a:	The of Operations and/or Change Interval: as Pretimed signal Semi-tractic actuated signal Full-craffic actuated signal Pagestrian actuated signal Other
B. Display vehicular indications Display redestrian indication Be aquipped with vehicle dete Be equipped with Pedestrian p as shown in the X schematic,	å Store
C. Be equipped with D pre-emprism, which are described as follows:	Contendential and/or confidention
Existin office Engineer Ex D. Sywyk (3)	Mellatin Bala Modification Bala Modification Bala Modification Bala Modification Bala Modification Bala

Min Green Gap, Ext	-	- 6			-	9	7	T			S HINS #O			Our	D# 10						Con	Da##	Cyc	S #0	Colit Con	Т		
Min Green Gap, Ext	-		3	4	2	0	,	8 8	Path Cyc	CO	100		Pat#	250	5	pit S	ed Path	# Cyc	も	Spir					_			
Gap, Ext	10		2		10	2			1		-	4	13	0	H	13	1 25	0	0	0	-	37	0	0	0 1	S	STD8	~
May 1	7 32		2 2	+	2	2 2	Ť		2 0		7	- •	14	0 0		4 4	1 39	0	0	0		88	0	0	0 0			
Max 2	S	1	2	1	+	S	t		2	1	2		0 4	5 6		0 4	77 00	0	> 0	0		25 6	0 0	0 0		0.00	1	5
Yel Clearance	5	f	2	İ	2	2	T		+ 40	1	1 40		17			17	9 8	0	0			41				Phs Ring Start Fna	Start	Fnahle
Red Clearance	2		-	H	2	2			9	1	9	-	18	0		. 20	8	0	0		-	42				-	\vdash	
Walk		H							7		7	-	19	0	0	19	3	0	0	0	-	43	0		0	2 1	RED	5
Ped Clearance									∞		00	-	20	0	0	20	32	0	0	0	-	44	0		-	3 1	RED	5
Red Revert									6		6	-	21	0		21	33	0	0	0	-	45	0		-	4	RED	₽
Add Initial						H			9	Ц	9	-	22	0		7	34		0	0	-	46	0	0	-	5 2	RED	อ
Max Initial									=		£	-	23	0		73	35	0	0	0	-	47	0	0	-	6 2	RED	ő
Time B4 Reduct				1		1			12	_	12	-	24	0	-	24		0	0	0	-	48	0	0	0	7	RED	₽
Cars 64 Reduct			Ť	t	+	+	Ť	//	Split		7	3	4	S	9	~	Spl		-	7	2	4	2	9	7		RED	₽
lime to Reduce		+	+	t	+	Ť	Ť	T	C00	jo l	1				+	+	13	Coo			T	+	Ť	+	+	Coord Modes	les [2.1	
Keduce by	1	1	+		1	+	1		~	╁	1		1		+	+	-	_		T	1	+	+	+	+	lest OpMode	-	
Min Gap		1	+	1		1	1		2 Coor	5	1		1	1	+	+	7	Coor				1	+	+	+	Correction	SHRT/LNG	N.G
DyMaxLim		1							− 7	4	4			+	+	+										Maximum	MAX 1	j
Max Step		-	+	+	+				3 Coor	Di.							15	Coor							-	Force-Off	FLOAT	
Options [1.1.2]	1	2	3	4	5	9	7	80	4							-										Closed Loop	NO	
Enable	ő		Б		-	ő			4 Coor	20							16	Coor								Stop-in-Walk	OFF	
Min Recall	5			0	5											7										Auto Reset	NO	
Max Recall									5 Coor	JG						-	17	Coor								Expand Splt	OFF	
Ped Recall		+			1	1	1			_										4	1					Ped Recycle		NO RECYCLE
Soft Recall									6 Coor	10							18	Coor								Before	TIMED	
Lock Calls	Ī					5	7		4	_			1	1	+	\dashv										After	TIMED	
Auto Flash Entry	Ī					1			7 Coor	10	4			1	+	\dashv	9	Coor					11			Auto Flash	h [1.4.1]	
Auto Flash Exit											5.4															Auto Flash	PH OVER	R
Dual Entry	-	Б	-	-			-	Б	8 Coor	5							20	Coor						Н		Flash Yel	45	2
Enable Simul Gap	5	-	5	5	5	5	5	5		4						B										Flash Red	0	0
Gaurantee Passag									9 Coor	JC.							21	Coor						_		Unit Params	ms [1.2.1]	
Rest in Walk									_	4																Phase Mode	STD8	
Condition Service									10 Coor	JC.							22	Coor						-		IO Mode	USER	
Non-Actuated 1							1		_				1											+		Loc Fish Start	t RED	
Non-Actuated 2		+	+	Ť	1	+			11 Coor	10	1		1	1	+	+	73	Coor		1		+	+	+	+	Start Flash(s)		0
Add Init Calc		+		,			,	-	9	1	1	1	1	+	+	+	- 2		I	1	1	+	+	+	+	Start AllRed(s)		9
Reservice	+	,	,	4	,		-	•	2	5	1	I	T	+	\dagger	+	4	jo S				t	t	+	+	Disnlav Time	110	
PedCir Thru Yel		t	f	t	t	Ť	Ť	٢	Page#		-		1	1	1	1	-			1	1	1	1	1	1	Red Revert		
Skin Red No Call		F	f	t	t	t	t	11_	-	4	Dhace	8 Phase Times/Ontions	/Onti	-ouc	Jatter	Datterne/Culite	٠ نو	Ring Chartun	in the	Ш	A/Els	h Mo	96.	Coord/Elash Mode: Unit Daram	rom	MCE Timoput		, ,
Red Rest		+	f	t	+	t	t		1481R	_	Phase	16 Phase Times/Options: Patterns/Splits: Ring Startin: Coord/Flash Mode: Unit Param	John Line	Suc.	Patter	John John	2 2	20 20	artin.	3 8	0 K	W W	, o	nit Da	rom	Feature Drofile		
May II		H	t	t	t	t	Ť		0	_	Overlane.	Char	Sland	atting	2 2	Channel Settings: Coord Alt Table+ (values not associated with time of day)	Tahl	5 to	line r	or to	teions teions	and with	h tim	o of o	lve	Free Ping Sea		
Call Dhaca		t	t	t	t	t	Ì	1	1 6	2	Softon			E COM	3 3	+ Doro	a coto	200	200	90400	tion a	200			dy	A second	_	
Call Flidse		+	+	+	+	1	Ť		,	ם כ	וברווחו	odii	ואור	2	0 1	Lale		S ICIO	200	חפופר				1	١	Auxswildi	SIOL S	
Conflicting Phase	1	+	1	+	+	1	1		4		empli	Preemption and Alternate Phase Time and Phase Options	Aller	nate	Juase	E E	andr	nase	Option	S						SDLC Retry		0
Omit Yellow			+						0	Ā	nual S	Annual Schedule	9			1										TS2 Det Faults	Its ON	
Ped Delay		+					Ť		9	Da	v Plan	Day Plans; Action Tables; Coord Alt Table+ (values varied by time-of-day)	on la	ples;	Coord	A H	aple+	value	s var	ed by	time	of-day				Auto Ped Clear	OFF	
Gm/Ped Delay	-	-	- 6		+	+		1	- 0	3	umur L	Communications;	S. Se	Cully	Secutiry, I/O Setup	Setup	ŀ	3	1	ī				:		SDLC Retry	-	0
ID: 7210 RIE 22 @ RIE 120	KIE 22	(0 KIE	120					1	×	MIS	C-EV	Misc - Events/Alarms;	larms	Sa	luhin/	Call/Inhibit/Redirect, P/OLAP Auto Flash,	rect	P/OL	F Au	to Fla	Sh;	<u>≥</u>	ISC O	CIC; Misc Unit Param	ram	01/11/19		Page 1

Overlap Conflict Lock OFF Overlap Lock Inhibit	nhibit OFF Parent Ph Clearance	learance ON Extra Includ	ded Ph OFF		DoH!		llowe	_	Office	Dalling	Take Mary Value	-
3 5	-	ded Ø	_	INORMAI	# L	42 22	DWell NO SHORIWAY K	E-YIG	CadCon	Kethid	Float Min Ven Perm	Perm Min Ped Perm
Modifier Ø	æ	9 Modifier Ø		-B	0	+		I	FINGEN	Ť	+	1
Conflict Ø	Yel 5	_		Yel	4 6	+		I	Endoba	T	+	
Conflict Olap	_	I Conflict Olap		_	4	+		I	EndGRN	İ	-	-
Conflict Ped	97	Conflict Ped			5	\vdash			EndGRN		-	
Included Ø	NORMAL	Included Ø		NORMAL	9	12 22			EndGRN			
Modifier Ø		10 Modifier Ø		Gm	7	12 22			EndGRN			
Conflict Ø		_			80	12 22		100	EndGRN			
Conflict Clap	Red 1.5	J Conflict Olap		Red 1.5	6	12 22			EndGRN			
Conflict Ped	9	Conflict Ped		91	10	\dashv			EndGRN			
Included Ø	MAL			NORMAL	11	\dashv			EndGRN			
Modrifier 6		11 Modifier Ø			12	12 22			EndGRN			
Conflict Ø				Yel 3.5	13	12 22			EndGRN			
Conflict Olap	Red 1.5	K Conflict Olap		Red 1.5	14	12 22			EndGRN			
Conflict Ped	91	Conflict Ped		91	15	12 22			EndGRN			
Included Ø	NORMAL	Included Ø		NORMAL	16	12 22			EndGRN			
Modifier Ø	Æ	12 Modifier Ø		Gm	17	12 22			EndGRN			
Conflict Ø	Yel 3.5	Conflict Ø		Yel 3.5		12 22			EndGRN			
Conflict Olap	Red 1.5	L Conflict Olap		Red 1.5	19	12 22			EndGRN			
Conflict Ped	91	Conflict Ped		101	20	12 22			EndGRN			
Included Ø	W			NORMAL	21	12 22			EndGRN			
Modifier Ø		13 Modifier Ø			22	12 22			EndGRN			
Conflict Ø	Yel 3.5			Yel 3.5	23	12 22			EndGRN			
Conflict Olap	Red 1.5	M Conflict Olap		Red 1.5	24	12 22			EndGRN			
Conflict Ped	91	Conflict Ped		- FG	52				BegGRN			
Included to	W.			NORMAL	56				BegGRN			
Modified &	15 Jan	14 Modifier &		E TX	17	+			BegGRN	Ì		
Conflict Olan		Conflict Ofan		Ded 15	07	+			Begurn	İ	-	
Conflict Ped		_			30	+			MUDGEO	t		
Included Ø	NORMAL	Included Ø		NORMAL	34	+			RenGRN	T	+	-
Modifier Ø	_	15 Modifier Ø		Gm	32	-			BedGRN	İ		
Conflict Ø	3.5			Yel 3.5	33				BedGRN	Ī		
Conflict Olap	Red 1.5	O Conflict Olap		_	34	-			BegGRN	Ī	-	-
Conflict Ped	91	Conflict Ped		101	35				BegGRN			
included Ø	NORWAL	Included Ø		NORMAL	36	100			BegGRN			
Modifier Ø		16 Modifier Ø		Gm	37	100			BegGRN			
Conflict Ø		_		Yel 3.5	38				BegGRN			
Conflict Olap	Red 1.5	P Conflict Olap		Red 1.5	33				BegGRN			
Conflict Fed	191	Conflict Ped		161	40				BegGRN			
ttings [1.8.1]				1	41				BegGRN			
7 1 2 3 4	6 7 8	9 10 11 12 13 14 15 16 1	7 18 19 20 21	22 23 24	42				BegGRN			
	9				43				BegGRN			
Т	VEH VEH VEH VEH VEH VEH VEH VEH VEH VEH	E G	H VEH VEH VEH VEH	н мен мен	44				BegGRN	1		
Alt Hz	אבח אבח אבח אבח	ובח אבח אבח אבח אבח חא	K UKK UKK UKK	DKK DKK DKK	Q 4	+			BegGRN	Ť		
Channel+ Settings [1.8.4]					47				Borcon	Ī		
Channel ->> 1 2 3 4 5	6 7 8 9 10 11 12	11 12 13 14 15 16 1	7 18 19 20 21	22 23 24	48	-			BenGRN	İ		
					Chann	Channel Params[1.8.3]	s[1.8.3]		i i i	1		
Flash Yellow+						C1 10 I	SER	IU Map	BIU Map SINGLE		Invert Rail Input	out OFF
Flash Green+												
h Inh Red+												
Olap Ovrd												

	e Suc	Σ	Σ	Σ	Σ	Σ	×	Σ	Σ	×	Σ	Σ	Σ	Σ	X :	2 2	2	×	Σ	Σ	×	2	2 2	2	Σ	Σ	Σ:	Σ:	2 2	2		NO IX	3	0							
	Type	NORM	NORM	NOR	NORM	NORM	NORM	NOR	NORM	NORM	NORM	S	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NOR	NORM	NORM	NOR	NORM	NORM	NORM	NORM	NORM	S S	=] [D.F.							
5.3	Dlay 2																										1	1			11.2	TS2 Det Faults	Vol/Occ Period Minutes	Vol/Occ Period Minutes							
-04	Dlay													1		T						1		T	П		1	T			Unit Paramters	S	Ž	Mp							
	82	r												1	1							1	1	T	П		7	1	1		amt	TS2 Det Faults	Perio	Perio							
ameterst	8>							П			T				T	T						1			П		7			T	Pal	Det	8	Coc							
p	85														1		T					1	T		П		1	1			S	TS2	\o\	Vol/							
P	# G	Ε	2	3	4	5	9	7	00	6	9	1,	12	13	14	0 4	17	18	19	20	21	22	24	25	26	27	8	शु	3 5	3 6	70										
	0 0	L							1	4	4	4	1	4	4	1	1			Ц	_	4	1		П		4	1	1	1	1										
	8 = 3	H	-	Н	_	Н	-	Н	+	+	+	+	+	+	+	+	╀	⊢		+	+	+	+	-	Н	-	+	+	+	+	1										
3.6	Yell K	L	L		Ц	Н		4	+	+	+	4	4	+	+	+	+	╀		-	4	+	+	L	Н	4	+	+	+	+	-										
+0-	Add Red Addin Lock	Ļ	-	_	_		_	_	_	_	_	_	_	-	1	1	+	L	_	_	_	_		-	Ц	4	_	1	+	-											
0	Add Add	ō	o	ō	ō	5	ō	ō	5	5	5	5	5	5	5 8	5 6	ō	ō	ő	ō	ō	5	5 8	ō	ō	ō	5	5 8	5 8	ō	_		21				ļ,	,	,		
CHICIES	Ext Que Add Red	L	1		_			_	_	_	_	_	_	1	1	1	L	L	Ļ	4	_	1	1	-	Ц			1		1	15.4	-	L			1	1	1			
		ō	õ			_		_	_	_	_	_	_	5		_	_	_		_		_	5 8		_	_		5 6	_		Parms	Ma P		15	15	15	13	3 5	15		
אכווורונ	g.	ō	ō				_		_	_	_	_		_	58	_		_		_			5 8					5 8			t Pa		L						Ü		
^	# of	33	34	35	36	37	38	ස	9	41	42	43	4	45	46	48	49	20	51	25	23	20 1	2 3	57	28	23	9	0 50	3 6	8 2			L						L		
ļ	9							1		1	1	1	4	1	1	1					4					4	1	1	1	L	Ped	⊅et #	-	2	e	4	0	0 1	00		
ļ	8	L		4		Ц	4	4	1	_	4	4	4	1	1	1	Ш				4	4	1	L			1	1	1	L		_			_	_	_	-		_	_
7:	Red Yell Lock Lock																						L									Src									
2														I		I					1	I										Туре	W	W	W	₩:	E 2	N	W	W	N S
-	Page 1	ຣັ	ő	ō	ō	ő	ō	5	5	5	5	5	5	5	5 8	5 6	5	อ	ő	ō	5	5	5 5	ō	ō	ō	5	5 8	5 5	ō			NORM	NORM	NORM		NOK NO NO NO NO NO NO NO NO NO NO NO NO NO	NORM	Š	NORM	NOKM
Š	Que								T	T		I			T						T	T					T	T	T		1	Diay 2	Г			T	T	I			
TOURS COMOTIS	EXT	O	o	ē	5	5	ō	5	5	5	5	5	5	5	5 8	ā	5	ő	ь	5	5	5	5 5	5	5	5	5	5 8	5 8	5		occ occ Dlay Dlay Yell Ked 1 2	Г			T	T	T			700
	mer Call	ő	ō	5	5	ō	5	5	5 8	5	5	5	5	5	5 8	ō	ō	ō	o	5		_	5 5	ő	ő	5	5	5 8	5 5	-		Sed Sed	Г			1	1	Т		П	DIL
-	# E	1	2	က	4	2	9	7	∞ α	ъ Ş	=+		12	2;	4 4		17	18		20	21	72	24								2	¥e ood				I	İ	İ			-
	Time		Z									Į.	1												1.1							36 E-0									1
			20	20	20	20	20	200	200	200	200	2 2	20	2 2	2 2	25	20	20	20	20	20	2 2	20 5	20	20	20	20	2 2	2 6	20		Det #	55	29	27	28	3 3	9	62	63	40
	Max Pres	45	45	45	45	45	45	\$	\$ ¥	£ ;	45	£ ;	45	2 4	€ £	\$ 5	45	45	45	45	45	4	5 5	45	45	45	₹ 4	3 4	3 2	45		Src		П			T				
Ī	Act No	П	٦	7	7		1	T	T	Ť	1	Ť		T	T	T					1	1	T			1	1	†				e e	W	×	×	× :	E 2	2	M	W.	Ξ.
	S S																										1		T			Type	NORM	NORM	NORM	NORM	NO NO N	NORM	NORM	NORM	NOKM
	EXT													I		T																Dlay 2						Г			
	Ulay			T						T	T	I	T	T		Γ			1			T						T	T			Dlay 1					T	Τ			i
0	N O					1				T		1						П			1							T				occ Dlay Dlay Red 1 2					T		Г		1
	<u>s</u> 0	П	1	7	7	T	1	T	1	Ť	T	Ť	T	T	T	T	Ī	П		T	1	Ť			T	T	1	T	T	T	1	Yell			1			T		Т	T
l.	# ne	33	34	33	38	37	88	33	40	107	77	43	44	2 4	40	48	49	50	21	52	33	7 2	26	22	28	29	90	3 6	2 63	64		OCC Gill				1	+	+	T		1
	45				-	25		+	_	,	35	-	1		35	-	25				1	36	_	25			1	Ť	Ť	f		Det c	44	45	46	47	9 0	50	51	52	33
H		20	+	+	-	20	+	\dagger	2	2	2	+	\dagger	†	2	+	20		+	+	+	9	-	50	+	+	+	+	+	+		Src	-			+	+	F	F		T
ш	Pres C		+	+	-	45	+	+	45.	-	44	-	+	+	45	-	45	H	\dashv	+	+	45	-	45 5	+	+	+	+	+	+						+	+	+	-		1
-	Act Pr	4	+	+	+	4	+	+	+	+	+	+	+	+	+	+	4	Н	+	+	+	+	+	4	+	+	+	+	+	+		Type	NORM	NORM	NW.	NORM	NORM	NORM	NORM	NORM	NOK
	100	Н	+	+	+	+	+	+	+	+	+	+	+	+	+	-	H	Н	\dashv		+	+	+	Н	+	+	+	+	+	H		150	ĭ	ĭ	ž	ž	Ž	ž	×	ž	ž
9	באו מחב	Н	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Н	Н	\dashv	-	+	+	+	Н	+	+	+	+	+	-	5.3	ay Dic	Н	H	-	+	+	+	-	+	+
		Н	+	+	+	+	+	+	+	+	+	+	+	+	+	+	H	H	-	+	+	+	+	Н	+	+	+	+	+	-	-64	occ Diay Diay Ked 1 2	Н	Н	+	+	+	+	H	+	+
	Diay	Н	-	+	+	+	+	1	+	+	+	1	+	+	+	L	3	Ц	4	4	4	1		Ц	4	4	1	1		-	1+4	88	Ц	Ц	4	1	1	1			1
_	0	Ц	1	1	1	1	4	1	1	1	1	1	1	1	1	L		Ц		1	1	1	1	Ц		1	1	1	L	L	Parameters+ 1-64 [5.3]	Yell	Ц	Ц	1	1	1	1			1
	90	-			1	2			4	0	+				45		9					~		2							ame	M5)									
	ğ #	-	7	77	4	2	0	-0	00	50	2 =	- 5	7 5	2 5	7 4	16	17	18	19	200	77	325	24	25	56	77	300	30	34	32	a	Det #	33	34	32	9	38	39	40	41	47

																																													, , , ,
																																													414412040
[T]																																					
							H		Г	T	T	1	1									Г					П		1		Link		1	T	1	i	1								
									l	ŀ	1																			FISH		PFF	PF.	PFF	PF.	PF	OFF								
										ŀ	+	+	ı			4														Override	Higher	NO	NO	NO	NO	NO	NO								
19.3										F	Ţ	1							- 1	4										Ó				1											
, Hack clear Overlaps+ [3.3]			Ž.							ŀ	+	+	-														+		ons+ [3	Override	Auto Fish	NO	N	NO	NO	NO	NO								
Seal O	erlaps							13 51	200	ľ	1																		on Opti					1											
I I den	Track Overlaps	+						and Overlane+ 13 51	200	ŀ	+	+																	Preemption Options+ [3.6	Pre # Lock	-	_	0 5	_			8								
3 0 5								and O	3	ľ	1																		اھ				I	1	I										
LIIdad	hases	+						oc [3 2]	- 0	-		Sd	_		bs			Sd			SO			SO			So			s [3.2]	lase	-	+	+	-	+									
Hack Clear Filases 3.2	Pre # Track Phases							Dwell Phacec (3.2)	3	Dhooon	Ligse	Overlaps	Peds	Phases	Overlaps	Peds	Phases	Overlaps	Peds	Phases	Overlaps	Peds	Phases	Overlaps	Peds	Phases	Overlaps	Peds		Exit Phases [3.2]	Pre # Exit Phase		1			1									
-		-	2	က	4	5	9			-	_	_		2	_		3			4		_	5	_	_	9	_		_	Exit	Pre	_	2	n	4	2	9								
-	Delay MinDura							PadCir Co+Pre	NO	5 6	5 8	5	8	8	O	+ Yel																													420
0.0	_							_	-	L						PedClr												_	_								-		.,	_					TO @
_	Output	DWELL	DWELL	DWELL	DWELL	DWELL	DWELL	MinWlk								Ext Dwe							Skip	OFF	OFF	OFF	OFF	OFF	OFF		Max							님	PRE		3.31	NONE	PFF		DIE 22
				EMERG	EMERG	EMERG	EMERG	MinGm)							in Dwell	2	2	2	2	2	2	Pattern							mpts	Min			1			1.2.1	empt	<u></u>	D 0	ers [1.8				D. 1940 DTC 99 @ DTC 490
	e)					Ė	ON	MaxProc								Track Grr Min Dwell Ext Dwell PedClr+							Red F				+			ity Pree	Type	OFF	OFF.	OFF.	OFF		meters	Over Pre	Ext Out	Well Tim	Jaramet	Springs	ail Input		Ē
=	Pre # En	+		3		5 0		Pre # Max		2	7 0	2	4	2	9	Pre # Trac	1	2	3	4	5	9	Pre# R	-	2	3	4	5	9	Low Priority Preempts	Pre # T)		+	+	10		Unit Parameters [1.2.1]	Stop Timer Over Preempt	Preempt or Ext Output	Max Seek Dwell Time	Channel Parameters [1,8.3]	D Conn Mappings	Pre Invert Rail Input		
ī	ā			6	Ĭ,			ă		1						ď							ď					(T, E)		2	ď						5	क्ष	P. A	2 3	ည်		a R		

	7	7					_	Т	Т	T	7	ſ		Т	7	7	7				Г		1								W		Ī	ī												,
16	_							L	1	+	_	ŀ	16	4		4	4				L			16							M NOR															,
15	4							L	ļ	1			15	4	4	4	4							15							M NOR															
14								L	ļ	1			14			4					L			14							M NOR	_														
13								L		1			13	4	_	1	4							13							NOR!															
12									L	1			12			1								12					Ц		NOR															
=								L	L	1			Ξ				\rfloor							11							NOR															
9													9											10							NOR															
6													6											6							NORM		_			_		_								
ω													∞											8							NORM		9	ø												
7													1											7							NORM		r	-												
9				1									9											9				-1			NORM		4	0												
2													2											2							NORM		,	0												
4													4											4							NORM			4												
3													3					-					5.1.3	3							NORM		5.1.4	2												1
2												5.5.1.2	2										rs+ [5.	2							NORM		rs+ 15.	7												(
-												Suo	-										ameter	1							NORM		ametel		Ī											
^	Assign Det#	Ca	Swiitch	Delay	Extend	Quene	No Activity	sence	Count	Fail Time	2 .	Alt# 1 Veh Options [5.5.1.2	^	Assign Det#	g .	Extend	Quene	Added Initial	Red Lock	Yellow Lock	Occupancy	Volume	Alt# 1 Veh Parameters+ [5.5.1.3]	¢	n Det#	Occ-on-green	yellow	Occ-on-red	hase 1	hase 2	Detector Mode NORM NORM NORM NORM NORM NORM NORM NORM NORM NORM NORM NORM NORM NORM NORM	Source	Alt# 1 Ped Parameters+ 5.5.1.4	^ =	Assign Delif	No Activity	sence	Erratic Count								
Column#>	Assign)	No A	Max Presence	Frratic Count	Fail	P .	# 1 Ve	Column#>	Assig				Addec	Re	Yellov	0000	>	#1 Ve	Column#>	Assig	Occ-on	Jcc-on-	-00C	Delay Phase 1	Delay Phase 2	etector	1	# 1 Pe	Column#	ASSIG	No/	Max Presence	Erratic								1
9	_				Н	-			L	1	_]:	¥[9	_	_	1	_	Щ			_	H	A									_	\[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1	1	_		Ш								
00	T							Γ	Γ	7	[_∞	T	T	T	T	T			Г			80										[×	ē	5		ō							1	T
7	1			F					Ī		Ī	7	1	1			1						7									1	,	-	ē			ō								T
9		1						T	Ī		ļ	9	1	1			1	Ī					9									٦	,	0	ē	5		ő								
2	1							T	Ī	1	Ī	2	1	1	1		1						2									٦	,	0	ē			ő						17		1
4	1	1						T	Ī	1	ļ	4	1	1	1	1	1						4											4	5		Γ	ő								
3	1	1							t		ļ	3	1	1	1		1						3						П					2	ē	5		ő								
2	1								İ	6 4 31	1.0.1.2	2	+	†	1		1				П	1.6.1.3]	2										1.1.6.2.1	7	ē	+	T	ő							T	
-	+									- 14 4	e [1.1		+	+	+	+	+					e [1.1.	-										Die 1	_	5	+	T	o o								
1	Ø u	E G	Ε	Max 1	Max 2	Yel Clr	Red Clr	Walk	Ped Cir	Tah	AIT# 2 IIMes Lable [1	^:	Ø L	Min Grn	E.	Max	Max 2	Yel Cir	Red Clr	Walk	Ped Clr	Alt# 3 Times Table [1	^:	Ø ut	Min Gm	Ext	Max 1	Max 2	Yel Clr	Red Clr	Walk	Ped Clr	Alt# 1 Options Table	^ t		4	inrty		sage	Nalk	vice	vice	\ct 1	Rest	Max2	lelay
Column#	Assign Ø	Min Gm	Gap, Ext	Σ	Σ	Ye	Rec	-	Per	Timo	ШШ	Column#>	Assign Ø	E C	Gap, Ext	2	Z	Ye	Rec	-	Pec	Time	Column#	Assign Ø	Min	Gap, Ext	W	M	Ye	Rec		Pe	Optic	Column #	Assign to	Soft Recall	Dual Enrty	Enabl SimGap	Guar Passage	Rest In Walk	Cond Service	Reservice	Non-Act 1	Red Rest	2	Ped Delay
S										C ##	7 #1	පි										#3	S										#1	٥		ľ		Eng	Gu	œ	ರ					

		, ,		Ŷ.										Ţ									4							7																		
	16												9	16										16	2						NORM																	Page 6
	15												47	15										15							NORM																	Д.
	14												,	14										14							NORM																	
	13												ç	2	I									13							NORM																	1/11/2019
	12												45	71										12							NORM																	1/11
	11												77	=			T							11							NORM																	
	10												40	2										10							NORM NORM NORM NORM NORM NORM																	
	6												c	20										6							NORM																	
	80												0	o										8							NORM			8														
	7												7	,										7							NORM		1	7														
	9												u	0										9							NORM NORM NORM NORM NORM NORM			9														
	2												u	0										5							NORM			5					7/									
	7												-	t										4							NORM			4				1										
2.11	3					-								2									5.2.31	3							NORM		5.2.4	3				ľ										TE 120
rs [5.5	2											5522	3.3.6.6	7									rs+ [5.	2							NORM		rs+ [5.	2														2@R
amete	1											ione											amete	-							NORM		amete	-1														RTE 2
eh Par	#	Assign Det#	Call	Swiitch	Delay	Extend	Queue	No Activity	esence	Erratic Count	Fail Time	h Ont	1 / 1	110	Sall	Extend	Queue	Added Initial	Red Lock	Yellow Lock	Occupancy	Volume	sh Par	^ ===	Assign De#	-green	-yellow	Occ-on-red	hase 1	hase 2	Mode	Source	d Par	÷	Assign Det#	Sall	No Activity	sence	Erratic Count									ID: 7210 RTE 22 @ RTE 120
Alt# 2 Veh Parameters [5.5.2.1]	Column#	Assig						N	Max Presence	Erratic	Fa	MH# 2 Veh Ontions [5 5 2 2	Column#	Accio	200			Adde	æ	Yello	000		Alt# 2 Veh Parameters+ 15.	Column#>	Assig	Occ-on-green	Occ-on-yellow	000	Delay Phase 1	Delay Phase 2	Detector Mode		VII# 2 Ped Parameters+ [5.5.2.4]	Column#>	Assig	-	<u>8</u>	Max Presence	Erratic									
A										_	_] =	۲_	1			_	_				_	¥	Ľ	_			L		E	E		Æ			_												
	8		ō			Б											80		5			ō											8		ē		1	ō										
	1		ō			อ											7		ō			ő											7		ő			ő										
	9		ō			อ											9		ő			ő											9		ō			5										
	2		ō			ō											2		Б			ō											5		ō			5										
	4		ō			ō											4		ō			ō						- 1					4		Б		,	ő									i	
2.2]	3		ō			ō										2.31	. 8		uО			ō										2.4]	3		ō		,	5										
[1.1.6.	2		ō			ō										11.1.6.2	2		чo			ō										11.1.6.2.	2		ō		•	5										
Table	-		ō			ō										Table	-		u0			ō											Į.		5			5										
tions	^ # III	Assign Ø	Lock Calls	Soft Recall	Dual Enrty	imGap	Guar Passage	Rest In Walk	Cond Service	Reservice	Non-Act 1	Red Rest	May	Ped Delay	ing Ø1	tions	Column # ->	Assign Ø	Lock Calls	Soft Recall	Dual Enrty	imGap	assage	Rest In Walk	Cond Service	Reservice	Non-Act 1	Red Rest	Max2	Ped Delay	ing Ø1	tions	Column # ->	Assign Ø	Lock Calls	Soft Recall	Dual Enrty	ımGap	assage	Rest in Walk	Cond Service	Reservice	Non-Act 1	Red Rest	Max2	Ped Delay	ing Ø1	
Alt# 2 Options Table [1.1.6.2.2]	Column #	Ä	Loc	Sof	Du	Enabl SimGap	Guar P	Rest	Cond	Re	S	R		Pec	Conflicting Ø1	Alt# 3 Options Table	Colun	As	Loc	Soft	Due	Enabl SimGap	Guar Passage	Rest	Cond	Re	No	Re		Pec	Conflicting Ø1	Alt# 4 Options Table	Colum	As	Loc	Sof	Dui	Enabl SimGap	Guar Passage	Rest	Cond (Re	Noi	Re		Pec	Conflicting Ø1	
Alt										L	L	L		L		Alt						1										Alt														\perp		

DayLink Plan To	-		-	-		-	-		-			-	-	,		-	-	-			-	÷	-	-		-	-	-	-	Į,		-
33	ō	31	34		34		5	31		-	31	31		33	31	33		33	31	34	31	31		34	31	31	31	*6	5	31	31	
9 30		9 30	20 30		9 30		200	9 30		200	9 30	930		30	9 30	30		30	9 30	9 30	9 30	30		30	30	3 30	30		25	30	30	
28 29		28 29	20 20		28 29	20 20	67 07	28 29		67 07	28 29	28 29		28 29	28 29	28 20		28 29	28 29	28 29	28 29	28 29		28 29	28 29	28 29	28 29		87 07	28 29	28 29	
27	5	27	27 ,		27	77		27		7 17	27 2	27 2		27 2	27 2	27 2		27 2	27 2	27 2	27 2	27 2		27 2	27 2	27 2	27 2		7 17	27 2	27 2	
26	5	26	36		26	8		26	8		26	56		92	26	36		92	26	26	26	26		56	26	56	26	S.	9	26	26	
24 25	lancing.	24 25	20 AC		24 25	20 NC		24 25	A OF		24 25	24 25		4 25	24 25	4 25		4 25	24 25	4 25	4 25	4 25		4 25	4 25	4 25	4 25		67	4 25	4 25	
23 2		23 2	23 2		23 2	23 2		23 2	22 2A		23 2	23 2		23 24	23 2	23 24		23 24	23 2	23 24	23 24	23 24		23 24	23 24	23 24	23 24	22 24	7 67	23 24	23 24	
22	ర్	22	33	7	22	22	77	22	33		22	22		22	22	22		77	22	22	22	22		22	22	22	22	33		22	22	
0 21		0 21	24) 21	21) 21	24		21	21		71	21	24		17	1 21	1 21	121	121		21	121	1 21	21			21	21	
19 20		19 20	10 20		19 20	10 20		19 20	10 20		19 20	19 20		19 20	19 20	19 20		07. 61	19 20	19 20	19 20	19 20		19 20	19 20	19 20	19 20	10 20		19 20	19 20	
8	ē	18	× ×		18	× ×		18	a c		18	18		200	18 1	100		20	18 1	18	18 1	18		<u>∞</u>	18 1	18 1	18 1	a c		18 1	18 1	
17	ē	17	17		11	17		17	17		17	17		14	17	17		7	11	17	17	17		17	17	17	17	17	-	11	11	
15 16	ō	15 16	15 16		15 16	15 16		15 16	15 16		15 16	15 16		2 16	15 16	5 16		9	5 16	5 16	5 16	5 16		2 16	5 16	5 16	5 16	46		5 16	5 16	
14 1	5	14 1	14 1		14 1	14 1		14 1	14 1		14 1	14 1		14 15	14 1	14 15		14 15	14 15	14 15	14 15	14 15		14 15	14 15	14 15	14 15	14 15		14 15	14 15	
13	5	13	5	2	5	5	2	13	5		13	13		5	13	13		2	13	5	13	5		2	13	5	5	4		13	13	
1 12	ē	1 12	15		1 12	12		112	15		12	12		17	12	12		71	12	12	12	12		12	12	12	12	13		12	12	
10 11	On On On On On On On On On On	10 11	10 11		10 11	10 11		10 11	10 11		10 11	10 11		11 01	10 11	10 11		LT OF	10 11	10 11	10 11	10 11		10 11	10 11	10 11	10 11	10 11		10 11	10 11	
0	5	6	0		0	0		0	0		6	9		50	9	0		ח	9	9	9	9		5	9	0	9	0		9	9	
00	5	00	~		80	00	,	00	oc	,	00	∞	•	x	œ	00		×	00	00	80	0		00	00	00	00	oc	0	∞	00	
7 9	0 0	2 7	7		1	7		7	7		7	1		_	1	7			1	7	1	7		-	1	7	7	7		7	7	
5	0 00	5 6	5		5 6	5		5 6	40		5 6	5 6		0	5 6	5 6		0	5 6	5 6	5 6	5 6		0	5 6	5 6	5 6	ית		5 6	5 6	
4	ຣົ	4	4		4	4		4	4		4	4		4	4	4		4	4	4	4	4		4	4	4	4	V		4	4	
က	ő	e	~		က	62		ന	c		3	m		2	es	m		7	m	m	က	m	•	20	3	3	က	c	2	3	3	
Date 1 2	On On On	1 2	1 2		1 2	1 2	-	1 2	1 2		1 2	1 2		7 1	1 2	1 2		7	1 2	1 2	1 2	1 2		7 1	1 2	1 2	1 2	1 2		1 2	1 2	
_							F															-0										
	_	S	S		S	U.		S	U.	<u></u>	S	S	- (n	S	S		n	S	S	S	S		n	S	S	S	U		S	S	
ш	On On On	ш	ш		ш.	ш	1	4	_ "	-	-	ш		-	ш.	ш	-	_	ш.	ш	ш	ш	_ '	_	ш	ш	ш	ш		ш	ш	
¥ _	ō	1	_		1					-	-		-	1		-			_	-	-		_ '	_	-	-			_	_	-	
M T W	ō	8	>		8	3	L	8	3	L	8	>	-	8	8	3		>	3	>	>	>	-	>	>	>	>	3		>	>	
5 -	6	_	-		T	-		-	-		-	-			-	-		in the sale	_	-	-	-			-	-	-	-		-	-	
Z Z		Σ	Σ		Σ	Σ		Σ	>		×	Σ		Σ	2	Σ		Σ	Σ	Σ	Σ	Z		Σ	Σ	Σ	Σ	2	Ē	Σ	Σ	
S	5	လ	S		S	S)	S	S)	S	S	C	0	S	S	0	0	S	S	S	S	(n	S	S	S	C.	2	S	S	
0	5	٥	0		٥	0		0	0	1	0	0	c	_	0	0	0	2	0	O	O	0	-	0	0	0	0	_	2	0	0	
z	5	z	Z		z	z		z	z		z	z	2	2	z	z	2	z	z	z	z	z	-	z	z	z	z	2	2	z	z	
0		0	0		0	0		0	0	,	0	0	(0	0	0	-	0	0	0	0	0		0	0	0	0	C		0	0	
S		S	S		S	S		S	S		S	S		0	S	S		0	S	S	S	S		0	S	S	S	U.		S	S	
A 4	5	A	V		V	V		V	V		V	V	<	τ.	A	V		c	V	V	A	V		4	A	V	V	۵		V	A	
5 -	5	_	7		7	7		7	_		-	-		7	7	_		7	7	7	7	_		-	7	7	7	-		_	7	+
5	On On On On	7	_		_	7			_		7	7		,	7	-			¬		_	_		7	7		7	-		_	7	
M	<u></u>	×	Σ		2	Σ		N	Σ		×	×		E	×	×		2	×	~ N	Σ.					7	Σ,					
A		A	A		A	A		A	A		A	A		c	A				A	A	A	M		2	M	M		2		Z	A	
A A																A						A N		X	A N	A -	A	4		A		_
M	0	2	M		Σ	×		M	M		M	Σ	2		×	Σ		ě	Σ	×	Σ	×		Σ	Σ	×	×	2		Σ	Σ	
J F M A M J J A	_	щ	ш		щ	ч		ш	ш		ш	щ	ш		ш	1	ш		ш	ш	ш	ш		_	ш	IT	ш	ш		щ	ш	
7	ō	7	7		7	7		7	7		7	7		,	7	7		2	7	7	7	7		7	7	7	7			Z3 J	7	
-		2	c	2	4	4	n	9	-	_	00	0		9	=	5	7	13	14	5	16	1	=	9	19	20	2		22	23	24	

	[9]
Day Plan 1 Day Plan 2 Day Plan 3	Overlap Off
If Min Act Hour Min Act Hour Min Act Hour Min Act Hour Min Act	1 2 3 4 5 6 7 8
50	DFT
10 2 10 2	DFT
33	THO DET
12 4 12 4 4 12	DFT DFT
13 55	DFT DFT
6 6 14	DET DET
15 7 15 7 7	DET.
8 16 8	DFT
Day Plan 4 Day Plan 5 Day Plan 6 9 9	DET
10 10	LIGHT
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	130
10 0 0 0 2 0 0 10 0 0 0 12 12	130
0 3 0 0 0 11 0 0 0 13	
0 0 0 12 0 0 0 4 0 0 12 0 0 0 4 0 0 0 12 0 0 0 4 0 0 0 12 0 0 0 12 0 0 0 14 14	100
0 0 0 13 0 0 0 5 0 0 0 13 0 0 0 5 0 0 0 13 0 0	DET
0 0 14 0 0 0 6 0 0 0 14 0 0 0 6 0 0 0 14 0 0 0 16 16	130
7 0 0 0 0 15 0 0 0 7 0 0 0 15 0 0 0 17 17	
0 8 0 0 0 16 0 0 0 18 18	
Day Plan 7 Day Plan 8 Day Plan 9 10 10	
House Min Art Hand Min Art Grand Min Art Under Min Art On 13	140
A D D D D D D D D D D D D D D D D D D D	DFT
	DFT
	DET DET
0 0 0 11 0 0 0 3 0 0 0 11 0 0 0 3 0 0 0 11 0 0 0 23 23	DFT DFT
0 0 0 12 0 0 0 4 0 0 0 12 0 0 0 12 0 0 0 12 0 0 24 24	DFT DFT
0 0 0 13 0 0 0 5 0 0 0 13 0 0 0 5 0 0 0 13 0 0 25	DFT 0FT
0 0 0 14 0 0 0 6 0 0 0 14 0 0 0 6 0 0 0 14 0 0 0 26	THO DET
0 0 0 15 0 0 0 7 0 0 0 15 0 0 0 7 0 0 0 15 0 0 0 0 0 0 0 0 0	TJO
8 0 0 0 16 0 0 0 8 0 0 0 16 0 0 28	FIG
Plan 10 Day Plan 11 Day Plan 12 29	DET
Act Houry Min Act Houry Min Act Houry Min Act Houry Min Act Houry Min Act 30	130
0 0 3 0 0 0 0 1 0 0 0 3 0 0 0 1 0 0 0 3 0 0	190
0 0 0 10 0 0 0 2 0 0 10 0 0 0 2 0 0 0 10 0 0 0	DFT
0 0 11 0 0 0 3 0 0 0 11 0 0 0 3 0 0 0 111 0 0 0 3 3	THO
0 0 0 12 0 0 0 4 0 0 0 12 0 0 0 4 0 0 0 12 0 0 0 4 0 0 0 12 0 0 0 34	DFT
0 0 0 13 0 0 0 5 0 0 0 13 0 0 0 5 0 0 0 5 0 0 0 15 0 0 0 13 0 0 0 35	1-10
0 0 0 14 0 0 0 6 0 0 0 14 0 0 0 6 0 0 0 6 0 0 0 14 0 0 0 36	THO
0 0 0 15 0 0 0 7 0 0 0 15 0 0 0 15 0 0 0 15 0 0 0 0 15 0 0	DFT
0 16 0 0 0 8 0 0 16 0 0 18 0 0 0 8 0 0 0 16 0 0 38	TJO
Day Plan 14 Day Plan 15 39	190
Min Act Hour Min Act Hour Min Act Hour Min Act Hour Min Act 40	DET
0 0 0 0 0 0 0 0	140
0 10 0 0 0 2 0 0 0 10 0 0 2 0 0 0 10 0 0 8	LJU
0 11 0 0 0 3 0 0 0 11 0 0 0 3 0 0 0 11 0 0 0	130
0 0 0 4 0 0 0 12 0 0 0 14 0 0 0 12 0 0 0 98	130
0 5 0 0 0 13 0 0 0 5 0 0 0 13 0 0 0 99	DET
14 0 0 0 100 255	100
0 0 0 12 0 0 0 15 0 0 0 17 0 0 0 15 0 0 0 1	T-JO
0 0 0 01/11/19 Page 8	190

11-2 13 10 10 11	
188 Unused O12 49 Cht Green O72 16 Cht Green I O12 16 Cht Green O73 64 Cht Green O74 15 knt Used I O14 25 Cht Green O74 15 knt Used I O15 O15 O17	1 0 = 1 0 1 0 1
189 Unused Oi 2 Chi Red Oi 5 Oi 15 Oil Ceen Oi 17 Oil Ceen Oi 17 Oil Ceen Oi 17 Oil Ceen Oi Oi 17 Oil Ceen Oi Oi Oi Oi Oi Oi Oi O	
189 Unused O1-4 26 Ch2 Yellow O7-4 115 Not Used O1-6 15 Ch2 Green O7-5 115 Not Used O1-6 15 Ch2 Green O7-7 115 Not Used O1-7 115 Not Used O1-7 115 Not Used O1-8 O1	0 1
5 Veh Cail 5 OLS 50 OLP Green O75 115 Not Used I 189 Unused 01-7 27 OR3 Yellow 07-7 115 Not Used I 189 Unused 01-7 27 OR3 Yellow 07-7 115 Not Used I 189 Unused 01-7 27 OR3 Yellow 07-7 115 Not Used I 189 Unused 02-2 12 OR4 Green 14-1 189 Unused I 111 Veh Cail 11 02-2 15 OR5 Green 14-1 189 Unused I 189 Unused 02-2 25 OR5 Green 17-1 189 Unused I 189 Unused 02-2 35 OR5 Green 17-1 189 Unused I 199 Unused 02-2 35 OR5 Green 17-1 189 Unused I 199 Unused 02-2 35 OR5 Green 17-1 189 Unused I 199 Unused 02-3 35 OR5 Green 17-1 189 Unused I 199 Unused 03-3 5 OR5 Green 17-1 189 Unused I 199 Unused 03-3 5 OR5 Green 17-1 189 Unused I 199 Unused 03-3 5 OR5 Green 17-1 189 Unused I 199 Unused 03-3 5 OR5 Green 18-1 189 Unused I	0 =
189 Unused	
189 Unused	
189 Unused O1-5 51 Ch3 Green O2-2 15 Ch15 Red O2-1 189 Unused O2-2 52 Ch4 Green H-1 189 Unused O2-2 52 Ch4 Green H-2 189 Unused O2-2 53 Ch5 Green H-2 189 Unused O2-2 53 Ch5 Green H-2 189 Unused O2-2 53 Ch5 Green H-2 189 Unused O2-2	
9 Veh Cail 9 0.2-1 4 Ch4 Red C15 USER 10 Map [1.83.1 in] 1 1 1 1 1 1 1 1 1	
189 Unused 180 Ch4 Green 181 Weh Cail 11 Weh Cail 11 Weh Cail 11 O22 52 Ch4 Green 181 Unused 181	
11 Veh Call 11 02-3 5 Ch5 Red 14-2 189 Unused Seq 189 Unused 02-4 29 Ch5 Vellow 14-3 189 Unused 17-1 189 Unused 02-5 5 Ch5 Vellow 17-1 189 Unused 2 15 Veh Call 15 02-7 30 Ch6 Yellow 17-2 189 Unused 2 189 Unused 02-8 54 Ch6 Green 17-3 189 Unused 2 189 Unused 02-8 54 Ch6 Green 17-5 189 Unused 5 189 Unused 03-1 7 Ch7 Red 17-5 189 Unused 5 189 Unused 03-3 8 Ch8 Green 17-5 189 Unused 6 189 Unused 03-4 32 Ch8 Green 18-3 18-4 189 Unused 6 189 Unused 03-5 56 Ch7 Green 18-3 18-4 18-4 18-4 18-4 18-4 18-4 18-4 18-4 <td< td=""><td></td></td<>	
189 Unused 024 29 Ch5 Yellow 14.3 189 Unused 56 189 Unused 02.5 53 Ch5 Green 14.4 189 Unused 2 15 Veh Call 15 02.5 5 Ch5 Green 17.1 189 Unused 2 17 Veh Call 15 02.7 3 Ch6 Yellow 17.2 189 Unused 2 189 Unused 02.8 5 Ch7 Green 17.4 189 Unused 2 189 Unused 03.1 7 Ch7 Red 17.5 189 Unused 6 189 Unused 03.2 5 Ch7 Green 17.5 189 Unused 6 189 Unused 03.4 32 Ch8 Yellow 18.3 189 Unused 6 189 Unused 03.5 5 Ch7 Green 18.3 18.0 18.0 18.0 189 Unused 03.5 5 Ch8 Green 18.3 18.0 18.0 18.0 18.0 189 Unused 03.5 5 Ch10 Green 18.4 189 Unused 15 189 Unused 04.1 10 Ch10 Red 18.5 18.0	
189 Unused 0.2-5 5.3 Ch5 Green 17-1 189 Unused 180 Unused 189 Unused 0.2-5 5.3 Ch5 Green 17-1 189 Unused 2 180 Unused 0.2-7 3.0 Ch6 Velicw 17-2 189 Unused 3 180 Unused 0.2-7 3.0 Ch6 Velicw 17-3 189 Unused 4 180 Unused 0.3-3 8 Ch7 Green 17-4 189 Unused 6 189 Unused 0.3-3 8 Ch8 Green 17-5 189 Unused 6 189 Unused 0.3-4 5.5 Ch7 Green 17-5 189 Unused 6 189 Unused 0.3-5 5.6 Ch8 Green 18-3 189 Unused 6 22 Veh Call 23 0.3-7 3.2 Ch8 Yellow 18-3 189 Unused 17-6 21 Veh Call 23 0.3-7 3.2 Ch9 Green 18-3 18-4 189 Unused 16-4 21 Veh Call 23 0.3-7 3.3 Ch9 Velicw 18-4 189 Unused 16-4 22 Veh Call 25 0.4-3 3.0 Ch17 Green 0.8-3	
189 Unused 0.2-6 C OR Red 17-1 189 Unused 2 189 Unused 0.2-7 30 Ch6 Yellow 17-2 189 Unused 4 189 Unused 0.2-8 54 Ch6 Green 17-2 189 Unused 4 189 Unused 0.2-3 30 Ch6 Yellow 17-5 189 Unused 6 189 Unused 0.3-3 5 Ch7 Green 17-5 189 Unused 7 189 Unused 0.3-3 5 Ch8 Yellow 17-5 189 Unused 6 189 Unused 0.3-4 32 Ch8 Yellow 18-7 189 Unused 6 189 Unused 0.3-5 56 Ch8 Green 18-7 189 Unused 6 23 Ven Call 23 0.3-6 9 Ch9 Red 18-7 189 Unused 17 24 Ven Call 23 0.3-6 9 Ch10 Green 18-7 189 Unused 17 25 Ven Call 23 0.4-1 0 Ch10 Reen 18-7 189 Unused 16 24 S Ven Call 25 0.4-1 0 Ch10 Green 18-7 18-0 Unused 18-7 <td>AS NOWE COM PARAMETERS</td>	AS NOWE COM PARAMETERS
15 Veh Call 15 O2-3 O Che Cheen 17-3 189 Unused O2-3 O Che Cheen 17-3 189 Unused O2-3 O Che Cheen 17-3 189 Unused O3-3 S Che Cheen 17-4 189 Unused O3-4 O Cheen O3-4 O Cheen O3-4 O Cheen O3-4 O Cheen O3-4 O Cheen O3-4 O Cheen O3-4 O Cheen O3-4 O Cheen O3-4 O Cheen O3-4 O Cheen O3-4 O Cheen O3-4 O Cheen O3-4 O Cheen O3-4 O Cheen O3-4 O Cheen	SWEAT AND THE WORLD
189 Unused 17-3 189 Unused 18-3 189 Unused 189	SCURE 23 NONE 45 NONE
17 Veh Cali 7 Order 17-5 169 Unused 5 18 Unused 03-3 8 Che Red 17-5 169 Unused 5 18 Unused 03-4 32 Che Red 17-7 189 Unused 19 18 Unused 03-4 32 Che Red 17-7 189 Unused 19 19 Unused 03-6 3 Che Red 18-1 189 Unused 19 19 Unused 03-1 10 Chri Red 18-2 189 Unused 15 19 Unused 04-1 10 Chri Red 18-5 189 Unused 15 19 Unused 04-2 58 Chri Tyellow 18-5 189 Unused 15 19 Unused 04-1 10 Chri Red 18-5 189 Unused 15 19 Unused 04-5 59 Chri Tyellow 18-5 189 Unused 15 19 Unused 04-5 59 Chri Tyellow 18-5 189 Unused 15 19 Unused 05-2 34 Chri Tyellow 08-2 115 Not Used 15 18 Unused 05-2 34 Chri Tyellow 08-3 115 Not Used 15 18 Unused 05-5 39 Chri Tyellow 08-3 115 Not Used 05-3 13 Chri Tyellow 08-6 115 Not Used 05-1 15 Not Used 05-1	NONE 24 NONE 46 NONE
17 Ven Cail 17 Ven Cail 17 Ven Cail 17 Ven Cail 17 Ven Cail 17 Ven Cail 17 Ven Cail 17 Ven Cail 17 Ven Cail 17 Ven Cail 18 Unused O3-5 56 Ch8 Fellow O3-5 56 Ch8 Fellow O3-5 56 Ch8 Fellow O3-5 56 Ch8 Fellow O3-5	NONE 25 NONE 47 NONE
189 Unused O3-2 55 Ch7 Green 17-5 189 Unused D3-3 8 Ch8 Red D7-6 D7	NONE 26 NONE
189 Unused O3-3 8 Ch8 Red 7-6 189 Unused O3-4 32 Ch8 Yellow 7-7 189 Unused O3-4 32 Ch8 Yellow 17-7 189 Unused O3-5 5 Ch8 Green 18-1 189 Unused O3-5 5 Ch8 Green 18-1 189 Unused O4-2 58 Ch10 Green 18-3 189 Unused O4-3 O4-4 O4	NONE 27 NONE 49
189 Unused 184 Unused 184 Unused 189 Unused 189 Unused 184 Unused 184 Unused 184 Unused 184 189 Unused 185 189 Unused 189 Unus	
189 Unused 03-5 56 Ch8 Green I7-8 189 Unused 9 23 Veh Call 23 03-6 9 Ch9 Red I8-1 189 Unused 10 189 Unused 03-8 9 Ch9 Red I8-2 189 Unused 11 189 Unused 03-8 57 Ch9 Green I8-3 189 Unused 17 189 Unused 04-1 10 Ch10 Red I8-3 189 Unused 17 179 Door Open 04-1 11 Ch11 Red I8-5 189 Unused 16 179 Unused 04-6 12 Ch12 Red 08-1 115 Not Used 17 229 33xCMUStop 04-6 12 Ch12 Red 08-1 115 Not Used 17 189 Unused 04-6 12 Ch12 Red 08-1 115 Not Used 17 189 Unused 05-3 34 Ch10 Yellow 08-3 115 Not Used 17 189 Unused 05-3 34 Ch10 Yellow 08-3 15 Not Used 15 189 Unused 05-3 35 Ch17 Yellow 08-3 15 Not Used 15	NONE 29 NONE 51 NONE
189 Unused 03-6 9 Ch9 Red 18-1 189 Unused 100 11	NONE 30 NONE 52 NONE
189 Unused 197 33 Ch9 Yellow 18-2 189 Unused 12	NONE 31 NONE 53 NONE AIL
18-9 Unused 18-1	NONE 32 NONE 54 NONE
C11S Connector 04-1 10 Ch10 Red 18-1 189 Unused 14-1 C11S Connector 04-2 58 Ch10 Green 18-5 189 Unused 14-1 179 Door Open 04-3 53 Ch11 Yellow 18-6 189 Unused 16-1 179 Door Open 04-3 59 Ch11 Green 18-8 189 Unused 17-1 229 33xCMUStop 04-3 56 Ch12 Red C11SUSER IO Map [1.8.9.2 Out] 18-8 189 Unused 18-8 189 Unused 17-1 18-1	NONE 33 NONE 55
C11S Connector O4-2 58 Ch10 Green 18-5 189 Unused 14 179 Door Open O4-4 35 Ch11 Yellow 18-6 189 Unused 16 179 Door Open O4-6 55 Ch11 Green 18-8 189 Unused 17 189 Unused O4-6 12 Ch12 Red C11S-USER IO Map [1.8.92 Out] 18 229 33xCMUStop O4-7 36 Ch12 Red C11S-USER IO Map [1.8.92 Out] 18 229 33xCMUStop O4-7 36 Ch12 Yellow O8-1 115 Not Used 20 25 Veh Call Z5 Ch1 Yellow O8-3 115 Not Used 21 19 189 Unused O5-3 25 Ch1 Yellow O8-6 115 Not Used O8-6 115 Not Used O8-6 115 Not Used 189 Unused O5-3 14 Watchdog O8-8 115 Not Used O6-3 <td>NONE 34 NONE 56 NONE</td>	NONE 34 NONE 56 NONE
15 Children Collinet and Children	NONE 35 NONE 57 NONE SP1 9600 M
179 Door Open O44 35 Ch11 Yellow IB-7 189 Unused 16 189 Unused O4-5 59 Ch12 Geen C11S-USER IO Map [1.8.92 Out] 17 229 33xCMUStop O4-6 12 Ch12 Red C11S-USER IO Map [1.8.92 Out] 18 229 33xCMUStop O4-7 36 Ch12 Yellow O8-1 115 Not Used 20 25 Veh Cail 25 O5-1 28 Ch12 Yellow O8-2 115 Not Used 21 189 Unused O5-3 24 Ch10 Yellow O8-3 115 Not Used 21 189 Unused O5-3 25 Ch1 Yellow O8-5 115 Not Used O8-5 115 Not Used 189 Unused O5-5 63 Ch15 Yellow O8-6 115 Not Used O6-1 115 Not Used O6-1 115 Not Used O6-1 O6-1 O6-1 O6-1 O6-1 O6-1 O6-1 </td <td>NONE 36 NONE 58 NONE SP2 9600</td>	NONE 36 NONE 58 NONE SP2 9600
179 Door Open O4-5 59 Ch11 Green IR-8 189 Unused 17 189 Unused O4-6 12 Ch12 Red C11S-USER IO Map [1.8.9.2 Out] 18 229 33xCMUStop O4-7 36 Ch12 Yellow OR-1 115 Not Used 20 22 Web Cail 25 O5-1 28 Ch4 Yellow OR-2 115 Not Used 20 189 Unused O5-2 34 Ch10 Yellow OR-3 115 Not Used 21 189 Unused O5-3 25 Ch1 Yellow OR-3 115 Not Used OR-3 115 Not Used 189 Unused O5-3 39 Ch15 Yellow OR-3 115 Not Used OR-3 115 Not Used 189 Unused O5-3 31 Ch7 Yellow OR-8 115 Not Used OR-8 115 Not Used 189 Unused O5-5 63 Ch15 Yellow OR-8 115 Not Used OR-8 115 Not Used 189 Unused O6-1 115 Not Used OR-1 OR-1 OR-1 OR-1 OR-1 OR-1 OR-1 OR-1 OR-1 OR-1 OR-1 OR-1	NONE 37 NONE 59 NONE 8P3 19200
189 Unused O4-6 12 Ch12 Red CHS-USER IO Map [1.8.9.2 Out] 18 229 33xCMUStop O4-7 36 Ch12 Yellow O8-1 115 Not Used 20 22 33xCMUStop O4-8 60 Ch12 Green O8-2 115 Not Used 20 25 Veh Cail 25 O5-1 28 Ch4 Yellow O8-3 115 Not Used 21 189 Unused O5-2 34 Ch10 Yellow O8-4 115 Not Used 21 189 Unused O5-3 25 Ch1 Yellow O8-6 115 Not Used O8-6 115 Not Used 189 Unused O5-5 39 Ch15 Yellow O8-7 115 Not Used O8-7 115 Not Used 189 Unused O5-6 63 Ch15 Yellow O8-8 115 Not Used O6-1 115 Not Used 189 Unused O5-7 115 Not Used O6-1 115 Not Used O6-1 115 Not Used 189 Unused O6-1 115 Not Used O6-1 115 Not Used O6-1 115 Not Used 189 Unused O6-1 115 Not Used O6-1 115 Not Used O6-1 115 Not Used	NONE 38 NONE 60 NONE SP4 38400
229 33xCMUStop O4-7 36 Ch12 Yellow O8-1 115 Not Used 19 228 33xFlashSns O4-8 60 Ch12 Green O8-2 115 Not Used 27 25 Veh Cail 25 O5-1 28 Ch4 Yellow O8-3 115 Not Used 27 189 Unused O5-2 34 Ch10 Yellow O8-5 115 Not Used O8-6 115 Not Used O8-6 115 Not Used O8-6 115 Not Used O8-7 115 Not Used O8-7 115 Not Used O8-8 115 Not Used O8-8 115 Not Used O8-8 115 Not Used O8-8 115 Not Used O8-8 115 Not Used O8-8 115 Not Used O8-8 115 Not Used O8-8 O8-8 115 Not Used O8-8 <	18 NONE 39 NONE 61 NONE 1200
228 33xFlashSns Od-8 60 Ch12 Green O8-2 115 Not Used 27 25 Veh Call 25 O5-1 28 Ch4 Yellow O8-3 115 Not Used 21 189 Unused O5-3 25 Ch1 Yellow O8-5 115 Not Used O8-6 115 Not Used 189 Unused O5-3 39 Ch15 Yellow O8-6 115 Not Used O8-7 115 Not Used 189 Unused O5-6 63 Ch15 Green O8-8 115 Not Used O8-8 115 Not Used 189 Unused O5-1 115 Not Used O6-1 115 Not Used O6-1 115 Not Used 189 Unused O6-1 115 Not Used O6-3 13 Ch13 Yellow O6-3 13 Ch13 Yellow 189 Unused O6-3 13 Ch13 Yellow O6-3 14 Ch13 Yellow O6-3	19 NONE 62 NONE SP6 1200
25 Veh Cail 25 05-1 28 Ch4 Yellow 08-3 115 Not Used 21 189 Unused 05-2 34 Ch10 Yellow 08-4 115 Not Used 08-6 115 Not Used 189 Unused 05-3 25 Ch1 Yellow 08-6 115 Not Used 08-6 115 Not Used 189 Unused 05-5 39 Ch15 Yellow 08-7 115 Not Used 08-7 115 Not Used 189 Unused 05-6 63 Ch15 Green 08-8 115 Not Used 08-8 115 Not Used 189 Unused 05-7 115 Not Used 06-1 115 Not Used 06-1 115 Not Used 189 Unused 06-1 115 Not Used 06-1 115 Not Used 06-1 115 Not Used 189 Unused 06-1 115 Not Used 06-1 115 Not Used 06-1 115 Not Used 06-1 115 Not Used 189 Unused 06-3 13 Ch13 Red 06-3 13 Ch13 Yellow 06-3 14 Only Sed 14 Only Sed 14 Only Sed	NONE 63 NONE SP7
189 Unused 05-2 34 Ch10 Yellow 08-4 115 Not Used 189 Unused 05-3 25 Ch1 Yellow 08-5 115 Not Used 189 Unused 05-5 39 Ch15 Yellow 08-7 115 Not Used 189 Unused 05-6 63 Ch15 Green 08-8 115 Not Used 189 Unused 05-7 115 Not Used 08-8 115 Not Used 189 Unused 05-1 115 Not Used 06-1 115 Not Used 189 Unused 06-1 115 Not Used 06-1 115 Not Used 189 Unused 06-2 115 Not Used 06-2 115 Not Used 189 Unused 06-3 13 Ch13 Red 06-3 13 Ch13 Red 189 Unused 06-4 37 Ch13 Yellow 06-5 61 Ch14 Bod	NONE 42 NONE 64 NONE SP8 1200
189 Unused OS-3 25 Ch1 Yellow OR-5 115 Not Used 189 Unused OS-4 31 Ch7 Yellow OR-7 115 Not Used 189 Unused OS-5 63 Ch15 Yellow OR-8 115 Not Used 189 Unused OS-7 115 Not Used OR-8 115 Not Used 189 Unused OS-1 115 Not Used OR-1 III Not Used 189 Unused OS-1 115 Not Used OR-1 III Not Used 189 Unused OS-2 115 Not Used OR-3 III Ch13 Yellow 189 Unused OS-3 13 Ch13 Yellow OR-3 III Ch14 Bod 189 Unused OS-3 11 Ch14 Bod OR-3 III Ch14 Bod	
189 Unused OS-4 31 Ch7 Yellow O8-6 115 Not Used 189 Unused OS-5 39 Ch15 Yellow O8-7 115 Not Used 189 Unused OS-7 115 Not Used OS-115 Not Used 189 Unused OS-115 Not Used OS-115 Not Used 189 Unused OS-115 Not Used 189 Unused OS-115 Not Used 189 Unused OS-3 13 Ch13 Red 189 Unused OS-3 13 Ch13 Red 189 Unused OS-3 14 Ch13 Tellow 189 Unused OS-3 14 Ch14 Bod	2070 IP 1 Addressing [6.5] 2070 IP 2 Addressing [6.5]
189 Unused OS-5 39 Ch15 Yellow OR-7 115 Not Used 189 Unused OS-6 63 Ch15 Green OR-8 115 Not Used 189 Unused OS-1 115 Not Used OS-1 II Not Used 189 Unused OS-1 115 Not Used OS-1 II Not Used 189 Unused OS-2 115 Not Used OS-3 II Solution 189 Unused OS-3 13 Ch13 Red OS-3 II Ch13 Yellow 189 Unused OS-3 15 Ch13 Yellow OS-3 II Ch14 Dod	
189 Unused 05-6 63 Ch15 Green O8-8 115 Not Used 189 Unused 05-7 115 Not Used 115 Not Used 189 Unused 06-1 115 Not Used 115 Not Used 189 Unused 06-2 115 Not Used 116 Not Used 189 Unused 06-3 13 Ch13 Red 13 Ch13 Yellow 189 Unused 06-4 37 Ch13 Yellow 189 Unused 06-5 61 Ch13 Green	
189 Unused OS-7 115 Not Used 189 Unused OS-8 114 Watchdog 189 Unused O6-1 115 Not Used 189 Unused O6-2 115 Not Used 189 Unused O6-3 13 Ch13 Red 189 Unused O6-4 37 Ch13 Yellow 189 Unused O6-5 61 Ch13 Green 189 Unused O6-5 61 Ch13 Pellow	0 0 0 0 Mask 0 0 0
189 Unused OS-8 114 Watchdog 189 Unused O6-1 115 Not Used 189 Unused O6-2 115 Not Used 189 Unused O6-3 13 Ch13 Red 189 Unused O6-4 37 Ch13 Yellow 189 Unused O6-5 61 Ch13 Green 189 Unused O6-5 61 Ch13 Pellow	0 0 0 Brdcst 0 0 0 0
189 Unused O6-1 115 Not Used 189 Unused O6-2 115 Not Used 189 Unused O6-3 13 Ch13 Red 189 Unused O6-4 37 Ch13 Yellow 189 Unused O6-5 61 Ch13 Green 189 Unused O6-5 61 Ch13 Green	0 0 0 GWay 0 0 0 0
189 Unused O6-2 115 Not Used 189 Unused O6-3 13 Ch13 Red 189 Unused O6-4 37 Ch13 Yellow 189 Unused O6-5 61 Ch13 Green 189 Unused O6-5 61 Ch13 Green	
189 Unused O6-3 13 Ch13 Red 189 Unused O6-4 37 Ch13 Yellow 189 Unused O6-5 61 Ch13 Green 189 Unused O6-5 61 Ch13 Green	
189 Unused O6-4 37 Ch13 Yellow Port 189 Unused O6-5 61 Ch13 Green ASYNC1 SP1 189 Unused O6-5 61 Ch13 Green ASYNC1 SP1	2070 Port Binding Ports [6.6] 2070 Port Binding Functions [6.6]
189 Unused 06-5 61 Ch13 Green ASYNC1 189 Housed OK. 44 Ch14 Bod ASYNC1	Echo Mode
189 House	SP1
Top Uniused ASTINC2	SP2 OFF 0 CMUMMU NONE
189 Unused O6-7 38 Ch14 Yellow ASYNC3	SP3 OFF 0 Opticom
4 SP4	4 SP4 OFF 0 Loop Det
SYNCI	
5	OFF STRUG

o	_	7 Pha	Ø Phases Called By Ø	led By (9	From		To From	TO F	From	To From	m To		1 2	3	4	2	9	7	8	9	11	12	13 14	15
ő	On On												-		H				-	H	L			\vdash	\vdash
	2	6			$\frac{5}{1}$						H		2		L					-					-
ō	_			17.7	,,	3					Н		က	H											L
ő					4							4	4												
5	5 5		1	1	T					+	+	1	2	+	4					+					_
	1 0		1	+	7 P				+	+	+	1	9 1	+	4			+	+	+	4		+	+	4
Closed Loss Disabled	2	1	I	+	T				+	+	+	1	_ 0	+	+				+	+	1		1	+	4
T	_		I	+	T				+	+	+	1	0 0	+	4	I	+	\dagger	+	+	1		1	+	+
	5			+	, =	2 5			+	+	+	1	n 5	+	4	I	1	+	+	+	1		+	+	+
Manual Control Enable On	On On 11		I		1				+	+	+	1	5 5	+	+	I	\dagger	\dagger	+	+	1	I	+	+	1
					T	5			-	+	t	1	12	+	1		1	+	+	+	1		1	+	+
5	On On 13	1 60			T	1 55			T	1	+	ļ	1 6	+	1	I	1	\dagger	+	+	1		t	+	+
	_	**			Ţ	14					H	L	14	+	1				+	-	L		t	+	L
	-	15			T	15					H		15	+	-			T	+	-	L		T	+	H
Б	On On 16	(C)			=	16			-	-	H		16	-					-	+	L		t	+	-
Б		It Cal	& Rec	Alt Call & Redirect # 1 [1.1.6.3]	#111.	1.6.31							Att	Alt Inhibit Phases # 1 [1	hase	#11	1.1.6.31	-		-					4
ō	On On Col	0 10	Phase	Phases Called By Ø	d By Ø	_	From	To	From	To Fr	From To	From	To	1 2	3	4	2	9	7	8	10	7	12	13 14	15
ō					+	-							-	-	\vdash			-	-	H	L		\vdash	\vdash	\vdash
Detector SDLC Failure	2					7							2						-	-				-	L
MMU SDLC Failure	က					co					-		3						-	-					L
Critical SDLC Failure	4					4							4						-	-					
	2				·	5							5					-	-						
	00 nO					9							9	-											
Failur	_	\prod			+	_							7												
	_					80							8				5.0								
Queue detector alarm On		Alt Call		& Redirect # 2	#2[1.	1.6.3							Alt In	Alt Inhibit Phases	hase	#	2 [1.1.6.3]	1							
ō	On On Col	0 10	Phase	Phases Called By Ø	ByØ		From	To	From	To Fn	From To	From	To	1 2	3	4	5	9	7 8	9	10	11	12	13 14	15
Coord Diagnostic Fault	-	45				_				-			1	_					_	_				_	
TempAlert Probe Ch. A	7					7							2												
TempAlert Probe Ch. B	3				+	n							က												
				1	+	4			+	+	+		4	-											
5				7	+	3				+	-		2											-	
5						9							9												
Б	_				-	_					-		7											-	
ō	On On 8					00				-	-		8	_											L
o	On On	Coord,	CIC P	CIC Plans [2.3]	.3]					Ď	nit Par	Unit Parameters	s [1.2.1]												
On	On On	CIC COB	Grow	1	2 3	3 4	2	9	1	8 All	low Ski	Allow Skip Yellow	OFF	Ma	Max Cycle Time	Time			Г						
On	On On 1	OFF								T	mid dc	TOD Dim Enable	OFF	Š	de Fau	Cycle Fault Action		ALARM							
ō	On On 2	OFF.			-					10	Tone Disable	able	OFF	-											
ō	On On	PFF								Ö	Diamond Mode	Mode	4Ph						F						
6	On On 4	PFF								ä	Backup Time (s)	ime (s)	006	-											
ō		Auto Flash	ash P	Phase/Olap Settings [1.4.2]	S dell	etting	S [1.4.	2]		٥	Disable Init Ped	nit Ped	OFF												
Ou	On On Ye	VelØ								Ó	vcle Fai	Cycle Fault Action							Г						
	**								-																

TE 262-12 (7/91)

MODEL 179 SIGNAL OPERATION PROGRAMMABLE FEATURES SIGNAL OPERATION SPECIFICATION

TAPS	
STUDY#	
FILE#	
PAGE	OF

SIGNAL # W210

COUNTY# WEST.

DATE ____

SWITCH	FUNCTION	INDICATIONS	FACE	TERMINA	AL WIRING BOARD		TERMINA	L WIRING BOARD
PACK	1 ONO HON	INDICATIONS	FACE	TERMINAL	WIRE COLOR CODE	FACE	TERMINAL	WIRE COLOR CODE
		RED		SP1R	14 / 5C - B1 - R		SP 1 R	14 / 5C - A1 - R
1	Ø1	YELLOW	4	SP1Y .	-0		SP 1 Y	- O
	1 61	GREEN	1	SP1G	- G	2	SP1G	- G
		Ground Wire		Grnd Bus	- W		Grnd Bus	- W
				SP 2 R			SP 2 R	- VV
2				SP 2 Y	A STATE OF THE STA	1	SP 2 Y	
2	3.1	* * * * * * * * * * * * * * * * * * *		SP 2 G		1	SP 2 G	
		Ground Wire		Grnd Bus		1	Grnd Bus	
- 1		RED		SP3R	14 / 10C - D - R/B		SP 3 R	14 / 15C - E - R/W
3	Ø3	YELLOW		SP3Y	- O/B		SP 3 Y	- BLM
3	23	GREEN	5	SP 3 G	- G/B	6	SP 3 G	- G/W
		Ground Wire		Grnd Bus	- W/B		Grnd Bus	- B/W
				SP 4 R		-	SP 4 R	- D/44
4				SP 4 Y	- TAP	1	SP 4 Y	
	4			SP 4 G	7 J J 18 1 E E E E E E	1	SP 4 G	
		Ground Wire		Grnd Bus	237111111111111111111111111111111111111		Grnd Bus	
		RED		SP 5 R	14/10C - D - R		SP 5 R	14 / 15C - E - R
-	OX C	YELLOW	0	SP 5 Y	-0		SP 5 Y	147 ISC - E - R
5	Ø5	GREEN	3	SP 5 G	- G	4	SP 5 G	
		Ground Wire		Grnd Bus	- W	-	Grnd Bus	- G
		4-	-	SP 6 R	14 / 5C - C - R	-		- W
	~~		1	SP 6 Y	-0	13.5	SP 6 R SP 6 Y	14 / 5C - C1 - R
6	Ø6	-	1A	SP 6 G	- G	1B -	SP 6 G	-0
	1.000	Ground Wire		Grnd Bus		100		- G
	DO-0 14 TO 15		-	SP7R			Grnd Bus	- W
-	OVL. 'A'			SP7Y	14 / 15C - E - O/B	-	SP 7 R	
7	Ø3+Ø5 [-	4	SP7G	- G/B	-		
	23423	Ground Wire		Grnd Bus	- W/B	-	SP 7 G	
			-	SP 8 R	WID	11	Grnd Bus	
	T			SP8Y		-	SP 8 R SP 8 Y	
8				SP 8 G		-	SP 8 G	
	-	Ground Wire	100	Grnd Bus		-		
		Great tene	-	SP 9 R		-	Grnd Bus	
			+	SP 9 Y	51.0	-	SP 9 R SP 9 Y	
9			+	SP 9 G		-		
	-	Ground Wire	-	Grnd Bus		-	SP 9 G	
-			-	SP 10 R			Grnd Bus	
				SP 10 Y		-	SP 10 R	
10			-	SP 10 G		-	SP 10 Y	
		Ground Wire	-	Grnd Bus		-	SP 10 G	
-		oreana rrite		SP 11 R		-	Grnd Bus	
44			-	SP 11 Y		-	SP 11 R	
11			-	SP 11 G		-	SP 11 Y	
		Ground Wire	-	Grnd Bus			SP 11 G	
		C. Cana Trace	-	SP 12 R			Grnd Bus	
	-		-	SP 12 Y		-	SP 12 R	
12	-		-	SP 12 G		_	SP 12 Y	
		Ground Wire	-	Grnd Bus			SP 12 G	
		Stound Wife	-	SP 13 R			Grnd Bus	
44	-		-	SP 13 K		_	SP 13 R	
13	-		.				SP 13 Y	
a Pillan	-	Ground Mine	-	SP 13 G			SP 13 G	
		Ground Wire		Grnd Bus			Grnd Bus	
4.5	_		-	SP 14 R			SP 14 R	
14	_		1	SP 14 Y			SP 14 Y	
	-	Duning d Marin		SP 14 G			SP14 G	
		Ground Wire		Grnd Bus			Grnd Bus	

TE 262-13 (7/91)

MODEL 179 SIGNAL OPERATION PROGRAMMABLE FEATURES SIGNAL OPERATION SPECIFICATION

TAPS	
STUDY#	
FILE #	
PAGE	OF

FIRE DESIGNATION OF THE PROPERTY OF THE PROPER	1.0000000000000000000000000000000000000
SIGNAL #	W210
WIGHT #	VVZIU

COUNTY # WEST.

DATE ____

CONFLICT/CURRENT MONITOR PROGRAMMING

	TO BE CUT	CONFLICT MONITOR YELLOW JUMPERS TO BE INSTALLED	CURRENT MONITOR
SP 1 - SP 5			2, 4, 7 to 14
SP 1 - SP 6	K Li		
SP 1 - SP 7			
SP 3 - SP 7		T T	
SP 5 - SP 7			100
- 9			. 1, 1
	W 1 1		
3			
4			
TES:			
			V
i i			
			Table 1
		Analysis in the second	
			*/**

TE°262-14 (7/91)

. . . .

MODEL 179 SIGNAL OPERATION PROGRAMMABLE FEATURES SIGNAL OPERATION SPECIFICATION

TAPS	
STUDY#	
FILE#	TV V. TELL
PAGE	OF

SIGNAL # W210

COUNTY # WEST.

DATE

TABLE OF INPUT WIRING

TERM NUMBER	FUNCTION	DET. NO.	DET. TYPE	DET. AN OVER	REMARKS
1A, 1B	Ø1	. 1A, 1B	LOOPS		PRESENCE
2A, 2B					
3A, 3B	Ø3	3A, 3B	LOOPS	1 1	PRESENCE
4A, 4B					100000
5A, 5B	Ø5	5A, 5B	LOOPS		PRESENCE
6A, 6B	Ø6	6A, 6B	LOOPS		PRESENCE
7A, 7B					
8A, 8B	- H/1:1		1 1 1		
9A, 9B					
10A, 10B					0
11A, 11B	Ø1	11A, 11B	LOOPS		PRESENCE
12A, 12B				3	7,1001101
13A, 13B					· · · · · · · · · · · · · · · · · · ·
14A, 14B					The state of the s
15A, 15B	Ø5	15A, 15B	LOOPS		PRESENCE
16A, 16B	Ø6	16A, 16B	LOOPS		PRESENCE
17A, 17B					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
18A, 18B					
19A, 19B					
20A, 20B	4				
21A, 21B			= 110		
22A, 22B	LANCE TO THE REAL PROPERTY.				100
23A, 23B					
24A, 24B					
25A, 25B	Ø5	25A, 25B	LOOPS	7	PRESENCE
26A, 26B					FREGENCE
27A, 27B					
28A, 28B		1		-	

Mark.

Phase Times [1.1.	_								Cod	ordina					d Coo		tion S	plit T	able	s [2.7.	.1]										
	1	2	3	4	5	6	7	8	Pat	Сус	Off	Split	Seq	Pat#	Сус	Off	Split	Seq	Pat#	Сус	Off	Split	Seq	Pat#	Cyc	Off	Spli	Se	0		
Min Green		3	5			3			1	0	0	1	4	13	0	0	13	1	25		0	0	1	37	0	0	0	1	-	27	D8
Gap, Ext		2	3			2			2			2	1	14	0	0	14	1	26	0	0	0	1	38	0	0	0	1	9	J	טט
Max 1	40	20	40		40	20			3			3	1	15	0	0	15	1	27	0	0	0	1	39	0	0	0	1			
Max 2									4			4	1	16	0	0	16	1	28	0	0	0	1	40	0	0	0	1	Ding/	Ctor	tup [1.1.4]
Yel Clearance	5	5	4	3.5	5	5	3.5	3.5	5			5	1	17	0	0	17	1	29	0	0	0	1	41	0	0	1	1		Ring	
Red Clearance	2	2	1	1.5	2	2	1.5	1.5	6			6	1	18	0	0	18	1	30	0	0	0	1	42		1000	0	1		_	Start Enab
Walk		of Design		of the party	-	1			7	-	-	7	1	19	0	0	19	1	31	0	0	0	1	43	0	0	0	1	1	1	GREEN On
Ped Clearance						1			8			8	1	20	0	0	20	1	32	0	0		1		0	0	0	1 1	2	1	RED On
Red Revert									9			9	1	21	0	0	21	1	33	0	0	0	1	44	0	0	0	1	3	1	RED On
Add Initial									10			10	1	22	0	0	22	1	34	0	-	1650	1	45	0	0	0	1.	4	1	RED Off
Max Initial									11			11	1	23	0	0	23	1	35	0	0	0	1	46	0	0	0	1	5	2	GREEN On
Time B4 Reduct					-			-	12			12	1	24	0	0	24	1	36	0	0	0	1	47	0	0	0	1	6	2	RED On
Cars B4 Reduct						1			Split		1	2	3	4	5	6	7	0			0	0	1	48	0	0	0	1	7	2	RED Off
Time To Reduce				-			-			Coor			J	4	3	0	1	8	Split			2	3	4	5	6	7	8		2	RED Off
Reduce By										0001					\vdash				13	Coor									Coord		
Min Gap								-	2	Coor					\vdash		_		44	0								-	Test OpN		0
DyMaxLim					-	1			1	COOL					\vdash				14	Coor		-	-						Correction		SHRT/LNG
Max Step									2	Coor					\vdash				45	Coor									Maximum		MAX 1
Options [1.1.2]	1	2	3	4	5	6	7	8	3	COOI			-		\vdash				15	Coor			-					_	Force-Off		FLOAT
Enable	On	On	On	_	On	On	-	0	4	Coor									40	Coor								-	Closed Lo		ON
Min Recall	Oii	Oii	Oii		Oii	Oil			4	Cool									16	Coor								-	Stop-in-W		OFF
Max Recall	On			-	On				5	Coor									47	0			-					-	Auto Res		ON
Ped Recall	OII	-			OII		-		3	COOI			-			-			17	Coor						5		-	Expand S		OFF
Soft Recall							-		6	Coor									40	0								-	Ped Recy	cle	NO_RECYCLE
Lock Calls			7	-		-	-		0	COOL						-	-	4	18	Coor								-	Before		TIMED
Auto Flash Entry		-		-	-	-			7	Cons	-			-		-			40	_								_	After		TIMED
Auto Flash Exit							-	-	1	Coor				-			-		19	Coor									Auto FI		
Dual Entry		On		On		On		0-	0	Coor	-	-	-	-					-00		-					-			Auto Flas		PH OVER
Enable Simul Gap	On	On	On	On	On	On	On	On	٥	COOL		-		-					20	Coor									Flash Yel		45
Gaurantee Passage	Oil	Oil	Oil	Oil	Oil	Oil	Oil	On	0	Coor	-			-		-	-	-	04	0	-								Flash Red		0
Rest In Walk		-	-			-	-	-	9	Coor				-				_	21	Coor								\vdash	Unit Pa		
Conditon Service			-		-		-		10	Cane	-		-	-	- 7				00	0			-						Phase Mo	ode	STD8
Non-Actuated 1				-		-	-		10	Coor				-	-				22	Coor									IO Mode		USER
Non-Actuated 2						-	-	-	44	Coor				-					00	0.	2 - 1								Loc Fish S		ON
Add Init Calc						-		-	11	Coor				-					23	Coor									Start Flas		0
Options+ [1.1.3]	1	2	3	-	5	c	7		40	Carr	-					-			0.1	_	<i>y</i> 1			-				-	Start AllR		0
Reservice	_		3	4	3	6	7	8	12	Coor		_		_					24	Coor					_				Yellow < 3		OFF
PedClr Thru Yel					-				_	4				_										4					Display Ti		20
Skip Red No Call				-					Pa	ge#	0.5		T.	10		_			_										Red Reve		3
									4.5	0.45	8 11	nase	Times	s/Opti	ions;	Patte	erns/S	plits	; Rir	ng Sta	artup;	Coo	rd/Fla	ash M	lode;	Unit	Para	m	MCE Time		0
Red Rest															ions;														Feature P		0
Max II		-			-		- 4								Setting									ated v	ith ti	me-of	-day		Free Ring	_	1
Call Phase							-	-							ime a								ction						Auxswitch		STOPTM
Conflicting Phase															rnate	Phas	e Tim	ne an	d Ph	ase (Option	ıs							SDLC Re		0
Omit Yellow								-					hedul																TS2 Det F		
Ped Delay				=											bles;				e+ (value	s vari	ed by	time	-of-da	ay)				Auto Ped		OFF
Grn/Ped Delay	DZE	20.0	214/100		00==	10 155	100	-00	_						ecutiry														SDLC Ref		0
ID: 7524	KIE 1	20@	SWISS	KE A	CCES	S-IBN	ACC	-55		В	Misc	- Eve	nts/A	larms	; Cal	II/Inhi	bit/Re	edirec	ct; P	/OLA	P Aut	o Fla	sh; (CIC;	Misc	Unit F	arar	n	12/26/	17	Page 1

Phs Concurrent Phases

Concurrency [1.1.4]

Seq	Rng	Concu	rrent P	hases						Seq	Rng	Concu	rrent P	hases					
1	1	1	2	3	4	0	0	0	0	9	1	1	2	4	3	0	0	0	0
1	2	5	6	7	8	0	0	0	0	9	2	5	6	7	8	0	0	0	0
1	3	0	0	0	0	0	0	0	0	9	3	0	0	0	0	0	0	0	0
1	4	0	0	0	0	0	0	0	0	9	4	0	0	0	0	0	0	0	0
2	1	1	2	3	4	0	0	0	0	10	1	1	2	4	3	0	0	0	0
2	2	6	- 5	7	8	0	0	0	0	10	2	6	5	7	8	0	0	0	0
2	3	0	0	0	0	0	0	0	0	10	3	0	0	0	0	0	0	0	0
2	4	0	0	0	0	0	0	0	0	10	4	0	0	0	0	0	0	0	0
3	1	2	1	3	4	0	0	0	0	11	1	2	1	4	3	0	0	0	0
3	2	5	6	7	8	0	0	0	0	11	2	5	6	7	8	0	0	0	0
3	3	0	0	0	0	0	0	0	0	11	3	0	0	0	0	0	0	0	0
3	4	0	0	0	0	0	0	0	0	11	4	0	0	0	0	0	0	0	0
4	1	2	1	3	4	0	0	0	0	12	1	2	1	4	3	0	0	0	0
4	2	6	5	7	8	0	0	0	0	12	2	6	5	7	8	0	0	0	0
4	3	0	0	0	0	0	0	0	0	12	3	0	0	0	0	0	0	0	0
4	4	0	0	0	0	0	0	0	0	12	4	0	0	0	0	0	0	0	0
5	1	1	2	3	4	0	0	0	0	13	1	1	2	4	3	0	0	0	0
5	2	5	6	8	7	0	0	0	0	13	2	5	6	8	7	0	0	0	0
5	3	0	0	0	0	0	0	0	0	13	3	0	0	0	0	0	0	0	0
5	4	0	0	0	0	0	0	0	0	13	4	0	0	0	0	0	0	0	0
6	1	1	2	3	4	0	0	0	0	14	1	1	2	4	3	0	0	0	0
6	2	6	5	8	7	0	0	0	0	14	2	6	5	8	7	0	0	0	0
6	3	0	0	0	0	0	0	0	0	14	3	0	0	0	0	0	0	0	0
6	4	0	0	0	0	0	0	0	0	14	4	0	0	0	0	0	0	0	0
7	1	2	1	3	4	0	0	0	0	15	1	2	1	4	3	0	0	0	0
7	2	5	6	8	7	0	0	0	0	15	2	5	6	8	7	0	0	0	0
7	3	0	0	0	0	0	0	0	0	15	3	0	0	0	0	0	0	0	0
7	4	0	0	0	0	0	0	0	0	15	4	0	0	0	0	0	0	0	0
8	1	2	1	3	4	0	0	0	0	16	1	2	1	4	3	0	0	0	0
8	2	6	5	8	7	0	0	0	0	16	2	6	5	8	7	0	0	0	0
8	3	0	0	0	0	0	0	0	0	16	3	0	0	0	0	0	0	0	0
8	4	0	0	0	0	0	0	0	0	16	4	0	0	0	0	0	0	0	0

	erlap 1-16 Pro	gran	Par	ms a	& Pai	rm+	1.5.	2.1	1.5.2.	2									-	4							rPhs [
)ve	erlap Conflict Lock				erlap	Lock	nhibit	1 0	OFF	Parer		Cleara	nce (NC	Extra	Includ	ded Ph	(OFF								No Sh		Ø	E-Yld	Offset	RetHld	Float	Min Veh Perm	Min Ped Pe
	Included Ø		3							NORM	AL		ncluded &					1	1			NORMAL	1	12	22						EndGRN				
7	Modifier Ø	3							, v	Gm		9	Modifier @	1								Gm	2	12	22				- /	7.	EndGRN	T- T			
1	Conflict Ø									Yel	5		Conflict Ø	-	=10			1 1			T = 1	Yel 3.5	3	12	22					-	EndGRN				1
	Conflict Olap		1						- 0	Red	2	1	Conflict O	lap		5 E						Red 1.5	4	12	22					-	EndGRN	(
	Conflict Ped									LG			Conflict Po	ed								LG	5	12	22						EndGRN	(- 1			
	Included Ø	3	6			I	1	1	1	NORM	AL		ncluded &	Ø		1	1	1	Î	Ĺ		NORMAL	6	12	22				- 0		EndGRN				
1	Modifier Ø	3		4						Grn		10	Modifier Ø	5	LUT							Gm	7	12	22						EndGRN				
Ì	Conflict Ø							1		Yel	5		Conflict Ø									Yel 3.5	8	12	22		211				EndGRN				
	Conflict Olap		9							Red	2	J	Conflict O	lap	3				1			Red 1.5	9	12	22						EndGRN				
	Conflict Ped		1							LG			Conflict Pe		-77					-		LG	10		22				\neg		EndGRN				
	Included Ø	Ì	1	1	Î	1	1	Ĺ	Î	NORM	AL	100	ncluded &			i	İ	ì	1	1		NORMAL	11	12	22			+			EndGRN				_
Ì	Modifier Ø		1							Grn			Modifier Ø		=				1		-	Gm	12	_	22		-	+			EndGRN				
١	Conflict Ø									-	3.5		Conflict Ø		- 1	+	+		+			Yel 3.5	13	_	22			+	-		EndGRN	-			
							1		1	_	1.5		Conflict O			+		+	+	1		Red 1.5	14		22			+			EndGRN	-			
1	Conflict Ped					+	1			LG	1.0		Conflict Pe			+	+	-	+	+		LG 1.5	15		22			+ +	-		EndGRN				
í	Included Ø		ì		1	†	1	1	1	NORM	ΔI		ncluded &			+	+	1	+	1		NORMAL					-	+	\rightarrow	_					
1	Modifier Ø			_	-	+	+	-		Gm	AL.		Modifier Ø		-	+	-	+	+	-		Grn	16		22	\vdash	-	+	\rightarrow		EndGRN				III.
1	Conflict Ø				-	-	+	-		Yel	2 5		Conflict Ø			+	-	+	+	1			17					+	\rightarrow		EndGRN				
			-	-	-	-	+			$\overline{}$	1.5		Conflict O			+	74	-	+			Yel 3.5 Red 1.5	18		22			+	-	_	EndGRN				
1	Conflict Ped					-	-	-	-	LG	1.5		Conflict Pe		-	+	+	+	+				19		22		_	+	\rightarrow	_	EndGRN				
í	Included Ø			-	-	1	-	1		NORM	AI.	1				+	+	+	+	-		LG	20	12	22		-	+	-		EndGRN				
	Modifier Ø				-	-	-	-		Gm	ML		ncluded @ Modifier @			+	-	-	+		_	NORMAL	21	12	22		-	+	-		EndGRN				
١	Conflict Ø		-			-	-	-	-	_	2.5				-	+	-	+	+			Gm	22		22			+	-		EndGRN			11	
	Conflict Olap						-	-			3.5		Conflict Ø		-	+	-	+	+			Yel 3.5	23	12	22			\perp	-		EndGRN				
н			-		-		-	-			1.5		Conflict O		-	+	-	-	+	-		Red 1.5	24	12	22			\perp			EndGRN		-		
ł	Conflict Ped	-		-		ļ.	-	-	ļ.,	LG		Company of the	Conflict Pe		- !-	-	+	1	Ļ			LG	25	-					_		BegGRN				
ı	Included Ø	15			-	-	-	-	-	NORM			ncluded 2		-	+		1	1	-	$\overline{}$	NORMAL	26						\Box		BegGRN				
	Modifier Ø			_	-	-	-			Gm			Modifier Ø				_		\perp	\perp		Gm	27								BegGRN				
	Conflict Ø					_	\perp			_	3.5		Conflict Ø									Yel 3.5	28								BegGRN		1 7		
	Conflict Olap									Red	1.5		Conflict O							100		Red 1.5	29								BegGRN			-	
J	Conflict Ped					1_				LG			Conflict Pe	ed								LG	30								BegGRN				
	Included Ø									NORM	AL	- 1	ncluded 2	ŏ				1	1		1	NORMAL	31								BegGRN			7	
	Modifier Ø									Gm		15	Modifier Ø									Gm	32			7		П			BegGRN				
	Conflict Ø						E			Yel	3.5	(Conflict Ø									Yel 3.5	33			1 1	HE				BegGRN				
1	Conflict Olap									Red	1.5	0	Conflict O	ар								Red 1.5	34				21 7				BegGRN				
	Conflict Ped									LG			Conflict Pe				7			100		LG	35				71	\vdash		100	BegGRN				
1	Included Ø		1	1	1	Í	İ	1	1	NORM	AL I	Û	ncluded @	o i	-	Î	Ì	İ	Î	1 1		NORMAL	36				XIII.	\vdash			BegGRN				
i	Modifier Ø									Grn			Modifier Ø								_	Gm	37					1			BegGRN				
1	Conflict Ø									_	3.5		Conflict Ø				9					Yel 3.5	38					+	_		BegGRN				
	Conflict Olap									_	1.5	_	Conflict O				201		1	\vdash		Red 1.5	39				-	1			BegGRN				
- 1	Conflict Ped									LG	-		Conflict Pe			+		+	+			LG	40					+	-		BegGRN				
	annel Settir	nas	[1 8	11		_	_			101	-		JOHNIOCT C	,0	-		_	+	+	_	-	201	41				-	+	-		BegGRN				
	Channel ->>	1	2	3	14	1 5	16	7	8	a	10	11	12 13	141	15 1	6 1	7 11	R 10	120	121	22	23 24	42	_				+	-						
12	ase / Olap #								2		10		3	_	15 1	0 1	/ 10	3 18	120	121	22	23 24	43	-			-	1	-		BegGRN				
	annel Type	VEL	VEL	VEL	VEL	VEL	VEL	OLB	OLD	VEU	/EU	VEL	VEH VEH		VEH VI	EH M	-H VE	U VE	ı ve	VEU	VEU	VEU VEU		-				+	-		BegGRN				
	annel Flash	DED	DED	PED	DED	VE	VER	DEC	DED	VED I	VEN	VER	RED RED	VEN	VED VI	ED V	IN VE	IL VEI	VE	VER	VEH	VEH VEH				-		+	\rightarrow		BegGRN				
	Hz	KEU	KED	KED	KEU	KEL	KEL	KEL	KEU	KEU	KED	KEL	KEU KEU	KEU	KEU KI	EUIDI	KNIDK	NUR	אטא	DKK	UKK	DKK DKK	45						-		BegGRN				
			F4	0.43		Щ		_								1							46	-					4		BegGRN		2.2		
1	annel+ Sett	ings	5 [7.	ö.4]		-	La	-	La		46		(n) ::	1		-	= [1	201		47	-				1			BegGRN	2		-	
	Channel ->>	1	12	3	4	5	6	7	8	9	10	11	12 13	14	15 1	6 1	/ 18	8 19	20	21	22	23 24	48								BegGRN				
	sh Red+		-				1									7		1					Cha	nnel l											
	sh Yellow+			-								\rightarrow							7 1			- 1		C	1 10 1	Mode	USEF	٤ ۽	BIL	Мар	SINGLE		Inver	t Rail Input	OFF
	sh Green+															(J.		4																	
	sh Inh Red+															-1/	1	T				50/10													
a	p Ovrd			-16											100		1	1																	
_	ID: 7524 RT	- C 10	0 6	SV	VICE	S DI	- AC	CE	CCI	RM A	CC	ECC				_	-	-	2/26		_	age 2													

en	Par	1-6	4 [5.	1]						Ve	n Pa	11-6	4 [5.	1]					Veh	icle	Opt	ions	1-64 [5.21			Ve	ehicle	e Op	tions	1-64	[5.2	1		IPa	ram	eter	s+ 1	-64	[5.3]		
et (Call	Swi	Dlay	Ext	Que	No	Max	Err	Fail	Def	t Call	Swi	Dlay	Ext	Que No	Max	Err	Fail	Det	Call	Ext	Que	Add Re	d Yell	00	c vol				Que				occ vo			OC	oc	Dlav	Dlav	Туре	Sro
#	Ø	Ø				Act	Pres	Cnt	Time	#			200					Time				12	Init Lo	ck Lock	k		#		1		ddlniL				#		OC Y	К	1	Dlay 2	1100	0.,
1	П									33							50		_	On I	On		On	T			133	3 On	On		On I			1	11	_					NORM	
2	2	5	2				45	50	15							45	50				On		On		1		34	On	On		On	_			2				1 3		NORM	
	3		3	7			45	50	30	35						45	50				On		On			1	35	On	On		On	_	\neg		3			Н			NORM	
	3		3		- 1		45	50	30	36						45	50				On		On				36	On	On		On	\dashv	\neg	\neg	4			Н			NORM	
	5			1			45	50	2	37						45	50				On		On				37		On		On	_	\neg	_	5			\vdash			NORM	
	6	1	2				45	50	15	38						45	50				On		On		1		38		On		On	$^{+}$	\neg		6			\vdash			NORM	
7								-	1.0	39						45	50		7		On		On	1			39	On	On		On	-	-		7			\vdash			NORM	
8				7	E.F.			1		40						45	50				On		On	/-	1		40	On	On		On	_	_		8						NORM	
9			1=1							41						45	50				On		On	1		1	41		On		On	-	-		9		-				NORM	
0			-				$\gamma = 7$			42						45	50				On		On				42	On	On		On	+	-	-	10						NORM	
1		-								43						45	50				On		On		-		43	On			On	-		-	111						NORM	
2					5.11					44						45	50				On		On		+		44		On		On	+	-	_	12			\vdash	-		NORM	
	3		10				45	50	10	45						45	50				On		On		1		45		On		On	+	-	-	13			\vdash			NORM	
	3		10				45	50	10	46							50			_	On		On	1	-	1	46		On		On	+	-	-	14		-			-	NORM	
5	*+		10			-	75	- 50	10	47		1				45	50				On		On	+	-	+	47		On		On	+	\rightarrow	-	15							
6	-	-4.4	-				-			48							50				On		On	+	+	+	48		On		On	+	\rightarrow	-					-	-	NORM	
7	\rightarrow								-	49		-						-						-	-	+						-	-	-	16			-	-	-	NORM	
8	-		_					\vdash		49	-	-		-		45	50				On		On		+	-	49	On	On		On	-	-		17	_		\perp			NORM	
9	-		_	-		-		_	-	50		-		-			50				On	-	On		4	-	50	On	On		On		_		18		1				NORM	_
	\rightarrow									51		-				45	50				On		On	-	-	-	51	On	On		On	-	_		19						NORM	
0	-							_		52		-			100		50				On		On		1	_	52		On		On				20					1	NORM	
1	-									53						45	50				On		On				53	On	On		On	5.1			21						NORM	
2	-									54		_		-	100		50				On		On				54	On	On		On	- 1			22						NORM	
3	-									55					1.7	45	50		23		On		On				55	On	On		On		- 1	-11	23					100	NORM	
4	_									56				-	1.0	45	50				On		On				56	On	On		On			T.	24						NORM	
25	\rightarrow									57						45	50		25		On		On	7			57		On		On	=0			25				-0		NORM	
6				,	=					58						45	50		26		On		On				58	On	On		On			7	26		\equiv				NORM	
7					U					59				DOM:		45	50				On		On				59	On	On		On	= 1			27	=(NORM	
8					1. 10					60				Lil		45	50			On	On		On				60	On	On		On				28						NORM	
9	- 0			000		- = "				61						45	50		29	On	On		On				61				On		-1		29			\Box			NORM	
0		-							1	62				000	15 =	45	50			On	On		On				62		On		On				30				- 1		NORM	
1										63				-		45	50				On		On				63	On	On		On		\neg		31						NORM	
2										64				711.1		45	50		32		On		On				64	On	On		On		\neg		32						NORM	
	met	ers	+ 1-6	4 [5	.31					-		_				-	-		021				-		-	Pe		et Pa			011	_	_	_	102		t Pa	ram	ters	[1.2		_
et c	cc	occ	occ	Dlav		-		Src	Det	occ	occ	occ	Dlav	Dlav	200	Src	Det	occ	occ (occ I	Dlav	Dlav		Src	7			II No									Det			11.2		ON
# (im	Yell	Red	1	2	Ty	ре		#	Gm	occ Yell	Red	Dlay 1	2	Туре	9.0	#	Gm	Yell H	₹ed	Dlay 1	2	Type	0.0		#	a	Act	Pre	Cnt										Par	m [1.5.	
3	\neg					NOF	M		44					_	NORM		55						NORM		╡	1		TAC	15											nutes		_
4	1					NOF			45						NORM		56		+	\dashv	\rightarrow		NORM	1	-	2		_	15											nutes		15
5		-27				NOF		-	46		+		-		NORM		57		+	\rightarrow			NORM	+	-	3		+	15							VOI	OCC	rend	JU IVII	nutes		- 0
6	+					NOF			47		-	-			NORM	\vdash	58		+	-	-		NORM		+	4		+	15													
7	-								48		-						50		\vdash	+	-			+	-			+														
	+		-			NOR		4			-		\vdash		NORM	\vdash	59		\vdash	\dashv	\dashv		NORM	-	-	5	-	-	15													
8	+					NOR			49		-				NORM		60		+	\rightarrow	-		NORM	-	-	6		-	15													
9	-	-				NOF		-	50	-		-			NORM		61			4	_		NORM	-	-	7		-	15													
0	\rightarrow					NOR			51	-	-		_		NORM		62			-	_		NORM	-	-	8	_		15													
1	-					NOF			52		100				NORM		63	17.79		-			NORM		-																	
2	1		1-1			NOR			53			1			NORM		64						NORM			124												6-		2.0		
3			-			NOR	M		54			()			NORM		1): 75	24 F	RTE	120	@ S	WISS I	RE A	CCE	SS-	IBM	ACC	CESS	5								12/	26/2	017	Page	3

nption Tir Enable	Type				Trac	K UIE	ar P	Tases	15.2	I ra	CK C C	32r []	VARIO							
Ellable		Outenit	Dolous	MinDur	Dec 4								VEIIA	μSΤ	3.5]					
ON		Output DWELL	Delay	MINDURA	Pre #	Trac	k Pha	ses		1 rack	Overl	aps					_	_		
	RAIL				1			\vdash				<u></u> ,								
ON	RAIL	DWELL			2						-									
																	-	-		
					_					-		1-5								
												1								
																			ΔŤ	
MaxPres	MinGrn	MinWlk	PedClr	Co+Pre	Dwe	II Ph	ases	[3.2] a	and (Overla	aps+	[3.5]								
				ON	Pre #	ŧ					200									
				ON	1	Phas	es													
				ON		Over	laps								-					
				ON												-				
					2			\vdash					-							
								\Box					-							
Track Grr	Min Dwell	Ext Dwell	PedClr+					\vdash				-			- 1					
			. odoli i	101	3			\vdash			\vdash	-								
											\vdash			-						
																			-	
					1			1												
					4						\vdash	-						-		
								-		_	Н					-	\dashv	-		
Dod		Ckin			-			\vdash		-		-					-			
Red	Pattern				0						\vdash					-		_		
								\vdash												
								\vdash		_		_				_	-			
					6			\vdash			\vdash	_			-	_	_			
					_	Peds														
		OFF																		
										Pre #	Lock									
	Min	Max			Pre #	Exit	Phase	е				Ai		sh					Link	
					1	1				1	ON		ON			ON			- 1	
OFF					2					2	ON		ON			ON				
OFF					3					3	ON		ON			ON				
OFF					4	1	- 1			4	ON		ON		1	ON				
					5	7				5						_				
arameter	s [1.2.1]																			
		OFF				_										,1		2.1		
		_																		
		2 21																		
ert Kall Inp	ut	UFF																		
	Red Priority Pr Type OFF OFF OFF OFF off or Ext Outletek Track Teek Dwell Teek Dwell Teek Dwell Teek Dwell Teek Darameter Mappings	ON EMERG ON EMERG ON EMERG MaxPres MinGrn Track Grr Min Dwell 2 2 2 2 2 Red Pattern Priority Preempts Type Min OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	ON EMERG DWELL ON EMERG DWELL MaxPres MinGrn MinWlk Track Grr Min Dwell Ext Dwell 2 2 2 2 2 2 Red Pattern Skip OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	ON EMERG DWELL ON EMERG DWELL MaxPres MinGrn MinWik PedClr Track Grr Min Dwell Ext Dwell PedClr+ 2 2 2 2 2 2 Red Pattern Skip OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	ON EMERG DWELL ON EMERG DWELL MaxPres MinGrn MinWik PedClr Co+Pre ON ON ON ON ON ON ON ON ON ON ON ON ON	ON EMERG DWELL ON EMERG DWELL ON EMERG DWELL MaxPres MinGrn MinWik PedClr Co+Pre ON ON ON ON ON ON ON ON ON ON ON ON ON	ON EMERG DWELL ON EMERG DWELL ON EMERG DWELL MaxPres MinGrn MinWik PedCir Co+Pre ON ON ON ON ON ON ON Track Grr Min Dwell Ext Dwel PedCir+ Yel 2 2 2 3 Phas Over Peds 2 4 Phas Over Peds 2 7 Peds OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	ON EMERG DWELL ON EMERG DWELL ON EMERG DWELL MaxPres MinGrn MinWlk PedClr Co+Pre ON ON ON ON ON ON ON ON Track Grr Min Dwell Ext Dwell PedClr+ Yel 2 ON 2 Peds 2 Overlaps Peds 2 Overlaps Peds 3 Phases Overlaps Peds 4 Phases Overlaps Peds 4 Phases Overlaps Peds 4 Phases Overlaps Peds 5 Phases Overlaps Peds 4 Phases Overlaps Peds 5 Phases Overlaps Peds 6 Phases Overlaps Peds 6 Phases Overlaps Peds 5 Phases Overlaps Peds 6 Phases Overlaps Peds 5 Phases Overlaps Peds 6 Phases Overlaps Peds 6 Phases Overlaps Peds 6 Phases Overlaps Peds 6 Phases Overlaps Peds 6 Phases Overlaps Peds 6 Phases Overlaps Peds 7 Phases Overlaps Peds 6 Phases Overlaps Peds 6 Phases Overlaps Peds 6 Phases Overlaps Peds 6 Phases Overlaps Peds 6 Phases Overlaps Peds 6 Phases Overlaps Peds 6 Phases Overlaps Peds 6 Phases Overlaps Peds 6 Phases Overlaps Peds 6 Phases Overlaps Peds 6 Phases Overlaps Peds 6 Phases Overlaps Peds 6 Phases Overlaps Peds 6 Phases Overlaps Peds 6 Phases Overlaps Peds 6 Phases Overlaps Peds 6 Phases Overlaps Peds 6 Phases Overlaps Peds 7 Phases Overlaps Peds 8 Pre # Exit Phase [3] Pre # Exit Phase [3] Pre # Exit Phase [3] None None None	ON EMERG DWELL ON EMERG DWELL ON EMERG DWELL ON EMERG DWELL MaxPres MinGrn MinWik PedCir Co+Pre ON ON ON ON ON ON ON ON Track Grr Min Dwell Ext Dwell PedCir+ Yel ON Care September Septe	ON EMERG DWELL ON EMERG DWELL ON EMERG DWELL MaxPres MinGrn MinWik PedCir Co+Pre ON ON ON ON ON Track Gri Min Dwell Ext Dwell PedCir+ Yel 2 ON Crack Gri Min Dwell Ext Dwell PedCir+ Yel 2 ON Crack Gri Min Dwell Ext Dwell PedCir+ Yel 2 ON Crack Gri Min Dwell Ext Dwell PedCir+ Yel 2 ON Crack Gri Min Dwell Ext Dwell PedCir+ Yel 2 ON Crack Gri Min Dwell Ext Dwell PedCir+ Yel 2 ON Crack Gri Min Dwell Ext Dwell PedCir+ Yel 3 Phases Overlaps Peds Overlaps Peds Overlaps Peds Overlaps Peds Overlaps Peds Overlaps Peds Overlaps Peds 5 Phases Overlaps Peds 6 Phases Overlaps Peds 7 Phases Overlaps Peds 8 Peds 9 Peds 1 Pre #Exit Phase 1 Pre #Exit Phase 1 Pre #Exit Phase 1 Pre #Exit Phase 1 Carameters [1.2.1] The provided in the ped Cir Archive Back Track Time Peak Dwell Time 1 Phases Overlaps Peds 1 Phases Overlaps Peds 1 Phases Overlaps Peds 1 Phases Overlaps Peds 1 Pre #Exit Phase 1 Carameters [1.2.1] The provided in the ped Cir Archive Back Track Time Peak Dwell Time 1 Phases Overlaps Peds 1 Phases Overlaps Peds 1 Phases Overlaps Peds 1 Phases Overlaps Peds 1 Phases Overlaps Peds 1 Phases Overlaps Peds 1 Phases Overlaps Peds 1 Phases Overlaps Peds 1 Phases Overlaps Peds 1 Phases Overlaps Peds 1 Phases Overlaps Peds 1 Phases Overlaps Peds 1 Phases Overlaps Peds 1 Phases Overlaps Peds 1 Phases Overlaps Peds 1 Phases Overlaps Peds 1 Pre #Exit Phase 1	ON EMERG DWELL	ON EMERG DWELL ON EMERG DWELL ON EMERG DWELL ON EMERG DWELL ON EMERG DWELL ON EMERG DWELL ON ON ON ON ON ON ON ON ON ON ON ON ON	ON EMERG DWELL	ON EMERG DWELL 5 6	ON EMERG DWELL S	ON EMERG DWELL	ON EMERG DWELL ON EMERG DWELL ON EMERG DWELL ON EMERG DWELL ON EMERG DWELL ON EMERG DWELL ON ON ON ON ON ON ON	ON EMERG DWELL	ON EMERG DWELL	ON EMERG DWELL

Alt# 1 Times Ta									Alt# 1 Veh Par		rs [5.5														
Column#>	1	2	3	4	5	6	7	8	Column#>		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Assign Ø									Assign Det#													_ 7			
Min Grn									Call																
Gap, Ext									Swiitch										1			1			
Max 1									Delay		J														T
Max 2									Extend											-					
Yel Clr					1				Queue																+
Red Clr			-		1		V 51		No Activity						-										+
Walk							9 - 1		Max Presence																+
Ped Clr							5 - 1		Erratic Count															-	+
t# 2 Times Ta	ble [1	1.6.1.2	2]						Fail Time																-
Column#>		2	3	4	5	6	7	8	Alt# 1 Veh Opt		5512	1										_			_
Assign Ø		-	-	-	J	-	-	Ü	Column#>		2	3	4	5	6	7	8	9	10	11	12	13	14	15	1
Min Grn									Assign Det#		-	J			0	-1-	0	3	10	-11	12	13	14	10	1
Gap, Ext									Call																+
Max 1									Extend																+
Max 2									Queue						-		-								+
Yel Cir	-								Added Initial					-			-				-				-
Red Clr		-				-			Red Lock		-						_								-
Walk						-			Yellow Lock		_	_													-
Ped Clr				_					Occupancy	-						-								_	⊢
	LI. 74	101																							-
# 3 Times Ta					-		-		Volume			- /						1							
Column#>	_1_	2	3	4	5	6	7	8	Alt# 1 Veh Par			_													_
Assign Ø							-		Column#>		2	3	4	5	6	7	8	9	10	11	12	13	14	15	1
Min Grn									Assign Det#																_
Gap, Ext									Occ-on-green																1
Max 1							7		Occ-on-yellow																
Max 2									Occ-on-red																
Yel Clr									Delay Phase 1																
Red Clr							2.11		Delay Phase 2								47	= 5)							
Walk						1.1			Detector Mode		NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NO
Ped Clr									Source																
# 1 Options T		1.1.6.2							Alt# 1 Ped Para	amete	rs+ [5.	5.1.4]													
Column # ->	1	2	3	4	5	6	7	8	Column#>	1	2	3	4	5	6	7	8								
Assign Ø				41					Assign Det#			L I] []											
Lock Calls	On	On	On	On	On	On	On	On	Call																
Soft Recall									No Activity																
Dual Enrty	H 1			700				7	Max Presence																
Enabl SimGap	On	On	On	On	On	On	On	On	Erratic Count																
Guar Passage								t T	V																
Rest In Walk						1		1																	
Cond Service			-	-		-																			
Reservice					(1)																				
Non-Act 1																									
Red Rest																									
	_																								
Max2																									
									ID: 7524	DTE 4	20 @	SWISS	DE A	CCES	SIRM	ACCE	22				12/29	6/2017			Page

It# 2 Options 1			_						Alt# 2 Veh Parame		_													
Column # ->	1	2	3	4	5	6	7	8	Column#> 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	1
Assign Ø									Assign Det#														1	
Lock Calls	On	On	On	On	On	On	On	On	Call	100				1		- 1								
Soft Recall				1,10			- 1		Swiitch														-	
Dual Enrty				1					Delay								3.0					1. 1		
Enabl SimGap	On	On	On	On	On	On	On	On	Extend															
Guar Passage							115		Queue			0.00	1											
Rest In Walk									No Activity										7.7					
Cond Service								1000	Max Presence	100														
Reservice									Erratic Count													-		
Non-Act 1									Fail Time			-					-							
Red Rest									Alt# 2 Veh Options	15.5.2.2	21													-
Max2									Column#> 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	1
Ped Delay								0	Assign Det#									10		12	10	17	10	
Conflicting Ø1							-		Call					7										
t# 3 Options T	able	1.1.6	2.31						Extend	1														-
Column # ->	1	2	3	4	5	6	7	8	Queue															-
Assign Ø					-	-		- J	Added Initial	1							1							-
Lock Calls	On	On	On	On	On	On	On	On	Red Lock															-
Soft Recall	-	0	0	0	0	0.,	0	0	Yellow Lock	1														-
Dual Enrty									Occupancy															-
Enabl SimGap	On	On	On	On	On	On	On	On	Volume	1								-						_
Guar Passage	-	0	0	0	O.I.	0	O.I.	011	Alt# 2 Veh Paramet	ore+ 15	5 2 31													_
Rest In Walk									Column#> 1	2	3	4	5	6	7	8	9	10	11	12	12	4.4	45	
Cond Service									Assign Det#		J	-4	J	0	- /	0	9	10	11	12	13	14	15	1
Reservice							-		Occ-on-green	1														_
Non-Act 1									Occ-on-yellow	_														_
Red Rest									Occ-on-red	+														_
Max2									Delay Phase 1	-	-											-		_
Ped Delay									Delay Phase 2				-											_
						-				NOD!	WORK	NODE												
Conflicting Ø1	able I	4461	1 41						Detector Mode NOR Source	MINORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NC
# 4 Options T	100			4	-	0	7				F 0 41													
Column # -> Assign Ø	1_	2	3	4	5	6	7	8	Alt# 2 Ped Paramet		_		F		7		1							
Lock Calls	On	On	On	On	On	On	On	05	Column#> 1	2	3	4	5	6	7	8								
Soft Recall	Oll	Oll	Oli	Oll	On	On	On	On	Assign Det#	-	-			-										
	-					-			Call No Activity															
Dual Enrty	0-	0-	0-	0-	0-	0-	0-	0:	Max Presence								-							
Enabl SimGap	On	On	On	On	On	On	On	On	Erratic Count															
Guar Passage									Enalic Count				-				ļ.							
Rest In Walk	-																							
Cond Service																								
Reservice								10000																
Non-Act 1																								
Non-Act 1 Red Rest				_																				
Non-Act 1 Red Rest Max2																								
Non-Act 1 Red Rest																								

nnı	ıal	Sc	hed	ule	[4.	3] N	lon	th o	f Y	ear						Day	y of	Wee	k			Da	te																								Dayl
	J	F	N	1	A	M	J	J	A	4	S	0	N	D	S	M	T	W	T	F	S	1	2	3	4	5 6	7	8	9	10 1	1 12	13	14 1	5 16	17	18	19 20	21	22	23	24 2	5 26	27	28	29	30 31	_
(On	On	1 0	n C	n	On	On	On	0)n (On	On	On	On	On	Or	0	1 0	1 0	Or	On	Oı	On	On	On C	n O	n On	On	On (On O	n On	On (On O	n Or	On	On (On O	n Or	On	On (On O	n O	n On	On	On	On On	
	J	F	N	1	Α	M	J	J	P	4	S	0	N	D	S	M	T	W	T	F	S	1	2	3	4	5 6	7	8	9	10 1	1 12	13	14 1	5 16	17	18	19 20	21	22	23	24 2	5 26	27	28	29	30 31	
																									1																						1
	J	F	N		Α	M	J	J	A	4	S	0	N	D	S	M	T	N	T	F	S	1	2	3	4	5 6	7	8	9	10 1	1 12	13	14 1	5 16	17	18	19 20	21	22	23 2	24 2	5 26	27	28	29	30 31	
									Щ	ш												L										Ш															1
	J	F	M		A	М	J	J	A	4	S	0	N	D	S	M	T	N	T	F	S	1	2	3	4	5 6	7	8	9	10 1	1 12	13	14 1	5 16	17	18	19 20	21	22	23	24 2	5 26	27	28	29	30 31	
		_		L				L.									L	1	L	L	1-	L			_	1		Ш		1										Ш	1	L					1
	J	۲	N		A	M	J	J	P	4	S	0	N	D	S	M	1	N	1	F	S	1	2	3	4	5 6	7	8	9	10 1	1 12	13	14 1	5 16	17	18	19 20	21	22	23 2	24 2	5 26	27	28	29	30 31	
	1	_			٨	14	-	-	^	٨	0	0	NI.	0	0		т	\\A	7	-	-	4	0	2			7	0	0	10 4	4 40	40		- 40	47	40	0.00		00	00 4		- 00		00	00	00.04	1
	J	Г	IV	-	А	IVI	J	J	-	4	0	U	N	D	S	IVI	-1	V	- 1	F	5	1	2	3	4	ם כ	/	8	9	10 1	1 12	13	14 1	5 16	1/	18	19 20) 21	22	23	24 2	5 26	27	28	29	30 31	
	1	F	M		Δ	M	.1	-1	Δ	Δ	C	0	N	D	9	M	Т	۱۸	Т	E	S	1	2	3	1	5 6	7	8	9	10 1	1 12	12	11 1	5 16	17	10	10 20	21	22	22 4	24 2	E 20	27	20	20	30 31	1
	J		10	T	_	141	U	U		,	J	0	IV	-	0	IVI	۳	V V	T'	T	0	T,	-	3	7	5 0		O	9	10 1	1 12	10	14 1	3 10	17	10	19 20) 21	22	23 4	24 2	3 20	21	20	29	30 31	1
	J	F	M		Α	М	J	J	A	4	S	0	N	D	S	М	Т	W	Т	F	S	1	2	3	4	5 6	7	8	9	10 1	1 12	13	14 1	5 16	17	18	19 20	21	22	23 :	24 2	5 26	27	28	29	30 31	
					Т				T	T						1	T	T	T	T		ir'			Ť	T	T		Ť		T			1		10							-			00 01	1
	J	F	M	1	Α	M	J	J	A	4	S	0	N	D	S	M	T	W	T	F	S	1	2	3	4	5 6	7	8	9	10 1	1 12	13	14 1	5 16	17	18	19 20	21	22	23	24 2	5 26	27	28	29	30 31	_
																T		T		T	T	1					T			T			T	T			T			T	T	T	T				1
	J	F	M		Α	M	J	J	A	4	S	0	N	D	S	M	T	W	T	F	S	1	2	3	4	5 6	7	8	9	10 1	1 12	13	14 1	5 16	17	18	19 20	21	22	23	24 2	5 26	27	28	29	30 31	
Т																T														T	T		T				T										1
	J	F	M	1	Α	M	J	J	A	4	S	0	N	D	S	M	T	W	T	F	S	1	2	3	4	5 6	7	8	9	10 1	1 12	13	14 1	5 16	17	18	19 20	21	22	23 2	24 2	5 26	27	28	29	30 31	
																																															1
	J	F	M		Α	M	J	J	A	4	S	0	N	D	S	M	T	W	T	F	S	1	2	3	4	5 6	7	8	9	10 1	1 12	13	14 1	5 16	17	18	19 20	21	22	23 2	24 2	5 26	27	28	29	30 31	
			1					L	١.,	_									L	1	1	L																									1
	J	F	M	1	A	M	J	J	Α	4	S	0	N	D	S	M	T	W	T	F	S	1	2	3	4	5 6	7	8	9	10 1	1 12	13	14 1	5 16	17	18	19 20	21	22	23 2	24 2	5 26	27	28	29	30 31	
	1	_						-			0	^	N1	-	0		-	14	-		0	JL,		^	_	- 0	_		•	10 1	4 40	40		- 10	40	40			00	00 4		- 00		-			1
	J	-	IV		A	M	J	J	P	4	S	0	N	D	S	M	- 1	W	- 1	F	S	1	2	3	4	5 6	7	8	9	10 1	1 12	13	14 1	5 16	17	18	19 20	21	22	23 2	24 2	5 26	27	28	29	30 31	
	1	_	N		٨	14	-	1	٨	٨	C	0	NI.	0	C	14	Т	1A	Т	Е	C	1	2	2	1	c c	7	0	0	10 1	1 10	40	11 1	E 46	47	10	10 00	2 24	20	22 (24 2	E 00	07	20	20	20 24	1
-	J	Г	IV	/	A	IVI	J	J	P	4	5	U	IN	U	5	IVI	-	VV	_	Г	5		2	3	4	0 0	1	0	9	10 1	1 12	13	14 1	0 10	17	18	19 20	1 21	22	23 4	24 2	5 26	21	28	29	30 31	
	1	F	M		Δ	M	ì	1	Δ	Δ	2	0	N	D	2	M	Т	۱۸	Т	E	2	1	2	3	4	5 6	7	8	9	10 1	1 12	12	14 1	5 16	17	18	10 20	1 21	22	23 '	24 2	5 26	27	28	20	30 31	1
	U	,	IV	T	_	IVI	U	U		7	0	U	14	-	0	IVI	-	71	-	_	3	r		3	7	5 0	1	O	9	10 1	1 12	10	14 1	5 10	11	10	13 20	21	22	23 /	24 2	3 20	21	20	25	30 31	1
	J	F	M		Α	М	J	1	Δ	4	S	0	N	D	S	М	T	W	Т	F	S	1	2	3	4	5 6	7	8	9	10 1	1 12	13	14 1	5 16	17	18	19 20	21	22	23 3	24 2	5 26	27	28	29	30 31	
۳			T	T			_		r	•						100	T	T	T	T		T			T		T					10				10		1								00 01	1
	J	F	M		Α	М	J	J	A	4	S	0	N	D	S	М	T	W	T	F	S	1	2	3	4	5 6	7	8	9	10 1	1 12	13	14 1	5 16	17	18	9 20	21	22	23 2	24 2	5 26	27	28	29	30 31	
																	T	T	T	T	T	T			T	Т			T					T						T		T	T		T		1
	J	F	M		Α	M	J	J	A	4	S	0	N	D	S	M	T	W	T	F	S	1	2	3	4	5 6	7	8	9	10 1	1 12	13	14 1	5 16	17	18	9 20	21	22	23 2	24 2	5 26	27	28	29	30 31	
•																																															1
)	J	F	M	1	Α	M	J	J	A	4	S	0	N	D	S	M	T	W	T	F	S	1	2	3	4	5 6	7	8	9	10 1	1 12	13	14 1	5 16	17	18	19 20	21	22	23 2	24 2	5 26	27	28	29	30 31	
1																									1																						1
	J	F	M	1	A	M	J	J	A	4	S	0	N	D	S	M	T	W	T	F	S	1	2	3	4	5 6	7	8	9	10 1	1 12	13	14 1	5 16	17	18	19 20	21	22	23 2	24 2	5 26	27	28	29	30 31	
			1		1														1												1																1
	J	F	M	1	A	M	J	J	A	4	S	0	N	D	S	M	T	W	T	F	S	1	2	3	4	5 6	7	8	9	10 1	1 12	13	14 1	5 16	17	18	19 20	21	22	23 2	24 2	5 26	27	28	29	30 31	
L	1	_	1						L,	_	0	•				3/2		10			-	بال							•	10.		46		- 40		10			0.0	00							1
-	J	F	M	1	A	M	J	J	A	4	S	0	N	D	S	M	T	W	I	F	S	1	2	3	4	5 6	7	8	9	10 1	1 12	13	14 1	5 16	17	18	19 20	21	22	23 2	24 2	5 26	27	28	29	30 31	
	1	_			٨	14		1		^	0	0	A1	-	0	4.0	7	14	-	-	0	باال	0	2	-	- 0	7	0	0	10.4	4 40	40	44.4	E 40	47	40	10.00	2 04	00	00 4	24 0	r 00	07	00	00	20 01	1
1	J	F	M		H	IVI	J	J	P	4	5	0	N	D	5	M		V		F	5	1	2	3	4	0 6	1	ð	9	10 1	1 12	13	14 1	5 16	1/	18	19 20	21	22	23	24 2	5 26	21	28	29	30 31	
			4					@ 5							-																															6/201	1

Day I	Plan	s [4.	4]																					Act	ion	Table	[4.	5]							Coo	rd Alte	rnate	Tab	les - F	at+ [2.6]												
		D	ay P	an '	1					Day	Pla	an 2	2		T			Da	y P	lar	3			1																		Г				Over	rlap Ot	ff			_		
Ho	our N				Min	Act	H	our I		Act	_		Min	Ac	t I	Hour	Min	_		Ho	_	Min	Act	Act	# P	at# A	1 A2	A3	S1 S	2 53	3 S4	S5 1	S6 S	SB	Pat#	ØOpt	ØTime	Det	G Call	int C	ic c	NA1	1	2			A 7. Oct.	5	6	7	8	Di	ia Ma
1		0	1 9					==	0	0	9	0	0	0	1	0	0	0	9	1	1	0	0	1	$\overline{}$	1	T			T		T			1	D SPA	- Time	1	0 000			1,97,51	_	T	T	T	Ť	-	I	T	T	DF	
2			10				2	0	0	0	10	0	0	0	2	0	0	0	-	-		0	0	2		2		Н		+		\neg	+	H	2				+	+	+	\neg			-	+	\rightarrow	-			+	DF	_
3			11		-		3	0	0	0	11	0	0	0	3	0	0	0	1	1 (0	0	3	13	_		Ħ		+		_			3			1		1	-				+	+	\rightarrow			1	+	DF	_
4	Т		12	11.			4	0	0	0	12	0	0	0	4	0	0	0	13	2 (0	0	4	1	_		П		+			+		4			1		+	_	_	_		+	+	-			1	+-	DF	_
5			13				5	0	0	0	13	0	0	0	5	0	0	0	13	3 (0	0	5	_	5			+		11		+	H	5						_	-	_		+	+	_			1	+	DF	_
6			14				6	0	0	0	14	0	0	0	6	0	0	0	1/	4 (0	0	6		6		П			\Box		+	Н	6						+				1	+	+			-		DF	_
7		. 1	15				7	0	0	0	15	0	0	0	7	0	0	0	15	5 (0	0	7		7					\vdash	Ti	1	H	7						+				+	+	+			1		DF	_
8			16				8	0	0	0	16	0	0	0	8	0	0	0	16	5 (0	0	8		8					11	1	+	Ħ	8				+		1				+	-	+			1	1	DF	_
		D	ay Pl	an 4	4		-			Day	Pla	an s	5		Т			Da	y P	lan	6	_		9		9								Ħ	9						+				+	+	+			1		DF	_
Ho	ur N	/lin	Act	Hour	Min	Act	H	our N	Min	Act		Hour	Min	Ac	t in	Hour	Min		_		ur N	Min	Act	10	-	0							+	Н	10				1	1	+				+	+	+			1	+	DF	_
1 (0	0 9	0	0	0	1	0	0	0	9	0	0	0	_	0	0	0	=	=	==	0	0	11	-	1					\Box		+	Н	11						+				+	+	+			1	-	DF	_
2 ()	0	0 10	0	0	0	2	0	0	0	10	0	0	0	2	0	0	0	-	-	-	0	0	12	-	2		Н	+	\pm	H	+	+	Н	12					_	1	-			+	+	+			-	-	DF	_
3 ()	0	0 11	0	0	0	3	0	0	0	11	0	0	0	3	0	0	0	11	1 0	-	0	0	13	_	3			+	1	Н		+	+	13				1	+	+		-	\vdash	+	+	-				+	DF	_
4 (0	0 12	0	0	0	4	0	0	0	12	0	0	0	4	0	0	0	13	2 (0	0	14	_	4	1		1		H	1	+	H	14			1	1		+	+			+	+	+			-	+	DF	_
5 (0	0 13	0	0	0	5	0	0	0	13	0	0	0	5	0	0	0	-	-	-	0	0	15	_	5	\vdash		+	1	+	1	+		15			1			+	_	-		+	+	+	-		1	+	DF	_
6 (0	0 14	0	0	0	6	_	0	0	14	0	0	0	6	0	0	0	-	-	_	0	0	16	_	6	+	H	+	+	H	+	т	H	16	-		_	+	+	-	-	-		+	+	+	-	-	-	+	DF	
7 (0	0 15	0	0	0	7	0	0	0	15	0	0	0	7	0	0	0	-	5 (-	0	0	17	_	7	\vdash	Н	+	+	+	+	+	H	17				+			-			+	+	\rightarrow	-		1	+	DF	_
8 (0	0 16	0	0	0	8	0	0	0	16	0	0	0	-	0	0	0	-	-	0	0	0	18	_	8	1	Н	+		+	1	+		18				1		+		-		+	+	-	=		1	+	DF	-
		D	ay Pi	an 7	7			_	- 40	Day	Pla	an 8			+			Da	v P		_	-	÷	19	_	9	1	Н			H	+	+		19				1		+	-			+	+	-			-	+	DF	_
Ho	ur N	_	_		Min	Act	Н	our N	_	Act	_		Min	Ac		Hour	Min	Ac	_	Но	_	Min	Act	20	-	0			+	+	Ħ			H	20			-	+	+	+	-			+	+	-	-	-	+	+-	DF	_
1		0	0 9	0	0	0	_	-	0	0	9	0	0	0	-	0	0	0	-	=	_	0	0	21		_	1	H	+	+	H	1	+	H	21				+		+	-			+	+	\rightarrow			-	+	DF	_
2 (1	0	0 10	0	0	0	_	_	0	0	10	0	0	0	2	0	0	0	-		_	0	0	22		2		Н	+	+	Н	+	+	Н	22			-	+	+	-	+	-	\vdash	+	+	-				+	DF	_
3 (1	0	0 11	0	0	0	3 1	0	0	0	11	0	0	0	3	0	0	0	-	1	-	0	0	23	_	_		Н	+	+	H	+	+	Н	23			1	+		+	+			+	+	+		-	-	+	DF	_
1 (0	0 12	0	0	0	4	-	0	0	12	0	0	0	4	0	0	0	-	2 (-	0	0	24	_	_	+	H		+	H	+	+	Н	24			-	+	+	+	-		-	+	+	+	-		-	+	DF	_
5 (0	0 13	0	0	0	5		0	0	13	0	0	0	5	0	0	0	-	+	-	0	0	25	_	-	\vdash	Н	+	+	Н	+	+	Н	25				+	+	-	-		-	+	+	-			-	+	DF	_
6 (0	0 14	0	0	0		_	0	0	14	0	0	0	6	0	0	0	-	+	-	0	0	26	_	+	+	Н	+	+	+	+	+	Н	26			1	+	+	+	-			+	+	-	-	-	-	+	DF	_
7 (-	-	0 15	0	0	0	_	_	0	0	15	0	0	0	7	0	0	0	+	1	-	0	0	27				Н	+	+	H	+	+	Н	27				+	-	+	-			+	+	+	-	-	-	+-	DF	_
8 0	-	_	0 16		0	0	8 1	_	0	0	16	0	0	0	8	0	0	0	-	-	_	0	0	28		-		Н	-	+	+	+	+	Н	28	-	-	-	+	+	+	+	-		+	1	-			-	+	DF	_
		_	y Pla	-			-		_	ay		_	_	-	1		_	Day	_	_	_	· 1	-	29		+	1	\vdash		+	+	+	+		29				-	+	+	-	-		+	+	+			-	+	DF	_
Ho	ur M	Ain A	_	_		Act	Ho	our N	_	Act	_		Min	Act		Hour	_	Ac	_	_	ur N	Ain I	Act	30		+	+	Н	+	+	+	+	+	Н	30				+-	+	+	-			+	+	+	-	-		+	DF	
1 (_	\rightarrow	0 9	0	0	0	1 (_==	0	0	9	0	0	0		0	0	0	-	-	=	0	0	31		+	+	Н	+	+	+	+	+	+	31				+	+	+	+			+	+	+	-		-	+	DF	_
2 0	-	-	0 10	-	0	0	2 (_	0	0	10	0	0	0	2	0	0	0	-	-	-	0	0	32	_		\vdash	Н	+	+	Н	+	+	Н	32		-	-	+	+	+	+			+	+	-			-	+	DF	_
3 0	_	-	0 11	0	0	0	3 (-	0	0	11	0	0	0	3	0	0	0	111	0	-	0	0	33			Н	+	+	+	1	+	+	\vdash	33			-	+	+	-	-			+	+	+	-	-		+	DF	_
4 0	_	-	0 12	0	0	0	4 (-	0	0	12	0	0	0	4	0	0	0	12	-	-	0	0	34	_			Н	+	+	H	+	+	Н	34				+	+	+	+			+	+	+			-	+	DF	_
5 0		0	0 13	0	0	0	_	-	0	0	13	0	0	0	5	0	0	0	-	-	-	0	0	35	_	+		Н	+	+	H	+	+	Н	35			-	+	+	-	-			+	+	+	-			+	DF	_
5 0	-	-	0 14	0	0	0	6 (_	0	0	14	0	0	0	6	0	0	0	14	-	-	0	0	36	_	+		Н	+		H	+	+	Н	36			-	+	+	+	+			+	+	+	-	-	-	+	DF	_
7 0	-	-	0 15	0	0	0	7 (-	0	0	15	0	0	0	7	0	0	0	-	-	-	0	0	37	-			\vdash	+	+	\forall	+	+	1	37	-			+		+	-			+-	+	+	-		-	1	DF	_
8 0	-	-	0 16	-	0	0	8 (-	0	0	16	0	0	0	8	0	0	0	-	+	-	0	0	38	-	+		+	+	+	H	+	+	++	38				+	-	+	+			+	+	-			-	1	DF	_
_		-	y Pla	_		-	7 ,	_	_	ay					۲		_	Day	_	_	_	-1	Ť	39	_			+	+		\forall	+	+	H	39				+		+	+			+-	+	-			-	-	DF	_
Ho	ur M	Ain A	_		_	Act	H	our N	_	Act	_	_	Min	Act		Hour	_	_	-	_	ur N	Ain I	Act	40	_			\forall	+		\forall	+	+	H	40				+		+	+			+	+	-				+	DF	_
0	_	_	0 9	_	0		1 (_		_		0	_	_			_	9	_	_	0	0	_	1	-	_	-	-	1	ш	-	-	Н	41				+	1	-	+			+	+	+			-	-	DF	_
2 0	$\overline{}$	_	0 10	_	0	0	_	_	\rightarrow	0	_	_	0		2	0	0						0	_	1				T	T	П	Т	1		42				+	+	+	+			+-	+	+		-	-	+	DF	-
3 0	_	_	0 11	0	0	0	3 (_	0	0	11	0	0	0	3	0	0	0				0	0	10	+	-	-	щ	-	-	щ		1	-	43				+-	+	+	+	-		+	+	+			-	-	DF	_
4 0	-	-	0 12		0	0	4 (_	0	12	_	0	0		0	0		12			_	0	98	+	T			1	1		1	T	Н	44		-		1		+	+			+	+	+			-	-	_	-
5 0			0 13		0	0				0			0	0	_	0	0	0				\rightarrow	0			+	1	\vdash	+	+	\vdash	+	+	+	45			-	+	+	+	+			+	+	+				-	DF	
6 0		_	0 14		0	0	6 (0		_	0	0	-	0	0			0				100		55		H	+	+	H	+	+	1	46			-	+	+	+	+			+-	+	+			-	-	DF	_
7 0			0 15		0	0	7 (0	_	0	0	0	_	0	0		15				0			: 7524	PI	FE 4	20 6	@ 0	NAVIG	20 1	DE A	CC				-	+	-	+	+			+	+	+				-	DF	
8 0			0 16		0	0		_		0			0	0	-	0	0			0				12/2	10	7	K		20 (w 5	AAIS							-	-	+	+	+			+	+	+			-	+-	DF	
4		4	0 10	U	U	U	0 (,	U	U	10	Ų	U	U	O	U	U	U	10	0	4	U	U	1212	.0/1	-						- 1	age l	0	48					1								_				DF	1

C1-USER IO Map [1.8.9.1 In]	C1-USER IO Map [1.8.9.2 Out]	C1-USER IO Map [1.8.9.2 Out]	IO Logic [1.8.7]			
11-1 189 Unused	01-1 1 Ch1 Red	07-1 40 Ch16 Yellow	Result	Fcn Op	er Fcn (Oper Fcn Timer
11-2 2 Veh Call 2	01-2 49 Ch1 Green	07-2 16 Ch16 Red	1 0 =	1 0		0 1 0 DLY
11-3 3 Veh Call 3	O1-3 2 Ch2 Red	07-3 64 Ch16 Green	1 0 =	1 0		0 1 0 DLY
11-4 4 Veh Call 4	01-4 26 Ch2 Yellow	07-4 115 Not Used	1 0 =	1 0		0 I 0 DLY
I1-5 189 Unused	O1-5 50 Ch2 Green	07-5 115 Not Used	1 0 =	1 0	1	0 I 0 DLY
11-6 6 Veh Call 6	O1-6 3 Ch3 Red	07-6 115 Not Used	1 0 =	1 0	i	0 I 0 DLY
I1-7 189 Unused	01-7 27 Ch3 Yellow	07-7 115 Not Used	1 0 =	1 0	i	0 I 0 DLY
11-8 189 Unused	O1-8 51 Ch3 Green	07-8 15 Ch15 Red	1 0 =	I 0	i	0 I 0 DLY
12-1 189 Unused	O2-1 4 Ch4 Red	C11S-USER IO Map [1.8.9.1 in]	I 0 =	1 0	i	0 1 0 DLY
I2-2 189 Unused	O2-2 52 Ch4 Green	I4-1 189 Unused	1 0 =	1 0		0 1 0 DLY
12-3 189 Unused	O2-3 5 Ch5 Red	I4-2 189 Unused	1 0 =	I 0		0 I 0 DLY
I2-4 189 Unused	O2-4 29 Ch5 Yellow	14-3 189 Unused	Security Access Levels [8.2]		43 NONE	Com Parameters [6.1]
12-5 13 Veh Call 13	O2-5 53 Ch5 Green	14-4 189 Unused	1 SWLOAD	22 NONE	44 NONE	Station ID 7524
12-6 14 Veh Call 14	O2-6 6 Ch6 Red	17-1 189 Unused	2 SECURE	23 NONE	45 NONE	Group ID
12-7 189 Unused	O2-7 30 Ch6 Yellow	I7-2 189 Unused	3 NONE	24 NONE	46 NONE	Master ID 0
12-8 189 Unused	O2-8 54 Ch6 Green	17-3 189 Unused	4 NONE	25 NONE	47 NONE	Backup Time 0
13-1 189 Unused	O3-1 7 Ch7 Red	17-4 189 Unused	5 NONE	26 NONE	48 NONE	SysUp Modem [6.1]
I3-2 189 Unused	O3-2 55 Ch7 Green	17-5 189 Unused	6 NONE	27 NONE	49 NONE	Enable Modem OFF
13-3 189 Unused	O3-3 8 Ch8 Red	17-6 189 Unused	7 NONE	28 NONE	50 NONE	Idle Time 0
13-4 189 Unused	O3-4 32 Ch8 Yellow	17-7 189 Unused	8 NONE	29 NONE	51 NONE	Dial Time 0
13-5 189 Unused	O3-5 56 Ch8 Green	17-8 189 Unused	9 NONE	30 NONE	52 NONE	Tel: #N/A
13-6 189 Unused	O3-6 9 Ch9 Red	I8-1 189 Unused	10 NONE	31 NONE	53 NONE	Ait: #N/A
13-7 189 Unused	O3-7 33 Ch9 Yellow	18-2 189 Unused	11 NONE	32 NONE	54 NONE	AIL #IVA
13-8 189 Unused	O3-8 57 Ch9 Green	18-3 189 Unused	12 NONE	33 NONE	55 NONE	2070 Port Parms [6.2]
14-1	O4-1 10 Ch10 Red	18-4 189 Unused	13 NONE	34 NONE	56 NONE	Port Baud Rate FCM
14-2 C11S Connector	O4-2 58 Ch10 Green	I8-5 189 Unused	14 NONE	35 NONE	57 NONE	SP1 9600 MODE 6
14-3 CTTS Connector	O4-3 11 Ch11 Red	18-6 189 Unused	15 NONE	36 NONE	58 NONE	SP2 9600 MODE 6
14-4	O4-4 35 Ch11 Yellow	18-7 189 Unused	16 NONE	37 NONE	59 NONE	SP3 19200 MODE 6
14-5 189 Unused	O4-5 59 Ch11 Green	18-8 189 Unused	17 NONE	38 NONE	60 NONE	SP4 38400 MODE 6
14-6 189 Unused	O4-6 12 Ch12 Red	C11S-USER IO Map [1.8.9.2 Out]	18 NONE	39 NONE	61 NONE	SP5 1200 AUTO
14-7 229 33xCMUStop	O4-7 36 Ch12 Yellow	O8-1 115 Not Used	19 NONE	40 NONE	62 NONE	SP6 1200 AUTO
14-8 228 33xFlashSns	O4-8 60 Ch12 Green	O8-2 115 Not Used	20 NONE	41 NONE	63 NONE	SP7 1200 AUTO
15-1 189 Unused	O5-1 28 Ch4 Yellow	O8-3 115 Not Used	21 NONE	42 NONE	64 NONE	SP8 1200 AUTO
15-2 189 Unused	O5-2 34 Ch10 Yellow	O8-4 115 Not Used		-		
I5-3 189 Unused	O5-3 25 Ch1 Yellow	O8-5 115 Not Used	2070 IP 1 Addressing [6.5]		2070 IP 2 Addressing [6.5]	
15-4 189 Unused	O5-4 31 Ch7 Yellow	O8-6 115 Not Used	Addressing		Addressing	
15-5 189 Unused	O5-5 39 Ch15 Yellow	O8-7 115 Not Used	Addr 0 0	0 0		0 0
15-6 189 Unused	O5-6 63 Ch15 Green	O8-8 115 Not Used	Mask 0 0	0 0		0 0
15-7 189 Unused	O5-7 115 Not Used		Brdcst 0 0	0 0	Brdcst 0 0	0 0
15-8 189 Unused	O5-8 114 Watchdog		GtWay 0 0	0 0	GtWay 0 0	0 0
I6-I 189 Unused	O6-1 115 Not Used		Port 0		Port 0	
I6-2 189 Unused	O6-2 115 Not Used					
I6-3 189 Unused	O6-3 13 Ch13 Red		2070 Port Binding Ports [6	5.6]	2070 Port Binding Functions [6.6]	
16-4 189 Unused	O6-4 37 Ch13 Yellow		Port Echo	Mode	Function Channel Function Cha	nnel
16-5 189 Unused	O6-5 61 Ch13 Green		ASYNC1 SP1 OFF	0		YNC2
16-6 189 Unused	O6-6 14 Ch14 Red		ASYNC2 SP2 OFF	0		YNC1
I6-7 189 Unused	O6-7 38 Ch14 Yellow		ASYNC3 SP3 OFF	0		DNE
I6-8 189 Unused	O6-8 62 Ch14 Green		ASYNC4 SP4 OFF	0	Loop Det. NONE	
			SYNC1 SP5S SYNC3	OFF	GPS NONE	
4.00	automos di emisso era dicinario en	1000000	SYNC2 OFF SYNC4	OFF	12227	The second second
ID: 7524	RTE 120 @ SWISS RE ACCESS-IBM	ACCESS		*		12/26/17 Page 9

#	Event / Alarm	Ev Air	Ca	II Ph	ases	[1.1.5	1	Red	lirect	Phas	es[1	1.51						Inh	nibit I	hase	es[1.1	.51												
1	Power Up Alarm.	On On				alled B				То			From	То	From	To			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
2	Stop Timing	On On	1					1 1										1												1			-	10
3	TS1 Cabinet Door	1	2					2							7			2																Ç.
4	Coordination Failure	On On	3					3						1				3								-								
5	External Alarm # 1	On On	4					4			200							4										-						20
6	External Alarm # 2	On On	5		-			5				131						5																
	External Alarm # 3		6					6							100	1		6								9								
8	External Alarm # 4		7					7				-		1.				7																
9	Closed Loop Disabled	On	8					8								0.7		8																
10	External Alarm # 5		9					9						E	1-3			9																
11	External Alarm # 6		10					10										10																
12	Manual Control Enable	On On	11					11										11																
13	Coord Free Input	111	12			-		12										12					-											
14	Local Flash Input	On On	13					13										13								1-4	- 5							- 1
	MMU Flash		14					14										14							-									1. 1.
16	CMU Flash		15					15						E				15												-	- 1			0.00
17	Cycle Fault	On	16					16										16																
18	Cycle Failure	On	Al	Call	& Re	edirec	t#1	[1.1.	6.3]											oit Ph	ases	#1[1.1.6.	31				-						
19	Coordination Fault	On	Co	I Ø	Phas	ses Ca	lled B	yØ		From	To	From	To	From	To	From			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
20	Controller Fault	On On	1						1									1			, 1												H	
21	Detector SDLC Failure		2						2									2																-
22	MMU SDLC Failure		3						3									3				Till						12.00						
23	Critical SDLC Failure		4						4									4																
	Reserved		5						5									5			2													1
	EEPROM CRC Fault	On On	6						6									6																
26	Detector Diagnostic Failur		7						7						14.5			7																
27	BIU Detector Failure	On On	8						8									8																
28	Queue detector alarm	On	Alt	t Call	& Re	edirec	t#2	[1.1.	6.3]									Alt	Inhil	oit Ph	ases	#2[1.1.6.	.3]										
29	Ped Detector Fault	On	Co	Ø	Phas	es Calle	ed By	Ø		From	To	From	To	From	To	From	To		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
30	Coord Diagnostic Fault		1						1									1																
41	TempAlert Probe Ch. A		2						2									2																
42	TempAlert Probe Ch. B		3						3									3														1		1
47	Coord Active		4						4									4						1.4										
48	Preempt Active	On	5						5									5													-			
49	Preempt 1 Input	On	6						6									6																
	Preempt 2 Input	On	7						7									7														200		7
51	Preempt 3 Input	On	8						8									8														U.J.		
	Preempt 4 Input					Plans	[2.3]	1							Para																			
53	Preempt 5 Input			CoØ		1 1	2	3	4	5	6	7	8		Skip			OF.		Max	Cycle	Time												
	Preempt 6 Input	On		OFF											Dim E			OF		Cycle	Faul	t Actio	n	ALA	RM									
	Preempt 7 Input	On		OFF								100			Disab			OF																
	Preempt 8 Input			OFF										Diam	ond M	lode		4PI	_															
	Preempt 9 Input	On		OFF											up Tin			900																
58	Preempt 10 Input	On	Au	ito FI	ash I	Phase	Ola	p Set	ttings	s [1.4.	2]				ole Init			OF							- 5									
	In Transition	On													Fault		-		ARM															
81	FIO Status Alarm		Yel	(olaps	5)							11	L.	Enab	le Rur	1 Time	er	ON		ID:	7524	RTE	120 (@ SV	VISS	RE A	CCE	SS-IB	MAC	12/2	26/17	7	Page	10

1€-26X

STATE OF NEW YORK - DEPARTMENT OF TRANSPORTATION TRAFFIC ENGINEERING & SAFETY DIVISION TRAFFIC CONTROL SPECIFICATIONS

STUDY: CONTRACT: PIN: FILE:

W-2	52PS	WESTCHESTER PAGE 1 OF 20 PAGES
	L NO(S)	COUNTY
INTERSI	ECTION	Route 120 @ Greenwich American Center South Drive & Trafalgar House Drive
	c	TY VILLAGE TOWN OF NORTH CASTLE
	Departi	ment Order filed $12/22/88$ as Section 2055.38 Subdivision (1)
	Prior sp	ecifications hereby superseded None December 5, 1986
	Purpos	: UPGRADE TO 179 MICROPROCESSOR
	the nec	specifications will be effective upon the Installation Modification of essary traffic control device(s) reguired by and conforming to the State Manual orm Traffic Control Devices
	l. Thi	s Signal shall Operate in accordance with the Table of Operations and / of Change intervals as shown on page(s) 2 as a : Pretimed Signal
		Semi-traffic actuated signal
		Full-traffic actuated signal
		Pedestrian actuated signal
		Other
	В.	Display vehicular indications
		Display pedestrian indications
		Be equipped with vehicle detectors
		Be equipped with Pedestrian pushbuttons
		as shown in the Schematic Scaled drawing on page 3
	C.	Be equipped with pre-emption interconnection and / or coordination
		which are described as follows FILE SHOP CABINET
		FINAL COPY
cc;	/ n x N	8/11/94 mJmigragni RT
	(2) 🔀	olgitataro y vve i
	(1)	Region 8 Traffic Engineer Installation Date
	(2)	D, SYWYK ———————————————————————————————————

Phase Times [1.1.1									Coc	ordina	tion I	atter	ns [2.	4] and	Coo	rdina	tion S	plit Ta	ables	[2.7.	1]											
	1	2	3	4	5	6	7	8	Pat#	Сус	Off	Split	Seq	Pat#	Сус	Off	Split	Seq	Pat#	Сус	Off	Split	Seq	Pat#	Сус	Off	Split	Seq				
Min Green	10		5		10	3			1			1	4	13	0	0	13	1	25	0	0	0	1	37	0	0	0	1	1	SI	۲D8	
Gap, Ext	2		2		2	2			2			2	1	14	0	0	14	1	26	0	0	0	1	38	0	0	0	1		٠.	20	
Max 1	45		15		45	6			3			3	1	15	0	0	15	1	27	0	0	0	1	39	0	0	0	1	1			
Max 2									4			4	1	16	0	0	16	1	28	0	0	0	1	40	0	0	0	1	Ring	Star	tup [1.	1.41
Yel Clearance	5		4		5	5			5			5	1	17	0	0	17	1	29	0	0	0	1	41	0	0	0	1		Ring	Start	
Red Clearance	2		1		2	2			6			6	1	18	0	0	18	1	30	0	0	0	1	42	0	0	0	1	1	1	GREEN	
Walk	_				1	7			7			7	1	19	0	0	19	1	31	0	0	0	1	43	0	0	0	1	2	1	RED	Off
Ped Clearance									8		-	8	1	20	0	0	20	1	32	0	0	0	1	44	0	0	0	1	3	1	RED	On
Red Revert								1	9			9	1	21	0	0	21	1	33	0	0	0	1	45	0	0	0	1	4	1	RED	Off
Add Initial		-							10			10	1	22	0	0	22	1	34	0	0	0	1	46	0	0	0	1	5	2	GREEN	
Max Initial					-				11			11	1	23	0	0	23	1	35	0	0	0	1	47	0	0	0	1	6	2	RED	On
Time B4 Reduct									12	-		12	1	24	0	0	24	1	36	0	0	0	1	48	0	0	0	1	7	2	RED	Off
Cars B4 Reduct				-					Split		1	2	3	4	5	6	7	_	Split		1	2	3	4	5	·	-	8	8	2	RED	Off
Time To Reduce										Coor				7		U		0		Coor				4		0	1	0		_	es [2.1]	Oil
Reduce By										0001									10	0001		-							Test Op		0	
Min Gap									2	Coor									14	Coor		6							Correcti		SHRT/LN	
DyMaxLim								1	-	0001									'7	0001									Maximu		MAX 1	-
Max Step					-			-	3	Coor									15	Coor									Force-C		FLOAT	_
Options [1.1.2]	1	2	3	4	5	6	7	8	ľ	0001									10	0001									Closed		ON	_
Enable	On	_	On		On	On			4	Coor									16	Coor									Stop-in-		OFF	_
Min Recall	0		0.11		0	0			7	0001									10	0001						-			Auto Re		ON	_
Max Recall	On		On		On	On			5	Coor					-				17	Coor									Expand		OFF	
Ped Recall	OII		OII	-	0.11	011			ŭ	0001									11	0001									Ped Re		NO REC	VCLE
Soft Recall					-				6	Coor									18	Coor									Before	cycle	TIMED	TOLL
Lock Calls									Ů	0001									10	0001									After		TIMED	
Auto Flash Entry									7	Coor									10	Coor									Auto I	Flach	11177.0-1	
Auto Flash Exit									1	0001									13	0001	-							-	Auto Fla		PH OVER	2
Dual Entry		On		On		On		On	8	Coor									20	Coor									Flash Y		45	_
Enable Simul Gap	On	On	On	On	On	On	On	On	ŭ	-										0001									Flash R		0	
Gaurantee Passage							-	0	9	Coor									21	Coor											[1.2.1]	
Rest In Walk									Ŭ	-									-	000.									Phase N		STD8	
Conditon Service									10	Coor									22	Coor									IO Mode		USER	
Non-Actuated 1									10	0001										0001									Loc Fish		ON	_
Non-Actuated 2									11	Coor						TO V		10	23	Coor									Start Fla		0	
Add Init Calc									"	0001									20	0001									Start All		0	
Options+ [1.1.3]	1	2	3	4	5	6	7	8	12	Coor									24	Coor									Yellow		OFF	
Reservice		-	-	7					"	0001									-7	0001									Display		20	_
PedClr Thru Yel									Pa	ge#																			Red Re		3	
Skip Red No Call				-					-	1	8 P	hase	Time	s/Opt	ione.	Patt	erne/	Splite	Pir	na St	artun	Cor	ord/EI	ach N	Inde:	Unit	Para	m	MCE Ti		0	
Red Rest									14	&1B				s/Opt															Feature		0	
Max II				-						2				nnel S															Free Ri		1	
Call Phase										_				nple T											viui (I	1116-0	ruay		Auxswit		STOPTM	
Conflicting Phase									_					d Alte									Juon						SDLC R		0	
Omit Yellow									_				hedu		male	1 1103	111	iic all	uri	iase (Option	10	_						TS2 De			
Ped Delay									_					on Ta	hles	Con	rd ΔI	Tahl	p+ /	value	s vari	ed h	v time	-nf-d	av)				Auto Pe			
Grn/Ped Delay									_					is; Se					0, 1	value	J val	cu D	y unite	-UI-U	ay)				SDLC R		0	
ID: 7252	DTE 4	20 @	SO DE	AME	RICAL	V CAN	CO	_						larms					ot: D	/OI ^	D A	to El-	ach.	CIC	Miss	1 Init	Darce	~	01/3		Pag	

Phs Concurrent Phases

Concurrency [1.1.4]

_	ience	_																	
Seq	Rng			hases						Seq	Rng	Conc	urrent F	hases				-	
1	. 1	1	2	3	4	0	0	0	0	9	1	1	2	4	3	0	0	0	0
1	2	5	6	7	8	0	0	0	0	9	2	5	6	7	8	0	0	0	0
1	3	0	0	0	0	0	0	0	0	9	3	0	0	0	0	0	0	0	0
1	4	0	0	0	0	0	0	0	0	9	4	0	0	0	0	0	0	0	0
2	_1_	_1_	2	3	4	0	0	0	0	10	1	1	2	4	3	0	0	0	0
2	2	6	5	7	8	0	0	0	0	10	2	6	5	7	8	0	0	0	0
2	3	0	0	0	0	0	0	0	0	10	3	0	0	0	0	0	0	0	0
2	4	0	0	0	0	0	0	0	0	10	4	0	0	0	0	0	0	0	0
3	1	2	1	3	4	0	0	0	0	11	1	2	1	4	3	0	0	0	0
3	2	5	6	7	8	0	0	0	0	11	2	5	6	7	8	0	0	0	0
3	3	0	0	0	0	0	0	0	0	11	3	0	0	0	0	0	0	0	0
3	4	0	0	0	0	0	0	0	0	11	4	0	0	0	0	0	0	0	0
4	1	2	1	3	4	0	0	0	0	12	1	2	1	4	3	0	0	0	0
4	2	6	5	7	8	0	0	0	0	12	2	6	5	7	8	0	0	0	0
4	3	0	0	0	0	0	0	0	0	12	3	0	0	0	0	0	0	0	0
4	4	0	0	0	0	0	0	0	0	12	4	0	0	0	0	0	0	0	0
5	1	1	2	3	4	0	0	0	0	13	1	1	2	4	3	0	0	0	0
5	2	5	6	8	7	0	0	0	0	13	2	5	6	8	7	0	0	0	0
5	3	0	0	0	0	0	0	0	0	13	3	0	0	0	0	0	0	0	0
5	4	0	0	0	0	0	0	0	0	13	4	0	0	0	0	0	0	0	0
6	1	1	2	3	4	0	0	0	0	14	1	1	2	4	3	0	0	0	0
6	2	6	5	8	7	0	0	0	0	14	2	6	5	8	7	0	0	0	0
6	3	0	0	0	0	0	0	0	0	14	3	0	0	0	0	0	0	0	0
6	4	0	0	0	0	0	0	0	0	14	4	0	0	0	0	0	0	0	0
7	1	2	1	3	4	0	0	0	0	15	1	2	1	4	3	0	0	0	0
7	2	5	6	8	7	0	0	0	0	15	2	5	6	8	7	0	0	0	0
7	3	0	0	0	0	0	0	0	0	15	3	0	0	0	0	0	0	0	0
7	4	0	0	0	0	0	0	0	0	15	4	0	0	0	0	0	0	0	0
8	1	2	1	3	4	0	0	0	0	16	1	2	1	4	3	0	0	0	0
8	2	6	- 5	8	7	0	0	0	0	16	2	6	5	8	7	0	0	0	0
8	3	0	0	0	0	0	0	0	0	16	3	0	0	0	0	0	0	0	0
8	4	0	0	0	0	0	0	0	0	16	4	0	0	0	0	0	0	0	0

verlap 1-16 Prog	ram	arm	5 & 1	arn	1+	.5.2.	1][1	.5.2.	4																Coo	rd Tra	nsition	Coor	Phs [2.5]							
verlap Conflict Lock	OF	F	Overl	ap Lo	ck In	nibit	O	FF	Pare	nt Ph	Cleara	nce	ON		Extr	a Incl	uded	Ph	0	FF					Pat#	Short	Long	Dwell	No Si	nortway	Ø E-Y	'ld	Offset	RetHld	Float	Min Veh Perm	Min Ped P
Included Ø		-1	I	1					NOR	MAL	1	nclude	ed Ø	1		-1	- 1				Î		INOR	MAL	1	12	22		- Y	TÍ		_	EndGRN			The state of the s	
Modifier Ø	10.0								Grn		9 1	Modifie	er Ø						1				Gm		2	12	22		1	1		_	EndGRN	1	-		-
Conflict Ø									Yel	3.5	100	Conflic				\neg							Yel	3.5	3	12	22		_	11	1	_	EndGRN				
Conflict Olap				1					Red			Conflic	_	13									Red		4	12	22	-	_	++	+	_	EndGRN	-			
Conflict Ped		_	1	1	\neg				LG		-	Conflic			1	_	_						LG	1.0	5	12	22	-	_	+	+		EndGRN		_		
Included Ø	i	Ť	1	7			-		NOR	ΙΔΙ		nclude	MCMCBC***		- 1	- 1	- 1	-	-			-	NOR	MAI		_	$\overline{}$		+	+		_			-		
Modifier Ø		\rightarrow	+	+	\rightarrow		-		Grn	VIVAL		Modifie		-	-	\rightarrow	-	-			-		Gm	IVIAL	7	12	22		-	+	-	_	EndGRN		_		
Conflict Ø	-	-	+	\rightarrow	$\overline{}$	-			_	2.5				-	-	\rightarrow	-	1		-	-			0.5	-	12	22	-	-	+	+	_	EndGRN				
Conflict Olap	-	-	+	+	\dashv	-	-		Yel	3.5	-	Conflic	-	-	-	\rightarrow	-			_			Yel		8	12	22	_		+	-	_	EndGRN		_		
		-	-	+	\rightarrow	-			Red	1.5	_	Conflic	_		-	\rightarrow	_	_ \	_				Red	1.5	9	12	22		_	\perp			EndGRN		100		
Conflict Ped		- 1		- !	_ !	_ !	_		LG			Conflic	a street	_	Ļ	_ !		_			_	ļ	LG		10	12	22				1.1	_	EndGRN				
Included Ø			_	_	_				NOR	ИAL	_	nclude					171	1.6					NOR	MAL	11	12	22	4.5					EndGRN		34.		
Modifier Ø	1			_					Gm	7(11	Modifie	er Ø										Gm		12	12	22						EndGRN	V	20		
Conflict Ø									Yel	3.5	(Conflic	t Ø										Yel	3.5	13	12	22				10		EndGRN				
Conflict Olap									Red	1.5	K	Conflic	t Olar				- 1					75.7	Red	1.5	14	12	22	7.4			310-		EndGRN				
Conflict Ped				\neg					LG		- (Conflic	t Ped					7.7					LG		15	12	22	= 1	10		300	_	EndGRN		1 -		
Included Ø			-1						NOR	/AL	- 11	nclude	ed Ø	1		1	Ì				1	1	INOR	MAL	16	12	22						EndGRN				
Modifier Ø				\neg				1	Gm			Modifie				\neg		7.7					Gm		17	12	22		\neg	11	1	_	EndGRN				
Conflict Ø				\neg					Yel	3.5	_	Conflic	_										Yel	3.5	18	12	22		_	++		_	EndGRN				
Conflict Olap				\neg					Red			Conflic			_	_							Red		19	12	22		_	++	+	_	EndGRN				
Conflict Ped								-	LG	1.0	0.00	Conflic			1								LG	1.0	20	12	22			++	+-	_	EndGRN		_		
Included Ø	i	i.	- i	Ť	i	i			NOR	141	1	nclude	AND RESERVED.		- i	- 1	-1	-		-	1		NOR	MAI	21	12	22	\rightarrow	-	++	+	_					
Modifier Ø				+					Grn	IIAL	_	/lodifie			\rightarrow	-	\rightarrow)	_	-	-	Gm	VIAL	22	_	$\overline{}$	-	-	1	-	_	EndGRN		-		
Conflict Ø		-	-	+	-	-	-		Yel	2.5	_			-	-	-	\rightarrow			-		-		2.5		12	22	-		+	+-	_	EndGRN		_		
	-	-	+	+	\rightarrow	-	-	-				Conflic		-	-	-	-		_	-			Yel		23	12	22	-	_	+	-		EndGRN		-		
Conflict Olap		-	-	+	-	-			Red	1.5		Conflic			-	-	_						Red	1.5	24	12	22						EndGRN				
Conflict Ped	- !	- }-	- 1	-!	-!	- 1			LG		40000	Conflic			Ų	-1	_ !						LG		25	3			_				BegGRN				
Included Ø		-		4			1		NOR	MAL		nclude			_	1							NOR	MAL	26								BegGRN				
Modifier Ø				_					Grn		14	/lodifie	er Ø	3								10	Gm		27					9 -1			BegGRN				
Conflict Ø								-	Yel	3.5	(Conflic	t Ø					1					Yel	3.5	28								BegGRN				
Conflict Olap							5	-	Red	1.5	N	Conflic	t Olap		= 1								Red	1.5	29	2 - 5				100		1	BegGRN				
Conflict Ped				\neg					LG			Conflic	t Ped										LG		30								BegGRN	186			
Included Ø	- 1	-1	1	1	- 1	- 1		- 1	NOR	AAL	- 0	nclude	d Ø	1	Ť	Ť	1	i			1		NOR	MAL	31						3		BegGRN				
Modifier Ø				\neg					Gm		15	/lodifie	er Ø				\neg						Gm		32								BegGRN				
Conflict Ø	-			\neg					Yel	3.5	-	Conflic			\neg		\neg			-3		7.1	_	3.5	33				_		-		BegGRN				
Conflict Olap		1	\neg	\neg					$\overline{}$		_	Conflic	_		\neg	_	_						Red		34			_		++	_		BegGRN				
Conflict Ped		_	$^{+}$	\dashv		\neg			LG	11.0	_	Conflic			\pm	_	_			100			LG	1.0	35			-	-	++	_		BegGRN	_			
Included Ø	i	1	1	T)		-			NOR	141		nclude			1	Ť	-				1		NOR	MAI	36			-	-	++	-			-			
Modifier Ø	-	+	+	+		-			Gm	WAL.		/lodifie			+	-	\rightarrow			-			_	WIAL			-	-	-	++	_		BegGRN		-		
	\rightarrow	+	+	+	-	-		-		2.5				-	+	-	\rightarrow		_	-	-		Gm	0.5	37			-	-	+	_		BegGRN				
Conflict Ø	\rightarrow	+	+	+	-	-		-	Yel			Conflic		-	+	-	\rightarrow		_	_				3.5	38			_	+	+	_		BegGRN				
Conflict Olap	\rightarrow	-	-	+	-	_	_		Red	1.5	-	Conflic			4	-	_	_					Red	1.5	39	-		_	_	+			BegGRN				
Conflict Ped									LG			Conflic	t Ped										LG		40						-		BegGRN				
nannel Settin	gs	1.8.1	1_	_	_										-										41					1			BegGRN				
Channel ->>		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	42								BegGRN			1	
ase / Olap #	1	- 1	3		5	6	E		3.7			- 5													43					4 3			BegGRN			4	
nannel Type	VEH	/EH V	EH V	EH	VEH	VEH	VEH	VEH	VEH	VEH	VEH '	/EH	VEH Y	/EH \	/EH \	/EH	VEH	VEH	VEH	VEH	VEH	VEH	VEH	VEH	44								BegGRN				
annel Flash	RED	RED R	ED R	ED	RED	RED	RED	RED	RED	RED	RED	RED	RED	REDIF	REDI	REDI	ORK	DRK	DRK	DRK	DRK	DRK	DRK	DRK	45	-	- 1						BegGRN				1
Hz																		17							46	1				11			BegGRN				
nannel+ Setti	nas	[1.8	41	_				_							_			_					•	_	47					+			BegGRN				
Channel ->>	1	21	3	4	5	6 1	7	8	g	10	11	12	13 T	14	15	16	17	18	10	20	21	22	23	24	48			-	-	++			BegGRN				
sh Red+	-	_	_	+	_	_	,		-	,0					-		-	10	10	20	1		1 20			nnel f	aram	0 11-	21	11	_		DegGKN				
sh Yellow+	+	-	-	+					-		\dashv	+	+	+	+	-	+					-	+		Cild						DILLA	-n	CINICIE		lance.	4 Dail Janes	OFF
	-	+	+	-		-					\rightarrow	-	-	-	-	-	-		_				-			Ç	1 10 N	ioae (USE	7 ;	BIU M	ap S	SINGLE		inver	t Rail Input	OFF
ash Green+	-	-	-	+		_		_	_		\rightarrow	-	-	-	-		-			-			-														
ash Inh Red+	-	-								2.7	\rightarrow	-	_	-	_		_					20															
ap Ovrd			- 1								- 1					- 1	- 1																				

			64 [5.									r 1-6							- 1	/ehic	ele (Optio	ons 1-	64 [5	5.21			Ve	hicle	qO e	tions	1-64	[5.2]			IP:	aram	eter	s+ 1	-64	[5.3]		- 7
Det		Sw	i Dlay	Ext	Que	No	Max	Err	Fail	Det	Call	Swi	Dlay	Ext	Que 1	No M	ax E	rr F	ail D	et Ca	all E	xt Q	ue Ado	Red	Yell	occ	vol	De				Add R		ell	ocd vo	ol De	t oc				Dlay	Туре	Src
#	Ø	Ø				Act	Pres	Cnt	Time		Ø	Ø				Act Pr		nt Ti	me :	#					Lock			#	1	-	1 7	ddlniLo	ckl	nck	"	#	G	OC Y	R	1	2	Type	Oic
1	1						45	50	45	33						14	5 5			10	n C)n l	On	_					On	On		On	1	T	1	11	=					NORM	
2	6		2				45	50	6	34							5 5		_		n C		On				-	34				On	_	+	+	2						NORM	
3	3		3				45	50	15	35							5 5				n C		On	_				35	On		-	On	+	-	+	3						NORM	
4										36							5 5				n C		On					36	On		_	On	+	_	_	4						NORM	
5	5			-			45	50	45								5 5				n C		On				\vdash	37				On	+	+	+	5						NORM	
6								170		38					\neg		5 5			6 0			On				-	38		On	_	On	+	+	+	6						NORM	
7									-	39							5 5				n C		On				1	39		On		On	+	+	+	7						NORM	
8										40							5 5			ВО			On					40	On	On		On	+	$^{+}$	+	8						NORM	
9							1	1		41					1 - 1 -		5 5			9 0			On				\vdash	41		On		On	+	+	+	9						NORM	
10										42							5 5				n C		On					42		On		On	+	+	-	10				-		NORM	
11				30						43							5 5			10	n C		On					43				On	_	+	-	11						NORM	
12										44							5 5			2 0			On			_		44				On	+	+	+	12						NORM	
13	3		3				45	50	15	45							5 5			3 0			On					45				On	+	+	+	13						NORM	
14			1				,,,			46						4			1	4 0	10	n	On					46		On		On	+	+	+	14				-		NORM	
15										47						4			1	5 0	10	n	On					47				On	+	+	+	15							
16				\Box		\dashv				48		\vdash					5 5		1	6 0	10	'n	On				1	48		On		On	+	+	+	16						NORM NORM	
17									-	49							5 5			7 0			On				1	49			_	On	+	+	+	17			Н	_		NORM	
18						\neg		-		50							5 5			8 0			On					50	On	On		On	+	+	+	18			Н	-		NORM	
19					\vdash	\neg				51							5 5			9 0			On					51		On		On	+	+	+	19		_	Н				
20										52							5 5				n c		On					52	On	On		On	+	+	+	20			\vdash	_		NORM	
21			1		\vdash					53							5 5		2		n c		On					53	On	On		On	+	+	+	21	4	-	-			NORM	
22			_	Н						54				-			5 5				n c		On			-		54	On	On		On	+	+	+	22			Н			NORM	
23						\rightarrow				55						4			12		n C		On					55		On		On	+	+	+	23		-	Н			NORM	
24										56							5 5	1	2	1 0	n C		On					56		On		On	+	+	+	24			\vdash			NORM	
25				\vdash						57						4			2	5 0	n C		On					57	On	On		On	+	+	+	25			Н			NORM	
26						_				58							5 5		2		n c		On					58		On		On	+	+	+	26		_	\vdash	-		NORM	
27						_				59						4			12		n C		On					59		On		On	+	+	+	27			\vdash	-		NORM	
28						\neg				60							5 5		2		n C		On					60		On		On	+	+	+	28			Н			NORM	
29				\vdash		-		-		61					_		5 5		2		n C		On			\vdash	-	61		On		On	+	+	+	29		_	Н	-		NORM	
30						-				62					-		5 5		3		n c		On			-	-	62				On	+	+	+				Н			NORM	
31				\vdash		\rightarrow	\neg			63					-		5 5		2	1 0			On			\vdash	\vdash	63					+	+	+	30			Н			NORM	
32			+	\vdash	-	_				64						4	5 5	+	2		1 0		On					64				On On	+	+	+	31			\vdash	_		NORM	
	ame	tore	s+ 1-6	1 15	31	_	_			04	_				_	14	0 1 3	<u> </u>	10	2 0	110	/11	I OII				Dor		et Pa	On		On J	4	_	_	32		4 D-		4		NORM	
Det	OCC		occ					Src	Det	occ	осс	Locc	Dlav	Dlav		Te	c De	t o	cc lo	200	-In	av D	lavi	-	Src	1			No												[1.2.		OU
#	Gm	Yell	Red	1	2	Тур	e	OIC	#	Gm	Yell	Red	Dlay 1	2	Тур	B 3	#	G	m Y	ell Re	d D	ay Di	Z T	pe	SIC		#	Ca	Act	Drag	CT							Det			D		ON
33						NORI	м		44						NOR	M	5		-	1	+	+	NO	DM				שו	ACI	Pies	CIII											n [1.5.	
34				\vdash		NOR			45						NOR		5		+	+	+	+	NO				2		+	15 15											nutes		15
35						NOR			46						NOR		5		+	+	+	+	_						-								VOI	Occ	Perio	od Mi	nutes		0
36				\vdash		NOR			47						NOR		5	2	+	+	+	+	NO				3		\vdash	15 15													
37				\vdash		NOR			48						NOR		5		+	1	+	+	NO			1	5	-	-	15													
38					_	NOR	_		49						NOR		6		+	1	+	+	NO				6		-	15													
39				\vdash		NOR			50						NOR		6			-	+	+	NO				7		_	15													
40				\vdash		NOR		-	51						NOR	_	6:		+	+	+	+	NO				8		1	15													
41						NOR			52						NOR	_	6		+	1	+	+	NO					_	_	113	_												
42						NOR			53						NOR		6	1	+	-	+	+	NO	****																			
43						NOR			54						NOR				725	2 RT	F 1	20 6	SOE		MER	ICA	NC	ΔΝ	CO										11	31/20	112	Page	3
.,,		_	_	_					UT		_	_	_		···		_	,,,	120	- 1	- 1	_0 (0	, 00 1	II. A		.07		711	00								_		1/4	1/2	10	ray	, 0

Pre # Enable Type Output Delay MinDura Pre # Track Phases Track Overlaps	Preem	ption Tir	mes [3.1]	Option	s+ [3.6]		Trac	k Clear	Phase	s [3.2	l. Tra	ck CI	ear O	verla	ns+	3 51			+		
1	Pre#					MinDura									Po	0.0			_		_
2 ON RAIL DWELL 4 ON EMERG DWELL 5 ON EMERG DWELL 6 ON EMERG DWELL 7 ON MINGIM MINWIK PedCir Co-Pre 1 ON ON 3 ON ON ON 5 ON ON ON 6 ON ON ON 6 ON ON ON 7 OFF # Track Grf Min Dwell Ext Dwel PedCir+ Yel 1	1						1	I	1	T	Track	1	Парз						-		
3 ON EMERG DWELL 4 ON EMERG DWELL 5 ON EMERG DWELL 6 ON EMERG DWELL 6 ON EMERG DWELL 7 ON EMERG DWELL 6 ON EMERG DWELL 6 ON EMERG DWELL 6 ON EMERG DWELL 7 ON ON EMERG DWELL 7 ON EMERG DWELL 8 ON EMERG DWELL 8 ON EMERG DWELL 9 ON EMERG DWELL 9 ON EMERG DWELL 1 ON EMERG DWELL 6 ON EMERG DWELL 6 ON EMERG DWELL 7 ON ON ON EMERG DWELL 8 ON EMERG DWELL 9 ON EMERG DWELL 9 ON EMERG DWELL 1 ON EMERG DWELL 4 ON EMERG DWELL 6 ON EMERG DWELL 7 ON ON EMERG DWELL 8 ON EMERG DWELL 9 ON EMERG DWELL 9 ON EMERG DWELL 1 ON EMERG DWELL 2 PROBLET DE PRES 2 OVERIAPS Peds 2 Passes 3 Passes 3 Passes 3 OVERIAPS Peds 4 Phases 4 Phases 4 Phases 5 OVERIAPS Peds 4 Phases 5 OVERIAPS Peds 6 Phases 6 OVERIAPS Peds 7 PRE#LOCK OVERIDE 1 ON ON ON ON OFF 9 PEDS 1 ON ON ON ON ON OFF 1 ON ON ON ON OFF 1 ON ON ON ON OFF 1 ON ON ON ON OFF 1 ON ON ON ON OFF 1 ON ON ON ON ON OFF 1 ON ON ON ON ON OFF 1 ON ON ON ON ON OFF 1 ON ON ON ON ON OFF 1 ON ON ON ON ON ON OFF 1 ON ON ON ON ON OFF 1 ON ON ON ON ON ON ON OFF 1 ON ON ON ON ON ON ON OFF 1 ON ON ON ON ON ON ON OFF 1 ON ON ON ON ON ON ON ON ON OFF 1 ON ON ON ON ON ON ON ON ON OFF 1 ON ON ON ON ON ON ON ON ON ON ON ON ON	2						2		+	+											\vdash
4 ON EMERG DWELL 5 ON EMERG DWELL 5 ON EMERG DWELL 5 ON EMERG DWELL 5 ON EMERG DWELL 5 ON EMERG DWELL 5 ON DWELL 5 ON DWELL 5 ON DWELL 5 ON DWELL 5 ON DWELL 5 ON DWELL 5 ON DWELL 5 ON DWELL 5 ON DWELL 5 ON DWELL 5 ON DWELL 5 ON DWELL 5 ON DWELL 5 ON DWELL 5 ON DWELL 5 ON DWELL 5 ON DWELL ON DWELL The second of the second of									+	+								Н			\vdash
S									-	-								\vdash	-		\vdash
6 No EMERG DWELL Pre# MaxPres MinGm MinWik PedCir Co+pre No No No No No No No No No No No No No N	_								+	-								\vdash			\vdash
Dec MaxPres MinGm MinWik PedCir Co+Pres ON					-				-	-											
1		_			D-401-	lo . D		11 51	10.01												
1		MaxPres	MinGrn	Minwik	PedCir				s [3.2]	and (Overla	aps+	[3.5]								
Overlaps										_											
Peds Peds							1														
Control Cont									s				1.0								
ON Overlaps Peds						ON		Peds							-						
Pet	5					ON	2	Phases											1		1
Peds Peds								Overlap	S												
1	Pre#	Track Grr	Min Dwell	Ext Dwel	PedClr+	Yel									1						
Overlaps Peds 4	1						3														
Peds Peds Phases Overlaps Peds P	2		2						s			7									
4	3																				
Overlaps							4											\vdash			
Peds Pattern Skip	5						1									-					
Tere # Red									<u> </u>											-	
Overlaps		Red		Skin			5		-					-				-		-	
Peds	1	rica	1 attorn				7		-												
3 OFF 4 OFF 5 OFF 6 OFF 6 OFF 7 OFF 8 OFF 10 OFF 11 OFF 12 ON ON ON ON OFF 15 ON ON ON ON OFF 16 ON ON ON OFF 17 OFF 18 OFF 19 OFF 10 OFF 10 OFF 11 ON ON ON ON OFF 11 ON ON ON ON OFF 12 ON ON ON ON OFF 14 ON ON ON ON OFF 15 ON ON ON OFF 16 ON ON ON OFF 17 OFF 18 OFF 19 OFF 10 OFF 10 OFF 11 OFF 12 ON ON ON ON OFF 13 ON ON ON ON OFF 14 ON ON ON ON OFF 15 ON ON ON ON OFF 16 ON ON ON OFF 17 OFF 18 OFF 19 OFF 10 OFF 10 OFF 10 OFF 11 OFF 12 ON ON ON ON ON OFF 13 ON ON ON ON OFF 14 ON ON ON ON OFF 15 ON ON ON ON OFF 16 ON ON ON OFF 17 OFF 18 OFF 19 OFF 10 OFF 10 OFF 10 OFF 10 OFF 10 OFF 11 ON ON ON ON ON OFF 11 ON ON ON ON ON OFF 12 ON ON ON ON ON ON OFF 14 ON ON ON ON ON OFF 15 ON ON ON ON ON OFF 16 ON ON ON ON OFF 17 OFF 18 OFF 19 OFF 10 OFF 10 OFF 10 OFF 10 OFF 10 OFF 10 OFF 10 OFF 10 OFF 10 OFF 10 OFF 10 OFF 10 OFF 10 OFF 10 OFF 10 OFF 10 OFF 10 OFF 10 OFF 11 ON ON ON ON ON ON ON ON ON ON ON ON ON	2								—	-	_	-						-	-		
A							1 0		-			-	\vdash					_			
Peds Premption Options+ [3.6] Pre # Lock Override Override Fish Override					9		0														
OFF OFF	_								·		_	-									
Pre # Type Min Max Max Pre # Exit Phase S.2 Pre # Lock Override Override Fish Higher Dwel Link								Peds													
Pre # Type Min Max	.70			OFF			L.,														
1											Pre#	Lock			200	0	verrid				
S			Min	Max			Pre #	Exit Pha	se			-	Αι	_	sh	H				Link	
9 OFF 10 OFF 10 OFF Init Parameters [1.2.1] Op Timer Over Preempt OFF Deempt or Ext Output PRE Dax Seek Track Time Dax Seek Dwell Time Conn Mappings NONE						-	7.														
10 OFF nit Parameters [1.2.1] op Timer Over Preempt OFF eempt or Ext Output PRE ax Seek Track Time hannel Parameters [1.8.3] Conn Mappings NONE										1-3	2			ON			ON		OFF		
nit Parameters [1.2.1] op Timer Over Preempt OFF eempt or Ext Output PRE ax Seek Track Time ax Seek Dwell Time hannel Parameters [1.8.3] Conn Mappings NONE							3				3	ON		ON			ON		OFF		
nit Parameters [1.2.1] op Timer Over Preempt OFF eempt or Ext Output PRE ax Seek Track Time ax Seek Dwell Time hannel Parameters [1.8.3] Conn Mappings NONE	10	OFF					4				4	ON		ON			ON		OFF		
nit Parameters [1.2.1] op Timer Over Preempt OFF eempt or Ext Output PRE ax Seek Track Time ax Seek Dwell Time hannel Parameters [1.8.3] Conn Mappings NONE							5				5	ON		ON		L.,	ON		OFF	-	
op Timer Over Preempt OFF eempt or Ext Output PRE ax Seek Track Time ax Seek Dwell Time hannel Parameters [1.8.3] Conn Mappings NONE	Jnit Pa	arameter	s [1.2.1]				6				6	ON		ON							
eempt or Ext Output PRE ax Seek Track Time ax Seek Dwell Time hannel Parameters [1.8.3] Conn Mappings NONE	Stop Tir	mer Over F	Preempt	OFF				-				- 1									
ax Seek Track Time ax Seek Dwell Time hannel Parameters [1.8.3] Conn Mappings NONE																					
hannel Parameters [1.8.3] Conn Mappings NONE					Y																
hannel Parameters [1.8.3] Conn Mappings NONE					-																
Conn Mappings NONE				3 31																	
					1																
G INVERTINAL INPUT					1																
	IC IIIVE	ar rail inp	ut	UFF																	

It# 1 Times Ta									Alt# 1 Veh Par	ameter		.1.1]													
Column#>	1	2	3	4	5	6	7	8	Column#>		2	3	4	5	6	7	8	9	10	11	12	13	14	15	1
Assign Ø									Assign Det#												PI				
Min Grn									Call																
Gap, Ext									Swiitch																
Max 1						He I		. = -	Delay																
Max 2									Extend																
Yel Clr								1 = 1	Queue									1							
Red Clr							1		No Activity																
Walk									Max Presence																\vdash
Ped Clr									Erratic Count												-	100			
t# 2 Times Tal		1.6.1.	2]						Fail Time								1							1	
Column#>	1	2	3	4	5	6	7	8	Alt# 1 Veh Opt	ions [5	.5.1.2														
Assign Ø									Column#>		2	3	4	5	6	7	8	9	10	11	12	13	14	15	1
Min Grn									Assign Det#										,,,	-		10	17	10	
Gap, Ext									Call	1															
Max 1									Extend																
Max 2									Queue																-
Yel Clr									Added Initial	-															H
Red Clr									Red Lock																H
Walk									Yellow Lock																H
Ped Clr									Occupancy																H
# 3 Times Tal	ble [1	1.6.1.3	31						Volume																-
Column#>	1	2	3	4	5	6	7	8	Alt# 1 Veh Para	ameter	s+ [5]	5 1 31													_
Assign Ø					-			Ŭ	Column#>		2	3	4	5	6	7	8	9	10	11	12	13	14	45	1
Min Grn									Assign Det#	-	-	- 0	4	J	0	,	0	9	10	_11	12	13	14	15	-
Gap, Ext		1							Occ-on-green																-
Max 1									Occ-on-yellow															-	-
Max 2									Occ-on-red																-
Yel Clr									Delay Phase 1																-
Red Clr									Delay Phase 2		_														-
Walk			-						Detector Mode	NORM	NORM	NORM	NORM	NODM	NORM	NODM	NODM	NODM	NODM	NODM	NODM	NORM	NODM	NODM	NO
Ped Clr									Source	NORM	TOKIN	NOKW	NOKW	NOKW	NOKW	NOKW	NORW	NORM	NORM	NORM	NURM	NORM	NURM	NORM	NC
# 1 Options T	able	116	2 11						Alt# 1 Ped Para	amotor	c+ 15 /	5 1 /1				_								-	-
Column # ->	1	2	3	4	5	6	7	8	Column#>		2	3	4	5	6	7	8								
Assign Ø		-		-	3	,	-		Assign Det#		2	J	4	J	0	-	0								
Lock Calls	On	On	On	On	On	On	On	On	Call	-	-							4							
Soft Recall	OII	311		311	JII	- Oil	Oil	Oil I	No Activity																
Dual Enrty		-							Max Presence																
Enabl SimGap	On	On	On	On	On	On	On	On	Erratic Count																
Guar Passage	OII	Oli	Oil	Oil	Oll	OII	OII	Oil	Litatic Count		_														
Rest In Walk																									
Cond Service								-																	
Reservice		-				-		-																	
Non-Act 1	-																								
Dod Docti																									
Red Rest																									
Red Rest Max2 Ped Delay																									

t# 2 Options 7 Column # ->		2	3	4	5	6	7	8	Alt# 2 Veh Para Column#>				4	F	-	7	-	-	40	- 44	1.0	40		3-	
Assign Ø			3	4	3	0	-	0		- 1	2	3	4	5	6	1	8	9	10	11	12	13	14	15	1
Lock Calls	On	On	On	On	000	000	000	0=	Assign Det#				75												
Soft Recall	Oli	Oil	On	On	On	On	On	On	Swiitch																
Dual Enrty													-												
	_	_	•	_	_	_	-		Delay								1				1				
Enabl SimGap	On	On	On	On	On	On	On	On	Extend																
Guar Passage						-			Queue													_		_	
Rest In Walk									No Activity																
Cond Service									Max Presence																
Reservice									Erratic Count				- 1												
Non-Act 1	-								Fail Time																
Red Rest									Alt# 2 Veh Opt		5.5.2.2														
Max2	1, 1								Column#>	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	1
Ped Delay									Assign Det#																
Conflicting Ø1					1				Call				. 1												
#3 Options T		[1.1.6.2	2.3]						Extend											-					
Column # ->	1	2	3	4	5	6	7	8	Queue																
Assign Ø									Added Initial			1													
Lock Calls	On	On	On	On	On	On	On	On	Red Lock							1								-	
Soft Recall							2 - 1		Yellow Lock																
Dual Enrty									Occupancy																
Enabl SimGap	On	On	On	On	On	On	On	On	Volume							-		17.77							
Guar Passage					1				Alt# 2 Veh Para	amete	rs+ [5.	5.2.31													
Rest In Walk									Column#>	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	1
Cond Service									Assign Det#													- 10		10	_
Reservice									Occ-on-green															5	
Non-Act 1			-						Occ-on-yellow																\vdash
Red Rest			1						Occ-on-red									7							\vdash
Max2								-	Delay Phase 1									7							\vdash
Ped Delay							1	-	Delay Phase 2																-
Conflicting Ø1									Detector Mode	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NOPM	NOPM	NOPM	NODM	NODM	NODM	NODM	NO
# 4 Options T	ahle	116	2 41						Source	NO KI	HORE	HOKIM	HOKI	HOKIM	NORM	HORM	NORW	NOKIM	NOKM	NORM	NORW	NOKW	NORM	NOKW	NO
Column # ->		2	3	4	5	6	7	8	Alt# 2 Ped Para	moto	re+ [5	5 2 41													-
Assign Ø		-	-	1	-	-			Column#>	1	2	3	4	5	6	7	8								
Lock Calls	On	On	On	On	On	On	On	On	Assign Det#		-	J	-	-	-	-	J								
Soft Recall		J.,			J.,	J.,	3	J.,	Call																
Dual Enrty	-			-					No Activity			-													
Enabl SimGap	On	On	On	On	On	On	On	On	Max Presence																
Guar Passage		-	JII	J.,	JII		311	-UI	Erratic Count																
Rest In Walk								-	Enallo Count																
Cond Service																									
								-																	
Reservice								-																	
Non-Act 1																									
Ded De-4																									
Red Rest																									
Max2						-																			

ını	ual				_	.3] [Mon	th c	of Y	ear	r					Da	y o	f W	eek				Dat	е																									Day
	J	F		٨		M	J	J	-	Α	S	0	N	D	S	N	Λ	T	W	T	F	S			3		5	6 7	8	9	10	11	12 1	3 14	15	16	17 1	18 1	9 20	21	22	23	24 2	25 26	6 27	28	29	30 31	Pla
					On		On	Or	n C	On		On	On	On	1		n (On	On	On	On	On	On	On	On	On (On C	n O																				On On	
	J	F	V	Λ	Α	M	J	J	-	Α	S	0	N	D	S	N	Λ	T	W	T	F	S	1	2	3	4	5	6 7	8	9	10	11	12 1	3 14	1 15	16	17 1	18 1	9 20	21	22	23	24 2	25 26	3 27	28	29	30 31	
		L.	4				L.	L	_					_											Ш					L																			1
	J	F	٨	Λ	Α	M	J	J	,	Α	S	0	N	D	S	N	1	T	W	T	F	S	1	2	3	4	5	6 7	8	9	10	11	12 1	3 14	15	16	17 1	18 1	9 20	21	22	23 2	24 2	25 26	3 27	28	29	30 31	
		_	4				<u></u>									4	_								Ш				L																				1
	J	+	V	Λ	Α	М	J	J	1	Α	S	0	N	D	S	N	Λ	T	W	T	F	S	1	2	3	4	5	6 7	8	9	10	11	12 1	3 14	15	16	17 1	18 1	9 20	21	22	23 2	24 2	25 26	3 27	28	29	30 31	
	1	-			٨		1	-		٨	0	0	N.	-	0			-	101	-	-		Ļ		•				1	4	Ļ						Ш			L			_		Ш				1
	J	Г	I	n	A	IVI	J	J	-	A	0	U	IN	U	5	IV	Л	1	VV	-	٢	5	1	2	3	4	5 (6 7	8	9	10	11	12 1	3 14	15	16	17 1	18 19	9 20	21	22	23 2	24 2	25 26	27	28	29	30 31	
	1	F	٨	A .	Δ	M	-1			۸	S	0	NI	D	C	N.		т	VA/	Т	С	C	4	2	3	4	E 1	2 7	0	0	40	44	10 1	2 44	45	40	47 4	0 4	0 00	. 04	00	00 (04.6	- O			00		1
	U		11	•	^	IVI	J	J	1	^	0	U	IN	U	3	IV	rı .	1	VV	1	Г	0	-	2	3	4	0 (6 7	0	9	10	11	12 1	3 14	15	10	17	18 18	9 20	21	22	23 2	24 2	5 26	2/	28	29	30 31	
	J	F	٨	٨	Α	M	J	J		Δ	S	0	N	D	S	N	1	Т	W	Т	F	2	1	2	3	4	5 (6 7	8	9	10	11	12 1	2 1/	15	16	17 1	0 10	20	21	22	22 (24 2	E 20	2 27	20	20	30 31	1
	•	Ė	Τ,		`	141			T	`					J	14			**		•	Ü	r	-	J	7	0 1	,	U	3	10	11	12 1	3 14	13	10	17	0 13	9 20	21	22	23 4	24 2	5 20	21	20	29	30 31	1
	J	F	٨	1	Α	М	J	J	1	Α	S	0	N	D	S	N	1	Т	W	Т	F	S	1	2	3	4	5 6	6 7	8	9	10	11	12 1	3 14	15	16	17 1	8 10	9 20	21	22	23 3	24 2	5 26	3 27	28	20	30 31	
								T							11	T	T	T									T	T	T	T					10	10		0 10	20	1		20 2	7	.0 20	, 21	20	20	30 31	1
	J	F	N	1	Α	M	J	J	1	Α	S	0	N	D	S	N	1	T	W	T	F	S	1	2	3	4	5 (6 7	8	9	10	11	12 1	3 14	15	16	17 1	8 19	9 20	21	22	23 2	24 2	5 26	27	28	29	30 31	-
																										T	T	T	T	T			T	T			T			T			T					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1
	J	F	١	1	Α	M	J	J	1	Α	S	0	N	D	S	N	1	T	W	T	F	S	1	2	3	4	5 (6 7	8	9	10	11	12 1	3 14	15	16	17 1	8 19	9 20	21	22	23 2	24 2	5 26	27	28	29	30 31	
																																						T							T		T		1
	J	F	٨	1	Α	M	J	J	-	Α	S	0	N	D	S	N	1	T	W	T	F	S	1	2	3	4	5 6	3 7	8	9	10	11	12 1	3 14	15	16	17 1	8 19	9 20	21	22	23 2	24 2	5 26	27	28	29	30 31	
																													1																				1
i	J	F	٨	1	Α	M	J	J	1	A	S	0	N	D	S	N	1	T	W	T	F	S	1	2	3	4	5 6	5 7	8	9	10	11	12 1	3 14	15	16	17 1	8 19	9 20	21	22	23 2	24 2	5 26	27	28	29	30 31	
	1	-	1						Ш,			_				1		_		_			L				L		L					L									1						1
-	J	F	N	1	Α	M	J	J	- 1	A	S	0	N	D	S	N	1	T	W	T	F	S	1	2	3	4	5 6	5 7	8	9	10	11	12 1	3 14	15	16	17 1	8 19	9 20	21	22	23 2	24 2	5 26	27	28	29	30 31	
	1	_			٨	1.4	-	.1		٨	C	0	K1	D	0			T	101	т	-	0	-	0	2		F /	7	0	0	40		10 1	0 44	45	40	47 4	0 44						4	-		1		1
	J		IV	-	^	IVI	J	J		A	0	U	IN	U	0	IV	1	-	VV	-	Г	0	-	2	3	4	5 6) /	8	9	10	11	12 1	3 14	15	16	1/ 1	8 19	9 20	21	22	23 2	24 2	5 26	27	28	29	30 31	
	1	F	N.	1	Δ	M	1	.1	1	Δ	S	0	N	D	C	N	4	Т	۱۸/	Т	E	S	1	2	3	1	5 6	3 7	Ω	0	10	11	10 1	3 14	15	16	17 1	0 10	20	24	22	22 (24 2	E 20	27	20	20	20 24	1
-		_			/ \	141	U	0		3	0	0	14		0	10	+	1	**	-	-	J			3	7	5 (, ,	0	J	10	11	12 1	0 14	10	16	17 1	8 19	20	21	22	23 2	.4 2	5 20	21	20	29 .	30 31	-
	J	F	N	1	Α	М	J	J	-	Α	S	0	N	D	S	M	1	Т	W	Т	F	S	1	2	3	4	5 6	5 7	8	q	10	11 '	12 1	3 14	15	16	17 1	R 10	2 20	21	22	23 2	24 2	5 26	27	28	20 '	30 31	1
									T					T		T	T	T	Ť				r			1		T	T		10				10	10	.,		20	21		20 2	.7 2	0 20	, 21	20	25 .	30 31	1
,	J	F	N	1	Α	M	J	J	1	A	S	0	N	D	S	M	1	Т	W	T	F	S	1	2	3	4	5 6	7	8	9	10	11 1	12 1	3 14	15	16	17 1	8 19	20	21	22	23 2	24 2	5 26	27	28	29 :	30 31	-
															11	T	T									T	T			T								T							1			0.01	1
-	J	F	N	1	Α	M	J	J	1	A	S	0	N	D	S	M	1	T	W	T	F	S	1	2	3	4	5 6	7	8	9	10	11 '	12 1	3 14	15	16	17 1	8 19	20	21	22	23 2	24 2	5 26	27	28	29 3	30 31	
																																						7				T		T	T				1
,	J	F	N	1	Α	М	J	J	1	A	S	0	N	D	S	M	1	T	W	T	F	S	1	2	3	4	5 6	7	8	9	10	11 1	12 1	3 14	15	16	17 1	8 19	20	21	22	23 2	24 2	5 26	27	28	29 3	30 31	
																																																	1
,	J	F	N	1	Α	M	J	J	F	A	S	0	N	D	S	M	1	T	W	T	F	S	1	2	3	4	5 6	7	8	9	10	11 '	12 1	3 14	15	16	17 1	8 19	20	21	22	23 2	24 2	5 26	27	28	29 3	30 31	
	H	_	L,	4				L.	1																																								1
,	J	F	N		Α	M	J	J	F	4	S	0	N	D	S	M		T	W	T	F	S	1	2	3	4	5 6	7	8	9	10	11 1	12 1	3 14	15	16	17 1	8 19	20	21	22	23 2	4 2	5 26	27	28	29 3	30 31	
	1	Е			٨	14	1	-	_	٨	C	0	N1	0	-			T	141	-	_	0	4	0	0					0	40		10 1	0.44	45	40		0 /-			-								1
1	J	F	N		Α	М	J	J	F	4	S	0	N	D	S	M	1	1	VV	1	+	S	1	2	3	4	5 6	7	8	9	10	11 1	12 1	3 14	15	16	17 1	8 19	20	21	22	23 2	4 2	5 26	27	28	29 3	30 31	-
	1	F	N		Δ	М	-1	1	1	Δ	C	0	M	D	C			Т	10/	Т	E	C	1	2	3	1	5 0	7	0	0	10	11 4	12 4	2 44	15	16	17 4	0 45	000	04	20	22 0	14 0	E 00	07	00	200	20.04	1
1	U	-	IV		Α	IVI	J	J	,	1	S	0	N	D	3	IV		1	VV	1	Г	3	1	2	3	4	J (1	0	9	10	11	IZ I	3 14	15	10	17 1	0 18	20	21	22	25 2	4 2	5 26	21	28	29 3	30 31	
	J	F	N		Α	М	.l	1		Δ	S	0	N	D	S	M		Т	w	Т	F	S	1	2	3	4	5 6	7	8	Q	10	11 1	12 1	3 14	15	16	17 1	8 10	200	21	22	23 2	24 2	5 20	27	20	20 1	30 31	1
F			1		•	141	,		-	'		-	-	-	0	141	-	•	1	-	-	0							0	0	10		- 1	14	10	10	11	0 15	20	21	22	20 2	7 2	J 20	21	20	23 (0 31	1
-	-1	252		-) T.	= 44	20	@ C	20	DI	D A	BAE	DI	CAR	CA	NI /	20	-																-	-							_					4104	1/2018	

Day P	lans	[4.4]																			Act	ion T	able	[4.5]							Coc	rd Alte	rnate	Table	s - Pat	+ [2.6]										
		Day	y Pla	n 1		ŤŤ		Da	ау Р	lan	2		П		-	Day	Pla	n 3																			1				Overla	an Off					
Ho	ir Mir			lour Mi	n Act	Но	ur Mi		_	_	d Min	Act		lour I		Act	_	lour	Min	Act	Act#	Pat	# A1	A2 /	3 51	S2	S3 5	S4 S5	S6	S7 S8	Patt	ØOpt	ØTime	DetG	Call Inh	CIC	TCNA1	1	2					c			Di- Lu
1 0	0	1	9	716		1 0	10	10	9	0	10	0		_	=	0	\rightarrow	0	0	0	1	1			1		-	1 00		0, 00	1	DOPL	Dillie	Delo	Can IIII	CIC	CIVAI	-	1	1	1	1		6 T	7	\rightarrow	Dia Ma
2			10			2 0	0	0	10	0 0	0	0	2	0	0	0	-	0	0	0	2	2	\rightarrow	1	+	Н			H	-	2								+	+	+	+	-	+	-	$\overline{}$	DFT
3			11			3 0	0	0	1	1 0	0	0	3	0	0	0	11	0	0	0	3	3	\rightarrow	+	+	H	+		H	+	3							-	+	+	+	+	+	+	-	_	DFT
4			12			4 0	0	0	12	2 0	0	0	4	0	0	0	12	0	0	0	4	4	\rightarrow	+	+	Н	+		H	-	4					-	- 0	1	+	+	+	+		+		-	DFT
5			13		-	5 0	0	0	13	3 0	0	0	5	0	0	0	-	0	0	0	5	5	\rightarrow	\top		Н	+	Ť	\vdash	+	5								+	+	+	+	-	+	-	$\overline{}$	DFT
6			14			6 0	0	0	14	4 0	0	0	6	0	0	0	-	0	0	0	6	6	\rightarrow						\forall	-	6								+	+-	+	+	+	+	-+	_	DFT
7			15	- 1		7 0	0	0	1:	5 0	0	0	7	0	0	0	-	0	0	0	7	7	\rightarrow	\pm	+	\forall	+	+	H		7								+	+	+	+	+	+	-	_	DFT
8			16			8 0	0	0	16	6 0	0	0	8	_	_	_	-	0	0	0	8	8	\rightarrow	+	+	Н	+	+	\forall	-	8								1	+	+	+	+	+	-	$\overline{}$	DFT
		Day	y Pla	n 4				Da	v P	lan	5		1		_	ay		_	-		9	9	\rightarrow	+	+	H	+	+	Н	+	9	\vdash					A-101		+	+	+	+	+	+	-	_	DFT
Hou	r Min	Act	I	our Mi	Act	Ho	ur Mi	n Ac	_	Hou	_	Act	H	lour I	_	Act	_	our	Min	Act	10	-	\rightarrow	+	+	H	+	+	+	+	10					-			+	+-	+	+	+	+	-	_	DFT
1 0	0	0	9	0 0	0	1 0	=	\Rightarrow	_	_	0	0	_	_	\Rightarrow	_	==	0	0	0	11	11	\rightarrow	+	+	Н	\pm	+	Н		11			-				-	-	+	+	+	+	+	-	_	
2 0	0	0	10	0 0	0	2 0	0	0	10	0 0	0	0	-	_	_	0	-	0	0	0	12	_	\rightarrow	+	+	Н	\pm		Н	+	12								+	+	+	+	+	+	-	_	DFT
3 0	0	0	11	0 0	0	3 0	0	-	_	1 0	0	0	3	-	-	0	-	0	0	0	13	_	\rightarrow	+	+	Н	+	+	+	+	13								-	+-	+	+	+	+	-	_	
4 0	0	0	12	0 0	0	4 0	0	0	12	2 0	0	0	4	-	-	0	-	0	0	0	14		\rightarrow	+	+	Н	+	+	+	+	14							-	+	+-	+	+	+	+	-	_	DFT
5 0	0	0	13	0 0	0	5 0	0	0	1/2	3 0	0	0	-	-	-	0	-	0	0	0	15	-	\rightarrow	+	+	Н	+	+	+	+	15								+	+	+	+	+	+	-	$\overline{}$	DFT
6 0	-	0	14	0 0	_	6 0	-	_	_	-	0	0	-	_	-	ō	-	0	0	0	16	16	_	+	+	Н	+	+	+	+	16			-					-	+-	+	+	+	+	-	_	DFT
7 0	0	0	15	0 0	0	7 0	0	-	-	5 0	0	0	-	-	-	0	-	0	0	0	17	17	\rightarrow	+	+	Н	+	+	+	+	17					-			-	+	+	+	+	+	-	_	DFT
8 0	+	0	16	0 0	_	8 0	0	-	-	+	0	0	-	_	_	0	_	0	0	0	18	_	$\overline{}$	+	+	Н	-	+	+	+	18					-	-		+	+	+-	+	+	+	-	\rightarrow	DFT
		_	/ Pla		-		-	_	_	lan t	_		1	-	_	av	_		-	•	19	-	\rightarrow	+	+	Н	+	+	+	+	19					-			+	+	+	+	+	+	-	_	DFT
Hou	d Min	_	_	lour Mir	Act	Hou	ır Mir	_	_	Hou	_	Act	1	our N		Act	_	_	Min	Act	20	20	\rightarrow	+	+	Н	+	+	+	+	20		-			-	-	-	-	+	+	+	+	+	-	_	DFT
1 0	_	-	9	0 0		1 0	=	_	9	-	0	0	_		_	_	==	0	0	0	21	21	\rightarrow	+	+	Н	+	+	+	+	21					-				+-	+	+	+	+		_	DFT
2 0	-	0	10	0 0	-	2 0	-	_	_	-	0	0	-	_	_	_	_	0	0	0	22	22	\rightarrow	+	+	Н	+	+	+	+	22					-		-	-	+	+	+-	+	+	-	_	DFT
3 0	-	0	11	0 0	0	3 0	0	-	_	0	0	0	-	-	-	0	_	0	0	0	23	23	_	+	+	\forall	+	+	+	+	23					-			-	+	+	+	+	+	-	_	DFT
4 0	0	0	12	0 0	0	4 0	0	-	-	-	0	0	-	_	-	0	-	0	0	0	24	24	\rightarrow	+	+	Н	+	+	+	+	24			-				-	-	+-	+	+	+	+	-	_	DFT
5 0	-	0	13	0 0	-	5 0	-	-	-	-	0	0	-	_	-	0	-	0	0	0	25	24	+	+	+	Н		+	+	+	_								-	-	+	+	+	+		_	DFT
6 0	0	0	14	0 0	0	6 0	-	-	-	-	0	0	-	_	-	0	-	0	0	0	26	\vdash	+	+	+	Н	+	+	+	+	25		-	- 4					-	+-	+	+	+	+		_	DFT
7 0	-	0	15	0 0	-	7 0	-	-	-	-	0	0	-	_	-	0	-	-	-	_		-	+	+	+	Н	+	+	+	+	26								-	+	+	_	+	4		_	DFT
8 0	-	-	-	0 0	-	_	-	_	_	+	0	0	-	_	-	0	_	0	0	0	27	-	+	+	+	Н	+	+	+	+	27									+-	+	+	+	+	_	_	DFT
0 0	_	_	Plan		1 0	0 0	10	_	_		_	U	0	U	-	_	_	_	-	0		-	+	+	+	Н	+	+	+	+	28		-					_	-	-	+	_	-	+		$\overline{}$	DFT
Hou	n Min	_	_	our Mir	Act	No	n Mir	_	_	an 1	Min	Act		our N	_	ay F	_	our	_	A 44	29	+	+	+	+	Н	+	+	+	+	29		-						-	+-	+	_	+	+	_	_	DFT
1 0	+	I O	-	0 0	I O		-	+	-	+	=	_		===	\Rightarrow	Act	\Rightarrow	oun	\Rightarrow	Act	30	-	++	+	+	Н	+	+	+	+	30					11			-	+	+	-	-	4		_	DFT
2 0	0	0	-	0 0	0	2 0	0	0	-	0	0	0	-	_	-	-	9	0	0	0	31		+	+	+	\vdash	+	+	+	+	31								-	+-	+	_	-	4	-	_	DFT
3 0	0	0	-	0 0	0	3 0	0	-	_	0	0	0	-	_	-	0	~	0	0	0	32	-	+	+	+	Н	+	+	+	+	32								-	+	+	+	+	+	_	\rightarrow	DFT
4 0	0	0	-	0 0	0	4 0	-	_	_	0	0	0	-	_	-	0	_	0	0	0	33	-	+	+	+	Н	+	+	+	+	33		-						-	+-	+	_	+	4	_	_	DFT
5 0	0	0	-	0 0	0	5 0	0	-	_	0	0	0	-	-	-	-	-	-	-	0			+	+	+	Н	+	+	+	+	34			_					-	+-	+	+	+	+		_	DFT
6 0	0	0	_	0 0	0	6 0	0	0	_	0	0	0	-	_	-	0	-	0	0	0	35	-	+	+	+	+	+	+	+	+	35								-	+	+	+	+	+	_	_	DFT
7 0	0	0	-	0 0	0	7 0	-	+	_	-	0	0	-	_	-	0	-	_	0	0	36		++	+	+	+	+	+	+	+	36								-	+	+	+	-	+	_	_	DFT
8 0	0	0	-	0 0	0	8 0	-	-	-	-	0	0	_	-	-	_	_	-	_	0	37		11	+	+	+	+	+	+	+	37			-					-	+	+	+	+	1		_	DFT
0 0	-	_	Plar	_	10	ا ا		_	_	_		U	0	0	_	_	_	-	0	0	38	-	11	+	+	1	+	+	+	+	38									+	+	+	-	-		_	DFT
Un.	-	-	_	_	l Act	No.				an 1		A 4		aud .	_	ay F		_		A	39	-	++	+	-	\vdash	-		+	+	39						15.	11	-	-	-	+		1		_	DFT
	Min			our Mir		1 0	I C	I AC	10	Hour	MIN	ACT	1	our N	nin /	100	O I	וויייייי	MIN	ACT	40		11	1	1		1		_		40		- 4					4	-	+	+	+		4			DFT
2 0	0						_												$\overline{}$		40		1 7	1			1	-	-	1	41								-	+	+	+	_	1			DFT
2 0	-	0		0 0	0	2 0	0	-	_	_	0	0	_	_	_	_	-	_	-	0	48	-	Ш								42								_	+	1	1	-	-			DFT
3 0	0	0	-	0 0		3 0	_			0	0	0				0			0	0			, ,	-	-		-	-	-		43							2-1-2		-	1	-				_	DFT
4 0	0	_	_	0 0	_	_			12		0	0		_		0			_		98	-	11	-			-		4		44		-							+	1	-					DFT
4 0 5 0 6 0	0	0		0 0	0	5 0	_		13		0	0				0					99		11			-			-		45				-		1			+	-	1	1	1		_	DFT
0 0	0	0	_	0 0		6 0		_	_	_	0	0		_		0					100	255									46		- 1							1						_	DFT
7 0	0	-	-	0 0	-	_	_		15		0	0		_		0				0		ID:	7252	RTE	120	0	SO								1-							7					DFT
8 0	0	0	16	0 0	0	8 0	0	0	16	0	0	0	8	0	0	0	16	0	0	0	01/3	1/18							Page	8	48												1			I	DFT

C1-USER IO Map [1.8.9.1 In]	C1-USER IO Map [1.8.9.2 Out]	C1-USER IO Map [1.8.9.2 Out]	IO Logic [1.8.7]				
II-I 1 Veh Call 1	O1-1 1 Ch1 Red	07-1 115 Not Used	Result	Fcn Op	er	Fcn Ope	Fcn Timer
11-2 2 Veh Call 2	O1-2 49 Ch1 Green	O7-2 115 Not Used	1 0 =	1 0	1	0	I 0 DL
11-3 3 Veh Call 3	O1-3 2 Ch2 Red	O7-3 115 Not Used	1 0 =	I 0	1	0	I 0 DL
1-4 189 Unused	O1-4 26 Ch2 Yellow	07-4 115 Not Used	I 0 =	1 0	1	0	I 0 DL
11-5 5 Veh Call 5	O1-5 50 Ch2 Green	07-5 115 Not Used	1 0 =	I 0	T.	0	I 0 DL
11-6 189 Unused	O1-6 3 Ch3 Red	07-6 115 Not Used	= 0 1	1 0		0	I 0 DL
I1-7 189 Unused	01-7 27 Ch3 Yellow	07-7 115 Not Used	1 0 =	1 0	i	0	I 0 DL
I1-8 189 Unused	O1-8 51 Ch3 Green	O7-8 115 Not Used	1 0 =	1 0	i	0	I 0 DL
12-1 189 Unused	O2-1 4 Ch4 Red	C11S-USER IO Map [1.8.9.1 In]	1 0 =	1 0	1	0	I 0 DL
2-2 189 Unused	O2-2 52 Ch4 Green	14-1 189 Unused	1 0 =	I 0	1	0	1 0 DL
2-3 189 Unused	O2-3 5 Ch5 Red	I4-2 189 Unused	1 0 =	1 0		0	1 0 DL'
2-4 189 Unused	O2-4 29 Ch5 Yellow	I4-3 189 Unused	Security Access Levels [8.2]		43	NONE	Com Parameters [6.1]
2-5 13 Veh Call 13	O2-5 53 Ch5 Green	I4-4 189 Unused	1 SWLOAD	22 NONE	44	NONE	Station ID 7252
2-6 189 Unused	O2-6 6 Ch6 Red	17-1 189 Unused	2 SECURE	23 NONE	45	NONE	Group ID
2-7 189 Unused	O2-7 30 Ch6 Yellow	17-2 189 Unused	3 NONE	24 NONE	46	NONE	Master ID 0
2-8 189 Unused	O2-8 54 Ch6 Green	17-3 189 Unused	4 NONE	25 NONE	47	NONE	Backup Time 0
3-1 189 Unused	O3-1 7 Ch7 Red	17-4 189 Unused	5 NONE	26 NONE	48	NONE	SysUp Modem [6.1]
3-2 189 Unused	O3-2 55 Ch7 Green	17-5 189 Unused	6 NONE	27 NONE	49	NONE	Enable Modem OFF
3-3 189 Unused	O3-3 8 Ch8 Red	17-6 189 Unused	7 NONE	28 NONE	50	NONE	Idle Time 0
3-4 189 Unused	03-4 32 Ch8 Yellow	17-7 189 Unused	8 NONE	29 NONE	51	NONE	Dial Time 0
3-5 189 Unused	O3-5 56 Ch8 Green	17-8 189 Unused	9 NONE	30 NONE	52	NONE	Tel: #N/A
3-6 189 Unused	O3-6 9 Ch9 Red	18-1 189 Unused	10 NONE	31 NONE	53	NONE	Alt: #N/A
3-7 189 Unused	03-7 33 Ch9 Yellow	18-2 189 Unused	11 NONE	32 NONE	54	NONE	AIL #N/A
3-8 189 Unused	O3-8 57 Ch9 Green	18-3 189 Unused	12 NONE	33 NONE	55	NONE	2070 Port Parms [6.2]
4-1	04-1 10 Ch10 Red	I8-4 189 Unused	13 NONE	34 NONE	56	NONE	Port Baud Rate FCM
14.2	04-2 58 Ch10 Green	18-5 189 Unused	14 NONE	35 NONE	57	NONE	
4-3 C11S Connector	O4-3 11 Ch11 Red	18-6 189 Unused	15 NONE	36 NONE	58	NONE	SP1 9600 MODE 6 SP2 9600 MODE 6
4-4	04-4 35 Ch11 Yellow	I8-7 189 Unused	16 NONE	37 NONE	59	NONE	SP3 19200 MODE 6
4-5 189 Unused	04-5 59 Ch11 Green	I8-8 189 Unused	17 NONE	38 NONE	60	NONE	SP4 38400 MODE 6
4-6 189 Unused	O4-6 12 Ch12 Red	C11S-USER IO Map [1.8.9.2 Out]	18 NONE	39 NONE	61	NONE	SP5 1200 AUTO
4-7 229 33xCMUStop	04-7 36 Ch12 Yellow	O8-1 115 Not Used	19 NONE	40 NONE	62	NONE	SP6 1200 AUTO
4-8 228 33xFlashSns	O4-8 60 Ch12 Green	O8-2 115 Not Used	20 NONE	41 NONE	63	NONE	SP7 1200 AUTO
5-1 189 Unused	O5-1 28 Ch4 Yellow	O8-3 115 Not Used	21 NONE	42 NONE	64	NONE	SP8 1200 AUTO
5-2 189 Unused	O5-2 34 Ch10 Yellow	O8-4 115 Not Used	21	12 HOILE		NONE	SF6 1200 A010
5-3 189 Unused	O5-3 25 Ch1 Yellow	O8-5 115 Not Used	2070 IP 1 Addressing [6.5]		2070 IP 2 Addressir	n [6 5]	
5-4 189 Unused	O5-4 31 Ch7 Yellow	08-6 115 Not Used	Addressing		Addressir		
5-5 189 Unused	O5-5 115 Not Used	O8-7 115 Not Used	Addr 0 0	0 0	Addr 0	0 0	10
5-6 189 Unused	O5-6 115 Not Used	O8-8 115 Not Used	Mask 0 0	0 0	Mask 0	0 0	0
5-7 189 Unused	O5-7 115 Not Used		Brdcst 0 0	0 0	Brdcst 0	0 0	0
5-8 189 Unused	O5-8 114 Watchdog		GtWay 0 0	0 0	GtWay 0	0 0	0
6-1 189 Unused	O6-1 115 Not Used		Port 0	1	Port 0	1 0 1 0	0
6-2 189 Unused	O6-2 115 Not Used		I on		L'OIL		
6-3 189 Unused	O6-3 13 Ch13 Red		2070 Port Binding Ports [6.	61	2070 Port Binding F	unctions (6.61	
6-4 189 Unused	O6-4 37 Ch13 Yellow		Port Echo	Mode			
6-5 189 Unused	O6-5 61 Ch13 Green		ASYNC1 SP1 OFF	0	Function Channel TS2/CVM NONE	Function Channel SYSUp ASYNO	
6-6 189 Unused	O6-6 14 Ch14 Red		ASYNC2 SP2 OFF	0	CMU/MMU NONE	SYSUp ASYNO	
6-7 189 Unused	O6-7 38 Ch14 Yellow		ASYNC3 SP3 OFF	0			
6-8 189 Unused	O6-8 62 Ch14 Green		ASYNCA SP4 OFF	0		Shell NONE	
0-0 100 Ulluseu	OU-0 02 JOIN4 Green		SYNC1 SP5S SYNC3	OFF	Loop Det NONE		
			SYNC2 OFF SYNC4	OFF	GPS NONE		

#	Event / Alarm	Ev Alr	Ca	all Ph	nases	s[1.1.	5]	Red	direct	Phas	es[1.	1.5]						Inh	ibit F	hase	es[1.1	1.51												
1	Power Up Alarm.	On On	Ø	Phas	ses C	alled I	By Ø			n To			From	To	From	To			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
2	Stop Timing	On On						1										11					Ŭ	T	<u> </u>	T T	г	T		12	10	17	10	10
3	TS1 Cabinet Door	MI	2					2				-			1		2	2																
4	Coordination Failure	On On	3					3									2	3												-				
5	External Alarm # 1	On On	4					1 4	- 1		90							4																
6	External Alarm # 2	On On	5					5									2	5																
7	External Alarm # 3	11111	6					6										6					1											
8	External Alarm # 4		7	1				7										7										-						
9	Closed Loop Disabled	On	8					8										8																
10	External Alarm # 5		9	10.0				9					-					9					_											
11	External Alarm # 6		10					10	1									10	==															
12	Manual Control Enable	On On	11					11										11																
13	Coord Free Input		12					12										12																
	Local Flash Input	On On	13	_				13										13																
15	MMU Flash		14					14										14												\vdash				
16	CMU Flash		15					15										15													-			
17	Cycle Fault	On	16					16										16																
18	Cycle Failure	On			& R	edire	ct # 1			-					-	-			Inhib	it Ph	ases	#1[1.1.6	.31	-				-	-			-	-
19	Coordination Fault	On	Co			ses C				From	To	From	To	From	To	From	To		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	Controller Fault	On On	1						1									1					Ť	Ť		Ů	Ť	1			10	-	10	10
21	Detector SDLC Failure		2						2									2																
22	MMU SDLC Failure		3						3									3																
23	Critical SDLC Failure		4						4									4										-						
24	Reserved		5	1				-	5						1	-		5																
25	EEPROM CRC Fault	On On	6						6					17.				6						100						7.				
26	Detector Diagnostic Failur		7						7									7																
27	BIU Detector Failure	On On	8						8									8						111		-51			7					
28	Queue detector alarm	On	Alt	Call	& R	edire	ct # 2	[1.1	.6.31									Alt	Inhib	it Ph	ases	#21	1.1.6	31							_	-		
29	Ped Detector Fault	On	Col	Ø	Phas	ses Cal	led By	Ø		From	To	From	То	From	To	From			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
30	Coord Diagnostic Fault		1						1									1															-	10
41	TempAlert Probe Ch. A		2						2									2				0 1												
42	TempAlert Probe Ch. B		3						3									3				100												
47	Coord Active		4						4	-								4									-							
48	Preempt Active	On	5						5									5					1	100								1.7		
49	Preempt 1 Input	On	6						6									6				- 1	6.7			- 1								
	Preempt 2 Input	On	7					1	7									7				17	16.00	[]										
51	Preempt 3 Input	On	8						8									8				1												
52	Preempt 4 Input					Plans	[2.3]) ·						Unit	Parar	meter	s [1	.2.1	1															
53	Preempt 5 Input		CIC	CoØ	Grow		2	3	4	5	6	7				Yellow		OFF		Max (Cycle	Time				1								
54	Preempt 6 Input	On	1	OFF				17.7								nable		OFF		Cycle			n	ALAF	M									
	Preempt 7 Input	On		OFF									_		Disab			OFF					į,											
56	Preempt 8 Input	On		OFF)							ond M		- 0	4Ph																
	Preempt 9 Input	On	4	OFF									_		ıp Tim			900																
	Preempt 10 Input	On				Phase	e/Ola	p Set	ttings	[1.4.	2]				le Init			OFF						1										
61	In Transition	On					iL.						_	_		Action	_	ALA																
81	FIO Status Alarm		Yel	(olaps	3)											Timer	_	ON		ID: 7	7252	RTE	120 (@ SO	DR	AME	RICA	N CA	N CO	01/3	1/18		Page	10

TE 262-12 (7/91)

MODEL 178 SIGNAL OPERATION PROGRAMMABLE FEATURES SIGNAL OPERATION SPECIFICATION

TAPS _			
STUDY	#		
FILE #_			
PAGE	18	OF_	20

SIGNAL # W-252PS

COUNTY # Westchester

DATE Aug 11, 1994

TABLE OF SWITCH PACKS

Status de l			FACE	TERMINA	L WIRING BOARD	FACE	TERMINA	L WIRING BOARD
PACK	FUNCTION	INDICATIONS	FACE	TERMINAL	WIRE COLOR CODE	7,410.0	TERMINAL	WIRE COLOR CODE
W. I. W. IV.		Red	22-	SP 1 R	14/19c-1-R		SP 1 R	
		Yellow	TO U	SP 1 Y	14/19c-1-0		SPIY	
1	Øī	Green	1,2	SP1G	14/19c-1-G		SP 1 Q	
		Ground Wire	111477	Grnd Bus	14/19c-1-W		Grnd Bus	
			11	SP 2 R			SP 2 R	-
				SP 2 Y			SP 2 Y	
2				SP 2 G			Grnd Bus	
		Ground Wire		Grnd Bus	11./10- 1 DAY		SP 3 R	CONTRACTOR OF THE STATE OF THE
		Red	- /	SP 3 R	14/19c-1-R/W		SP 3 Y	
	32	Yellow	5,6	SP 3 Y	14/19c-1-B1/W		SP 3 G	
3	Ø3	Green	7,8	SP 3 G	14/19c-1-G/W 14/19c-1-B/W		Grnd Bus	
		Ground Wire	1 2 1 1	Grnd Bus	14/19C-1-B/W		SP 4 R	
				SP 4 B			SP 4 Y	
4	10 10 10			SP 4 Y			SP 4 G	
4				SP 4 G			Grnd Bus	
		Ground Wire	-	Grnd Bus	1///10= 1-P/P		SP 5 R	
		Red	,	SP 5 B	14/19c-1-B/R 14/19c-1-0/R		SP 5 Y	
12.1	120	Yellow	2 1	SP 5 Y	14/190-1-0/1		SP 5 G	
5	Ø5	Green	3,4	SP 5 G Gmd Bus	14/19c-1-B1/R		Grnd Bus	
	4.6	Ground Wire	-				SP 6 B	
				SP 6 R	14/19c-1-0/B		SP 6 Y	
1	46		1	SP 6 Y	14/19c-1-G/B		SP 6 G	7
6	ø6		,	SP 6 G Gmd Bus	14/19c-1-W/B		Grnd Bus	
		Ground Wire			14/13C 1 W/ 8		SP 7 R	
				SP 7 B			SP 7 Y	
4				SP7G			SP 7 Q	
7				Grnd Bus			Grnd Bus	
		Ground Wire					SP 8 R	
		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		SP 8 R			SP 8 Y	
		A-2-3-5-5		SP 8 G			SP 8 G	
8				Grnd Bus			Grnd Bus	
		Ground Wire					SP 9 R	
	1 min 18			SP 9 R SP 9 Y			SPOY	
9				SP 9 G			SP 9 G	
				Gmd Bus			Grnd Bus	
		Ground Wire					SP 10 R	
				SP 10 R SP 10 Y			SP 10 Y	
10				SP 10 G			SP 10 G	
10	111 march 1			Grnd Bus			Grnd Bus	
		Ground Wire	-	SP 11 B			SP 11 R	
				SP 11 Y			SP 11 Y	
11	1 6		}	SP 11 G			SP 11 G	
1.6	- XC			Grnd Bus			Gmd Bus	
		Ground Wire		SP 12 R			SP 12 R	
				SP 12 Y			SP 12 Y	
12				SP 12 G			SP 12 G	
12		A		Grnd Bus			Grnd Bus	
		Ground Wire		SP 13 R			SP 13 R	
	-	- 17-11-1-11-1		SP 13 Y			SP 13 Y	
13	1.0			SP 13 G			SP 13 G	
13	1			Grnd Bus		the section	Grnd Bus	
		Ground Wire	-	SP 14 R			SP 14 R	
							SP 14 Y	
44	h 1		-	SP 14 Y	×		SP 14 G	
14		Ground Wire	1	Grnd Bus		D	Grnd Bus	

TE 262-13 (7/91)

MODEL 178 SIGNAL OPERATION PROGRAMMABLE FEATURES SIGNAL OPERATION SPECIFICATION

TAPS .		V 1.0	
STUDY	#		
FILE #. PAGE .	19	OF.	20

SIGNAL # W-252PS

COUNTY Westchester DATE Aug 11,1994

CONFLICT/CURRENT MONITOR PROGRAMMING

Diodes to be	Cut	CONFLICT MONITOR YELLOW JUMPERS TO BE INSTALLED	CURRENT MONITOR DIODES TO BE CUT
Sp 1 - 5		None	2,4,6 thru 14
1 - 6			
			w w
		_	

The second secon
W.

Tr. 262-14 (7/91)

MODEL 178 SIGNAL OPERATION PROGRAMMABLE FEATURES SIGNAL OPERATION SPECIFICATION

TAPS	V 1.0
STUDY #_	
FILE #	OF 20
PAGE 20	OF 20

SIGNAL # W-252PS

COUNTY # Westchester DATE Aug 11,1994

TABLE OF INPUT WIRING

TERM. NUMBER	FUNCTION	DET. NO.	DET. TYPE	DET. AN OVER	REMARKS
1A, 1B	Ø1	1	Point		Loop
2A, 2B					
3A, 3B	ø3	3	Point		Loop
4A, 4B*					
5A, 5B	ø5	5	Point		Loop
6A, 6B	ø6	6A,6B	Presence		Loop
7A, 7B				110000 100000	
8A, 8B					
9A, 9B					
10A, 10B					
11A, 11B					
12A, 12B					
13A, 13B	Ø3	13	Point		· Loop
14A, 14B		11-13-1			
15A, 15B					
16A, 16B					
17A, 17B					
18A, 18B					
19A, 19B					
20A, 20B					
21A, 21B					• 11
22A, 22B					
23A, 23B					
24A, 24B					
25A, 25B			***************************************		
26A, 26B					
27A, 27B					
28A, 28B					

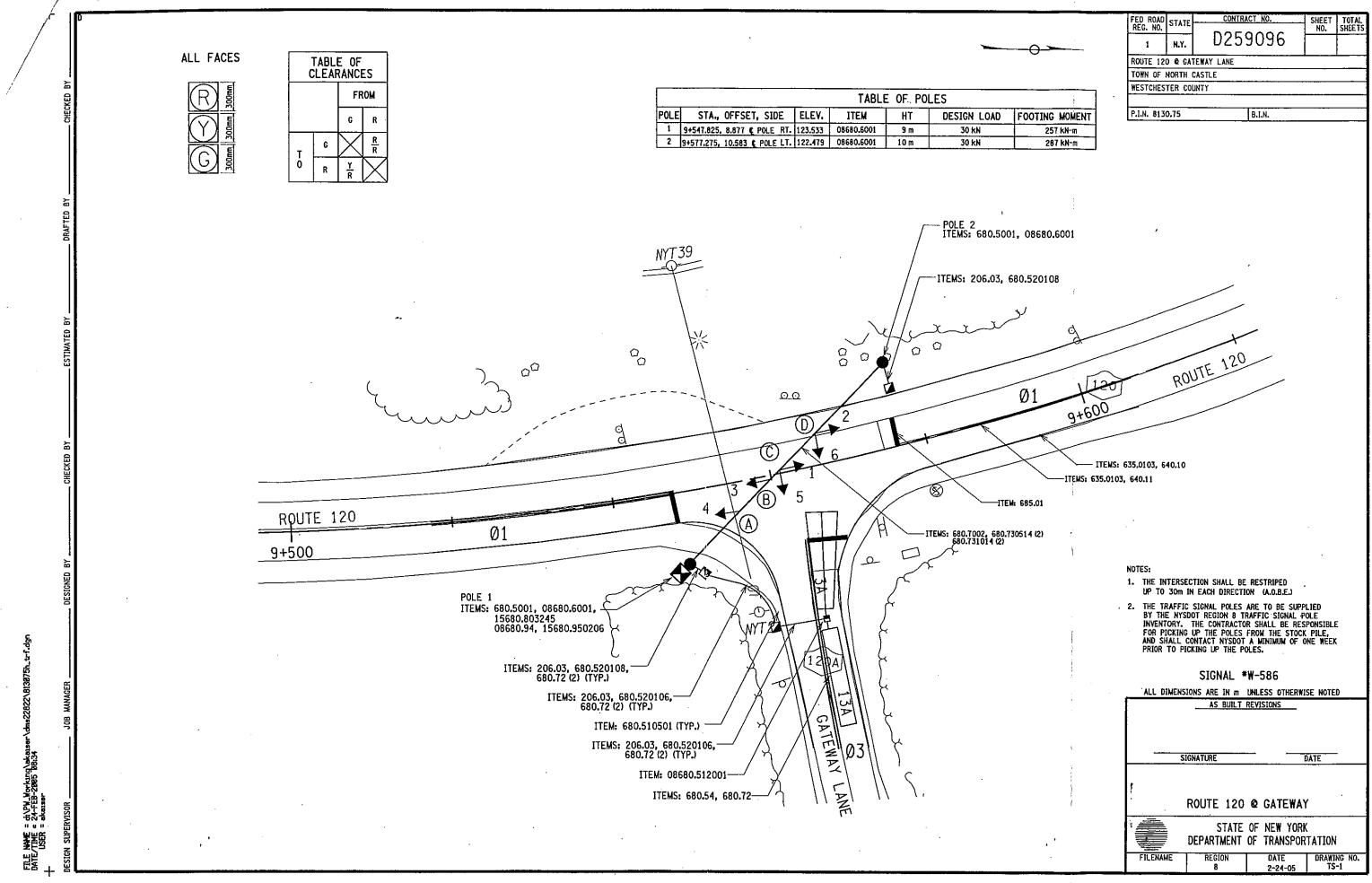
TE-26X

STATE OF NEW YORK - DEPARTMENT OF TRANSPORTATION TRAFFIC ENGINEERING & SAFETY DIVISION TRAFFIC CONTROL SPECIFICATIONS

Study:

Contract: D258096

PIN: 8130.75.321


ile: 55.38-120

W-586	WESTCHESTER	File: 55.38-120
SIGNAL NO(S)	COUNTY	PAGE 1 OF 20 PAGES
INTERSECTION	N ROUTE 120 AT GATEWAY LANE	
	CITY VILLAGE TOWN OF	NORTH CASTLE
Departmen	nt Order filed $9/6/05$ as Section	2055.38 Subdivision (w)
Prior s	specifications hereby superseded None	<u> </u>
Purpo	ose: INSTALL TRAFFIC SIGNAL UNDER CONTRAC	T D258096.
the ne	e specifications will be effective upon the Installatecessary traffic control device(s) required by and confo	tion Modification of ming to the State Manual
4	his Signal shall	
Δ	 A. Operate in accordance with the Table of Operations shown on page(s) 3 as a: 	and / of Change intervals as
	<u> </u>	Pretimed Signal
	\boxtimes	Semi-traffic actuated signal
		Full-traffic actuated signal
		Pedestrian actuated signal
		Other
В	3. Display vehicular indications	
	Display pedestrian indications	
•	Be equipped with vehicle detectors	
	Be equipped with Pedestrian pushbutto	ons
	as shown in the schematic	scaled drawing on page 3
	Be equipped with pre-emption which are described as follows	interconnection and / or coordination
	TBC W/ W-571	
cc: () [(1) [Main Office ☐ Region ⁸ Traffic Engineer ☐ SIGNAL SHOP	91105 DILLMAN KRF RTE Date Signature Title Installation Date 91105
(2)	X SIGNAL SHUP	

CONTRACT MAINTAINER

(1)

Modification Date

		F		ŀ	ŀ	-		1	CICIIIa	Coordination Patterns [2.4] and Coordination Split Tables [2.7]	Tollio I				100		:11	Iŀ		- 11	l	ŀ		_			
	1 2			4	5	9	7	8 Pat#	Cyc	Off Split	plit Sed	q Pa#	Cyc	Off Split	olit Seq	Path	Cyc	Off Sp	lit Seq	Pa苷	Cyc	S #S	olit Seq		į	•	
Min Green			2	-				-	80	0	1	13	0	0 13	3 1	25	0	0	-	37	0	0	0 1		STD8	<u>∞</u>	Т
Gap, Ext		110	3	-	-	-		2		-	2 1	14	0	0 14	-	92	0	0	-	38	0	0	-			,	
Max 1	35	~	0	-	-	-	-	33			3	15	0	0	15 1	27	0	0	-	36	0	0	-				
Max 2		-	-	-	-	-	-	4			4	16	0	0	16 1	28	0	0	-	40	0	0	-	Ring/S	Ring/Startun [1 1 4]	1114	
Yel Clearance	40	_	_	H	H	F	-	ις:		1		17		-	1	g			-	41			+	Phe R	Ring St	Start Enable	o q
Red Clearance	2	1	,	-	+	+	+	9 4				10			40	3 8		, ,	•	CV	, ,		•	_	1	CDECNI	3
DO COLORES	,	+	+	+	+	ł	+	7 0		Ì		2 5		+		3 2			- '	74			- '	- 0	5 0		- :
Walk	1	4	1	+	+	+						5	5	+	5	5	0	9	_	43	0	_	-	7	2	4	±
Ped Clearance		-		-	-		-	∞	1000	961	8	20	0	0 20	-	32	0	_	-	44	0	_	-	3	1 8	RED On	_
Red Revert		-	-	-	_		_	တ			9	21	0	0 21	-	33	0	0	-	45	0	0	1	4	1	RED Off	*
Add Initial		-	-	-	-	H	-	9		10	10	23	0		-	34	•	-	•	46	-	-	+	ď	0	1	
loitiol	+	+	+	+	t	+	+	7 7			2 7	33				5 6	-	1		2 1		+	•	,		+	- 8
Max IIIIIali	1	+	+	+	+	+	+					3	>		2	ક		+		4/	,	1	_	٥	7	4	=
I ime B4 Reduct	-	4		-	+	1	-	12		7.4	12 1	24	0	0 24	7	36	0	0	_	48	0		-	7	2 R	RED Off	=
Cars B4 Reduct		-					-	Split	it		2 3	4	2	6 7	80	Split		1 2	e	4	5	9	8	80	2 R	RED Off	#
Time To Reduce								-	Coor	45	35				H	13	Coor	_						Coord	Coord Modes [2.1]	.1]	П
Reduce By		-	-	-		_	_	_	-	MAX	NON	Z				Ī						-		Test OpMode	ope	0	
Min Gap	H	-	-	-	-	H	-	2	Çoo		_			-	H	14	Coor	H	L		H	H	L	Correction		SHRT/LNG	Г
DvMaxl im	-	H	H	H	-	H	-		_		-	L		-	-	_		H	L		T	H	L	Maximim	Г	5	Г
May Sten	-	+	+	+	+	+	+	0	Ž	\dagger	+	1		+	+	15	Coor	+	+		t	t	+	Forms Off	ELOAT	TA	Т
Colop 14 4 91	•		+	+	+	+	+	T	_	+	+	I		+	+	_	3	+	+	I	Ť	+	+	0.000	Т		Т
Options 1.1.2	7	+	4	4	0	0	~	0	-	+	+	1	1	+	+	_	1	+	+	1	1	+	+	Closed Loop			Т
П	5	_	5	-				4	Coo C							16	Coor	-	_			-	4	Stop-in-Walk	ak OFF		
Min Recall				-			_				-											-		Auto Reset	NO 1		
Max Recall	-G				-		_	2	Coor		_					17	Coor		_		Т			Expand Splt	olt OFF	V	
Ped Recall															-			_				_	L	Ped Recycle		NO RECYCLE	ш
Soft Recall		-	-	-	-		-	9	Coor		-					18	Coor	H	L			H	_	Before	TIMED	9	Г
Lock Calls		H	-	-	-	-	-		_		-			H	-	_			L		T	H	_	After	TIMED	03	Г
Auto Flash Entry	H	H	-		H	H	-	7	Coor	-	-				-	19	Coor	H	L		T	H		Auto Flash	_	11	
Auto Flach Evit	H	H		-	-		H			t	+	F		+	+	_	-	+	-	I		+	-	Auth Elach	T	DH OVED	Г
Ť		+	+	+		+	-	+	~	+	+	I		+	+			+	1		t	+	+	AUIO FIASI		NC.	Т
-	+	+	-	5 6	5 6	+	-	5	8	+	+	1	1	+	+	8	2003	+	+	I	t	+	+	Flash Yel		3	Т
-	0 0	-	5	7	-	5	0 5	5	_		-	1		+	-	_	1	+	4		1	+	+	Flash Red		0	
Gaurantee Passage					-			ത	Coor		_					21	Coor	-						Unit Params	ams [1.2.1]	2.1]	
Rest In Walk		-		-																		H		Phase Mode	de STD8	8	
Conditon Service		-		-				10	Coor							22	Coor					-		IO Mode	USER	2	
Non-Actuated 1	H	-		-	H		-				_							-				-		Loc Fish Start	tart ON		Г
Non-Actuated 2	-	-	H	-		-	-	11	Coor		-				-	23	Coor	H	L			H	L	Start Flash(s)	(S)	0	П
Add Init Calc			H	H														H						Start AllRed(s)	(s)pa	0	П
Options+ [1.1.3]	1 2		3	4	5	9	7	8 12	12 Coor							24	Coor	_						Yellow < 3*	. OFF	40	
Reservice				_	-	-												_				-		Display Time	ше	20	
PedClr Thru Yel		_	-	-	-			а.	Page#															Red Revert	ıt I	3	
Skip Red No Call		H			-	-			1	8 Pha	se Tin	8 Phase Times/Options;		Patterns/Splits; Ring Startup;	s/Split	S; Rin	g Start		oord/F	Coord/Flash Mode; Unit Param	ode; U	nit Pa	ram	MCE Timeout	ont	0	П
Red Rest		H	-		H	-	-	=	1A&1B	16 Pha	se Tim	16 Phase Times/Options: Patterns/Solits: Ring Startup: Coord/Flash Mode: Unit Param	ions: F	Pattern	s/Split	S. Rin	a Start	D. C	oord/F	lash M	ode: U	nit Pa	ram	Feature Profile	offle	0	
Max II	H	H	H	H	H	H	-		2	Overlaps:	S: Ch	Channel Settings: Coord Alt Table+ (values not associated with time-of-day)	Setting	S. Co	rd Alt	Table	· (value	ss not	assoc	ated w	ith tim	p-jo-é	(AE	Free Ring Seq	Seq	-	
Call Phase	-	-	H	-	-	H	H	_		Detection:	on: S	Sample Time and Unit Parameters related to detection	ime ar	od Unit	Parar	neters	related	to de	tection	_				Auxswitch		STOPTM	Г
Confliction Phase	H	-	+	-	+	H	H	_		Draem	tion a	Preemption and Alternate Phase Time and Phase Options	rnate F	hase	ime 3	nd Ph	Cosc	finns						SDI C Retry		0	П
Omit Vellow	+	+	t	+	+	H	+			Applied Schodillo	Coho	dialo di l	laic	lasc		2	200	200	ı	l	l	l		TC2 Dot Equite	onlike ON		Т
l Tellow		+	t	+	+	Ť	1	+		Day of	2000	tion T	.polde	Coord	Alt Ta	John L	orifo	point	hu tim	10 of 0	7			Auto Bod	aulia Or		Т
red Delay		+	+	-	+	+	+	+		Day FI	ALIS, A	Day Flans, Action Tables, Coold Alt Table+ (values varied by time-of-day)	ables,	0000	AIL IS	DIE+ ()	alnes	/alleo	D)	on-In-a	(A)			Auto red clear		- 1	Т
Gm/Ped Delay	-	_		-	-	-	-	+		Communications,	Julcati	ons, S	security, 1/0 setup	2	emb				1	0				SULC Retry		0	
ID: 7586 R	ID: 7586 RTE 120 @ GATEWAY LANE	S CA	I EW/	Y LAI	F				8	MISC -	=vents	Misc - Events/Alarms; Call/Inhibit/Redirect; P/OLAP Auto Flash; CIC; Misc Unit Param	S; Call	/Inhibit	Redir	ect; P.	OLAP	Auto I	-lasn;	CIC	MISC U	nt Par	am	06/13/19		Page 1	

Overlap Conflict Lock OFF	OFF Overlap Lock Inhibit OFF Paren	Parent Ph Clearance	arance ON	Extra Included	Ph OFF	4		生 nd	Short	I ono I	Dwell No Shortway 0	A F-YIA	Officet	RetHIM	Float Min	Min Veh Perm	Min Pad Parm
4		I IW	- de	3	+	F	INORMAI		12		_	_	-	ואפת ווח	logi M	5	_
Modifier Ø	₩5	6	_			F	E)	2	12	22			EndGRN		H	l	
Conflict Ø	-	3.5	_				Yel 3.5		12	22			EndGRN		+		
Conflict Olap	_	1.5	Conflict Olap		1	F	_	_	12	22			EndGRN		+		
Conflict Ped	91	Г	Conflict Ped				97	5	12	22			EndGRN				
Included Ø	NORWAL	WAL	Included Ø				NORMAL	9	12	22			EndGRN				
Modifier Ø	_	2	Modifier Ø					7	12	22			EndGRN	7			
Conflict Ø		-	_				Yel 3.5		12	22			EndGRN				
Conflict Olap	Red	1.5	_				Red 1.5		12	22			EndGRN				
Conflict Ped	1911		Conflict Ped			-	97	9	12	22			EndGRN				
Included to	NORWAL	П			-	-	NORWAL	=	12	22			EndGRN				
Modifier Ø	_	7	_		-	-	_		12	22			EndGRN				
Conflict Ø		_					-		12	22			EndGRN				
Conflict Olap		1.5	Conflict Olap				Red 1.5	14	12	22			EndGRN				
Conflict Ped		-	Conflict Ped	_	-	-	97	15	12	22			EndGRN				
Included Ø	NORWAL				-		NORMAL	19	12	22			EndGRN				
Modifier Ø	<u>Б</u>	12						17	12	22			EndGRN				
Conflict Ø	Yel	3.5	Conflict Ø		II VI		Yel 3.5	18	12	22			EndGRN				
Conflict Olap	Red	1.5 L	_				Red 1.5	19	12	22			EndGRN				
Conflict Ped			Conflict Ped	_			97	20	12	22			EndGRN				
Included Ø		NAL	Included Ø				NORMAL	21	12	72			EndGRN				L
Modifier Ø	ES .	13					Gm	22	12	22			EndGRN				
Conflict Ø	Yel	3.5			F		Yel 3.5		12	22			EndGRN		-		L
Conflict Olap	_	1.5 M	_				-		12	22			EndGRN		L		
Conflict Ped	91	Γ	Conflict Ped										BegGRN		-		
Included Ø		NAL	Included Ø	_	_		NORMAL	56					BegGRN		H		
Modifier Ø	Gm	14					Gm	27					BegGRN				
Conflict Ø		3.5	Conflict Ø				Yel 3.5						BegGRN				
Conflict Olap	-	1.5 N	_				Red 1.5				- THE ST. THE		BegGRN				
Conflict Ped	[<u>9</u>]		Conflict Ped	_	7		97	8				_	BegGRN		+		
Included Ø	NORWAL	T			-		NORWAL	31		1		4	BegGRN		+		
Modifier 10		15			-	-				+			BegGRN		+		
Conflict Ø		_	_		-	-							BegGRN				
Conflict Olap	Red	1.5	_		-	-	Red 1.5						BegGRN				
Conflict Ped	91	-	Conflict Ped	_			97	35					BegGRN				
Included 10	NORWAL	Т			-		NORWAL	98					BegGRN		+		
Modifier Ø	_	16			-	-	_			+		1	BegGRN		+		
Conflict Ø		_			-	-	3					1	BegGRN		+		
Conflict Ulap	_	2	Conflict Clap		+	+	Ked 1.5	,		+		1	BegGKN		+		
	191	-	Conflict Ped			-	101	₽		+			RegGKN		+		
gs	[4]	-		Į				_		+		4	BegGRN		+		
<u>, , , , , , , , , , , , , , , , , , , </u>	2 3 4 5 6 7 8 9	10 11	9 10 11 12 13 14 15 16	171	18 19	20 21	22 23 24	42					BegGRN		+		
5.	2	-				-							BegGRN	Ī	+		
Т	VEH VEH VEH VEH VEH VEH VEH VEH VEH VEH	VEH VE	H VEH VEH	ен уен уен	VEH VEH	VEH	VEH VEH	4		+		1	BegGRN		+		
nel Flash	RED RED RED RED RED RED RED	REDIRE	O RED RED RED	ED RED DRK	DRK DRK	DRK DRK	DRK DRK DRK	_	1	+	+	4	BegGRN		+		
Alt Hz					7	-		46		1			BegGRN				
sbui										+			BegGRN		+		
- ^ -	2 3 4 5 6 / 8 9	TULL	12 13 14	15 16 17	18 19	70 21	22 23 24	7	1	ď		4	BegGKN		1	l	
Flash Ked+		+		-	+	1		Char	Inel P	Channel Params[1.8.3	250		1				
lash Yellow+					-	-		_	5	O Mo	C1 IO Mode USER 3 B	BIU Map	SINGLE		Invert Rail Input	il Input	OFF
Flash Green+		+			-	-											
Flash Inh Red+		+		-		-		_									
D Ovrd	Olap Ovrd																

ь	Type Src	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	ORM	Č	11 5 81	15	0								Dann 2
- 1		Ž	ž	ž	ž	ž	ž	ž	ž	ž	ž	ž	N	N	Ň	ž	ž	ž	ž	ž	ž	ž	ž	ž	Ž	ž	×	N	N	ž	ž	ž	1.2.1	E S		es								
2	Diay Diay	H	H	-	H	H	-	H	H	H	H		-		4	+	+	\dashv	+	-	-	+	+	+	+	H	_	H	4	Н	+	-	S	Vol/Occ Report Parm	Vol/Occ Period Minutes	Vol/Occ Period Minutes								611212010
1	8×	L	L			-		L	L		-					-	4	-	4	4	4	4	+	+	+	L		_		Н	4	-	Juit Paramters	Seno	iod	riod								1421
2	8>	H	H		H	-	H	-	H	-	H	-			-	+	+	+	+	+	+	+	+	+	╁	H	-	Н		Н	-	-	ara	Vol/Occ Ren	Sc Pe	C Pe								•
-	8.5	H	H	-	H		H	-	H	-	H	H	Н		-	+	+	+	+	+	+	+	+	+	+	H		Н	-	Н	+	4	3	000	Š	O/Jo								
3	# 0	-	2	3	4	2	9	7	80	6	10	11	12	13	14	15	16	17	9	19	20	77	212	25	55.2	56	27	28	29	8	33	_	⊃ [E	>	\geq	>								
Ī	9	Г																				1							-															
	8									9							1						1																					
-	Add Red Yell																_								\perp	L																		
	Que Add Red Addin Lock													i,																														
	Addin	ō	ő	o	ō	ត	ō	ō	5	ő	ō	õ	o	ē	ō	5	5	5	5	ō	5	5	5	5 8	5 5	ő	ő	ō	ő	ő	ō	ō												
9	Cue																I			I		I		I						o.			5.4		L									
i	Ĕ	ö	ō	ō	чo	อ็		ō	ō	o							_							5 8			ő		ő			ō	SWI	Pres	15	15	15	15	15	15	15	15		
9	# Cet	пO	ő	On	On	uО	o	On	On	o	O	On	o	o	ō	5	5	5	5	ō	ō	5	5	5 8	5	ő	O	O	ő	9	5	ō	Ped Det Parms	Act										
4	# č	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	20	21	25	23	5	ន	27	28	29	09	61	62	33	8	Ped De	30										
	9																			1			1									_	2 5	ğ #	•	2	3	4	2	9	~	∞		1103
н	8															4	1	4	1	1	4	1	1	1	1								_					4	_	ų	_	_		@ GATEWAY! ANE
	Yell																														1		S.	5										/
A COLOR	Que Add Red Init Lock			ī								77												I										Туре	W.	SM	SM	W	W.	W		W .	E N	EWA
	Add	o	ō	ō	ő	ö	ő	o	ō	ō	ő	ő	ō	ō	ō	5	5	5	5	5	5	5	5	5 8	5	ö	ő	ō	ō	ō	5	ō			NORM	NORM	NORM	NORM	NORM	NORM	NORM	NOKM	NON	TA
			1 =		7					-																-						11	Velo	7										0
	EXT	On	On	o	O	On	o	On	On	On	On	P	ō	ē	5	5	5	5	5	5	ő	5	5	5 8	5	On	On	On	ő	o	5	5	Neil	Ked 1 2									I	N. 7586 PTE 120
	Cal	On	On	o	On	On	On	On	ő	On	o	On	ő	ő				5	5	5	ő	5	5	5 8	5	ő	ou	o	ō	ō	5	5	500	Z P	Ü									PTF
	# Č	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	77	27	25	26	27	28	29	30	33	32	ξ	Ze S								T	I	286
۰	Time			Ц												1	1	1	4	4	1	1	1	1	1								_	35							1	1		1
H	는 ti		_	_	_	_	_	_	20	_	_		_	_	_	20	-	_	_	20	_	_	_	_	2 2	_	_	20	22	22	2	20	Joh	_	55	26	22	28	29	9	9	3 6	3 2	5
	Max	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	3	45	£	45	3	5	3	5 4	45	45	45	45	45	45	\$	45	ů,	5						1				
-	Act																													*				Type	RM	RM	NORM	NORM	NORM	NORM	Z.	NORM	M	MOON
3	ext due							Ц		Ц	Ц	Ц	Ц	4	4	1	4	1	4		4	4	1	1	1				\perp		4				NORM	NORM	일	왿	S	왿	NORM	2 2	2 2	2
				4				Ш				Ц	4	_	_	4	4	4	4	4	4	4	1	1	1			Ц	4		4		- El	Ked 1 2			_		4		1	1	1	1
č	Uiay	Ц	Ц			Ц		Ц	Ц				Ц	Ц	Ц	1	1	_	1		1	4	1	1	\perp			Ц			4		el C	3-					_		1	1	1	1
_	NO O															1	1	1	1	1	4	1	1	1	L						1		200	38							1	1	1	
_	9 0															1	1								L									Yell										
_	# #	33		_	36	37	38	33	40	41	42	43	_	_	-	_	48	49	3	51	25	23	8 2	S S	57	58	59	99	61	62	83	4	July	35										
_	Time		Ш	25										25		25	1																Sur Det	* *	44	45	46	47	48	49	20	52	53	3 2
	Cht			20										20		20																	S.	3										
MAN	Pres			45										45	1	45	T		T	T		T	T											e	W	×	×	Σ	Σ	Σ	Σ:	2	2	2
O N	Act															1	1					1												Type	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NOKW	NORM	MOON
3	באו מחפ	П			1	N									1	1	1	1		1	1	1	1		T	-		1				-	2 20	7,	Ī			Ī		1	Ť	Ť	T	Ť
171	Ĭ			1		N	Ī									1	1	1		1	1	1	1	T	T	Ξ	J	7	1				5 2	1		1		1		1	1	1		T
in Color	Diay	П		3		9								3		1	T	1		1		T	1	T	T				1			-	- 50	Ked 1, 2		Г			1	1	T	1	T	
0	Ø	Н		7	7							7			1	+	1	†	1	†	1	+	+	+				1		1	1		Det nor nor nor David	Yell	H				+		+	+	+	+
	80	H		2	1							+		3	1	2	1	+	+	\dagger	+	+	+	T					1	+	1	1	THE LE	Gm		-			+	+	+	+	t	t
Dot			_	-	4	5	9	7	8	თ	10	=	_		_		0 ;	7 5	Σ,	50 0	2	17	77 55	3 2	25	56	27	78	53	0	33	37	Det occ	#	33	34	35	38	37	38	တ္ဆ	40	42	12/

																																													Page 4	
																																													6/13/2019	
	Г]																																						
									Г	T	Ť	Ť	T	Т	Ť	Ť	Γ	Г		Γ	Г	Γ		Γ		П			_	Li-X		1					1									
										L		İ		İ													81.1		FISH	Dwel Link	뜽	OFF.	OFF	OFF	OFF	OFF										
		_					_			ŀ	ł	+	+	+	ł	-	H	H		L			-						Override	Higher	NO	NO	NO	NO	NO	NO										l
3.51											t																			主			J	J	_											l
Track Clear Phases 13.21 Track Clear Overlans + 13.51										L		I		Į	L													Preemption Options+ [3.6]	ide	-Ish			_		_	_										l
r Over	SC	-				_		51	2	ŀ	+	+	H	+	+	-					-	-			_			Option	Over	Auto Fish	NO	8	NO	8 O	NO	ON										l
k Clea	Track Overlaps							21 and Overlaps+ [3.5]	2	ŀ																	1	ption	Lock		N	NO	N	N	NO	NO										l
7]. Trac	Track							Overla		L	I			L	L													Preem	Pre#		-	2	e	4	2	9										l
ses [3.								21 and	2	L	+	+	+	+	+	H	-	-	-	L	H	H									-	+				-										l
ar Phas	Pre # Track Phases						_	ses [3	Pre #	9	S No.	1		Suc	1	S.	Sde		SS	SOE	_	SS.	Sde		SS.	Sde			s [3.2]	hase		+	1													l
k Cles	# Track							II Pha	31	Phacoc	Overlans	Dade	Phasps	Overlans	Peds	Phases	Overlaps	Peds	Phases	Overlaps	Peds	Phases	Overlaps	Peds	Phases	Overlaps	Peds		Exit Phases [3.2]	Pre # Exit Phase																l
Trac	_	1	2	3	4	5	9			-		_	0	-		3			4			2	_		9	_	_	_	Exit	Pre #	-	2	e	4	2	9									LANE	l
	Delay MinDura							Co+Pre	8	N	8	N	8	N	7.																														TEWA)	l
13.61	Delay							PedClr							PedClr+																														@ GA	
Preemption Times (3.1), Options+ (3.6)	Output	DWELL	DWELL	DWELL	DWELL	DWELL	DWELL	MinWlk	_						Track Grd Min Dwell Ext Dwell PedClr+							Skip	OFF	OFF	OFF	OFF	OFF	OFF		Max							OFF	PRE			3	NONE	OFF		ID: 7586 RTE 120 @ GATEWAY LANE	
13.11. (Type	RAIL					EMERG [MinGm	_					ľ	Dwell E	2	2	2	2	2	2	Pattern						П	pts	Min		1				.2.1]	mpt				rs 1.8.				7586 F	l
Times	e T										┞	-	H		Srr Min													_	Preem							ters [1	er Preer	Output	X Time	all Time	ametei	sgu	Input		Ö	
notion	Enable	ON	NO	NO	ON	ON	NO	MaxPres														Red							ow Priority Preempts		PF.	PF	吊	PF.		Unit Parameters [1.2.1]	Stop Timer Over Preempt	Preempt or Ext Output	Max Seek Track Time	Max Seek Dwell Time	Channel Parameters [1.8.3]	D Conn Mappings	Pre Invert Rail Input			
Preer	Pre#	-	2	က	4	5	9	Pre #	-	6	e e	4	- 40	9	Pre #	-	2	3	4	2	9	Pre#	+	2	3	4	2	9	Low	Pre#	7	00	თ	10		Unit F	Stop T	Preem	Max S	Max S	Chan	D Co	Pre In			

		_	-	_	-	_				_	1	_						_	_		_									5																
	16							L				16											16							NOR	_															Page 6
	15							L				15											15							NOR																
	14											14											14							NOR																13
	13											13											13							NORM																6/13/2019
	12											12											12							NORM																6/1
	11											11											11				7"			NORM																
	10											10											10							NORM																
	6											o											တ				L			NORM																
	∞											∞											00							NORM			8													
	1											1											7							NORM			7													
	9											9		i									9							NORM			9													
	2											2											2							NORM			2													ANE
	4											4											4							NORM			4													WAYL
2.11	3										_	က										5.2.3	3							NORM		5.2.4	3													GATE
rs (5.5	2										5.5.2.2	2										rs+ [5	2							NORM		rs+ [5	2													120 @
amete	-											-										amete	-							NORM		amete	-													RTE
eh Par	*	Assign Det#	Calling	Delay	Extend	Queue	No Activity	Max Presence	Erratic Count	Fail Time	eh Opi	* * *	Assign Det#	Call	Extend	Queue	Added Initial	Red Lock	Yellow Lock	Occupancy	Volume	eh Par	#	Assign Det#	Occ-on-green	Occ-on-yellow	Occ-on-red	hase 1	hase 2	r Mode	Source	ed Par	#	Assign Det#	Sal.	NO ACTIVITY	Emplo Count	1000								ID: 7586 RTE 120 @ GATEWAY LANE
Alt# 2 Veh Parameters [5.5.2	Column#>	Assi					S	Max Pr	Errati	T.	Alt# 2 Veh Options	Column#>	Assi				Adde	2	Vello	8		Alt# 2 Veh Parameters+ [5.	Column#	Assi	0000	0000	000	Delay Phase 1	Delay Phase 2	Detector Mode NORM NORM NORM NORM NORM NORM NORM NORM NORM NORM NORM NORM NORM NORM		Alt# 2 Ped Parameters+ [5.5.2.4]	Column#.	Assi	-	May Drocongo	INIGA LI	Lia								₽
A		_	+								4		Ш				_	_			_	∢ [V					_	_						1		
	8		5		5											8		5			5											8		ō		d	5						4			
	7		ē		5											7		ā			ర్											7		ō		4	5									
	9		5		5											9		ō			ຣົ		-			-						9		ō		d	5									
	2		5		5											2		ā			ō											2		อ		d	5									
	4		5		5											4		ō			ō											4		ō		d	5									
2.2]	3		5		ō										2.3	က		ō			อี										2.4]	က		ō		4	5									
1.1.6.2.2	2		5		ő										1.1.6.2.3	2		ō			ō										1.1.6.	2		ō		d	5									
Table	Į.		ő		ő										able	-		ō			ō		Ĭ								Table	1		ō			5									
Alt# 2 Options Table	< # u	Assign Ø	Lock Calls	Diral Enriv	imGap	assage	Rest in Walk	Cond Service	Reservice	Non-Act 1	Red Rest	Max2	Ped Delay	ing Ø1	Alt# 3 Options T	Column # ->	Assign Ø	Lock Calls	Soft Recall	Dual Enrty	imGap	assage	Rest In Walk	Cond Service	Reservice	Non-Act 1	Red Rest	Max2	Ped Delay	ing Ø1	Alt# 4 Options Table [1.1.6.2.4]	Column # ->	Assign Ø	Lock Calls	Soft Recall	Dual Enrty	шсар	assage	Rest in Walk	Cond Service	Reservice	Non-Act 1	Red Rest	Max2	Ped Delay	ing Ø
#20p	Column #	AS	Loc		Enabl SimGap	Guar Passage	Rest	Cond 5	Re	Noi	Re		Pec	Conflicting Ø1	#30p	Colum	As	Loc	Soft	Du	Enabl SimGap	Guar Passage	Rest	Cond	Re	S	Re		Pec	Conflicting Ø1	# 4 Op	Colum	As	Loc	Soff	Dus	Enabl SimGap	Guar Passage	Rest	Cond	Re	S	R.		Pec	Conflicting Ø1
Alt								L							Alt																Alt					Ţ	1							_		

3	2	2	1	5		Z		v.	M	1	⊢ ∧	4	<i>U</i> .	•	6	3	4 5	9	7	0 8	10,	11 12	13	14	15 1	16 17	18	10	20 21						20		Dian
On On On		0 0 0	ě	5	2				16	2	2	_			4 6	, 5	, 6		5	ה ל	2 6	2	2 6	1 6	2 2	2	0 6	2 6	7 07	77 6	3	67 47	07 0	7 17	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30 31	7
	-	5 -	<	S	0	z		S		5 -	5 1		S		2	3 6	4 5	9	7 8	6	5 0	11 12	13	2 4	15 1	16 17	5 ∞	19 2	20 21	22	23	24 25	5 26	27 28	8 29	30 31	-
													-																				ì		2		-
N		7	V	S	0	Z	0	S	×	1	W	Ľ	S	-	2	3	4 5	9	7	8 9	10	11 12	13	14	15 1	16 17	8	19 2	20 21	22	23	24 25	5 26	27 28	29	30 31	
N		7	V	S	0	z	0	S	2	^	W		C)	-	2	3	4 5	· c	7	6	10	11 12	13	14	7.	16 17	2	10.2	20 21	33	3	20 AC	5 36	27 2	28 20	20 21	-
											-	-															2				3				67		-
M		-	V	S	0	z		S	×	\ _	W		S	-	2	2	4 5	9	7	8	10	11 12	13	14	15 1	16 17	8	19 2	20 21	22	23	24 25	5 26	27 2	28 29	30 31	
N		-	V	S	0	N		S	×	\ _	W		S	-	2	3	4 5	9	7	8	9	11 12	13	4	15 16	11 9	9	19 2	20 21	22	23	24 25	5 26	27 2	28 29 3	30 31	-
N	-	-	V	co	0	O N		S	Σ	>	×		C)	-	2	3	4 5	9	7 8	01	10	11 12	13	14	15 16	11 9	000	10	20 21	23	23	24 25	5 26	27 2	28 20	30 34	-
		•										-)														2								67		·
N		~	V	S	0	O N		S	×	^	N N	_	S	-	2	8	4 5	9	7 8	6	10	11 12	13	14	15 16	6 17	18	19 2	20 21	22	23 2	24 25	5 26	27 28	29	30 31	
N	_	7	A	S	0	N		S	⊥ W		M	_	S	-	2	3 1	4 5	9	7 8	00	10 1	11 12	13	14	15 16	6 17	8	19 2	20 21	22	23	24 25	5 26	27 28	53	30 31	
Σ	-	-	V	S	0	ON		S	Σ	_	×		S	-	2	3	4 5	9	7 8	0	101	11 12	13	14	15 16	17 9	200	19 2	20 21	22	23	24 25	5 26	27 28	39	30 31	-
	-		-									H															2				3		3		3		-
Σ	7	7	<	S	0	O N		S	Σ	_	×		S	-	2	3	4	9	7 8	o	9	11 12	13	14	15 16	9 17	9	19 2	20 21	22	23	24 25	56	27 28	29	30 31	,
Σ	-	~	V	S	0	O N		S	M	1	W	_	S	-	2	3	4 5	9	7 8	6	10	11 12	13	14	15 16	11 9	200	19 2	20 21	22	23 2	24 25	5 26	27 28	53	30 31	
×	-	\neg	×	S	0	O		S	×	^	W		S	-	2	3	4 5	9	7 8	6	9	11 12	13	14 1	15 16	11 9	8	19 2	20 21	22	23 2	24 25	56	27 28	53	30 31	-
×	-	-	V	S	0	N		S	Σ	^	W		S	-	2	3 4	4 5	9	7 8	00	0	11 12	13	14	15 16	11 9	200	19 2	20 21	22	23 2	24 25	26	27 28	29	30 31	-
	-	-	<											-	c												5						6		6		-
2	7	7	<	0		Z		0	2	_	^		n	-	7	2	4 0	٥	ν /	ח	2	71 17	13	14	ol cl	/ 0	2	19 2	72 02	77	23	24 25	92	27 28	83	30 31	,
2	-	~	V	S	0	N		S	M	7	W		S	-	2	3 4	4 5	9	7 8	6	101	11 12	13	14 1	15 16	6 17	48	19 2	20 21	22	23 2	24 25	26	27 28	53	30 31	
2	-	-	A	S	0	O		S	2	\ \	W	ш.	S	-	2	3	4 5	9	7 8	6	10	11 12	5	14	15 16	11 9	8	19 2	20 21	22	23 2	24 25	26	27 28	23	30 31	-
	_	-	×	S	0	N		S	Σ	W T	Λ Τ		S	-	2	3 4	5	9	7 8	0	101	11 12	13	14	15 16	6 17	8	19 2	20 21	22	23 2	24 25	26	27 28	29	30 31	-
	4)	<							2	-	_ '		_	c												5						1		1		-
Σ	7	-	<	n	0	o Z		0	2	^	>		מ		7	الم 4	0	0	×	ກ	0	71 17	13	14	15 16	1/	200	19 2	20 21	77	23.5	24 25	58	27 28	23	30 31	-
×	~	7	×	S	0	N		S	Σ	M T	_ V	ш.	S	-	2	3 4	5	9	7 8	တ	101	11 12	5	14 1	15 16	6 17	8	19 2	20 21	22	23 2	24 25	92	27 28	83	30 31	
Σ	-	~	×	S	0	N		S	×	1	W		S	-	2	3 4	5	9	7 8	6	10 1	11 12	5	141	15 16	6 17	8	19 2	20 21	22	23 2	24 25	56	27 28	23	30 31	
Σ	-	~	V	S	0	ON		S	Σ		W	ш	S	-	2	3 4	5	9	7 8	6	101	11 12	5	14 1	15 16	5 17	8	19 2	20 21	22	23 2	24 25	56	27 28	29	30 31	
2	-	~	×	S	0	O N		S	Σ.	^	_ M	ш.	S	-	2	3 4	5	9	7 8	00	101	11 12	5	14 1	15 16	5 17	8	19 2	20 21	22	23 2	24 25	56	27 28	29	30 31	
×	-	-	V	S	0	O		S	×	_	W		S	-	2	3 4	5	9	7 8	o	101	11 12	13	14 1	15 16	5 17	9	19 2	20 21	22	23 2	24 25	26	27 28	29	30 31	
1																																					-

Day Plans [4.4] Action Table [4.5] Coord Alternate Tables - Part+ [2.6]	
Day Plan 1 Day Plan 2 Day Plan 3	Overlap Off
If Min Act Hour Min Act Hour Min Act	ONA1 1 2 3 4 5 6 7 8 DIA MAKZ
6 0 0 0 0 0 0	190
6 30 1 10 2 10 2 10	DFT
19 0 99 11 3 11 3 3 11	THO
12 4 12 4 12	DFT
13 5 13	DFT
6 14 6	THO DET
15 7 15 7	THO
8	PFI
Day Plan 4 Day Plan 5 Day Plan 6 9 9 9	190
Min Act 10 10	190
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	130
0 10 0 0 0 0 2 0 0 0 10 0 0 0 2 0 0 0 10 0 0 12 0 12 12	130
0 0 3 0 0 0 11 0 0 0	190
14 14	150
0 0 13 0 0 0 5 0 0 0 13 0 0 0 5 0 0 0 13 0 0 15	DET
6 0 0 0 14 0 0 6 0 0 14 0 0 0 16 16	190
0 0 15 0 0 0 0 7 0 0 0 15 0 0 0 7 0 0 0 15 0 0 0 17 17	DET
0 0 16 0 0 0 8 0 0 0 16 0 0 0 18 18	
Dav Plan 7 Dav Plan 8 Dav Plan 9 49 49	
Min Ard Linea Min And Linea Min And Linea Min And On On	
A D D D D D D D D D D D D D D D D D D D	140
	140
77 77 77 77 77 77 77 77 77 77 77 77 77	DET
	DET
0 0 0 12 0 0 0 4 0 0 0 12 0 0 0 4 0 0 0 12 0 0 0 24 24	DET
0 0 0 13 0 0 0 5 0 0 0 13 0 0 0 5 0 0 0 13 0 0 0 25	DFT
0 0 0 14 0 0 0 6 0 0 0 14 0 0 0 6 0 0 0 14 0 0 0 26	DET
0 0 0 15 0 0 0 7 0 0 0 15 0 0 0 7 0 0 0 15 0 0 0 7 2	DET
0 0 16 0 0 0 8 0 0 0 16 0 0 0 18 0 0 0 18 0 0 0 28	DET 0
Day Pian 10 Day Pian 11 Day Pian 12 29 29	DET
If Min Act Hour Min Act Hour Min Act Hour Min Act Hour Min Act Hour Min Act Hour Min Act 30	THO
0 0 9 0 0 0 1 0 0 0 9 0 0 0 1 0 0 0 3 0 1 0 0 0 1 0 0 0 3 1	DET
0 0 0 10 0 0 0 2 0 0 0 11 0 0 0 0 12 0 0 0 10 0 0 10 0 0 10 0 0 10 0 0 0	DET
0 0 11 0 0 0 0 3 0 0 0 11 0 0 0 3 0 0 0 11 0 0 0 3 0 0 0 11 0 0 0 33	DET
0 0 0 12 0 0 0 4 0 0 0 12 0 0 0 14 0 0 0 15 0 0 0 14 0 0 0 15 0 0 0 34	THO DET
0 0 0 13 0 0 0 5 0 0 0 13 0 0 0 5 0 0 0 13 0 0 0 5 0 0 0 13 0 0 0 35	DFT
0 0 0 14 0 0 0 6 0 0 0 14 0 0 0 6 0 0 0 6 0 0 0 14 0 0 0 8	DFT
0 0 0 15 0 0 0 7 0 0 0 15 0 0 0 7 2 0 0 0 15 0 0 0 7 0 0 0 15 0 0 0 37	DFT DFT
0 0 8 0 0 0 16 0 0 0 8 0 0 0 16 0 0 0	DFT
Day Plan 14 Day Plan 15 39	DET
Hour Min. Act Hour Min Act Hour Min Act Hour Min Act Hour Min Act Hour Min Act Hour Min Act	DET
0 0 0 9 0 0 0 1 0 0 0 9 0 0 9 0 0 1 0 0 0 9 0 0 0 1 0 0 0 0	DFT.
0 0 0 10 0 0 0 2 0 0 0 10 0 0 0 2 0 0 0 148	DFT
0 0 11 0 0 0 3 0 0 0 11 0 0 0 3 0 0 0 11 0 0 0 3 0 0 0 11 0 0 0	DFT OFT
0 0 0 12 0 0 0 4 0 0 0 12 0 0 0 14 0 0 0 15 0 0 0 4 0 0 0 17 0 0 0 98	DFT
0 0 0 13 0 0 0 5 0 0 0 13 0 0 0 5 0 0 0 13 0 0 0 5 0 0 0 13 0 0 0 99	DET DET
0 0 0 14 0 0 0 6 0 0 0 14 0 0 0 6 0 0 114 0 0 0 155	THO
0 0 0 15 0 0 0 7 0 0 0 15 0 0 0 7 0 0 0 0 7 0 0 0 15 0 0 0 15 0 0 0 15 0 0 0 16 720 @ GATE	DFT
0 0 15 0 0 0 8 0 0 0 0 0 0	DET

7	C1-USE	2	C1-USER	C1-USER 10 Map [1.8.9.2 Out]	10 Logic [1.8.7	7							
-		_	_	40 Ch16 Yellow	Result			Fcn Oper		Fcn	Oper	Fon Timer	ner
189 Unused		4	-	16 Ch16 Red	0	"	-	0		***	0) I	O DE
-	_		-	64 Ch16 Green	0	n.	-	0	-	****	0	1 (O DE
-	_		_	115 Not Used	0	î	_	0	-	-	0	1 (0 0
II-5 189 Unused	01-5	50 Ch2 Green	07-5 118	115 Not Used	1 0	=		0	-		0) [O DLY
II-6 189 Unused	9-10	3 Ch3 Red	07-6 11	115 Not Used	0 1	11		0		****	0	-	0 0
II-7 189 Unused	01-7	27 Ch3 Yellow	07-7 118	115 Not Used	0 1	11	4	0	-		0	- I	O DLY
II-8 189 Unused	8-10	51 Ch3 Green	07-8 15	15 Ch15 Red	0 -	II	-	0	1		0	1	
I2-1 189 Unused	02-1	4 Ch4 Red	C11S-USE	C11S-USER 10 Map [1.8.9.1 ln]	0 [0		0	-	*****	0		
12-2 189 Unused	02-2	52 Ch4 Green	14-1 189	189 Unused	0	,,	-			-	0	-	
+		_	+	189 Unised	-	"		П	-				
-			+	Deposition of the second		to of charles for an					- 1		מו
12-5 13 Vah Call 13	_		14-5 103	189 Unused	security Acce	Security Access Levels [0.2]	66	MONE	3		NONE	Com Parameters [6.1]	leters [b.1]
-			-	Daning		SECTION	77	NONE	4 4		NONE	Station ID	090/
200		_	+	pas nunseq	1	UNE	53	NONE	4		NONE	Ciroup ID	
0 400 Unused	_	SO CHO TENOW	_	nunsed		NONE	47	NONE	9		NONE	Master ID	0
-	23.7		-	pas nunseq		NONE	9	NONE	4/4		NONE	Backup IIme	0
iga Unused		\neg	-	189 Unused		NONE	R	NONE	48		NONE	SysUp Modem [6.1]	em [6.1]
189 Unused	03-2	55 Ch7 Green	17-5 188	189 Unused	9	NONE	27	NONE	49		NONE	Enable Modern	m OFF
189 Unused	03-3	8 Ch8 Red	17-6 189	189 Unused	ON L	NONE	28	NONE	20		NONE	Idle Time	0
189 Unused	03-4	32 Ch8 Yellow	17-7 189	189 Unused	ON 8	NONE	58	NONE	51		NONE	Dial Time	0
189 Unused	03-5	56 Ch8 Green	17-8 189	189 Unused	ON 6	NONE	30	NONE	52		NONE	Te	#N/A
13-6 189 Unused	03-6	9 Ch9 Red	-	189 Unused		NONE	34	NONE	83		NONE		#N/A
189 Unused	03-7	33 Ch9 Yellow	18-2 189	189 Unused	11 NO	NONE	32	NONE	22		NONE		
13-8 189 Unused	03-8	57 Ch9 Green	_	189 Unused		NONE	33	NONE	129		NONE	2070 Port Parms 16.21	arms 16 21
	1	10 Ch10 Red	-	189 Unused	13 NO	NONE	38	NONE	25		NONE	Port Baud Rate	ate FCM
		58 Ch10 Green	-	189 Unused		NONE	32	NONE	15		NONE	SP1	2
CTTS CONNECTOR		11 Ch11 Red	-	189 Unused		NONE	98	NONE	88		NONE	-	+
	_		-	189 Unused		NONE	37	NONE	92		NONE	1	+
179 Door Open	_	$\overline{}$	-	189 Unused		NONE	89	NONE	9		NONE	+	+
189 Unised	1	12 Ch12 Rad	C11CIICE	C115.11SER 10 Man [1 8 9 2 Out]		NONE	30	NONE	3 3		NONE	+	+
220 33vCM1Ston		_	00 1 446	115 Not Hood		NONE	3 \$	NONE	5 8		NONE	_	+
228 22-ElachSan		_	_	145 Not 1504		MONE	2	NOWE	8 5		NOW.	+	+
220 3347 4381 3113			_	Daso Daso		JANE THE	4 6	NONE .	6		JNE	4	+
los Unused		_	_	115 Not Used	ON 12	NONE	75	NONE	40		NONE	SP8 1200	AUTO
189 Unused	-	_	_	115 Not Used									
189 Unused	05-3	25 Ch1 Yellow		115 Not Used	2070 IP 1	2070 IP 1 Addressing [6.5]		20	2070 IP 2 Addressing [6.5]	(6.5) sing			
189 Unused	05-4	31 Ch7 Yellow	08-6 115	115 Not Used		Addressing			Addressing	Ssing			
189 Unused	05-5	39 Ch15 Yellow	08-7 115	115 Not Used	Addr	0 0	0	0 Addr	dr 0	0	0	0	
189 Unused	9-50	63 Ch15 Green	08-8 115	115 Not Used	Mask	0 0	0	0 Mask	ssk 0		0	0	
189 Unused	05-7 1	115 Not Used			Brdcst	0 0	0	0 Brd	Brdcst 0	0	0	0	
189 Unused	05-8 1	114 Watchdog			GtWay	0 0	0	0	GIWay 0	0	0	0	
189 Unused		115 Not Used			Port	0		Port				I	
189 Unused	06-2	115 Not Used										1	
189 Unused	06-3	13 Ch13 Red			2070 Por	2070 Port Binding Ports [6.6]	19:0	20	2070 Port Binding Functions [6.6]	g Functions f	6.61		
189 Unused	06-4	37 Ch13 Yellow				Port Echo	Mode	12	Function Channel	nel Function	Channel		
189 Unused	06-5	61 Ch13 Green			ASYNCI	2	0	TS.	١,		ASYNC2		
16-6 189 Unused	1	14 Ch14 Red			ASYNC2	SP2 OFF	0	ð	_		ASYNC1		
189 Haused					ASYNC3	+	0	16		_	NONE		
16-8 189 Unused		_			ASYNC4	+	0	1 2		$\overline{}$			
					SYNC	S	OFF	18	GPS NONE	س			
					COMING		110						
					STRUCE		1						

2 3 4 5 2 3 4 5 0 1 Phases # 1 [1.1.6. 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 Cycle Fault Action	From To From To 1	1	From To From To 1
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 Max Cycle Time Cycle Fault Action	2 3 4 5 6 7	2 3 4 5 6 7 8 9 10 Phases # 1 [1.16.3]	2 3 4 5 6 7 8 9 10 11 12 13 2 3 4 5 6 7 8 9 10 11 12 13 2 3 4 5 6 7 8 9 10 11 12 13 2 3 4 5 6 7 8 9 10 11 12 13 2 3 4 5 6 7 8 9 10 11 12 13 2 3 4 5 6 7 8 9 10 11 12 13 2 3 4 5 6 7 8 9 10 11 12 13 2 3 4 5 6 7 8 9 10 11 12 13 2 3 4 5 6 7 8 9 10 11 12 13 2 3 4 5 6 7 8 9 10 11 12 13 2 3 4 5 6 7 8 9 10 11 12 13 2 3 4 5 6 7 8 9 10 11 12 13 2 3 4 5 6 7 8 9 10 11 12 13 2 3 4 5 6 7 8 9 10 11 12 13 2 3 4 5 6 7 8 9 10 11 12 13 2 3 4 5 6 7 8 9 10 11 12 13 3 4 5 6 7 8 9 10 11 12 13 3 4 5 6 7 8 9 10 11 12 13
	LARM LARM	6 7 8 9 10 6 7 8 9 10 6 7 8 9 10	6 7 8 9 10 11 12 13 6 7 8 9 10 11 12 13 6 7 8 9 10 11 12 13 6 7 8 9 10 11 12 13

TE 262-12 (7/91)

MODEL 179 SIGNAL OPERATION PROGRAMMABLE FEATURES SIGNAL OPERATION SPECIFICATION

TAPS_			
STUDY	#		
FILE#			
PAGE _	19	_OF_	20

SIGNAL # __W-586__

COUNTY # WESTCHSTER DATE 08/29/05

D259096

CONFLICT / CURRENT MONITOR PROGRAMMING

CONFLICT	MONITOR DIODES TO	BE CUT	CONFLICT MONITOR YELLOW JUMPERS TO BE INSTALLED	CURRENT MONITOR DIODE TO BE CUT
SP1 - SP10				2, 4 - 9, 11 - 14
		·		
-				
		· 	·· ··	
.			- 	
				7
				·
OTES:				
				, <u>.</u>
			·	
	 .			
				
				·
			V	-n-

TE 262-12 (7/91)

MODEL 179 SIGNAL OPERATION PROGRAMMABLE FEATURES SIGNAL OPERATION SPECIFICATION

TAPS_			
STUDY	#		
FILE #			
PAGE	20	OF	20

SIGNAL # W-586 COUNTY WESTCHESTER DATE 08/29/05

D259096

TABLE OF INPUT WIRING

		IABLE	OF INPUT W	IRING	
TERM. NUMBER	FUNCTION	DET. NO.	DET. TYPE	DET. AN OVER	REMARKS
1A, 1B					
2A, 2B					
3A, 3B	Ø 3	3A	CUADRAPOLE		PRESENCE LOOP
4A, 4B					
5A, 5B					
6A, 6B					
7A, 7B					
8A, 8B					
9A, 9B					
10A, 10B					···
11A, 11B					···
12A, 12B	· · · · · · · · · · · · · · · · · · ·				10. , . ,
13A, 13B	Ø 3	13A	NORMAL		PRESENCE LOOP
14A, 14B					
15A, 15B					
16A, 16B					· · · · · · · · · · · · · · · · · · ·
17A, 17B					·
18A, 18B				*	
19A, 19B					
20A, 20B		· · · · · · · · · · · · · · · · · · ·			, 100 p. j. j. j. j. j. j. j. j. j. j. j. j. j.
21A, 21B					
22A, 22B	<u> </u>				**
23A, 23B	,				
24A, 24B					
25A, 25B					
26A, 26B					м.
27A, 27B					
28A, 28B					
			·		

TĚ 262-12 (7/91)

MODEL 179 SIGNAL OPERATION PROGRAMMABLE FEATURES SIGNAL OPERATION SPECIFICATION

TAPS_			-
STUDY	#		
FILE #_			
PAGE	18	OF	20

signal # <u>W-5</u>86

COUNTY WESTCHESTER

DATE <u>08/29/05</u>

TABLE OF SWITCH PACKS

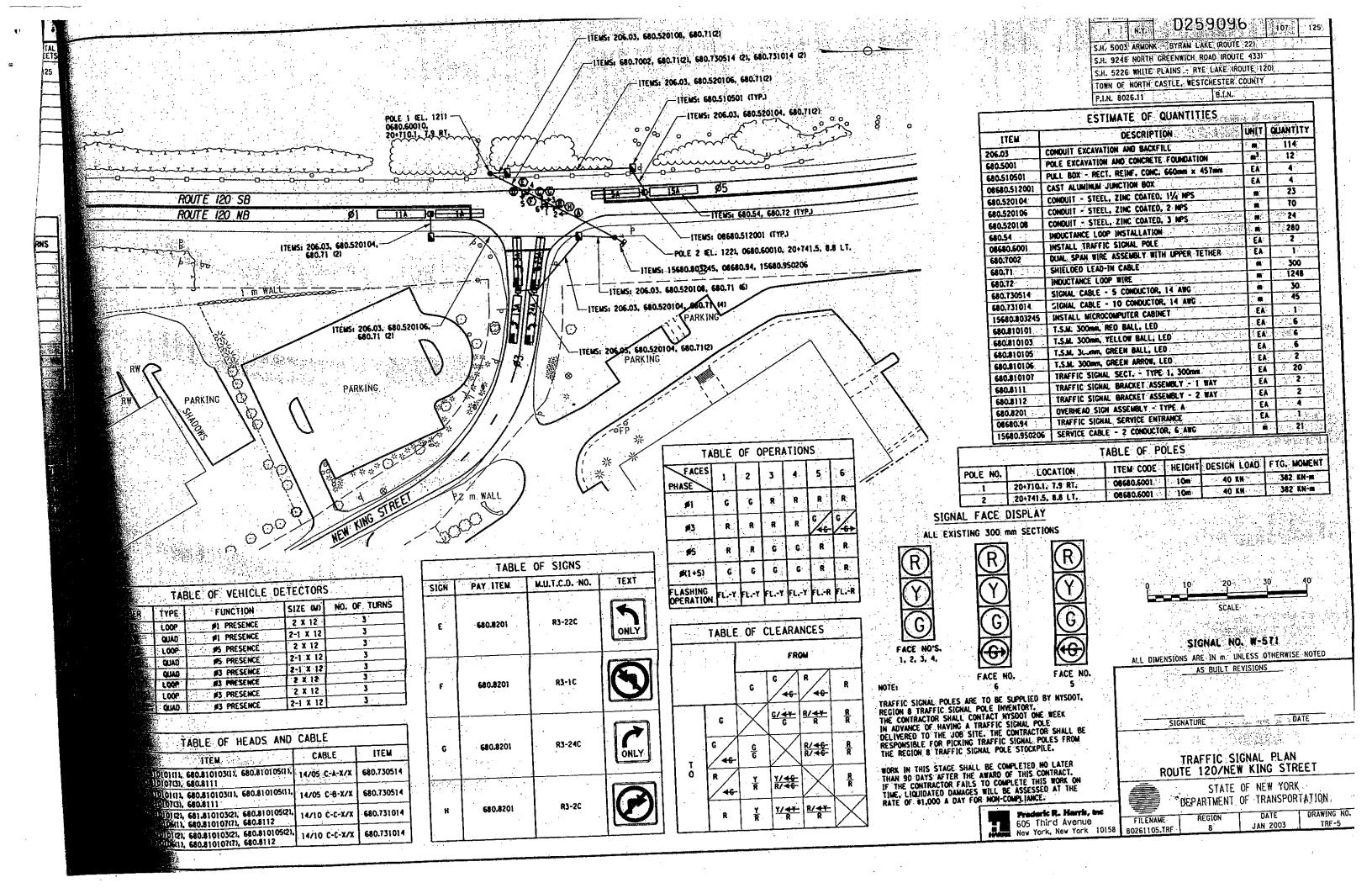
D259096

SWITCH	FUNCTION	INDICATIONS	FACE	TERMINA	L WIRING BOARD	5405	TERMINA	AL WIRING BOARD
PACK	FUNCTION	INDICATIONS	FACE	TERMINAL	WIRE COLOR CODE	FACE	TERMINAL	WIRE COLOR CODE
		Red		SP1R	14 / 10C - C - R		SP 1 R	14 / 10C - D - R
4	α 4	Yellow	4	SP 1 Y	-0	ا ۾ ا	SP 1 Y	-0
1	Ø1	Green	1	SP1G	- G	2	SP 1 G	- G
		Ground Wire		Grnd Bus	- W	1	Grnd Bus	- W
	 			SP 2 R			SP 2 R	
•				SP 2 Y			SP 2 Y	-
2				SP 2 G		1	SP 2 G	
		Ground Wire		Grnd Bus	·		Grnd Bus	
		Red		SP 3 R	14/10C-C-R/B		SP 3 R	14/10C-D-R/B
_		Yellow	_	SP 3 Y	-0/B	1 _	SP 3 Y	-0/B
3	Ø 3	Green	5	SP 3 G	-G/B	6	SP 3 G	-G/B
		Ground Wire		Grnd Bus	-W/B	1	Grnd Bus	-W/B
				SP 4 R		-	SP 4 R	- 41, 5
-				SP 4 Y		1	SP 4 Y	
4				SP 4 G		1	SP 4 G	· · · · · · · · · · · · · · · · · · ·
		Ground Wire		Grnd Bus			Grnd Bus	
	1	O. Cana Hite		SP 5 R		 	SP 5 R	ļ
_	1			SP 5 Y			SP 5 Y	-
5				SP 5 G			SP 5 G	
		Ground Wire		Grnd Bus		}		
		Ground wire		SP 6 R			Grnd Bus	
				SP 6 Y			SP 6 R	
6							SP 6 Y	
_	1	0		SP 6 G			SP 6 G	
	ļ	Ground Wire		Grnd Bus			Grnd Bus	
				SP 7 R			SP 7 R	
7				SP 7 Y			SP7Y	
-				SP 7 G			SP7G	
	ļ	Ground Wire		Grnd Bus			Grnd Bus	
				SP 8 R			SP8R	
8				SP 8 Y		[SP 8 Y	
•				SP 8 G			SP 8 G	
	ļ	Ground Wire		Grnd Bus			Grnd Bus	
				SP 9 R			SP 9 R	
9				SP 9 Y			SP 9 Y	
Ū				SP 9 G			SP 9 G	
		Ground Wire		Grnd Bus			Grnd Bus	
		Red		SP 10 R	14 / 5C - B - R		SP 10 R	14 / 5C - A - R
10	Ø1	Yellow	3	SP 10 Y	-0	4	SP 10 Y	-0
	1 ~ .	Green	•	SP 10 G	- G	7	SP 10 G	- G
	1	Ground Wire		Grnd Bus	-W		Grnd Bus	- W
				SP 11 R		7	SP 11 R	
11				SP 11 Y		[SP 11 Y	
				SP 11 G		[SP 11 G	
		Ground Wire		Grnd Bus			Grnd Bus	
		<u> </u>		SP 12 R			SP 12 R	
12				SP 12 Y			SP 12 Y	
12				SP 12 G			SP 12 G	
. <u>.</u>		Ground Wire		Grnd Bus			Grnd Bus	
				SP 13 R			SP 13 R	
13				SP 13 Y			SP 13 Y	· ·
13				SP 13 G			SP 13 G	· · · · · · · · · · · · · · · · · · ·
	1	Ground Wire		Grnd Bus			Grnd Bus	· · · · · · · · · · · · · · · · · · ·
·-				SP 14 R			SP 14 R	
4.4	1			SP 14 Y			SP 14 Y	<u> </u>
14	1			SP 14 G			SP14 G	
	1	Ground Wire		Grnd Bus			Grnd Bus	
	1	1, 3.04,,4 77,10				<u></u>	Gina pus	<u> </u>

. .

TE-26X

STATE OF NEW YORK - DEPARTMENT OF TRANSPORTATION TRAFFIC ENGINEERING & SAFETY DIVISION TRAFFIC CONTROL SPECIFICATIONS


Study:

Contract: D258096

PIN: 8826.11.321

File: 55.37-120

W-571	WESTCHESTER	PAGE 1 OF 20 PAGE	
SIGNAL NO(S)	COUNTY	VIII-	
INTERSECTION	ROUTE 120 AT NEW KING STREET		
_ cr	TY UILLAGE TOWN OF	NORTH CASTLE	
Department (Order filedas Section	Subdivision	
Prior sp	ecifications hereby superseded None		
Purpose	e: INSTALL TRAFFIC SIGNAL UNDER CONTRA	CT D258096.	
the nece	specifications will be effective upon the Specifications will be effective upon the specific linestall essary traffic control device(s) required by and control Traffic Control Devices	ation Modification of forming to the State Manual	
l. Thi A.	s Signal shall Operate in accordance with the Table of Operatio shown on page(s) 3 as a:	Pretimed Signal	
		Semi-traffic actuated signal	
		Full-traffic actuated signal Pedestrian actuated signal	
	<u>L</u>	Other	
			,
B.			
	Display pedestrian indications		
	Be equipped with vehicle detectors		
	Be equipped with Pedestrian pushbo		
	as shown in the schematic	scaled drawing on page 3	
	Be equipped with pre-emption which are described as follows	interconnection and / or coordination	
	TBC W/ W-586		,
cc: () [Main Office		RTE
(1)	Region 8 Traffic Engineer	Date Signature Installation Date	Title
(2)	CONTRACT NAINTAINER	Modification Date 10(03	

Phase Times [111]	_							ĺ	Coord	ination	Datte		Al and	Coor	dinati	Coordination Salit	it Tah	Tahloe 197	7.41			ı		ı	ı		l	١
	1	2	3	4	5	9	7	80	Patt Cvc	Cvc	Off Split Sec		Pa#	Cyc	ŧ	Split	Jed De	2 2	10	Split	Sed	井ad	Cyc	Off 1	Snlit Sen	1 8		
Min Green	2		2		2				-	_	-	-	13	0	0	13	1 2	25 0	0	0			-		_		STD8	~
Gap, Ext	e	Ħ	e		m				2		2	-	14	0	0	4	1 2	26 0	0	0	-	88	0	0)	1	
Max 1	32	1	8		35				m	+	3	-	15	0	0	5	1 2	0	0	0	-	ස	0	0	0			
Max 2		Ī	,	Ī	,				4	+	4	-	9	0	0	9	1 2	78	0	0	-	9	0	0	0		artup [1	1.4
Yel Clearance	o 0		4		0	T			0	+	0	-	-	-		,	7	87	0	0	-	41	0	0	0	Phs Ring		ш
Ked Clearance	7	Ť	-	Ť	7			1	0 1	+	9 1	- ,	8 9	0	0	œ ;		ල ද	0	0	-	42	0 (0	0		GREEN	
Walk		1	Ť	1	Ì	1			- (+	-	-	5		0	13	- ·	-1	0	0	-	43	0	0	0	2 1	RED	
Ped Clearance	Ì	Ì	1		1				ω	+	œ	-	8	0	0	20	1 32	0	0	0	-	4	0	0	0	٠ د	RED	
Red Revert									6	+	6	-	21	0	0	77	33	<u>က</u>	0	0	-	45	0	0		1 4 1	RED	₩
Add Initial							T		10	-	9	-	22	0	0	22	4	34 0	0	0	-	46	0	0	0	5 2	GREEN	ő
Max Initial									1	-	=	-	23	0	0	23	1 3	35 0	0	0	-	47	0	0		6 2	RED	*
Time B4 Reduct	,	T	T			Ī			12	H	12	-	24	0	0	24		36 0	0	0	-	48	0	0		-	RED	#
Cars B4 Reduct		T	T			T		5,	Split		2	3	4	5	9	7	8 Soli	事	-	2	3	4	22	9	7	8 8 2	RED	8
Time To Deduce	İ	Ť	Ť	İ	İ	t	İ			Ones Ac	1	╬		37	,	35	1	-11-		1		1	,	,	1	1	1	5
Time to Reduce	Ť	Ť	Ì	Ť	Ì		T		-	_	,	S		3		S	T	200			I	1	†	1	+	Coord Modes	165 2.1	
Reduce by	Ì	1	Ì		1				-7	-	MAX					1		_							+	lest OpMode		0
Min Gap									2 0	Coor								14 Coor	ı							Correction	SHRT/LNG	NG
DyMaxLim																									-	Maximum	MAX 1	
Max Step									3	Coor	_						-	5 Coor	-				-		H	Force-Off	FLOAT	
Options [1.1.2]	1	2	3	4	5	9	7	00	_	-	-	-					Г	L							+	Closed Loop	NO	
Fnahle	ő	r	ő		ő	-			A	Coor	-	-			T	T	-	16 Coor		L		1	t		t	Ston-in-Walk	OFF	
Min Recall	5 5	Ť	5	T	5 5	T	T		_		+	1		I	T	+	T	_				t	t	t	+	Auto Reset	N	
May Donall	;	T	Ì	Í	;				~	1	+	-		I	T	t	*	-		1	I	Ť	t	t	+	Toron Carry	120	
Max Recall	1	Ť	İ	Ť	1	1	1		0	2002	+	4			1	+	T	200		1	I	1	†	+	+	Expand Spit		
Ped Kecall		Ť	T	1	1	Ť			-	+	+	1				+		_	1	1		1	1	+	+	Ped Recycle		CYCLE
Soft Recall	1	T	1	1	1				9	Coor	+	_						18 Coor	2				1	+	1	Before	TIMED	
Lock Calls											_															After	TIMED	
Auto Flash Entry									7 0	Coor	_					1	-	19 Coor	1			5				Auto Flash	h [1.4.1]	
Auto Flash Exit																										Auto Flash	PH OVER	94
Dual Entry	5			5	ő			ō	8 C	Coor						7	2	20 Coor	-						H	Flash Yel	45	5
Enable Simul Gap	-	5	Б	ő	-	5	5	ō	_		_						Г	L							H	Flash Red		0
Gaurantee Passag									0	Coor	L						2	21 Coor	-						H	Unit Params	ms [1.2.1]	
Rest In Walk									L		-						Г									Phase Mode	STD8	
Conditon Service		Т							10 C	Coor							2	22 Coor	-						H	IO Mode	USER	
Non-Actuated 1	1										1															Loc Fish Start	t ON	
Non-Actuated 2									11 0	Coor	-						2	23 Coor	ır							Start Flash(s)		0
Add Init Calc								1										-	Ц						-	Start AllRed(s)		0
Options+ [1.1.3]	1	2	3	4	5	9	7	œ	12 0	Coor							2	24 Coor	1							Yellow < 3*	OFF	
Reservice																										Display Time	20	_
PedClr Thru Yel									Page#																	Red Revert	,,,	3
Skip Red No Call		П							-	-	Phas	e Tim	8 Phase Times/Options;		Patte	Patterns/Splits;	olits;	Ring Startup;	tartur		ord/Fla	Coord/Flash Mode; Unit Param	ode; L	Jnit Pa	aram	MCE Timeout		0
Red Rest									1A&1B		Phas	e Tim	6 Phase Times/Options;	lions;	Patte	Patterns/Splits, Ring Startup;	olits;	Ring S	tartur		ord/Fl	Coord/Flash Mode; Unit Param	ode; L	Jnit P	aram	Feature Profile		0
Max II								Γ	2	Ó	Overlaps;		Channel Settings, Coord Alt Table+ (values not associated with time-of-day)	Settini	ds; C	oord A	III Tat	v) +alu	alues	not a	ssocia	ted wi	th tim	e-of-o	lay)	Free Ring Seq	D.	_
Call Phase		Г							3	<u>ŏ</u>	tectio	n; Sa	Detection, Sample Time and Unit Parameters related to detection	Time a	Ind Dir	nit Par	amet	ers re	ated t	o dete	ction					Auxswitch	STOPTM	-
Conflicting Phase						Ī			4	ď	eemp	ion an	Preemption and Alternate Phase Time and Phase Options	rnate	Phase	e Time	and	Phase	Optic	Suc						SDLC Retry		0
Omit Yellow	Ī	Т	Ī	Ī	F		Г	Г	5	Ā	nual	Annual Schedule	el.													TS2 Det Faults	NO	
Ped Delay	ľ	T	T	Ī	F	T	Ī	Г	9	Ö	v Pla	IS. AC	Day Plans: Action Tables: Coord Alt Table+ (values varied by time-of-day)	Selle	Coor	A Alt	Lahle	· (valu	ev se	ried b	v time	of-da	5		۲.	Auto Ped Clear		
Gm/Ped Delay	Ī	T	Ī	Ī	T	T	Ī		1	S	Inmm.	Communications;	ns. S	ecutin	9	Secutiry: I/O Setup	_		3							SDLC Retry		0
571	RTE 120 @ NEW KING STREE	N	FWK	NG S	TREET				00	N	Pr. F	/stuer		5	"/Inhili	it/Rec	liract	D/d	AP AI	ifo Fl	och.	N.C.	lier	nit Pa	ram	06/13/19		Page 1
10.101	1	9		2	-			1		1	5	3	3	5	The second	200	5	2	2	2	1100	5	200	3	5	100		

Modifier Ø NORWAL	Included Ø Modifier Ø Conflict Ø Conflict Ped Included Ø 10 Modifier Ø Conflict Olap Conflict Ped		1 12 22 3 12 22 4 12 22 4 12 22 4 12 22 4 12 22 4 12 22 4 12 22 4 12 22 4 12 22 4 14 12 22 4 14 12 22 14 14 12 22 14 15 12 22 14 15 12 22 14 15 12 22 14 15 12 22 14 15 12 22 14 15 12 22 14 15 12 22 14 15 12 22 14 15 12 12 12 12 12 12 12 12 12 12 12 12 12			
Modifier Ø Gm Conflict Ø Yel 3.5 Conflict Ø Red 1.5 Conflict Ped NORWAL Included Ø Red 1.5 Conflict Ø Gm Conflict Ø Gm Conflict Ø Gm Conflict Ø Red 1.5 Conflict Ø Cm Conflict Ø NORWAL Modifier Ø Gm Conflict Ø NORWAL Modifier Ø Gm Conflict Ø Cm Conflict Ø NORWAL Modifier Ø Gm Conflict Ø Yel 3.5 Conflict Ø NORWAL Modifier Ø Yel 3.5 Conflict Ø Yel 3.5 Conflict Ø NORWAL Modifier Ø Yel 3.5 Conflict Ø Yel 3.5 Conflict Ø Yel 3.5 Conflict Ø Yel 3.5 Conflict Ø NORWAL Modifier Ø NORWAL NORWAL NORWAL	Nodifier Ø Conflict Øa Conflict Øa Conflict Ped Included Ø Conflict Øa Conflict Ped	Gm Sed 1.5 Red 1.5 LG LG NORMAL Gm Sed 1.5 Red 1.5 Red 1.5 Red 1.5 Red 1.5 Red 1.5 Red 1.5 Red 1.5 Red 1.5 LG Red 1.5 Red	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	EndGRN EndGRN EndGRN EndGRN EndGRN EndGRN EndGRN EndGRN		
Conflict Ø Yel 35 Conflict Olap Red 15 Conflict Ped NORMAL Modifier Ø Gm Conflict Olap Red 15 Conflict Ø NORMAL Modifier Ø Gm Conflict Olap Red 15 Conflict Olap NORMAL Modifier Ø NORMAL Modifier Ø Gm Conflict Olap Red 15 Conflict Olap Cm Conflict Ø NORMAL Modifier Ø Gm Conflict Olap Cm Conflict Olap Ked 15 Conflict Olap Ked 15 Conflict Olap Ked 15 Conflict Olap Ked 15 Conflict Olap Ked 15 Conflict Olap Ked 15 Conflict Olap Ked 15 Conflict Olap Ked 15 Conflict Olap Ked 15 Conflict Olap Ked 15 Conflict Olap Ked 15 Conflict Olap Ked 15	Conflict Ø Conflict Olap Conflict Olap Conflict Ped Included Ø Conflict Ped Included Ø Conflict Ped Conflict Ped Conflict Ped Conflict Ped Conflict Ped Conflict Ped Conflict Ped	Yel 3.5 Red 1.5 LG LG NORMAL Gm S.5 C C C C C C C C	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	EndGRN EndGRN EndGRN EndGRN EndGRN EndGRN EndGRN		
ap Red 1.5 NORMAL NORMAL Gm Gm Cm Cm NORMAL OCM ACC ACC ACC ACC ACC ACC ACC	Conflict Olap Conflict Ped Included Ø Conflict Ø Conflict Olap Conflict Olap Conflict Ø Conflict Ø Conflict Ø Conflict Ø Conflict Olap Conflict Ø Conflict Olap Conflict Olap Conflict Ø Conflict Ø Conflict Ø Conflict Ø Conflict Ø Conflict Ø Conflict Ø Conflict Ø Conflict Ø Conflict Ø Conflict Ø Conflict Ø Conflict Ped Conflict Ø Conflict Ped Confli	Red 1.5 LG LG NORMAL Gm Red 1.5 C	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	EndGRN EndGRN EndGRN EndGRN EndGRN		
2 C C C C C C C C C C C C C C C C C C C	Conflict Ped Included Ø Included Ø Conflict Ped Conflict Ped Con	LG NORMAL NORMAL Gm 3.5 Red 1.5 LG NORMAL Gm 3.5 Red 1.5 LG NORMAL NORMAL NORMAL Gm 3.5 C Gm NORMAL Om 3.5 C C C C C C C C	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	EndGRN EndGRN EndGRN EndGRN		
NORWAL GM Sept 1.5 Sept 1	Included Ø Modifier Ø Conflict Ø Conflict Olap Conflict Ped Included Ø Included Ø Conflict Olap Conflict Ø Conflict Ped	NORMAL NORMAL S	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	EndGRN EndGRN EndGRN EndGRN		
Chi Chi	10 Modifier Ø Conflict Ø J Conflict Ø L Conflict Ø Conflict Bed Included Ø Included Ø Included Ø Included Ø Conflict Ø Conflict Ø Conflict Ø Conflict Ø Conflict Ø Conflict Ø Conflict Ø Conflict Ø Conflict Ø Included Ø Included Ø Included Ø Included Ø Included Ø Included Ø Conflict Ø Conflict Ø Conflict Ø Included Ø Included Ø Included Ø Conflict Ø Conflict Ø Included Ø Included Ø Included Ø Included Ø Included Ø Included Ø Included Ø Included Ø Included Ø	Cm Sed 3.5 Red 1.5 LG NORMAL Gm Sed 1.5 Red 1.5 Red 1.5 Red 1.5 Red 1.5 NORMAL Gm Sed 1.5 Cm Se	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	EndGRN EndGRN		
Yel 35 Yel 15 Sed 1.5 Or Or Or Or Or Or Or Or Or		Normal N	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	EndGRN		
### NORWAL Columbia		Red 1.5 LG NORMAL Gm Yel 3.5 Red 1.5 LG NORMAL Gm NORMAL Gm NORMAL Gm NORMAL Gm NORMAL NORMAL OG	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	EndGRN		
20		LG NORMAL NORMAL Gm Sed 1.5 LG NORMAL Gm Sed 1.5 LG NORMAL Gm Sed 1.5 LG LG Cm Sed 1.5 Cm	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
NORMAL NORMAL Sept 1.5		NORMAL NORMAL Gm Yel 3.5 Yel 3.5 Red 1.5 LG NORMAL Gm Yel 3.5 Ye	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	EndGRN		
Sim Sim		Cm Yel 3.5 Yel 3.5 Red 1.5 LG NORMAL Cm Yel 3.5 Yel	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	EndGRN		
Yel 3.5 Sed 1.5 Sed		Yel 3.5 Red 1.5 LG LG LG Red 1.5 LG Red 1.5 Red 1.5 LG Red 1.5 LG Red 1.5 LG Red 1.5 LG Red 1.5 LG Red 1.5 LG Red 1.5 Red 1.5 LG Red 1.5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	EndGRN		
Red 1.5 Color		Red 1.5 LG LG NORMAL Gm Fed 3.5 Red 1.5 LG NORMAL NORMAL Gm NORMAL Om Om NORMAL Om	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	EndGRN		
20 NORMAL 20 Gm 20 Gm 20 Gm 21 Gm 22 Gm 23 Gm 24 Gm 26 Gm 26 Gm 27 Gm 28 Gm 28 Gm 29 Gm 20 Gm 20 Gm 20 Gm 20 Gm 20 Gm 20 Gm 21 Gm 21 Gm 21 Gm 22 Gm 23 Gm 24 Gm 25 Gm 26 Gm 26 Gm 26 Gm 27 Gm 28 Gm 28 Gm 28 Gm 28 Gm 28 Gm 28 Gm 28 Gm 28 Gm 28 Gm 28 Gm 28 Gm 28 Gm 28 Gm 28 Gm		LG NORMAL NORMAL Gm Fed 1.5 Red 1.5 LG NORMAL Om Om	222222222	EndGRN		
NORMAL NORMAL		NORMAL Gm Gm 1.5 Ked 1.5 LG LG LG CM CM CM CM CM CM CM C	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	EndGRN		
Gm Yel 3.5 20		Gm Yel 3.5 Yel 3.5 Red 1.5 LG LG CMAL Gm Gm CMAL Gm CM CM CM CM CM CM CM C	2 2 2 2 2 2 2 2	EndGRN		
ap Red 1.5 od (Gm Gm Gm Gm Gm Gm Gm Gm		Yel 3.5 Red 1.5 LG LG NORMAL Gm Gm Call	222222	FndGRN		
ap Red 1.5 1.G LG NORMAL Gm Gm ap Red 1.5 Com Com Com Com Com Com Com Co		Red 1.5 LG LG NORMAL GM	12 12 12 12 12 12 12 12 12 12 12 12 12 1	FndGRN		
20 LG NORMAL CGM		LG NORMAL Gm Gm	12 12 12 12 12 12 12 12 12 12 12 12 12 1	FudGRN		
9p NORMAL 6m Gm Cm St.5 St.5 St.5 St.5 Cm Cm Cm Cm Cm Cm Cm C		NORWAL Gm	12 12 12 12	FudGRN		
ap Cm Side Side Side Cm Side		Gm S	12 12 12	EndGRN		
ap Yel 3.5 Sed 1.5 Color Yel 3.5 Color			12	EndGRN		
ap Red 1.5 LG LG S Red 1.5		76 3.5	12	EndGRN		
od LG NORMAL Gm		Red 1.5		EndGRN		
NORMAL Gm	Included Ø		25	BeaGRN		
Gm		I I I NORMAL	26	BegGRN		
	14 Modifier Ø	Gm	27	BegGRN		
	_	Yel 3.5	28	BegGRN		
	N Conflict Olap	Red 1.5	29	BegGRN		
	Conflict Ped	191	30	BegGRN		
NORMAL		NORMAL	31	BegGRN		
E5	15 Modifier Ø		32	BegGRN		
Xei 3			33	BegGRN		
	C Conflict Clap	Ked 1.5	35	BegGRN		
	Conflict Ped	91	35	BegGRN		
NORWAL	Michael &	NORWAL	8 8	BegGKN		
E5	16 Modifier 10		3/	BegGRN		
	_	Yel 35	38	BegGRN		
Conflict Day	Conflict Diap	2 2	80	BegGKN		
tings [4 8 4]	Commercial Commercial	107	40	Begurn		
Channel -> 1 2 3 4 5 6 7 8 9 10 111	12 13 14 15 16 17	18 19 20 21 22 23 24	42	Poggoni		
1 3 5		2 2 2 2 2 2	74	BonGDN		
	KEH VEH VEH VEH VEH VEH	VEH VEH VEH VEH VEH VEH	44	BedGRN		
Channel Flash RED RED RED RED RED RED RED RED RED RED	RED RED RED RED RED DRK	DRK DRK DRK DRK	45	BegGRN		
			46	BegGRN		
			47	BegGRN		
9-> 1 2 3 4 5 6 7 8 9 10	11 12 13 14 15 16 17	18 19 20 21 22 23 24	48	BegGRN		
Flash Red+			Channel Params[1.8.3]			
Flash Green			C1 IO Mode USER	BIU Map SINGLE	Invert Rail Input	OFF.
Flash Inh Red+		-				
District Control						
Olap Ovig						

	Type Src	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NOKW	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	-	14.5.81	15	0								
3		2	NO	NO	2	2	왿	2	2	2	2	2	2 2	2 2	N	2	2	8	NO	NO	8	2	2	2	2 2	2 2	2	N _O	8	2	2	17	rm i		Se								
4 [5.3	y Dlay	L	_	Н	4	-	4	-	4	-	4	4		+	╀	H	L	H		Ц	-	4	-	4	+	+	\vdash	L	Н	4		_	H P	Minut	Minut								
1-64	oc Dlay	-		Н	+		4	+	4	-	+	+	+	+	╀	H	L	L		_		4	-	+	+	+	+	L		+	-	Unit Paramters	1S2 Det Faults Vol/Occ Report Parm	Vol/Occ Period Minutes	Vol/Occ Period Minutes								
Parameters+	00 ×	┢		+	+	+	+	+	+	+	+	+	+	t	t	H	H	H	1	Н	+	+	+	+	$^{+}$	$^{+}$	+	-		+	-	ara	Vol/Occ Reno	oc Pe	oc Pe								
ame	250	-		+	1	+	+	+	+		+	+	1	t	t		-			-		+	+	+	t	t	H	H		+			S	0/10/	0/10/								
Par	#	-	2	3	4	2	9	7	80	6	9	7	7 07	14	15	16	17	18	19	20	21	22	23	24	CJ g	27	78	29	30	34		_[
	lov o	L		4	4	-		4	_	4	-	-	+		L								4		1	1				_	4												
	Yell occ	\vdash	Н	+	+	+	+	+	+	+	+	+	+	÷	H	\vdash	-	H	Н		H	+	+	+	+	+	+	H		+	+												
5.2		H	Н		+	+	+	+	+		+	+	+	+	H	H	-	-	Н	Н	-	+	+	+	+	+	-	Н	-	+	-												
-64	Addin Lock	ő	ьo	ő	5	5	5	5	5	5	5	5	5 8	5 5	5	5	ō	ő	ь	Б	5	5	5	5	5 8	5 5	5	ő	ь	5	5												
us,	Ad Ad	F	H	7	7		7	7	٦	7	7	7	7	7	F	۲	_		-	_	٩	7			7	+	10		9	7	0 17	4	5 5	1	ı		ΡÍ	Ť	1	1	1		
Options 1-64 [5	Ext Que Add Red	On	ьo	5	5	ő	5	5	5	ō	5	5	5 8	5 5	5	5	ő	ő	ő	ő	5	5	5	5	5 8	ā	ō	ő	ő	5	_		Pres		15	15	15	12	12	C t	2		
	le Ca	On	uО	_	_	$\overline{}$	_		_	_	_		5 8	_	-	-	5	o	o	ь	\rightarrow	_	_	_	5 6	_	_		\rightarrow		5	La	Act No					1	Ť	t	1		
Vehicle	# Det				38	_	38		-	_	_	_	44	_	_	_	49	20		52		54	_	200	_	_		_	62		64	Č	Ø 20	-					\dagger	+	1		
	Į0																		ŢĢ												700	Leg	= = = =	-	2	3	4	20	9	_ α	0		
	8				_		1	I	1			I	Ι	Ι									I	I	I													-					
7	Yell														L																	4	S										
54 5	Add Red Init Lock				1	1			1		1	1							Ţ			1			I								Type	RM	KM	RM	SM	N.	E E	N N	Me		
S 1-64	Add Init	5	o	5	5	5	5	5	5	ō	5	5	5 8	ō	ō	ő	ő	ō	ő	ō	ō	5	5	5	5 6	ō	ō	ō	o	5	5	L		NORM	NORM	NORM	NORM	NORM	NOKM	NOK W	NORM		
tion	One							1	4	1	1	1			L							1		1	1					1		i	Ulay Ulay	L			Ц	1		1	1	1	
Vehicle Options	蓝	ō			_	_	_	_	_	_			5 6	_	_	б	ő	ő	ő	ō		_		_	5 6			_			5	ē		L									
	Ca	ō	ы	5	-	-	-	_	-			_	5 8			ō	o	o	5	ō		_			5 6	_			_		5		Yell Red	L			Ц	\perp	1	1	1	1	
	# De	-	2	ω.	4	2	0	_	0	6	10	1,	12	14	15	16	11	18	19	20	21	22	23	24	2,00	27	28	29	30	31	32	1	Z GO	L	-		Н	+	+	+	╀	+	
- 1	r Fail		_													0	0		_				-		0 0		-	0	0			_	85 8	2	(0	1		000	-	- 0	100		
	ax Err		\rightarrow	20	-	_	_	_	20	_	_	-	_	50 50	-	_		\vdash	\rightarrow	_	20	-	-	2 20	+	-	-	\vdash	_	200	_		# Det	55	26	57	28	i ci	3 2	2 6	5 6	3 2	
	No Max Act Pres	45	4	45	4	4	4	4	3	45	45	4	3 4	45	45	45	45	45	45	45	45	45	4	45	45	45	45	45	45	45	4	4	Sic	L	L	H	\vdash	+	+	+	+	+	
ł	ue No	Н	-	+	+	+	+	+	+	+	+	+	+	+	H	H	20	-		+	+	+	+	+	+	H	\vdash	Н	Н	+	+		Type	NORM	NORM	NORM	NORM	NORM	NOKW	NORM	NORM		
	<u>o</u>	Н		+	+	+	+	+	+	+	+	+	t	t	H	H	Н			+		+	+	+	+	t	H	Н	+	+	+	ŀ		Z	Z	Z	Z	2 2	2 2	2 2	2	+	
2	Olay	Н	1	+	†	+	†	t	†	1	1	1	t	t	H					1		+	†	Ť	+	t	H	Н	1	+	1	1	1 ay	H	H		H	+	Ť	ŧ	t	t	
10	Swi Dlay Ext Que	H		+	+	1	1	+	+	+	+	+	+	+	T	H				+		+	1	+	+	+		H	+	+		1	Ned 1 2				+	+	1	+	+	+	
	<u></u>			+	+	+	+	+	+	+	+	†	+	t		H				+	1	+	1	+	+	1		H	+	+		-	Je Je				1	+	t	+	+	+	
Vell Fal	# Det	33	34	35	8	3/	200	33	Q:	41	47	543	44	46	47	48	49	20	21	22	23	25	S	202	200	200	90	61	62	83	\$	-	30 E	H	-		1	+	+	+	+	+	
	Time			25	_	52		1			-	62	35	_	25							_	62	_	1	Ť						1	src Det occ occ # Gm Yell	44	45	46	47	48	49	2 2	22	7 5	
- 1	C E	20	-	20	-	20	+	+	+	1	-	2	2	_	20				1	1	1	_	_	20	+	T						,	200					+	T		+	+	
L	Max Pres (\rightarrow	45	-	45	+	+	†	\dagger	-	6	4F	+	45		П		\forall	+	1	-	-	45	+	1	T			+		F			-	-		_	<u>.</u>	_	1	_	
	Act P		+		+	+	+	+	+	1	+	+	ť	1	-					1	+	+	1	+	+	1		H		+			Type	NORM	NORM	NORM	NORM	NORM	NORM	NORM MORM	NORM		
		H		+	+	\dagger	+	+	\dagger	+	+	+	t	T	+	H			+	+	1	+	+	+	+	-		H		+	-		Z Z	F	_	Z	-	2 2	2	= 2	12	+	
	Swi Dlay Ext Que		1	+	1		+	+	+	1	+	+	+		\vdash				1	+	+	+	+	1	+	1				+	- LY	4	Ned 1 2				1	+	t	+	+	+	
2	Olay	H		3	1	1	1	+	+	1	+	1	~	,	T				1	1	1	,	2	2	+	T	П			1	1 6	2	G GG				1	+	Ť	+	+	+	
5	Swi	H	+	+	+		+	+	+	+	+	+	1						1	1	+	+	+	+	\dagger	+		H		+	100	10	Yell			Н	1	+	1	+	+	+	
	<u></u>	+		2	1	c	+	+	+	+	1,	+	~	,	2				+	+	+	-	2	2	t	H	H			1	Opromotore± 4 64 15 21		0 E	-			1	+	t	+	+	+	
ŀ	# #	-	-	-	+	+	0 1	-0	σ	5	2;	10	_		15	16	17	18	19	20	51	22	21	77	3 %	27	28	29	20	31	321	9	# E	33	34	35	36	37	30 00	33	41	- 5	

]	Flsh	Dwel Link	OFF	OFF	055	OFF	OFF								
																									-		Override	Higher	N	5 8	No	NO	NO								
Pre # Track Phases Track Overlans							and Overlaps+ [3.5]																			Preemption Options+ [3.6]	Pre # Lock Override	A	N	N N	8	N	NO								
Tra							and Ove																			Pre	Pre		<u> </u>	7 6	7	2	9								
Pre # Track Phases	-	2	3	4	5	9	Dwell Phases [3.2]	Pre #	1 Phases	Overlaps	Peds	2 Phases	Overlaps	Peds	3 Phases	Overlaps	Peds	4 Phases	Overlaps	Peds	5 Phases	Overlaps		6 Phases	Overlaps	200	Exit Phases [3.2]	Pre # Exit Phase	-	7 6	2 4	22	9								
Delay MinDura							Co+Pre	N	NO	NO	NO	NO	NO	Yel																Ī	I	1									
_	-	11	11	11	11		/IK PedClr							Track Grr Min Dwell Ext Dwell PedClr+							٦	<u>. I</u> .	. 1.			.lu	1			+				Į,	<u></u>	Т		Tu.	1	1	
Output			IG DWELL	IG DWELL	IG DWELL	SG DWELL	m MinWlk							vell Ext Dv						-	_	AP.	PF.	750	5 8	R		Max		+	-		1]		PRE		14 8 21	NONF	OFF.		
Type		RAIL	EMERG	EMERG	EMERG		ss MinGm							ir Min Dw	2	2	2	2	2	2	Pattern	1					Preempt	Min					ers [1.2.	ar Preemp	Output	k Time	motore	allicici 3	nont		
# Enable	_	NO	NO	NO	NO		# MaxPres														# Red						ow Priority Preempts		OFF.	5 8	+		Unit Parameters [1.2.1]	Stop Timer Over Preempt	Preempt or Ext Output	Max Seek Track Time	Max Seek Dwell IIIIIe	D Conn Mannings	Pre Invert Rail Input		
Pre#	-	2	3	4	2	9	Pre#	-	2	3	4	5	9	Pre#	-	2	3	4	2	9	Pre#	-	7	m =	4 4	9	Low	Pre#	1	∞ 0	9	2	Unit	Stop	Preen	Max 5	Char		Pre In		

Manufaction Manufaction	SEKIO		C1-USER IO Map [1.8.9.2 Out]	ER 10	10 Logic [1.8.7]	8.7]							
10 10 10 10 10 10 10 10	-	11 01-1 1	1 Ch1 Red	_	Resn	_		Fcn Oper	i i			Fcn	imer
1 10 1 2 2 2 2 2 2 2 2 2	189	01-2	19 Ch1 Green	$\overline{}$	0 1	Ü	7	0		1	0		70 0
1 1 1 1 1 1 1 1 1 1	ო	3 01-3		_		ji	200			1	3		.70 0
1 1 1 1 1 1 1 1 1 1	_	01-4		_		н	1	7		_			O DLY
18 University 10 1 1 10 10 10 10 10	5	5 01-5		115		=	100	Ñ		_	Ī	- I	O DLY
150 10 10 10 10 10 10 10	_	9-10		_	0 I	n.	-			-		10	O DLY
11 11 12 12 13 13 13 13	_	2-10	\neg			ij	-	0.0		_		1	0 01
150 Universed 10.21 5 Chef Green 141 156 Universed 10.21 5 Chef Green 141 156 Universed 10.21 5 Chef Green 141 156 Universed 156 Chef Green 141 156 Universed 156 Chef Green 141 156 Universed 156 Chef Green 141 156 Universed 156 Chef Green 141 156 Universed 156 Chef Green 141 156 Universed 156 Chef Green 157 156 Universed 157 157 Universed 157 157 Universed 157 157 Universed 157 157 Universed 157 157 Universed 157 157 Universed 157 157 Universed 157 157 Universed 157 157 Universed 157 157 Universed 157 157 Universed 157 157 Universed 157 157 Universed 157 157 Universed 157 157 Universed 157 U	_	8-10				П		0		1		- I	
150 10 10 10 10 10 10 10	-	02-1				1	-	0		- 1	SE	I	O DLY
11 No. Col. 2 Col. No. Col.	189	02-2			0 1	9	1			1	0	I	O DE
150 Universide O.Co. 25 O.Co. Common Heat 199 Universide O.Co. 25 O.Co. Common Heat 199 Universide O.Co. 25 O.Co. Common Heat 199 Universide O.Co. 25 O.Co. Common Heat 199 Universide O.Co. 25 O.Co. Common Heat 199 Universide O.Co. 25 O.Co. O.Co	11	11 02-3		$\overline{}$	0 1	H				_		- I	O DLY
158 United 102-6 5 Ord Refer 14 11 18 United 15 SKCIANG 2 NONE 4 NONE 5 Ord Refer 15 Ord Refer 17 18 United 2 NONE 4 NONE 4 NONE 4 NONE 5 Ord Refer 17 18 United 2 NONE 5 Ord Refer 17 18 United 2 NONE 5 Ord Refer 17 Ord Refer 18 O	189	02-4		_	Security Ac	cess Levels [8.2	l			43	NONE	Com Para	meters [6.
15 Fundament 15	\rightarrow	02-5		\rightarrow	- Si	WLOAD	22	NONE		44	NONE	Station ID	7571
150 100	189	02-6	$\overline{}$	\rightarrow		CURE	23	NONE		45	NONE	Group ID	
13 13 11 11 12 11 11 11	15	115 02-7		_		NONE	24	NONE		46	NONE	Master ID.	0
136 Unised 136 Chief Resident 175 139 Unised 139 Unised 130 1 1 1 1 1 1 1 1 1	_	02-8		_	ľ	NONE	25	NONE		47	NONE	Backup Tin	0 a
139 Unused 103 5 Chie Red 176 189 Unused 176 Unused Unused 176 Unused Unused 176 Unused Unused Unused Unus	-	03-1	$\overline{}$	_		NONE	56	NONE		48	NONE	SysUp M	dem [6.1]
13 1 1 1 1 1 1 1 1 1	-	03-2	_	_		NONE	72	NONE		49	NONE	Enable Mox	em OFF
158 Unused 1054 56 Che Net 175 158 Unused 158 Un	-	03-3		_	7	NONE	28	NONE		20	NONE	Idle Time	0
13 10 10 10 10 10 10 10	-	03-4		_		NONE	29	NONE		51	NONE	Dial Time	0
132 Van Casi 232 Van Casi 233 Circle Rado 181 189 Unused 10 NONE 23 NONE 23 NONE 24 NONE 24 NONE 25	\rightarrow	03-5		$\overline{}$		NONE	30	NONE		52	NONE	Tel:	#N/A
2.3 VaN Cail 124 Or 15 State Chick Chem Cail 124 Van Cail 124 Or 15 State Chick Chem Cail 124 Or 15 State Chick Chem Cail 124 Or 15 State Chick Chem Cail 124 Or 15 State Chick Chem Cail 124 Or 15 State Chick Chem Cail 124 Or 15 State Chick Chem Cail 124 Or 15 State Chick Chem Cail 124 Or 15 State Chick Chem Cail 124 Or 15 State Chick Chem Cail 124 Or 15 State Chick Chem Cail 124 Or 15 State Chick Chem Cail 124 Or 15 State Chick Chem Cail 124 Or 12 State Chick Chem Cail 125 State Chick Chem Cail 125 State Chick Chem Cail 125 State Chick Chem Cail 125 State St	189	03-6		\rightarrow		NONE	33	NONE		23	NONE	Alt	#N/A
13 Volt Cali 24 Oct Cali 24 Oct Cali 24 Oct Cali 25 Oct Cali 26 Oct Cali	23	03-7		_		NONE	32	NONE		54	NONE		
C115 Connector C04-11 C011 Red Re-5 189 Unused 11 NONE SP NONE SP NONE SP NONE SP SP SP SP SP SP SP S	-	03-8	7 Ch9 Green	_		NONE	33	NONE		55	NONE	2070 Port	Parms [6.
CH15 Connector CH2 88 Unused 15 NONE 25	4-1		_	_		NONE	8	NONE		98	NONE	Port Baud	
12 Diazo Cubern Ch4-5 15 Ch11 Red Ref. 18 Unused 15 NONE 28 NONE	_	04-2	_			NONE	33	NONE		25	NONE	- 1	
19 Dozo Open Oct 19 Chita Red 16 NONE 18 NONE 19 NONE	_	04-3				ONE	36	NONE		28	NONE	-	_
13 Door Open Out-5 State Monte Monte State State Monte State State Monte State State Monte State State Monte State State Monte State Monte State State Monte Mon	-	044				ONE	37	NONE		65	NONE	-	\rightarrow
188 Unused Ok-1 2 Chi 2 Red Ok-1 2 Chi 2 Red Ok-1 2 Chi 2 Red Ok-1 2 Chi 2 Red Ok-1 2 Chi 2 Red Ok-1 2 Chi 2 Red Ok-1 2 Chi 2 Cheen Ok-1 2 Chi 2 Cheen Ok-1 2 Chi 2 Cheen Ok-1 2 Chi 2 Cheen Ok-1 2 Chi 2 Cheen Ok-1 2 Chi 2 Cheen Ok-1 2 Chi 2 Cheen Ok-1 2 Chi 2 Cheen Ok-1 2 Chi 2 Cheen Ok-1 2 Chi 2 Cheen Ok-1 2 Chi 3 Chi 3 Chi 3 Chi 4 Yellow Ok-1 1 Chi 3 Cheen Ok-1 2 Chi 3 Chi 4 Yellow Ok-1 1 Chi 3 Cheen Ok-1 2 Chi 3 Chi 4 Yellow Ok-1 1 Chi 3 Cheen Ok-1 Chi 3 Cheen Ok-1 1 Chi 3 Cheen Ok-1 1 Chi 3 Cheen Ok-1 1 Chi 3 Cheen Ok-1 1 Chi 3 Cheen Ok-1 1 Chi 3 Cheen Ok-1 1 Chi 3 Cheen Ok-1 1 Chi 3 Cheen Ok-1 1 Chi 3 Cheen Ok-1 1 Chi 3 Cheen Ok-1 1 Chi 3 Cheen Ok-1 1 Chi 3 Cheen Ok-1 1 Chi 3 Cheen Ok-1 1 Chi 3 Cheen Ok-1 Ok-1 1 Chi 3 Cheen Ok-1 1 Chi 3 Cheen Ok-1 1 Chi 3 Cheen Ok-1 1 Chi 3 Cheen Ok-1 1 Chi 3 Cheen Ok-1 1 Chi 3 Cheen Ok-1 1 Chi 3 Cheen Ok-1 1 Chi 3 Cheen Ok-1 1 Chi 3 Cheen Ok-1 1 Chi 3 Cheen Ok-1 1 Chi 3 Cheen Ok-1 1 Chi 3 Cheen Ok-1 1 Chi 3 Cheen Ok-1 1 Chi 3 Cheen Ok-1 1 Chi 3 Cheen Ok-1 1 Chi 3 Cheen Ok-1 1 Chi 3 Ch	-	Den 04-5	_	18-8 189 Unused	17	ONE	88	NONE		9	NONE	-	-
138 Unused OS-1 15 Not Used OS-1	-	04-6		C11S-USER 10 Map [1.8.9.2 Out]	18	NONE	30	NONE		9	NONE	_	1
128 130	-	04-7				ONE	40	NONE		62	NONE	-	+
138 Unused OS-1 28 Christophilow OR-3 15 Not Used OS-4 OS-4 OS-4 OS-4 OS-4 OS-4 OS-4 OS-4 OS-4 OS-4	-	04-8	_			NONE	41	NONE	- 1	22	NONE	-	1
189 Unused OS-2 34 Chi10 Yellow OS-4 115 Not Used OS-2 34 Chi10 Yellow OS-4 115 Not Used OS-5 35 Chi17 Yellow OS-6 115 Not Used OS-6 35 Chi15 Chinwed OS-1 15 Not Used OS-1 15 Not Used OS-1 15 Not Used OS-2 115 Not Used OS-2 115 Not Used OS-2 115 Not Used OS-2 115 Not Used OS-2 115 Not Used OS-2 115 Not Used OS-2 115 Not Used OS-2 115 Not Used OS-2 115 Not Used OS-2 115 Not Used OS-2 115 Not Used OS-2 115 Not Used OS-2 115 Not Used OS-2 115 OS-2 115 Not Used OS-2 115 OS-2 115 Not Used OS-2 115 OS-2 OS-2 115 OS-2 OS-	_	05-1	8 Ch4 Yellow			NONE	45	NONE		25	NONE		9
189 Unused OS-3 12 Cht Yellow OS-4 115 Not Used OS-4 115 Not Used OS-5 63 Cht Zeen OS-4 115 Not Used OS-6 115 Not Used OS-6 115 Not Used OS-7 115 Not Used OS-6 115 Not Used OS-6 115 Not Used OS-7 115 No	_	7-50	4 Ch10 Yellow										
189 Unused OS-4 31 Ch7 Yellow OS-6 115 Not Used OS-7 OS-7 O	-	05-3			2070 IF	1 Addressing	6.5]		2070 IP 2 Ad	dressing	6.5]		
189 Unused OS-5 39 Ch15 Yellow OR-8 115 Not Used OS-6 63 Ch15 Green OS-8 115 Not Used OS-7 115 Not Used OS-7 115 Not Used OS-1 115 Not Used OS-1 115 Not Used OS-2 115 Not Used OS-2 115 Not Used OS-2 115 OS-2 115 OS-2 115 OS-2	-	054	_				-			ddressing	-		
189 Unused O5-5 63 Ch15 Green O8-8 115 Not Used O6-2 115 Not Used O6-3 115 Not Used O6-3 115 Not Used O6-3 115 Not Used O6-3 115 Not Used O6-3 115 Not Used O6-4 115 Not Used O6-4 115 Not Used O6-4 115 Not Used O6-5 115 Not Used O6-5 115 Ch13 Yellow O6-5 115 Ch14 Yellow O6-5 115 Ch14 Yellow O6-5 115 Ch14 Yellow O6-8 C6-2 C6-2 C		05-5	9 Ch15 Yellow	O8-7 115 Not Used	Addr	-			Addr	0		0	
189 Unused OS-7 115 Not Used OS-8 114 Watchdog OS-8 114 Watchdog OS-8 114 Watchdog OS-8 114 Watchdog OS-8 114 Watchdog OS-8 114 Watchdog OS-1 115 Not Used OS-2 115 Not Used OS-2 115 Not Used OS-3 12 Ch13 Yellow OS-8 12 Ch13 Yellow OS-8 Ch14 Yellow OS-8 Ch14 Green OS-8 Ch14 Gree		9-9-9-0	3 Ch15 Green	O8-8 115 Not Used	Mask				Mask	0		0	
189 Unused Col. 115 Not Used Col. Col	-	05-7			Brdcst				Brdcst	0		0	
189 Unused Ob-1 115 Not Used Ob-2 115 Not Used Ob-2 115 Not Used Ob-2 115 Not Used Ob-2 115 Not Used Ob-2 115 Not Used Ob-3 13 Ch13 Red Ob-4 37 Ch13 Yellow Ob-6 14 Ch14 Red Ob-6 14 Ch14 Red Ob-7 SPNC2 Ob-7 Ob-8 Ob-7 SPNC2 Ob-7 Ob-8 Ob-1 Ob-7 Ob-8 Ob-7 Ob-8 Ob-7 Ob-8 Ob-7 Ob-8 Ob-7 Ob-8 Ob-7 Ob-8 Ob-7 Ob-8 Ob-	_	05-8			GtWay				GtWay	0		0	
189 Unused O6-2 115 Not Used O6-3 13 Ch13 Red 2070 Port Binding Ports [6.6] 2070 Port Binding Functions [6.5] 189 Unused O6-4 37 Ch13 Yellow O6-5 61 Ch13 Green Changed<		1-90	15 Not Used		Port	0			Port	0		20	
189 Unused O6-3 13 Ch13 Red 2070 Port Binding Ports (6.6) 2070 Port Binding Punctions (6.6) 2070 Port Binding Functions (6.6) 2070 Port	_	06-2	15 Not Used										
189 Unused O6-4 37 Ch13 Yellow ASYNC1 SP1 Chto Mode Function Channel Function Channel Function Channel Function Channel Function Channel Function Channel Function Channel Function Channel Function Channel Function Channel Function Channel SYNUC2 ASYNC2 SP2 OFF 0 CMUMMU NONE SYNUC2 ASYNC2 ASYNC4 SP3 OFF 0 Channel Channel ASYNC2 ASYNC4	_	6-90			2070 Pc	ort Binding Port	s [6.6]		2070 Port Bi	nding Fun	ctions [6.6]		
189 Unused O6-5 61 Ch13 Green ASYNC2 SP1 OFF 0 TSZICVM NONE SYSUP ASYNC2 189 Unused O6-6 14 Ch14 Red ASYNC3 SP2 OFF 0 CMUMMU NONE SYSUP ASYNC1 189 Unused O6-7 38 Ch14 Yellow ASYNC4 SP4 OFF 0 CMUMMU NONE Shell NONE 189 Unused O6-8 62 Ch14 Green ASYNC4 SP4 OFF 0 Loop Det NONE NONE NONE 189 Unused O6-8 62 Ch14 Green SYNC5 SYNC3 OFF 0 CPS NONE NONE NONE	$\overline{}$	06-4				Port Echo	Mode		Function C	hannel Fu	nction Channel		
189 Unused O6-6 14 Ch14 Red ASYNC2 SP2 OFF 0F 0 CMUMMU NONE SYSDOWN ASYNC1 189 Unused O6-8 62 Ch14 Green ASYNC4 SP4 OFF 0 Loop Det NONE Shell NONE 189 Unused O6-8 62 Ch14 Green SYNC1 SP5S SYNC3 OFF 0 Loop Det NONE NONE SYNC2 OFF SYNC3 OFF OFF OFF NONE NONE NONE	_	06-5	11 Ch13 Green		ASYNC1	SP1							
189 Unused O6-7 38 Ch14 Yellow ASYNC4 SP4 OFF 0 PF 0 Per Ito Deptorm NONE Shell NONE 189 Unused O6-8 62 Ch14 Green SYNC1 SP6 SYNC3 OFF 0 CPS NONE NONE SYNC2 OFF SYNC3 OFF GPS NONE NONE	_	9-90			ASYNC2								
189 Unused O6-8 62 Ch14 Green	-	2-90			ASYNC3	SP3							
SYNC1 SP5S SYNC3 OFF GPS NONE Image: Control of the control o		8-90	2 Ch14 Green		ASYNCA					NONE			
SYNC2 OFF SYNC4 OFF					SYNC1					NONE			
					SVNC2								

	7 8 9 10 11 12 13 14 15 16													7 8 9 10 11 12 13 14 15 16											7 8 9 10 11 12 13 14 15 16							Detector Mode NORM NORM NORM NORM NORM NORM NORM NORM			7 8													6/13/2019 Page 5
	2 6													5 6											9 2							RM NORM NORM			1 5 6													ID: 7571 RTE 120 @ NEW KING STREET
	3	+						H	+	+	+	7.		3 4						-		H		131	3 4	H			-			ORM NO		1.4]	3 4		+	t		ł								FW KING
s [5.5.1	2	1			ř				T	İ	T		5.1.2	2						İ	İ	T		3+ 155	2			İ				NORM N		s+ [5.5	2		T	T										N W UC
ameter	-												ions [5	-										ameter	-							NORM		ameter	1													PTE 1
Alt# 1 Veh Parameters [5.5.1.1	Column#>	Assign Def	ES :	Switch	Delay	Extend	Quene	No Activity	Max Presence	Errofio Count	Citalic Count	rail lime	Alt# 1 Veh Options [5.5.1.2]	Column#>	Assign Det#	Call	Extend	Quene	Added Initial	Red Lock	Yellow Lock	Occupancy	Volume	Alt# 1 Veh Parameters+ [5.5.1.3]	Column#>	Assign Det#	Occ-on-green	Occ-on-vellow	Occ-on-red	Delay Phase 1	Delay Phase 2	Detector Mode	Source	Alt# 1 Ped Parameters+ [5.5.1.4]	Column#>	Assign Det#	No Activity	Max Presence	Erratic Count									ID: 7574
ſ	00	T	T	٦			Γ	Γ	Τ	T	7	[œ			Г		Γ	Γ	Γ	Τ	Τ	1	000	T	Γ	Τ	Τ	Τ	Γ	Γ	Γ	Γ		80	7,	5	Т	5	Γ		Γ		Г				Γ
t	7	Ť	1						t		1	ł	7							T	T	t		7	T	r	t	t	T	T	T				7	-	5	t	5	+								
t	9	†	1						T	Ť	1		9					T		T	T	T	ı	9		T		T	T	T	T				9		5	T	5		Г			Г				
	2	1							T	1			2											5											5		5	T	5									
	4	1							T	+			4											4											4	,	5		5					Г				
	3												3																					:1]	3		5		5									
1.6.1.2	7										- 0	1612	2										1613	2										1.1.6.2	2	,	5		5									
ole 11.	-						1			T	-	ble [1.	-										ble [1]	1										able [-		5		5									
Alt# 1 I Imes I able 1	Column#>	Assign to Min Cm	MINGM	Gap, Ext	Max 1	Max 2	Yel Clr	Red Clr	Walk	Dod Cir	ID DEL	Alt# 2 Times Table [1	Column#>	Assign Ø	Min Gm	Gap, Ext	Max 1	Max 2	Yel Clr	Red Clr	Walk	Ped Clr	Alt# 3 Times Table [1 1 6 1 3	Column# ->		Min Gm	Gap, Ext	Max 1	Max 2	Yel Clr	Red Clr	Walk	Ped Clr	Alt# 1 Options Table [1.1.6.2.1	Column # ->	Assign Ø	Soft Borall	Dual Enty	Enabl SimGap	Guar Passage	Rest In Walk	Cond Service	Reservice	Non-Act 1	Red Rest	Max2	Ped Delay	10.0

Alt# 2 Veh Parameters [5.5.2.1]	Column# > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	the state of the s	Call	Switch	Delay	Extend	Queue	No Activity	Max Presence	Frratic Count	Spi Time		Alt# 2 Veh Options [5.5.2.2]	Column#> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Assign Det#	Call	Extend	Onene	led Initial	3ed Lock	Yellow Lock	Occupancy	Volume	Alt# 2 Veh Parameters+ [5.5.2.3]	n#> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	#ac	Occ-on-green	Occ-on-yellow	con-red	Delay Phase 1	Delay Phase 2	Detector Mode NORM	Source	Alt# 2 Ped Parameters+ [5.5.2.4]	In#> 1 2 3 4 5 6 7 8	Assign Det#	Call	No Activity	Max Presence	Erratic Count									ID: 7571 RTE 120 @ NEW KING STREET 6/13/2019 Page 6
AI#2	Colur	As						_	Max	Fig	اَدَّ		AI#2	Colur	As				Ad		Ye	0	L	AI#2	Column#	As	000	- 000	0	Delay	Delay	Detec		AI#2	Column#	AS		2	Max	Епа	,								7
	8		Б			Б			Γ	I	I	I						80		o			ō											8		ō		I	ō										
	7		Б			ő												2		ō			ō											7		5			ő				4						
	9		ō	-	\dashv	ō			L	L	1	1						9		5			ర్											9		ā			ō										
	5		5		\dashv	ర్			L	L	1	1						2		5			5											2		5		-	5			A							
	4		ō		\dashv	ő					1	1						4		ő			5									11		4		ē		-	5						Ш				
2.21	3		ō	_	+	ō					1	1					.2.3]	3		ő			อ										2.4]	3		ō		-	5						Ц				
11.16	2		ō		\rightarrow	5						1					[1.1.6.2.3]	2		5			ő										[1.1.6.2.4]	2	\dashv	5		+	5						Ц				
Table	^		S S	=	_	ō	a)	×	a	0	0 -		15	2	λ	_	Table	-	0	s On		y	00 d	0)	×	a)	a)	-	#	2	٨	-	Table	~	-	ة S			5	(I)	~	a)	(I)	_	+;	2	>	_	
Alt# 2 Options Table [1.1.6.2.2]	Column # ->	Assign Ø	Lock Calls	Soft Recal	Dual Enrty	Enabl SimGap	Guar Passage	Rest In Walk	Cond Service	Receiving	Non-Act 1	וארוואון	Ked Kest	Max2	Ped Delay	Conflicting Ø1	Alt# 3 Options Table	Column # ->	Assign Ø	Lock Calls	Soft Recal	Dual Enrty	Enabl SimGap	Guar Passage	Rest In Walk	Cond Service	Reservice	Non-Act 1	Red Rest	Max2	Ped Delay	Conflicting Ø1	Alt# 4 Options Table	Column # ->	Assign Ø	Lock Calls	Soft Recal	Dual Enrty	Enabl SimGap	Guar Passage	Rest in Walk	Cond Service	Reservice	Non-Act 1	Red Rest	Max2	Ped Delay	Conflicting Ø1	

DayLink	Plan To																																		1e 7
Day		-		-	*		-	1		-	7		-	-		-	-		-	-		-	-	7		-	-	٠			-	-		-	1 Page
	30 31	On On	30 31		30 31	30 31		30 31	30 31		30 31	30 31		30 31	30 31	30 34		30 31	30 31		30 31	30 31		30 31	30 31	30 31		200	30 31	30 31		200	0 31	0 31	6/13/2019
	23	õ	29 3		23	29 3		29 3	29 3		29 3	29 3		28	29 3	20 3		29 3	29 3		29 3	29 3		2 87	29 3	29 3		287	29 3	29 3		06 82 07	29 30	29 30	6/13
	28	ត	7 28		97 /	7 28		7 28	7 28		7 28	7 28		87	7 28	7 28		7 28	7 28		7 28	7 28		07	7 28	7 28		07	7 28	7 28	00	07	28	28	
	26 27	000	26 27		17 97	26 27		26 27	26 27		26 27	26 27		17 97	26 27	76 27		26 27	26 27		26 27	26 27		17 07	26 27	26 27		17 07	26 27	26 27		17 07	26 27	26 27	
	25	10n0n	25	c	27	25		25	25		25	25	6	S	25	25	3	25	25		25	25	40	S	25	25	č	3	25	25	30	S	25	25	
	23 24	n Or	23 24		47 57	23 24		23 24	23 24		23 24	23 24		73 74	23 24	23 24		23 24	23 24		23 24	23 24	AC C		3 24	3 24		t7 C7	3 24	23 24	70		3 24	3 24	
	22 2	0	22 2		777	22 2		22 2	22 2		22 2	22 2		7 77	22 2	22 2		22 2	22 2		22 2	22 2	22 22		22 23	22 23	000		22 23	22 2	20 00	7 77	22 23	22 23	
	0 21	o u	21		17 (0 21		21	21		21	21	2	17	21	24		21	21		21	27	5	17	21	21	2	17	21	21	5	7	21	21	
	19 20	ō	19 20		N 50	19 20		19 20	19 20		19 20	19 20		28	19 20	19 20		19 20	19 20		19 20	19 20	10 20		19 20	19 20	000		19 20	19 20	000	13 70	19 20	19 20	
	138	5	199	9	0	48		∞	8		19	9		0	18	œ		100	18		200	100	o c		200	100	0,		18 1	18	O.		18	18	
	16 17	ō	16 17		2	16 17		16 17	16 17		9 11	16 17		-	9 17	17		9 17	5 17		2 17	5 17	17		3 17	3 17	47		2 17	3 17	17		3 17	11	
	15 1	0	15 1		2	15 1		15 1	15 1		15 16	15 1		0 0	15 16	15 16		15 16	15 16		15 16	15 16	15 16		15 16	15 16	15 10		15 16	15 16	15 16		15 16	15 16	
	3 14	On On On On On On On On On On On On On O	14	7	<u>t</u>	4		4	14		14	14	;	4	14	14		14	14		14	4	*	<u>+</u>	14	14	*	<u>+</u>	14	14	*	*	14	14	
	12 13	Ö	12 13		2 2	12 13		12 13	12 13		12 13	12 13		5 2	12 13	12 13		12 13	12 13		12 13	12 13	17 13		12 13	12 13	49 49		12 13	12 13	10 13		12 13	12 13	
	=	5	=			=		=	=		=	=			=			=	11		=	11			11	=======================================	*		11	= 1	*		11	11	
	10	စ်	9		2	9		9	9		9	9		2	9	10		9	10		9	9	4		9	9	5	2	10	9	40	2	9	9	
	8	0	8 9		0	8 9		න න	8	-	8	8		0	8 3	00	\vdash	8	8		о 8	8	0		8	8	0		8	8 9	0		8	8	
	1	ō	7	7	-	1	1	1	1		7	1		-	7	7		7	7		7	1	7		1	1	1		1	1	7		1	1	
	5 6	o o	5 6		0	5 6		2 6	5 6		5 6	5 6		0	9 9	5		9	5 6		9	9	· ·	-	9	9	u		9	9	ď		9	9	
	4	5	4		+	4		4	4		4	4		+	4	4	-	4 5	4		4 5	4 5	A		4 5	4 5	4		4 5	4 5	A		4 5	4 5	
	e	ő	e	c		က		m	က		m	က		2	e			m	က		m	က	~	>	es	m	c	,	m	က	~	,	e	m	
Date	1 2	ō	1 2		7	1 2		1 2	1 2		1 2	1 2	4		1 2	1 2		1 2	1 2		1 2	1 2	1 2		1 2	1 2	0		1 2	1 2	1 2		1 2	1 2	
	S		S	U	0	S		20	S		S	S		0	S	S	H	S	S		20	S													
		5	L	u		ш			ш		ш	ш			H	ц	\vdash	LL.	Щ		_	ш	ц		R	S	0	-	FS	S	п С		S	S	
		5	_	-									-	-			H					-			-	-								L	
	8	5	>	W		*		>	8	-	>	×	W	^	*	>		>	8		>	>	3	-	*	*	M	-	8	>	N		M	×	
		-	_	-		-		_	-		_	_	-		_	-		_	_			-	-		_		-		_	_	-		_	_	
Day of week	Σ	5	Σ	2	N.	2	2	Σ	Σ		×	2	2	2	×	2		Σ	Σ		Σ	Σ	2		×	⊥ W	N		2	×	2	i.	2	2	
	S		S	U)	S	c	n	S		S	S	U	2	S	S		co	S		S	S	U.		S	S	U		S	S	U		S	S	
	2	<u>_</u>	0	_		0		2	0		0	0	_		O	0		0	0		0				0	0			_	0			0		
	z	5	z	2		z		Z	z		z	z	N		z	z		z	Z		z	O	2		N	O N	2		O	z	2		N	O	- R
	0		0	C		0		0	0		0	0	0		0	0		0	0		0	0	0		0	0	0		0	0	0		0	0	S
(S	U		S		n	S		S	S	U		S	S		S	S		n	S	U.		S	S	0		S	S	V.		S	S	RTE 120 @ NEW KING STREET
. 4	Y (5	V	A		A		<	A		V	A	٧		V	V		V	V		¥	A	A		A	V	٥		V	V	Δ		V	V	3
5 -	٦ (5	_			7		7	7		-	-	-		7	-		_	7		7	-	-		7	7			-	7	-		_	7	H
5	٦ (5	_	-	•	7		7	7		7	7	-		-	-		_	7		7	-	-		7	7	-		-	7	-		-	7	0
5	Σ (7	E	×		Σ		2	Σ		Σ	×	N		×	2		Σ	Σ		2	Σ	2		×	×	2		Σ	Σ	2		×	×	12
1	₹ (5	V	A	-	A		<	A		V	V	4		V	A		A	A		4	V	A		V	V	٥		V	A	A		A	A	ZE-
100	≥ (5 :	×	2		Σ		2	Σ		Σ	Σ	N		×	Σ		Σ	Σ		Ξ	Σ	2		×	Σ	2		×	Σ	2		×	Σ	
5	۲ ,		4	ш		щ	u	_	щ	L	ட	ட	u		ட	ш		_	ш		_	ш	щ		ш	ட	ш		ı	ட	ц		ட	щ	17
Amina Schedule [4:3] Molitin of Teal		_	-	-	•	7	-	-	7	-	7	-	-	•	7	7		7	7	-	7	7	-	,	7	7	-	•	_	-	-	•	7	7	ID: 7571
(-		2		m	4		2	9		1	00		6	10	;	=	12	13		14	15		16	11	000		13	20	21		22	23	24	=

Day Plan 2 Day Plan 3	Action Table [4.5] Coord Alternate Tables - Pat+ [2.6]	
Art Date	14 12 12 12 12 12 12 12 12 12 12 12 12 12	Overlap Off
1 9		DET DET
10 2 10 2	2	DFT OFT
	60	DET
	T 10	110
9	Ψ	DET
7 15 7	7	DET
8	8	DFT
-	50	DFT
Min Act Hour Min Act Hour Min Act 10	10	DFT
11 0 0 0 8 0 0 1 0 0 1 0 0 0 1	**	THO
12	12	190
	13	DFT
0 0 12 0 0 0 4 0 0 0 12 0 0 0 14	7.	DFT
0 5 0 0 0 13 0 0 0 5 0 0 0 13 0 0 0 15	15	DFT
0 6 0 0 0 14 0 0 6 0 0 0 14 0 0 0 15	9	DET
71 0 0 0 15 0 0 0 7 0 0 0 15 0 0 0 7 0		
8 0 0 0 16 0 0 0 8 0 0 0 16 0 0 18	- c.	130
Day Plan 8 Day Plan 9 10	9	130
Min Act Hourd Min Act Hourd Min Act 20	2 8	120
	2 2	140
0 2 0 0 0 10 0 0 2 0 0 0 10 0 0 2	22	190
0 0 11 0 0 0 3 0 0 0 11 0 0 0	83	THO DET
0 4 0 0 0 12 0 0 4 0 0 0 12 0 0 0 24	24	190
0 5 0 0 0 13 0 0 0 5 0 0 0 13 0 0 0 25	522	DFT
0 6 0 0 0 14 0 0 0 6 0 0 0 14 0 0 0	92	T40
0 7 0 0 0 15 0 0 0 7 0 0 0 15 0 0 0	27	DFT
0 8 0 0 0 16 0 0 0 8 0 0 0 16 0 0 0	788	DFT
Day Plan 11 Day Plan 12	53	DFT
Houri Min Act Houri Min Act Houri Min Act Houri Min Act	GE?	THO
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	č	190
0 2 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0	30	DET
	8 8	
	22 82	
0 2 0 0 2 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0	. *	LE U
	3 8	100
	25 26	
0 0 16 0 0 8 0 0 16 0 0	, e	DET
Dav Plan 14 Dav Plan 15	\$ 2	DET.
Vin Act Hourd Min Act Hourd Win Act	3 4	130
3 0 0 0 11 0 0 0 3 0 0 0 11 0 0 0 0 11 0 0 0 0	43	DET
0 0 0 0 0 0 0 0 0 0 0 0 0 0	77	DET
	24	
	2 4	150
0 7 0 0 0 15 0 0 0 7 0 0 0 15 0 0 0	10.7571 RTE 120 @ NEW KING STF 47	140
	Danne	

	ნ ნ	Ø	Phase	Ø Phases Called By Ø	ByØ		From To Fro	To From	일	From	2	From	읻	L	1 2 3	33	4	2	9	7	8	9	=	12	3	14
2 Stop Timing	ا ا ا	- c		+	1	- 0	+	+				1	1	- 0	+	+	1			+		1		Ť		
	On On	_	1	+	1	4 6	+	-	1	1		1	T	7 6	+	+	1	I	+	+	+	+	I	+	†	ш
	์ อ			+		4	+	H	-			-	1	2 4	+		-	Γ		+	+	Ļ		t	$^{+}$	
6 External Alarm # 2	On On	_		10		5							1	2							-	L				ı
7 External Alarm #3		9				9		-						9											-	
8 External Alarm # 4		7		1		7								7						-		L			-	
9 Closed Loop Disabled	On On	80				80		L	L					80	-						-					
10 External Alarm # 5		6				6								6	-						-				-	
11 External Alarm #6		9				9	-	-						9											-	ı
12 Manual Control Enable	On On	7				11		L						Ξ											-	
13 Coord Free Input		12		-		12		-						12	-	-									-	
14 Local Flash Input	On On	13				13								13							-				H	
15 MMU Flash		14				14	-	_						14						-	-				_	
16 CMU Flash		15				15	-	-						15						-	-				-	
17 Cycle Fault	On On	_				16		-					1	16						-					-	
18 Cvcle Failure	O O		Call &	Alt Call & Redirect # 1 [1.1.6.3]	ect # 1	11.16	31							Alt	Alt Inhibit Phases	hase	5#111	1.6	31			1			-	
_	on O		Ø	Phases Called Bv Ø	alled B	0		From To	From	To	From	To F	From To	_	1 2	.3	4	ĸ	9	7	0	10	11	12	14	
-	o o			-		I	-				_			-	-	H	H		,	-	H	H		-	\vdash	
_		_		-	F	Γ	- 6	+	-			+	+	0	+	+	1	I	T	+	+	+		t	+	
_		4 0	1	+		I	1 0	+	1	\prod	1	1	+	, ,	+	+	1		+	+	+	1	I	t	+	
22 Critical CDI C Egiluro		2 -	†	+	1	I	2 <	+	1	1		+	+	2 4	+				+	+	+	+	I	+	+	
_		t 4	+	+		T		+	1			+	+	1 1	+	+	1	I	1	+	+	4	I	t	+	
24 Keselveu	5			+		I	0 0	-					+	0 4	+				T	\dagger	+	+	I	t	+	
_				+	1	I	1 0	+	1	1		+	+	0 1	+	+	1	I	†	+	+	+	I	†	+	
		_ 0		+	1	I	_ 0	+	1			1	+	_ 0	+	+	1			+	+	+		1	+	
_	5 6		-	-	-	- 2	0 5	+					4	0	11.1	-			-	-		4			+	
_	5		Call &	Alt Call & Redirect # 2 [1.1.6.3]	ect # 7	0.1.1			Г			-		<u></u>	Alt Inhibit Phases	hase	#		3							
_	_ပ	_	Ø	Phases Called By Ø	alled By	9		From To	From	To	From	으	From To	_	1 2	3	4	2	9	7	8	9	=	12	13 14	
30 Coord Diagnostic Fault		-					-	-			j		-	-		_										
41 TempAlert Probe Ch. A		2					2							2												
42 TempAlert Probe Ch. B		n					m	-					-	3	-	_								i		
47 Coord Active		4				Γ	4	-	L				-	4	-	-				-	-	L			H	
48 Preempt Active	On On	_				Γ	2	-					-	5		-				-	-	L			-	
-	O O	_		-		Γ	9	-	L			-	-	4	+	-	L			+	-	L			+	
_	5	_		+		T	, ,	+	-			+	+	^	+	+	1	I	1	+	+	1		T	+	
_	6			+		Ι	- a	+	1			+	+	- α	+	+	1	I	T	+	+	+	I	t	+	
	5 5		Coord	CIC Diane [2 3	c [2 3]		0	-			Init	Init Daramotore	ptore	11 2 41	-	-					-	-			+	
_	5 6		0,000	1	2 6.0	0	Г	П	7	0	VII	Olivia V	ס) C	M	2	Time			Γ						
_	5		200000	MOID	7	,	-	-	-	0	AIIOM	Allow Skip Tellow	MOIIS	5	Š	X CYC	Max Cycle IIIIe			T.						
54 Preempt 6 Input	o o	-	OFF					+			90	TOD Dim Enable	aple	占	٥ ا	cle Fai	Cycle Fault Action		ALARM	_						
55 Preempt 7 Input	O O	2	OFF								Tone	Tone Disable	151	OFF												
56 Preempt 8 Input	On On	3	340	1							Diamo	Diamond Mode	e	4Ph												
57 Preempt 9 Input	On On	4	9FF								Backu	Backup Time (s)	(s)	900												
_	On On		to Flas	Auto Flash Phase/Olap	se/Olai	Sett	Settings [1.4.2]	4.21			Disab	Disable Init Ped	98	OFF						Г						
61 In Transition	On On	-	0	_	L		-	-	L		Cycle	Cycle Fault Action	ction	ALARM	W					T						
		-			•								-													

TE 262-12 (7/91)

MODEL 179 SIGNAL OPERATION PROGRAMMABLE FEATURES SIGNAL OPERATION SPECIFICATION

TAPS_			
STUDY	#		
FILE#_			
PAGE	18	ΩF	20

SIGNAL#	W-571

COUNTY

WESTCHESTER

DATE _09/07/03

D259096

TABLE OF SWITCH PACKS

			IAE	PLE OF SW	ITCH PACKS			
SWITCH	FUNCTION	INDICATIONS	FACE	TERMINA	L WIRING BOARD	161XFA	TERMINA	L WIRING BOARD
PACK	- GROTION	in Dioxilono	IAGE	TERMINAL	WIRE COLOR CODE	וטוארא	TERMINAL	WIRE COLOR CODE
		Red		SP 1 R	14 / 5C - B - R		SP 1 R	14 / 5C - A - R
1	Ø 1	Yellow	1	SP1Y	-0	2	SP1Y	-0
1	2	Green	•	SP 1 G	- G]	SP 1 G	- G
	<u> </u>	Ground Wire		Grnd Bus	- W		Grnd Bus	- W
				SP 2 R			SP 2 R	
2				SP 2 Y		<u> </u>	SP 2 Y	
				SP 2 G			SP 2 G	
	<u> </u>	Ground Wire		Grnd Bus	44/400 5 5/5		Grnd Bus	
	Ø 3	Red		SP 3 R	14 / 10C - D - R / B		SP 3 R	14 / 10C - C - R / B
3	WIRE ARROWS	Yellow Green/ 	5	SP 3 Y SP 3 G	-0/B	6	SP 3 Y	-0/B
	TO BALL GREENS	Ground Wire		Grnd Bus	-G/B		SP 3 G	- G / E
		Gloula Wile		SP 4 R	-W/B		Grnd Bus	- W / E
				SP 4 Y			SP 4 R SP 4 Y	<u> </u>
4				SP 4 G		}	SP 4 G	
		Ground Wire		Grnd Bus		-	Grnd Bus	
	 	Red		SP 5 R	14 / 10C - C - R	┝─┤	SP 5 R	14 / 10C - D - R
	~-	Yellow		SP 5 Y	-0	! .	SP 5 Y	-O
5	Ø 5	Green	3	SP 5 G	- G	4	SP 5 G	- G
	1	Ground Wire		Grnd Bus	- w		Grnd Bus	- W
	<u> </u>			SP 6 R			SP 6 R	- 44
c				SP 6 Y			SP 6 Y	
6				SP 6 G			SP 6 G	
		Ground Wire		Grnd Bus			Grnd Bus	
				SP 7 R			SP 7 R	·
7				SP 7 Y			SP 7 Y	
,				SP 7 G		Ì	SP7G	
		Ground Wire		Grnd Bus			Grnd Bus	
				SP 8 R			SP8R	
8				SP8Y			SP 8 Y	
•				SP 8 G			SP 8 G	
		Ground Wire		Grnd Bus			Grnd Bus	
				SP 9 R		<u> </u>	SP 9 R	
9				SP 9 Y		<u> </u>	SP 9 Y	
		Crown d Wine		SP 9 G		L	SP 9 G	
		Ground Wire		Grnd Bus			Grnd Bus	
				SP 10 R SP 10 Y			SP 10 R	
10		<u> </u>	}	SP 10 Y			SP 10 Y	·
		Ground Wire	<u></u>	Grnd Bus		 	SP 10 G	
		Ground Frite		SP 11 R			Grnd Bus	
			}	SP 11 Y		· -	SP 11 R SP 11 Y	
11			}	SP 11 G		}	SP 11 G	
		Ground Wire	ŀ	Grnd Bus			Grnd Bus	
				SP 12 R			SP 12 R	
40			•	SP 12 Y	<u> </u>	ŀ	SP 12 Y	
12			Ì	SP 12 G		 	SP 12 G	
		Ground Wire	ļ	Grnd Bus		F	Grnd Bus	<u> </u>
• •				SP 13 R			SP 13 R	- -
13	1		ľ	SP 13 Y		†	SP 13 Y	
13			f	SP 13 G		F	SP 13 G	
	<u> </u>	Ground Wire	1	Grnd Bus		<u> </u>	Grnd Bus	
				SP 14 R			SP 14 R	
14			Ī	SP 14 Y	· · · · · · · · · · · · · · · · · · ·	T	SP 14 Y	<u></u>
1-4			Ī	SP 14 G	*	T	SP14 G	***************************************
		Ground Wire		Grnd Bus		F	Grnd Bus	

TE 262-12 (7/91)

MODEL 179 SIGNAL OPERATION PROGRAMMABLE FEATURES SIGNAL OPERATION SPECIFICATION

TAPS		
STUDY#		
FILE#		
PAGE 19	OF.	20

SIGNAL	#	W-571
SILTIVAL	44.	

COUNTWESTCHESTER DATE

D259096

CONFLICT / CURRENT MONITOR PROGRAMMING

CONFLICT MOI	NITOR DIODES TO BE CUT	CONFLICT MONITOR YELLOW JUMPERS TO BE INSTALLED	CURRENT MONITOR DIODES
SP1 - SP5			2, 4, 5 -14
		•	
· 			
2770			
OTES:			
			
			3
<u>.</u>			
		-	
		······································	

TE 262-12 (7/91)

MODEL 179 SIGNAL OPERATION PROGRAMMABLE FEATURES SIGNAL OPERATION SPECIFICATION

TAPS_			
STUDY	#		
FILE#_			
PAGE	20	OF	20
N9/N7/N3 ⁻		_	

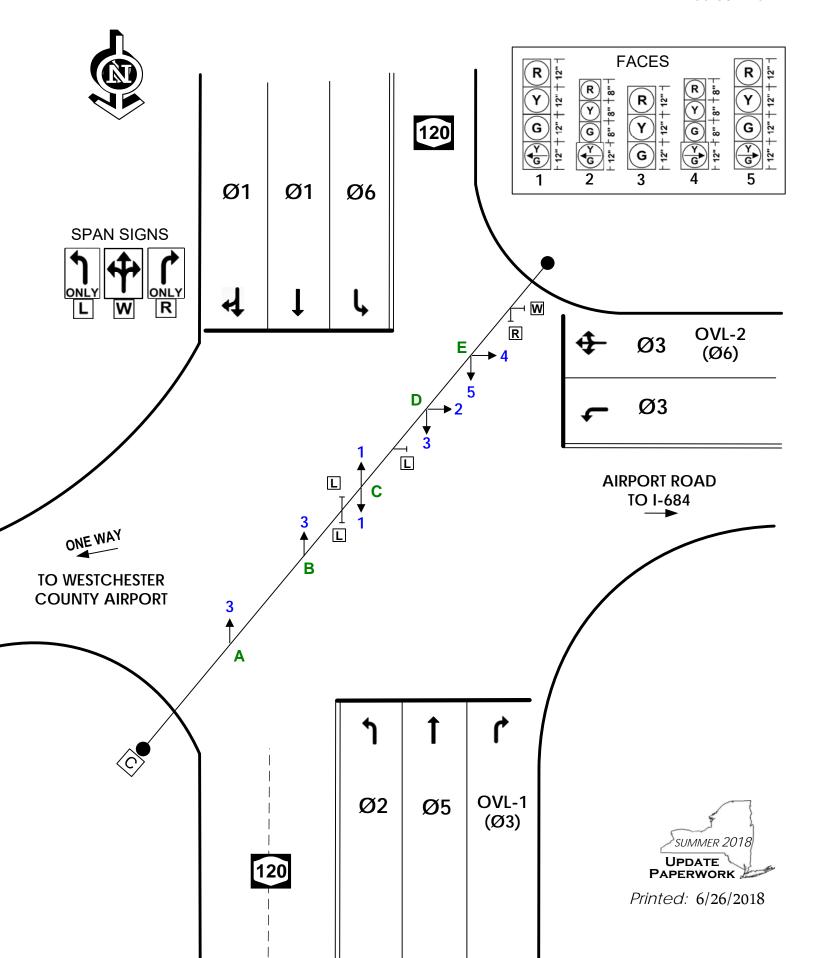
SIGNAL#	W-571
OIGINAL #	

COUNTY WESTCHESTER DATE 09/07/03

D259096

TABLE OF INPUT WIRING

·			OF INPUT W		
TERM. NUMBER	FUNCTION	DET. NO.	DET. TYPE	DET. AN OVER	REMARKS
1A, 1B	Ø1	1A	QUADRAPOLE		PRESENCE LOOP
2A, 2B				***************************************	
3A, 3B	Ø 3	3A	QUADRAPOLE		PRESENCE LOOP
4A, 4B					
5A, 5B	Ø 5	5A	QUADRAPOLE		PRESENCE LOOP
6A, 6B					·
7A, 7B					
8A, 8B					
9A, 9B					· · ·
10A, 10B					
11A, 11B	Ø 1	11A	NORMAL		PRESENCE LOOP
12A, 12B					
13A, 13B	Ø3	13A	NORMAL		PRESENCE LOOP
14A, 14B					
15A, 15B	Ø 5	15A	NORMAL		PRESENCE LOOP
16A, 16B					· ',
17A, 17B					
18A, 18B					
19A, 19B					
20A, 20B					· · · · · · · · · · · · · · · · · · ·
21A, 21B					
22A, 22B					
23A, 23B	Ø 3	23A	QUADRAPOLE		PRESENCE LOOP
24A, 24B	Ø 3	24A	NORMAL		PRESENCE LOOP
25A, 25B					
26A, 26B					
27A, 27B					- P
28A, 28B					, , , , , , , , , , , , , , , , , , ,


W-144
Signal #

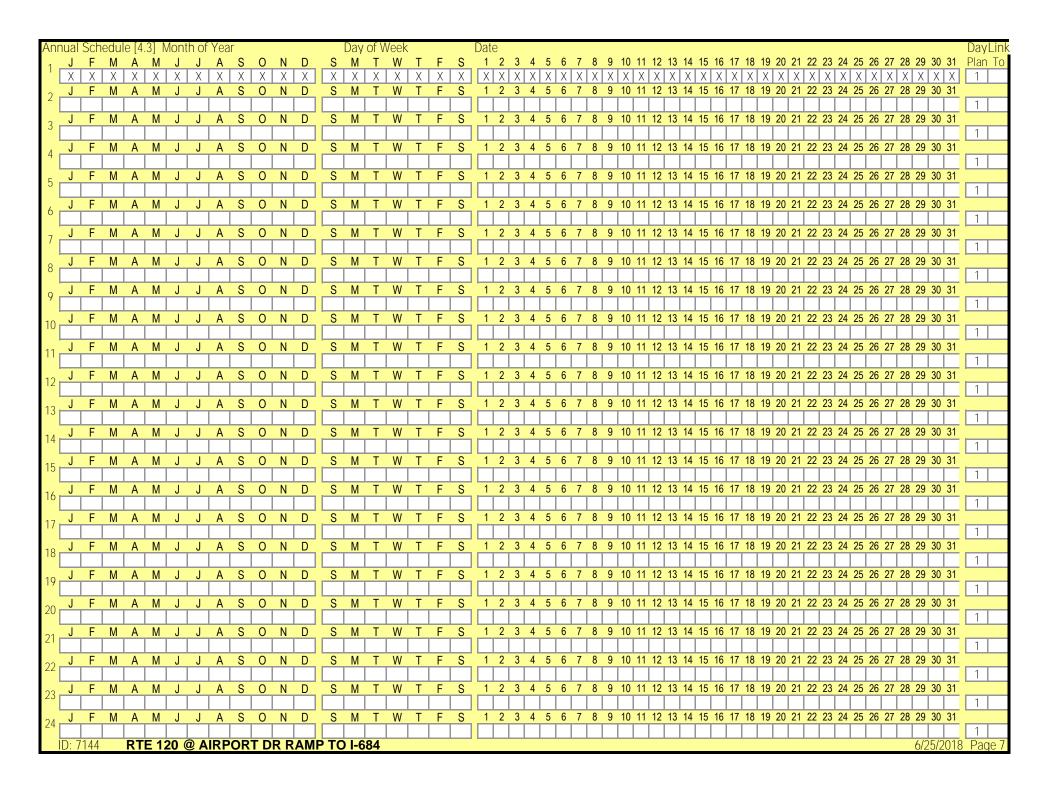
STATE OF NEW YORK - DEPARTMENT OF TRANSPORTATION TRAFFIC AND SAFETY DIVISION

in the Town of NORTH CASTLE

Signal: W-144

File: 55.38-120

Phase Times [1.1.1									Cod	ordina	tion F	Patter	ns [2.	4] and	d Coor	rdinat	tion S	plit T	able:	s [2.7.	.1]									
	1	2	3	4	5	6	7	8	Pat#	Сус	Off	Split	Seq	Pat#	Сус	Off	Split	Seq	Pat#	Сус	Off	Split	Seq	Pat#	Сус	Off	Split	Seq		
Min Green	8	3	5		25	3			1	0	0	1	4	13					25					37					1 S	TD8
Gap, Ext	2	2	3		2	2			2	0	0	2	4	14					26					38					1	
Max 1	40	15	40		40	15			3	_	_			15					27					39					1	
Max 2	20	15	60		20	15			4					16					28					40					Ring/Star	tup [1.1.4]
Yel Clearance	5	5	4		5	5			5					17					29					41					Phs Ring	Start Enable
Red Clearance	2	2	1		2	2			6					18					30					42					1 1	GREEN On
Walk			'						7					19					31					43					2 1	RED On
Ped Clearance									8					20					32					44					3 1	RED On
Red Revert									9					21					33					45				-	4 1	RED Off
Add Initial									10					22					34					46				-	5 2	GREEN On
Max Initial									11																				_	
														23 24					35 36					47 48						RED On
Time B4 Reduct									12		4	0	1		-	^	7	0		1	4	0	1		-	^	7	0	7 2	RED Off
Cars B4 Reduct									Spli	_	1	2	3	4	5	6	1	ī	Split			2	3	4	5	6	1	8	8 2	RED Off
Time To Reduce									1	Coor	0	0	0	0	0	0	0	0	13	Coor								-	Coord Mod	
Reduce By							-		_										4.4	_								-	Test OpMode	0
Min Gap									2	Coor									14	Coor								1	Correction	SHRT/LNG
DyMaxLim									_											_								-	Maximum	MAX 1
Max Step			0		-	,	_		3	Coor									15	Coor								-	Force-Off	FLOAT
Options [1.1.2]	1	2	3	4	5	6	7	8																					Closed Loop	ON
Enable	On	On	On		On	On			4	Coor									16	Coor									Stop-in-Walk	OFF
Min Recall	On				On																								Auto Reset	ON
Max Recall									5	Coor									17	Coor									Expand Splt	OFF
Ped Recall																													Ped Recycle	NO_RECYCLE
Soft Recall									6	Coor									18	Coor									Before	TIMED
Lock Calls																													After	TIMED
Auto Flash Entry									7	Coor									19	Coor									Auto Flash	[1.4.1]
Auto Flash Exit																													Auto Flash	PH OVER
Dual Entry	On			On	On			On	8	Coor									20	Coor									Flash Yel	45
Enable Simul Gap	On	On	On	On	On	On	On	On																					Flash Red	0
Gaurantee Passag									9	Coor									21	Coor									Unit Param	s [1.2.1]
Rest In Walk																													Phase Mode	STD8
Conditon Service									10	Coor									22	Coor									IO Mode	USER
Non-Actuated 1																													Loc Flsh Start	ON
Non-Actuated 2									11	Coor									23	Coor									Start Flash(s)	0
Add Init Calc																													Start AllRed(s)	0
Options+ [1.1.3]	1	2	3	4	5	6	7	8	12	Coor									24	Coor									Yellow < 3"	OFF
Reservice																													Display Time	20
PedClr Thru Yel									Pa	age#																			Red Revert	3
Skip Red No Call										1	8 P	hase	Time	s/Opt	ions;	Patt	erns/	Splits	; Ri	ng St	artup	; Coo	rd/Fla	ash N	lode;	Unit	Para	m	MCE Timeout	0
Red Rest									14	&1B	16 P	hase	Time	s/Opt	ions;	Patt	erns/	Splits	; Ri	ng St	artup	; Coo	rd/Fla	ash N	lode;	Unit	Para	m	Feature Profile	0
Max II										2												not as							Free Ring Seq	1
Call Phase										3												dete							Auxswitch	STOPTM
Conflicting Phase										4		mptic																	SDLC Retry	0
Omit Yellow										5		ual So																	TS2 Det Faults	ON
Ped Delay								1							ables:	Con	ord Al	t Tabl	le+ (value	s var	ried by	/ time	of-da	av)				Auto Ped Clea	
Grn/Ped Delay								1		7		muni							- 1)							SDLC Retry	0
ID: 7144	RTF 1	20@	AIRP(ORT D	R RAN	MP TO	1-684	•		8									ct: F	P/OLA	P Aı	uto Fla	ash: (CIC:	Misc	Unit	Para	m	06/25/18	Page 1


$\bigcirc \lor \land$	erlap 1-1	6 Progr	ram l	Parm	15 & F	arn	n+ [1	1521	1 [1	522)]														Coor	d Tran	isition. C	oorPh	ıs [2 !	5]						
-	rlap Confli							hibit				Ph C	earand	e O	N	Ext	ra Inclu	ded F	Ph I	OF	F						Long Dw) F-Yld	Offset	RetHld	Float	Min Veh Perm	Min Ped Perm
	Included		3		T	T	I		T		NORM/		-	luded Ø		I	T	T	Ť	T	T	Т	IN	NORMAL	1	12	22	0		1		EndGRN	1 1011 110			
1	Modifier 9		5			Ħ	_		_	_	Gm	_	_	difier Ø						<u> </u>				Grn	2	12	22	-		-		EndGRN				
	Conflict &	_				T	_		_		_	4		nflict Ø						<u> </u>				Yel 3.5	3	12	22	-		-		EndGRN				
Α	Conflict C			- t		+				_	Red	1	_	nflict Ola	an			+		t				Red 1.5	4	12	22			- 1		EndGRN				
1.	Conflict F			- t		+					LG	∸l		nflict Pe				+		t				LG	5	12	22			- 1		EndGRN				
	Included		3	6	Ť	Ť	Ť				NORM/	AI I		luded Ø		i	Ť	Ť	Ť	Ť	Ť	$\overline{}$		NORMAL	6	12	22				+	EndGRN	1			
2	Modifier 9	_	J	U	-	- t			-	_	Gm	_	_	difier Ø			— 	-		- t		-		Grn	7	12	22				+	EndGRN	1			
1 -	Conflict &				+	\dashv	-		-		_	4		nflict Ø		-	-+	\dashv	-	-	-	-		Yel 3.5	8	12	22	-	+		+	EndGRN				
В	Conflict C					-				_	Red	_	_	nflict Ola	n			-						Red 1.5	9	12	22					EndGRN				
15	Conflict F					-					LG			nflict Pe				-						LG 1.5	10	12	22					EndGRN				
				H	+	H			_		NORM/	VI I		luded Ø		- i	-	÷	-	÷	-	\rightarrow		NORMAL	11	12	22	-			+	EndGRN	+	1		
3	Included Modifier				-	\dashv			-	_	Gm	_		difier Ø	-			+						Grn	12	12	22	-			+	EndGRN	+	1		
3						-					Yel :	_		nflict Ø				-	1		1			Yel 3.5	13	12	22				+	EndGRN				
_	Conflict (+	+		-	_	_				nflict Ola			-	+		-		_														
С	Conflict C				+	+		-	_			1.5					-	+		-		_		Red 1.5	14	12	22					EndGRN				
	Conflict F	_			+	+	-	-	+		LG			nflict Pe		_	-	+	_	+	_	-		LG	15	12	22	+	\vdash	+	+	EndGRN	1	1		
	Included		_	_	_	+	4		+	_	NORMA	_		luded Ø		_		+	_		_		_	NORMAL	16	12	22	-	\vdash		-	EndGRN	1	1		
4	Modifier 9				_	_	_	_	_		Gm	_		difier Ø		_	_	_	_	_	_	_		Grn	17	12	22	_	\vdash	_		EndGRN	1	<u> </u>		
	Conflict &				_	4				_	Yel :	_		nflict Ø				4						Yel 3.5	18	12	22					EndGRN				
D	Conflict (_			_		Red	1.5		nflict Ola				_	ļ		ļ			Red 1.5	19	12	22	_	\sqcup			EndGRN	1	1		
	Conflict F			l		4					LG			nflict Pe					I		I			LG	20	12	22					EndGRN				
	Included					_				_	NORM/	_	_	luded Ø				_						NORMAL	21	12	22					EndGRN				
5	Modifier 9										Grn	_		difier Ø										Grn	22	12	22					EndGRN				
	Conflict &	Ø									Yel :	_		nflict Ø										Yel 3.5	23	12	22					EndGRN				
E	Conflict C	Olap										1.5	_	nflict Ola										Red 1.5	24	12	22					EndGRN				
	Conflict F	Ped									LG		Co	nflict Pe	d									LG	25							BegGRN				
	Included	Ø								Ν	NORMA	λL	Ind	luded Ø									N	NORMAL	26							BegGRN				
6	Modifier 9	Ø									Grn	·	14 M	difier Ø									(Grn	27							BegGRN				
	Conflict &	Ø									Yel :	3.5	Co	nflict Ø									,	Yel 3.5	28							BegGRN				
F	Conflict C	Olap									Red	1.5	N Co	nflict Ola	ар								F	Red 1.5	29							BegGRN				
	Conflict F	Ped									LG		Co	nflict Pe	d									LG	30							BegGRN				
	Included	Ø	П	T	Т	Т	T		Т	N	NORMA	AL	Ind	luded Ø		I	Т	Т	П	Т	П	Т	N	NORMAL	31							BegGRN				
7	Modifier 9	Ø									Grn	− -	15 M	difier Ø									(Grn	32							BegGRN				
	Conflict &	Ø									Yel :	3.5	Co	nflict Ø									_ [`	Yel 3.5	33							BegGRN				
G	Conflict C	Olap									Red	1.5	o Co	nflict Ola	ар									Red 1.5	34							BegGRN				
	Conflict F	Ped									LG		Co	nflict Pe	d									LG	35							BegGRN				
	Included		ī	î	Ť	Ť	Î		Ť		NORM/	۸L		luded Ø		î	Ť	Ť	Î	Ť	Î			NORMAL	36							BegGRN				
8	Modifier 9					寸	7		寸	_	Gm	_	_	difier Ø		\neg		十	寸	一	寸			Grn	37				П	一		BegGRN	1	1		
	Conflict &					寸	7		寸		Yel :	_		nflict Ø		\neg		十	寸	一	寸			Yel 3.5	38				П	一		BegGRN	1	1		
н	Conflict C					寸	7		寸			_		nflict Ola	ар	\neg		十	寸	一	寸			Red 1.5	39				П	一		BegGRN	1	1		
	Conflict F					寸	7		寸	_	LG			nflict Pe	_	\neg		十	寸	一	寸			LG	40				П	一		BegGRN	1	1		
Ch	annel S		as ſ	1.8	11					_			30												41			+	T	十	1	BegGRN	1	1		
	.Chann					4	5	6	7	8	9	10	11 1	2 13	14	15	16 1	7	18	19	20	21 2	2	23 24	42			+	\Box	十	1	BegGRN	1	1		
Ph	ase / Ola			2	3	_	5		+	Ť	_	1	1					+				<u> </u>			43			+	\vdash	\dashv		BegGRN	1	1		
	annel Ty		_		VEH	١	VEH		\dashv			/EH	0	_	\vdash	_	-	+	十	\dashv	十	-	+		44			+	\vdash	\dashv	1	BegGRN	1	 		
	annel Fla		_	, <u>, , , , , , , , , , , , , , , , , , </u>	· L · ·	٦f		V = (1)	\dashv	- 	<u> </u>			-	\vdash	_	-	+	十	\dashv	十	-	+		45			+	\vdash	\dashv	1	BegGRN	1	 		
Alt		usii		- 	-	\dashv	\dashv		\dashv	-+	-+	-+	+	+			-+	+	┪	-+	┪	-	+		46			+	\vdash	+	1	BegGRN		1		
	annel+	Sotti	nac	[1 0	41	_	_		_	_						!			1		1		_		47			+	\vdash	+	1	BegGRN		1		
CI	Chann	el ->>	1 1	2 1	3	<u>л</u> Т	5	6	7 T	8	a I	10 1	11 1	2 12	1/1	15	16	7	18	10	20	21 2	22	23 24	48			+	++	+		BegGRN		1		
	sh Red+		-		J	- 	J	U	+	U	9	10		- 13	14	IJ	10	1	10	13	2 U	41 4		20 24		nel E	arams[1	Q 21	ш			DEGOVIA				
					-+	+			+				+	+	\vdash			+	-		-		+		Chai		rams _{[1} 1 IO Mod			, г	11 1 1 4 -	SINGLE		Inves	t Rail Input	OFF
	sh Yello		_	-	-	+		-+	+	\dashv	\dashv	+	+	+	\vdash		-	+		\dashv			+	-		C	I IO IVIOC	ie U	שבר	; E	no ivia	SINGLE		iiiver	t Kali input	UFF
	sh Gree				+	+	_	_	-	\dashv	+	-	+	-	\vdash			-	_}	+	_}		+	-												
	sh Inh R	ked+			_	4	_		4	_	_		+	1		_		_	_	_	_		4													
Ola	p Ovrd	DI	40	0 (6)	A III			DD -		, L	~	CO /			Ш		L						ᆚ	البيل												
	ID: /14	4 RTE	. 12(u w	AIK		ΚI	אל ו	KAIV	ו אוי	U I-	004								06/	25/1	18	Pa	age 2												

2	en F	ar	1-0	4 [5.	IJ						٧	en Pa	d -	64 [5.	. []					Vehic	le	Opti	ions	1-64 [5.21			\	/eh	nicle	Opt	ions 1-	64 [5	.21			Para	met	ers	+ 1-	64	5.31		
1				Dlay	Ext	Que			Err	Fail					/ Ext	Que 1	No Max	Err	Fail	Det Ca	II	Ext					CC	vol [Det	Call	Ext	Que Ad	d Red	Yel	l occ	vol	Det o	C	С	oc [Dlay	Type	Src
2 2 5 1 1 48 50 10 34 48 45 50 20 36 3	ŧ Q	Ø	Ø				Act	Pres	Cnt			_ ~	Q	5		ļ	Act Pres	Cnt	Time	#				Init Lo	ck Lo	ock			-			Addl	IniLock	Loc	k		# (3	Υ	R	1	2		
3 3 2 2		1								30	3	33					_				_	On						,	33	On		-											NORM	
4			5	1																								;	34	On													NORM	
S S		3		2						30	3	35										_							35	On								4					NORM	
6 6 1 1 1		_								2							_			4 0	_	_					_			On					1			4	_				NORM	
7		_	4	-		Ш				30	3	37				!			-	5 0						_	_								\bot			4					NORM	
8		6				Н				10						₽₽				6 0	_	~			-	_	4			U11		-			╂	_	_	+					NORM	
9				-	ļ	H				2			-	-	-	┢	_		-	7 0	_	_					+			On		-			┿			+					NORM	
10)	4				\vdash				2			-			+	_			0 0	_				+	_	+			On					+	-		╬	+	_	_		NORM NORM	
11 1	0	+				\vdash				2	4	12	-	+	-	 		50		10 0					╁	-	+	- #	41 12	011					+	-	10	╁	\dashv	\dashv			NORM	
12 2 5 2		1				\vdash				20	4	2	-	+	-	 	_	50		11 0					╁	-	+								+			╁	\dashv	\dashv			NORM	
13		2	5	2	1	\vdash					1	1/1	+	+	1			50		12	_	_			+	-	\dashv	- 1	1/1	On					+	-		+	\dashv	\dashv			NORM	
14	3	-	J		1	\vdash					4	5	+	+	1	+				13					+		+	- 1	45	On			_		++	-		+	\dashv	\dashv			NORM	
15 5					1	H				_			+				45			14					1	-	+			()n					+			+	十	\dashv			NORM	
16 6		5			f	\Box				_			T	1	1		45			15 0	_	U.,			1	-	7			()n		-			\dagger			+	寸	\dashv			NORM	
17	6	_		1		\Box							T	1	1	t	45			16 0	_				T		1			On					$\dagger \dagger$			Ť	寸	1			NORM	1
18		Ť								2			T				45			17 ()					T		T			On					\Box			\top	寸	T			NORM	
19	8									2	5	0								18 O										On					1 1				Ħ	T			NORM	
20	9							45									45			19 O	ì	On								On	On	Or	n l										NORM	
21 1	0							45	50		5	52					45	50		20 O	1	On	-	On						On	On	Or	l l				20						NORM	
22 1	1 1	1						45	50	30	5	3					45	50		21 ()	1	On	(On					53	On	On	Or	l				21						NORM	
24	2	1						45	50	30	5	54					45	50		22 O	ſ	On	(On					54	On	On	Or	1				22						NORM	
24	3	3		8				45	50	30	5	55					45	50		23 O	ſ	On	_	On					55	On	On	Or	1										NORM	
26	4							45			5	6					45	50		24 O	ſ							1	56	On	On						24						NORM	
27 5	5							45			5	7					45	50		25 O		On						,	57	On	On						25						NORM	
28	6										5	8					- 10			26 O	_	~							58	0							26						NORM	
29	7 5	5								30							- 10			27 O		~							59	0								1					NORM	
30	8																_			28 O										0							28	1					NORM	
31	9										6	31								29 O	_	~					_						_		1			4	_				NORM	
32	0										6	52					_			30 0	_	_					_			_								4	_				NORM	
Parameters	1												-								_	_				_							_		-			+	_	_			NORM	
Det occ				1 /	/ 1 [F	- 21		45	50		6	64			<u> </u>		45	50	<u> </u>	32 0	1	Un		Un									1		<u> </u>				Dan			[1]	NORM	
NORM 44	aran	net	<u>ers</u>					-	C	Dat	1			- Dia	.IDIa.		Can	Dat			. Tr	Diami	Diam																			1.2		ON
NORM 44	00	CC		OCC Red	Diay	Diay	Ty	ре	Src	Det #	00	CC 0C0	00 II Re	c Diay	الالار)	Тур	e Src		OCC Grn	OCC OC	4 I	Diay i	Diay	Type	١٥	orc		Det C	all	INO	IVIAX	Err										Dor		8]
34 NORM 45 NORM 56 NORM 26 NORM 35 NORM 46 NORM 57 NORM 33 15 15 3 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15<		,,,,,	I GII	rtcu	+		MOD	1 1		"		111 101	i ikc	,u i			Λ	- "		TONTRO	u	-+		JODM					ש	ACI	15	CIL												15
35 NORM 46 NORM 57 NORM 43 15 4 15 <t< td=""><td>1</td><td></td><td></td><td></td><td></td><td>Н</td><td></td><td></td><td></td><td>44</td><td>╁</td><td></td><td></td><td></td><td></td><td></td><td></td><td>56</td><td></td><td></td><td>t</td><td></td><td></td><td></td><td></td><td>-</td><td>H</td><td>_</td><td></td><td></td><td>15</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td></t<>	1					Н				44	╁							56			t					-	H	_			15													0
36 NORM 47 NORM 58 NORM 4 15 37 NORM 48 NORM 59 NORM 5 15 38 NORM 49 NORM 60 NORM 6 15 39 NORM 50 NORM 61 NORM 7 15 40 NORM 51 NORM 62 NORM 8 15 41 NORM 52 NORM 63 NORM 8 15 42 NORM 53 NORM 64 NORM 64	5	-								45	╁							57			+				+	-		2			-	\vdash					V	UI/U	CC F	eno	u ivii	Hules	•	U
37 NORM 48 NORM 59 NORM 59 15 5 15 6 15 15 6 15 7 15 1	6	+			1	\vdash				47	H	-	+	-				58		\vdash	+				+		-	4	1		15													
38 NORM 49 NORM 60 NORM 61 NORM 7 15 7 15 15 15 8 15 15 8 15 <td< td=""><td>7</td><td>\dashv</td><td></td><td></td><td>1</td><td>\vdash</td><td></td><td></td><td></td><td>48</td><td>H</td><td>+</td><td>+</td><td>+</td><td>1</td><td></td><td></td><td>50</td><td></td><td>$\vdash \vdash$</td><td>+</td><td>\dashv</td><td></td><td></td><td>+</td><td>\dashv</td><td>-</td><td>5</td><td></td><td></td><td>15</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	7	\dashv			1	\vdash				48	H	+	+	+	1			50		$\vdash \vdash$	+	\dashv			+	\dashv	-	5			15													
39 NORM 50 NORM 61 NORM 15 15 8 15 <t< td=""><td>8</td><td>\dashv</td><td></td><td>1</td><td></td><td>\vdash</td><td></td><td></td><td></td><td>49</td><td>t</td><td>+</td><td>+</td><td>+</td><td>†</td><td></td><td></td><td>60</td><td></td><td>\vdash</td><td>Ŧ</td><td>-+</td><td></td><td></td><td>+</td><td></td><td>-</td><td></td><td>-</td><td></td><td>15</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	8	\dashv		1		\vdash				49	t	+	+	+	†			60		\vdash	Ŧ	-+			+		-		-		15													
40 NORM 51 NORM 62 NORM 8 15 41 NORM 52 NORM 63 NORM 8 15 42 NORM 53 NORM 64 NORM	9	-		1	1	Н					H	1	+	1	1		*				+	t			+		ŀ	_	1		15													
41 NORM 52 NORM 63 NORM 42 NORM 53 NORM 64 NORM	0	-		1	1	Н				51	H	1	+	1	1						+	t			+		ŀ		1		15													
42 NORM 53 NORM 64 NORM		\dashv			1	\Box				52	t	1	+	1	1	_	_	63		\vdash	+	\dashv		_	+	\dashv	L	J			10													
13 NOPM 54 NOPM NOPM NOPM RIF 120 AIRPORT DR RAMP TO LARY 6/25/2018	2	7		1		\Box				53	t	1	T	1	1			64			1	一十	_		T																			
 		7			l	П				54	T		1			NOR	_	Ĭ	D: 71	44 R	F	120			RTT	OR F	RAM	1P T(O I-	-684										6/2	5/20)18	Pag	e 3

Preem	ption Tir	mes [3.1],	Options	5+ [3.6]		Trac	k Clea	ar Pha	ases [3	3.21.	Trac	ck Cle	ear O	verla	05+[3.51				
Pre #	Enable	Туре	Output		MinDura	Pre #	# Track	Phase	es			Over								
1	ON	RAIL	DWELL			1				- 1										
2	ON	RAIL	DWELL			2														
3	ON		DWELL			3														
4	ON	EMERG	DWELL			4														
5	ON	EMERG				5														
6	ON	EMERG	DWELL			6														
	MaxPres		MinWlk	PedClr	Co+Pre		II Pha	242	2 21 an	nd O	verla	ansı	[3 5]							
1	IVIANI 163	WIIITOITI	IVIIIIVIK	1 Guon	ON	Pre #		303 [c	7.2j an	iu O	VCIIC	ιυσι	[0.0]							
2					ON	1	Phase	es												
3					ON		Overla													
4					ON		Peds													
5					ON	2	Phase	es												
6					ON		Overla													
	Track Grr	Min Dwell	Ext Dwell	PedClr+			Peds	·												
1		2				3	Phase	es												
2		2					Overla													
3		2					Peds	·												
4		2				4	Phase	es												
5		2					Overla													
6		2					Peds													
Pre#	Red	Pattern	Skip		<u> </u>	5	Phase	es												
1			OFF				Overla													
2			OFF				Peds	·												
3			OFF			6	Phase	es												
4			OFF				Overla	aps												
5			OFF				Peds													
6			OFF											tions-	+ [3.6]				
Low P	riority Pi	reempts		•		Exit	Phase	es [3.2	2]		Pre#	Lock	Ċ)verrid	е	C)verrid	-	Flsh	
Pre#	Type	Min	Max			Pre #	Exit F	Phase					Α	uto Fla	sh		Higher	r [Dwell	Link
7	OFF					1					1	ON		ON			ON		OFF	
8	OFF					2					2	ON		ON			ON		OFF	
9	OFF					3					3	ON		ON			ON		OFF	
10	OFF					4					4	ON		ON			ON		OFF	
						5					5	ON		ON			ON		OFF	
		rs [1.2.1]				6					6	ON		ON			ON		OFF	
	mer Over		OFF																	
Preemp	t or Ext O	Output	PRE																	
	ek Track																			
	ek Dwell																			
		neters [1.8																		
D Conn	Mapping	S	NONE																	
	ert Rail In		OFF																	

Alt# 1 Times Ta	ble [1.	1.6.1.2	2]						Alt# 1 Veh Para	amete	rs [5.5	.1.1]													
Column#>	1	2	3	4	5	6	7	8	Column#>	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Assign Ø									Assign Det#																
Min Grn									Call																
Gap, Ext									Swiitch																
Max 1					1	1			Delay			1			1				1						
Max 2									Extend																
Yel Clr									Queue																
Red Clr						1			No Activity																
Walk									Max Presence																
Ped Clr									Erratic Count																
Alt# 2 Times Ta	hla [1	1 6 1 0)]		<u> </u>				Fail Time																
Column#>		2	3	4	5	6	7	8	Alt# 1 Veh Opt	ione [[5 5 1 2	1									<u> </u>				
	ı		3	4	J J	U	1	0	Column#>		2		4	5	6	7	8	9	10	11	12	13	11	15	16
Assign Ø Min Grn										- 1		3	4	5	b	/	0	9	10	11	12	13	14	15	10
Gap, Ext						ļ			Assign Det#																
Max 1						ļ			Extend																
Max 2									Queue																
Yel Clr									Added Initial																
Red Clr									Red Lock																
Walk									Yellow Lock																
Ped Clr									Occupancy																
Alt# 3 Times Ta									Volume																
Column#>	1	2	3	4	5	6	7	8	Alt# 1 Veh Para			5.1.3]													
Assign Ø									Column#>	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Min Grn									Assign Det#																
Gap, Ext									Occ-on-green																
Max 1									Occ-on-yellow																
Max 2									Occ-on-red																
Yel Clr									Delay Phase 1																
Red Clr									Delay Phase 2																
Walk									Detector Mode	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM
Ped Clr									Source																
Alt# 1 Options	rable [1.1.6.2	.1]		•				Alt# 1 Ped Para	amete	rs+ [5.	5.1.4]													
Column # ->		2	3	4	5	6	7	8	Column#>		2	3	4	5	6	7	8								
Assign Ø									Assign Det#																
Lock Calls	On	On	On	On	On	On	On	On	Call																
Soft Recall									No Activity																
Dual Enrty									Max Presence																
Enabl SimGap	On	On	On	On	On	On	On	On	Erratic Count																
Guar Passage	J11	011	311	- 5	311	J.,	311	<u> </u>																	
Rest In Walk																									
Cond Service																									
Reservice																									
Non-Act 1																									
Red Rest																									
						-																			
Max2						-																			
Ped Delay									ID 7144	DTC 1	20 @	VIDDO	יחד חר		D TO I	404					(/)	/2010		_	000 5
Conflicting Ø1									ID: 7144	KIE	20 @	AIRPU	KT DF	KAM	7 TU 1	-084					6/2	5/2018		Р	age 5

Alt# 2 Options 7	Table [1.1.6.2	2.2]						Alt# 2 Veh Para	ameter	s [5.5.	.2.1]													
Column # ->	1	2	3	4	5	6	7	8	Column#>	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Assign Ø									Assign Det#																
Lock Calls	On	On	On	On	On	On	On	On	Call																
Soft Recall									Swiitch																
Dual Enrty									Delay																
Enabl SimGap	On	On	On	On	On	On	On	On	Extend																
Guar Passage									Queue																
Rest In Walk									No Activity																
Cond Service									Max Presence																
Reservice									Erratic Count																
Non-Act 1									Fail Time																
Red Rest									Alt# 2 Veh Opt	ions [5	5.5.2.2														
Max2									Column#>	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Ped Delay									Assign Det#																
Conflicting Ø1									Call																
Alt# 3 Options 7	Table [1.1.6.2	2.3]						Extend																
Column # ->	1	2	3	4	5	6	7	8	Queue																
Assign Ø									Added Initial																
Lock Calls	On	On	On	On	On	On	On	On	Red Lock																
Soft Recall									Yellow Lock																
Dual Enrty									Occupancy																
Enabl SimGap	On	On	On	On	On	On	On	On	Volume																
Guar Passage									Alt# 2 Veh Para	ameter	S+ [5.	5.2.31													
Rest In Walk									Column#>		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Cond Service									Assign Det#																
Reservice									Occ-on-green																
Non-Act 1									Occ-on-yellow																
Red Rest									Occ-on-red																
Max2									Delay Phase 1																
Ped Delay									Delay Phase 2																
Conflicting Ø1									Detector Mode	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM
Alt# 4 Options 7	Table [1.1.6.2	.4]			<u> </u>			Source																
Column # ->		2	3	4	5	6	7	8	Alt# 2 Ped Para		s + [5]	5.2.41													
Assign Ø									Column#>		2	3	4	5	6	7	8								
Lock Calls	()n	On	On	On	On	On	On	On	Assign Det#		_														
Soft Recall	011	5));;	J.,	J.,	Ü11		Call																
Dual Enrty									No Activity																
Enabl SimGap	On	On	On	On	On	On	On	On	Max Presence																
Guar Passage		011	011	011	011	011	011	011	Erratic Count																
Rest In Walk																									
Cond Service																									
Reservice																									
Non-Act 1																									
Red Rest																									
Max2																									
Ped Delay																									
Conflicting Ø1																									
Commoung DT									ID: 7144	RTF 1	20 @	AIRPO	RT DR	RAM	P TO I	-684					6/25	5/2018		F	age 6

Day	Plans	s [4.4]																			А	ctic	on Tab	le [4.	5]							Cod	ord Al	terna	ate Ta	bles	- Pat+	[2.6]											
		Da	ay F	Plan	1				0	Day	Plar	1 2		T			Da	ıy F	lan	3		7																						Ove	erlap C	Off					
	lour M	lin A	ct	Hou	r Min	Act	Н	our M	/lin	Act	Н	our M	in A	ct	Hoi	ır Miı	n Ac	ct	Ho	ur M	1in /	Act A	\ct#	Pat#	A1 A2	A3 :	S1 S2	2 S3	S4	S5 S	6 S	7 S8	Pat	# ØOp	t ØTi	ime De	etG C	all Inh	CIC	CNA1	1	2	3	3	4	5	6	7	8	Dia	Max2
1			2 !				1		i		9			1				Ť		Ť			1	1				Ť			Ť		1																	DFT	
2	7 () 1	1 1	10			2				10			2	?			T					2	2									2																	DFT	
3		0 2					3				11			3	3			T					3	3									3																	DFT	_
4			1	12			4				12			4	ı			T					4	4									4																	DFT	
5			1	13			5				13			5	;			T					5	5									5																	DFT	
6			1	14			6				14			6	;			T					6	6									6																	DFT	
7			1	15			7				15			7	,			T					7	7									7																	DFT	
8			1	16			8				16			8	3			T					8	8									8																	DFT	
		Da	ay I	Plan	4				C	Day	Plar	า 5		T			Da	ıy F	lan	6			9	9									9																	DFT	
ŀ	lour M					Act	Н	our M				our M	in A	ct	Ho	ır Mii					1in /		10	10									10										1							DFT	
			i					i		Ī				Ī				Ī					11	11									11																	DFT	
														T				T				- 1	12	12									12																	DFT	
寸	\neg	\top	1	1	1					寸	1	\top	1	T	1		1	十	1	1	1	_	13	13	1	Ħ	\top	1	$\dagger \dagger$	+	T	1	13		1	1	+					1		1					1	DFT	1
T	\neg	\top	1	1	1					寸	+	\top	1	T	1		1	十	1	1	1		14	14	1	Ħ	\top	1	$\dagger \dagger$	+	T	1	14		1	1	+					1		1					1	DFT	1
T			T	1	1				T	T			T	T	Ť			T		Ť	T		15	15		Ħ					T		15										1	i						DFT	
T														T				T				_	16	16									16																	DFT	-
																							17	17									17																	DFT	-
T														T				T				- 1	18	18									18																	DFT	
		Da	av I	Plan	7					Dav	Plar	า 8		T			Da	ıv F	lan	9			19	19									19																	DFT	
H	lour M					Act	Н	our M				our M	in A	ct	Hou	ır Mii					1in /	\ct :	20	20									20																	DFT	
			i					i		Ī				T				Ī					21	21									21																	DFT	
														T				T		T			22	22									22																	DFT	
														T				T					23	23									23																	DFT	
														T				T					24	24									24																	DFT	
														T				T					25										25																	DFT	
T														T				T					26										26																	DFT	
T														T				T					27										27																	DFT	
T														T				T					28										28																	DFT	
		Da	v P	lan 1	10				D	av I	Plan	11		T			Dav	v P	lan	12			29										29																	DFT	
ŀ	lour M					Act	Н	our M				our M	in A	ct	Ho	ır Miı					1in /	\ct :	30										30																	DFT	
			i					i		Ī				T				Ī					31										31																	DFT	
T		T	T				T		T	T	T	1	1	T	1			T		T	T		32			П	T	T	T	T	T		32				T						1	T						DFT	1
T		T	T				T		T	T	T	1	1	T	1			T		T	T		33			П	T	T	T	T	T		33				T						1	T						DFT	_
T			ı							T				T	1			T		T	T		34			Ħ					T		34											T						DFT	
T			ı							T				T	1			T		T	T		35			Ħ					T		35											T						DFT	
T			ı							T				T	1			T		T	T		36			Ħ					T		36											T						DFT	
T			ı							T				T	1			T		T	T		37			Ħ					T		37											T						DFT	
T			ı							T				T	1			T		T	T		38			Ħ					T		38											T						DFT	
•		Da	у Р	lan 1	13			-	D	ay I	Plan	14					Day	уΡ	lan	15			39			Ħ					T		39											T						DFT	1
ŀ	lour M					Act	Н	our M				our M	in A	ct	Ho	ır Mii					1in /	\ct 4	40			Ħ					T		40											T						DFT	1
Ī			Ī	Ì				Ì		i		İ									Ì												41											T						DFT	
Ť		T	ı						1	T	T		İ	1	1	Ì	1	1	1	1	T	-	48			П	Т		П		T		42				T							T						DFT	
Ť		T	ı						1	T	T		İ	1	1	Ì	1	1	1	1	T												43				T							T						DFT	
T			ı							T				T	1			T		T	T	1	98			П			П		Т		44											T						DFT	
Ì			ı							T				T	1			T		T	T		99			Ħ					T		45											T						DFT	
T		T	T				T		T	T	T	1	1	T	1			T		T	T			255		П	T	T	T	T	T		46				T						1	T						DFT	
T		T	T				T		T	T	T	1	1	T	1			T		T	T	T		ID: 71	44 R	TE 1	20 (@ A	VIRP	OR	T C	R F					T						1	T						DFT	
T					1									T			1	1	1	T		0		5/18							age		48		1															DFT	1

C1-USER IO Map [1.8.9.1 In]	C1-USER IO Map [1.8.9.2 Out]	C1-USER IO Map [1.8.9.2 Out]	IO Logic [1.8.7]			
II-1 1 Veh Call 1	O1-1 1 Ch1 Red	O7-1 40 Ch16 Yellow	Result	Fcn Oper	Fcn Oper	Fcn Timer
I1-2 2 Veh Call 2	O1-2 49 Ch1 Green	O7-2 16 Ch16 Red	I 0 =	I 0	I 0	I 0 DLY
I1-3 3 Veh Call 3	01-3 2 Ch2 Red	07-3 64 Ch16 Green	I 0 =	I 0	I 0	I 0 DLY
I1-4 189 Unused	O1-4 26 Ch2 Yellow	O7-4 115 Not Used	I 0 =	I 0	I 0	I 0 DLY
I1-5 5 Veh Call 5	O1-5 50 Ch2 Green	O7-5 115 Not Used	I 0 =	I 0	I 0	I 0 DLY
I1-6 6 Veh Call 6	01-6 3 Ch3 Red	07-6 115 Not Used	I 0 =	I 0	I 0	I 0 DLY
I1-7 189 Unused	O1-7 27 Ch3 Yellow	O7-7 115 Not Used	I 0 =	I 0	I 0	I 0 DLY
I1-8 189 Unused	O1-8 51 Ch3 Green	O7-8 15 Ch15 Red	I 0 =	I 0	I 0	I 0 DLY
I2-1 189 Unused	O2-1 4 Ch4 Red	C11S-USER IO Map [1.8.9.1 In]	I 0 =	I 0	I 0	I 0 DLY
I2-2 189 Unused	O2-2 52 Ch4 Green	I4-1 189 Unused	I 0 =	I 0	I 0	I 0 DLY
I2-3 11 Veh Call 11	O2-3 5 Ch5 Red	I4-2 189 Unused	I 0 =	I 0	I 0	I 0 DLY
I2-4 12 Veh Call 12	O2-4 29 Ch5 Yellow	I4-3 189 Unused	Security Access Levels [8.2]		43 NONE	Com Parameters [6.1]
I2-5 189 Unused	O2-5 53 Ch5 Green	I4-4 189 Unused	1 SWLOAD	22 NONE	44 NONE	Station ID 7144
I2-6 14 Veh Call 14	O2-6 6 Ch6 Red	I7-1 189 Unused	2 SECURE	23 NONE	45 NONE	Group ID
I2-7 15 Veh Call 15	O2-7 30 Ch6 Yellow	I7-2 189 Unused	3 NONE	24 NONE	46 NONE	Master ID 0
I2-8 16 Veh Call 16	O2-8 54 Ch6 Green	I7-3 189 Unused	4 NONE	25 NONE	47 NONE	Backup Time 0
I3-1 189 Unused	O3-1 7 Ch7 Red	I7-4 189 Unused	5 NONE	26 NONE	48 NONE	SysUp Modem [6.1]
I3-2 189 Unused	O3-2 55 Ch7 Green	I7-5 189 Unused	6 NONE	27 NONE	49 NONE	Enable Modem OFF
I3-3 189 Unused	O3-3 8 Ch8 Red	I7-6 189 Unused	7 NONE	28 NONE	50 NONE	Idle Time 0
I3-4 189 Unused	O3-4 32 Ch8 Yellow	I7-7 189 Unused	8 NONE	29 NONE	51 NONE	Dial Time 0
I3-5 21 Veh Call 21	O3-5 56 Ch8 Green	I7-8 189 Unused	9 NONE	30 NONE	52 NONE	Tel: #N/A
I3-6 22 Veh Call 22	O3-6 9 Ch9 Red	I8-1 189 Unused	10 NONE	31 NONE	53 NONE	Alt: #N/A
I3-7 23 Veh Call 23	O3-7 33 Ch9 Yellow	I8-2 189 Unused	11 NONE	32 NONE	54 NONE	7.47.
I3-8 189 Unused	O3-8 57 Ch9 Green	I8-3 189 Unused	12 NONE	33 NONE	55 NONE	2070 Port Parms [6.2]
I4-1	04-1 10 Ch10 Red	I8-4 189 Unused	13 NONE	34 NONE	56 NONE	Port Baud Rate FCM
14.2	O4-2 58 Ch10 Green	I8-5 189 Unused	14 NONE	35 NONE	57 NONE	SP1 9600 MODE 6
I4-2 C11S Connector	04-3 11 Ch11 Red	I8-6 189 Unused	15 NONE	36 NONE	58 NONE	SP2 9600 MODE 6
I4-4	04-4 35 Ch11 Yellow	I8-7 189 Unused	16 NONE	37 NONE	59 NONE	SP3 19200 MODE 6
I4-5 179 Door Open	O4-5 59 Ch11 Green	I8-8 189 Unused	17 NONE	38 NONE	60 NONE	SP4 38400 MODE 6
I4-6 189 Unused	O4-6 12 Ch12 Red	C11S-USER IO Map [1.8.9.2 Out]	18 NONE	39 NONE	61 NONE	SP5 1200 AUTO
I4-7 229 33xCMUStop	O4-7 36 Ch12 Yellow	08-1 115 Not Used	19 NONE	40 NONE	62 NONE	SP6 1200 AUTO
I4-8 228 33xFlashSns	04-8 60 Ch12 Green	O8-2 115 Not Used	20 NONE	41 NONE	63 NONE	SP7 1200 AUTO
I5-1 189 Unused	O5-1 28 Ch4 Yellow	O8-3 115 Not Used	21 NONE	42 NONE	64 NONE	SP8 1200 AUTO
I5-2 26 Veh Call 26	O5-2 34 Ch10 Yellow	O8-4 115 Not Used		12 110112		0.0
I5-3 27 Veh Call 27	O5-3 25 Ch1 Yellow	08-5 115 Not Used	2070 IP 1 Addressing [6.5]	20	070 IP 2 Addressing [6.5]	
I5-4 189 Unused	O5-4 31 Ch7 Yellow	O8-6 115 Not Used	Addressing	20	Addressing	
I5-5 189 Unused	O5-5 39 Ch15 Yellow	08-7 115 Not Used	Addr 0 0	0 0 Ad	, , , , , , , , , , , , , , , , , , ,	0
I5-6 189 Unused	O5-6 63 Ch15 Green	08-8 115 Not Used	Mask 0 0	0 0 Ma		0
I5-7 189 Unused	O5-7 115 Not Used		Brdcst 0 0		dcst 0 0 0	0
I5-8 189 Unused	O5-8 114 Watchdog		GtWay 0 0		Way 0 0 0	0
I6-1 189 Unused	O6-1 115 Not Used		Port 0	Po	.,	-
I6-2 189 Unused	O6-2 115 Not Used					
I6-3 189 Unused	O6-3 13 Ch13 Red		2070 Port Binding Ports [6.	6] 20	070 Port Binding Functions [6.6]	
I6-4 189 Unused	O6-4 37 Ch13 Yellow		Port Echo		Inction Channel Function Channel	
I6-5 189 Unused	O6-5 61 Ch13 Green		ASYNC1 SP1 OFF		2/CVM NONE SYSUP ASYNC2	
I6-6 189 Unused	06-6 14 Ch14 Red		ASYNC2 SP2 OFF		MU/MMU NONE SYSDown ASYNC1	
I6-7 189 Unused	06-7 38 Ch14 Yellow		ASYNC3 SP3 OFF		oticom NONE Shell NONE	
I6-8 189 Unused	O6-8 62 Ch14 Green		ASYNC4 SP4 OFF		op Det. NONE	
10 0 100 0110360	00-0 02 OH14 OIGGH	1	SYNC1 SP5S SYNC3	OFF GF		
			SYNC2 OFF SYNC4	OFF	HOILE	
ID: 7144 I	RTE 120 @ AIRPORT DR RAMP TO	1-684				06/25/18 Page 9

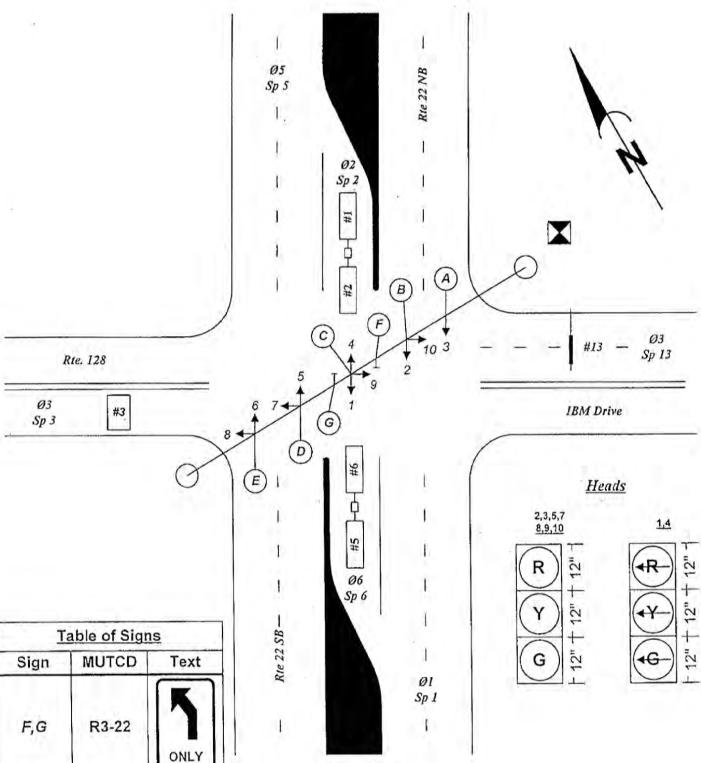
#	Event / Alarm	Ev Alr	Ca	all Ph	ases	[1.1.5]	Red	irect	Phas	es[1	1.51						Inhi	ihit F	hase	ς[1 1	5]												
1		On On			.0000	alled B		1100					From	Tο	From	Tο			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
2	Stop Timing	On On		T Ha	1		<i>y D</i>	1	1 10111	10	1 10111	10	1 10111	10	1 10111	10		1	<u>'</u>			T -	Г		- 	г	T	10	<u> </u>	12		17	10	10
3	TS1 Cabinet Door	011 011	2	-	1			2										2																
1		On On						3										3																
<u>4</u> 5		On On			1			4										4																
6		On On	-611					5										5																
7	External Alarm # 3	OHIOH	6					6										6																
8	External Alarm # 4		7					7										7																
Q		On On	8	-	1			8										8																
,	External Alarm # 5	OHOH	9					9										9																
	External Alarm # 6	_	10	-				10										10																
		On On	11					11										11																
12	Coord Free Input	OHIOH	12		1			12										12																
1.4		On On	13		1			13										13																
14	MMU Flash	OHIOH	-611		+			1																										
	CMU Flash	_	14 15		1-			14 15	-							\vdash		14																
		On On	16					16										15																
		On On			1 0 Da	edirec	+ # 1		6 21									16	Inhih	oit Ph	2000	# 1 [116	2]		<u> </u>	<u> </u>							
		On On	Co			ses Ca			0.3]	From	To	From	То	From	То	From		AII	1	2	3	4	5	<u>ی</u> 6	7	8	9	10	11	10	12	1.1	15	16
	Controller Fault	On On		שו	Phas	l ses Ca	lleu b	y W	1	FIOIII	10	FIOIII	10	FIOIII	10	FIOIII	10	1			<u>ა</u>	- 4	ວ	0		<u> </u>	9	10		12	13	14	15	10
	Detector SDLC Failure	OHIOH	1 2	_					1									1																
	MMU SDLC Failure	_	2		+				2									2																
	Critical SDLC Failure	_	3		+				3																									
	Reserved	-	4 5		+				4									4 5																
		On On	-61		+				5									6																
	Detector Diagnostic Failur	OHIOH	7		+				7									7																
		On On	8	-	+	1			8									8																
		On On			1 8. Da	edirec	+ #)	[1 1											Inhih	oit Ph	2000	# 2 [116	21	<u> </u>	<u> </u>			<u> </u>					
		On On				es Call		_	0.3]	From	To	From	To	From	То	From		AII	1	2	3	# 2 [5	<u>၂</u>	7	8	9	10	11	12	13	14	15	16
	Coord Diagnostic Fault	OHIOH	1 00	שו	Filas	es Call	eu by :	<u>U</u>	1	FIOIII	10	FIOIII	10	FIUIII	10	FIUIII	10	1		<u> </u>	3	4	<u> </u>	0	<u> </u>	· ·	9	10	<u> </u>	12	13	14	15	10
11	TempAlert Probe Ch. A		2	-	1				2									2																
41	TempAlert Probe Ch. B	-	3		+				4									3																
	Coord Active	-	4	\vdash	1	+	-		3									4				-	-	-	-		1	1	-					
		On On	5	\vdash	1	+	-											5				-	-	-	-		1	1	-					
		On On	-611	\vdash	1				5 6									6																
50		On On	7	\vdash	1	1			7									7																
51		On On	41	\vdash	1	+	-		8									8				-	-	-	-		1	1	-					
		On On				Plans	[2 2]		0					Hnit	Parar	moto	rc [1		1			<u> </u>	<u> </u>		<u> </u>	<u> </u>			<u> </u>					
		On On						2	1	5	6	7	8							Max (Cycle.	Time				1								
5.4		On On				, I		J	4	J	U	/			Dim E			OFF	-	Cycle	- Foul	t Actio	n	ALAF	⊇N/I									
		On On													Disab			OFF		Cycle	rauli	ACIIO	111	ALAI	VIVI									
	Preempt 8 Input	On On	2	OFF	+	+	-		1						ond M			4Ph						-										
		On On				1		1	1									900																
		On On	4 A :	uto E	lach [Phase	/Olar	2 50+	tings	[1 //	7]				up Tim			900 OFF						-										
		On On			iasii t	liast	I UId) SEL	ungs	[1.4.2	∠]				ole Init			ALA																
		OHION			o)	<u> </u>			-						Fault			al <i>f</i> ON	1VI/1	ID.	7111	DTC	120		DDAF	DT DI	D D A I	MD T	0160	ne!	05/4	,	Dagg	10
ВI	FIO Status Alarm		Yel	(olaps	S)									⊏nab	le Run	ı iime	er	UΝ		ID:	/ 144	KIE	120	₩ All	KPUH	(I D	KAI	WIP I	U 1-08	U0/2	<u> </u>)	Page	: 10

TE-26X

STATE OF NEW YORK - DEPARTMENT OF TRANSPORTATION

STUDY:

	TRAFFIC ENGINEERING	SPECIFICATIONS	B	PIN	NTRACT:
W-204 SIGNAL NO	(S) WESTCHESTER COUNTY		PAGE	1 OF	20 PAGES
NTERSECTION	ON Rte.22 @ Rte.128 & IBM Drive				
	CITY VILLAGE TOWN OF	NORTH	CASTLE		
De	partment Order filed 9/6/78 as Se	ection 2055,38	Subdivision _	(i)	4
Pric	or specifications hereby superseded None	\boxtimes	March 12, 1984		
Pur	pose: INSTALL RED LEFT TURN ARROWS FOR	R PHASES 2 & 6			
the	ese specifications will be effective upon the In necessary traffic control device(s) reguired by and Uniform Traffic Control Devices	stallation Mod conforming to the Sta	ification of ate Manual		
1.	This Signal shall				
	 A. Operate in accordance with the Table of Open shown on page(s) 2 as a: 	ations and / of Chang	je intervals as		
	<u>-</u>	Pretimed Sign:	al		
		Semi-traffic ac	tuated signal		
		Full-traffic actu	ated signal		
		Pedestrian act	uated signal		
		Other			
	B. Display vehicular indications				
	Display pedestrian indications				
	Be equipped with vehicle detector	rs			
	Be equipped with Pedestrian push				
	as shown in the Schematic	scaled drawing	ng on page 3		
	C. Be equipped with Pre-emption Which are described as follows:	Interconnecti	on and / or Coord	ination	
	*				
: (2)	Main Office	1/20/99			RT
	Region & Treffic Engineer	Date	Signat	ure	Titl


Installation Date (1) E.MARSH Modification Date January 20, 1999 ()

STATE OF NEW YORK - DEPARTMENT OF TRANSPORTATION TRAFFIC AND SAFETY DIVISION

TRAFFIC CONTROL SIGNAL SPECIFICATIONS (CONTINUED)

CONTRACT: PIN:

FILE: W 204 Westchester 1/20/99 PAGES SIGNAL NO(S) COUNTY DATE

Phase Times [1.1.	1]		_						_											s [2.7.												
	1	2	3	4	5	6	7	8	Pat	Сус	Off	Split	Seq	Pat#	Сус	Off	Split	Seq	Pat#	Сус	Off	Split	Seq	Pat#	Сус	Off	Split	Sec	i e	2 5		
Min Green		3	8			5	5		1	0	0	1	4	13	0	0	13	1	25	0	0	0	1	37	0	0	0	1	1 3	ST	TD8	
Gap, Ext		2	3			3	2		2			2	1	14	0	0	14	1	26	0	0	0	1	38	0	0	0	1		•		
Max 1	35	30	40		35	30	40		3			3	1	15	0	0	15	1	27	0	0	0	1	39	0	0	0	1				
Max 2									4			4	1	16	0	0	16	1	28	0	0	0	1	40	0	0	0	1	Ring/s	Start	up [1.	1.4]
Yel Clearance	5	5	4		5	5	4		5			5	1	17	0	0	17	1	29	0	0	0	1	41	0	0	0	1		Ring	Start	_
Red Clearance	2	2	2		2	2	2		6			6	1	18	0	0	18	1	30	0	0	0	1	42	0	0	0	1	1	1	GREEN	0
Walk		137	1.1.1						7			7	1	19	0	0	19	1	31	0	0	0	1	43	0	0	0	1	2	1	RED	0
Ped Clearance									8			8	1	20	0	0	20	1	32	0	0	0	1	44	0	0	0	1	3	1	RED	0
Red Revert									9			9	1	21	0	0	21	1	33	0	0	0	1	45	0	0	0	1	4	1	RED	Of
Add Initial			4						10			10	1	22	0	0	22	1	34	0	0	0	1	46	0	0	0	1	5	2	GREEN	Or
Max Initial			12						11			11	1	23	0	0	23	1	35	0	0	0	1	47	0	0	0	1	6	2	RED	Or
Time B4 Reduct									12			12	1	24	0	0	24	1	36	0	0	0	1	48	0	0	0	1	7	2	RED	Or
Cars B4 Reduct									Spli	t	1	2	3	4	5	6	7	8	Split		1	2	3	4	5	6	7	8	8	2	RED	Of
Time To Reduce									1	Coor									13	Coor									Coord			
Reduce By																													Test OpN		0	
Min Gap									2	Coor									14	Coor									Correction	77.7	SHRT/LN	IG
DyMaxLim													Ш																Maximum		MAX 1	
Max Step									3	Coor		Ť.			1				15	Coor									Force-Off		FLOAT	
Options [1.1.2]	1	2	3	4	5	6	7	8																					Closed Lo	оор	ON	
Enable	On	On	On		On	On	On		4	Coor									16	Coor									Stop-in-W	Valk	OFF	
Min Recall								-							-														Auto Res	et	ON	
Max Recall	On				On				5	Coor				1					17	Coor								-	Expand S		OFF	
Ped Recall												1-1												1 = (1		Ped Recy	cle	NO REC	YCLE
Soft Recall									6	Coor									18	Coor					1				Before		TIMED	
Lock Calls			On			On																							After		TIMED	
Auto Flash Entry									7	Coor				- 4					19	Coor			=						Auto FI	lash [1.4.11	
Auto Flash Exit											1											-					3		Auto Flas		PH OVER	₹
Dual Entry	On		On		On		On		8	Coor									20	Coor									Flash Yel		45	
Enable Simul Gap	On	On	On	On	On	On	On	On				2-			-	1											1		Flash Red	d	0	
Gaurantee Passage									9	Coor						1			21	Coor				100					Unit Pa	rams	[1.2.1]	
Rest In Walk												1 = 7																	Phase Mo	_	STD8	
Conditon Service									10	Coor			1 = 17					- 3	22	Coor		1							IO Mode		USER	
Non-Actuated 1													7 = 4									1							Loc Fish S	Start	ON	
Non-Actuated 2									11	Coor			177						23	Coor									Start Flas		0	
Add Init Calc													111									S = 10							Start AllR		0	
Options+ [1.1.3]	1	2	3	4	5	6	7	8	12	Coor									24	Coor		7							Yellow <		OFF	
Reservice													= 3			-	(F e					7 = 2							Display T		20	
PedClr Thru Yel									Pa	ge#																			Red Reve		3	
Skip Red No Call										1	8 P	hase	Time	s/Opt	ions;	Patte	erns/S	Splits:	Rir	ng Sta	artup:	Coc	rd/FI	ash N	lode:	Unit	Para	m	MCE Time		0	_
Red Rest									14	&1B										ng Sta									Feature F		0	
Max II			1							2										+ (va									Free Ring	-	1	_
Call Phase										3										relat						-			Auxswitch		STOPTM	
Conflicting Phase										4										ase (SDLC Re		0	
Omit Yellow										5			hedu								F	-		-					TS2 Det F	_		
Ped Delay															bles	Con	rd Alf	Tabl	e+ (value	s vari	ied by	/ time	-of-d	av)				Auto Ped			_
Grn/Ped Delay				Y										is; Se					- 1					·	-11				SDLC Re		0	
ID: 7204	RTF 2	2 @ R	TE 12	8 & IB	M DR		_	_											t P	/OLA	РΔιι	to Els	seh.	CIC.	Micc	Unit	Darar	n	12/21/		Pag	

Concurrent Phases

Concurrency [1.1.4]

Sea	Rng	_	rrent P	hases						Seq	Rna	Concu	irrent D	hacoc					_
1	1	1	2	3	4	0	0	0	0	9	1	1	2	4	3	0	0	0	1 0
1	2	5	6	7	8	0	0	0	0	9	2	-	-	7	8	0	_	-	0
1	3	0	0	0	0	0	0	0	0	9	3	5	6	0	0	0	0	0	0
1	4	0	0	0	0	0	0	0	0	9	_	-	-	-	_	0	0	0	0
2	1	1	2	3	4	0	0	0	0	10	1	1	2	0	0	0	0	0	0
2	2	6	5	7	8	0	0	0	0	10	2	6		7	3	0	0	0	0
2	3	0	0	0	0	0	0	0	0	10	3	0	5	0	8	0	0	0	0
2	4	0	0	0	0	0	0	0	0	10	4	0	0	0	0	0	0	0	0
3	1	2	1	3	4	0	0	0	0	11	1	2	1	4	3	0	0	0	0
3	2	5	6	7	8	0	0	0	0	11	2	5	6	7	8	0	0	0	0
3	3	0	0	0	0	0	0	0	0	11	3	0	0	0	0		0	0	0
3	4	0	0	0	0	0	0	0	0	11	4	0	0	0	0	0	0	0	0
4	1	2	1	3	4	0	0	0	0	12	1	2	1	4	3	0	0	0	0
4	2	6	5	7	8	0	0	0	0	12	2	6	5	7	8	0	0	0	0
4	3	0	0	0	0	0	0	0	0	12	3	0	0	0	0	0	0	0	0
4	4	0	0	0	0	0	0	0	0	12	4	0	0	0	0	0	0	0	0
5	1	1	2	3	4	0	0	0	0	13	1	1	2	4	3	0	0	0	0
5	2	5	6	8	7	0	0	0	0	13	2	5	6	8	7	0	0	0	0
5	3	0	0	0	0	0	0	0	0	13	3	0	0	0	0	0	0	0	0
5	4	0	0	0	0	0	0	0	0	13	4	0	0	0	0	0	0	0	0
6	1	1	2	3	4	0	0	0	0	14	1	1	2	4	3	0	0	0	0
6	2	6	5	8	7	0	0	0	0	14	2	6	5	8	7	0	0	0	0
6	3	0	0	0	0	0	0	0	0	14	3	0	0	0	0	0	0	0	0
6	4	0	0	0	0	0	0	0	0	14	4	0	0	0	0	0	0	0	0
7	1	2	1	3	4	0	0	0	0	15	1	2	1	4	3	0	0	0	0
7	2	5	6	8	7	0	0	0	0	15	2	5	6	8	7	0	0	0	0
7	3	0	0	0	0	0	0	0	0	15	3	0	0	0	0	0	0	0	0
7	4	0	0	0	0	0	0	0	0	15	4	0	0	0	0	0	0	0	0
8	1	2	1	3	4	0	0	0	0	16	1	2	1	4	3	0	0	0	0
8	2	6	5	8	7	0	0	0	0	16	2	6	5	8	7	0	0	0	0
8	3	0	0	0	0	0	0	0	0	16	3	0	0	0	0	0	0	0	0
8	4	0	0	0	0	0	0	0	0	16	4	0	0	0	0	0	0	0	0

vel	rlap 1-16 Prog	ram	CC	115	x Fai	IIIIT	[1.5	.2.1]	05	.2.2	Dec	-1.01	OI-			261	-		11	J 50		0==									on, C								_		
	lap Conflict Lock	0		OV	eriap I	LOCK	innibi	ı	OF	1,750			Clea		of many life	NC	E	xtra Ir	nclude	ed Ph		OFF						Pat#				ell	No SI	norty	vay Ø	E-Yld		RetHld	Float	Min Veh Perm	Min Ped Perm
-	ncluded Ø				_	-	1	1		_	VOR	MAL			ided (_	_	-	1	_	_	-	10		RMA	L	1	12	22							EndGRN	1 10 1			
	Modifier Ø				_	-	+	+	1		Gm				ifier @	_				1	1	_	_	1 1	G			2									EndGRN				
	Conflict Ø						1	+				3.5			flict Ø					1	-	_		H		el 3		3	12	22							EndGRN				
-	Conflict Olap					-	_	4		_		1.5	1		flict O						_				Re		.5	4	12	22							EndGRN				
151	Conflict Ped				_	1	1	1	1		LG		L	Chicago Table	flict P				1	1					L	3		5	12	22	2						EndGRN				
-	Included Ø	10				_	\perp	+	4	_	VOR	ИAL			ided (_					\perp		\perp	II.		RMA	L	6	12	22							EndGRN				(======================================
-	Modifier Ø						1	1			Gm				ifier Ø					1			\perp		G			7	12	22							EndGRN		4		
-	Conflict Ø											3.5			flict Ø	_								11		el 3		8	12	22		\Box		ij(j			EndGRN				
-	Conflict Olap							\perp				1.5	J		flict O											ed 1	.5	9	12	22	2			7			EndGRN				
100	Conflict Ped				Ļ			1	1		LG		L	Con	flict P	ed		L	1	1		_			L	3		10	12	22					T		EndGRN				
-	Included Ø										VOR	ИAL			ided (NC	RMA	L	11	12	22		\Box					EndGRN		24.7	-	
-	Modifier Ø									_	Gm		11	Mod	ifier Ø					11				100	G			12	12	22	2	Т					EndGRN				
-	Conflict Ø											3.5			flict Ø									11] +	Y	el 3	.5	13	12	22	2					16	EndGRN				
(Conflict Olap										Red	1.5	K	Con	flict O	lap			100	1				Щ	Re	ed 1	.5	14	12	22	2	Т					EndGRN				
1	Conflict Ped								1		LG			Con	flict P	ed									L	3		15	12	22	2						EndGRN				
L	included Ø						1	1	\mathbf{I}	1	VOR	JAN		Inch	ided (ð	1	1	1	1	1	1	1	-	INC	RMA	L	16	12	22	2	1	3 3	Ú.			EndGRN				
[Modifier Ø							7			Grn		12	Mod	ifier Ø									TI.	G	n		17		22		1	1 1				EndGRN				
(Conflict Ø		re				Т				Yel	3.5	1	Con	flict Ø											el 3	.5	18	_	22		+		1			EndGRN				
0	Conflict Olap											1.5	L	Con	flict O	lap				1					Re		.5	19		22		+		+	1		EndGRN				
(Conflict Ped										LG			Con	flict P	ed			1	1						3		20	12	22		+			1		EndGRN			-	
1	Included Ø		i	1	ĺ	İ	İ	İ	Î	-0.5	VOR	MAL	Ĺ	Property and	ided (Ĺ	Ĺ	İ	i	1	Ť	Ť			RMA	L	21				+		+	+		EndGRN				
	Modifier Ø								1	_	Gm		13		ifier Ø				1	+			+		G		_	22		22		+	+	+	+		EndGRN				
-	Conflict Ø						1					3.5	1		flict Ø				1	+	+	+	+	+		el 3	5	23		22		+		+			EndGRN				
-	Conflict Olap								1				м		flict O				1	+	+	+	-	+		d 1		24				+	+	+	+		EndGRN				
-	Conflict Ped							+	+		LG	1.0	1"		Rict P				+	+	+	-	-	-	L			25	12	-	+	+	+	+	+		BegGRN				
-00	ncluded Ø		-	-	i i	i	î.	i.	Ť		VOR	IAL	i	The Park Inches	ded (1	1	t		1	1	1		RMA	1	26		+	+	+	+	+	+		BegGRN				
_	Modifier Ø				-	+	+	+	+	_	Grn	10 12	14		ifier @		-		+	+		+	-	+	G	_	_	27		-	-	+	+	+	+						
-	Conflict Ø					-	+	+	+			3.5			flict Ø		-	-	+	+	+	+	+	-		1 3	-	28		-	-	+	+	-	+	_	BegGRN				
-	Conflict Olap					-	+	+	+						flict O			-	+	+	-	+	+	-		d 1		29		+		+	+	+	-		BegGRN				
- 1	Conflict Ped			_		-	+	+	+		LG	1.0	n		flict P		-	-	+	+	-	+		+			.5			-		+	+	+	+	-	BegGRN				
100	THE RESERVE OF THE PERSON NAMED IN		-	-	-	1	+	+	÷	-	SUSPICION AND		!	Commen		100	-	-	-	÷	+		+	-	L	200		30		+	-	+	+	+	+		BegGRN		_		
-	ncluded Ø		-	1	-	-	+	+	+	_	VOR	NAL			ded (-	-	+	+	-	+	-	+		RMA	L_	31		-	-	4	+	-	-		BegGRN				
-	Modifier Ø			-	-	-	+	+	+	_	Grn	2.5			ifier Ø		-	-	+	+	+	-	+	-	G			32		-	-	4	+	+	-		BegGRN				
-	Conflict Ø			_		-	+	+	+			3.5		100	flict Ø		-		+	+		+	+	+		3		33		_		4	-		_		BegGRN				
-	Conflict Olap		5.1			-	+	-	+		Red	1.5	0		lict O		_	-	_	1	-	_	_	_		d 1	.5	34		_		4					BegGRN			12	
12.5	Conflict Ped		-	_	-		1	1	1		LG		ļ.	100	flict P		1			1		Į.			L	200		35			1	1					BegGRN				
	ncluded Ø	1 =					1		1	_	VOR	MAL			ded (_	RMA	L_	36			101				10		BegGRN				
_	Modifier Ø	1-0									Grn		16		ifier @						10				G			37	1 =		1				4		BegGRN				
_	Conflict Ø	100							1			3.5			lict Ø						T.		U		Y	3	.5	38	15		10						BegGRN				
-	Conflict Olap	1 =	6.5								Red	1.5	P	Con	flict O	ар					1				Re	d 1	.5	39						- 0			BegGRN				
_	Conflict Ped		2.1								LG			Con	flict P	ed									L	3		40			105						BegGRN				
ha	nnel Settin	ngs	[1.8	.1]																			T				_	41									BegGRN				
	Channel ->>					5	6	7	7	8	9	10	11	12	13	14	15	16	17	1	8 1	9 2	20 2	21 2	2 2	3 2	4	42			100						BegGRN				
as	se / Olap #	1	2	3		5	6								7				T		710	\neg						43			177	1					BegGRN				
a	nnel Type	VEH	VEH	VEH	VEH	VE	H VE	H VE	HV	EH	VEH	VEH	VEH	VEH	VEH	VE	VEH	VE	VE	H VE	HV	EH V	EH V	EH VE	H VE	H VI	EH	44			135			17			BegGRN				
nai	nnel Flash	RED	RED	RED	RED	REI	D RE	D RE	DR	ED I	RED	RED	RED	RED	RED	RE	REC	REI	DR	K DF	RK DI	RK D	RK D	RK DE	RK DR	K DI	RK	45								-	BegGRN				
	łz		1																		3							46	-			1					BegGRN				
	nnel+ Sett	ings	[1.	8.4																_							_	47				1					BegGRN				
	Channel ->>					5	16	7	7	8 T	9	10	11	12	13	14	15	16	17	7 1	8 1	912	2012	21 2	2 2	3 2	4	48				+					BegGRN				
	h Red+					Ť	Ť	Ť	Ť	+					<u> </u>	T	T	T	T	T		1	1	1	1	T	7		nel	Para	ıms[1	8	31	_	-		Dogona		_		
	h Yellow+	1				1	+	+	+	1						1	1	1	1	+	1	+		+	+	+	-	Cilui) Mod			R	a RI	I Mar	SINGLE		Inver	t Rail Input	OFF
	h Green+					1	+	+	+	+						1	1	1	+	+	+	+		+	+	+	-		,				CLI	,	, 01	o iviat	GINGLE		iiivei	. Rail Iliput	OI T
	h inh Red+						+	+	+	-			-			+	-	+	+	+	+	+	+	+	+	+	-														
	Ovrd						+	+	+	+					-	-	-	+	+	+	1	+	+	-	+	+	+														
					1	1	1	N D					1	1		1	1	1	1		- 1	- 1																			

		11-6								ve	n Pa	1-6	4 [5.	1]					Veh	icle	Opt	tions	1-64	[5.2]	4			Vel	nicle	Op	tions	1-64	[5.2]	1		IF	aram	ete	rs+	1-64	[5.3]		
Det			Dlay	Ext	Que	No	Max	Err	Fail	Det	Call		Dlay	Ext	Que No	Max	Err	Fail	Det	Call	Ext	Que	Add R	ed Y	'ell d	осс	vol	Det	Call	Ext	Que	Add	Red Y	/ell	occ v	ol D	et oc				Dlay 2	Type	Src
#	Ø	Ø				Act	Pres		Time			Ø			Act	Pres	Cnt	Time	#				Init Lo	ch Lo	ock		3	#		195			ock L				# G	Y	K	1	2		3/19
1	2		2						15							45	50	7	1	On	On		On		T	\neg		33	On	On		On	7	- ()		- 16	1					NORM	
2	2		2	_			45	50	15	34						45	50	121	2	On	On		On					34	On	On		On					2					NORM	
3	3						45	50	25	35							50		3	On	On		On					35	On	On		On					3					NORM	
4	=						=			36						45	50				On		On					36	On	On		On	1		M.		4					NORM	-
5	Ē1)									37				Carl	=	45	50	-	5	On	On		On						On			On					5					NORM	
6		1	1	1						38					- 1	45	50		6	On	On		On					38	On	On		On					6		1=	7		NORM	
7	6						45		15							45	50			On	On		On	-				39	On	On		On					7			11.		NORM	
8	6			13	2=1		45	50	15	40						45	50			On	On		On				1	40	On	On		On	Щ	-54			В					NORM	
9										41					111111111111111111111111111111111111111	45	50		9		On		On					41		On		On					9					NORM	
10				11	17					42				-	= 1 + 1		50		10	On	On		On					42	On	On		On	1110			1	0					NORM	
11		9			111		1			43							50				On		On					43		On		On	74.0			1						NORM	
12	71									44	-				100	45	50		12	On	On		On					44		On		On	1				2					NORM	
13	7		2		11		45	50	25	45							50		13	On	On		On					45		On		On	11				3					NORM	
14	7		2				45	50	25							45	50		14	On	On		On				-	46		On		On	1 [4					NORM	
15		7						E 9		47				1			50			On			On		-1			47		On		On	3 4 Î	-1	E DE		5					NORM	
16										48							50		16	On	On		On					48		On		On	10				6			=		NORM	
17		1 1							-	49		1		-			50				On		On					49		On		On				1						NORM	
18										50						45	50	j	18	On	On		On					50	On	On		On				1	8					NORM	100
19										51							50				On		On						On			On	1			1	9					NORM	
20								-		52				1			50				On		On		1/2			52	On	On		On	11,	-	4	2	20					NORM	
21										53							50	1	21		On		On					53		On		On	11	= (2						NORM	
22										54							50		22		On		On	Ü					On			On				2	2					NORM	
23										55						45	50				On		On					55		On		On				2	3					NORM	
24										56							50				On		On					56		On		On					4					NORM	
25			-							57		-				45	50	9			On		On					57		On		On	101				.5	-				NORM	
26										58						45	50				On		On					58		On		On				12	6	=				NORM	
27										59						45	50				On		On	1	_h(59		On		On	211	= 1		2	7	1=		=		NORM	
28										60		1.0					50				On	8	On					60		On		On	T)	- 1		2	8			Fa 7		NORM	-
29										61							50				On		On						On			On	11,11				9					NORM	
30										62						45	50		30	On	On		On					62		On		On				3	0	-				NORM	
31			-							63					15		50	100	31	On	On		On		_	_	_		On			On			= 1	3	1					NORM	
32								4		64					1.5	45	50		32	On	On	7.7.1	On					64	On	On	ليا	On				3	2					NORM	
		ters				_					_	_	In.	la.			-		_		-	-		-	_						[5.4]										[1.2		
Det #	occ Gm	occ Yell	occ Red	Dlay 1	Dlay 2	Ту	ре	Src	Det #	Gm	OCC Yell	occ Red	Dlay 1	Dlay 2	Туре	Src	Det #	occ Gm	occ Yell	occ Red	Dlay 1	Dlay 2	Туре	S	Src		Det #	Call	No	Max	Err							2 De			Dari	m [1.5.	ON S1
33						NOR	M		44						NORM		55		1				NORM				1	NO.	HUL	15											inutes		15
34						NOR			45						NORM		56		1				NORM				2			15											inutes		0
35						NOR			46						NORM		57		1		-		NORM				3			15							101	. 000	. 011	JG 141			
36		-			_	NOR)	47						NORM		58	1					NORM				4			15	_												
37						NOR			48						NORM		59		1				NORM		\neg	1	5			15													
38						NOR			49						NORM		60						NORM				6	111		15													
39						NOR			50						NORM		61		\neg				NORM			1	7			15													
40						NOR			51						NORM		62						NORM				8			15													
41						NOR			52						NORM		63		+				NORM			L	0		_	10	-												
42						NOR			53						NORM		64						NORM																				
43						NOR			54						NORM): 72	04	RTF	22		E 128		ВМ	DR													12	12112	017	Page	9.3
,0			_	_	_			_	07	_	_		_				- 11		-			-,																		- 1/6		· ug	_

	**							_												
		mes [3.1]				Trac	k Clear	Phas	es [3.2], Tra	ck Cl	ear C)verla	ps+	[3.5]					
Pre#	Enable	Туре	Output	Delay	MinDura	Pre #	Track Pl	ases		Trac	k Over	laps								
1	ON	RAIL	DWELL			1														
2	ON	RAIL	DWELL			2														
3	ON		DWELL			3		+												
4	ON		DWELL			4		+			+								-	
5	ON	EMERG			-			+	-	-	-								_	
			DWELL			5		+	-	-	-		-		\vdash	-	_			_
6	ON		DWELL			6					_									
	MaxPres	MinGrn	MinWlk	PedClr			II Phase	s [3.2	and	Overl	aps+	[3.5]								
1					ON	Pre #														
2					ON	1	Phases		-111											
3					ON		Overlaps													
4					ON		Peds											2 7 1		
5					ON	2	Phases	1												
6			4 1		ON		Overlaps		1											
Pre#	Track Grr	Min Dwell	Ext Dwell	PedClr+			Peds													
1		2				3	Phases								\vdash					
2		2	-			Ĭ	Overlaps		+		1					-				
3		2				4	Peds		+		-					\rightarrow				
4		2				1		-	+											
						4	Phases	1	-							-		_		
5		2					Overlaps	-	+		-					-				
6	D .	2	01:				Peds	-	-	-	-									
Pre#	Red	Pattern	Skip			5	Phases			_										
1	1		OFF				Overlaps										_		_	
2			OFF	2			Peds		7											
3			OFF			6	Phases													
4			OFF				Overlaps													
5			OFF				Peds													
6			OFF							Preer	nptio	n Op	tions	+ [3.6	6]					
Low P	riority Pr	reempts		2.5		Exit	Phases	[3.2]			Lock		Overrio			verride	e	Flsh		
Pre#	Туре	Min	Max				Exit Pha						uto Fl	sh		Higher		Dwel	Link	
7	OFF					1		1		1	ON		ON			ON		OFF		
8	OFF					2	\vdash	1	_	2	ON		ON			ON		OFF		
9	OFF					3	\vdash	+	+	3	ON		ON			ON		OFF		
10	OFF					1	\vdash	+	+	1			ON							
10	UPF					4	\vdash	+	-	4	ON		_			ON		OFF		
						5	\vdash	+	-	5	ON		ON			ON		OFF		
		rs [1.2.1]		1		6			1	6	ON	-	ON			ON		OFF		
	ner Over I		OFF																	
	t or Ext O		PRE																	
	ek Track 7																			
Max Se	ek Dwell 1	Time																		
Chann	el Param	neters [1.	8.3]																	
D Conn	Mappings	3	NONE																	
	ert Rail Inp		OFF																	
			-																	
(

12/21/2017

Page 4

ID: 7204 RTE 22 @ RTE 128 & IBM DR

Alt# 1 Times Tal	ble [1	1.6.1.2	2]						Alt# 1 Veh Para	ameter	s [5.5.	.1.11													
Column#>	1	2	3	4	5	6	7	8	Column#>		2	3	4	5	6	7	8	9	10	11	12	13	14	15	1
Assign Ø									Assign Det#																
Min Grn									Call																
Gap, Ext								C-7	Swiitch														7		
Max 1								100	Delay							-									
Max 2									Extend	1															\vdash
Yel Clr									Queue																+
Red Clr		1							No Activity										-						
Walk									Max Presence														-		-
Ped Clr			-					-	Erratic Count																-
Alt# 2 Times Tal	hla [1	1613	01				_		Fail Time							-									-
Column#>	1	2	3	4	5	6	7	8	Alt# 1 Veh Opt		512	1	-			_	_	_			-				_
Assign Ø			J	4	3	Ü	-	0	Column#>		2	3	4	5	6	7	8	0	40	44	40	42	44	45	
Min Grn								1				3	4	0	0	-	0	9	10	11	12	13	14	15	1
Gap, Ext								-	Assign Det#					-											-
Max 1	-								Extend		-			-											-
Max 2									Queue																-
Yel Clr								-	Added Initial																+
Red Clr					-			-	Red Lock			-									-				-
Walk	-							-	Yellow Lock																\vdash
Ped Clr		-			_				Occupancy		_			-	-		-								⊢
	hin Id	4040	1			_			Volume		_														-
It# 3 Times Tal	ole [1.		_		-		-					F 4 01													L
		2	3	4	5	6	1	8	Alt# 1 Veh Para					-											_
Assign Ø Min Grn									Column#>	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	1
							-		Assign Det#			-													
Gap, Ext		_							Occ-on-green																_
Max 1					5				Occ-on-yellow													-1			
Max 2									Occ-on-red																
Yel Cir									Delay Phase 1																
Red Clr		[4.2]			0.0				Delay Phase 2																
Walk									Detector Mode	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NC
Ped Clr									Source																L
It# 1 Options T	able								Alt# 1 Ped Para																
Column # ->	1	2	3	4	5	6	7	8	Column#>	1	2	3	4	5	6	7	8								
Assign Ø									Assign Det#																
Lock Calls	On	On	On	On	On	On	On	On	Call	1		- T													
Soft Recall			100	-					No Activity									l l							
Dual Enrty	110				3			E	Max Presence																
Enabl SimGap	On	On	On	On	On	On	On	On	Erratic Count						-			1							
Guar Passage			100						4 1 1 1																
Rest In Walk																									
Cond Service																									
Reservice																									
Non-Act 1																									
Red Rest																									
Max2																									
Ped Delay							1																		
									ID: 7204												12/2			P	

Alt# 2 Options T	able	[1.1.6.	2.2]						Alt# 2 Veh Par	amete	rs [5.5	.2.1]													
Column # ->	1	2	3	4	5	6	7	8	Column#>		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Assign Ø									Assign Det#																
Lock Calls	On	On	On	On	On	On	On	On	Call																-
Soft Recall								1	Swiitch								8-1								
Dual Enrty							8	1	Delay																
Enabl SimGap	On	On	On	On	On	On	On	On	Extend				-											-	
Guar Passage			17.4					17.3	Queue								7								
Rest In Walk									No Activity				17 7												-
Cond Service		(1)							Max Presence																
Reservice									Erratic Count											1					
Non-Act 1									Fail Time																
Red Rest					1 m 1/				Alt# 2 Veh Opt	ions [5.5.2.2	1													
Max2									Column#>		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Ped Delay									Assign Det#																
Conflicting Ø1									Call						(= 4)										
Alt# 3 Options T	able	1.1.6.2	2.3]						Extend		1_3														
Column # ->	1	2	3	4	5	6	7	8	Queue														1		
Assign Ø									Added Initial		7 (
Lock Calls	On	On	On	On	On	On	On	On	Red Lock																
Soft Recall									Yellow Lock																
Dual Enrty			1						Occupancy																
Enabl SimGap	On	On	On	On	On	On	On	On	Volume																
Guar Passage									Alt# 2 Veh Par	amete	rs+ [5.	5.2.31													
Rest In Walk								-	Column#>		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Cond Service									Assign Det#			1										10		10	-10
Reservice									Occ-on-green															-	
Non-Act 1			<u> </u>				1/25		Occ-on-yellow																
Red Rest			2						Occ-on-red									-							
Max2			V				-		Delay Phase 1																
Ped Delay									Delay Phase 2													-			
Conflicting Ø1									Detector Mode	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM	NORM
Alt# 4 Options T	able	1.1.6.	2.41						Source		1.0								THE TANK	THE TAIL	THO I CAN	- Indian	III OILIII	HORE	NORM
Column # ->	1	2	3	4	5	6	7	8	Alt# 2 Ped Par	amete	rs+ [5.	5.2.41									_				_
Assign Ø									Column#>		2	3	4	5	6	7	8								
Lock Calls	On	On	On	On	On	On	On	On	Assign Det#									1							
Soft Recall							-		Call																
Dual Enrty									No Activity																
Enabl SimGap	On	On	On	On	On	On	On	On	Max Presence							-									
Guar Passage							7 7 7		Erratic Count																
Rest In Walk																									
Cond Service		0.4						1																	
Reservice								7 - 7																	
Non-Act 1	100		- /					1																	
Red Rest	7																								
Max2				- 1																					
Ped Delay			(4, 1)			-																			
Conflicting Ø1						-		- 1																	
									ID: 7204	RTE 2	2 @ R	TE 12	8 & IBI	M DR							12/2	/2017		Р	age 6
																									-

nnı	ıal	Sch	hedu	ıle [4.3]	Mo	nth	of	Yea	ar					Da	y of	Wee	k			Da	te																								DayL
1	J	F	M	A	M		J	J	A	S	0	N	D	S	N	_	W	/ T	F	S		2	3	4	5 (6 7	8	9	10	11 12	13	14	15 1	6 17	18	19 2	0 21	22	23	24 2	25 2	6 27	28	29	30 31	Plan
(On	On	On	On	Or	1 0)n (On	On	On	On	On	On	On	0	n O	n O	n 0	n O	n Or	O	n On	On	On (On C	n Or	On	On	On C	n Or	n Or	On	On C	n Or	On	On C	n Or	n On	On (On C	On O	n Or	n On	On	On On	1
	J	F	M	A	M		J	J	Α	S	0	N	D	S	N	1 T	W	1	F	S	1	2	3	4	5 (6 7	8																		30 31	
																			1-												T			T							T	T				1
	J	F	M	Α	M		J	J	Α	S	0	N	D	S	N	1 T	N	I	F	S	1	2	3	4	5 (6 7	8	9	10 1	1 12	13	14	15 1	6 17	18	19 2	0 21	22	23	24 2	25 2	6 27	28	29	30 31	
																															T										T					1
	J	F	M	Α	M		J	J	Α	S	0	N	D	S	M	1 T	N	/ T	F	S	1	2	3	4	5 (6 7	8	9	10 1	1 12	13	14	15 1	6 17	18	19 2	0 21	22	23	24 2	25 2	6 27	28	29	30 31	
																																										T				1
	J	F	M	Α	M		J	J	Α	S	0	N	D	S	N	1 T	W	I	F	S	1	2	3	4	5 (6 7	8	9	10 1	1 12	13	14	15 1	6 17	18	19 2	0 21	22	23	24 2	25 20	6 27	28	29	30 31	
												L.																																		1
	J	F	M	Α	M		J	J	Α	S	0	N	D	S	N	I	M	1	F	S	1	2	3	4	5 6	6 7	8	9	10 1	1 12	13	14	15 1	6 17	18	19 2	0 21	22	23 3	24 2	25 26	6 27	28	29	30 31	
																																														1
	J	F	M	Α	M	-	J	J	Α	S	0	N	D	S	N	I	W	I	F	S	1	2	3	4	5 6	6 7	8	9	10 1	1 12	13	14	15 1	6 17	18	19 2	0 21	22	23	24 2	25 26	6 27	28	29	30 31	
		_	-		1			_							1					1																										1
	J	F	M	Α	M		J	J	Α	S	0	N	D	S	N	I	W	T	F	S	1	2	3	4	5 6	6 7	8	9	10 1	1 12	13	14	15 1	6 17	18	19 2	0 21	22	23 2	24 2	25 26	6 27	28	29	30 31	
		_				щ								ال				4		1			Щ	4	L	_										1										1
	J	F	M	A	M		J	J	А	S	0	N	D	S	N	1 1	W		F	S	1	2	3	4	5 6	6 7	8	9	10 1	1 12	13	14	15 1	6 17	18	19 2	0 21	22	23 2	24 2	25 26	6 27	28	29	30 31	
	1	_		A				1		0	^	N.F.	-	0	-					0					Щ,			Ų								1										1
F	J	Г	IVI	A	IVI		,	J	А	5	U	N	D	S	M	1	V		-	S	1	2	3	4	5 6	6 7	8	9	10 1	1 12	13	14	15 1	6 17	18	19 2	0 21	22	23 2	24 2	25 26	6 27	28	29	30 31	
	1	Г		A			1	į.		0	0	N.	-	0						-						_																1			200	1
	J	Г	IVI	A	IVI		,	J	А	5	U	N	D	5	M		W		-	S	1	2	3	4	5 6	6 7	8	9	10 1	1 12	13	14	15 1	6 17	18	19 2	0 21	22	23 2	24 2	25 26	6 27	28	29	30 31	
	1	г		A				1	٨	0	0	N1	-	0		-	10			0		0	0		- /				10																	1
	J	Г	IVI	A	IVI		,	J	А	5	0	N	D	5	M		V		-	S	1	2	3	4	5 6	6 /	8	9	10 1	1 12	13	14	15 1	6 17	18	19 2	0 21	22	23 2	24 2	25 26	6 27	28	29	30 31	-
	1	_	14	٨	14		1	1	٨	C	0	NI.	D	C		т	14	, ,		0	-	0	2		F (0 7	0	0	10 1	4 40	10		45.4	0 47	40	10.0	0 04	00	00					-		1
	J	T	IVI	A	IVI		,	J	А	5	0	IN	D	S	IV	-	VV	-	г	S	1	2	3	4	5 6	0 /	8	9	10 1	1 12	13	14	15 1	6 1/	18	19 2	0 21	22	23 2	24 2	25 26	5 27	28	29	30 31	
	1	E	M	٨	M			1	٨	C	0	NI	D	C		т	10	, т	-	C	1	2	2	4	E (c 7	0	0	10 1	1 10	1 10	44	4E 4	C 47	40	10 0	0 04	00	00 1	04.0)r 0/	0.7		00	00 04	1
	J	-	IVI	A	IVI	-	,	J	A	0	U	IN	U	0	IV	1	VV	-	Г	0	1	2	3	4	5 6	0 /	8	9	10	1 12	13	14	15 1	0 1/	18	19 2	0 21	22	23 4	24 2	25 26	0 2/	28	29	30 31	
	1	F	M	Λ	NA			1	٨	C	0	N	D	C	N	Т	\A	, т		C	1	2	2	4	E (2 7	0	ò	10 1	4 40	1 10	44	4E 4	C 47	40	10 0	0 04	00	00 1	04.0)r 0/	0.7	. 00	00	00 04	1
	U		IVI	^	IVI			J	^	J	0	IV	U	0	IV	1	VV	7	F	0	-	2	3	4	3 (0 /	0	9	10	1 12	13	14	15 1	0 17	10	19 2	0 21	22	23 4	24 2	20 20	0 21	28	29	30 31	-
	.1	F	M	Δ	M		1	1	Δ	S	0	N	D	2	M	Т	١٨	Т	E	S	1	2	2	1	5 6	6 7	Ω	9	10 1	1 12	12	14	15 1	6 17	10	19 2	0 21	22	22 (24 5)E 20	2 27	20	20	20 24	1
		•	141	11	141		1		^	U		14	-	0	IV	-	V V	-	-	0	7	-	J	7	J (0 /	0	3	10	1 12	. 13	14	10 1	0 17	10	19 2	0 21	22	20 4	24 2	20 20	0 21	20	29	30 31	1
	J	F	М	Α	М		1	J	Α	S	0	N	D	S	M	Т	M	Т	F	S	1	2	3	4	5 6	6 7	8	9	10 1	1 12	13	14	15 1	6 17	18	10 2	n 21	22	23 1	24 2	5 26	3 27	28	20	30 31	1
			T."	, ,	1		T	•	7.		0				100		T	T	Ť		71	-					0	0	10	1 12	. 10	17	10 1	0 17	10	13 2	0 21	22	20 2	24 2	J 20	3 21	20	25	30 31	1
	J	F	М	Α	М		1	J	Α	S	0	N	D	S	M	Т	W	T	F	S	1	2	3	4	5 6	6 7	8	9	10 1	1 12	13	14	15 1	6 17	18	19 2	n 21	22	23 '	24 2	5 26	3 27	28	20	30 31	
			-				T									7	1	T	T		T	T		Ť	,				,0	-	-		10 1	0 17	10	10 2	0 21		20 2	27 2	.0 20	2 21	20	23	30 31	1
	J	F	М	Α	М	J		J	Α	S	0	N	D	S	М	Т	W	T	F	S	1	2	3	4	5 6	6 7	8	9	10 1	1 12	13	14	15 1	6 17	18	19 2	0 21	22	23 :	24 2	5 26	3 27	28	29	30 31	
T																	T	T	T					Ť	T	T								T		10 2				T	.0 20			20	00 01	1
	J	F	М	Α	M	J	j	J	Α	S	0	N	D	S	M	T	W	T	F	S	1	2	3	4	5 6	6 7	8	9	10 1	1 12	13	14	15 1	6 17	18	19 2	0 21	22	23 :	24 2	5 26	3 27	28	29	30 31	
																				T																T	T			T		T				1
	J	F	M	Α	M	J	J	J	Α	S	0	N	D	S	М	T	W	T	F	S	1	2	3	4	5 6	6 7	8	9	10 1	1 12	13	14	15 1	6 17	18	19 2	0 21	22	23 :	24 2	5 26	3 27	28	29	30 31	
								Ī									7	7	T	T																	T	1		T						1
	J	F	М	Α	М	J		J	Α	S	0	N	D	S	М	Т	W	Т	F	S	1	2	3	4	5 6	6 7	8	9	10 1	1 12	13	14	15 1	6 17	18	19 2	0 21	22	23 :	24 2	5 26	3 27	28	29	30 31	
1					1											T	T	T	T		11				T	T	Ť		T	T	1		T	T			T			T		T			30 01	1
	J	F	M	Α	M		J	J	Α	S	0	N	D	S	M	T	W	T	F	S	1	2	3	4	5 6	6 7	8	9	10 1	1 12	13	14	15 1	6 17	18	19 2	0 21	22	23 1	24 2	5 26	3 27	28	29	30 31	
3											-					T	T	T	T						T	T	É			T	7		7	T			1		-	7		T				1
	J	F	М	A	M	J	J	J	Α	S	0	N	D	S	M	T	W	T	F	S	1	2	3	4	5 6	6 7	8	9	10 1	1 12	13	14	15 1	6 17	18	19 2	0 21	22	23 2	24 2	25 26	5 27	28	29	30 31	-
•																				T													T				T			T		T				1
ID	. 7	204		RI	F 2	22 (@ I	RTI	F 1	28	& IF	BM	DR																														1	212	1/2017	

y P	ans	[4.4]																				Act	tion	Table	[4.5	5]						C	oord	Altern	ate 7	Table	s - Pat	+ [2.6	1										
		Day	Pla	1.1					Day	у Р	lan :	2		T			Day	/ PI	an :	3																						1)	Over	lap Of	F				
Hou	Mir	Act	_	our Mi	n Ad	t 🔳	Hour	Min	_	_	_	Min	A	1	Hour		Act	_	,	Mi	n Ac	t Act	# P	at# A1	1 A2	A3 8	S1 S2	2 53	S4 S	5 S	6 S7	S8 P	at#	ØOpt Ø	Time	DetG	Call Infr	CIC	CNA1	1	2			4	5	6	7	8	Dia
0	0	1	9		1	1		0	-	19	0	0	=		0	0	0	-	=	10	_	_	_	1				T		T			1			-		010	1		T	T	T	T	T	Ī	T	U	DFT
ī			10			2	0	0	0	10	0	0	0	2	0	0	0	10	_	0	-	2		2	\vdash	T	1				\Box	_	2		1							1	1	7	=	= 1			DFT
			11			3	0	0	0	11	0	0	0	3	0	0	0	11	0	0	0	3	_	3						1	1	_	3			127			-		+		+		_		-		DFT
ī			12			4	0	0	0	12	0	0	0	4	0	0	0	12	0	0	0	_	_	4		\vdash				1	\Box	_	4		7						1			-	=				DFT
			13			5	0	0	0	13	0	0	0	5	0	0	0	13	0	0	-	5	_	5		\vdash		Т	\vdash	+	+	_	5		=						1	1	+	-	-	-			DFT
			14			6	0	0	0	14	0	0	0	6	0	0	0	14	0	0	0	6	_	6	T	\vdash	1	T	\vdash	+	\Box	_	6			-		10.0			1		1	-	\rightarrow	_			DFT
			15	-/-		7	0	0	0	15	0	0	0	7	0	0	0	15	0	0	0	-	_	7		T					T	_	7		\neg							+		1	\rightarrow				DFT
			16			8	0	0	0	16	0	0	0	8	0	0	0	16	0	0	_	_		8		\vdash			\vdash	+	H	_	8		1	-					1		+		\rightarrow		_		DFT
		Day	Pla	14		Т			Day	v P	lan !	5	_	1			Day	P	an i	6		9	_	9		\Box			\vdash	+	Н	_	9					1				1	+	-	=				DFT
Hou	r Mir	Act	Н	our Mi	n Ac	t 🔳	Hour	Min	Act		Hou	Min	Ac		Hour	Min	Act	_	_	Mi	n Ac	t 10	,	10	T						\Box	_	10			11									_				DFT
0	0	0	9	0 0	0	1	0	0	0	19	0	0	1 0	111	0	0	0	9	0	0		_	_	11						1	\vdash	_	11				j = 1				1		1						DFT
0	0	0	10	0 0	0	2	0	0	0	10	0	0	0	2	0	0	0	10	0	0	_	_	_	12							\Box	_	12			-							1	1	-				DFT
0	0	0	11	0 0	0	3	0	0	0	11	0	0	0	3	0	0	0	11	0	0	0	13	_	13							\Box		13		1) = (1		+	- 1					DFT
0	0	0	12	0 0	0	4	0	0	0	12	0	0	0	4	0	0	0	12	0	0	0	_	_	14				П		\top	Н	$\overline{}$	14		\neg						1	1	1						DFT
0	0	0	13	0 0	0	5	0	0	0	13	0	0	0	5	0	0	0	13	0	0	-	_	_	15		T				1	П	_	15				7.31	p T	1										DFT
0	0	0	14	0 0	0	6	0	0	0	14	0	0	0	6	0	0	0	14	0	0	-	_	_	16								_	16		1														DFT
0	0	0	15	0 0	0	7	0	0	0	15	0	0	0	7	0	0	0	15	-	0	-	_		17								_	17		1								1						DFT
0	0	0	16	0 0	0	8	0	0	0	16	0	0	0	8	0	0	0	16	0	0	0	18	3 1	18							\Box	_	18		1									10					DFT
		Day	Pla	17		Т			Day	y P	lan l	В		Т			Day	P	an !	9		19	9	19							\Box	_	19					-							_				DFT
ou	Mir	Act	Н	our Mi	n Ac	t 📑	Hour			_	Hou	_	Ac		Hour	Min	Act		Hou	Mi	n Ac	_	_	20						1	\Box	_	20																DFT
0	0	0	9	0 0	0	1	0	0	0	9	0	0	0	1	0	0	0	9	0	0	10	21		21								_	21					-						- 1				1	DFT
0	0	0	10	0 0	0	2	0	0	0	10	0	0	0	2	0	0	0	10	0	0	0	22	2 3	22								_	22												\rightarrow			- 1	DFT
0	0	0	11	0 0	0	3	0	0	0	11	0	0	0	3	0	0	0	11	0	0	0	23	3 :	23	Т	П						1 2	23				-		1	20.00		1			_				DFT
0	0	0	12	0 0	0	4	0	0	0	12	0	0	0	4	0	0	0	12	0	0	0	24	1	24	F	П		П	П	T	П		24			no.	11:1												DFT
0	0	0	13	0 0	0	5	0	0	0	13	0	0	0	5	0	0	0	13	0	0	0	25	5								П	2	25							100			,			_			DFT
0	0	0	14	0 0	0	6	0	0	0	14	0	0	0	6	0	0	0	14	0	0	0	26	5									1	26					14								- 1			DFT
0	0	0	15	0 0	0	7	0	0	0	15	0	0	0	7	0	0	0	15	0	0	0											- 2	27																DFT
0	0	0	16	0 0	0	8	0	0	0	16	0	0	0	8	0	0	0	16	0	0	0	28	3									2	28															4.1	DFT
	7	Day	Plan	10					Day	PI	an 1	1				1	Day	Pla	an 1	2		29	9						П			12	29									i i i						10	DFT
οu	Mir	Act	Н	our Mi	n Ac	t 🔣	Hour	Min	Act	t	Hou	Min	Ac	t	Hour	Min	Act		Hou	n Mi	n Ac			4, 14					7.1		П	3	30			$\equiv 6$		1 1						-+					DFT
0	0	0	9	0 0	0	1	0	0	0	9	0	0	0	1	0	0	0	9	0	0	0			-1-							П	3	31				4 - 1					Vii I				- 1			DFT
0	0	0	10	0 0	0	2	0	0	0	10	0	0	0	2	0	0	0	10	0	0	0	32	2									3	32			- 1		11			-							= +	DFT
0	0	0	11	0 0	0	3	0	0	0	11	0	0	0	3	0	0	0	11	0	0	0	33	3	-1-								3	33				-	5 11						-+-	- 1	= 7			DFT
0	0	0	12	0 0	0	4	0	0	0	12	0	0	0	4	0	0	0	12	0	0	0			=1=								3	34			- 1													DFT
0	0	0	13	0 0	0	5	0	0	0	13	0	0	0	5	0	0	0	13	0	0	0	35	5						1.	13		3	35			- 1		1								-			DFT
0	0	0	14	0 0	0	6	0	0	0	14	0	0	0	6	0	0	0	14	0	0	0	1000										3	36					2.1						- i ji		= 1	- 1	$\equiv 0$	DFT
0	0	_	15	0 0	0	7	0	0	0	15	0	0	0	7	0	0	0	15	0	0	0			115			1,11	14		1.1		3	37	1		= 1													DFT
0	0	_		0 0	0	8	0	0	_	_	_	0	0	8	0	0	0	16	0	0	0	_	_									_	38		-			1								= 17			DFT
		Day			_				_	_	an 1	_	_	L		_	_	_	n 1	_	_	39	_									_	39				1	1-1						- (DFT
				our Mi					Act		Hou										n Ac						113		5			_	10											1181				= 1	DFT
_				0 0	_			_	-			-	_	_			-			-	_			_			_			-		_	11				half.												DFT
0	0	0		0 0	_	-	0	0	0	-	-	0	0	-	0	0	0	10	_	-	_	_	3										12			- 0	200	1						1		-		-	DFT
0	0			0 0		_		0	-	-	_	0	0	-	0	0	0			_	_			-						-			13				4 = 1	11						-					DFT
0	0	_		0 0		_	0	0		_	_	0	_	-	0	0	0	12		-	_		3	- 1									14				1	1											DFT
0	0	_	_	0 0	_	_	_	0	-	_		0	0	_	0	0	0	_		0			3										45					- 11											DFT
0	0	_	14			_	_	0	-	-		0	_	-	0	0	0			-			0 2										46			=1	2	11											DFT
0	0	-		0 0	_	_	0	0		_		0	0	-	0	0	0	15	_	0): 7204	R	TE 2	2@	RT	E 12								2	hii						1					DFT
0	0	0	16	0 0	0	8	0	0	0	16	0	0	0	8	0	0	0	16	0	0	0	12/	21/1	7						Pa	ge 8	1	48		_ [1		- 1		= 1	-	- 1	DFT

C1-USER IO Map [1.8.9.1 In]	C1-USER IO Map [1.8.9.2 Out]	C1-USER IO Map [1.8.9.2 Out]	IO Logic [1.8.7]						
11-1 1 Veh Call 1	O1-1 1 Ch1 Red	07-1 40 Ch16 Yellow	Result	Fcn (Oper	Fcn	Oper	Fcn Time	er
11-2 2 Veh Call 2	O1-2 49 Ch1 Green	07-2 16 Ch16 Red	1 0 =	1	0	I	0	1 0	DLY
11-3 3 Veh Call 3	O1-3 2 Ch2 Red	07-3 64 Ch16 Green	1 0 =	1	0	I	0	1 0	DLY
11-4 189 Unused	O1-4 26 Ch2 Yellow	07-4 115 Not Used	1 0 =	I	0	1	0	1 0	DLY
11-5 5 Veh Call 5	O1-5 50 Ch2 Green	O7-5 115 Not Used	I 0 =	1	0	1	0	1 0	DLY
11-6 6 Veh Call 6	O1-6 3 Ch3 Red	07-6 115 Not Used	1 0 =	I	0	I	0	I 0	DLY
11-7 7 Veh Call 7	O1-7 27 Ch3 Yellow	07-7 115 Not Used	I 0 =	1	0	I	0	I 0	DLY
11-8 8 Veh Call 8	O1-8 51 Ch3 Green	O7-8 15 Ch15 Red	I 0 =	1	0	1	0	1 0	DLY
12-1 189 Unused	O2-1 4 Ch4 Red	C11S-USER IO Map [1.8.9.1 In]	1 0 =	1	0	1	0	1 0	DLY
12-2 189 Unused	O2-2 52 Ch4 Green	I4-1 189 Unused	1 0 =	I	0	1	0	I 0	DLY
12-3 189 Unused	O2-3 5 Ch5 Red	I4-2 189 Unused	1 0 =	1	0	I	0	1 0	DLY
I2-4 189 Unused	O2-4 29 Ch5 Yellow	14-3 189 Unused	Security Access Levels [8.2]	,		43 NONE		Com Parame	ters [6.1]
12-5 13 Veh Call 13	O2-5 53 Ch5 Green	I4-4 189 Unused	1 SWLOAD	22 NON	E	44 NONE		Station ID	7204
I2-6 14 Veh Call 14	O2-6 6 Ch6 Red	17-1 189 Unused	2 SECURE	23 NON	E	45 NONE		Group ID	
12-7 189 Unused	O2-7 30 Ch6 Yellow	17-2 189 Unused	3 NONE	24 NON	E	46 NONE		Master ID	0
12-8 189 Unused	O2-8 54 Ch6 Green	17-3 189 Unused	4 NONE	25 NON	E	47 NONE		Backup Time	0
I3-I 189 Unused	O3-1 7 Ch7 Red	17-4 189 Unused	5 NONE	26 NON		48 NONE		SysUp Mode	m [6.1]
13-2 189 Unused	O3-2 55 Ch7 Green	17-5 189 Unused	6 NONE	27 NON	E	49 NONE		Enable Modem	
13-3 189 Unused	O3-3 8 Ch8 Red	17-6 189 Unused	7 NONE	28 NON	E	50 NONE		Idle Time	0
13-4 189 Unused	O3-4 32 Ch8 Yellow	17-7 189 Unused	8 NONE	29 NON	E	51 NONE		Dial Time	0
13-5 189 Unused	O3-5 56 Ch8 Green	17-8 189 Unused	9 NONE	30 NON	E	52 NONE		Tel: #	N/A
13-6 189 Unused	O3-6 9 Ch9 Red	18-1 189 Unused	10 NONE	31 NON	E	53 NONE			N/A
13-7 189 Unused	O3-7 33 Ch9 Yellow	18-2 189 Unused	11 NONE	32 NON	E	54 NONE			
13-8 189 Unused	O3-8 57 Ch9 Green	18-3 189 Unused	12 NONE	33 NON	E	55 NONE		2070 Port Pa	rms [6.2]
14-1	O4-1 10 Ch10 Red	I8-4 189 Unused	13 NONE	34 NON	E	56 NONE		Port Baud Rate	
14-2 C11S Connector	O4-2 58 Ch10 Green	18-5 189 Unused	14 NONE	35 NON	E	57 NONE		SP1 9600	MODE 6
14-3 CTTS Connector	O4-3 11 Ch11 Red	18-6 189 Unused	15 NONE	36 NON	E	58 NONE		SP2 9600	MODE 6
14-4	O4-4 35 Ch11 Yellow	18-7 189 Unused	16 NONE	37 NON	E	59 NONE		SP3 19200	MODE 6
14-5 179 Door Open	O4-5 59 Ch11 Green	18-8 189 Unused	17 NONE	38 NON	E	60 NONE		SP4 38400	MODE 6
I4-6 189 Unused	O4-6 12 Ch12 Red	C11S-USER IO Map [1.8.9.2 Out]	18 NONE	39 NON	E	61 NONE		SP5 1200	AUTO
14-7 229 33xCMUStop	O4-7 36 Ch12 Yellow	O8-1 115 Not Used	19 NONE	40 NON	E	62 NONE		SP6 1200	AUTO
14-8 228 33xFlashSns	O4-8 60 Ch12 Green	O8-2 115 Not Used	20 NONE	41 NON	E	63 NONE		SP7 1200	AUTO
15-1 189 Unused	O5-1 28 Ch4 Yellow	O8-3 115 Not Used	21 NONE	42 NON	E	64 NONE		SP8 1200	AUTO
15-2 189 Unused	O5-2 34 Ch10 Yellow	O8-4 115 Not Used		_				-	
15-3 189 Unused	O5-3 25 Ch1 Yellow	O8-5 115 Not Used	2070 IP 1 Addressing [6.5]		2070 IP 2 A	ddressing [6.5]			
15-4 189 Unused	O5-4 31 Ch7 Yellow	O8-6 115 Not Used	Addressing			Addressing			
15-5 189 Unused	O5-5 39 Ch15 Yellow	O8-7 115 Not Used	Addr 0 0	0 0	Addr	0 0	0 0		
15-6 189 Unused	O5-6 63 Ch15 Green	O8-8 115 Not Used	Mask 0 0	0 0	Mask	0 0	0 0		
15-7 189 Unused	O5-7 115 Not Used		Brdcst 0 0	0 0	Brdcst	0 0	0 0		
I5-8 189 Unused	O5-8 114 Watchdog		GtWay 0 0	0 0	GtWay	0 0	0 0	1	
16-1 189 Unused	O6-1 115 Not Used		Port 0		Port	0			
I6-2 189 Unused	O6-2 115 Not Used								
16-3 189 Unused	O6-3 13 Ch13 Red		2070 Port Binding Ports [6.	6]	2070 Port E	linding Functions [6.6]			
I6-4 189 Unused	O6-4 37 Ch13 Yellow		Port Echo	Mode	Function	Channel Function Cha	annel		
16-5 189 Unused	O6-5 61 Ch13 Green		ASYNC1 SP1 OFF	0	TS2/CVM		SYNC2		
16-6 189 Unused	O6-6 14 Ch14 Red		ASYNC2 SP2 OFF	0	CMU/MMU		SYNC1		
I6-7 189 Unused	O6-7 38 Ch14 Yellow		ASYNC3 SP3 OFF	0	Opticom		ONE		
16-8 189 Unused	O6-8 62 Ch14 Green		ASYNC4 SP4 OFF	0	Loop Det.	NONE			
			SYNC1 SP5S SYNC3	OFF	GPS	NONE			
			SYNC2 OFF SYNC4	OFF					200
ID: 7204	RTE 22 @ RTE 128 & IBM DR							2/21/17	Page 9

#	Event / Alarm	Ev Alr	Ca	all Ph	ases	[1.1.5	5]	Red	lirect	Phas	es[1.	1.5]						Inhi	ibit F	hase	s[1.1	1.5]												
1	Power Up Alarm.	On On	Ø	Phas	ses Ca	alled E	By Ø		Fron	To	From	To	From	To	From	To			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
2	Stop Timing	On On	1		-			1										1 [17								,,,		-	
3	TS1 Cabinet Door		2					2				-04						2												-	- 1			
4	Coordination Failure	On On	3					3										3														-		
5	External Alarm # 1	On On	4		7			4										4			7													
6	External Alarm # 2	On On	5					5										5																
7	External Alarm #3		6					6										6						-	- 4					1				
8	External Alarm # 4		7					7										7					7.57	1==(1-50									
9	Closed Loop Disabled	On On	8					8										8				-			F -									
	External Alarm # 5		9					9										9						-									-	
11	External Alarm # 6		10					10										10					1											
12	Manual Control Enable	On On	11					11										11					1		100			7-3	10.1			-		
13	Coord Free Input	. 1	12					12						- 1				12				1			F =							-		
14	Local Flash Input	On On	13					13								1 11		13				- (- 1	-)									
	MMU Flash		14					14										14				1												
16	CMU Flash		15					15										15														- 1		
_	Cycle Fault	On On	16					16										16																
18	Cycle Failure	On On	Al	t Call	& Re	edire	ct # 1	[1.1.	6.3]									Alt	Inhib	oit Ph	ases	#1[1.1.6	3]										
19	Coordination Fault	On On	Co	I Ø	Phas	ses Ca	alled B	y Ø		From	To	From	To	From	To	From	To		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
20	Controller Fault	On On	1						1									1																
	Detector SDLC Failure		2						2									2												. 1				
22	MMU SDLC Failure		3						3									3																
23	Critical SDLC Failure		4						4									4																
	Reserved		5						5									5										1				1		
25	EEPROM CRC Fault	On On	6						6									6													-			
26	Detector Diagnostic Failur		7					6	7				<u></u>					7						_ =										
27	BIU Detector Failure	On On	8						8									8																-
28	Queue detector alarm	On On	Alt	t Call	& Re	edired	ct # 2	[1.1.	6.3]									Alt	Inhib	it Ph	ases	#2[1.1.6.	3]										
29	Ped Detector Fault	On On	Co	ı Ø	Phas	es Call	led By	Ø		From	To	From	To	From	To	From			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
30	Coord Diagnostic Fault		1						1									1														F		
41	TempAlert Probe Ch. A		2						2		-							2								11					- 5			
42	TempAlert Probe Ch. B		3						3									3					-					1=1						
47	Coord Active		4						4							1		4					1											
48	Preempt Active	On On	5				1		5			1						5																
49	Preempt 1 Input	On On	6						6	1								6					j= -	- 1	0.1			7	118					
50	Preempt 2 Input	On On	7		, 1	1			7									7						- 11	4		5.0	1.1		1 8				
51	Preempt 3 Input	On On							8									8										1		6				
52	Preempt 4 Input	On On					[2.3]							Unit	Para	mete	rs [1	.2.1]			-												
53	Preempt 5 Input	On On	CIC	CoØ	Grow		2	3	4	5	6	7			Skip '			OFF		Max (Cycle	Time												
	Preempt 6 Input	On On	1	OFF		14	1-								Dim E			OFF				Actio	n	ALAF	RM									
	Preempt 7 Input	On On	2	OFF			1			7		/ 1			Disab		$\overline{}$	OFF																
	Preempt 8 Input	On On	3	OFF									-		ond M	_	_	4Ph	_						- 1									
	Preempt 9 Input	On On													ıp Tim			900							- 1									
	Preempt 10 Input	On On				Phase	e/Olai	p Set	tings	[1.4.	2]				le Init			OFF																
	In Transition	On On											$\overline{}$		Fault		$\overline{}$	ALA																
	FIO Status Alarm			(olaps										Enabl			$\overline{}$	ON	-	ID.	7004	DTE	20.0	DTE	128	0 101				12/2			Page	40

TE XXX-1 (8/1/85) TABLE OF SWITCH PACKS
W-204 Westchester

PAGE 20 OF 22 PAGES

SIGNAL NO.	CUL	JNTY YTM		DATE	1. H. H. H. H. H. H. H. H. H. H. H. H. H.
SWITCH PACK	FUNCTION	FACE	FLASH	MOICATIONS	ORADE DRINIW JAMIMEST
MITCHEREN	PONC.IO.	LEBBINUM	PLUG	.MUICA.IGNS	Terminal Wire Color Code
		1-1-2	11000	0.1	32 : 3
144	1	1	Yellow	Red	SP 17
SP 1	\$1	112		Green	SP 1G . 1
	140			Grnd Wire	Grad Bus 1
			- Van Esta	dilla ivila	52 2 8
	112.2	1000	White	0	SP 2Y !
SP 2	\$2	3	MAITE		SP ZG !
				Grnd Wire	Grad Bus
1	***			Red	SP 3R 1
	4 4	5 4 6	01	Yellow	SP 3Y
SP 3	\$3.	7 + 8	Red	Green	SP 3G .
		714		Grnd Wire	Grad Bus
				Gind wife	SP 48 .
A2 30					SP 14
SP 4		i	1000		SP 4G
			101 30	Const Wilson	Grad Bus 1
				Grna Wire	SP 5R I
			1111		
SP 5	\$5	314	Yell-a	19/100	SP 5Y
	4			Green	SP 5G
				Grad Wire	Grna Bus
A.S. E.					SP 6R
SP 6	\$6	/	White	3	SP 6Y
200	9		15-18-79-13	-	SP 6G
		-		Gmd Wire	Grad Bus 1
					SP 7R
SP 7	-	1			SP 7Y
J					SP 7G
		-		Grnd Wire	Gmd Sus I
					SP BR
SP 8			4) (3)		SP 8Y I
23.3					SP 8G
				Grnd Wire	Grad Bus
					SP 9R 1
SP -9					SP 9Y I
		1			SP 9G 1
				_ Grad Wire	Grnd Bus
					SPIOR
60.46		1	L 0		SP 10 Y
SP 10					SP 10 G
			100	Grnd Wire	Grnd Bus
				7.300.00	SPIIR I
		127 327			SP 11 Y
SP 11	7-1			3 30 = : -	SP 11 G
	-			Grna 'Nire	Grnd Bus
					Grna Bus I
		-			
		-			
		-			SP 12 R
SP 12	1				SP 12 R
SP 12				Grnd Wire	SP 12 R
				Grnd Wire	SP 12 R
· · · · · · · · · · · · · · · · · · ·					SP 12 R
					SP 12 R
· · · · · · · · · · · · · · · · · · ·					SP 12 R
· · · · · · · · · · · · · · · · · · ·					SP 12 R
SP 13					SP 12 R
· which share is	7-77				SP 12 R

4 ,	ų.	15		
W-	2	0	4	
SIGN	14/4	0.0	-	7

DATE

PAGE 21 OF 22 PAGES _ .

CONFLICT / CURRENT MONITOR PROGRAMMING

CONFLI	CT MONITOR DIODES TO BE CUT	CONFLICT MONITOR CURRENT MONITOR YELLOW JUMPERS SIODES TO BE TO BE INSTALLED CUT
1-5		
1-6		
2-5		
2-6		
-	12	

NOTES:

TAPS	MO	
2100;	740	
FILE:		

TABLE OF IMPUT WIRING

W-20	4
SIGNAL	NO

	1. bisabacter
-	Weste hester

Believe Barrier Barrier	
חייי	

PAGE 22 AOF 22 PAGES

TERM.		DET.	DET.	DET. AN.	
NO	FUNCTION	MO		UNED	QCMADU:
14. 18	Ø 2	1/	Normal		Presence
·2A, 28	Ø2	2	//		. "
3A, 38	93	3	"		Mag Probl
4A. 48				1.4	
5A. 58	\$6	5	11		Presence
6A, 68	\$6	6	11		Presence Presence
7A. /B				1	
8A, 88				7-7-1	
9A, 98		, ,			
10A,10B					
11A,11B					
12A,12B				1	20
13A,13B	\$3	13.	Normal		Mag Pobe .
144,148		1			
15A,158					
16A 168					
17A.178					
19A. 19B				i	
1cA, 1c8					
204 208					
21A . 21B	* 74 - 75* Turk a melencial of				
22A - 22B		1			m Yes

SEE BACK OF PAGE FOR INPUTS 23-28.

TE 4d(8/82)

STATE OF NEW YORK - DEPARTMENT OF TRANSPORTATION TRAFFIC AND SAFETY DIVISION TRAFFIC CONTROL SIGNAL SPECIFICATIONS

Study: Contract: P.I.W.: File:

Modification Data June 21, 1990

Signal	No(s)162	County _	Westchester	Page 1	of 22 Pages
	y, 🗆 Village,	Town of	North Castle		
Departm	ent Order filed	(Date)	as Section	2055.38 Sub	division (f)
Prior s	pecifications hereb	y superceded:	☐ None 🖾	Oct. 28,	1985
Purpose	: Install Micro	179 controller			
the nec	pecifications will essary traffic cont orm Traffic Control	rol device(s) r	on the \square instequired by and c	allation, 🖾 monforming to the	nodification of State Manual
I. Th	is Signal shall:				
Α.	Operate in accord shown on page(s)	ance with the T	☐ Pretin	ed signal raffic actuated raffic actuated rian actuated s	signal signal
з.	☑ Display vehi	cular indicario	ns		J.
٥.	Display pede	strian indicati	ons.		
	■ Be equipped ■ Be equipped as shown in the	with vehicle de with Pedestrian Schemati	push buttons	led drawing on p	age_3
C.	Be equipped with which are describ	pre-emptioned as follows:	on, 🗌 intercor	nnection and/or	coordination
					¥
	ž.			6 130	
			7/6/90	M.J. Migne	ogna RTE
			(Date	(\$Lgn	ture) 2. (Titl
cc: [X Main Office (2) X Region 8 Traffi	ic Engineer	Install	ation Date	

D. Sywyk, M. Talay

M. Glover

TRAFFIC AND SAFETY DIVISION TRAFFIC CONTROL SIGNAL SPECIFICATIONS (CONTINUED) PIN: File: July 6, 1990 PAGE _____3 ___ OF _____ PAGES Westchester 162 DATE COUNTY SIGNAL NO(S). Broadway N Sir John's Plaza Ø3 FACES 5,6 1,2,3,7,8 01

Phase Times [1.1.	1]								Coc	ordina	tion I	Patter	ns [2.	4] and	d Coo	rdina	tion S	plit T	able	s [2.7.	1]											
	1	2	3	4	5	6	7	8	Pat#	Сус	Off	Split	Seq	Pat#	Сус	Off	Split	Seq	Pat#	Сус	Off	Split	Seq	Pat#	Cyc	Off	Split	Seq	1			
Min Green	5		5	5	5				1	0	0	1	1	13	0	0	13	1	25	0	0	0	1	37	0	0	0	1	1	SI	TD8	
Sap, Ext	5		3	5	5	111		-	2	0	0	2	1	14	0	0	14	1	26	0	0	0	1	38	0	0	0	1			10	
fax 1	45		50	20	45				3	0	0	3	1	15	0	0	15	1	27	0	0	0	1	39	0	0	0	1	V	٧-	165	-
1ax 2									4	0	0	4	1	16	0	0	16	1	28	0	0	0	1	40	0	0	0	1	Ring	/Start	tup [1.	1.4
el Clearance	5		5	4	5				5	0	0	5	1	17	0	0	17	1	29	0	0	0	1	41	0	0	0	1	Phs			En
led Clearance	1	1	1	1	1				6	0	0	6	1	18	0	0	18	1	30	0	0	0	1	42	0	0	0	1	1	1	GREEN	_
/alk		Ť							7	0	0	7	1	19	0	0	19	1	31	0	0	0	1	43	0	0	0	1	2	1	RED	
ed Clearance									8	0	0	8	1	20	0	0	20	1	32	0	0	0	1	44	0	0	0	1	3	1	RED	
ed Revert									9	0	0	9	1	21	0	0	21	1	33	0	0	0	1	45	0	0	0	1	4	1	RED	
dd Initial									10	0	0	10	1	22	0	0	22	1	34	0	0	0	1	46	0	0	0	1	5	2	GREEN	-
lax Initial		-					1		11	0	0	11	1	23	0	0	23	1	35	0	0	0	1	47	0	0	0	1	6	2	RED	
ime B4 Reduct								-	12	0	0	12	1	24	0	0	24	1	36	0	0	0	1	48	0	0	0	1	7	2	RED	
ars B4 Reduct							-		Split		1	2	3	4	5	6	7	_	Spli		1	2	3	4	5	6	7	8	8	2	RED	
ime To Reduce			-				1		_	Coord	-	=	15	5	100	0	0	0	_	Coord		0	0	0	0	0	0	0	Coord			
					1		-	-		####					NON				VIII. (1)			7							Test Op		0	7
educe By lin Gap					-			-	2	Coord	100		25	15	100	0	0	0	_	Coord		0	0	0	0	0	0	0	Correct		SHRT/LI	
						-	-		-	####					NON				100000	####								NON	Maximu	200	MAX 1	
yMaxLim		_					-		3	Coord	O	0	0	O	0	0	0	0				0	0	0	0	0	0	0	Force-C	1235	FLOAT	-
ax Step	4	2	3	4	5	6	7	8	3	####	NON	-	-	NON	NON	.73	-		100	-		_	-	-	-	·	NON	-	Closed	100	ON	
ptions [1.1.2]	1			_		0	1	0	1		0	0	0	0	0	0	0	0		Coord	_	0	0	0	0	0	O	O	Stop-in-		OFF	_
nable	On		On	On	On		-	-	4	Coord	-	-	_	_	-	_		-	11/2/2014	200000000000000000000000000000000000000	_	-		-	-	-	INON	INON	a co le mo		ON	_
in Recall	•				-	-			-	####		-			NON					-						_	_	-	Auto Re	1 1 1 1 1 1 1	OFF	_
lax Recall	On	_		_			-		5	Coord	0	0	0	0	0	0	0	0	237.23	Coord		0	0	0	0	0	0	0	Expand	S-34 EC-3		
ed Recall	_				-	-	-		_	####	100				NON	-	-	-										NON	Ped Re	cycle	NO_REC	10
oft Recall	On				On	-	-		6	Coord		0	0	0	0	0	0	0	60000	Coord	-	0	0	0	0	0	0	11101	Before	-	TIMED	_
ock Calls			-	On	On	-	-		-	####	NON	NON		NON	NON								NON				NON			Elach I		_
uto Flash Entry	-				-		_		1	Coord	0	0	0	0	0	0	0	0	PERSONAL PROPERTY.	Coord	0	0	0	0	0	0	UNION	0	Auto	The State of the Land	PH OVE	0
uto Flash Exit	-	_	-		-		-	_	0	####	NON				NON							_	-		_	_		0	Auto Fla			_
ual Entry		On	_	On	_	On		On	8	Coord	0	0	0	0	0	0	0	0	1	Coord	17	0	0	0	0	0	0	- 0	Flash Y	2007	45	_
nable Simul Gap	On	On	On	On	On	On	On	On		ST.	NON	_			NON				_	_					_				Flash R		0	_
aurantee Passage					_		_		9	Coord	0	0	0	0	0	0	0	0	100000	Coord		0	0	0	0	0	0	0	-		[1.2.1]	_
est In Walk															NON					_						-			Phase I		STD8	
onditon Service					_		_		10	Coord		0	0	0	0	0	0	0	1,545,660	Coord		0	0	0	0	0	0	0	IO Mod		USER	_
on-Actuated 1										####	NON	-		NON	NON		NON		1000						-	_	_	_	Loc Fisi	A VIDEO TOP	ON	_
on-Actuated 2							_		11	Coord	0	0	0	0	0	0	0	0	10000	Coord		0	0	0	0	0	0	0	Start Fla	1.1	0	_
dd Init Calc										####		_	_	_	NON					_			_		_	_	-	_	Start Al		0	
ptions+ [1.1.3]	1	2	3	4	5	6	7	8	12	Coord		0	0			0	0				0			0	0	-	0	0	Yellow		OFF	
eservice											NON	NON	NON	NON	NON	NON	NON	NON		####	NON	NON	NON	NON	NON	NON	NON	NON	Display		20	
edClr Thru Yel									Pa	ige#																			Red Re	1-1-1-1	3	_
kip Red No Call										1													ord/FI						MCE Ti		0	_
ed Rest									-	&1B													ord/FI						-	Profile	0	
ax II										2													ssocia	ated v	with t	ime-c	of-day)	Free Ri		1	
all Phase						-				3					Time								ection						Auxswit	111.1-	STOPTN	-
onflicting Phase									1	4	Pree	emptio	on an	d Alte	rnate	Pha	se Tir	ne an	d Pl	nase	Option	ns							SDLC F	2171	0	
mit Yellow										5	Ann	ual S	chedu	le																t Faults		
ed Delay										6	Day	Plans	s; Act	ion T	ables	Coc	ord Al	t Tab	le+ (value	s vari	ied b	y time	of-d	lay)				The second second	ed Clear	OFF	
rn/Ped Delay										7	Com	muni	cation	ns; S	ecutir	y; I/0	O Set	up											SDLC F	Retry	0	
ID: 7162	RTF 2	2 @ N	O BR	NOADW	IΔΥ					8	Micr	- Ev	ente//	Marm	s. Ca	II/Inh	ihit/R	edire	ct. F	PIOLA	P Au	to FI	ash;	CIC:	Misc	Unit	Para	m	01/2	5/16	Pag	10

erlap 1-16 Pro																						nsitio					-				Total Control		and the second
erlap Conflict Loc				Inhibit			arent	Ph Clea	rance	ON	E	xtra Ir	ncluded	Ph	OF					Pat#	100000000000000000000000000000000000000	Long	_	_	Sho	_	_		Offset	RetHld	Float	Min Veh Perm	Min Ped P
Included Ø	1 3			11.		N	ORMA		Include									NORM	MAL	1	12	22	0	0	0	_	0	0	EndGRN	-	-		
Modifier Ø	1		H-10	W.		0	Grn	9	Modifie	rØ								Gm		2	12	22	0	0	0	_	0	0	EndGRN	7			
Conflict Ø				+1 +1		1	/el	5	Conflic	Ø		-	-	-	-			Yel		3	12	22	0	0	0	_	0	0	EndGRN			×	
Conflict Olap			1			R	Red	1 1	Conflic	Olap								Red	1.5	4	12	22	0	0	0	-	0	0	EndGRN				
Conflict Ped	9					- 11	_G		Conflic	Ped		1						LG	-	5	12	22	0	0	0	-	0	0	EndGRN				
Included Ø	1					N	ORMA		Include									NORM	MAL	6	12	22	0	0	0	_	0	0	EndGRN				
Modifier Ø				-			ern		Modifie						-(Gm		7	12	22	0	0	0	_	0	0	EndGRN				
Conflict Ø					8	1	rel 3	3.5	Conflic	tØ								Yel		8	12	22	0	0	0	_	0	0	EndGRN	_			
Conflict Olap						F	Red	1.5 J	Conflic	Olap								Red	1.5	9	12	22	0	0	0	0	0	0	EndGRN				
Conflict Ped							G		Conflic	Ped								LG		10	12	22	0	0	0	_	0	0	EndGRN				
Included Ø					-	N	ORMA	AL	Include	dØ					1.4			NORM	MAL	11	12	22	0	0	0	0	0	0	EndGRN			C	
Modifier Ø							Grn	11	Modifie			19			-1			Grn		12	12	22	0	0	0	_	0	0	EndGRN				
Conflict Ø							rel :	3.5	Conflic	tØ								Yel		13	12	22	0	0	0	_	0	0	EndGRN	1			
Conflict Olap		L.			-	F	Red	1.5 K	Conflic	t Olap	1							Red	1.5	14	12	22	0	0	0	-	0	0	EndGRN				
Conflict Ped							_G		Conflic	Ped								LG		15	12	22	0	0	0	-	0	0	EndGRN				
Included Ø					12	N	ORMA	AL	Include	d Ø								NOR	MAL	16	12	22	0	-	0	-	0	0	EndGRN				
Modifier Ø						100	Grn		Modifie									Grn		17	12	22	0	-	0	-	0	0	EndGRN		_		
Conflict Ø	1 -7 5							3.5	Conflic			1					-		3.5	18	12	22	0	0	0		0	0	EndGRN				
Conflict Olap						F	Red	1.5 L	Conflic			111	\sim 4				1	Red	1.5	19	12	22	0	-	0	_	0	0	EndGRN				
Conflict Ped						1	LG		Conflic	t Ped								LG		20	12	22	0	-	0	_	0	0	EndGRN				
Included Ø			100	1 12	7	N	ORMA	100	Include	100000000000000000000000000000000000000				ΞÚ				NOR	MAL	21	12	22	0	0	0	-	0	0	EndGRN			rec 1	
Modifier Ø							Grn	13	Modifie									Grn		22	12	22	0	0	0	-	0	0	EndGRN				
Conflict Ø			31					3.5	Conflic								7 - 1		3.5	23	12	22	0	_	0	_	0	0	EndGRN				
Conflict Olap						100		1.5 N	Conflic					- 1				Red	1.5	24	12	22	0	0	0	-	0	0	EndGRN				
Conflict Ped							LG		Conflic									LG		25	0	0	0	0	0	-	0	0	BegGRN				
Included Ø						N	ORM/		Include					100	-			NOR	MAL	26	0	0	0	0	0	-	0	0	BegGRN				
Modifier Ø			-1				Grn		Modifie							_0		Grn		27	0	0	0	0	0	-	0	0	BegGRN		-		
Conflict Ø			-1					3.5	Conflic				100						3.5	28	0	0	0	0	0	_	0	0	BegGRN				
Conflict Olap		1-1-1				100	-	1.5 N	Conflic)							Red		29	0	0	0	0	0	-	0	0	BegGRN				
Conflict Ped							LG		Conflic			_					-	LG		30	0	0	0	0	0	_	0	0	BegGRN				
Included Ø						_	ORM/		Include					94.6			12	NOR	_	31	0	0	0	0	0	-	0	0	BegGRN				
Modifier Ø						_	Grn		Modifie								3	Gm	_	32	0	0	0	0	0	-	0	0	BegGRN				
Conflict Ø			, E-7) F			_		3.5	Conflic	2000		3 -							3.5	33	0	0	0	0	0	$\overline{}$	0	0	BegGRN				
Conflict Olap		11	-	-		_	100.00	1.5 C	Conflic)					40			1.5	34	0	0	0	0	_		0	0	BegGRN				
Conflict Ped							LG		Conflic			_		-				LG		35	0	0	0	0	0	_	0	0	BegGRN				
Included Ø				-			ORM/		Include				111			7 /2		NOR		36	0	0	0	0	0	_	0	0	BegGRN				
Modifier Ø		20			1		Grn		Modifie							-		Grn		37	0	0	0	_	_		0	0	BegGRN				
Conflict Ø					9		Yel		Conflic								1 (3.5	38	0	0	0	0	_	_	0	0	BegGRN		-		
Conflict Olap				7				1.5 P	COMME)								1.5	39	0	0	0	0	-		0	0	BegGRN				
Conflict Ped					-		LG		Conflic	t Ped		10						LG	_	40	0	0	0	0		-	0	0	BegGRN BegGRN				-
nannel Sett Channel ->	ings [1.	3.11	4	F C	171	0 [n I	10 11	1401	12 T	11 1	E 10	2 1 17	10	101	2012	1122	123	24	41	0	0	0		0	_	0	0	BegGRN	-			
Channel ->			4			0	9	1		12	14 1	3110	711/	1 0	191	2012	1 22	120	12-	43	Ö	0	0		_	0	_	0	BegGRN				
annel Type	VEH VE	VEH	VEH V	EH VEH	VEH	VEH	/EH \	VEH OI	P VEH	/FH	VEH VE	HVE	H VEH	VEH	VEH	VEH VE	H VEH	VEH	VEH	44		0			0			0	BegGRN				
annel Flash	RED RE	DED	DEU D	ED DED	DED	DED E	DED I	DED DE	D PED	PED I	RED RE	D RE	D DRK	DRK	DRK	DRK DR	K DRK	DRK	DRK	45	0	0	_		0			0	BegGRN				
Hz	KEU KE	KED	KLUK	LUKLU	KLU	ALD I		LD INC	INCO		T. D. INE	111	John			- ALL DIC	7,1,1			46	0	0	0	0	0	0	0	0	BeaGRN				7
annel+ Se	ttings [1	.8.41																		47	0	0	0	0	0	0	0	0	BegGRN				
Channel ->	> 1 2	131	4	5 6	7	8	9	10 11	12	13 [14 1	5 1 10	3 17	18	19	20 2	1 22	23	24	48	1 0	0	1 0	10	10	0	0 [0	BeaGRN				_
sh Red+							+		++	+	_	+	+			+				() I													
sh Green+							1							-																			
ash Inh Red+	0				1										0.55		123																
ID: 7162 R	ns[1.8.3]	CTT	O Mod	de NOVA	USI	ER S	Singl	e BIU	Мар	SING	LE Jin	vert	Rail Ir	nput		DEIAC		age															
	I - 77 (d	NO	skU/	NVA	Y										01/	25/16	_	-age	4														

Veh Pa	r 1-														4 [5.1												64 [5								1-64					aran		rs+	1-64	[5.3]		
Det Call	Sv	vi D	Dlay	Ext	Que	N	o N	/lax	Err	Fa	ail [Det	Call	Swi	Dlay	Ext	Que	No	Max	Err	Fai	I De	t Cal	Ext	Que	Add	Red	Yell	occ	vol	Det	Call	Ext		Add F			CC \						Dlay	Туре	Src
# Ø	0	5				Ad	t P	res	Cnt	Tin	ne	#	Ø	Ø				Act	Pres	Cnt	Tim	e #				Init	Lock	Lock			#			A	AddIni L	ock Lo	ck			# G	Y	R	1	2		
1 1	0		0	0	0	0	1	45	50	4	5 3	33	0	0	0	0	0	0	45	50	0	1	On	On		On					33	On	On		On			T		1			0	0	NORM	1 0
2 0	0		0	0	0	0	_	\rightarrow	50	_	_	34	0	0	0	0	0	0	45		_	2	On	On		On		2.1			34		On		On		116		_	2			0	0	NORM	_
3 3	0		_	0	0	0	_	$\overline{}$		_		35	0	0	0	0	0	0	45	_	-	-	_	_	-	On					35		On		On					3			0	0	NORM	
4 4	0	_		0	0	0	_	45	50	_	_	36	0	0	0	0	0	0	45		_	_	_	-	-	On							On		On		+	+	_	4		t	0	0	NORM	_
5 5	0	_	_	0	0	0	_	45	50	-	_	37	0	0	0	0	0	0	45	_	-	-		-	-	On					_		On		On			+		5			0	0	NORM	_
6 0	0	_	-	0	0	0	_	45	50	_	_	38	0	0	0	0	0	0	45		-	_		-	-	On					_	_	On		On		+	+		6	1	+	0	0	NORM	_
7 0	0	_	-	0	0	0	_	45	50		_	39	0	0	0	0	0	0	45	_	-	_	_	_	-	On						On			On	_	+	+		7	1	-	0	0	NORM	_
8 0	0	-	-	0	0	0	_	45	50	_	_	40	0	0	0	0	0	0	45	-	-	+ '	-	-	+	On				1		On			On	+	+	+	_	8	1	-	0	0	NORM	_
	-	_	_	_		-	_	_	50	_	_	_	-	0		0	0	_	45		_	-		_	-	On					41				On	+	+	+		9	-	╁	0	0	NORM	
9 0	0	-	_	0	0	0	_	_		_	_	41	0	_	0	_		0	_	_	-	_	_	_	-	On				-	_		On		On	+	+	+	_	10		⊢	0	-	NORM	
10 0	0	_	-	0	0	0	_	45	50	-	_	42	0	0	0	0	0	0	45	-	-	-	_	_	-							_			_	+	+	+	_		-	-	-	0		_
11 0	0	_	_	0	0	0		_	50	_		43	0	0	0	0	0	0	45	50	-	11		-	+	On	_				_	_	On		On	-	+	+	_	11	-	-	0	0	NORM	
12 0	0	-	_	0	0	0	_	45	50	_	_	44	0	0	0	0	0	0	45	50	_	-	-	-	_	On			-		-	On	On		On	+	+	+		12	-	+	0	0	NORM	_
13 3	0	_	_	0	0	0	_	$\overline{}$	50	_	_	45	0	0	0	0	0	0	45	50	_	13	_	_	_	On	_				_	On	On		On	_	+	+		13	-		0	0	NORM	_
14 0	0	_	-	0	0	0	_	45	50	+	_	46	0	0	0	0	0	0	45	50	-	14	_	-	+-	On			_		-	On	On		On		-	+		14			0	0	NORM	_
15 0	0	_	_	0	0	0	_	45	50	+	-	47	0	0	0	0	0	0	45	50	_	-	_	-	_	On					_	On	On		On					15			0	0	NORM	_
16 0	0		0	0	0	0	_	45	50	0	_	48	0	0	0	0	0	0	45	50	+-	100	_	-	-	On					_	On	On		On					16	/		0	0	NORM	
17 0	0		0	0	0	0	_	45	50	0	_	49	0	0	0	0	0	0	45	50	-	17	7.11	_	_	On					10000	On	On		On				_	17			0	0	NORM	_
18 0	0		0	0	0	0	1	45	50	0	1	50	0	0	0	0	0	0	45	50	0	18	On	On		On						On	On		On					18			0	0	NORM	
19 0	0		0	0	0	0		45	50	0		51	0	0	0	0	0	0	45	50	0	19	On	On		On					51		On	1/-	On				1	19	1		0	0	NORM	0
20 0	0		0	0	0	0		45	50	0	1	52	0	0	0	0	0	0	45	50	0	20	On	On		On					52	On	On		On					20			0	0	NORM	0
21 0	0		0	0	0	0		45	50	0) !	53	0	0	0	0	0	0	45	50	0	21	On	On		On					53	On	On		On					21			0	0	NORM	0
22 0	0		0	0	0	0	1	45	50	0) !	54	0	0	0	0	0	0	45	50	0	22	On	On		On					54	On	On	O.	On			19	- 1	22			0	0	NORM	1 0
23 0	0		0	0	0	0	1	45	50	0		55	0	0	0	0	0	0	45	50	0	23	On	On		On					55	On	On		On					23			0	0	NORM	1 0
24 0	0		0	0	0	0	_	45	50	0		56	0	0	0	0	0	0	45	50	_	24	On	On		On					56	On	On		On				- 1	24			0	0	NORM	1 0
25 0	0		-	0	0	0	_	\rightarrow	50	0		57	0	0	0	0	0	0	45		-	25	-	On		On		7 4			57		On		On					25			0	0	NORM	
26 0	0	_	-	0	0	0	_	$\overline{}$		_	_	58	0	0	0	0	0	0	45	_	_	-		-	-	On	_				_		On		On					26			0	0	NORM	
27 0	0	_	_	0	0	10	_	_		_		59	0	0	0	0	0	0	45		_	_		_	_	On	_						On		On			1	_	27			0	0	NORM	
28 0	0	_	-	0	0	0			50	_		60	0	0	0	0	0	0	45		_	_		_	_	On							On		On			+	_	28			0	0	NORM	-
29 0	0	_		0	0	0			50			61	0	0	0	0	0	0	45		-	29	_	-	_	On					61		On		On	+	+	+		29			0	0	NORM	-
30 0	0	_	_	0	0	0	_	_	50	_		62	0	0	0	0	0	0	45	50	_	30	_	-	_	On					_	On	On		On	-	Ť	+		30			0	0	NORM	
_	-	_	_	_	-	1	_	$\overline{}$		_	_	_	_	-	-	-	-	-	45		-	-	-	-	+	On					-	On	On		On	+	+	+		31	-	-	0	0	NORM	_
31 0	0	_	_	0	0	0			50			63 64	0	0	0	0	0	0	45			31	_	-	-	On					_	On	On		On	-	-	+		32	-		0	0	NORM	_
32 0	0			0	_	0	1	45	50	1 0		04	0	0	0	0	0	0	45	50	10	34	On	Un	_	TON	Ц_	انط	_	Doo	Det			E 41	On	_		4		_	it D			[1.2		1 0
Parame	$\overline{}$	_	_	_	_			-	0	La			2000	Course Co	01	101			10	In.	T.	1		Ini	In		-	10	1															11.2	<u>. 11</u>	Ion
Det occ	OC	C	000			1	Туре	9	Src	De	et c	OCC	OCC	000	Dlay	Dlay	T	/pe	Src	Det	000	OC	g occ	Dia	y Dlay 2	T	ype	Src			Call										2 De					ON
# Grn	Ye	all b	-									JIII	reii	Ked	1	_			_	_		Tre	Rec	_						#	_			Cnt							_	_	_		rm [1.5.	
33		+	_	0		NC				44					0		NOF			55		+	-	0	_	NO		0		1	0	0												linute		15
34				0		NC			0			_			0	_	NOF			56		+	_	0	-	NO		0		2	0	0	15							Vo	I/Occ	Per	od N	linute	S	0
35				0		NC			0			_			0		NOF			57		1		0		NO		0		3	0	0	15													
36				0	_	NC		_	0						0	_	NOF			58		1	1	0		NO		0		4	0	0	15													
37				0	_	NC		$\overline{}$	0						0	_	NOF	_		59				0		NO		0		5	0	0														
38				0	0	NC	RM	1	0						0	0	NOF	RM		60				0		NO		0		6	0	0														
39				0	0	NC	RM	1	0	100000					0	0	NOF	RM	0	61				0	0	NO	RM	0		7	0	0	15	0												
40				0	_	NC	_	_	0	1000				77	0		NOF			62				0		NO		0		8	0	0														
41			\rightarrow	0	_	NC		$\overline{}$	0	_					0		NOF			63				0		NO		0																		
42			-	0	_	NC	_	_	0	1000		1			0	_	NOF	_		64				0		NO		0																		
43	+	+	_	0			RM		0			+	-		0		NOF		0			162	RT						v													1	25/2	016	Pag	03

Preem	ption Tir	nes [3.1].	Options	s+ [3.6]		Trac	k Clear	Phases	[3.2]	Tra	ck Cle	ear O	verlaps+	[3.5]				Alt# 1 Times	Table	[1.1.	6.1]					
Pre#	Enable	Type	Output				Track Pl				Overl							Column#>		2	3	4	5	6	7	8
1	ON	RAIL	DWELL			1		T	П				1 1 1 2 2	Γ				Assign Ø								
2	ON	RAIL	DWELL			2	7									1		Min Grn	1		700					
3	ON	EMERG	DWELL			3	1. 1/1									3		Gap, Ext								
4	ON	EMERG	DWELL		-	4	1	1			13							Max 1					100			
5	ON	EMERG				5					10							Max 2	1			y = 1	-			
6	ON	EMERG	DWELL			6												Yel Clr			-					
Pre#	MaxPres	MinGrn		PedClr Co-	+Pre		I Phase	s [3.2]	and O	verl	ans+	[3.5]		-		-		Red Clr		-		-				
1		11111			N	Pre #		14.00										Walk	1	1		1				
2					N	1	Phases		П					ПТ	-1	T		Ped Clr		-				1 4		
3					ON .		Overlap											Alt# 2 Times	Table	[1.1.	6.11			_		
4					ON		Peds											Column#>	_	2	3	4	5	6	7	8
5					N	2	Phases			-			\rightarrow			7		Assign Ø		-						
6					N	-	Overlap								-	+		Min Grn							\Box	
	Track Gra	Min Dwell	Evt Dwell		'el		Peds			-					_			Gap, Ext								
1	Hack Oil	2	LAT DWEI	1 GUOII 1	CI	3	Phases			_			\neg					Max 1						\vdash	\Box	
2		2			-	3	Overlap	-		-			\rightarrow	+	-			Max 2		1				\vdash	\vdash	
3		2					Peds	` -		-					_			Yel Clr								
4		2				4	Phases	-	-	-		\rightarrow		1		1		Red Clr			\vdash			\vdash		
5		2				7	Overlap	. —	-	-				+	-			Walk						\vdash	${m o}$	
6		2			-	1 3	Peds	` <u> </u>		-	-			+	-			Ped Clr				-		\vdash	\vdash	
	Pod	Pattern	Skip		-	5	Phases	-	\vdash	-				1	-	-		Alt# 3 Times		111	6 11		-		-	
Pre#	Red	rallem	OFF			5		_	\vdash	=				+				Column#>		2	3	4	5	6	7	8
1			OFF	_			Overlap Peds	` <u> </u>		-		\vdash		+	-	+		Assign Ø	-		3	+	J	0	-	0
2	-				-	-		-		_	-	\rightarrow	_	1	-	-		Min Grn			\vdash			\vdash	\vdash	
3	-		OFF OFF		-	6	Phases	-						+ +	-	+		Gap, Ext						\vdash	\vdash	
4		-	OFF				Overlap Peds	· —		-				-	-	-		Max 1			\vdash			\vdash	\vdash	
5			OFF		-		reus	_	Des			4.0	otions+ [3	0.61	_	_		Max 2						\vdash	\vdash	
- 5	l l		UFF			Evit	Dhanaa	12 21			Lock		verride		erride	Flsh		Yel Cir	-		-			\vdash	\vdash	
	riority P		Max				Phases Exit Phases			rie#	LUCK	100	uto Flsh	1000	igher	Dwel	Link	Red Clr						\vdash	\vdash	
Pre#	Type OFF	Min	IVIAX		-	1	EXIL PIL	ise		1	ON	7.0	ON		ON	OFF	The second secon	Walk							\vdash	
7					-	2	-	-	$\overline{}$		ON		ON		ON	OFF		Ped Clr							\vdash	
8	OFF					2	-	+		2	ON		ON		ON	OFF		Alt# 1 Option		lo [1	1 6 21		_	\square		-
9	OFF OFF				-	3	-	+	-	0	ON		ON		ON	OFF		Column # ->	_	2	3	4	5	6	7	8
10	UFF				_	5				5	ON	-	ON		ON	OFF		Assign Ø	_		J	4	3	0		0
1-4 D		- 14 0 41				6	-	+	\vdash	6	ON		ON		ON	OFF		Lock Calls		On	On	On	On	On	On	On
	aramete		OFF			0				0	UN		ON		ON			Soft Recall	Oil	Oil	OII	Oil	Oil	Oil	Oil	Oil
7.000	mer Over	The state of the s	OFF															200 200 200 200		61						
	ot or Ext O		PRE	-														Dual Enrty Enabl SimGap		On	On	On	On	On	On	On
	ek Track			-															On	Oil	OII	Oil	On	OII	OII	U
	ek Dwell		0.01															Guar Passage			-					
		neters [1.	8.3] NO	NE I														Rest In Walk	_	-					\vdash	
	Mappings			NE														Cond Service		-	\vdash					-
re inv	ert Rail Inp	out	OFF															Reservice			-				\vdash	-
																		Non-Act 1							\vdash	
																		Red Rest	-			-				
																		Max2			\vdash				\vdash	-
		2 250		- us		***									410	F10010		Ped Delay					-		\vdash	
		ID: 7162	RIE 22	@ NO BRO	DADW	AY									1/2	5/2016	Page 4	Conflicting Ø1						-		Ú.,

ua	I Sc	che	dule	[4.	31	Мо	nth	of	Ye	ar						Da	ay o	f We	eek				Date	9																										Da	у
			М	-	-				Α		S	0	N	D	S	١	M	T	W	T	F	S	1	2	3 4	4 5	6	7	8	9 1	0 1	1 12	2 13	14	15	16	17	18	19 2	0 2	1 22	23	24	25	26	27	28	29 3	0 31	Pla	ın
								On	Or	n C				On	ng promisin		and in column 2	On (-partitions				On	On C	On O	n On	On	On	On (On C	n O	n Oı	n Or	On	On	On	On (On (On O	n O	n Or	On	On	On	On	On	On (On C	n On	1	
		Г					1	1	A	_	_	0	N	D	-	_	M		W	T	F	S	-	2		-	_	_	-		_	_	_	-												_			0 31		
-	J	Г	М	Α	М		J	J	A		0	U	14	D	1	1	VI	1	VV	-	-	3		_	J -	7 3			-		1	1 12	10	17	10	10	1	10	15 2	U 2	1 22	1		20	20				1001	1	
L	4				1	1	4						1	1		1	1							-			ш		_	Щ.													-	00		07	00	20.0	0.04		_
	J	F	M	Α	M	,	J	J	Α		S	0	N	D	S	١	И	T '	W	T	F	S	1	2	3 4	4 5	6	7	8	9 1	10 1	1 12	2 13	14	15	16	17	18	19 2	0 2	1 22	23	24	25	26	27	28	29 3	0 31	_	
							-1									-												1-1																						1	
-1	J	F	М	Α	М		J	J	Α		S	0	N	D	S	٨	M	T	W	T	F	S	1	2	3 4	4 5	6	7	8	9 1	10 1	1 12	2 13	14	15	16	17	18	19 2	0 2	1 22	23	24	25	26	27	28	29 3	0 31		
r			7		1			-		T	ŤŢ	-			1	1		Ť							-1	1				T	T	T	T	1					T	T	T						T		T	1	7
4		-		٨		-	1	1	۸	-	C	^	NI	n	-			т 1	۱۸/	т	Е	S	1	2	3 4	4 5	6	7	Q	9	10 1	1 12	2 13	14	15	16	17	18	10 2	0 2	1 22	23	24	25	26	27	28	20 3	0 31		-
	J	Г	М	A	М		J	J	A	-	S	U	11	U	1	- 1	VI	1	VV	1	-	3	-	_	J -	7 3	-		-	-	10 1	1 12	10	17	13	10	1	10	15 2	.0 2	1 22		24	20	20	21	20 .	20 0	0 01	4	
L						1	Ш									1	_																				1			1		1							-	1	
	J	F	M	Α	M		J	J	Α		S	0	N	D	S	1	M	T '	W	T	F	S	1	2	3 4	4 5	6	7	8	9 1	10 1	1 12	2 13	14	15	16	17	18	19 2	0 2	1 22	2 23	24	25	26	27	28	29 3	0 31	-	
																																																		1	
	J	F	М	Α	М		J	J	Α		S	0	N	D	S	١	M	T	W	T	F	S	1	2	3 4	4 5	6	7	8	9 '	10 1	1 12	2 13	14	15	16	17	18	19 2	0 2	1 22	23	24	25	26	27	28	29 3	0 31		
					1	Т	T	7		T	T			T	1	T	T		T							T				T	T	T	T					T		T	T	T						T	T	1	
با	1	_	1.4	٨	1.4	-	1	j.	٨		c	0	NI.	n	S	A	1	Т	W	Т	F	C	1	2	3 /	1 5	6	7	8	9 .	10 1	1 13	2 13	14	15	16	17	18	19 2	0 2	1 22	23	24	25	26	27	28	29 3	0 31	_	7
-	J	Г	IVI	A	M	-	J	J	A	-	S	0	IN	U	1	- 1	VI	1	VV	1		٥	1	_	, ,	, ,	U	<u> </u>		-		12	- 10	1			1	1	1	-	1		-			-			3 01	1	
						1			L .		_	_		_	14	1	4	-	141	-		_		0	2	4 -		7	0	0	10 4	1 40	2 40	44	A.F	10	17	10	10.0	0 0	1 00	200	04	OF.	200	27	20	20. 0	0 24		4
	J	F	M	Α	M		J	J	Α		S	O	N	D	S	٨	M	1	W	1.	F	S	1	2	3 4	4 5	6	1	Ö	9	10 1	1 12	2 13	14	15	10	1/	10	19 2	U Z	1 22	23	24	20	20	21	20	29 3	31	- 14	
																																	L																	1	
	J	F	M	Α	М		J	J	Α		S	0	N	D	S	. 1	M	T	W	T	F	S	1	2	3 4	4 5	6	7	8	9 1	10 1	1 12	2 13	14	15	16	17	18	19 2	0 2	1 22	2 23	24	25	26	27	28	29 3	30 31		
Г						T				T				T	15	T										T																								1	
-	i i	F	M	Δ	M		1	1	Δ		S	0	N	D	S		M	T	w	Т	F	S	1	2	3 4	4 5	6	7	8	9	10 1	1 12	2 13	14	15	16	17	18	19 2	0 2	1 22	2 23	24	25	26	27	28	29 3	0 31		
_	J	1	IVI		IVI	1		Ų		+	_	-	14		11		*				-				-		Ť	m	Ť	Ť		T	T	T			T	T	T	T	Т	T					T	T	T	1	
L	1	_				1		-	L.	1	_	_	1	_						-	-	_		0	0	4 5		7	0	0	10 1	4 40	2 42	44	4E	40	47	40	10.0	0 2	4 00	2 22	24	25	200	27	20	20 2	30 31		-
	J	F	M	Α	M		J	J	Α		S	0	N	D	S	1	M	1	VV	1	-	5	1	2	3 4	4 5	6	1	0	9	10 1	1 12	2 13	14	10	10	17	10	19 2	.0 2	1 22	23	24	25	20	ZI	20 .	29 3	00 31	-	
																																1													Ų					1	
	J	F	M	Α	M		J	J	Α		S	0	N	D	S	1	М	T	W	T	F	S	1	2	3 4	4 5	6	7	8	9 '	10 1	1 12	2 13	14	15	16	17	18	19 2	0 2	1 22	2 23	24	25	26	27	28	29 3	30 31		
		-			1	1																1.1																												1	
	J	F	М	Α	М		J	J	Α	1	S	0	N	D	S	. 1	И	T	W	T	F	S	1	2	3 4	4 5	6	7	8	9 '	10 1	1 12	2 13	14	15	16	17	18	19 2	0 2	1 22	2 23	24	25	26	27	28	29 3	30 31		
	1	-				T	T	-	1	T			Ü	T	10	1	T	Ť							T				T	T		T	T	T					T	T	T	T							T	1	
-	E.	Е	1.4	٨	1.4	-	į.	1	٨		c	0	NI	D	0		M	Т	۱۸/	Т	F	C	1	2	3 /	4 5	6	7	8	9	10 1	1 13	2 13	14	15	16	17	18	19 2	0 2	1 22	23	24	25	26	27	28	29 3	30 31	-	-
	J	F	М	А	IVI		J	J	A		0	U	IN	U	1	, 1	VI	1	44	1	Г	٥		_	J .	, ,	U			-	.0 1	1 12	10	17	,,,	,0	"	13	2	1		1	-7			-			1	4	
					L								20			L	_			_	_	_					_	Щ		_				1	4-	40	477	40	40.0	0.0	4 00	000	0.4	05	00	07	20	20. 0	00 04	1	_
à	J	F	M	Α	M	. ,	J	J	Α		S	0	N	D	S	1	M	T	W	T	F	S	1	2	3 4	4 5	6	7	8	9	10 1	1 12	2 13	14	15	16	1/	18	19 2	0 2	1 22	2 23	24	25	26	21	28	29 3	30 31	1	_
										1 3			1																		1		L			Ш														1	
	J	F	M	Α	M		J	J	Α		S	0	N	D	S	1	M	T	W	T	F	S	1	2	3 4	4 5	6	7	8	9	10 1	1 12	2 13	14	15	16	17	18	19 2	0 2	1 22	2 23	24	25	26	27	28	29 3	30 31		
										1					1	T	T																																	1	
-	J	F	М	Α	М		.1	.1	Δ		S	0	N	D	S	. 1	И	T	W	T	F	S	1	2	3 4	4 5	6	7	8	9	10 1	1 12	2 13	14	15	16	17	18	19 2	0 2	1 22	2 23	24	25	26	27	28	29 3	30 31		
r.			141	71	IVI			J	1			-	1		1	T	-	1	-	Ė					Т	T	T		T	T	T	T	T	T				T	T		T	T							T	1	
4	1	E	М	٨	1.4		1	.1	٨		S	0	N	D	0		M	T	W	Т	F	S	1	2	3 4	4 5	6	7	8	9 .	10 1	1 13	2 13	14	15	16	17	18	19 2	0 2	1 22	2 23	24	25	26	27	28	29 3	30 31	-	_
-	J	Г	IVI	A	IVI		J	J	A	1	9	U	IN		1	, ,	VI	1	**			0		_	Ĭ.			Ė				1		T	,,,	,,,		1	1	1	T	1	1						T	1	
Ļ	-	_		A	14		1	1	٨	1	C	0	N.I	D	44		14	T	101	Т	Е	C	1	2	2	1 5	6	7	R	a .	10 1	1 1'	2 12	1/	15	16	17	18	19 2	0 2	1 2	2 23	24	25	26	27	28	29 3	30 31	-	-
-	J	٢	M	Α	M		J	J	A	1	S	U	N	D	8	5 N	VI	1	W	1	Г	S		2	5 4	4 3	0	1	0	9	10 1	1 12	_ 13	14	13	10	17	10	10 2	.0 2	1 2,2		24	20	20	21	20	20 0	75 51	1	
L		_			10						_	_		_		1		-	14'	_	-	_		0	2	4 -	-	7	0	0	10.4	4 4	2 40	144	15	10	17	10	10 0	00 0	1 0	2 22	24	25	26	27	20	20 1	20 24	-	_{
	J	F	M	Α	M	1	J	J	Α	١ .	S	0	N	D	S	1	М	1	W	T	F	S	1	2	3 4	4 5	6	1	8	9	10 1	1 12	4 13	14	15	16	1/	18	19 2	0 2	1 22	23	24	25	20	21	20	29 3	30 31		\rightarrow
					1																												1								1	1	1				0.0	00		1	
	J	F	M	Α	M		J	J	Α	1	S	0	N	D	S	5 1	М	T	W	T	F	S	1	2	3 4	4 5	6	7	8	9	10 1	1 12	2 13	14	15	16	17	18	19 2	20 2	1 22	2 23	24	25	26	27	28	29 3	30 31		-
				1	1																																													1	
	J	F	M	Α	M		J	J	Α	1	S	0	N	D	S	3 1	М	T	W	T	F	S	1	2	3 4	4 5	6	7	8	9	10 1	1 12	2 13	14	15	16	17	18	19 2	20 2	1 22	2 23	24	25	26	27	28	29 3	30 31	-	
Г	T						T												1		Y		1, 3											1																1	
	J	F	М	Α	М		J	J	Α		S	0	N	D	S	1	М	T	W	T	F	S	1	2	3	4 5	6	7	8	9	10 1	1 12	2 13	14	15	16	17	18	19 2	20 2	1 22	2 23	24	25	26	27	28	29 3	30 31		
1				Ť	1	T	T			T			Г	T					-				-																										111/	1	
	-			_	1	-1-				-	باسيد		NA'	-	1 1	-			_		_	1				_	-	_	_	_	_	-		-	_	_	_	_	-	-	-	-	-	_	_	_	-	410	5/201		Pag

Day I	Plans	s [4.	4]										Ī						_				Ī					Act	ion	Tal	ble [4.5]		_						Со	ord A	Iterna	ate T	Table	s - P	at+ [2.6]					_						=		
		D	ay I	Plan	1						Da	ay	Pla	n 2	2	_	T		_		D	ay	Pla	an	3																							ſ				Ov	rerlap	Off						
Н	our N		Act	_	ur M	in .	Act	Н	our	Min		ct	_		Мі	in /	\ct		Hour	Mir		ct	_		Мі	in [Act	Act	# F	at#	A1	A2 /	13 S	1 S2	2 S3	S4	S5	S6	S7 S8	Par	# Ø0	ot ØT	ime	DetG	Call I	nh C	c c	NA1	1	2			4		6		7	8	Dia 1	Max
1 7	7	3	1	9 ()	0	1	0	0	1	0	9	0	0	T	0	1	0	0	==	0	9	0	10	1	0	1	_	1		T		T						1	_		7							T	T	T		T	T	T			DFT	riun
2 9	1	3	99	0 0)	0	2	0	0	10	0	10	0	0	1	0	2	0	0	-	0	10	0	0	_	0	2	t	2		1		1				1		2			$^{+}$								1	1			1	+	-		DFT	
3 1	6	0	2	1 ()	0	3	0	0	1	0	11	0	0	1	0	3	0	0	10	0	11	0	0		0	3	-	3					1		10	1		3	_		1	7.7			5				+	1			1	+	1		DFT	
4 1	9	0	99	2 ()	0	4	0	0	1	0	12	0	0	1	0	4	0	0	-	0	12	0	0	1	0	4	-	4			+	+				1		4	_		\forall	= 7			71			1	+	1			100	+	_		DFT	
5 (0	99	3 ()	0	5	0	0	1	0	13	0	0	1	0	5	0	0	15	0	13	0	0	1	0	5	-	5				\top					1	5	_		7												1	+	=		DFT	=
6 (0	0	4 ()	0	6	0	0	1	0	14	0	0	-	0	6	0	0	-	0	14	0	0		0	6	-	6								7	1	6	_		7			1		1		1	+	1			1	+	- 1		DFT	_
7 (-	0	0	5 (1	1	0	-	0	0	1	0	15	0	0	-	0	7	0	0	-	0	15	0	0	_	0	7	-	7		1						7	1	7	_	+		=		1		1		1	+	1						=	DFT	_
8 (_	-	0	6 0	_		0	_	0	0	-	_	16	0	0	_	_	8	0	0	-	_	16	0	0	-	0	8	-	8	7	\top	+					1	+	8	_		1			+		1		1	+	+	_	1	1	1	-		DFT	_
		-	av I	lan	4		7				Da	_	Pla	_	_						D	ay	_	n	6	_		9	-	9	T	1			T			1	+	9	_		1					1			1	7				+	-		DFT	_
Но	ur N	_			ur M	in	Act	Н	our	Min	A	-			Mi	in /	Act	j	Hour	Mir	_	_		-	n Mi	in I	Act	10	-	10	1	1	1		1		\exists	7		10	_		1			1		=			-	1			1	+	=	\neg	DFT	-
1 (=	=	0	9 0	-	=	0	_	0	0	-	0	_	0	0	==	0	_	0	0	_	=	9	0	0	_	0	11	-	11	\dashv	\top	+					1	1	11	_			-		Ť					+	+		1	1	+	-	=	DFT	
2 (_	0	0 1	0 0	_	-	0	_	0	0	10	-	10	0	0	_	0	2	0	0	-	-	10	0	0	-	0	12	-	12	\dashv	+	+	1			\exists	1	1	12						1		-		1	+	+	_	1	1-	+	-	\dashv	DFT	_
3 (_	_	0 1	1 0	+	-	0	_	0	0	10	-	11	0	0	-	0	3	0	0	+	0	11	0	0	-	0	13	-	13		1	+	T	T		1	1	+	13	_		1				1	7			+	+					_		DFT	_
4 (-	\rightarrow	0 1	2 0	-	_	0	-	0	0	0	-	12	0	0	_	0	4	0	0	+	0	12	0	0	-	0	14	-	14		+	1		1			1		14	_		1					1			1	1					+		DFT	-
5 (-	-	0 1	3 0	-	-	0	_	0	0	0	-	13	0	0	-	0	5	0	0	+	-	13	0	0	_	0	15	-	15	1	1			1			1		15	_		1			1	#	1			+	+				+	+	\dashv	DFT	_
6 0	_	-	0 1	4 0	_	_	0	_	0	0	0	_	14	0	0	-	0	6	0	0	+	-	14	0	0	-	0	16	-	16	\pm		1					\perp		16	_		1				+	1			10	+				+	+	\dashv	DFT	_
7 (_	-	0 1	5 0	1)	0	_	0	0	+-	-	15	0	0	_	0	7	0	0	-	0	15	0	0	_	0	17	-	17	1	+	1						1	17	_	+	1			+	_	_			1	1			+	+	_		DFT	_
8 (_	-	0 1	6 0	_	_	-	-	0	0	+	_	16	0	0	-	0	8	0	0	-	-	16	0	0	_	0	18	-	18	\top	\top	1	1	\vdash			1		18	_		1			+	\top	7			1	+				+	1		DFT	_
	_	D	ay F	lan	7		_				_	_	Pla	_	_	_	7				_	ay	_	-				19	-	19			1	+						19	_		1			+	+	1			1	1				+	1	\rightarrow	DFT	_
Но	ur N	_	_	_	ur M	in [Act	Н	our	Min	A	_	_	_	Mi	n I	Act	I	Hour	Mir		ct	-	Hou		n /	Act	20	-	20		+	1		\vdash			1		20	_		1			+	_	7			+	1			1	+	\rightarrow	\rightarrow	DFT	_
(=	0	\Rightarrow	=	=	0		0	0	=	1	\Rightarrow	0	0	=	0	1	0	0	=	_	9	0	0	=	0	21	-	21	+	+		+	\vdash	П		+	1	21			+			+	+			1	+	+	-		+	+	_	\rightarrow	DFT	_
2 0	_	-	0 1	0 0	_	-	0	_	0	0	0	_	_	0	0	_	0	2	0	0	-	_	10	0	0	_	0	22	-	22	T	+			\vdash				+	22		1		=			_		=		+	+			+	+	-	\rightarrow	DFT	_
3 0	_	0	0 1	1 0		_	0	-	0	0	0	_	_	0	0	_	0	3	0	0	+	-	11	0	0	-	0	23	-	23		+			Н			1		23			1			1		_			+	+			+	+	-	_	DFT	_
1 0		0	0 1	2 0	_		0	-	0	0	0	, T	12	0	0		0	4	0	0		0	12	0	0	_	0	24	-	24	1	1	1	1	Ħ	П		1		24	_		+			1	-	1			1	+			+	+	-#	_	DFT	Ť
5 0	_	-	0 1	3 0	-	-	0	-	0	0	0	-	13	0	0	-	0	5	0	0		-	13	0	0	-	0	25	-		\top	1		+	Ħ			1	1	25	_	1	+			+	+	7			+	+			+	+	_	-	DFT	_
6 0	_	-	0 1	4 0	-)	0	_	0	0	0	_	14	0	0	-	0	6	0	0	1	-	14	0	0	-	0	26	_		Ŧ	+	t		Ħ			1	1	26	_	1	+			1	-	+			+	+	_		+	+	-	\rightarrow	DFT	_
7 0	_	0	0 1	_	_	-	0	-	0	0	0	_	-	0	0	-	0	_	0	0	-	0	-	0	0	_	0	27	1		Ŧ			17	Ħ			\top		27	_		+					1			+	+			1	+		\rightarrow	DFT	-
8 0	1	0	0 1	6 0	-	_	0	-	0	0	0	-	16	0	0	-	0	8	0	0	-	_	16	0	0	-	0	28	1			A.		\top	Ħ			1		28			+			1		-				+						$\overline{}$	DFT	_
	_	Di	y P	lan	10	_	┪				Day	v P	lar	11	1		7				Da	_		n 1				29	1	7	7	+	+		Н	П	7	+		29	_		+			1	3				+	+	700		1	1	-	\rightarrow	DFT	-
Но	ur M	_	Act		ur M	in /	\ct	Н	our	Min	_	_	_		Mit	n /	ct	ŀ	Hour		_	ct			Mi	n /	Act	30	-	1	\top	7	+	\vdash	Н			+		30	_		+			+	+	-1			+	+			1	+	_	\rightarrow	DFT	_
1 0	_	=	0	9 0	=	_	0	_	0	0	10	=	÷	0	0	+	0		0	0	+	0 1	\Rightarrow	0	0	=	0	31	t		1		\top		П					31	_		+									\top			-	+	_	_	DFT	_
2 0	_	0	0 1	0 0	_	_	0	_	0	0	0	-	-	0	0	-	0	_	0	0	+	-	10	0	0	_	0	32	t		1				П			1		32	_		1				1	1				\top				+		\rightarrow	DFT	_
3 0	_	0	0 1	1 0	_	_	0	_	0	0	0	-	-	0	0	-	_	_	0	0	+	-	11	0	0	-	0	33	-		1	1			П		1			33	_		+					1			1	\top				+		\rightarrow	DFT	
4 0	1	0	0 1	2 0	1	-	0	_	0	0	0	_	12	0	0	_	0	4	0	0	1	-	12	0	0	-	0	34	t		1	+		\vdash	H					34			\top	-		1	7,1	1			_	\top			+	+		\rightarrow	DFT	_
5 0	1	0	0 1	3 0	1		0	5	0	0	0	1	13	0	0		0	5	0	0	1	0	13	0	0	-	0	35	1		1			\vdash	Н			1		35			1			1	7	1			1	\top				1		_	DFT	_
6 0	1	0	0 1	4 0	1		0	6	0	0	0	1	14	0	0		0	6	0	0	1	0	14	0	0		0	36							П					36	_						П					1				+		$\overline{}$	DFT	_
7 0	1	0	0 1	5 0	-	_	0	_	-	0	0	_	-	0	0	-	_	-	0	0	-	-	15	0	0	-	0	37				1	T		П		-			37	_				V							+				+		\rightarrow	DFT	
8 0	1	0	0 1	6 0	1		0	_	0	0	0	1	-	0	0	-	_	_	0	0	+	_	16	0	0	_	0	38	T	1	T	1		П	П			1		38	_	7						1			1	+	7			1		_	DFT	
TV		_	y P		_		1	-	_		Dav	y P	lar	1 14	4	_	7		_		-	y F	-	n 1	-	_		39			1		1	П	П					39	_	0	1					\dashv	I			1				+		\rightarrow	DFT	
Но	ur M	_	Act	_	_	in /	ct	H	our				Н			n A	ct	Ė	lour	Min						n A	4ct	40		1					П	П		1		40	_							\dashv			1	+				1		_	DFT	
1 0																																	1							41	_				-			1				1						\rightarrow	DFT	
2 0		-	0 1	0 0	-	_	-	_	-	0	0	-	-	0	0	-	0	-	0	0	+	1	-	0	0	-	_	48			T	T	T					T		42	_						11	1				1				1			DFT	T
3 0	_	-	0 1	1 0	_	_	0	_	-	0	0	_	_	0	0	-	_	_	0	0	-	_	_	0	0	-	0					1						1	180	43											1	+				1		\rightarrow	DFT	
4 0	1	0	0 1	2 0	0	KI F	0	4	0	0	0	1	_	0	0	_	0		0	0	-	_	_	0	0	_	0	98			T	T	T						T	44										7	1	\top				1		$\overline{}$	DFT	
5 0	-	_	0 1	+	_	_	0	_	_	0	0	_	_	0	0		0		0	0)		0	0	- 7		99			1	1			П					45					-			\dashv				1				1	1	\rightarrow	DFT	
6 0	_	_	0 1	4 0	_		0	_	_	0	0			0	0		0		0	0	+		14	0	0			100		55		1		\Box	\Box			1		46								1				\top					1	\rightarrow	DFT	
7 0	-	-	0 1	_	_	_	0	_	\rightarrow	0	0	_		0	0		0		0	0		_	_	0	0		0				62	RTF	22	@	NC	В	RO	AD	WAY									1			1	1				1		\rightarrow	DFT	_
8 0	_	_	0 1	_	_		0	_	_	0	0			0	0		0		0	0		1		0	0			01/2						_				age		48								+			1	1					_	\rightarrow	DFT	_

C1-USER IO Map [1.8.9.1 In]	C1-USER IO Map [1.8.9.2 Out]	C1-USER IO Map [1.8.9.2 Out]	IO Logic [1.8.7]				
II-1 189 Unused	Ol-1 1 Ch1 Red	07-1 115 Not Used	Result	Fcn O	per	Fcn Oper	Fcn Timer
I1-2 189 Unused	O1-2 49 Ch1 Green	07-2 115 Not Used	1 0 =	I	0 1		I 0 DL
11-3 3 Veh Call 3	O1-3 2 Ch2 Red	07-3 115 Not Used	1 0 =	I	0 1		I 0 DL
II-4 4 Veh Call 4	O1-4 26 Ch2 Yellow	07-4 115 Not Used	1 0 =	1	0 1	anda O	I 0 DL
II-5 5 Veh Call 5	O1-5 50 Ch2 Green	O7-5 115 Not Used	1 0 =	1	1 0	0	I 0 DL
11-6 189 Unused	O1-6 3 Ch3 Red	07-6 115 Not Used	1 0 =	1	0 1	0	I 0 DL
11-7 189 Unused	O1-7 27 Ch3 Yellow	07-7 115 Not Used	1 0 =	1	0 1	0	I 0 DL
II-8 189 Unused	O1-8 51 Ch3 Green	07-8 115 Not Used	1 0 =	***	0 1	0	I 0 DL'
12-1 189 Unused	O2-1 4 Ch4 Red	C11S-USER IO Map [1.8.9.1 In]	I 0 =	*****) 1	0	I 0 DL'
12-2 189 Unused	O2-2 52 Ch4 Green	14-1 189 Unused	1 0 =	1	1	0	1 0 DL
12-3 189 Unused	O2-3 5 Ch5 Red	14-2 189 Unused	I 0 =	1)	0	1 0 DL'
12-4 189 Unused	O2-4 29 Ch5 Yellow	14-3 189 Unused	Security Access Levels [8.2]		43	NONE	Com Parameters [6.1]
12-5 13 Veh Call 13	O2-5 53 Ch5 Green	14-4 189 Unused	1 SWLOAD	22 NONE	44	NONE	Station ID 7162
12-6 189 Unused	O2-6 6 Ch6 Red	17-1 189 Unused	2 SECURE	23 NONE	45	NONE	Group ID
I2-7 189 Unused	O2-7 30 Ch6 Yellow	17-2 189 Unused	3 NONE	24 NONE	46	NONE	Master ID 0
12-8 189 Unused	O2-8 54 Ch6 Green	17-3 189 Unused	4 NONE	25 NONE	47	NONE	Backup Time 0
13-1 189 Unused	O3-1 7 Ch7 Red	17-4 189 Unused	5 NONE	26 NONE	48	NONE	SysUp Modem [6.1]
13-2 189 Unused	O3-2 55 Ch7 Green	17-5 189 Unused	6 NONE	27 NONE	49	NONE	Enable Modem OFF
13-3 189 Unused	O3-3 8 Ch8 Red	17-6 189 Unused	7 NONE	28 NONE	50	NONE	Idle Time
13-4 189 Unused	O3-4 32 Ch8 Yellow	17-7 189 Unused	8 NONE	29 NONE	51	NONE	Dial Time
13-5 189 Unused	O3-5 56 Ch8 Green	17-8 189 Unused	9 NONE	30 NONE	52	NONE	Tel: #N/A
13-6 189 Unused	O3-6 9 Ch9 Red	18-1 189 Unused	10 NONE	31 NONE	53	NONE	Alt: #N/A
13-7 189 Unused	O3-7 33 Ch9 Yellow	18-2 189 Unused	11 NONE	32 NONE	54	NONE	Law many
13-8 189 Unused	O3-8 57 Ch9 Green	18-3 189 Unused	12 NONE	33 NONE		NONE	2070 Port Parms [6.2]
14-1	O4-1 10 Ch10 Red	18-4 189 Unused	13 NONE	34 NONE		NONE	Port Baud Rate FCM
14-2 C11S Connector	O4-2 58 Ch10 Green	I8-5 189 Unused	14 NONE	35 NONE	57	NONE	SP1 9600 MODE 6
14-3	O4-3 11 Ch11 Red	18-6 189 Unused	15 NONE	36 NONE		NONE	SP2 9600 MODE 6
14-4	O4-4 35 Ch11 Yellow	18-7 189 Unused	16 NONE	37 NONE		NONE	SP3 19200 MODE 6
14-5 189 Unused	O4-5 59 Ch11 Green	18-8 189 Unused	17 NONE	38 NONE		NONE	SP4 38400 MODE 6
14-6 189 Unused	O4-6 12 Ch12 Red	C11S-USER IO Map [1.8.9.2 Out]	18 NONE	39 NONE		NONE	SP5 1200 AUTO
14-7 229 33xCMUStop	O4-7 36 Ch12 Yellow	O8-1 115 Not Used	19 NONE	40 NONE		NONE	SP6 1200 AUTO
14-8 228 33xFlashSns	O4-8 60 Ch12 Green	O8-2 115 Not Used	20 NONE	41 NONE		NONE	SP7 1200 AUTO
15-1 189 Unused	O5-1 28 Ch4 Yellow	O8-3 115 Not Used	21 NONE	42 NONE	64	NONE	SP8 1200 AUTO
I5-2 189 Unused	O5-2 34 Ch10 Yellow	O8-4 115 Not Used	and the same of the same of		The Market of The		
I5-3 189 Unused	O5-3 25 Ch1 Yellow	O8-5 115 Not Used	2070 IP 1 Addressing [6.5]		2070 IP 2 Addressing		
I5-4 189 Unused	O5-4 31 Ch7 Yellow	O8-6 115 Not Used	Addressing	-	Addressing		
I5-5 189 Unused	O5-5 115 Not Used	08-7 115 Not Used	Addr		Addr		
I5-6 189 Unused	O5-6 115 Not Used	O8-8 115 Not Used	Mask		Mask		
15-7 189 Unused	O5-7 115 Not Used		Brdcst		Brdcst		
15-8 189 Unused	O5-8 114 Watchdog		GtWay		GtWay		
I6-1 189 Unused	06-1 115 Not Used		Port		Port		
I6-2 189 Unused	O6-2 115 Not Used		0070 D-+ D:1: D 10	et.	0070 B . B'		
16-3 189 Unused	06-3 13 Ch13 Red		2070 Port Binding Ports [6.		2070 Port Binding Fu		
16-4 189 Unused	06-4 37 Ch13 Yellow		Port Echo	Mode	Function Channel	SECURIOR SERVICE SECURIOR SECU	
I6-5 189 Unused	O6-5 61 Ch13 Green		ASYNC1 SP1 OFF			SYSUP ASYNC2	
16-6 189 Unused	06-6 14 Ch14 Red		ASYNC2 SP2 OFF			SYSDown ASYNC1	
16-7 189 Unused	O6-7 38 Ch14 Yellow		ASYNC3 SP3 OFF		Opticom NONE	Shell NONE	
I6-8 189 Unused	O6-8 62 Ch14 Green		ASYNC4 SP4 OFF	055	Loop Det. NONE		
			SYNC1 SP5S SYNC3 SYNC2 OFF SYNC4	OFF OFF	GPS NONE		

#	Event / Alarm	Ev Alr	Cal	Phas	es[1	.1.5]		Red	irect	Phas	ses[1.	1.5]						Inhi	bit P	hase	s[1.1.	5]												
1	Power Up Alarm.	On On					yØ		From	To	From	То	From	To	From	To			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	1
2	Stop Timing	On On	1			2		1										1											- 1					
	TS1 Cabinet Door	1-1	2					2										2		1 4	7 4		(-)											
	Coordination Failure	On On	3					3										3		ra.	1													
	External Alarm # 1	On On	4					4										4																
	External Alarm # 2	On On						5										5										-						
	External Alarm # 3		6					6										6		111														
	External Alarm # 4		7					7							100			7					part i						- 1	1				Г
	Closed Loop Disabled	On	8					8				1						8		1					17									
	External Alarm # 5		9					9						=				9		F = 1														Г
	External Alarm # 6		10					10										10																T
-	Manual Control Enable	On On	100000					11			1		-					11			-			-										F
	Coord Free Input	OII OII	12					12										12																T
14	Local Flash Input	On On						13		1	-							13		1000														
15	MMU Flash	OII OII	14					14		1								14					-											
	CMU Flash		15	\vdash		-		15		-	-							15																H
	Cycle Fault	On		-				16		1								16																+
_	Cycle Failure	On		Call &	Rod	lirect	#11		31	1	1		-	-	_	_			I Inhih	it Ph	3998	# 1 [1	16	31	_									1
_	Coordination Fault	On	_						1	Eron	To	Erom	To	From	To	From	To		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	-
_	Controller Fault	On On	11000000		FIIds	es ca	lieu b	y w	1	1 1011	10	1 1011	10	1-10111	10	10111	10	1		1	1		-	0		0	J	10	11	12	10	17	10	Г
0000001	Detector SDLC Failure	Oil Oil	411					-	2	-								2																H
_	MMU SDLC Failure		3	\vdash					3	-								3																H
_			41	\vdash	-				111136	\vdash	-	-	-	-			-	1																╁
_	Critical SDLC Failure		4	\vdash					4	-								4	-	-					-							=		┝
	Reserved	0 0	5	\vdash					5	-								5		-											-			⊦
_	EEPROM CRC Fault	On On	41	\vdash					6	-					-	\vdash		0		-					-								-	⊦
	Detector Diagnostic Failu		7	Н					/	_				-	_		-	1		-												= -		⊬
-	BIU Detector Failure	On On	Charles and the second				# O.F.	1 4 0	8	_)							8	L . L . L	is Di-		# 0 14	4.0	21					_					L
28	Queue detector alarm	On		Call &			_		.3]	1-	1-	-	-	-	-	- 1	-	Alt	Innib	it Ph		# 2 [1	100		-	0	0	40	44	40	40	22	45	
29	Ped Detector Fault	On	Col	Ø	Phase	es Call	ed By	0		From	То	From	То	From	10	From	10		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	_
30	Coord Diagnostic Fault		1 1						1	_								1												L*				╀
41	TempAlert Probe Ch. A		2					1	2									2																╀
42	TempAlert Probe Ch. B		3						3	_								3										-						-
47	Coord Active		4	Ш					4									4													2 1			1
48	Preempt Active	On							5									5											= 1					1
49	Preempt 1 Input	On							6					-				6												-			1	1
	Preempt 2 Input	On							7									7																\perp
_	Preempt 3 Input	On	_			1-1			8									8							-									
	Preempt 4 Input			ord, C												mete																		
	Preempt 5 Input			CoØ		1	2	3	4	5	6	7	8			Yellow		OFF		Max														
	Preempt 6 Input	On		OFF						1						nable		OFF		Cycle	Faul	t Actic	n	ALA	RM									
55	Preempt 7 Input	On		OFF											Disab		- 1	OFF																
56	Preempt 8 Input	On	3	OFF										Diam	ond M	lode		4Ph																
	Preempt 9 Input	On	4	OFF										Back	up Tin	ne (s)		900																
	Preempt 10 Input	On	Aut	o Flas	sh Ph	nasel	Olap	Setti	ings	[1.4.2	2]			Disab	le Init	Ped		OFF	4															
	In Transition	On				- 1	(T)							Cycle	Fault	t Actio	n	ALA	RM							5								
	FIO Status Alarm		Yel (n Time		ON		ID.	7162	RTE	22 6	NO	BBO	ADW	V			04/2	5/16		Page	A 8

- TE XXX-1 (8/1/85) | TAPLE OF CALL

SIGNAL # 162 COUNTY # Weste DATE 7/6/90

FILE #____PAGE 20 OF 22

TERMINAL WIRING BOARD FLASH FACE SWITCH INDICATIONS PLUG NUMBERS WIRE COLOR CODE FUNCTION PACK. TERMINAL 14/19C-1-R 14/19C-1-0 3,4 14/190-1-6 SREEN 1 \$1 14/198-1-W 7,8 1,2 2 \$2 14/190-1-R/W 14/190-1-6/W 14/190-1-6/W RED YELLOW GREEN 5,6 3 \$3 14/190-1-B/10 4 14/19C-1-0/R 14/19C-1-B/R 14/19C-1-W/R OYL. 4 5 6 7 9 9 10 11 12 13 14

TE XXX-1R (8/1/85) TABLE OF SWITCH PACKS

SIGNAL #_162 COUNTY #_Waste

DATE 7/6/10

STUDY #___ FILE #___ PAGE 2/ OF 22

CONFLICT / CURRENT MONITOR PROGRAMMING

CONFLICT MON	ITOR DIODES TO BE CU	CONFLICT MONITOR YELLOW JUMPERS TO BE INSTALLED	CURRENT MONITOR DIODES TO BE CUT
P 1-5P5			
P 2. 5P5			
,			
-			

NOTES:

TE 262-14 (7/91)

MODEL 179 SIGNAL OPERATION PROGRAMMABLE FEATURES SIGNAL OPERATION SPECIFICATION

TAPS	43		
STUDY #			
FILE #			
MPAGE		_ OF _	

SIGNAL	#	

COUNTY#	

DATE _MAR 23

TABLE OF INPUT WIRING .

TERM NUMBER	FUNCTION	DET. NO.	DET. TYPE	DET. AN. OVER	REMARKS
1A, 1B			1. 1. 1. 1. 1.		
2A, 2B	02	2	600 p		
3A, 3B	Ø3	3			
4A, 4B			Loup		
5A, 5B					
6Å, 6B	2 ()	_		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
7A, 7B			-		
8A, 8B			*		
9A, 9B					
10A, 10B	01	10	Mirco WAVE		
11A, 11B	01				
12A, 12B		- / /	MIRCO WAVE		
13A, 13B					<u> </u>
14A, 14B		7.			
15A, 15B					
16A, 16B					
17A, 17B		2			
18A, 18B	S. J. J. J. V. W. N.	1 1 12			
19A, 19B					
20A, 20B				. ,	
21A, 21B	24 182 3 2 4 2 5		7		
22A, 22B					
23A, 23B					
24A, 24B				*	X
25A, 25B		i	*		
26A, 26B					· · · · · · · · · · · · · · · · · · ·
27A, 27B					
28A, 28B					

W-59
Signal #

STATE OF NEW YORK – DEPARTMENT OF TRANSPORTATION TRAFFIC ENGINEERING SAFETY DIVISION TRAFFIC CONTROL SPECIFICATIONS

County of WESTCHESTER

Signal: W-59

D/HWP: crew

PIN:

File: 55.38-22

INTERSECTION: RT 22 @ CENTRAL WESTCHES	TER PKWY & RESE	VOIR RD	
☐ CITY ☐ VILLAGE ☑ TOWN OF: NOF	RTH CASTLE		
Department Order filed long ago as Section	on: <u>2055.38</u>	Subdivision:	(a)
Prior specification hereby superseded	\blacksquare	Dated: 3-13-	2009
Purpose: NOA PAPERWORK UPDATE.			
These specifications will be effective upon the ☐ Instal traffic control device(s) required by and conforming to the			the necessary ol Devices.
This signal shall			
A. Operate in accordance with the table of operation attached pages as a:	ns and / or change in	tervals as shown on th	e
attached pages as a.		☐ Pretimed Signal	
		☐ Semi-traffic actuat	ted
		√ Full-traffic actuate	d
		✓ Pedestrian actuate	ed
B.		☐ Other	
✓ Display pedestrian indications			
☑ Be equipped with vehicle detectors			
$f {f M}$ Be equipped with pedestrian buttons	:		
as shown in the attached plans / draw	wings.		
C. Be equipped with	☐ Interconn	ection and/or coordina	ition
Description: FIRE PREEMPTION FOR N	NB RT 22.		
cc: Degion 9 Troffic Engineer	6-8-2016	ADAM LEVIN	^{∫E} Acting R.T.E.
cc: ☐ Region 8 Traffic Engineer ☑ Signal Shop	NOA Date	Signature	Title
☐ Contract Maintainer			
☐ Main Office	Installation Da	te Reinsta	allation/Modification

STATE OF NEW YORK - DEPARTMENT OF TRANSPORTATION W-59 W-59 Signal: TRAFFIC AND SAFETY DIVISION Signal # D/HWP: crew Town of NORTH CASTLE PIN: **FACES** File: 55.38-22 SP₁ **SP 7** Ø2 SP₅ -12" G Ø5 22 ′1В CHURCH ST 5B 1 2,5,9 #22 ONE WAY #21 0 RIGHT LANE N MUST #22 TURN RIGHT PED-1 L 3,4,6-8 #22 PED-3 d X Ø2 **SP 10** #21 OVL-1 8 14A 14B Ø4+Ø5 SP 9 **▶**8 Ø4 В 4A SP 4 4B PED-1 Ø7 SP 12 **RESERVOIR RD** #22 #22 PED-1 Ø7 SP 12 Q-sequential phasing L #23 SP 13 PED-2 Ε 22 T **SPAN SIGNS** 26 A NO TURN ON RED 3В 16 #22 13B, Ø3 SP 3 WESTCHESTER PARKWAY Ν #23 26 B CENTRAL 16 B BLUE LIGHT Ø6 SP 11 SP 6 Ø4 SP8 **PAPERWORK**

MODEL 2070 SIGNAL OPERATION PROGRAMMABLE FEATURES SIGNAL OPERATION SPECIFICATION

W-59 Signal: D/HWP: crew

PIN:

TABLE OF SWITCH PACKS

				I ARLE OF	SWITCH PACKS			
Date:	6/8/2016)					File	e: 55.38-22
SWITCH PACK		INDICATIONS	FACE	TERMINAL	WIRE COLOR CODE	FACE	TERMINAL	WIRE COLOR CODE
		Red		SP 1 R	14 / 19C - C - R		SP 1 R	14 / 15C - D - R
1	Ø2	Yellow	1	SP 1 Y	- 0	2	SP 1 Y	- 0
ı	WZ	Green	ı	SP 1 G	- G		SP 1 G	- G
		Ground Wire		Grnd Bus	- W		Grnd Bus	- W
				SP 2 R			SP 2 R	
•				SP 2 Y			SP 2 Y	
2				SP 2 G			SP 2 G	
		Ground Wire		Grnd Bus			Grnd Bus	
		Red		SP 3 R	14 / 05C - E - R		SP 3 R	14 / 05C - F - R
_	~~	Yellow	_	SP 3 Y	-0	_	SP 3 Y	-0
3	Ø3	Green	6	SP 3 G	- G	7	SP 3 G	- G
		Ground Wire		Grnd Bus	- W		Grnd Bus	- W
		Red		SP 4 R	14 / 10C - B - R / B		SP 4 R	14 / 19C - C - R / W
		Yellow		SP 4 Y	-0/B		SP 4 Y	- BL/W
4.	Ø4	Green	8	SP 4 G	- G / B	9	SP 4 G	- G/W
		Ground Wire		Grnd Bus	- W/B		Grnd Bus	
								- B / W
		·····		SP 5 R	44/40C C O/B		SP 5 R	
5.	Ø5		1	SP 5 Y	14/19C-C-O/B		SP 5 Y	
- -		•	_	SP 5 G	- G / B		SP 5 G	
		Ground Wire		Grnd Bus	- W / B		Grnd Bus	
		Red		SP 6 R	14 / 15C - D - R / W		SP 6 R	14 / 10C - B - R
6.	Ø6	Yellow	3	SP 6 Y	- BL / W	4	SP 6 Y	- 0
0.		Green	3	SP 6 G	- G / W	T	SP 6 G	- G
		Ground Wire		Grnd Bus	- B / W		Grnd Bus	- W
		Red		SP 7 R	14 / 10C - A - R		SP 7 R	
6.	Ø6	Yellow	5	SP 7 Y	- 0		SP 7 Y	
0.	20	Green	ິວ	SP 7 G	- G		SP 7 G	
		Ground Wire		Grnd Bus	- W		Grnd Bus	
				SP 8 R			SP 8 R	
7	α 2		2	SP 8 Y	14 / 10C - D - O/B		SP 8 Y	
7.	Ø2		2	SP 8 G	- G/B		SP 8 G	
		Ground Wire		Grnd Bus	- W/B		Grnd Bus	
				SP 9 R			SP 9 R	
•	~ 4		_	SP 9 Y	14 / 10C - A - O/B		SP 9 Y	
8	Ø4		5	SP 9 G	- G/B		SP 9 G	
		Ground Wire		Grnd Bus	- W/B		Grnd Bus	
				SP 10 R			SP 10 R	
_	OVL-1		_	SP 10 Y	14 / 19C - C - O / R		SP 10 Y	
9	α4 . αΕ		9	SP 10 G	- BL / R		SP 10 G	
	Ø4 + Ø5	Ground Wire		Grnd Bus	- W / R		Grnd Bus	
	1	HAND		SP 11 R	- ** / 1\		SP 11 R	
	PED-3			SP 11 Y			SP 11 Y	
10		MAN	21	SP 11 G			SP 11 G	
	Ø2	Ground Wire		Grnd Bus			Grnd Bus	
				SP 12 R			SP 12 R	
	PRE-EMPT		BLUE					
11.	TELL-TALE	BLUE LIGHT		SP 12 Y			SP 12 Y	
	LIGHT	Constant Mine	Light	SP 12 G			SP 12 G	
	1	Ground Wire		Grnd Bus			Grnd Bus	
	PED-1	HAND		SP 13 R			SP 13 R	
12.			22	SP 13 Y			SP 13 Y	
	Ø7	MAN		SP 13 G			SP 13 G	
		Ground Wire		Grnd Bus			Grnd Bus	
	DED 2	HAND		SP 14 R			SP 14 R	
13	PED-2		23	SP 14 Y			SP 14 Y	
13	Ø3	MAN	23	SP 14 G			SP 14 G	
		Ground Wire		Grnd Bus			Grnd Bus	
· · · · · · · · · · · · · · · · · · ·				SP 14 R			SP 14 R	
14.				SP 14 Y			SP 14 Y	
14.				SP 14 G			SP 14 G	
		Ground Wire		Grnd Bus]	Grnd Bus	
	•							

MODEL 2070 SIGNAL OPERATION PROGRAMMABLE FEATURES SIGNAL OPERATION SPECIFICATION

County of WESTCHESTER

Signal: W-59

D/HWP: ____crew

PIN:

File: 55.38-22

Date: 6/8/2016

TRAFFIC SIGNAL MONITOR PROGRAMMING

	ONITOR DIODE		WIRE TO BE IN	OW DISABLE: UMPERS USTALLED FO	.	YR MONITO	OR BOARD O MONITOR)	
1 - 5	6 - 7	1 - 11	1			0		
1 - 6	6 - 10	2 - 11	2			RF 20	10 —	1
1 - 7		3 - 11	3		0		SABLE	S
1 - 8	7 - 8	4 - 11	4		0,	The second second	0 SEC	Š
1 - 10	7 - 10	5 - 11	5		N	4 GY EN		Ĕ
		6 - 11	6		0		FAULT	P P
3 - 13	8 - 9	7 - 11	7		12	SE1	TINGS	J
	8 - 10	8 - 11	8			00	NOT ANGE	
4 - 8		9 - 11	9			9	ANGL	1
4 - 9		10 - 11	10	10	1902	5 FYA 3	-10	$\stackrel{\checkmark}{>}$
		12 - 11	11	Blue	2 -	= FYA 5-		1
5 - 7		13 - 11	12	12	CI	™ FYA 7-		J
5 - 8		14 - 11	13	13	DIP SWI	ILCHEG.	X = ON BLANK = OI	FF
5 - 10			14		1	- CH 1-		
			15		I	P CH 2		
			16		3 4	ω CH 3	1	
	ENT MONITO (IF USED) ENT MONITOR TO BE CUT				6	4 CH 4 CH 5 CH 6 CH 7 CH 8	ENABLE TO MONITOR	& 3-COLOR ARROWS ONLY)
	2, 5, 7-1					- CH 9- 2 CH 10 3 CH 11	∩ 0	ഗ
Notes:						GH 11 4 CH 12 5 CH 13 6 CH 14 7 CH 15 8 CH 16 CH 17	SSM	(3-COLOR BALL)

MODEL 2070 SIGNAL OPERATION PROGRAMMABLE FEATURES SIGNAL OPERATION SPECIFICATION

County of WESTCHESTER

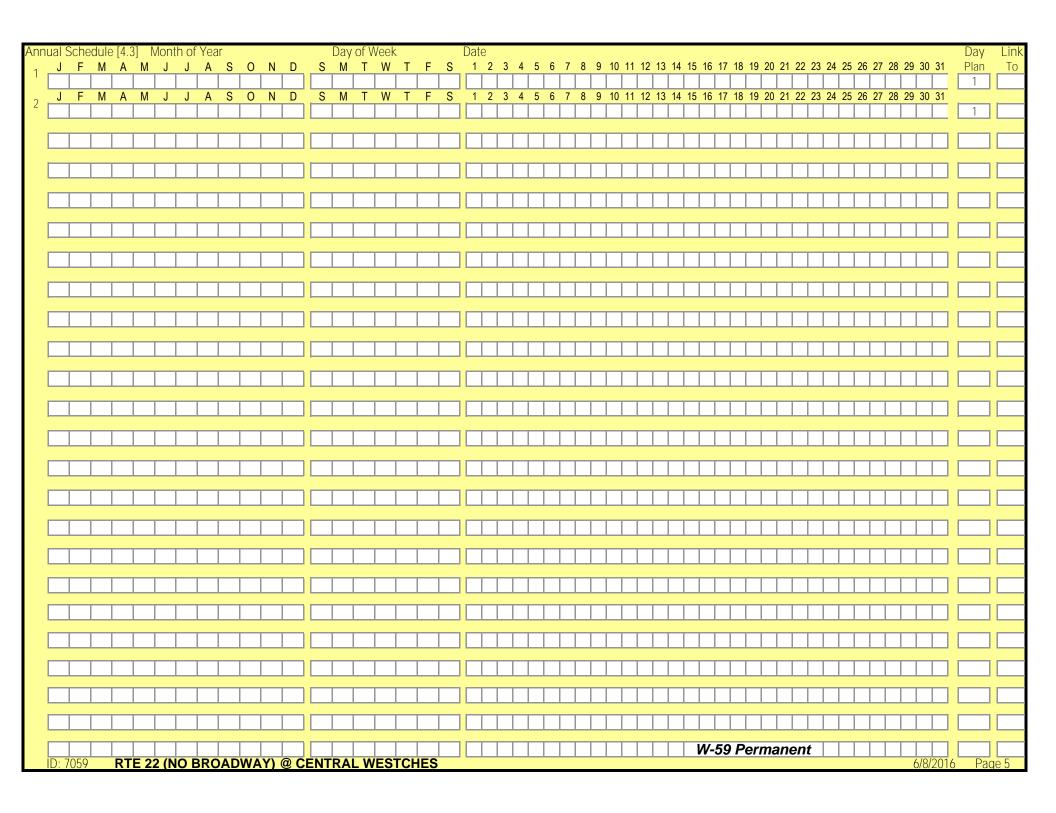
Signal: W-59
D/HWP: crew

PIN:

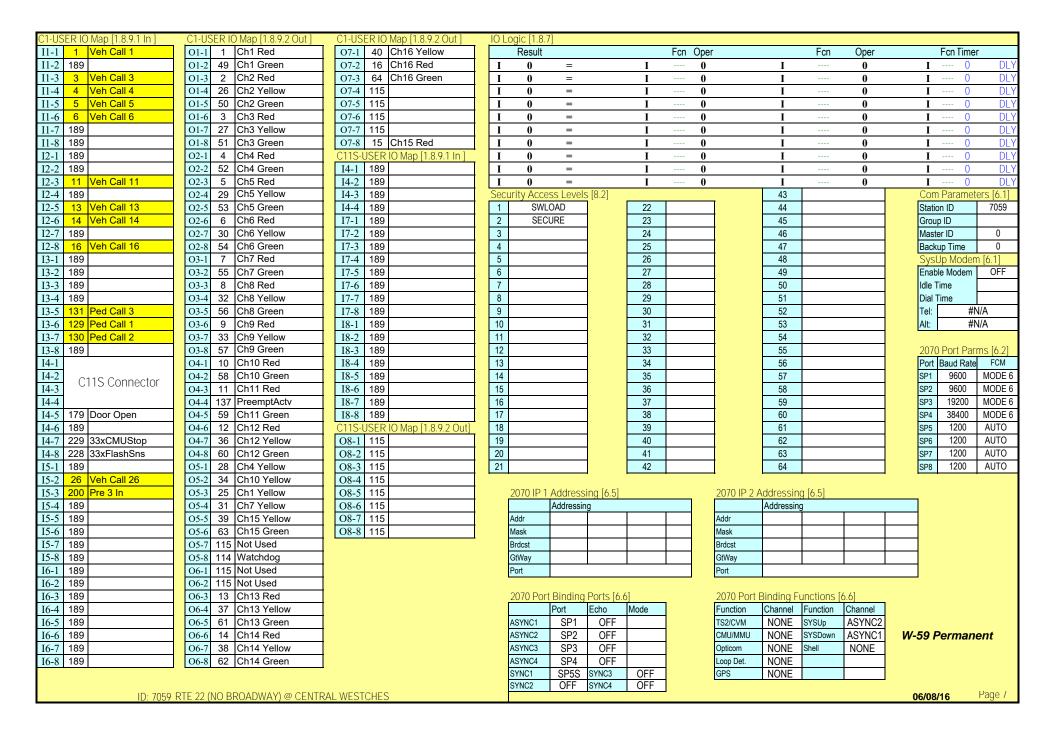
File: 55.38-22

Date: 6/8/2016

TABLE OF INPUT WIRING


TERM. NUMBER	FUNCTION	DET. NO.	DET. TYPE	DET. AN OVER	REMARKS
1A, 1B	Ø 2	1 A,B	NORMAL		PRESENCE LOOP
2A, 2B					
3A, 3B	Ø 3	3 A,B	QUAD+NORMAL		PRESENCE LOOP
4A, 4B	Ø 4	4 A,B	NORMAL		PRESENCE LOOP
5A, 5B	Ø 5	5 A,B	NORMAL		PRESENCE LOOP
6A, 6B	Ø 6	6 A,B	NORMAL		PRESENCE LOOP
7A, 7B					
8A, 8B					
9A, 9B					
10A, 10B					
11A, 11B	Ø 2	11 A,B	NORMAL		PRESENCE LOOP
12A, 12B					
13A, 13B	Ø 3	13 A,B	QUAD+NORMAL		PRESENCE LOOP
14A, 14B	Ø 4	14 A,B	NORMAL		PRESENCE LOOP
15A, 15B					
16A, 16B	Ø 6	16 A,B	NORMAL		PRESENCE LOOP
17A, 17B					
18A, 18B					
19A, 19B					
20A, 20B					
21A, 21B	PED 3 - Ø 2	21	BUTTON		PEDESTRIAN
22A, 22B	PED 1 - Ø 7	22	BUTTON		PEDESTRIAN
23A, 23B	PED 2 - Ø 3	23	BUTTON		PEDESTRIAN
24A, 24B					
25A, 25B					
26A, 26B	Ø6	26 A,B	NORMAL		PRESENCE LOOP
27A, 27B	FIRE PREEMPT Ø3	27	STROBE		NB RT 22 / 242 CARD
28A, 28B					

Phase Times [1.1.1									Cod	ordina	ition F	Patter	ns [2.	4] and	d Coo	rdinat	ion S	plit Ta	ables	s [2.7	.1]											
	1	2	3	4	5	6	7	8	Pat#	Сус	Off	Split	Seq	Pat#	Сус	Off	Split	Seq	Pat#	Сус	Off	Split	Seq	Pat#	Сус	Off	Split	Seq	1		_	
Min Green		5	5	5	5	5			1	0	0	1	1																1	O .5	Seq	
Gap, Ext		3	3	3	3	3			2																				1	4.	JUG	
Max 1		45	45	30	20	45			3																				1			
Max 2									4																				Ring	ı/Starı	up [1.	1.41
Yel Clearance	3.5	4	4	4	4	4	3.5	3.5																					Phs	Ring		Enable
Red Clearance	1.5	2	2	2	2	2	1.5	1.5																					1	1	RED	Off
Walk		8	8				8																						2	1	GREEN	On
Ped Clearance		17	25				23																						3	1	RED	On
Red Revert																													4	1	RED	On
Add Initial																													5	2	RED	On
Max Initial																													6	2	GREEN	On
Time B4 Reduct																													7	1	RED	On
Cars B4 Reduct									Spli		1	2	3	4	5	6	7	8	Split		1	2	3	4	5	6	7	8	8	1	RED	Off
Time To Reduce									1	Coord																			Coord	d Mode	s [2.1]	
Reduce By																													Test Op	pMode	0	
Min Gap																											Correct	tion	SHRT/LN	1G		
DyMaxLim																										Maximu	um	MAX 1				
Max Step																													Force-0	Off	FLOAT	
Options [1.1.2]	1	2	3	4	5	6	7	8																					Closed	Loop	ON	
Enable		X	Χ	Χ	X	X	X																						Stop-in-	-Walk	OFF	
Min Recall		Χ				Χ																							Auto Re	eset	ON	
Max Recall																													Expand	l Splt	OFF	
Ped Recall																													Ped Re	ecycle	NO_REC	YCLE
Soft Recall																													Before		TIMED	
Lock Calls																													After		TIMED	
Auto Flash Entry																													Auto	Flash	[1.4.1]	
Auto Flash Exit																													Auto Fl	ash	PH OVER	7
Dual Entry		On		On		On		On																					Flash Y	'el	45	
Enable Simul Gap	On	On	On	On	On	On	On	On																					Flash F		0	
Gaurantee Passage																													Unit F	Params	[1.2.1]	
Rest In Walk																													Phase	Mode	QSeq	
Conditon Service																													IO Mod		USER	
Non-Actuated 1																													Loc Fls		ON	
Non-Actuated 2																													Start FI	. ,	0	
Add Init Calc																													Start Al	. ,	0	
Options+ [1.1.3]	1	2	3	4	5	6	7	8																			!	ļ	Yellow		OFF	
Reservice									_	<u> </u>					<u> </u>			<u> </u>		L	<u> </u>			<u> </u>	<u> </u>			<u> </u>	Display		20	
PedClr Thru Yel						<u> </u>			Pa	ige#				16															Red Re		3	
Skip Red No Call						<u> </u>				1												; Coo							MCE T		0	
Red Rest									1A	.&1B																				Profile	0	
Max II										2	Overlaps; Channel Settings; Coord Alt Table+ (values not associated with time-of-day))		ing Seq	1					
Call Phase						<u> </u>				3	Detection; Sample Time and Unit Parameters related to detection														Auxswi		STOPTM					
Conflicting Phase											Preemption and Alternate Phase Time and Phase Options Annual Schedule														SDLC F		0					
Omit Yellow						<u> </u>			_																					et Faults		
Ped Delay										6									le+ (value	es var	ied by	y time	e-of-d	ay)					ed Clear		
Grn/Ped Delay		5	5					<u></u>		7	Communications; Secutiry; I/O Setup												SDLC F		0							
ID: 7059	RIE 2	2 (NO	BRO	ADWA	(Y) @	CENT	RAL V	VESTO		8	Perr	nane	nt Fil	e W	59														06/0	8/16	Pag	je 1


Ove	rlar	1-16 Proc	ıram	Pari	ms l	, Par	m_	[152	11	[152	2]																C_{00}	rd Tr	ansitic	n. Cod	nrPh•	: [2 F	[]							
		Conflict Lock										rent Ph	Clear	rance	С	N	F	Extra Ir	nclude	d Ph	(OFF								g Dwel				η [F.'	/ld	Offset	RetHic	l Floa	t Min Veh Perm	Min Ped Per
		uded Ø		5	_	I	I	I		1		RMAL	L	1				I	I	1		1		1	1		1	One	It Long	g Dwo	110		liidy		IIu	Olloct	T CU IIC	1 100	t wiiii voii i oiii	Will I Ca I Cit
1		difier Ø	7	J	1	1		-	1		Grr	_	┪				1	+	+	+	+		+	1			2			+	+		-		t		1	+		
		iflict Ø		+	+	1	+-	+	1	-	Ye		-				H	+	+	+	+	+	+	+			3			+	+	H	-	-	_			+		
_		iflict Olap		+	╁	1	+	-	╁	-	Red						╁	+	+	+	+	+	-	+			4		+	-	+		-	-				+		
^		iflict Ped		1	╁	1		-	-		LG		-				-	+	+	+	+	+	-	1			5			-	+				-+			+	1	1
-	-			\vdash	\vdash		\vdash		H		-	-	+				H	+	+	+	+	+	-	+	_					-			-					-		
_		uded Ø		<u> </u>	₩	-		-	-	_		RMAL	4				-	+	-	+	+	+-	-	1			6		_		4		_	_	_			-		
2		difier Ø			-	-	-	-	1		Grr		_				┡	_	4	_		4—	-	-			7				-		_					-		
		ıflict Ø							_			3.5					<u> </u>										8													
В		ıflict Olap										d 1.5	5														9													
	Con	ıflict Ped			<u> </u>	<u> </u>	_		L		LG						L		<u> </u>			<u> </u>					10													
	Inclu	uded Ø									NOF	RMAL															11													
3	Mod	difier Ø									Grr																12													
	Con	ıflict Ø									Ye	3.5	;								T						13													
С		flict Olap			ĺ	1	İ		Ī			d 1.5					T		Ť			İ	T				14						一		T					Ì
		iflict Ped				1	Î		İ		LG		1				Ī						1	1			15			1	1		T							
		uded Ø	i	Í	ĺ	ĺ	İ	T	Ť	i		RMAL		i –			Ĺ	Ť	Ť.	Ť	Ť	Ť	Ī	Ì	i i	_	16			1	1		一十		寸			1		İ
4		difier Ø		1	t	1	T	\top	t	1	Grr		1				T	\top	1	\top	1	T	1	t			17		1	1	T	H	一十	1	寸			1		İ
		iflict Ø		1	t	1	1	+	t			3.5	-				t	+	+	+	+	1	+	1			18			+	+	\vdash	-	-	\dashv			1	1	1
D		iflict Olap		1	+	1	╁	+	╁	-		d 1.5	_				H	+	+	+	+	+	+	+			19		+	+	+	H	-	-	\dashv			+		
,	_	iflict Olap		+	1	1	╂	+	\vdash	-	LG		4				H	+	+	+	+	+	+	1			20		+	+	+	\vdash	+	-	\dashv			+	1	l
	CON	mici reu			-	+	₩	+	÷	+	LG						H	+	+	+	+	╁	+	+		•	21		-	+	+	H		-	\dashv		-	+	+	}
				1	+	-	+	-	╆				-				┢	+	+	+		+	-	-						-			-					-		
			-	1	1	+	-	-	╄				-				-	-	+	-		+	-				22			-	+							+		
				<u> </u>	₩	-		-	-	_			4				-	+	-	+	+	+-	-	1		_	23		_		4		- -	_	_					
				_	_				_				_				Ļ							_			24				<u> </u>		_					_		
				_		<u> </u>	_		_								L										25													
																											26													
																											27													
																											28													
																											29													
			ĺ																i								30													
				Ĭ	ĺ	ĺ	Î	T	Ť	Ť.		-					Ĺ	Ť	Ī	Ť	T	Ī	Ī	Ī	Ī	-	31				1		一	i	寸			1		1
				1	t	1	T	\top	t	1			1				T	\top	1	\top	1	T	1	t			32		1	1	T	H	\dashv	1	寸			1		İ
				t	t	1	1	+	t	1			1				t	+	+	+	+	1	+	1			33		1	1	+	1	-	1	十			1	1	1
				1	t	1	1	+	t				1				t	+	+	+	+	1	+	1			34			+	+	\vdash	-	-	\dashv			1	1	1
				1	+	1	╁	+	╁	-			1				H	+	+	+	+	+	+	+			35		+	+	+	H	-	-	\dashv			+		
					-	+	₩	+	÷	+							H	+	+	+	+	╁	+	+		•			-	+	+	H		-	\dashv		-	+	+	}
	_		 	╀	╁	1—	╁	+	╀	-			-				┢	+	+	+	+	╀	+	╁	-		36		+	+	+	\vdash	+	-	\dashv			+	+	}
			1	┺	1	╂—	+	+	+	-			-				+	+	+	+	+	+	+	1		_	37		+	+	₩	$\vdash \vdash$	+	-	+		 	+		1
			<u> </u>	₽	1	₽	1	₩	1	_			4				1	4	+	4	4	1	4	₩		_	38		4	4—	4—	Ш	_	_	4			4—	.	
			_	1	1	<u> </u>	<u> </u>	1	L				4				L		_	4	4	1	-	1	1		39			1	1				_			4		
			L	<u> </u>	<u> </u>	1	<u> </u>		L		_						L					L					40					Ш	_		[
Ch	anr	nel Settin	qs	11.8	<u>.1]</u>	1 4	Ir	-	-	7 0		140	144	40	40	144	14	= 1 40	1 4-	7 40	140	1 0	1 04	100	1 00	104	41		_	_	4—	\vdash	-		4			-	1	}
		annel ->>														14	113	16	1/	18	15	1 2	J 21	22	23				+	+	+	\vdash	+	-	\dashv			+	+	}
		/ Olap #	-	_	_	_	_	_	_	2 4	_	_	_	7			1	+	-	+	+	-	-	1	+	\vdash	43		-	1-	1		-+		4		-	+		
		el Type	VEH	·	VEH	VEH	VEI	H VEH	VE.	H VEH	OLI	PEE)	PED	PED		╀	+	4	+	+	1	_	1	-	<u> </u>	44		_	_	4—	\sqcup	_		_			-	1	}
		el Flash	<u> </u>	1	1	1	<u> </u>		_		_		_			<u> </u>	1		4	_	_	_	1	_	4	1	45				1	Ш			_			4		
Alt	ΠZ ann	DOLL SOFF	na	: [1	Q /11	1	<u> </u>	_	_		_	_	_			<u> </u>	<u> </u>	_				_				_	46 47		+	+	+	\vdash	+	-	\dashv		1	+	+	1
UI)	Ch	nel+ Setti nannel ->>	1	7	<mark>৩.4</mark>	4	5	6	7	7 8	a	10	111	12	13	14	11	5 16	1 17	7 19	110	20) 21	22	23	24	48		+	+	+	\vdash	+	-	\dashv		1	+	+	1
Fla	sh F	Red+	十	Ť	T	Ť	T		Ť			1		16	-10	 	† '	1	111	+		1	1	1	1	1	70			_									•	
Fla	sh Y	'ellow+																				I]													
		Green+	<u> </u>	1		1	<u> </u>	_				_	_			<u> </u>	<u> </u>	4	+	4	4	1	4	1	W-59 Permanent															
Ch	sn Ir	nh Red+	:[1 5	21	CT	ОК	/100	e	Н	SER	Sin		SILIV	/lan	SIN	GLE	In	ert [2 ail	nnı	OF	+																		
OH	ID.	7050 RT	E 2	2 (N	O B	RO/	ADV	DOGE USER Single BIU Map SINGLE Invert Rail Input OFF DWAY) @ CENTRAL WESTCHES 06/08/16 Page 2																																
	IU.	1007		- /14					, 6	, 0=1				. J.	0						-	0,00	JI 10		. age															

Preem	nption Tir	mes [3 1]	Options	s+ [3.6]		Trac	k Cle	ar Ph	2928	[3 2]	Trac	·k Cle	ar O	verlap)2+ [3	3 5]				Alt# 1 Times	Table	[11	6 11					
Pre#	Enable	Type	Output		MinDura	Pre #					Track			veriup	751 [0	7.0]				Column#>		2	3	4	5	6	7	8
1	ON	RAIL	DWELL	Doidy		1	I	· · · · · ·			HOOK	0 1011	иро		T	Т				Assign Ø							-	
2	ON	RAIL	DWELL			2														Min Grn								
3	ON		DELAY			3												 	1 1 1	Gap, Ext								
4	ON	EMERG				4												+ +		Max 1								
5	ON		DWELL			5												+ +		Max 2								
6	ON	EMERG	DWELL			6												+ +		Yel Clr								
Pre #	MaxPres			PedClr	Co+Pro		II Pha	202	3 2) 3	and C	worls	nc_	[3 5]				_			Red Clr								
1	IVIANI 165	WIIIGH	IVIIIIVVIK	i eucii	ON	Pre #			J.Z] (ariu C	/VCI16	ιμзτ	[3.3]						1	Walk								
2					ON	1	Phas	20						П	Т	Т				Ped Clr								
3	30				ON	'	Overl											+ +		Alt# 2 Times		[1 1	6 11	<u> </u>				
4	30				ON		Peds										_			Column#>		2	3	4	5	6	7	8
5					ON	2	Phas													Assign Ø			3	-	J	U	-	0
6					ON		Overl													Min Grn								
	Track Gr	Min Dwell	Ext Dwell	PedClr+	Yel		Peds							$\vdash \vdash$	-+					Gap, Ext		-	 	 				
1	HAUN GII	2	EVI DMGII	I GUOII+	161	3			3							\rightarrow				Max 1								
2		2				٦	Overl		J											Max 2								
3		30	2				Peds										_	+ +		Yel Clr								
4		2				4	Phas								+					Red Clr								
5		2				4								-	-	_	-			Walk								
6		2					Overl													Ped Clr								
	Dod	Pattern	Clair				Peds													Alt# 3 Times		[1 1	4 11	<u> </u>				
Pre #	Red	Pattern	Skip			5	Phas										-	+ +				2		4	-	6	7	0
1			OFF OFF				Overl													Column#>			3	4	5	6	- /	8
3			OFF			6	Peds Phas													Assign Ø Min Grn								
						0													-	Gap, Ext								
4			OFF				Overl							-			_			Max 1								
5			OFF OFF				Peds			Dr	oomr	tion	1 ()	ations	. [2 /	1				Max 1								
6	riority D	coompto	UFF			Tvi+	Dhac	2 20	21		Pre #			otions Override			erride	Flsh	ī	Yel Clr								
	riority Pr		Max	I			Phas Exit I				Pre #	LUCK		uto Flsh				Dwel Lin		Red Clr								
Pre #	Type	Min	Max				EXILI	mase	;		4	ON			11		gher		<u> </u>	Walk								
	OFF					1					1	ON		NO	-		NC	OFF		Ped Clr								
8	OFF					2	-				2	ON		ON	+		NC	OFF OFF				Jo [1	1 6 21		<u> </u>			
9	OFF OFF					3	-				3	ON		ON	+		NO NO	OFF		Alt# 1 Option		_	_	1	E	6	7	0
10	UFF			<u> </u>		4	-				4			ON	+		_			Column # ->	_	2	3	4	5	6	1	8
Hoit D	Iaramata	rc [1 2 1]				5 6					5 6	ON		ON	+		ON NC	OFF OFF		Assign Ø		On	On	On	On	On	On	On
	'arametei		OFF			О					Ö	UIV		ON			ואוע [UFF		Lock Calls	On	On	On	On	On	On	On	On
	mer Over																			Soft Recall		-	-	-				
	ot or Ext O		PRE																	Dual Enrty Enabl SimGap		On	On	On	On	On	On	On
	ek Track																					Un	Un	Un	Un	UN	Un	Un
	ek Dwell		0.21																	Guar Passage		-	-	-				
		neters [1.		NE																Rest In Walk		-	-	-				
	Mapping		NO	INE																Cond Service		-	-	-				
Pre inv	ert Rail In	puť	OFF										147	E0 D	0 r		-4			Reservice								
													VV-	59 P	erm	anei	ΙŢ			Non-Act 1	-	-	-	-				
																				Red Rest								
																				Max2								
		ID. 7050	DTE 22	(NO DD	$O \land D \land \land \land$	W @	CENT		MIC	TCU	TC.						4.10	/2016	Dogo 4	Ped Delay	-	-	-	-				
		ID: 7059	KIE ZZ	(INO RK	UADWA	11) @	CEIV	KAL	VVE	HUIC	ES						0/8/	12010	Page 4	Conflicting Ø1								

Day F	Plans	[4.4]																		Ac	ction	n Tabl	e [4.	5]							Coc	rd Alterna	ate	Tables -	Pat+ [2	.6]					W-59) Pe	erm	aner	ıt		
			/ Pla					Da	ay P	lan	2				Da	у Р	lan (3																						Overla	p Off						
Но	ur Mi	n Act	H	our Mi	n Act	Н	our Mi	in A	ct	Ηοι	ur Min	Act	H	lour M	n Ac	t	Hou	Mir	n Ad	ct Ac	:t#	Pat# A	1 A2	A3	S1 S2	2 S3	S4	S5 S	6 S7	7 S8	Pat#	ØOpt ØT	Time	DetG Call	Inh CIC	CNA	1 1	2	2 3	4	5		6	7	8	Dia	Max2
1			9			1			9)			1			9						1									1															DFT	
2			10			2			10	0			2			10)			2	2	2									2																
3			11			3			1				3			11				3	3	3									3															\Box	
4			12			4			12	2			4			12				4	1	4									4																
5			13			5			13	3			5			13	3			5	5	5									5																
6			14			6			14	4			6			14	1			6	3	6									6																
7			15			7			1	5			7			15	5			7	7	7									7																
8			16			8			16				8			16				8	3	8									8																
		•		•			•			•	•					T		•		9	9	9									9																
																Ī				10	0	10									10															ī	
									Ī				П			Ī				11		11									11															\Box	
		İ	Ħ		1			Ť	T		i		Ħ			T	1			12		12		Ħ			Ħ	1	T	Ť	12					1		ı				T					
H	1	Ì	Ħ	T	1		1	1	1	1	Ì	1	Ħ		1	T	1		1	13		13	1	Ħ		1	Ħ	\top	1	1	13					l		i	1	1	1	1					
H	1	Ì	Ħ	T	1		1	1	1	1	Ì	1	Ħ		1	T	1		1	14		14	1	Ħ		1	Ħ	\top	1	1	14					l		i	1	1	1	1					
H	1		Ħ		1		1	+	1			1	Ħ			T	1	1	1	15		15	1	Ħ		1	Ħ	+	1	1	15					İ						1					
H	1		Ħ		1		1	+	1			1	Ħ			T	1	1	1	16		16	1	Ħ		1	Ħ	\top	1	1	16					İ						+	一十				
	1	Ì	Ħ	T	1		1	1	1	1	Ì	1	Ħ		1	T	1		1	17		17	1	Ħ		1	Ħ	\top	1	1	17					l		i	1	1	1	1					
																1				18	_	18									18																
				- 1	-					-		-	1	-		T				19		19	\top						1		19																
																t				20		20		1 1			1 1				20																
_								T					П			t			+	2		21		1 1			1 1				21															\Box	\vdash
_	_							\top								╁			+	22		22	+			+		+	+	+	22											+				\Box	\vdash
								+	-				\mathbf{H}			+				23		23	+	1 1			1 1				23															\Box	
-	-	-			-		-	+	-	-	-	1	\mathbf{H}			╁	-			24	4	24		1 1			1 1			+	24								_	-	-					\Box	
+	-						-	+	-			+	H		-	╁			+	25		27	+	H		+	H	+	+	+	25						+	+	-			+	-			\Box	\vdash
	+		H				_	+	-				H		+	╁	1			26	6			H			H		+		26									+	_	+	-			\vdash	<u> </u>
							-	+	-				\mathbf{H}			╁			+	2	7			1			1		-	+	27											+				-	-
	-	-			-	\vdash	_	+	-	-	-	+	++	-	-	╁	-	_	+	28			+	1		+	1	+	+	+	28					+	-	-	_	-	-	+				\longrightarrow	-
	_						_						$oldsymbol{+}$			╁				29	0			H			H	-	+	-	29							-	-	-		+	-			\longrightarrow	-
		1	1 1		1			_	- 1	1	1	1			1	╂	1	1	T	30	9			1			1		-	-									_	_	_	+				\vdash	<u> </u>
	+	+	+	+	+-		+	+	+		+	+-	F	_	+	+	+	<u> </u>	+	3			-	₩	_	-	₩	+	+	╂	30 31				_	-	-			+		+	-+			\vdash	
+	-	-	+	-	+	\vdash	+	+	+	-	-	+	₩		+	╂	1	1	+	32	2	-	+	++	-	+	++	+	+	╁			_		-			-	-	+	+	+				$\vdash \vdash$	
$+\!\!\!+$	+	-	\vdash	+	-	\vdash		+	-		-	+-	₽	_	+	╀	-	_	+	32	2		_	\vdash	-	1	\vdash	+	+	+	32				_	-	-	-	-	+		+				$\vdash \vdash$	
\vdash	+	-	\vdash	+	-	\vdash	-	+	+	+	-	-	₽		+	+	-	-	+	30	3	-+	-	\vdash	+	-	\vdash	+	+	+	33				-	+	-	-	-	+	+	+	\dashv			$\vdash \vdash$	-
	+	-	\vdash	+	-	\vdash	-	+	+	+	-	-	₽		+	+	-	-	+	34	4	-+	-	\vdash	+	-	\vdash	+	+	+	34				-	+	-	-	-	+	+	+	\dashv			$\vdash \vdash$	-
_	_	-	\vdash		-	\vdash	_	-	-	-	-	1	₩		_	1	1	<u> </u>	1	35	5		-	+		-	+	4	-	-	35	\vdash			_				_	_	_	4				\longrightarrow	—
	_		\vdash		1	$oldsymbol{\sqcup}$	_	-	_			1	₩	-	_	1	1	<u> </u>	-	36				\sqcup		-	\sqcup	+	-	1	36	\vdash				-	-			_	_	4				\longmapsto	1
$\vdash \vdash$	-	-	\vdash	\perp	-	$\vdash \vdash$	_	+	_		-		₽		4	┺	1	_	_	37	/	_	_	\sqcup	\perp	1	\sqcup	\perp	\bot	╄	37				_	1		-	-	+	-	_				\longmapsto	—
ot						ш							Ш			1				38	g		_	\sqcup	_	1	\sqcup	\perp	\bot	╄	38				_	1		-	-	+	-	_				$\vdash \vdash \vdash$	—
						_						_	┺			┺	1			39	9	_		\sqcup	_		\sqcup	_		-	39					_	-	_		\bot						$\vdash \vdash$	—
		<u> </u>	${f H}$		1				_	1_	<u> </u>	1		_	<u> </u>	1		<u> </u>	1_	40	U		_	Ш	_		Ш		_	_	40				_	-			_	\perp		4				\longmapsto	—
oxdot	_	-	\vdash	\perp	-	$\vdash \vdash$	_ _	\perp	_		-		₽		-	┺	1		_												41					1	1	-	_	-	_	_	_			$\vdash \vdash$	—
oxdot	_	-	\vdash	\perp	-	$\vdash \vdash$	_ _	\perp	_		-		₽		-	┺	1		_	48	8										42					1	1	-	_	-	_	_	_			$\vdash \vdash$	—
					1	oxdot							₽				1														43	$\perp \perp$										_				ш	Щ.
Ш	_ _		Ш			$\sqcup \bot$							Ш			_				98	8		1	$oxed{oxed}$		1	$oxed{oxed}$	_		<u> </u>	44								_	_						ш	—
						Ш		\perp					Ш							99	9			Ш	_ _		Ш	\perp		1	45									\perp						ш	<u> </u>
Ш			Ш										Ш							10	00	255									46															ш	<u> </u>
													Ш									D: 705	9 R	TE 2	22 (N	10 E	BRC			Y)	47															ш	<u> </u>
			Ш			Ш		╧					L∏			L				06	/08/	/16						Pa	age	6	48															┰┚	

1 Power Up Alarm X X Y T Slop Timing X X X T T T T T T T	#	Event / Alarm	Ev Alı	r Cal	II Pha	ases[1	1 1 51		Red	lirect	Phas	es[1]	1.51						Inhi	hit P	hases	s[1 1	5]												
2 Stop Timing	1							vØ	1100					From	Τo	From	Τo		<u> </u>	1			4	5	6	7	8	9	10	11	12	13	14	15	16
3 TSI Cabinet Door	-			-11	1110	1	I	, ~	1	1 1011	10	1 10111	-10	1 10111	10	1 10111	.0		1	Ė				Ŭ				Ť	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>
A Coordination Failure			XX	-11			1		2										2																\vdash
Stefanal Alarm #1			XX			1	1																												Н
6 External Alarm # 2			** **			+			1										1																\vdash
Figure F	_		_	-11															5																$\vdash\vdash$
Stetland Alarm # 4	_		^ / ^	-11		1	1		1										5																Н
9 1 8 9 1 9 9 1 9 9 1 1 1				-11	-	+	-		7	-							-		7																$\vdash\vdash\vdash$
10			v v		_	+	-		,	-							-		0																$\vdash\vdash\vdash$
11 External Alamm #6			^ ^		_	+	-		-	-							_		0																$\vdash\vdash\vdash$
12 Manual Control Enable X X 11				-11		+	1		1	-									-																${oldsymbol{oldsymbol{ o}}}$
13 Coord Free Input			V V		'⊢	+	+		4	-									-																$\vdash \vdash \vdash$
14 Local Fiash Input	_		XX	I	_	-	-		4																										igwdapprox
15 MMU Flash	13		V V			+			1	\vdash																									$\vdash\vdash$
15 17 Cycle Fault	14		X X	-11		+	1		1																										Ш
17 Cycle Faultr			- -			+	1	 		<u> </u>			-	-		\dashv				-								-	-	-	-			-	igwdapprox igwedge
18 Cycle Failure			V V			-	-	-																											Ш
19 Coordination Fault			_			0 D	all and a de	// 1 F		21				Ш						La la Ha	L DI.		11 1 [1	1 / 0	11			<u> </u>		<u> </u>					
20 Controller Fault			** **							1.3]	I-	-	-	- I	_	- I		_	Ы	<u>dinnib</u>			# [_		40	4.4	40	40	- 4.4	- 1-	40
Detector SDLC Failure 2	-			- Co	<u> </u>	Phas	ses Ca	illed B	y Ø	4 .	From	10	From	lo	From	lo l	From	10		_1_	2	3	4	5	6	/	8	9	10	11	12	13	14	15	16
22 MMU SDLC Failure			XX	$\prod_{i=1}^{n}$		-	-			1									1																Ш
23 Critical SDLC Failure 24 Reserved 25 EEPROM CRC Fault X X X 26 Detector Diagnostic Failur 27 BIU Detector Failure X X X 28 Queue detector alarm X X X X X X X X X						-	-			-																									ш
24 Reserved	_			3		-				-									3																ш
25 EEPROM CRC Fault				4						- '									4																Ш
26 Detector Diagnostic Failur				41 ~						-									5																ш
Solution Solution	_		XX	4 6						6									6																Ш
28 Queue detector alarm				7						7									7																Ш
29 Ped Detector Fault X X Col Ø Phases Called By Ø From To	_		_																																Ш
30 Coord Diagnostic Fault 1 1 1 1 1 1 1 1 1										.3]									Alt	Inhib		ases :	# 2 [1		3]										
41 TempAlert Probe Ch. A 2 2 2 3 </td <td>_</td> <td></td> <td>XX</td> <td>Col</td> <td>ı Ø</td> <td>Phas</td> <td>es Call</td> <td>ed By</td> <td>Ø</td> <td></td> <td>From</td> <td>To</td> <td>From</td> <td>To</td> <td>From</td> <td>To I</td> <td>From</td> <td>To</td> <td></td> <td>1</td> <td>2</td> <td>3</td> <td>4</td> <td>5</td> <td>6</td> <td>7</td> <td>8</td> <td>9</td> <td>10</td> <td>11</td> <td>12</td> <td>13</td> <td>14</td> <td>15</td> <td>16</td>	_		XX	Col	ı Ø	Phas	es Call	ed By	Ø		From	To	From	To	From	To I	From	To		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
42 TempAlert Probe Ch. B 3 3 3 4 </td <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Ш</td>				1						1									1																Ш
47 Coord Active 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 7 <				2						2									2																ш
48 Preempt Active X X X 5 5 5 6 5 6 7				3						3									3																\square
49 Preempt 1 Input X X 6 6 6 6 7				4						4									4																\square
50 Preempt 2 Input	-		_	5						5									5																\square
			_	6						6									6																\square
										7									7																
51 Preempt 3 Input X X 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	_									8									8																
52 Preempt 4 Input X X Coord, CIC Plans [2.3] Unit Parameters [1.2.1]								2.3]							Unit	Paran	neter	rs [1	_																
53 Preempt 5 Input X X CIC CoØ Grow 1 2 3 4 5 6 7 8 Allow Skip Yellow OFF Max Cycle Time	53	Preempt 5 Input					v 1	2	3	4	5	6	7	8	Allow	Skip Y	Yellow	/			Max (Cycle	Time												
54 Preempt 6 Input X X 1 OFF TOD Dim Enable OFF Cycle Fault Action ALARM	54	Preempt 6 Input	XX																OFF						ALAF	RM									
55 Preempt 7 Input X X 2 OFF Tone Disable OFF			XX												Tone	Disabl	le		OFF																
56 Preempt 8 Input X X 3 OFF Diamond Mode 4Ph	56	Preempt 8 Input	XX												Diam	ond Mo	ode		4Ph																
57 Preempt 9 Input X X 4 OFF Backup Time (s) 900 W-59 Permanent																											W-	59 F	Pern	nan	ent				
58 Preempt 10 Input X X Auto Flash Phase/Olap Settings [1.4.2] Disable Init Ped OFF							hase/	Olap	Setti	ings	1.4.2								OFF																
61 In Transition X X Yel Ø Cycle Fault Action ALARM																																			
)													Χ		ID:	7059	RTE	22 (N	IO BE	ROAL	'AWC	Y) @	CEN	TRAL	06/0	08/16	6	Page	9 8

AIRPORT CAMPUS (113 KING STREET)

APPENDIX I

OTHER DEVELOPMENT TRAFFIC VOLUMES

TABLE A
OTHER DEVELOPMENT TABLE

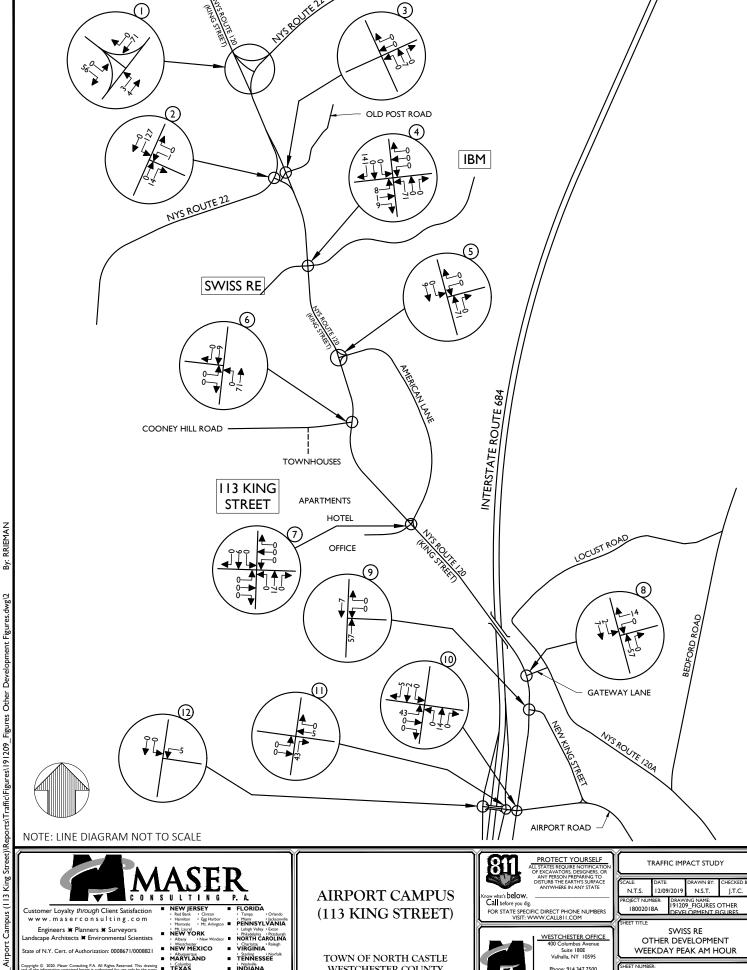
					TRAFFIC GENER	ATION VOLUMES	3	
DEVELOPMENT NANE	LAND USE	SIZE	WEEKDAY	'AM PEAK	WEEKDAY M	IDDAY PEAK	WEEKDAY	PM PEAK
			ENTRY	EXIT	ENTRY	EXIT	ENTRY	EXIT
SWISS RE (1)	OFFICE	50% OCCUPIED	212	18	27	18	24	171
EAGLE RIDGE (2) (3)	HOTEL APARTMENTS TOWNHOUSES	91 ROOMS 70 UNITS 94 UNITS	44	74	65 *	67 *	85	61
BRYNWOOD (4) (5)	RESIDENTAIL	88 UNITS	8	39	23 *	29 *	37	18
MARIANI GARDENS (4) (7)	RESIDENTAIL	50 UNITS	6	19	13 *	16 *	20	12
BEDFORD ROAD APARTMENS (4) (7) 162 BEDFORD ROAD (FORMER ARMONK LUMBER YARD)	RESIDENTAIL	36 UNITS	SEE JMC FIGURES	SEE JMC FIGURES	*	*	SEE JMC FIGURES	SEE JMC FIGURES
470 MAIN STREET (4) (7)	RESIDENTIAL	16 UNITS	SEE JMC FIGURES	SEE JMC FIGURES	*	*	SEE JMC FIGURES	SEE JMC FIGURES
MADONNA SENIOR HOUSING (8)	RESIDENTAIL	16 UNITS	(8)	(8)	(8)	(8)	(8)	(8)
WAMPUS MILLS (8)	RESIDENTAIL	6 SINGLE FAMILY HOMES	(8)	(8)	(8)	(8)	(8)	(8)

(1) BASED ON EXISTING SWISS RE DRIVEWAY VOLUMES (DOUBLED) - SEE OTHER DEVELOPMENT FIGURES 1, 1A, 2, 2A, 3, 3A (APPENDIX I)

(2) SITE GENERATED TRAFFIC VOLUMES FROM THE MASER CONSULTING EAGLE RIDGE TIS DATED JUNE 28, 2019 - SEE OTHER DEVELOPMENT FIGURES 4, 4A, 5, 5A, 6, 6A (APPENDIX I)

(3) - THE EAGLE RIDGE FEIS DEVELOPMENT PLAN HAS BEEN REDUCED 115 HOTEL ROOMS, 59 APARTMENTS, 50 TOWNHOUSES (SEE APPENDIX I)

(4) SEE OTHER DEVELOPMENT FIGURES 7, 7A, 8, 8A, 9, 9A (APPENDIX I)


(5) SITE GENERATED TRAFFIC VOLUMES FROM THE MASER CONSULTING BRYNWOOD TIS / DEIS - (APPENDIX I)

(6) AS INCLUDED IN THE EAGLE RIDGE TRAFFIC IMPACT STUDY - JUNE 28, 2019

(7) - SITE GENERATED TRAFFIC VOLUMES PROVIDED BY JOHN MEYERS CONSULTING (JMC)

(8) - ACCOUNTED FOR BY BACKGROUND TRAFFIC GROWTH OF 5% UTILIZED IN THE TIS

* AVERAGE OF WEEKDAY PEAK AM HOUR AND WEEKDAY PEAK PM HOUR

www.maserconsulting.com

Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821

■ NEW YORK

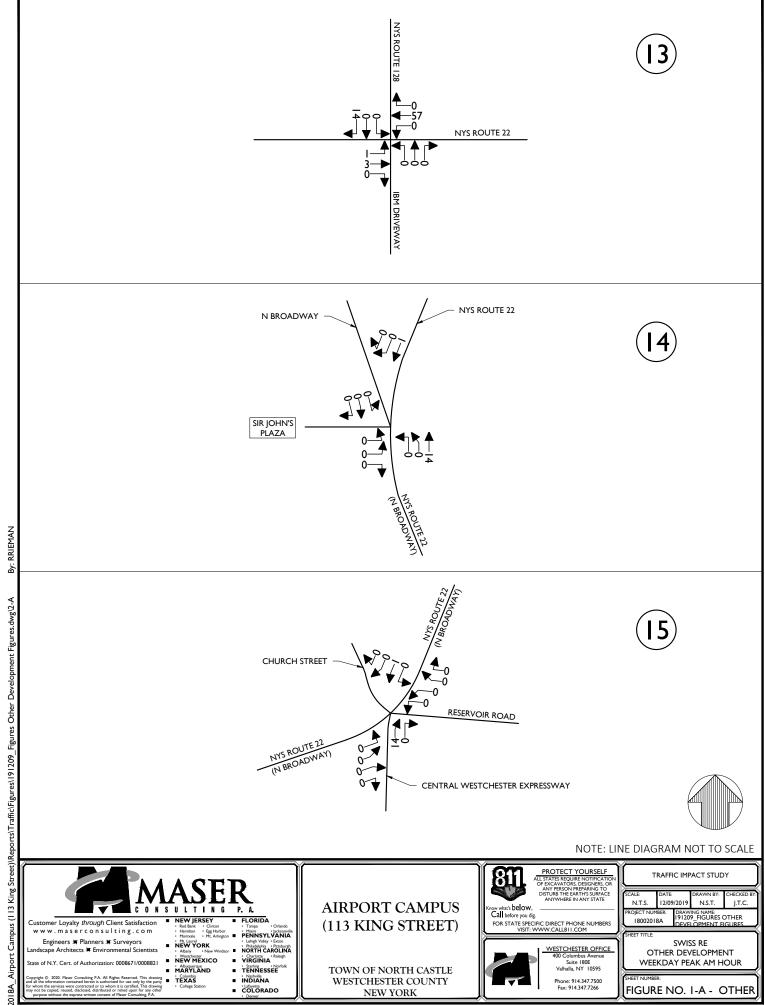
■ MARYLAND

PENNSYLVANIA

 Philadelphia Pittsburgh
 NORTH CAROLINA VIRGINIA

· Sterling · Norfoll TENNESSEE Nashville INDIANA · Lafayette COLORADO

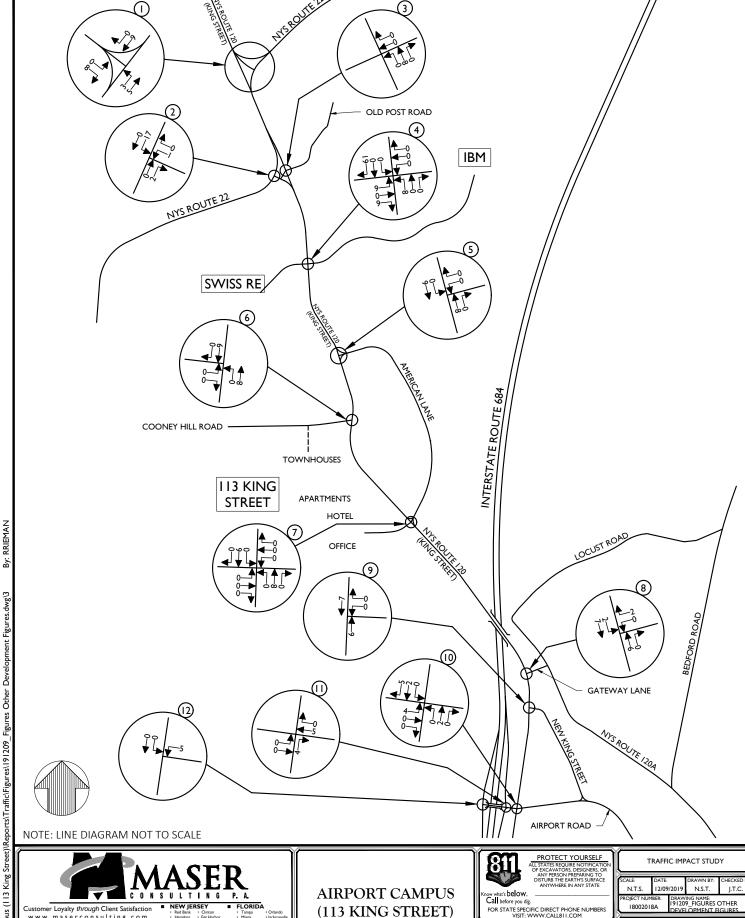
(113 KING STREET)


TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK

WESTCHESTER OFFICE Suite 180E Valhalla, NY 10595 Phone: 914.347.7500 Fax: 914.347.7266

SWISS RE OTHER DEVELOPMENT WEEKDAY PEAK AM HOUR

FIGURE NO. I - OTHER


NEW YORK

Phone: 914.347.7500 Fax: 914.347.7266

FIGURE NO. I-A - OTHER

Nashville INDIANA

· Lafayette COLORADO

TOWN OF NORTH CASTLE

WESTCHESTER COUNTY

NEW YORK

SWISS RE

OTHER DEVELOPMENT

WEEKDAY PEAK MIDDAY HOUR

FIGURE NO. 2 - OTHER

WESTCHESTER OFFICE

Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266

_Airport Campus (113 King Street)\Reports\Traffic\Figures\191209_Figures Other Development Figures.dwg\3

www.maserconsulting.com

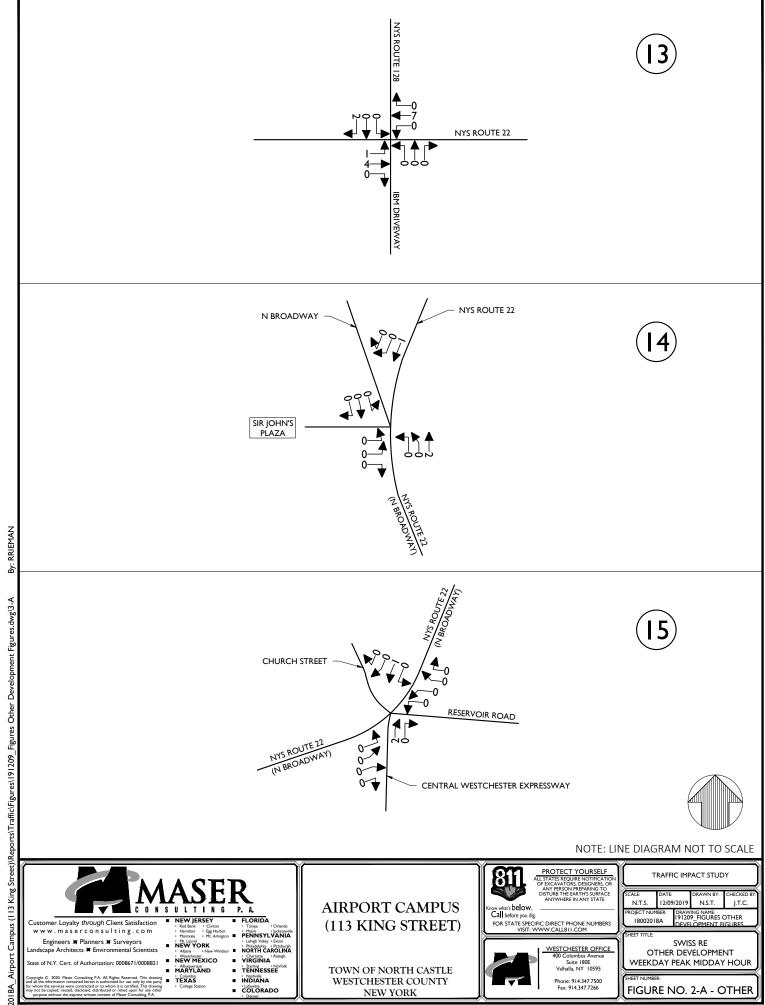
Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821

PENNSYLVANIA

Philadelphia Pittsburgh
 NORTH CAROLINA

· Sterling · Norfoll TENNESSEE

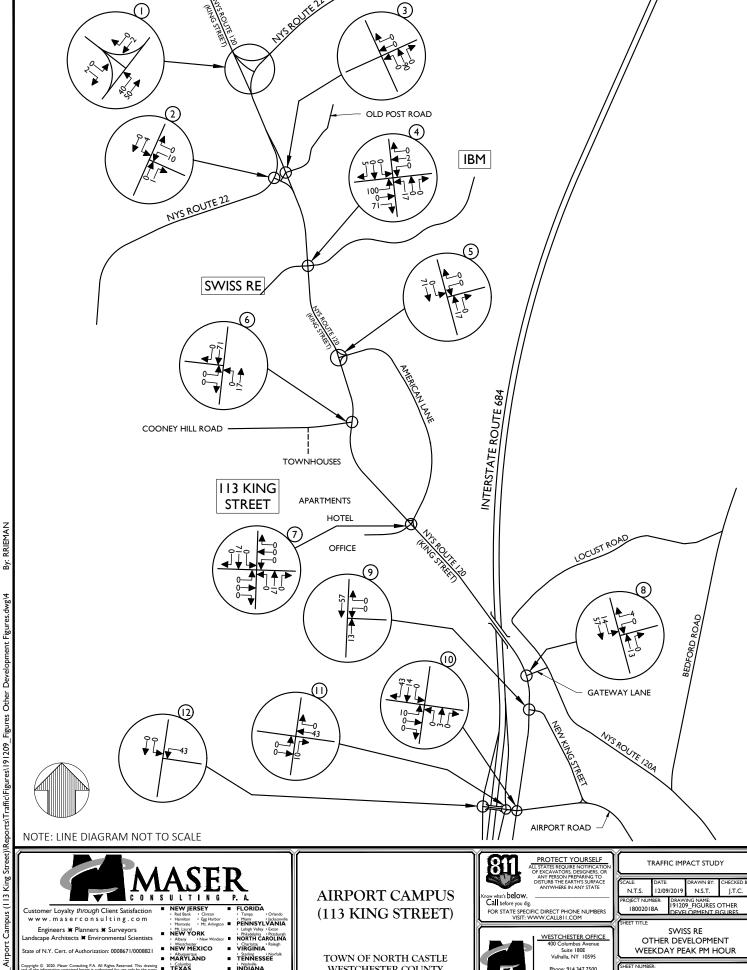

VIRGINIA

Nashville INDIANA

· Lafayette COLORADO

■ NEW YORK

■ MARYLAND


NEW YORK

Phone: 914.347.7500 Fax: 914.347.7266

FIGURE NO. 2-A - OTHER

Nashville INDIANA

COLORADO

TOWN OF NORTH CASTLE

WESTCHESTER COUNTY

NEW YORK

SWISS RE

OTHER DEVELOPMENT

WEEKDAY PEAK PM HOUR

FIGURE NO. 3 - OTHER

WESTCHESTER OFFICE

Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266

www.maserconsulting.com

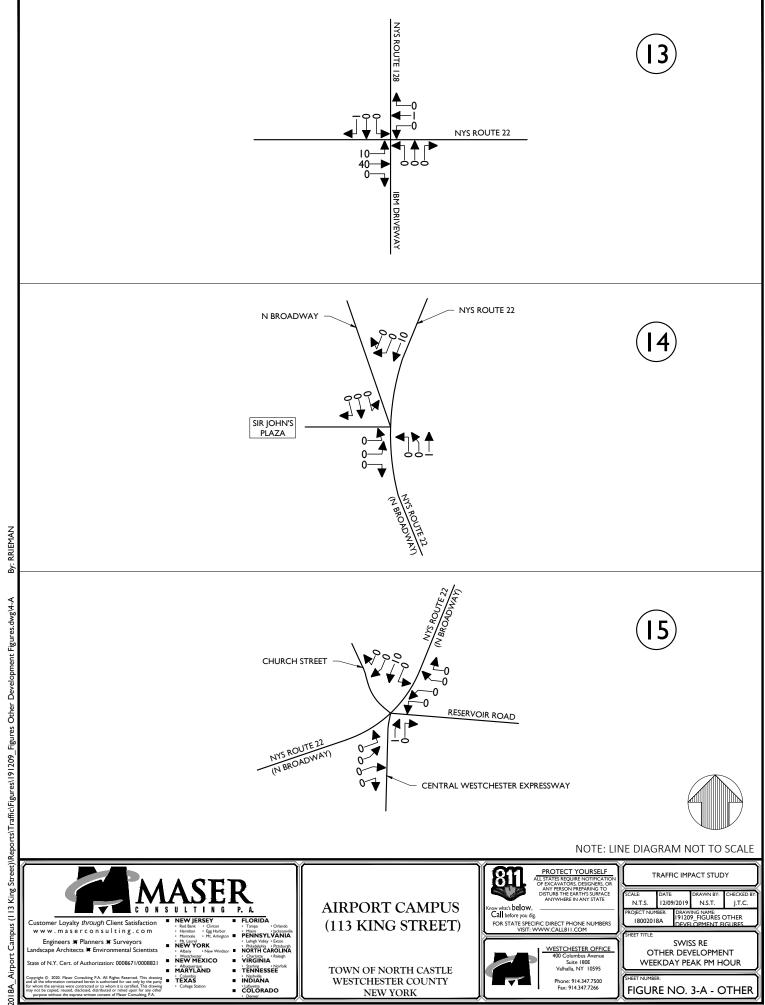
Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821

PENNSYLVANIA

Philadelphia Pittsburgh
 NORTH CAROLINA

· Sterling · Norfoll TENNESSEE

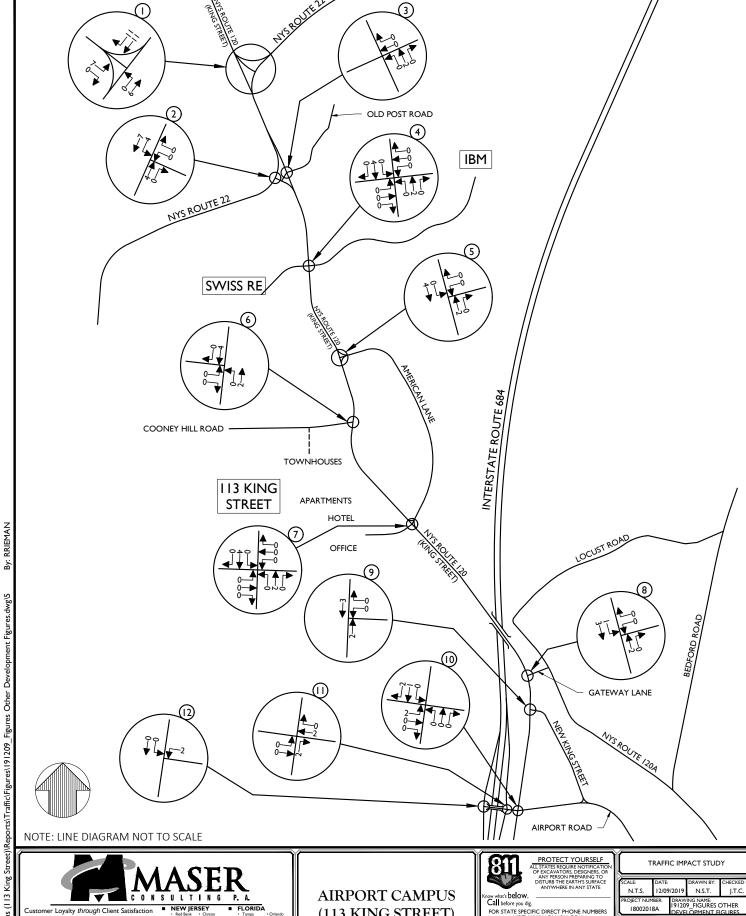

VIRGINIA

Nashville INDIANA

COLORADO

■ NEW YORK

■ MARYLAND


NEW YORK

Phone: 914.347.7500 Fax: 914.347.7266

FIGURE NO. 3-A - OTHER

Nashville INDIANA

COLORADO

_Airport Campus (113 King Street)\Reports\Traffic\Figures\191209_Figures Other Development Figures.dwg\S

www.maserconsulting.com

Engineers # Planners # Surveyors scape Architects # Environmental Scientists

■ NEW YORK of N.Y. Cert. of Authorization: 0008671/0008821

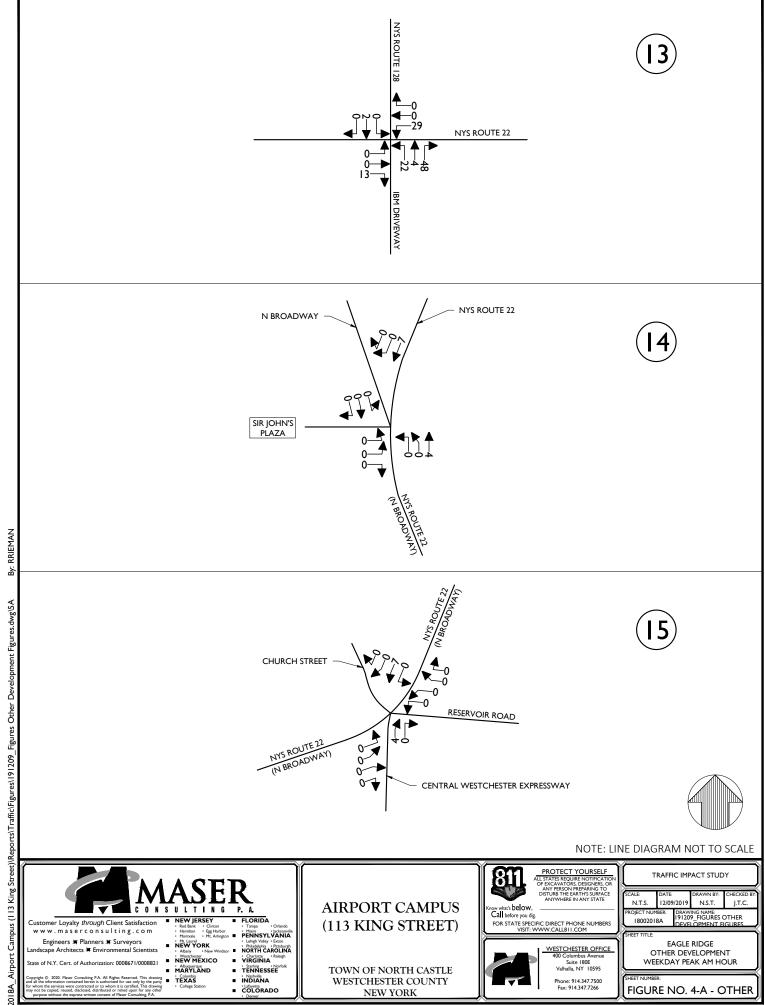
■ MARYLAND

PENNSYLVANIA

 Philadelphia Pittsburgh
 NORTH CAROLINA VIRGINIA

Sterling Norfolk
TENNESSEE Nashville INDIANA · Lafayette COLORADO

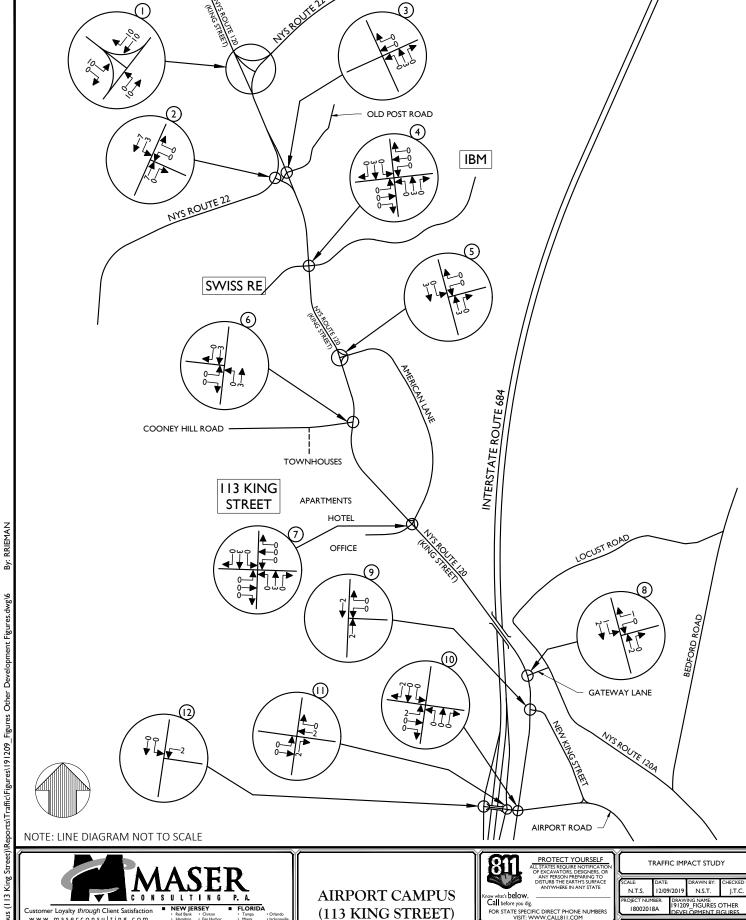
(113 KING STREET)


TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK

WESTCHESTER OFFICE Suite 180E Valhalla, NY 10595 Phone: 914.347.7500 Fax: 914.347.7266

EAGLE RIDGE OTHER DEVELOPMENT WEEKDAY PEAK AM HOUR

FIGURE NO. 4 - OTHER


NEW YORK

Phone: 914.347.7500 Fax: 914.347.7266

FIGURE NO. 4-A - OTHER

Nashville INDIANA

· Lafayette COLORADO

TOWN OF NORTH CASTLE

WESTCHESTER COUNTY

NEW YORK

EAGLE RIDGE

OTHER DEVELOPMENT WEEKDAY PEAK MIDDAY HOUR

FIGURE NO. 5 - OTHER

WESTCHESTER OFFICE

Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266

_Airport Campus (113 King Street)\Reports\Traffic\Figures\191209_Figures Other Development Figures.dwg\6

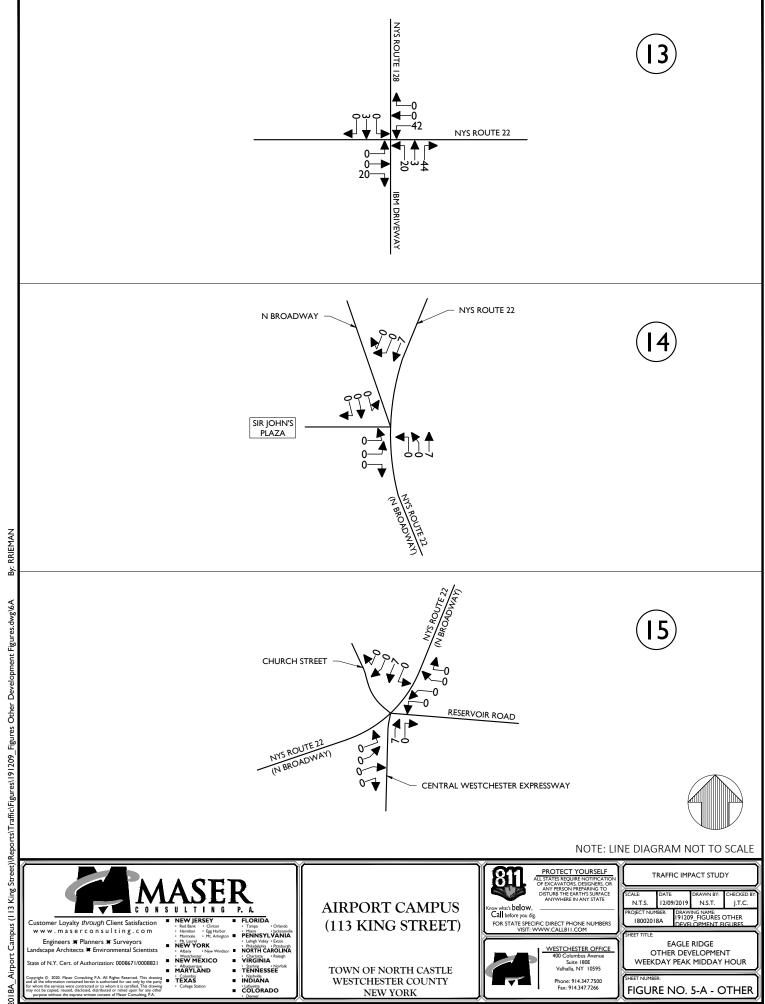
www.maserconsulting.com

Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821

PENNSYLVANIA

Philadelphia Pittsburgh
 NORTH CAROLINA

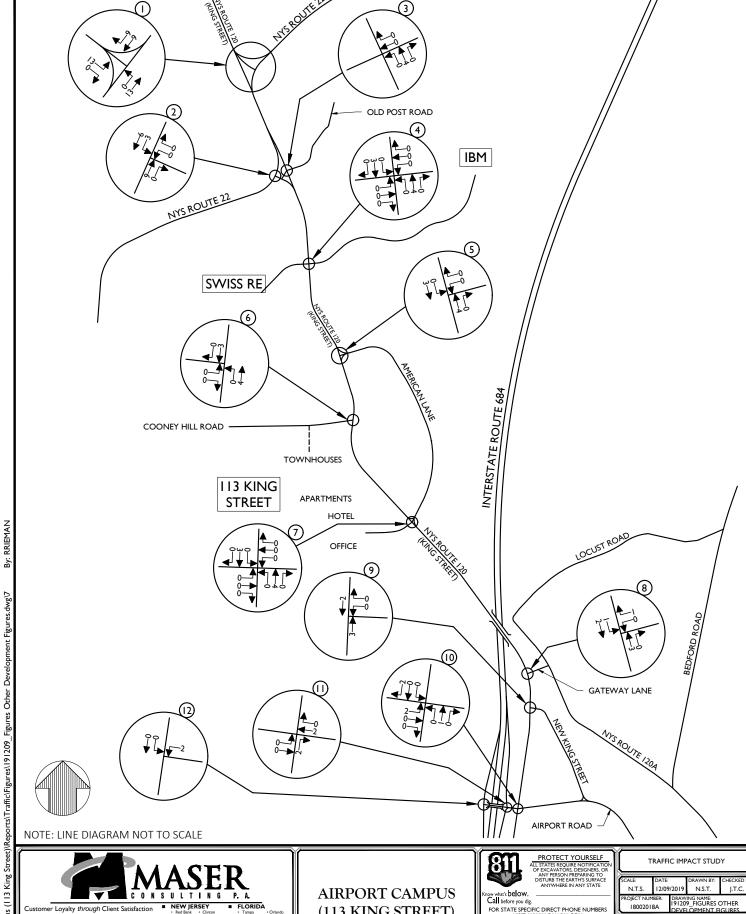

· Sterling · Norfoll TENNESSEE

Nashville INDIANA

· Lafayette COLORADO

■ NEW YORK

■ MARYLAND


NEW YORK

Phone: 914.347.7500 Fax: 914.347.7266

FIGURE NO. 5-A - OTHER

Nashville INDIANA

COLORADO

_Airport Campus (113 King Street)\Reports\Traffic\Figures\191209_Figures Other Development Figures.dwg\7

www.maserconsulting.com Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821

■ NEW YORK

■ MARYLAND

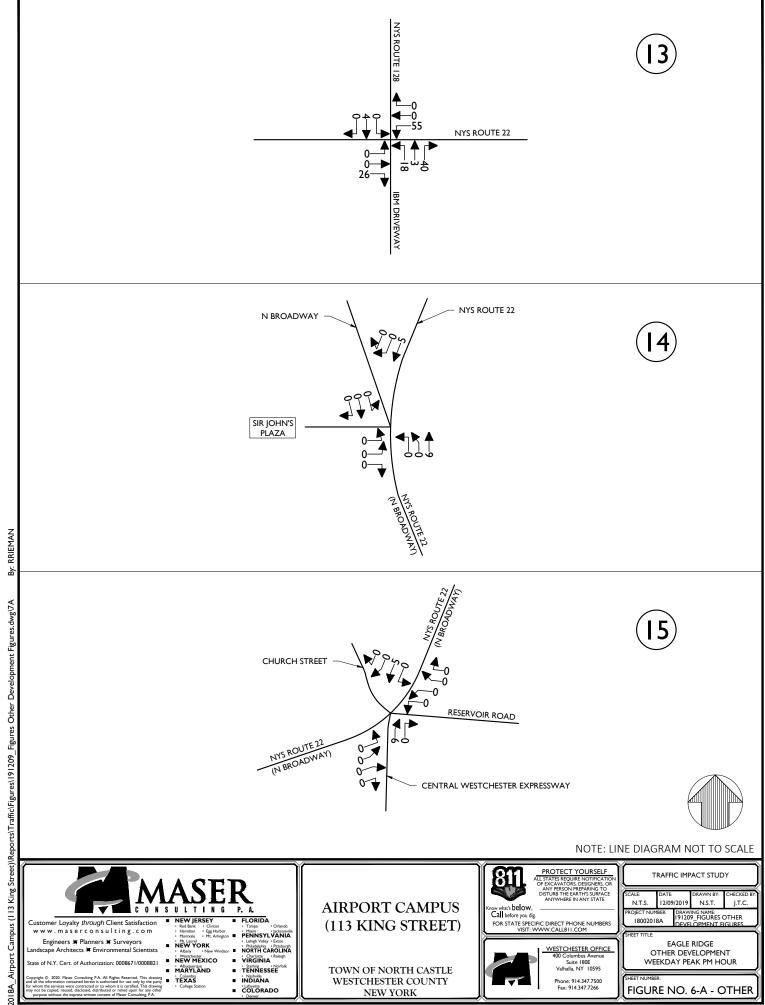
PENNSYLVANIA

 Philadelphia Pittsburgh
 NORTH CAROLINA VIRGINIA

Sterling Norfolk
TENNESSEE Nashville INDIANA · Lafayette COLORADO

(113 KING STREET)

TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK

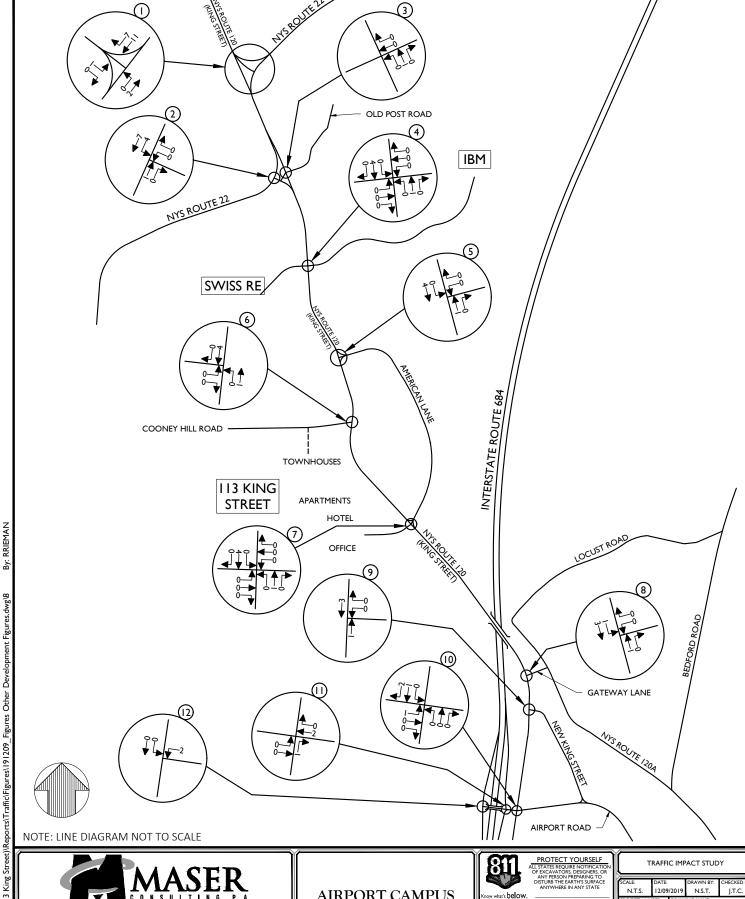

WESTCHESTER OFFICE Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266

DRAWING NAME: 191209_FIGURES OTHER DEVELOPMENT FIGURES 18002018A

EAGLE RIDGE OTHER DEVELOPMENT WEEKDAY PEAK PM HOUR

FIGURE NO. 6 - OTHER


NEW YORK

Phone: 914.347.7500 Fax: 914.347.7266

FIGURE NO. 6-A - OTHER

Nashville INDIANA

· Lafayette COLORADO

_Airport Campus (113 King Street)\Reports\Traffic\Figures\191209_Figures Other Development Figures.dwg\8

www.maserconsulting.com Engineers # Planners # Surveyors scape Architects # Environmental Scientists

Customer Loyalty through Client Satisfaction

of N.Y. Cert. of Authorization: 0008671/0008821

■ NEW YORK

■ MARYLAND

PENNSYLVANIA

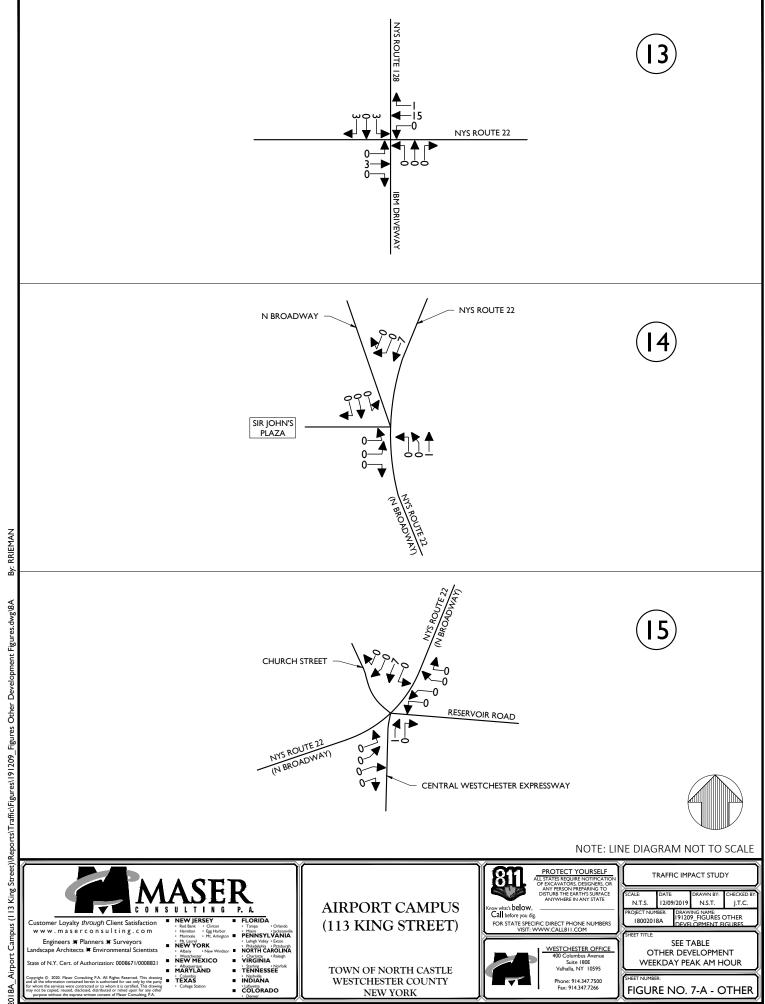
 Philadelphia Pittsburgh
 NORTH CAROLINA VIRGINIA

· Sterling · Norfoll TENNESSEE Nashville INDIANA COLORADO

AIRPORT CAMPUS (113 KING STREET)

TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK

WESTCHESTER OFFICE Suite 180E Valhalla, NY 10595

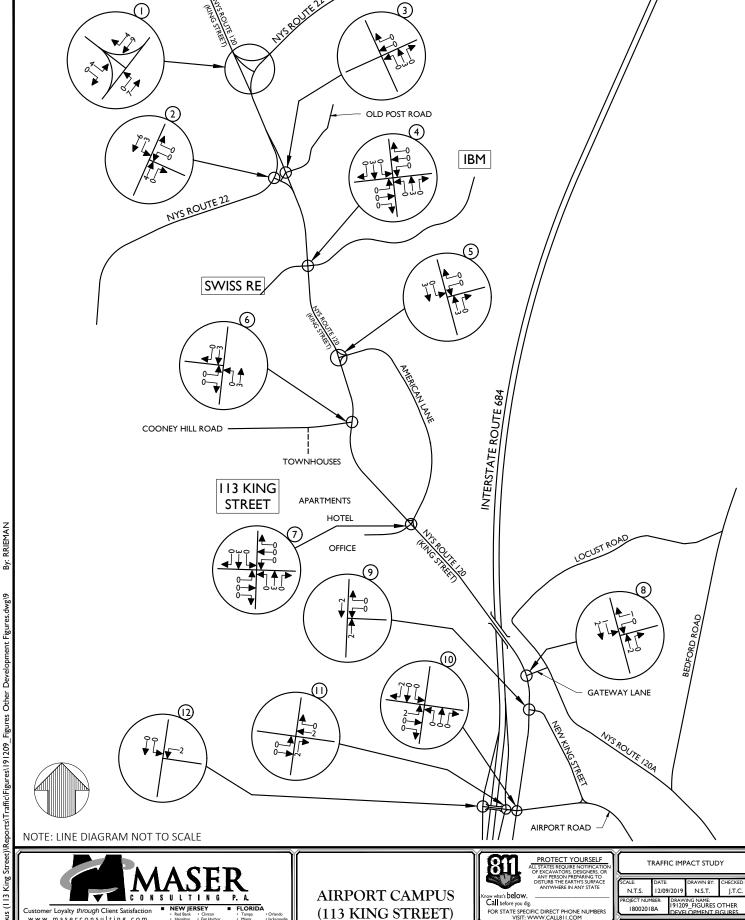

Phone: 914.347.7500 Fax: 914.347.7266

DRAWING NAME: 191209_FIGURES OTHER DEVELOPMENT FIGURES 18002018A

SEE TABLE

OTHER DEVELOPMENT WEEKDAY PEAK AM HOUR

FIGURE NO. 7 - OTHER


NEW YORK

Phone: 914.347.7500 Fax: 914.347.7266

FIGURE NO. 7-A - OTHER

Nashville INDIANA

COLORADO

TOWN OF NORTH CASTLE

WESTCHESTER COUNTY

NEW YORK

SEE TABLE

OTHER DEVELOPMENT

WEEKDAY PEAK MIDDAY HOUR

FIGURE NO. 8 - OTHER

WESTCHESTER OFFICE

Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266

_Airport Campus (113 King Street)\Reports\Traffic\Figures\191209_Figures Other Development Figures.dwg\9

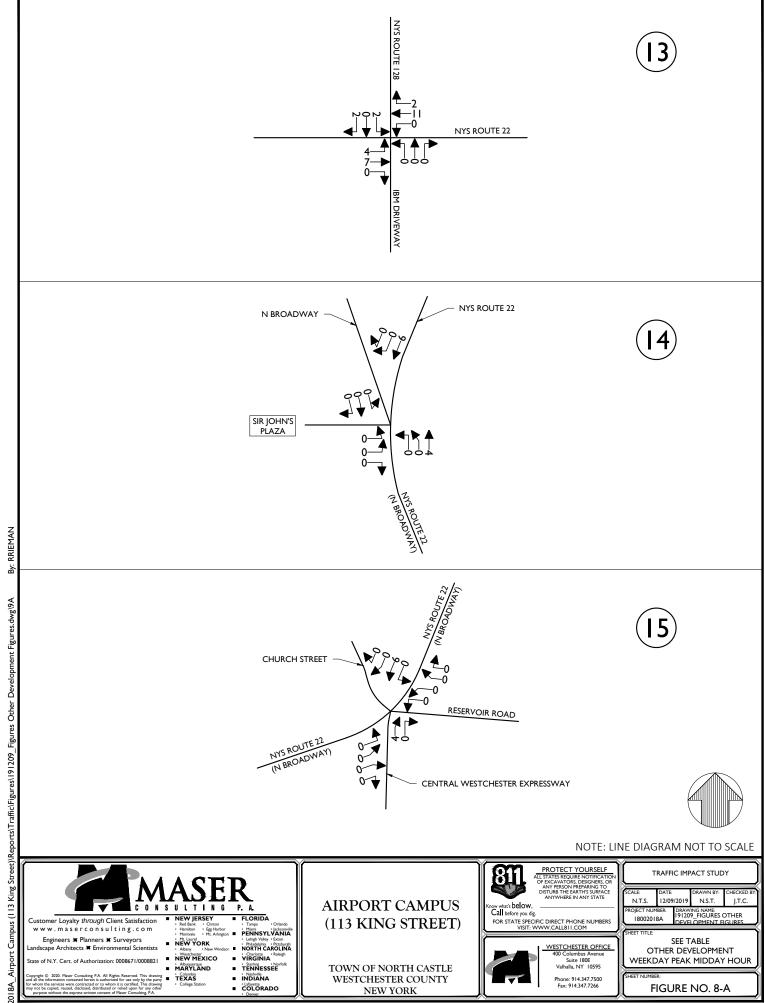
www.maserconsulting.com

Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821

PENNSYLVANIA

Philadelphia Pittsburgh
 NORTH CAROLINA


· Sterling · Norfoll TENNESSEE

Nashville INDIANA

COLORADO

■ NEW YORK

■ MARYLAND

NEW YORK

Phone: 914.347.7500 Fax: 914.347.7266

FIGURE NO. 8-A

Nashville INDIANA

· Lafayette COLORADO

Suite 180E Valhalla, NY 10595

SEE TABLE OTHER DEVELOPMENT WEEKDAY PEAK PM HOUR

TRAFFIC IMPACT STUDY

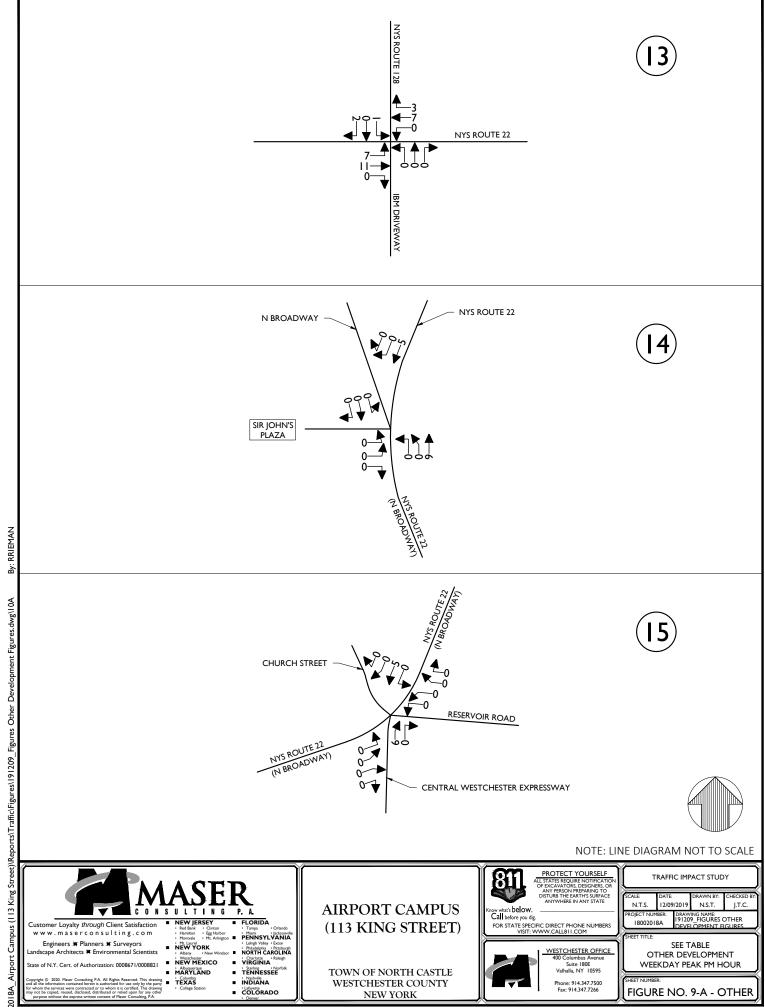
N.S.T.

DRAWING NAME: 191209_FIGURES OTHER DEVELOPMENT FIGURES

12/09/2019

FIGURE NO. 9 - OTHER

COLORADO


WESTCHESTER OFFICE

Phone: 914.347.7500 Fax: 914.347.7266

GATEWAY LANE

N.T.S.

18002018A

NEW YORK

Phone: 914.347.7500 Fax: 914.347.7266

FIGURE NO. 9-A - OTHER

Nashville INDIANA

COLORADO

TABLE A

HOURLY TRIP GENERATION RATES AND ANTICIPATED SITE GENERATED TRAFFIC VOLUMES

EAGLE BAY

PREVIOUSLY PROPOSED DEIS DEVELOPMENT PLAN (TIS - FEBRUARY 27, 2019)	ENTRY	EXIT	TOTAL
	VOLUME	VOLUME	VOLUME
HOTEL - 91 ROOMS APARTMENTS - 70 UNITS TOWNHOUSES - 94 UNITS			
WEEKDAY PEAK AM HOUR	44	74	118
WEEKDAY PEAK PM HOUR	85	61	146

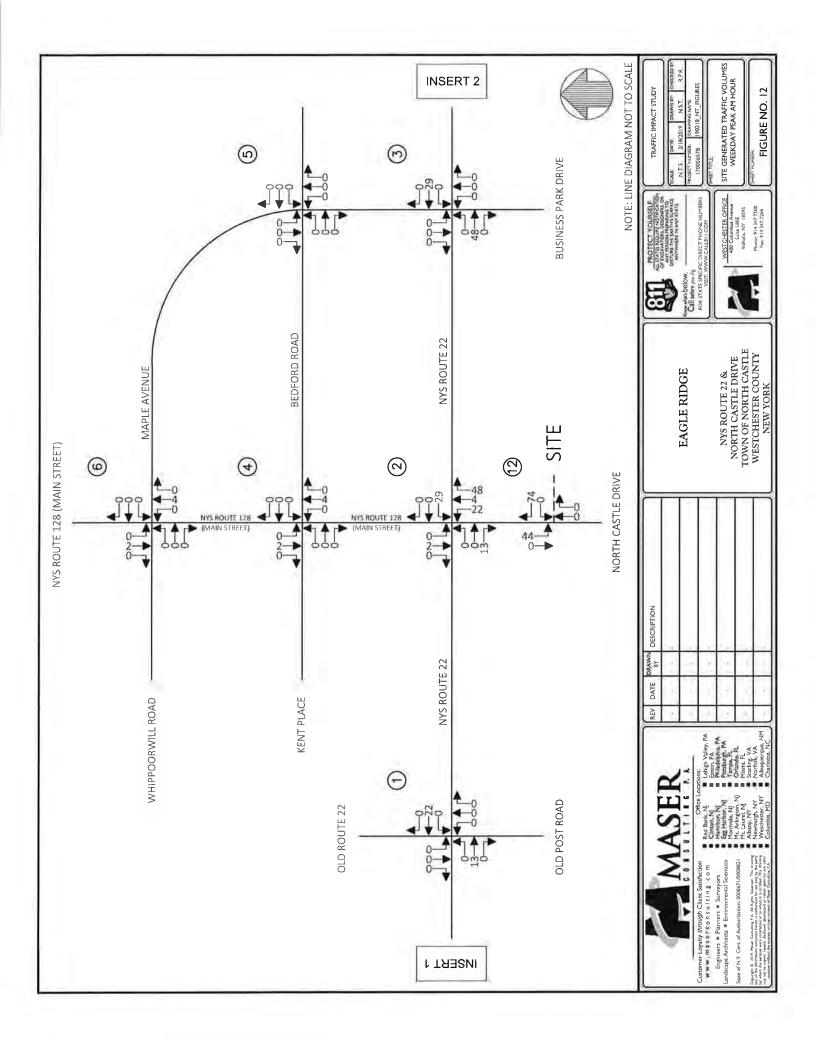
FEIS DEVELOPMENT PLAN	ENTRY	EXIT	TOTAL
	VOLUME	VOLUME	VOLUME
HOTEL - 115 ROOMS CONDOMINIUMS - 59 UNITS TOWNHOUSES - 50 UNITS			
WEEKDAY PEAK AM HOUR	44	60	104
WEEKDAY PEAK PM HOUR	74	56	130

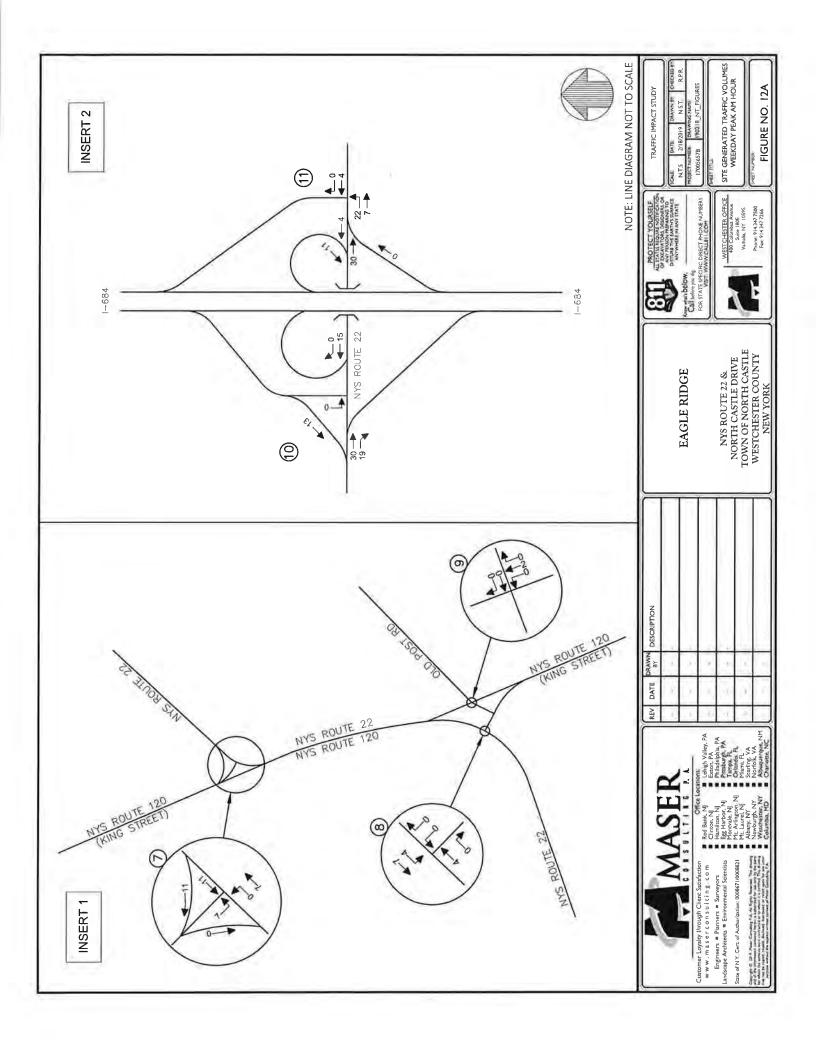
TABLE NO. 1

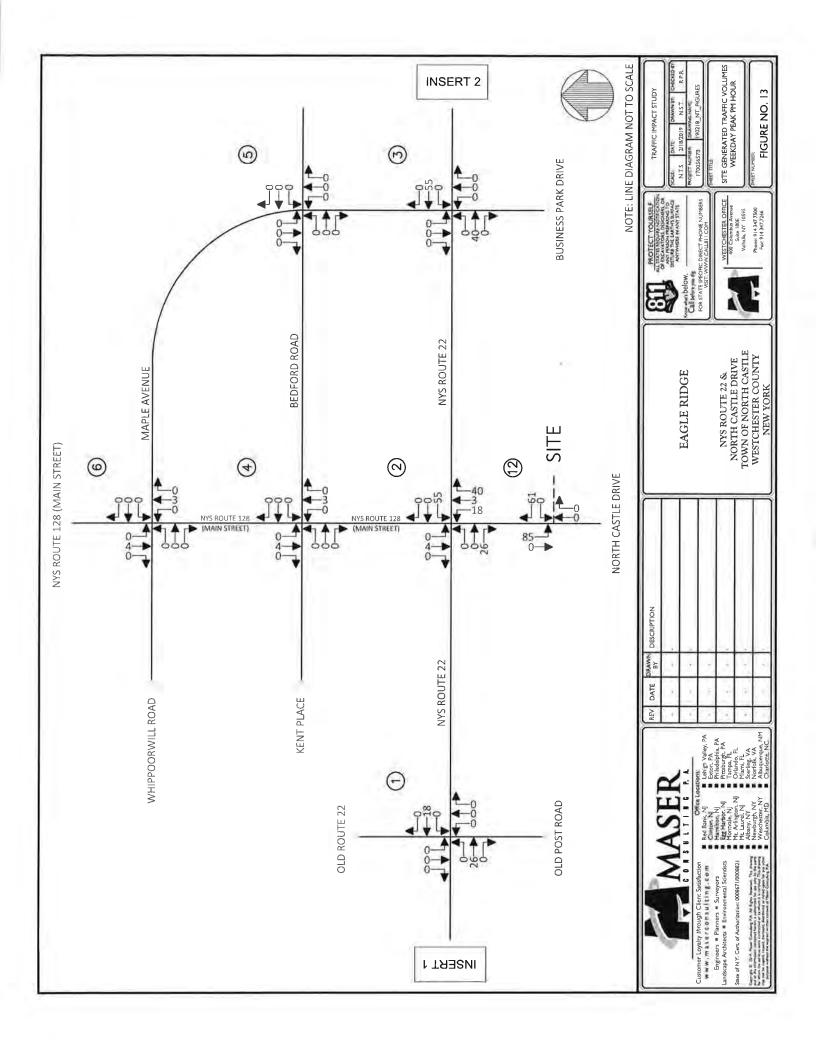
HOURLY TRIP GENERATION RATES &
ANTICIPATED SITE GENERATED TRAFFIC VOLUMES

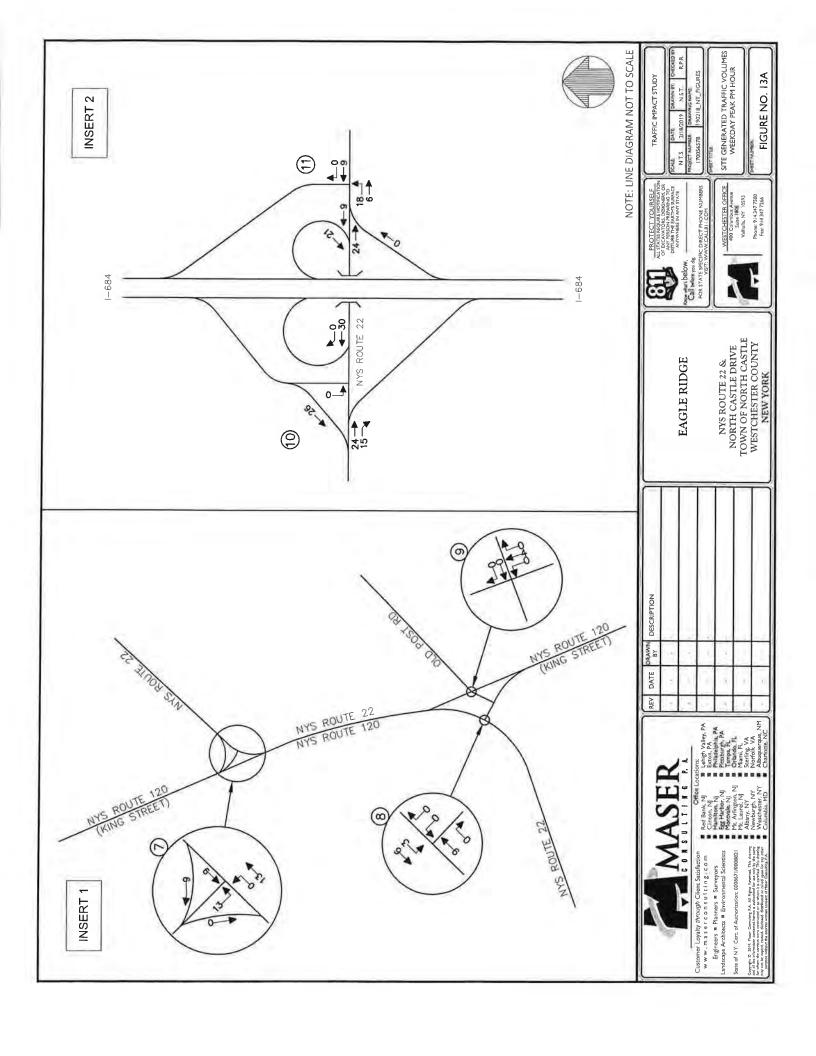
EAGLE DIDGE	ENTRY		EXIT		TOTAL	
EAGLE RIDGE	HTGR*	VOLUME	HTGR*	VOLUME	HTGR*	VOLUME
HOTEL/CONFERENCE CENTER (1) (91 ROOMS)						
WEEKDAY PEAK AM HOUR	0.28	26	0.19	17	0.47	43
WEEKDAY PEAK PM HOUR	0.31	28	0.29	26	0.60	54
APARTMENTS (2) (70 DWELLING UNITS)						
WEEKDAY PEAK AM HOUR	0.11	8	0.35	24	0.46	32
WEEKDAY PEAK PM HOUR	0.35	24	0.21	15	0.56	39
TOWNHOUSES (3) (94 DWELLING UNITS)						
WEEKDAY PEAK AM HOUR	0.11	10	0.35	33	0.46	43
WEEKDAY PEAK PM HOUR	0.35	33	0.21	20	0.56	53
TOTAL TRIPS						
WEEKDAY PEAK AM HOUR		44		74		118
WEEKDAY PEAK PM HOUR		85		61		146

THE HOURLY TRIP GENERATION RATES (HTGR) ARE BASED ON DATA PUBLISHED BY THE INSTITUTE OF TRANSPORTATION ENGINEERS (ITE)


TRIP GENERATION HANDBOOK - 10TH EDITION


(1) ITE LAND USE 310 - HOTEL


(2) ITE LAND USE 220 - MULIFAMILY HOUSING


(3) ITE LAND USE 220 - MULTIFAMILY HOUSING

17005657B 02/18/2019

Page 4 of 17

Hour. The Hourly Trip Generation Rates and anticipated Site Generated Traffic Volumes are summarized below:

	Entry		Exit		Total	
	HTGR	Volume	HTGR	Volume	HTGR	Volume
88 units						
Weekday Peak AM Hour	0.09	8	0.44	39	0.53	47
Weekday Peak PM Highway Hour	0.42	37	0.20	18	0.62	55

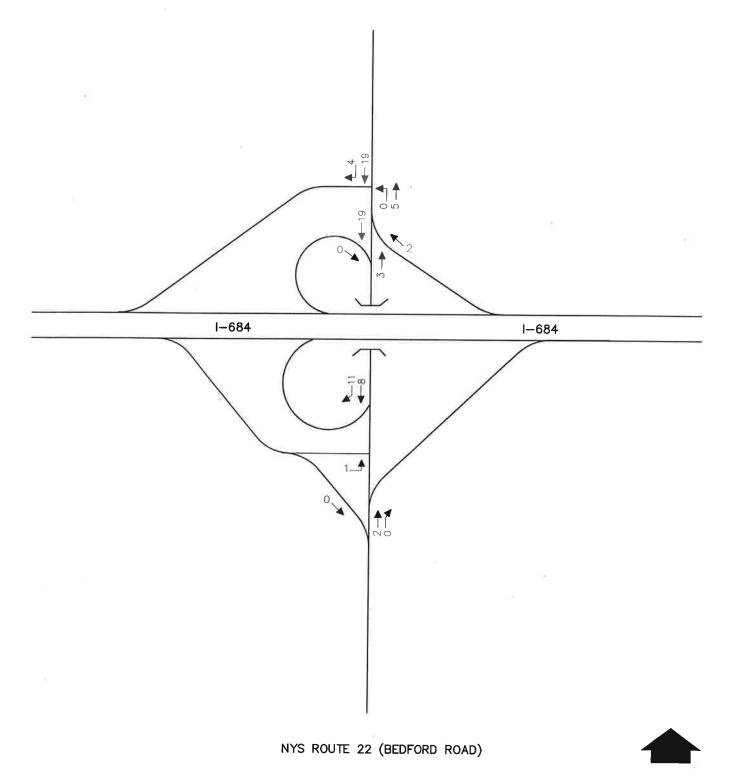
Based on Institute of Transportation Engineers, "Trip Generation Handbook", 9th Edition ITE Land Use 230 – Residential Condominium/Townhouse Units

G. ARRIVAL/DEPARTURE DISTRIBUTION (Figures No. 14 and 14A)

In order to assign the Site Generated Traffic Volumes to the roadway network, it was necessary to establish an arrival/departure distribution. Based on a review of the existing traffic volumes on the surrounding roadway network and expected travel patterns, an arrival/departure distribution was established and is shown on Figures No. 14 and 14A.

H. YEAR 2018 BUILD TRAFFIC VOLUMES (Figures No. 15, 15A through 20, 20A)

The Site Generated Traffic Volumes were assigned to the roadway network based on the arrival/departure distribution patterns shown on Figure No. 14 and 14A. The resulting Site Generated Traffic Volumes are shown on Figures No. 15, 15A, 16, 16A and 17, 17A for each of the Peak Hours, respectively. The Site Generated Traffic Volumes were then added to the Year 2018 No-Build Traffic Volumes to obtain the Year 2018 Build Traffic Volumes.

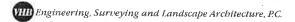

The resulting Year 2018 Build Traffic Volumes are shown on Figures No. 18, 18A, 19, 19A and 20, 20A for each of the Peak Hours, respectively.

I. <u>DESCRIPTION OF ANALYSIS PROCEDURES</u>

In order to determine existing and future traffic operating conditions at the study area intersections, it was necessary to perform capacity analyses. The following is a brief description of the analysis method utilized in this report:

INSERT A

NYS ROUTE 22 (BEDFORD ROAD)

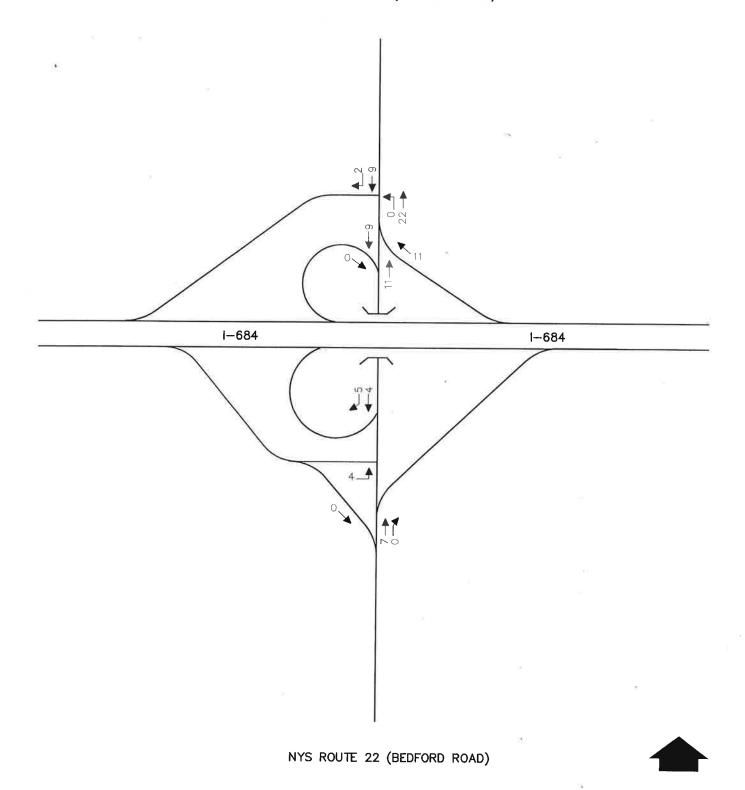


Source: Maser Consulting P.A.

NOTE: LINE DIAGRAM NOT TO SCALE

BRYNWOOD

North Castle, New York



Site Generated Traffic Volumes Weekday Peak AM Hour (7:00 AM-8:00 AM) (Insert A)

Exhibit III.M-15A

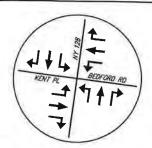
INSERT A

NYS ROUTE 22 (BEDFORD ROAD)

Source: Maser Consulting P.A.

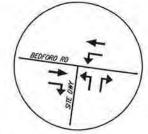
NOTE: LINE DIAGRAM NOT TO SCALE

BRYNWOOD

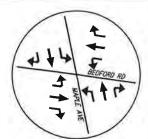

North Castle, New York

Engineering, Surveying and Landscape Architecture, P.C.

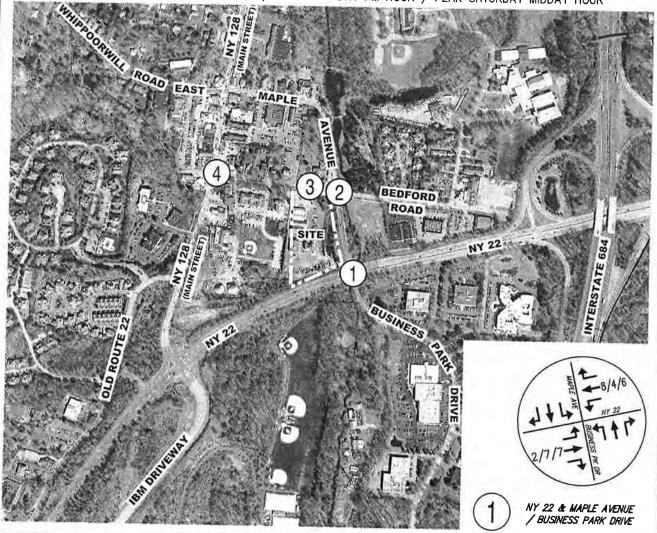
Site Generated Traffic Volumes Weekday Peak PM Highway Hour (5:00 PM-6:00 PM) (Insert A)


Exhibit

III.M-17A



NY 128 (MAIN STREET) & BEDFORD ROAD / KENT PLACE



BEDFORD ROAD & SITE DRIVEWAY

MAPLE AVENUE & BEDFORD ROAD

LEGEND: PEAK WEEKDAY AM HOUR / PEAK WEEKDAY PM HOUR / PEAK SATURDAY MIDDAY HOUR

MARIANI GARDENS REDEVELOPMENT

45 BEDFORD ROAD

TOWN OF NORTH CASTLE, NEW YROK

OTHER DEVELOPMENT VOLUMES BRYNWOOD

DATE: 09/XX/2018

JMC PROJECT: 18053

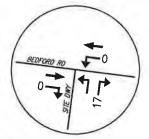
FIGURE: 07

SCALE: 1" = 650'

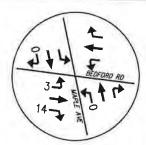
120 BEDFORD RD ARMONK NY 10504

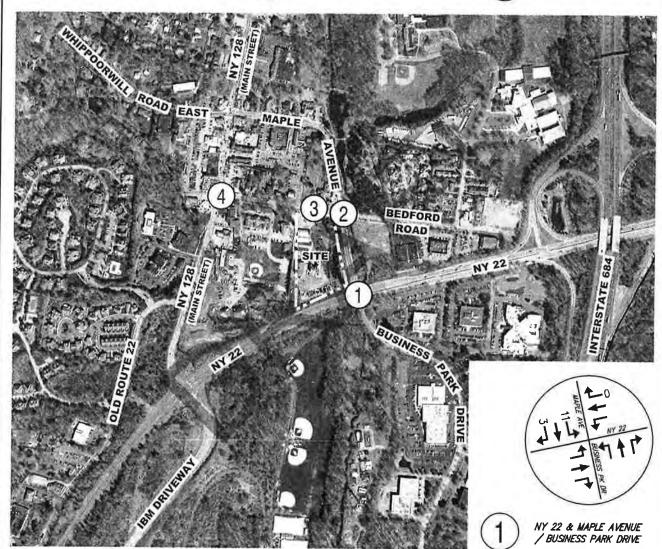
(914) 273-5225 fax 273-2102

JMCPLLC.COM



COPYRIGHT © 2018 by JMC All Rights Reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of JMC PLANNING, ENGINEERING, LANDSCAPE ARCHITECTURE & LAND SURVEYING, PLLC | JMC SITE DEVELOPMENT CONSULTANTS, LLC | JOHN MEYER CONSULTING, INC. (JMC). Any modifications or alterations to this document without the written permission of JMC shall render them invalid and unusable.




NY 128 (MAIN STREET) & BEDFORD ROAD / KENT PLACE

BEDFORD ROAD & SITE DRIVEWAY

2) MAPLE AVENUE & BEDFORD ROAD

MARIANI GARDENS REDEVELOPMENT

45 BEDFORD ROAD

TOWN OF NORTH CASTLE, NEW YROK

PRIMARY VOLUMES

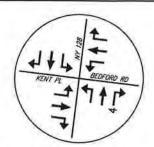
PEAK WEEKDAY AM HOUR

DATE: 09/XX/2018

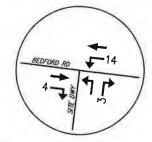
FIGURE: 15

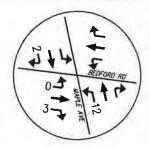
JMC PROJECT: 18053

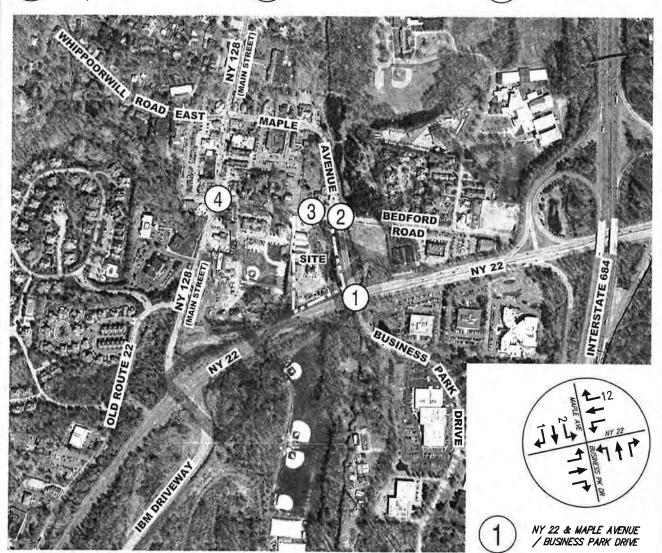
SCALE: 1" = 650'


120 BEDFORD RD ARMONK NY 10504

> (914) 273-5225 fax 273-2102


JMCPLLC,COM


COPYRIGHT © 2018 by JMC All Rights Reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of JMC PLANNING, ENGINEERING, LANDSCAPE ARCHITECTURE & LAND SURVEYING, PLLC | JMC SITE DEVELOPMENT CONSULTANTS, LLC | JOHN MEYER CONSULTING, INC, (JMC), Any modifications or alterations to this document without the written permission of JMC shall render them invalid and unusable



BEDFORD ROAD & SITE DRIVEWAY

2) MAPLE AVENUE & BEDFORD ROAD

MARIANI GARDENS REDEVELOPMENT

45 BEDFORD ROAD

TOWN OF NORTH CASTLE, NEW YROK

PRIMARY VOLUMES

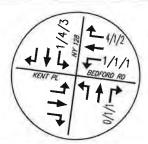
PEAK WEEKDAY PM HOUR

DATE: 09/XX/2018

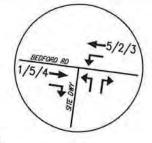
JMC PROJECT: 18053

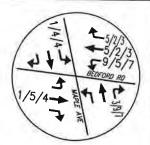
FIGURE: 16

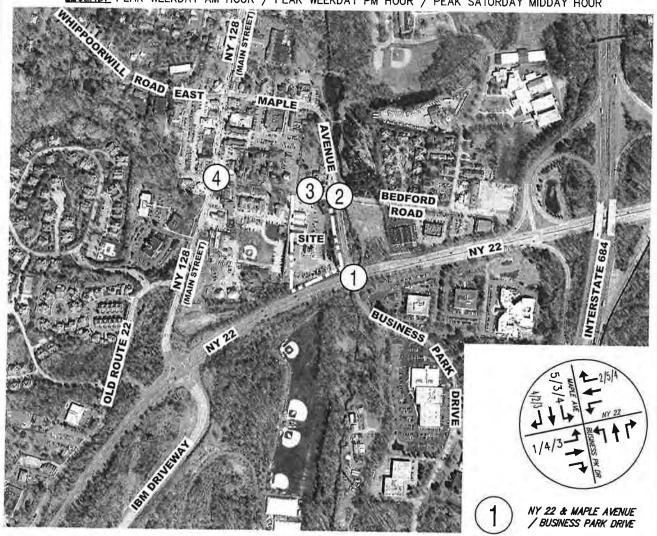
SCALE: 1" = 650'


120 BEDFORD RD ARMONK NY 10504

> (914) 273-5225 fax 273-2102


JMCPLLC.COM


COPYRIGHT © 2018 by JMC All Rights Reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of JMC PLANNING, ENGINEERING, LANDSCAPE ARCHITECTURE & LAND SURVEYING, PLLC | JMC SITE DEVELOPMENT CONSULTANTS, LLC | JOHN MEYER CONSULTING, INC. (JMC). Any modifications or alterations to this document without the written permission of JMC shall render them invalid and unusable



3) BEDFORD ROAD & SITE DRIVEWAY

MAPLE AVENUE & BEDFORD ROAD

LEGEND: PEAK WEEKDAY AM HOUR / PEAK WEEKDAY PM HOUR / PEAK SATURDAY MIDDAY HOUR

MARIANI GARDENS REDEVELOPMENT

45 BEDFORD ROAD

TOWN OF NORTH CASTLE, NEW YROK

OTHER DEVELOPMENT VOLUMES

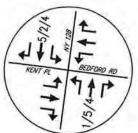
BEDFORD ROAD APARTMENTS

DATE: 09/XX/2018

JMC PROJECT: 18053

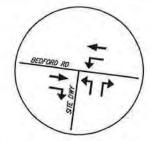
FIGURE: 10

SCALE 1" = 650'

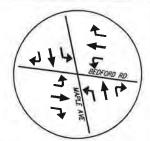

120 BEDFORD RD ARMONK NY 10504

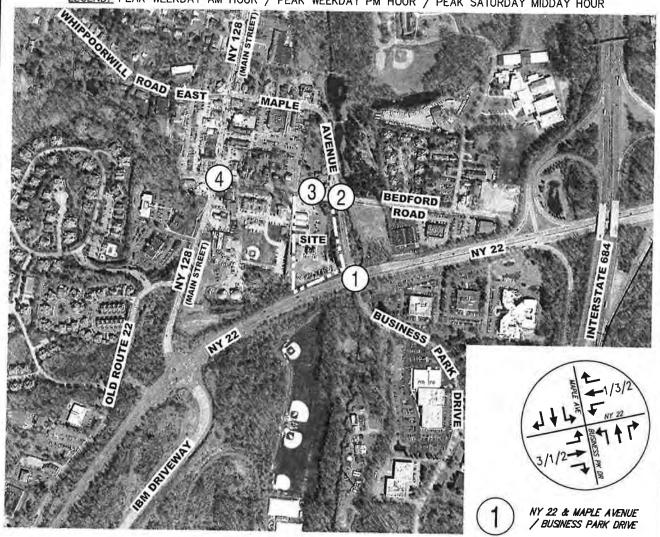
(914) 273-5225 fax 273-2102

JMCPLLC.COM



COPYRIGHT © 2018 by JMC All Rights Reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of JMC PLANNING, ENGINEERING, LANDSCAPE ARCHITECTURE & LAND SURVEYING, PLLC | JMC SITE DEVELOPMENT CONSULTANTS, LLC | JOHN MEYER CONSULTING, INC. (JMC). Any modifications or alterations to this document without the written permission of JMC shall render them invalid and unumerble.





BEDFORD ROAD

2 MAPLE AVENUE & BEDFORD ROAD

LEGEND: PEAK WEEKDAY AM HOUR / PEAK WEEKDAY PM HOUR / PEAK SATURDAY MIDDAY HOUR

MARIANI GARDENS REDEVELOPMENT 45 BEDFORD ROAD TOWN OF NORTH CASTLE, NEW YROK

OTHER DEVELOPMENT VOLUMES

470 MAIN STREET APARTMENTS

DATE: 09/XX/2018

JMC PROJECT: 18053

FIGURE: 09

SCALE: 1" = 650'

120 BEDFORD RD ARMONK NY 10504

(914) 273-5225 fax 273-2102

JMCPLLC.COM

COPYRIGHT © 2018 by JMC All Rights Reserved. No part of this document may be reproduced, slored in a retrieval system, or transmitted in any form or by means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of JMC PLANNING, ENGINEERING, LANDSCAPE ARCHITECTURE & LAND SURVEYING, PLLC | JMC SITE DEVELOPMENT CONSULTANTS, LLC | JOHN MEYER CONSULTING, INC (JMC). Any modifications or afterations to this document without the written permission of JMC shall render them invalid and unusable.

Appendix G-2 Other Traffic Analyses Required

0 \subseteq

Other Analysis Required by Scope

Airport Campus (113 King Street) Town of North Castle, Westchester County, New York

> January 21, 2020 Revised: September 4, 2020

> > Prepared For

Mr. Geoff Ringler Roeco, LLC 46 Westchester Avenue Pound Ridge, NY 10576

Prepared By

Maser Consulting

400 Columbus Avenue - Suite 180E Valhalla, NY 10595

914.347.7500

John T. Collins, Ph.D., P.E. **Executive Principal**

License No. 46029

Ronald P. Rieman Associate/Project Manager

MC Project No. 18002018A

Other Analysis Required by Scope Airport Campus (113 King Street) MC Project No. 18002018A Table of Contents

TABLE OF	F CONTENTS	PAGE NO.
A.	SENSITIVITY ANALYSIS	1
B.	DOB DISTRICT	1
APPENDIO	CES	
Аттасни	ENT 1	SENSITIVITY ANALYSIS

A. <u>SENSITIVITY ANALYSIS</u>

As outlined in the adopted Scope and based on conversations with the Town's Traffic Consultant, a sensitivity analysis was conducted to take into consideration if the proposed uses would generate at a higher trip generation rate and the use of autonomous vehicle during the Weekday Peak AM, Weekday Peak Midday and Weekday Peak PM Hours. Under the Year 2024 No-Build Condition, the anticipated site generated traffic volumes assume the entry and exit volumes are equal for the re-occupancy of the two office buildings thereby essentially doubling the traffic volumes to account for surcharge and autonomous vehicles (Table 1-S - Appendix I). Under the Year 2024 Build Condition, the ITE Rates/anticipated site generated traffic volumes were doubled (Table No. 2-S - Appendix I). The resulting Sensitivity Analysis Year 2024 No-Build, Site Generated, Year 2024 Build Traffic Volumes are shown on Figures No. 44, 44A through 58, 58A and the resulting Levels of Service/Queue Summary Tables are shown on Tables No. 3-S and 4-S, respectively in Attachment 1.

B. **DOB DISTRICT**

As requested by the adopted Scope, the DOB district was analyzed in the No-Build Condition taking into account growth in the Corridor which takes into account minor development growth including the Citigroup Site, 3 Cooney Hill Road (Takeda Property) and 32 King Street, all of which assumes no new development potential. For the full development of the Swiss Re property and re-occupancy of 113 King Street, traffic was added to the NYS Route 120 Corridor and analyzed in the Traffic Impact Study. An Alternate Build Development scenario for the two major parcels (Swiss Re and 113 King Street) under the Proposed Zoning's office to residential conversion parameters for the full build out of both sites are summarized in the Table below.

Maximum Development Potential (Proposed Zoning) Project Site / Swiss Re Parcel

Property	Existing/Approved Floor Area	Conversion Ratio(s) Applied (Proposed Zoning)	Maximum Allowable Floor Area Assumed (Proposed Zoning)
Project Site (113 King Street)	261,000 sf office (Existing) 238,000 sf office (approved/unbuilt)	1:1 existing office to residential + 1:1.25 approved/unbuilt office to residential	558,500 sf residential (~500 units)
Swiss Re Parcel (175 King Street)	360,000 sf office (existing)	1:1 existing office to hotel/residential*	110,000 sf hotel (~80 rooms); 250,000 sf residential (~250 units)

Notes:

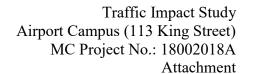
Sources: Town of North Castle, Airport Campus I-V LLC, Swiss Re Life and Health America

^{*}If redeveloped under the Proposed Zoning, it is assumed the Swiss Re parcel's existing 360,000 sf of office space would be split between hotel and residential uses.

The Table below shows a comparison of the trip generation rates for Office, Residential and Hotel uses.

Trip Generation Comparison

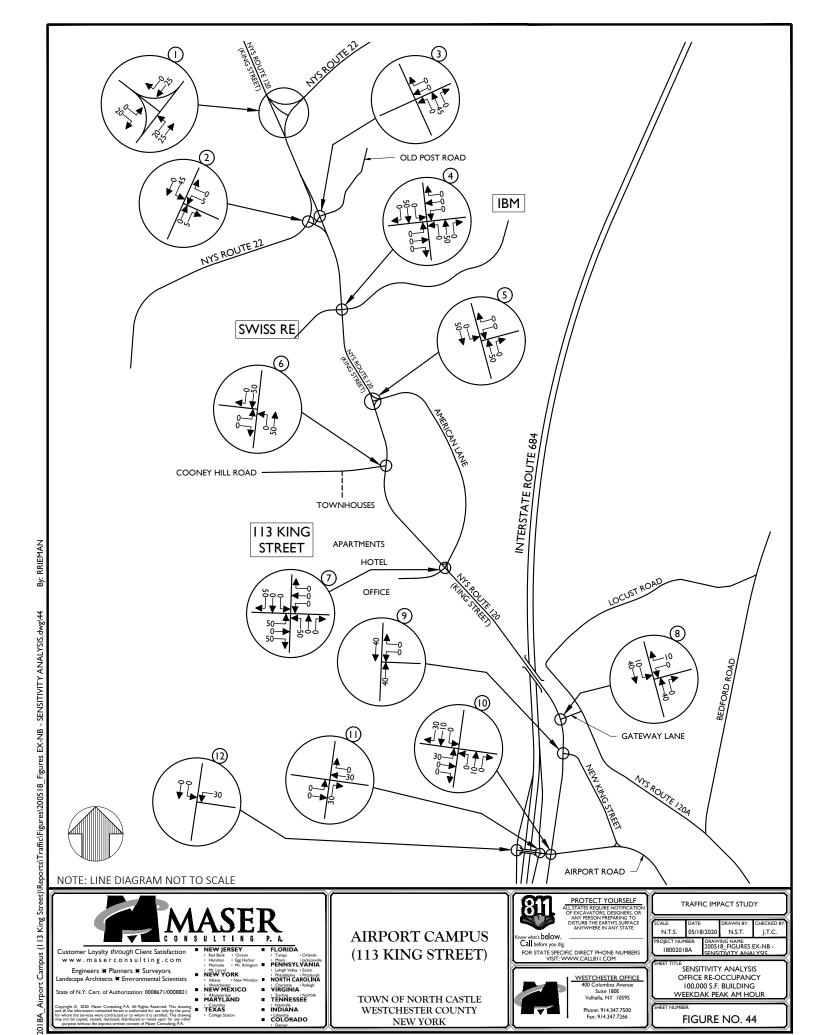
	Office HTGR*	Residential HTGR*	Hotel HTGR*
Weekday Peak AM Hour	1.16 per 1,000 s.f.	0.46 per unit	0.47 per room
Weekday Peak PM Hour	1.15 per 1,000 s.f.	0.56 per unit	0.60 per room

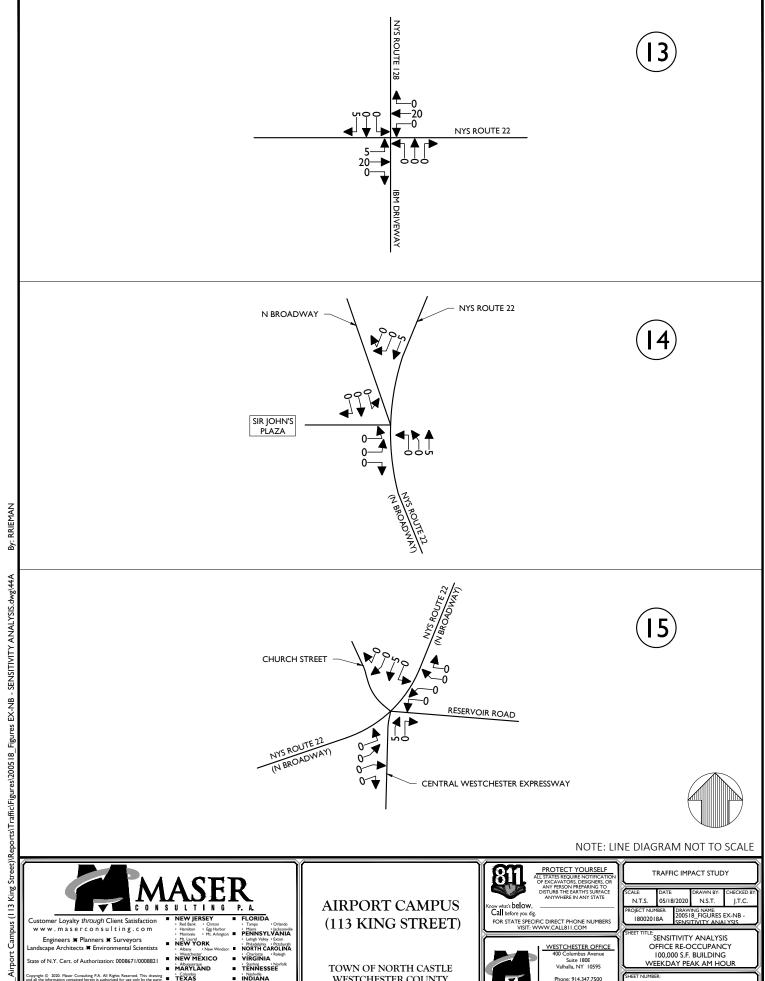

*Hourly Trip Generation Rates (HTGR) based on

ITE Land Use 710-Office; ITE Land Use 220-Multi-Family Housing; ITE Land Use 310-Hotel.

As shown on the Table below, the conversion to residential/hotel from office under the DOB district conversion would generate less traffic than the office use.

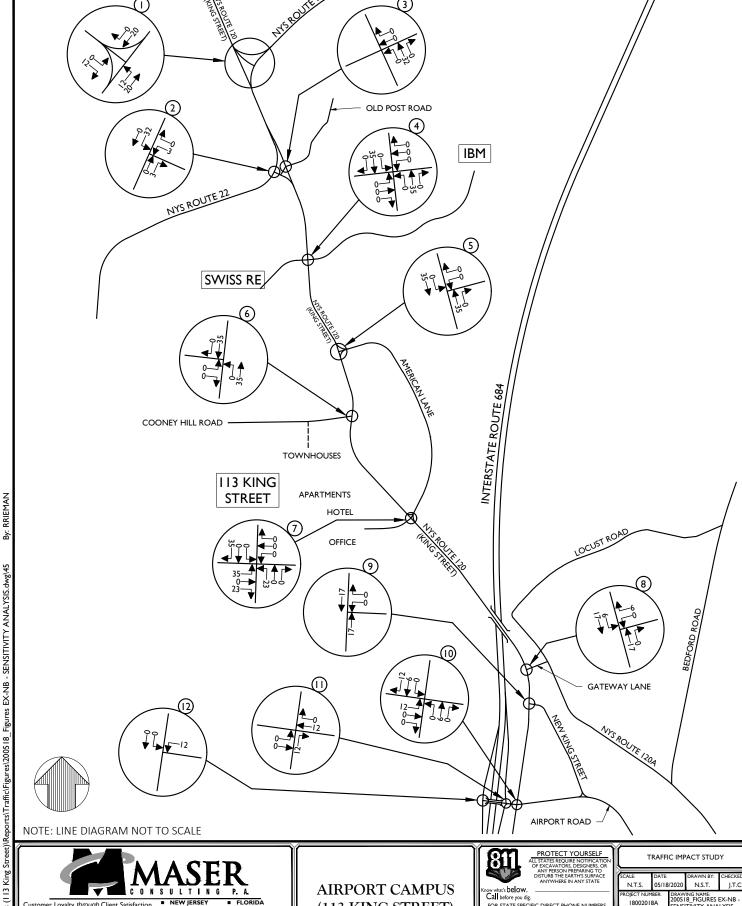
Project Site Trip Generation				
Office Residential				
Weekday Peak AM Hour	303	230		
Weekday Peak PM Hour	300	280		


Swiss Re Trip Generation				
	Office	Residential/Hotel		
Weekday Peak AM Hour	418	153 (115/38)		
Weekday Peak PM Hour	414	188 (140/48)		



AIRPORT CAMPUS (113 KING STREET)

ATTACHMENT 1 SENSITIVITY ANALYSIS


NEW YORK

Phone: 914.347.7500 Fax: 914.347.7266

FIGURE NO. 44-A

Nashville INDIANA

COLORADO

-Airport Campus (113 King Street)/Reports/Traffic/Figures/200518_Figures EX-NB - SENSITIVITY ANALYSIS. dwg\45

www.maserconsulting.com Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821

■ NEW YORK

■ MARYLAND

PENNSYLVANIA

Philadelphia Pittsburgh
 NORTH CAROLINA

· Sterling · Norfoll TENNESSEE Nashville INDIANA · Lafayette COLORADO

(113 KING STREET)


TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK

Suite 180E Valhalla, NY 10595 Phone: 914.347.7500 Fax: 914.347.7266

et title Sensitivity analysis Office re-occupancy 100,000 s.f. Building Weekday Peak Midday Hour

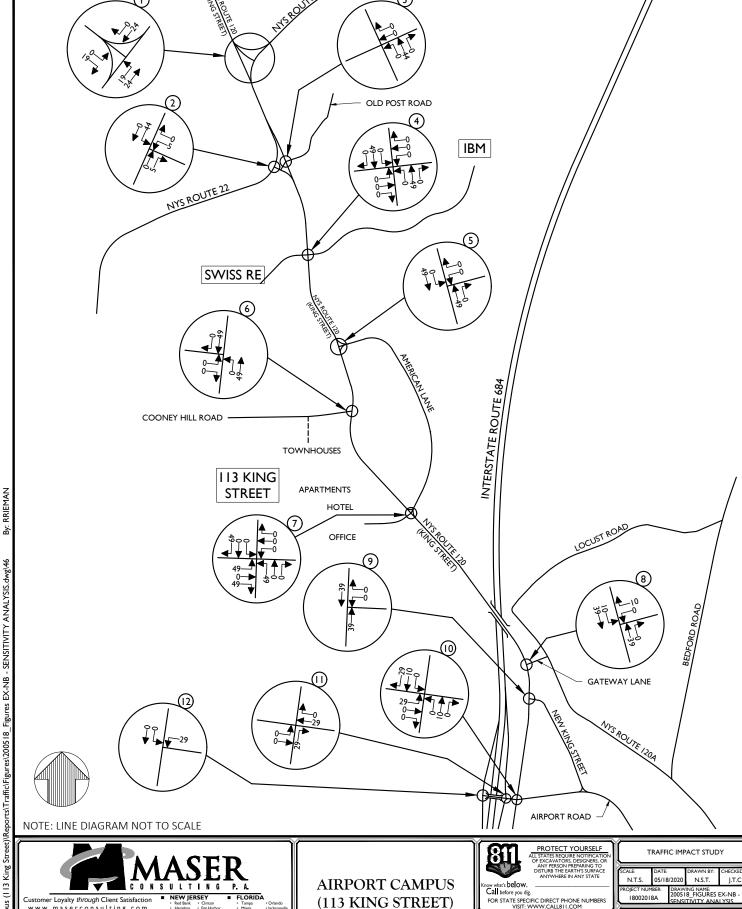
FIGURE NO. 45

TOWN OF NORTH CASTLE

WESTCHESTER COUNTY

NEW YORK

Phone: 914.347.7500 Fax: 914.347.7266


FIGURE NO. 45-A

■ MARYLAND

TENNESSEE

COLORADO

Nashville INDIANA

TOWN OF NORTH CASTLE

WESTCHESTER COUNTY

NEW YORK

TLE SENSITIVITY ANALYSIS OFFICE RE-OCCUPANCY 100,000 S.F. BUILDING WEEKDAY PEAK PM HOUR

FIGURE NO. 46

Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266

-Airport Campus (113 King Street)/Reports/Traffic/Figures/200518_Figures EX-NB - SENSITIVITY ANALYSIS.dwg\46

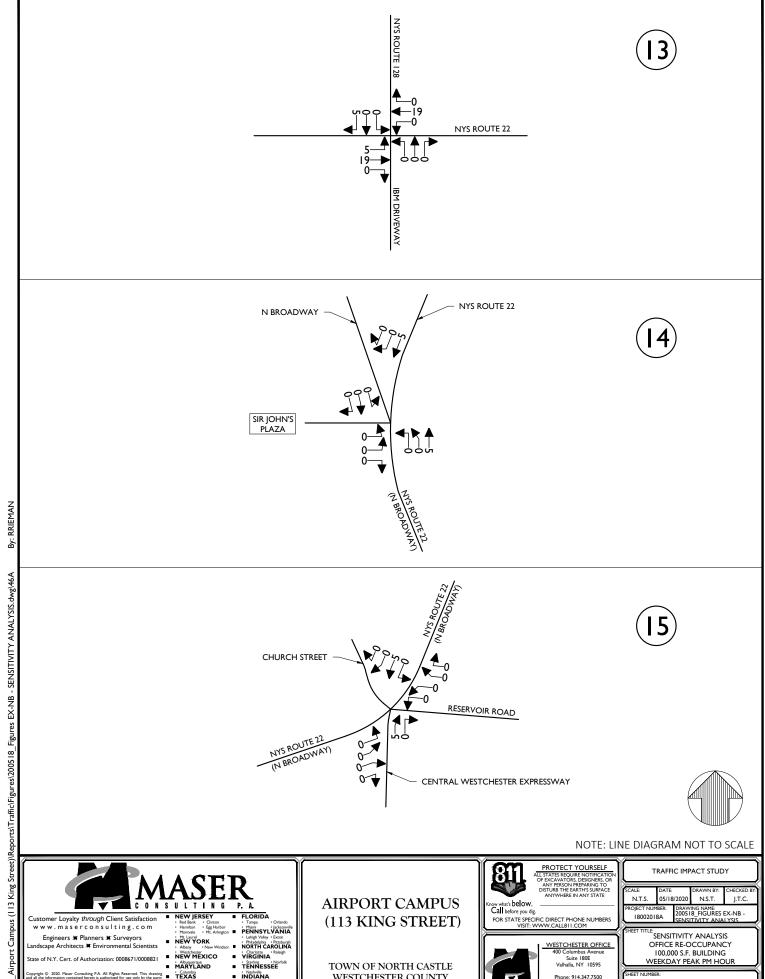
www.maserconsulting.com

Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821

PENNSYLVANIA

Philadelphia Pittsburgh
 NORTH CAROLINA

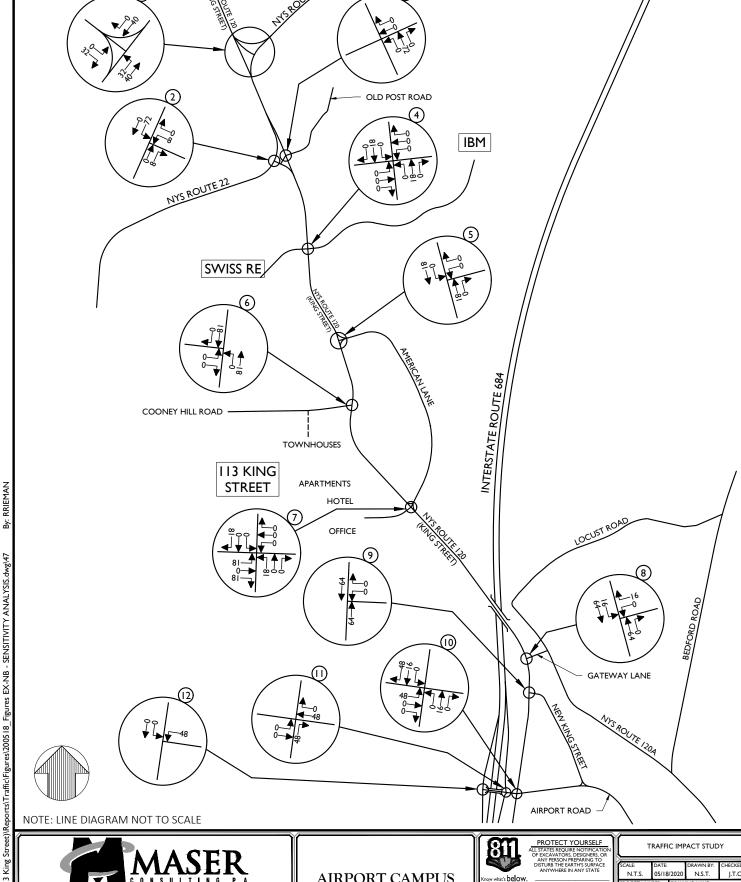

· Sterling · Norfoll TENNESSEE

Nashville INDIANA

· Lafayette COLORADO

■ NEW YORK

■ MARYLAND


NEW YORK

Phone: 914.347.7500 Fax: 914.347.7266

FIGURE NO. 46-A

Nashville INDIANA

COLORADO

-Airport Campus (113 King Street)/Reports/Traffic/Figures/200518_Figures EX-NB - SENSITIVITY ANALYSIS.dwg\47

Customer Loyalty through Client Satisfaction www.maserconsulting.com Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821

PENNSYLVANIA

Philadelphia Pittsburgh
 NORTH CAROLINA

· Sterling · Norfoll TENNESSEE

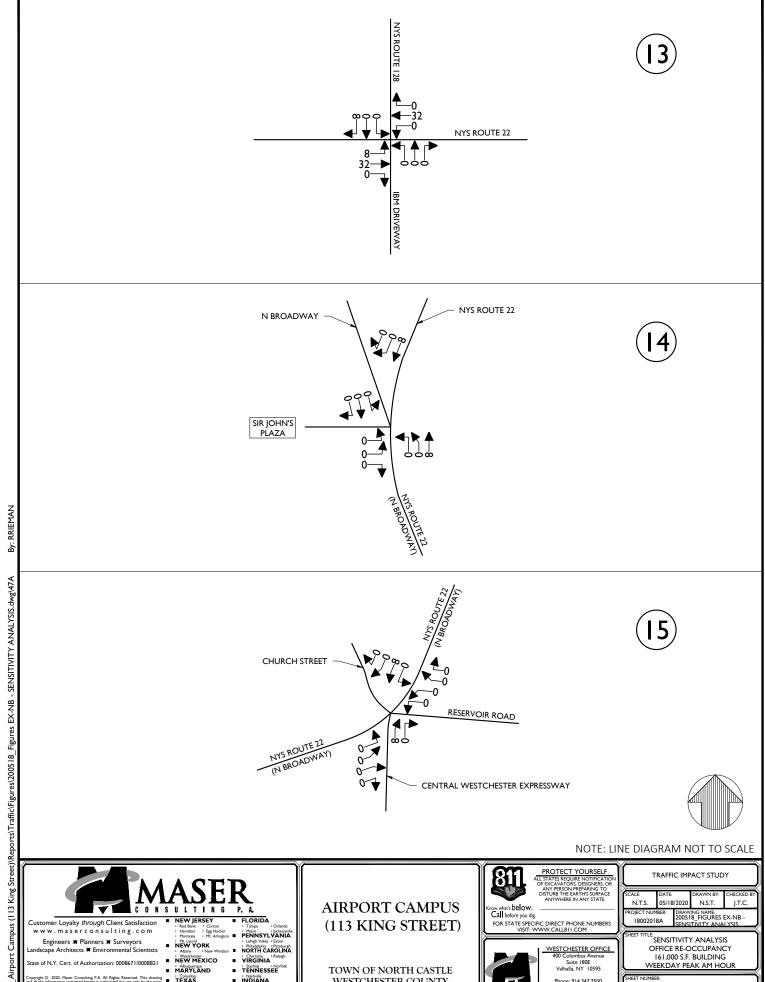
Nashville INDIANA

· Lafayette COLORADO

■ NEW YORK

■ MARYLAND

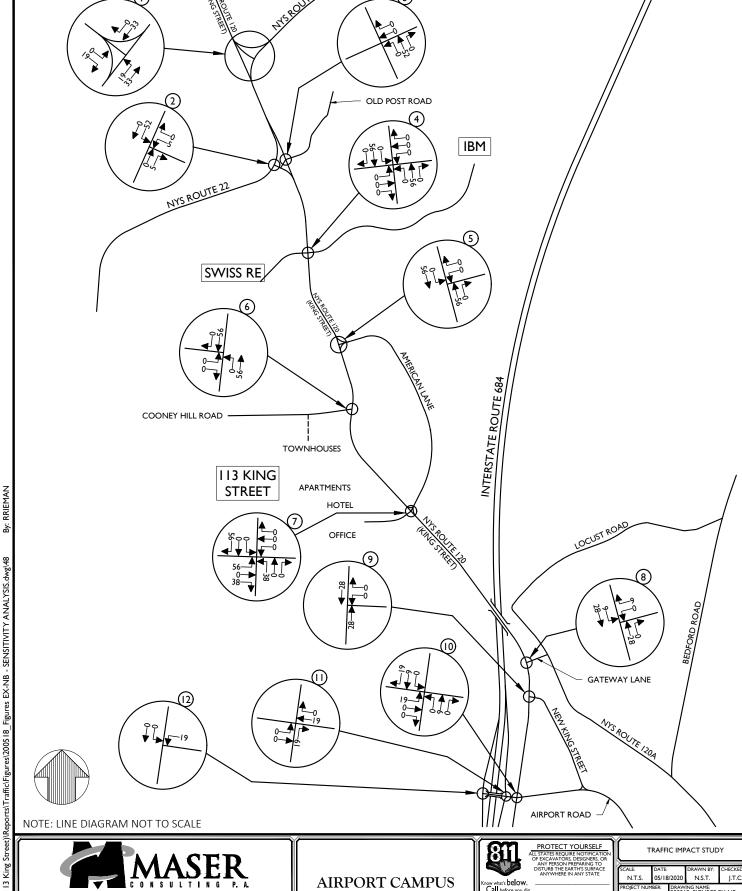
AIRPORT CAMPUS (113 KING STREET)


TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK

Suite 180E Valhalla, NY 10595 Phone: 914.347.7500 Fax: 914.347.7266 SENSITIVITY ANALYSIS
OFFICE RE-OCCUPANCY
161,000 S.F. BUILDING
WEEKDAK PEAK AM HOUR

18002018A

FIGURE NO. 47


NEW YORK

Phone: 914.347.7500 Fax: 914.347.7266

FIGURE NO. 47-A

Nashville INDIANA

COLORADO

-Airport Campus (113 King Street)/Reports/Traffic/Figures/200518_Figures EX-NB - SENSITIVITY ANALYSIS. dwg\48

www.maserconsulting.com Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821

■ NEW YORK

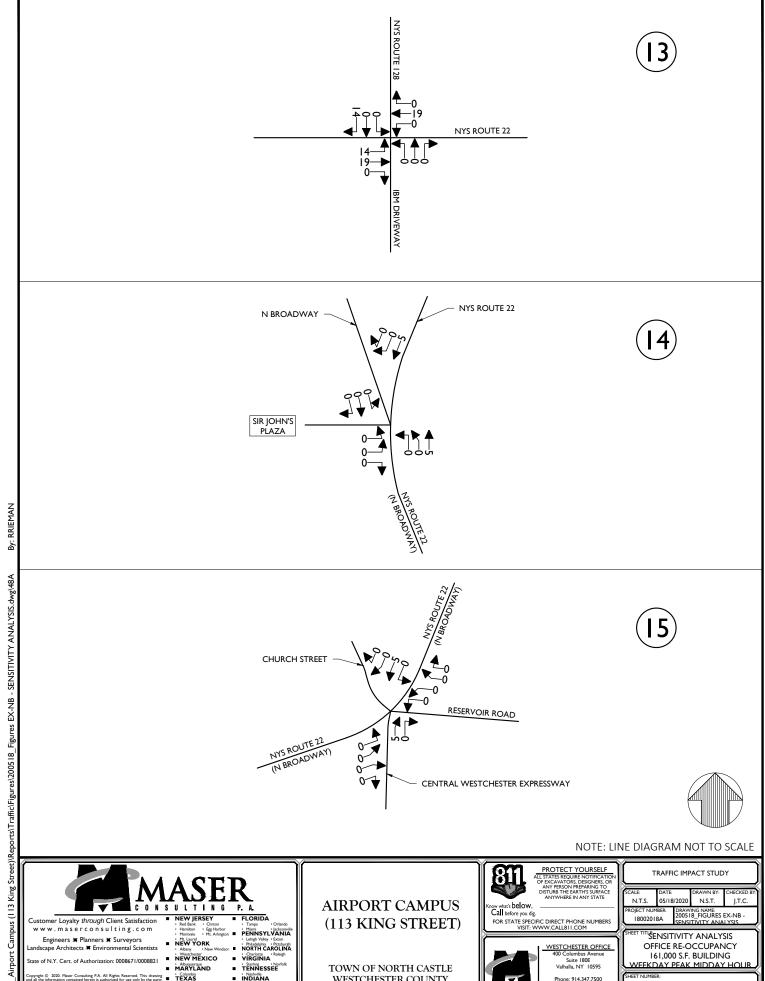
■ MARYLAND

Philadelphia Pittsburgh
 NORTH CAROLINA

Sterling Norfolk
TENNESSEE Nashville INDIANA · Lafayette COLORADO

(113 KING STREET)

TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK


Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266

18002018A

ET TITLE SENSITIVITY ANALYSIS OFFICE RE-OCCUPANCY 161,000 S.F. BUILDING WEEKDAY PEAK MIDDAY HOUR

FIGURE NO. 48

WESTCHESTER COUNTY

NEW YORK

Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266

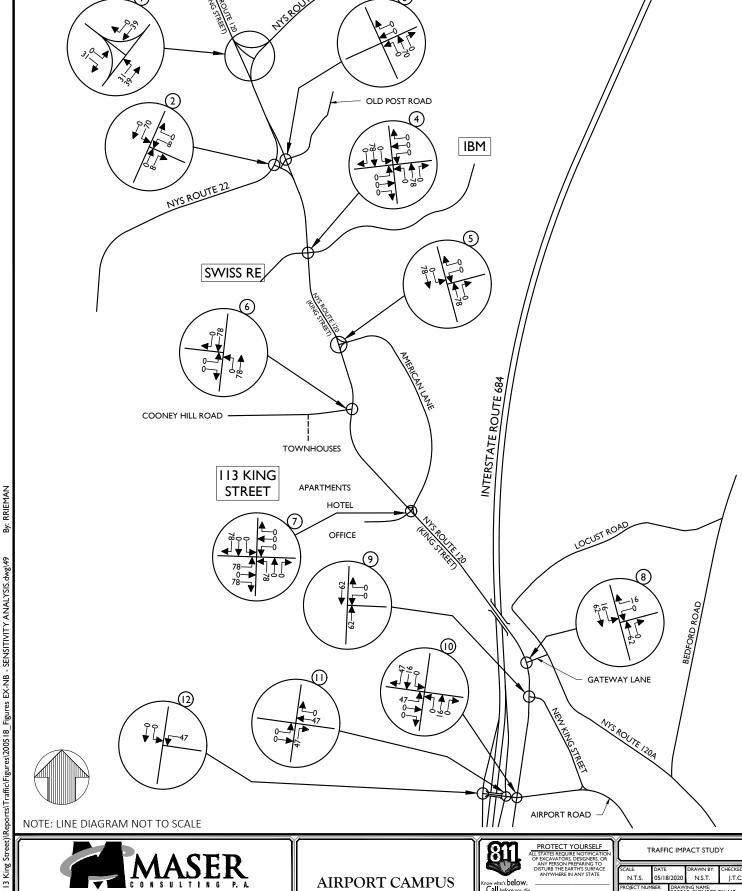

WEEKDAY PEAK MIDDAY HOUR

FIGURE NO. 48-A

■ MARYLAND

TENNESSEE

COLORADO

-Airport Campus (113 King Street)/Reports/Traffic/Figures/200518_Figures EX-NB - SENSITIVITY ANALYSIS.dwg\49

Customer Loyalty through Client Satisfaction www.maserconsulting.com

Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821

■ NEW YORK

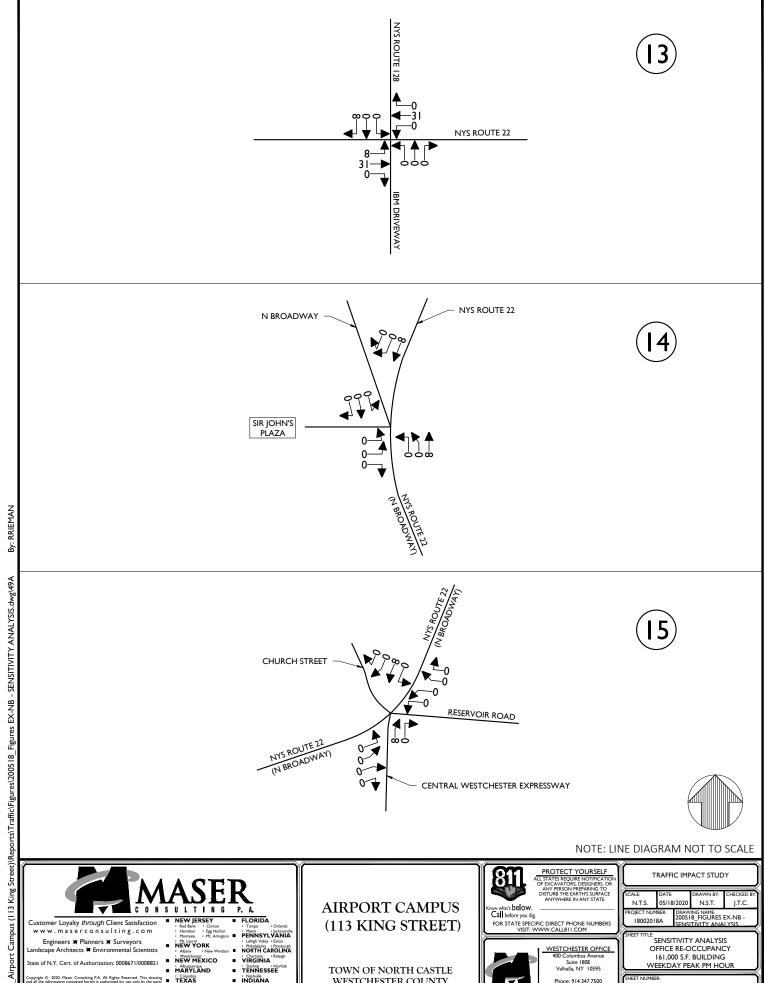
■ MARYLAND

PENNSYLVANIA

Philadelphia Pittsburgh
 NORTH CAROLINA

· Sterling · Norfoll TENNESSEE Nashville INDIANA · Lafayette COLORADO

(113 KING STREET)


TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK

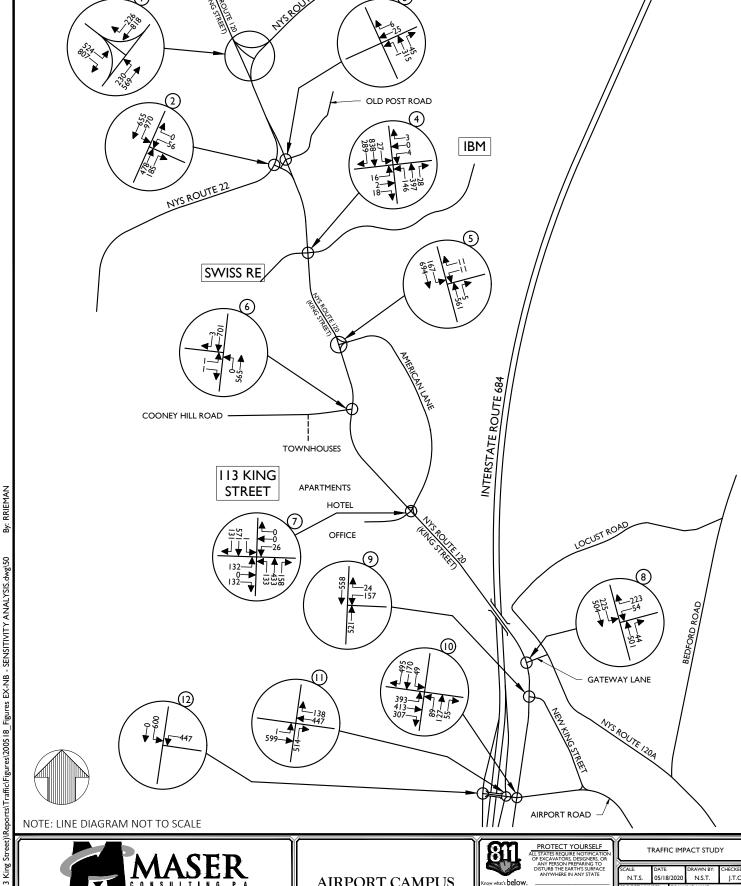
Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266

18002018A

TLE SENSITIVITY ANALYSIS OFFICE RE-OCCUPANCY 161,000 S.F. BUILDING WEEKDAY PEAK PM HOUR

WESTCHESTER COUNTY


NEW YORK

Phone: 914.347.7500 Fax: 914.347.7266

FIGURE NO. 49-A

Nashville INDIANA

· Lafayette COLORADO

-Airport Campus (113 King Street)/Reports/Traffic/Figures/200518_Figures EX-NB - SENSITIVITY ANALYSIS. dwg\50

Customer Loyalty through Client Satisfaction

www.maserconsulting.com Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821

■ NEW YORK

■ MARYLAND

PENNSYLVANIA

Philadelphia Pittsburgh
 NORTH CAROLINA

· Sterling · Norfoll TENNESSEE Nashville INDIANA · Lafayette COLORADO

AIRPORT CAMPUS (113 KING STREET)

TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK

Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266

DRAWING NAME: 2005 I 8_FIGURES EX-NB -SENSITIVITY ANALYSIS 18002018A

SENSITIVITY ANALYSIS

2024 NO-BUILD TRAFFIC VOLUMES WEEKDAY PEAK AM HOUR

WESTCHESTER COUNTY

NEW YORK

Phone: 914.347.7500 Fax: 914.347.7266

FIGURE NO. 50-A

■ MARYLAND

TENNESSEE

COLORADO

COLORADO

WESTCHESTER COUNTY NEW YORK

Suite 180E Valhalla, NY 10595

SENSITIVITY ANALYSIS 2024 NO-BUILD TRAFFIC VOLUMES WEEKDAY PEAK MIDDAY HOUR

05/18/2020

18002018A

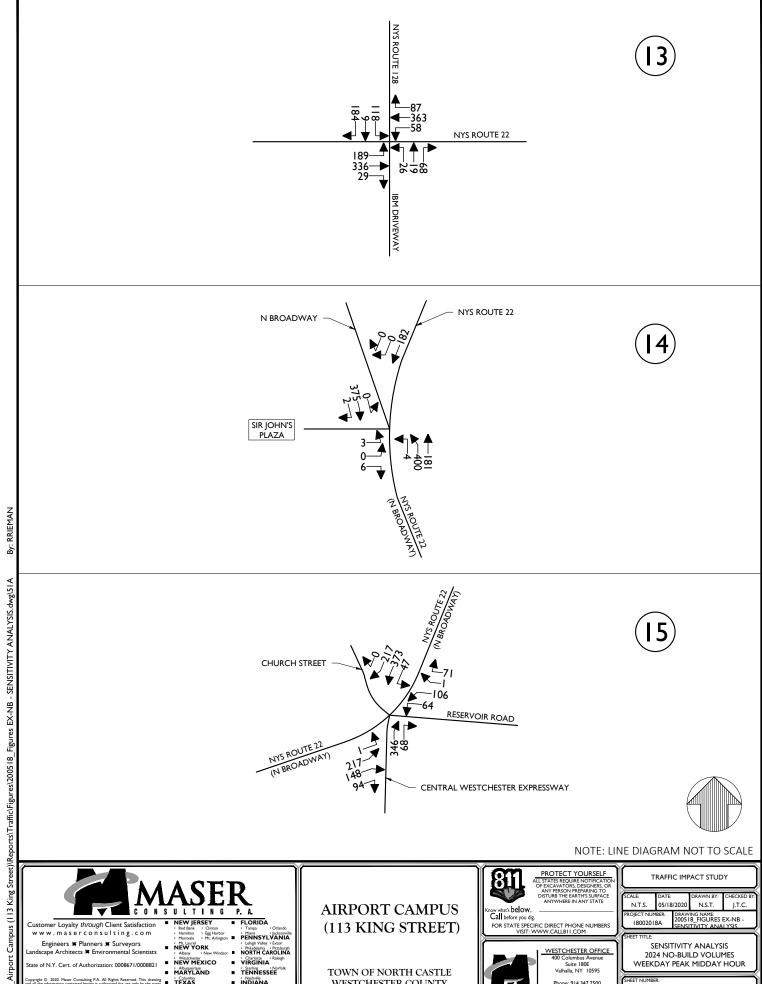

GATEWAY LANE

FIGURE NO. 51

TRAFFIC IMPACT STUDY

N.S.T.

DRAWING NAME: 2005 I 8_FIGURES EX-NB -SENSITIVITY ANALYSIS

WESTCHESTER COUNTY

NEW YORK

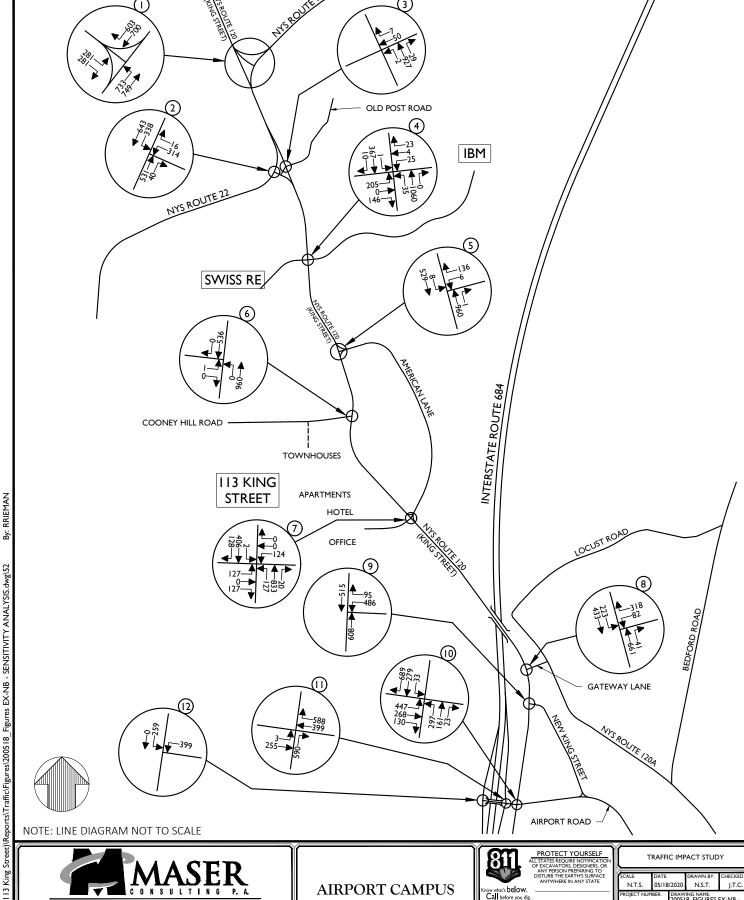

Phone: 914.347.7500 Fax: 914.347.7266

FIGURE NO. 51-A

■ MARYLAND

TENNESSEE

COLORADO

-Airport Campus (113 King Street)/Reports/Traffic/Figures/200518_Figures EX-NB - SENSITIVITY ANALYSIS. dwg\52

Customer Loyalty through Client Satisfaction www.maserconsulting.com Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821

■ NEW YORK

■ MARYLAND

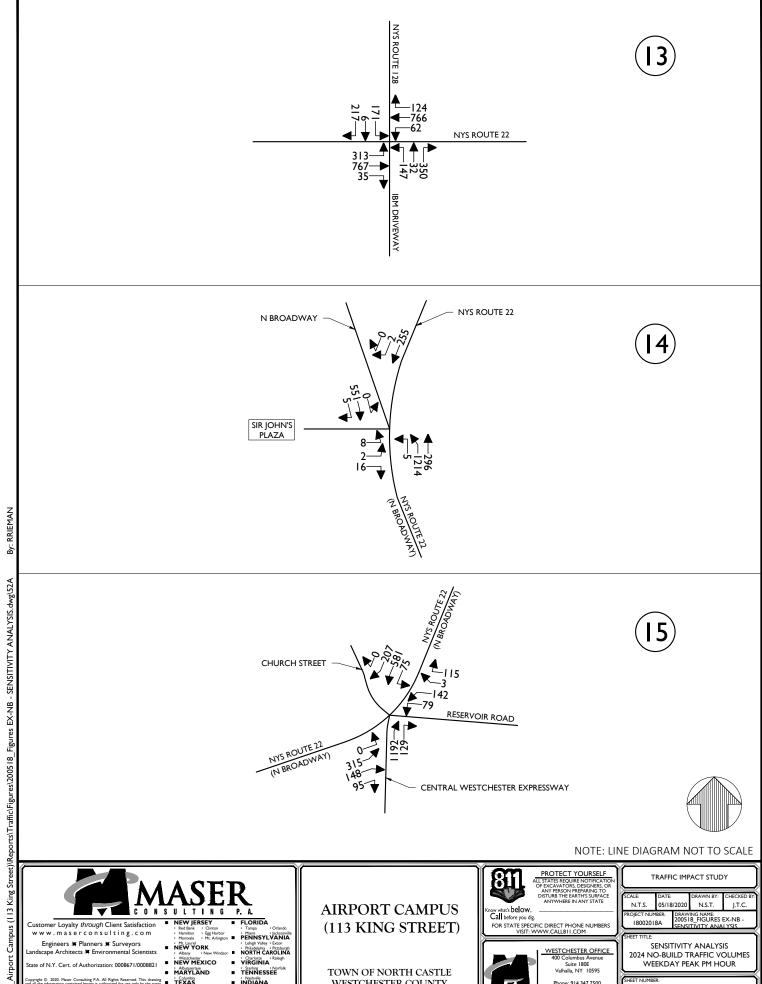
PENNSYLVANIA

Philadelphia Pittsburgh
 NORTH CAROLINA

TENNESSEE Nashville INDIANA COLORADO

(113 KING STREET)

TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK



Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266

DRAWING NAME: 2005 I 8_FIGURES EX-NB -SENSITIVITY ANALYSIS 18002018A

SENSITIVITY ANALYSIS 2024 NO-BUILD TRAFFIC VOLUMES WEEKDAY PEAK PM HOUR

WESTCHESTER COUNTY

NEW YORK

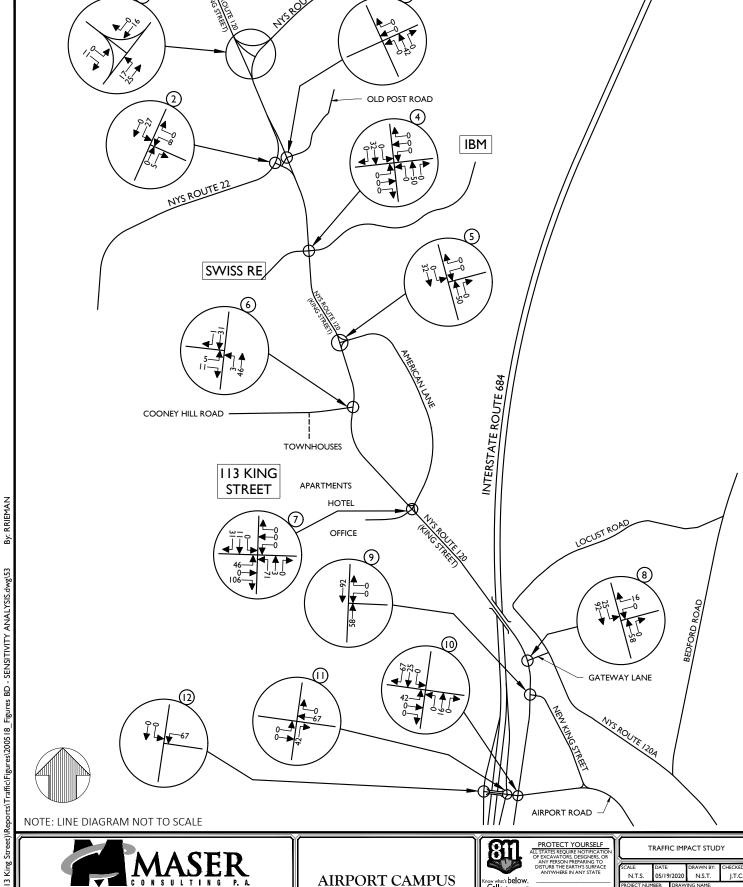

Phone: 914.347.7500 Fax: 914.347.7266

FIGURE NO. 52-A

■ MARYLAND

TENNESSEE

COLORADO

_Airport Campus (113 King Street)|Reports\Traffic\Figures\200518_Figures BD - SENSITIVITY ANALYSIS.dwg\53

Engineers # Planners # Surveyors scape Architects # Environmental Scientists of N.Y. Cert. of Authorization: 0008671/0008821

Customer Loyalty through Client Satisfaction

www.maserconsulting.com

■ MARYLAND

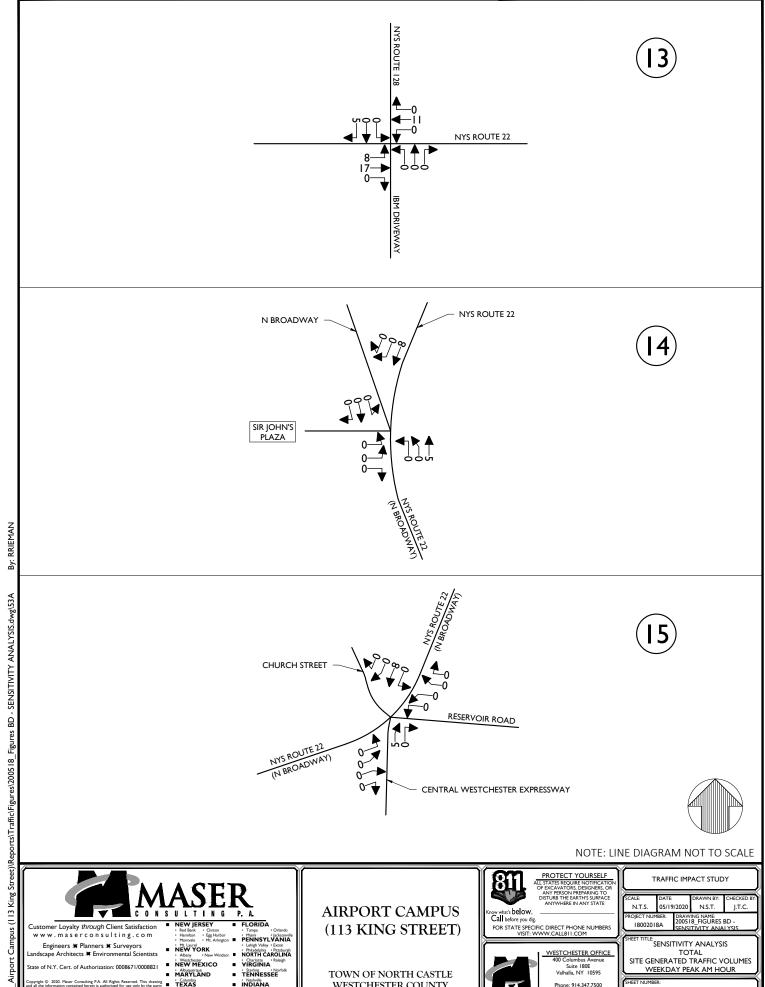
■ NEW YORK

PENNSYLVANIA Philadelphia Pittsburgh
 NORTH CAROLINA

> · Sterling · Norfoll TENNESSEE Nashville INDIANA · Lafayette COLORADO

AIRPORT CAMPUS (113 KING STREET)

TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK



Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266

18002018A

HEET TITLE SENSITIVITY ANALYSIS TOTAL SITE GENERATED TRAFFIC VOLUMES WEEKDAY PEAK AM HOUR

WESTCHESTER COUNTY

NEW YORK

WESTCHESTER OFFICE

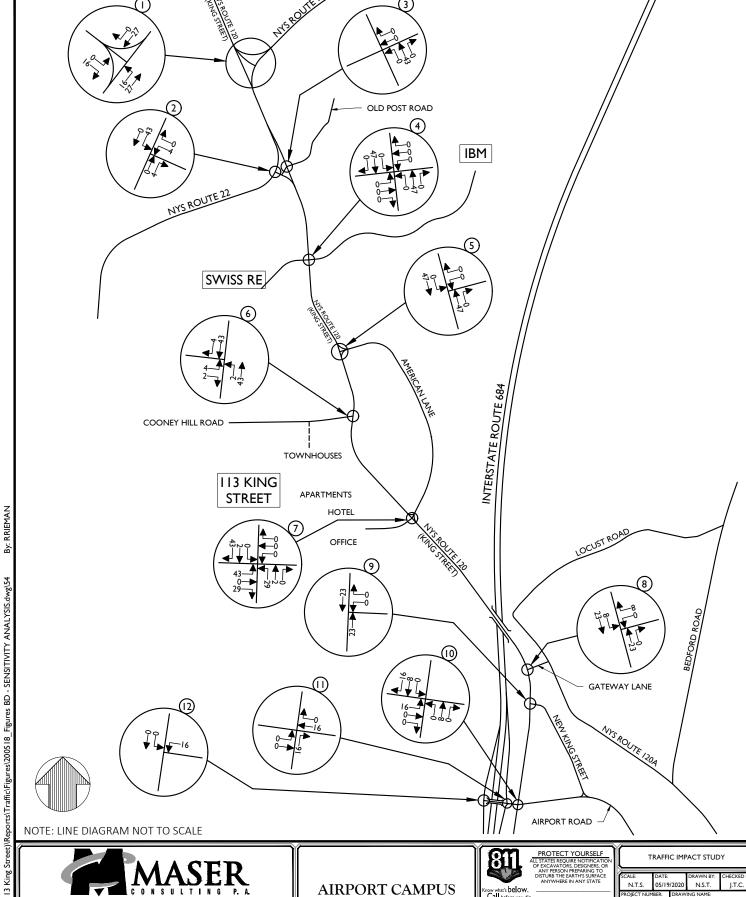
Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266

FIGURE NO. 53-A

NEW YORK

■ MARYLAND


of N.Y. Cert. of Authorization: 0008671/0008821

NEW MEXICO

Philadelphia Pittsburgh
 NORTH CAROLINA

TENNESSEE

· Lafayette COLORADO

_Airport Campus (113 King Street)|Reports\Traffic\Figures\200518_Figures BD - SENSITIVITY ANALYSIS.dwg\54

Engineers # Planners # Surveyors scape Architects # Environmental Scientists of N.Y. Cert. of Authorization: 0008671/0008821

Customer Loyalty through Client Satisfaction

www.maserconsulting.com

NEW YORK

■ MARYLAND

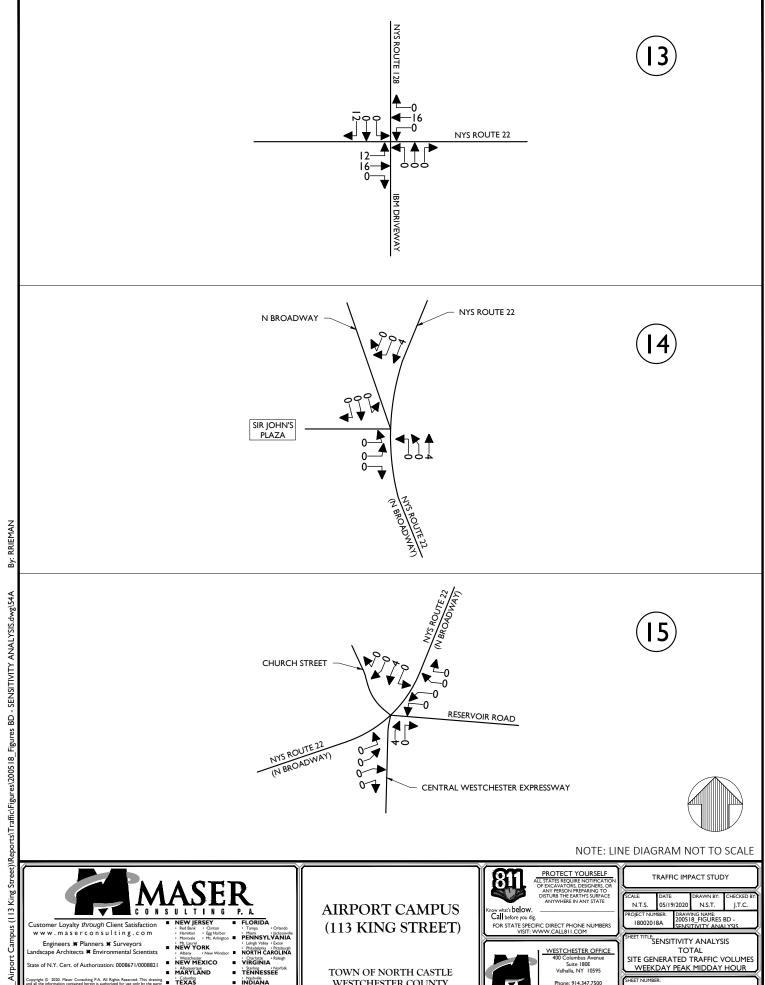
PENNSYLVANIA

Philadelphia Pittsburgh
 NORTH CAROLINA

· Sterling · Norfoll TENNESSEE Nashville INDIANA · Lafayette COLORADO

(113 KING STREET)

TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK



Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266

18002018A

^{LE}SENSITIVITY ANALYSIS TOTAL SITE GENERATED TRAFFIC VOLUMES WEEKDAY PEAK MIDDAY HOUR

(113 KING STREET)

TOWN OF NORTH CASTLE

WESTCHESTER COUNTY

NEW YORK

18002018A

WESTCHESTER OFFICE

Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266

ESENSITIVITY ANALYSIS

TOTAL SITE GENERATED TRAFFIC VOLUMES WEEKDAY PEAK MIDDAY HOUR

FIGURE NO. 54-A

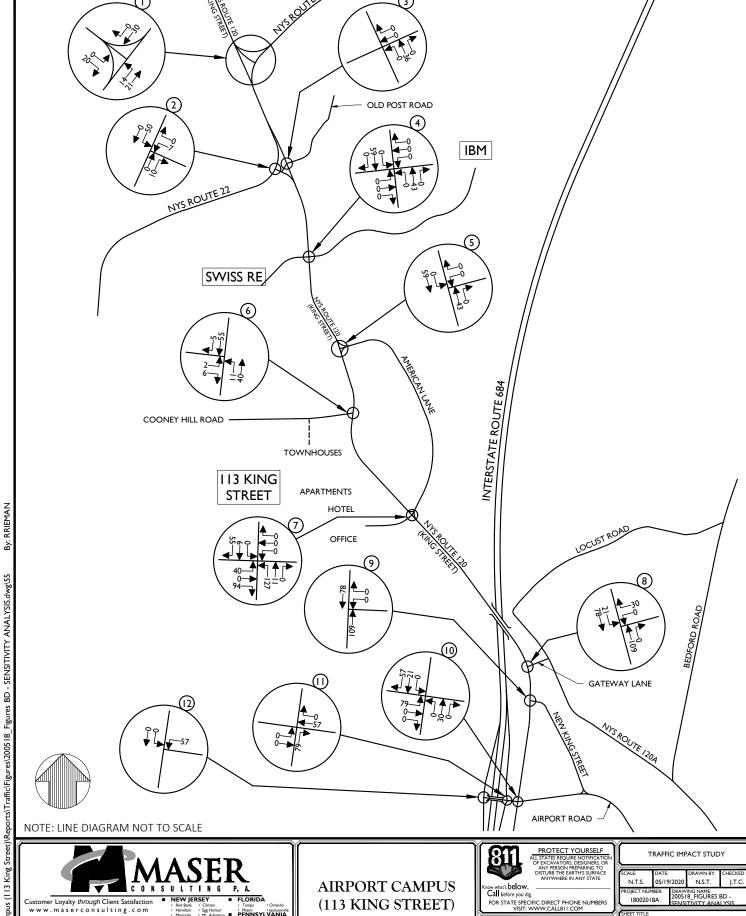
Customer Loyalty through Client Satisfaction

www.maserconsulting.com

Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821

NEW YORK


■ MARYLAND

NEW MEXICO

Philadelphia Pittsburgh
 NORTH CAROLINA

TENNESSEE

COLORADO

_Airport Campus (113 King Street)|Reports\Traffic\Figures\200518_Figures BD - SENSITIVITY ANALYSIS.dwg\55

www.maserconsulting.com Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821

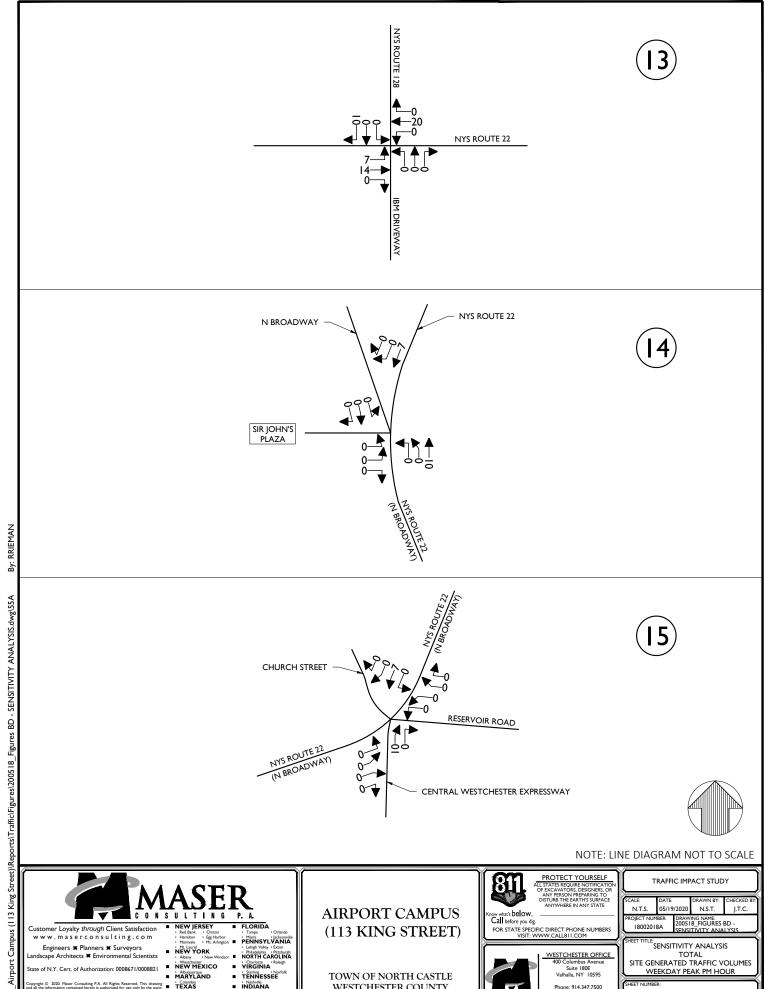
■ NEW YORK

PENNSYLVANIA

 Philadelphia Pittsburgh
 NORTH CAROLINA Sterling Norfolli TENNESSEE

Nashville INDIANA · Lafayette COLORADO

(113 KING STREET)


TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK

Suite 180E Valhalla, NY 10595 Phone: 914.347.7500 Fax: 914.347.7266

DRAWING NAME: 2005 I 8_FIGURES BD SENSITIVITY ANALYS 18002018A

HEET TITLE SENSITIVITY ANALYSIS TOTAL SITE GENERATED TRAFFIC VOLUMES WEEKDAY PEAK PM HOUR

WESTCHESTER COUNTY

NEW YORK

HEET TITLE SENSITIVITY ANALYSIS TOTAL SITE GENERATED TRAFFIC VOLUMES WEEKDAY PEAK PM HOUR

FIGURE NO. 55-A

WESTCHESTER OFFICE

Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266

www.maserconsulting.com

Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821

NEW YORK

■ MARYLAND

NEW MEXICO

Philadelphia Pittsburgh
 NORTH CAROLINA

TENNESSEE

COLORADO

_Airport Campus (113 King Street)|Reports\Traffic\Figures\200518_Figures BD - SENSITIVITY ANALYSIS.dwg\36

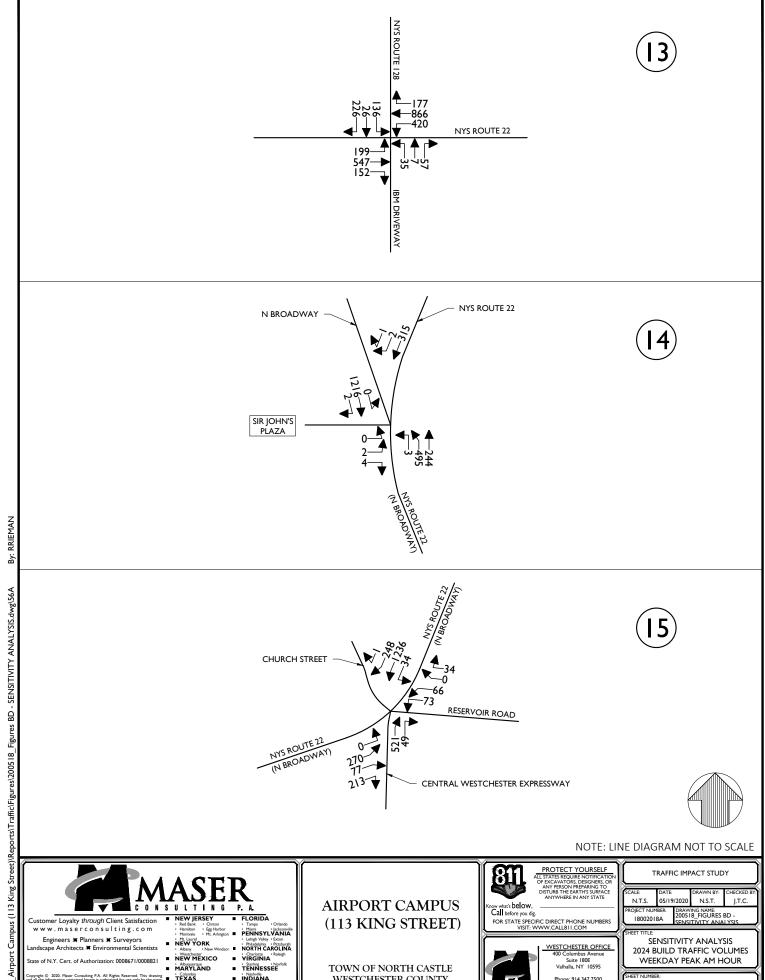
www.maserconsulting.com Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821

PENNSYLVANIA ■ NEW YORK Philadelphia Pittsburgh
 NORTH CAROLINA

■ MARYLAND

· Sterling · Norfoll TENNESSEE Nashville INDIANA · Lafayette COLORADO


(113 KING STREET)

TOWN OF NORTH CASTLE WESTCHESTER COUNTY NEW YORK

Suite 180E Valhalla, NY 10595 Phone: 914.347.7500 Fax: 914.347.7266

SENSITIVITY ANALYSIS 2024 BUILD TRAFFIC VOLUMES WEEKDAY PEAK AM HOUR

WESTCHESTER COUNTY

NEW YORK

Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266

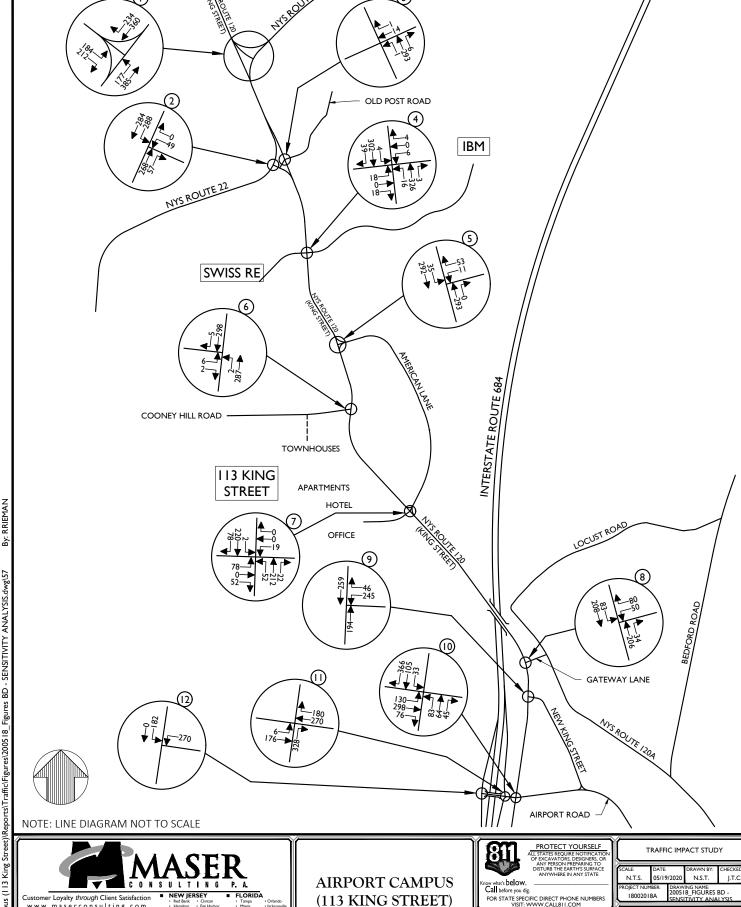

WEEKDAY PEAK AM HOUR

FIGURE NO. 56-A

■ MARYLAND

TENNESSEE

COLORADO

WESTCHESTER COUNTY

NEW YORK

SENSITIVITY ANALYSIS

2024 BUILD TRAFFIC VOLUMES

WEEKDAY PEAK MIDDAY HOUR

FIGURE NO. 57

Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266

_Airport Campus (113 King Street)|Reports\Traffic\Figures\200518_Figures BD - SENSITIVITY ANALYSIS.dwg\57

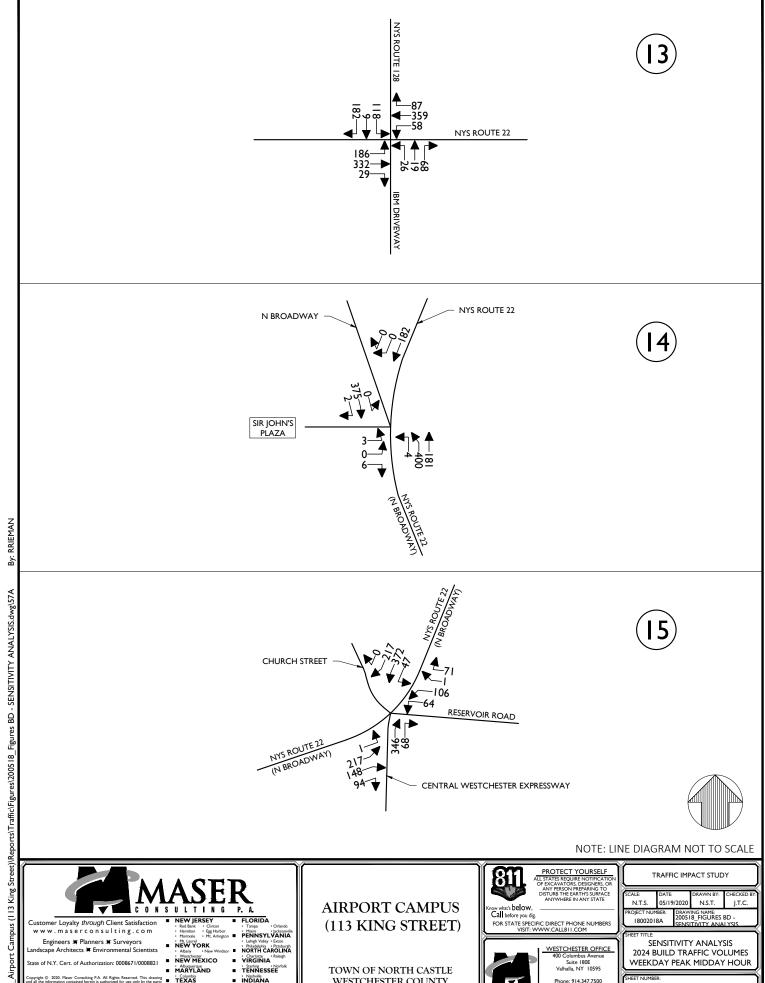
www.maserconsulting.com

Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821

PENNSYLVANIA

Philadelphia Pittsburgh
 NORTH CAROLINA


· Sterling · Norfoll TENNESSEE

Nashville INDIANA

COLORADO

■ NEW YORK

■ MARYLAND

WESTCHESTER COUNTY

NEW YORK

2024 BUILD TRAFFIC VOLUMES

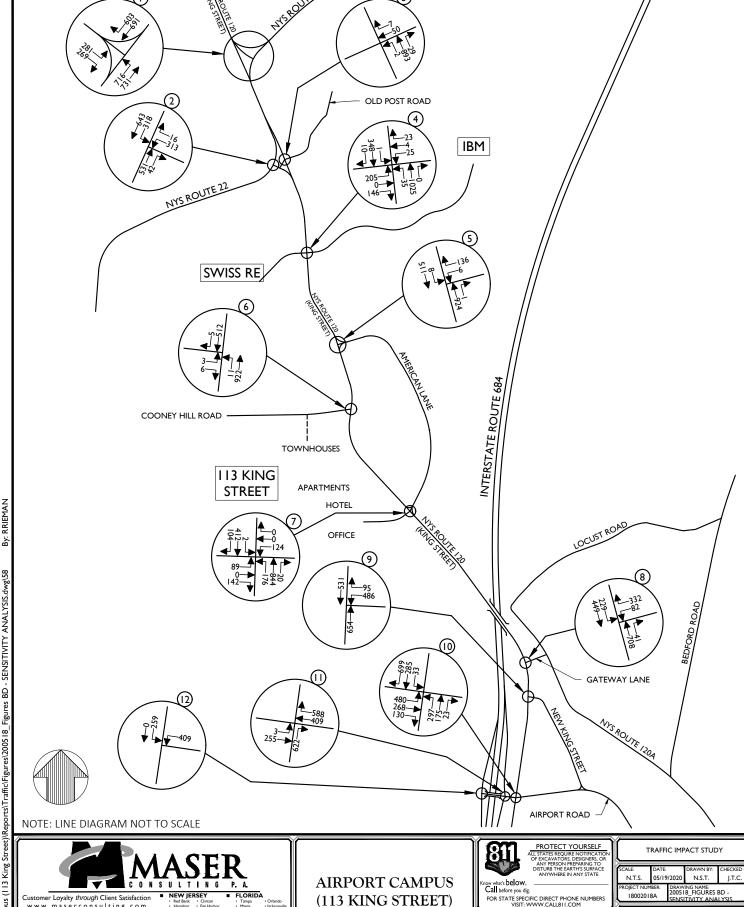
WEEKDAY PEAK MIDDAY HOUR

FIGURE NO. 57-A

Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266

NEW MEXICO


TENNESSEE

COLORADO

Nashville INDIANA

■ MARYLAND

of N.Y. Cert. of Authorization: 0008671/0008821

WESTCHESTER COUNTY

NEW YORK

SENSITIVITY ANALYSIS

2024 BUILD TRAFFIC VOLUMES

WEEKDAY PEAK PM HOUR

FIGURE NO. 58

Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266

_Airport Campus (113 King Street)|Reports\Traffic\Figures\200518_Figures BD - SENSITIVITY ANALYSIS.dwg\58

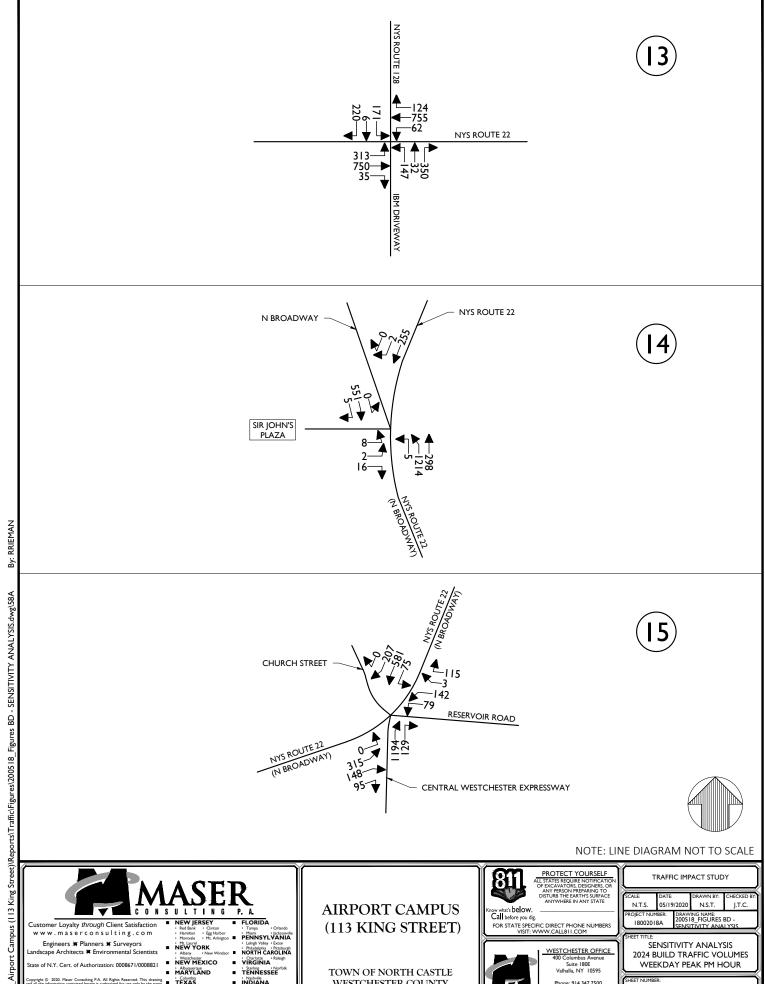
www.maserconsulting.com

Engineers # Planners # Surveyors scape Architects # Environmental Scientists

of N.Y. Cert. of Authorization: 0008671/0008821

PENNSYLVANIA

Philadelphia Pittsburgh
 NORTH CAROLINA


· Sterling · Norfoll TENNESSEE

Nashville INDIANA

COLORADO

■ NEW YORK

■ MARYLAND

WESTCHESTER COUNTY

NEW YORK

Suite 180E Valhalla, NY 10595

Phone: 914.347.7500 Fax: 914.347.7266

WEEKDAY PEAK PM HOUR

FIGURE NO. 58-A

NEW MEXICO

TENNESSEE

COLORADO

Nashville INDIANA

■ MARYLAND

of N.Y. Cert. of Authorization: 0008671/0008821

TABLE NO. 1-S

HOURLY TRIP GENERATION RATES &
ANTICIPATED SITE GENERATED TRAFFIC VOLUMES

AIDDODT CAMBLIS (442 KING STREET)	EN	TRY	E	XIT	TO	TAL
AIRPORT CAMPUS (113 KING STREET)	HTGR*	VOLUME	HTGR*	VOLUME	HTGR*	VOLUME
EXISTING OFFICE BUILDING (1) (100,000 S.F.)						
WEEKDAY PEAK AM HOUR	1.00	100	1.00 *	100	2.00	200
WEEKDAY PEAK MIDDAY HOUR *	0.58 **	58	0.58 **	58	1.16	116
WEEKDAY PEAK PM HOUR	0.97 *	97	0.97	97	1.94	194
EXISTING OFFICE BUILDING (1) (161,000 S.F.)						
WEEKDAY PEAK AM HOUR	1.00	161	1.00 *	161	2.00	322
WEEKDAY PEAK MIDDAY HOUR *	0.58 **	94	0.58 **	94	1.16	188
WEEKDAY PEAK PM HOUR	0.97 *	156	0.97	156	1.94	312
TOTAL TRIPS						
WEEKDAY PEAK AM HOUR		261		261		522
WEEKDAY PEAK MIDDAY HOUR *		152		152		304
WEEKDAY PEAK PM HOUR		253		253		506

THE HOURLY TRIP GENERATION RATES (HTGR) ARE BASED ON DATA PUBLISHED BY THE INSTITUTE OF TRANSPORTATION ENGINEERS (ITE)

TRIP GENERATION HANDBOOK - 10TH EDITION, 2017

(1) ITE LAND USE 710 - OFFICE

* ASSUMES THE ENTRY AND EXIT VOLUMES ARE EQUAL THEREBY ESSENTIALLY DOUBLING THE TRAFFIC VOLUMES

** ASSUMES THE ENTRY AND EXIT VOLUMES ARE DOUBLED

TO ACCOUNT FOR SURCHARGE AND AUTONOMOUS VEHICLES AS REQUIRED IN THE SCOPE

TABLE NO. 2-S
HOURLY TRIP GENERATION RATES &

HOURLY TRIP GENERATION RATES & ANTICIPATED SITE GENERATED TRAFFIC VOLUMES

AIRPORT CAMPUS (113 KING STREET)	EN	TRY	E	XIT	ТО	TAL
TO REMAIN	HTGR*	VOLUME	HTGR*	VOLUME	HTGR*	VOLUME
EXISTING OFFICE BUILDING (1) (100,000 S.F.)						
WEEKDAY PEAK AM HOUR	1.00	100	1.00 *	100	2.00	200
WEEKDAY PEAK MIDDAY HOUR *	0.58 **	58	0.58 **	58	1.16	116
WEEKDAY PEAK PM HOUR	0.97 *	97	0.97	97	1.94	194

AIRPORT CAMPUS (113 KING STREET)	EN	TRY	E	XIT	TO	TAL
PROPOSED	HTGR*	VOLUME	HTGR*	VOLUME	HTGR*	VOLUME
HOTEL (2) (125 ROOMS)						
WEEKDAY PEAK AM HOUR	0.56 ***	70	0.38 ***	48	0.94 ***	118
WEEKDAY PEAK MIDDAY HOUR *	0.27 ***	34	0.27 ***	34	0.54 ***	68
WEEKDAY PEAK PM HOUR	0.62 ***	78	0.58 ***	72	1.20 ***	150
APARTMENTS (3) (149 UNITS)						
WEEKDAY PEAK AM HOUR	0.22 ***	32	0.70 ***	104	0.92 ***	136
WEEKDAY PEAK MIDDAY HOUR *	0.26 ***	38	0.26 ***	38	0.52 ***	76
WEEKDAY PEAK PM HOUR	0.70 ***	104	0.42 ***	62	1.12 ***	166
TOWNHOUSES (3) (22 UNITS)						
WEEKDAY PEAK AM HOUR	0.22 ***	4	0.70 ***	16	0.92 ***	20
WEEKDAY PEAK MIDDAY HOUR *	0.26 ***	6	0.26 ***	6	0.52 ***	12
WEEKDAY PEAK PM HOUR	0.70 ***	16	0.42 ***	8	1.12 ***	24
TOTAL "NEW" TRIPS						
WEEKDAY PEAK AM HOUR		106		168		274
WEEKDAY PEAK MIDDAY HOUR *		78		78		156
WEEKDAY PEAK PM HOUR		198		142		340

THE HOURLY TRIP GENERATION RATES (HTGR) ARE BASED ON DATA PUBLISHED BY THE INSTITUTE OF TRANSPORTATION ENGINEERS (ITE)
TRIP GENERATION HANDBOOK - 10TH EDITION, 2017

(1) ITE LAND USE 710 - OFFICE

(2) ITE LAND USE 310 - HOTEL

(3) ITE LAND USE 220 - MULIFAMILY HOUSING

* ASSUMES THE ENTRY AND EXIT VOLUMES ARE EQUAL THEREBY ESSENTIALLY DOUBLING THE TRAFFIC VOLUMES

** ASSUMES THE ENTRY AND EXIT VOLUMES ARE DOUBLED

TO ACCOUNT FOR SURCHARGE AND AUTONOMOUS VEHICLES AS REQUIRED IN THE SCOPE

*** DOUBLED THE ITE TRIP RATE AS REQUIRED IN THE SCOPE

SENSITIVITY ANALYSIS

LEVEL OF SERVICE SUMMARY TABLE

WISSIGNALED WISSIGNALED		LOCATION					YEAR	2024 NC)-BUILD)						YEA	AR 2024 E	BUILD			
NYS ROUTE 22 NYS ROUTE 12 (NORTH) SIGNALEZD NYS ROUTE 22 NORTH SIGNALEZD NYS ROUTE 22 NORTH SIGNALEZD NYS ROUTE 22 NORTH SIGNALEZD NYS ROUTE 22 NORTH SIGNALEZD NYS ROUTE 22 NYS ROUTE 22 NYS ROUTE 22 NYS ROUTE 22 NYS ROUTE 22 NYS ROUTE 22 NYS ROUTE 24 NYS ROUTE 25 NYS ROUTE 25 NYS ROUTE 25 NYS ROUTE 25 NYS ROUTE 26 NYS ROUTE 26 NYS ROUTE 26 NYS ROUTE 26 NYS ROUTE 27 NYS ROUTE 27 NYS ROUTE 27 NYS ROUTE 28 NYS ROUTE 28 NYS ROUTE 29 NYS ROUTE 29 NYS ROUTE 29 NYS ROUTE 29 NYS ROUTE 29 NYS ROUTE 29 NYS ROUTE 20 NYS ROUTE 2		LOCATION																			
NYS ROUTE 22 NB L NYS ROUTE 22 NB L NYS ROUTE 22 NB L NYS ROUTE 22 NB L NYS ROUTE 22 NB L NYS ROUTE 22 NB L NYS ROUTE 22 NB L NYS ROUTE 22 NB L NYS ROUTE 23 SC T NYS ROUTE 22 NB L NYS ROUTE 24 NB L NYS ROUTE 25 NB L NYS ROUTE 25 NB L NYS ROUTE 26 NB L NYS ROUTE 26 NB L NYS ROUTE 27 NB L NYS ROUTE 27 NB L NYS ROUTE 27 NB L NYS ROUTE 27 NB L NYS ROUTE 27 NB L NYS ROUTE 28 NB L NYS ROUTE 29 NB L NYS ROUTE 29 NB L NYS ROUTE 29 NB L NYS ROUTE 29 NB L NYS ROUTE 29 NB L NYS ROUTE 29 NB L NYS ROUTE 29 NB L NYS ROUTE 29 NB L NYS ROUTE 29 NB L NYS ROUTE 29 NB L NYS ROUTE 29 NB L NYS ROUTE 29 NB L NYS ROUTE 20				LOS	DELAY	V/C	LOS	DELAY	V/C	LOS	DELAY	V/C	LOS	DELAY	V/C	LOS	DELAY	V/C	LOS	DELAY	V/C
NYS ROUTE 22 NB.1	1		, ,																		
NOT PROPRIOCH NOT REPORTACE NOT SERVE NOT SERVE A 0, 0, 0, 10, 10, 10, 10, 10, 10, 10, 10																					
NYS ROUTE 22 SBT		NYS ROUTE 22	NB T	В	12.7					В	10.6		В	12.8		Α			В	10.5	1.49 0.36
NYS ROUTE 170 S8 APPROACH P 103, 1036 103, 20		NYS ROUTE 22		D											0.84						0.79
SER APPROACH A 17, 057 A 0.2 0.15 A 0.3 0.20 A 1.6 0.39 B 1.6 C C C C C C C C C			SB APPROACH	D			В						D	37.0		В					0.43
OVERALL D 36.5 B 16.2 E 78.1 C 34.5 B 16.0 E 73.9		NYS ROUTE 120	SEB R	Α	1.7		Α	0.2		Α	0.3		Α	1.6		Α	0.2		Α	0.3	0.74 0.19
W SIGNAL TRIMNO CHANGES NYS ROUTE 22 NS T																					
NYS ROUTE 22 NS 1 NS APPROACH SEB APPROACH SEB APPROACH SEB APPROACH SEB APPROACH SEB APPROACH SEB APPROACH SEB APPROACH SEB APPROACH SEB APPROACH SINON SINON LIZED NYS ROUTE 120 NS APPROACH NYS ROU				D	36.5		В	16.2		Е	78.1		С	34.9		В	16.0		Е	73.9	
NST ROUTE 22 SE SE APPROACH 2 NYS ROUTE 22 S NS R 3 R A POR SACH 2 SE APPROACH 3 R A POR SACH 3 R A POR SACH 3 R A POR SACH 4 R A R A R A R A R A R A R A R A R A R				_									_								
NYS RQUTE 22 SR T E 62.0 0.94 - - - - E 6.9.1 0.90 E 60.0 0.93 - - - - E 6.9.1 6.9.2 6.9.2 6.9.3 6.9.2 6.9.2 6.9.2 6.9.3 6.9.2 6.9.2 6.9.2 6.9.3 6.9.2 6.9.2 6.9.3 6.9.2 6.9.2 6.9.3 6.9.2 6.9		NYS ROUTE 22	NB T	В	16.1	0.34				В	10.2	0.36	В	16.1	0.33				В	10.2	1.29 0.36
NYS ROUTE 120 SS APPROACH D 46.6		NYS ROUTE 22	SB T	E	62.0	0.94				Е	59.1	0.90	Е	60.0	0.93				Е	58.2	0.90
SEB APPROACH C 26.8		10/0 DOUTE 400	SB APPROACH	D	48.6					С	32.2		D	46.7					С	31.5	0.43
NYS ROUTE 120 (SOUTH) SIGNALIZED NST ROUTE 120 (SOUTH) SIGNALIZED NST ROUTE 22 NB T		NYS ROUTE 120	SEB R	Α	1.7	0.57				Α	0.3	0.20	Α	1.6	0.56				Α	0.3	0.76 0.19
2 NYS ROUTE 22 NYS ROUTH 120 (SOUTH) SIGNALIZED NYS ROUTE 22 NB T NB P NB NB P NB NB NB P NB NB P NB NB P NB																					
SIGNALIZED NBT NBT NBT NBT NBR NB SIGNALIZED NBR NB SIGNALIZED NBT NBR			OVERALL	٦	J4.5					_	01.4		٦	33.7		_				J8.1	
NYS ROUTE 22 NB T NB APPROACH NB APPROACH NB T NS ROUTE 22 SB T A 4.4 A.23 SB T A 4.4 A.23 SB T A 4.4 A.24 A.23 SB T A 4.4 A.24 A.24 B.24 A.24 A.27 B.24 A.27 B.24 A.27 B.24 A.27 B.24 A.27 B.24 A.27 B.24 A.27 B.24 A	2	NYS ROUTE 22 & NYS ROU	TE 120 (SOUTH)																		
NBR NB NBR NB NBR NB NBR NB NBRPROACH C		SIGNALIZED)																		
NYS ROUTE 22 SB L C 244 0.72 B 19.5 0.41 B		NYS ROUTE 22																			0.69 0.05
SST SST		NYS ROUTE 22	NB APPROACH	С	30.6		В	16.4		С	30.8		С	30.6		В	16.4		С	30.2	0.05
NYS ROUTE 120 WB L-R WB APROACH OVERALL C D SB.33 D.28 C C 20.4 D.37.6 D D SB.36 D D SB.36 D D SB.36 D D SB.36 D D SB.36 D D SB.37.6 D D SB.36 D D SB.36 D D SB.36 D D SB.37.6 D D SB.37.6 D D SB.37.6 D D SB.37.6 D D SB.37.6 D D SB.37.6 D D SB.37.6 D D SB.37.6 D D SB.37.6 D D D SB.37.6 D D D SB.37.6 D D D SB.37.6 D D D D SB.37.6 D D D D SB.37.6 D D D D D D D D D D D D D D D D D D D		NIO NOUTE 22	SB T	Α	4.4		Α	5.2	0.14	В	11.7	0.39	Α	4.4		Α	5.2	0.14	В	11.7	0.57
NYS ROUTE 120 SWISS RE DRIVEWAY BB LT C 28.5 D 2 26.5 D 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		NYS ROUTE 120	WB L-R	D	38.3		С	20.4	0.15	D	37.6	0.74	D	38.3	0.28	С	20.4	0.15	D	37.0	0.74
3 KING STREET & OLD POST ROAD UNSIGNALIZED OLD POST ROAD WBT-R B 10.4 0.044 B 10.0 0.022 C 22.0 0.250 B 10.2 0.048 A 9.9 0.022 C 20.9 4 NYS ROUTE 120 & SWISS RE DRIVEWAY IBM DRIVEWAY SIGNALIZED SWISS RE DRIVEWAY EB L-T EB R A 48 0.11 A 4.5 0.09 A 4.0 0.26 A 4.8 0.12 C 26.3 0.09 D 44.6 BB APPROACH B 16.7 B 15.4 D C 27.7 B 16.7 D B 15.4 D C 27.7 B 16.7 D B 15.4 D C 27.7 B 16.7 D B 15.4 D C 27.7 B 16.7 D B 15.4 D C 27.7 B 16.7 D B 15.4 D C 27.7 B 16.7 D B 16																					
UNSIGNALIZED OLD POST ROAD WB T-R B 10.4 0.044 B 10.0 0.022 C 2.0 0.025 B 10.2 0.048 A 9.9 0.022 C 2.0,9 4 NYS ROUTE 120 & SWISS RE DRIVEWAY SIGNALIZED SWISS RE DRIVEWAY EB L-T EB R EB R EB R EB R EB APROACH B 16.7 BIM DRIVEWAY WB L-T WB R A 0.0 0.01 A 1.0 0.01 A 0.0 0.0				Ĭ			_						Ľ								
OLD POST ROAD WB T-R B 10.4 0.044 B 10.0 0.022 C 22.0 0.250 B 10.2 0.048 A 9.9 0.022 C 20.9	3	KING STREET & OLD F	POST ROAD																		
4 NYS ROUTE 120 & SWISS RE DRIVEWAY IBM DRIVEWAY SIGNALIZED SWISS RE DRIVEWAY EB L-T C 29.8 0.12 C 26.3 0.09 D 44.6 0.74 C 27.7 D 27.7		UNSIGNALIZE	ED .																		
SWISS RE DRIVEWAY JIBM DRIVEWAY SIGNALIZED SWISS RE DRIVEWAY EB L-T EB R A 4.8 0.11 A 4.5 0.09 D 44.6 0.74 C 29.8 0.12 C 26.3 0.09 D 44.6 EB RP BR A 4.8 0.11 A 4.5 0.09 A 4.0 0.26 A 4.8 0.11 A 4.5 0.09 A 4.0 0.26 A 4.8 0.11 A 4.5 0.09 A 4.0 0.26 A 4.8 0.11 A 4.5 0.09 A 4.0 0.26 A 4.8 0.11 A 4.5 0.09 A 4.0 0.26 A 4.8 0.11 A 4.5 0.09 A 4.0 0.26 A 4.8 0.11 A 4.5 0.09 A 4.0 0.26 A 4.8 0.11 A 4.5 0.09 A 4.0 0.26 A 4.8 0.11 A 4.5 0.09 A 4.0 0.26 A 4.8 0.11 A 4.5 0.09 A 4.0 0.26 A 4.8 0.11 A 4.5 0.09 A 4.0 0.00 A 4.0 A 0.0		OLD POST ROAD	WB T-R	В	10.4	0.044	В	10.0	0.022	С	22.0	0.250	В	10.2	0.048	Α	9.9	0.022	С	20.9	0.238
SWISS RE DRIVEWAY EB L-T	4																				
EB R BA BA 6.8 0.11 A 4.5 0.09 A 4.0 0.26 A 4.8 0.11 A 4.5 0.09 A 4.0		SIGNALIZED)																		
BM DRIVEWAY BL T		SWISS RE DRIVEWAY																			0.74
NYS ROUTE 120 WB APPROACH A 0.0 0.01 A 0.2 0.02 A 4.3 0.04 A 0.0 0.01 A 0.2 0.02 A 4.3 4.5 A 0.0 NB L A 5.3 0.42 A 1.9 0.02 A 8.2 0.09 A 4.4 0.39 A 1.9 0.02 A 8.2 0.09 A 4.4 0.39 A 1.9 0.02 A 8.2 0.09 A 4.4 0.39 A 1.9 0.02 A 8.2 0.09 A 4.4 0.39 A 1.9 0.02 A 8.2 0.09 A 4.4 0.39 A 1.9 0.02 A 8.2 0.09 A 4.4 0.39 A 1.9 0.02 A 8.2 0.09 A 4.4 0.39 A 1.9 0.02 A 8.2 0.09 A 4.4 0.39 A 1.9 0.02 A 8.2 0.09 A 4.4 0.39 A 1.9 0.02 A 8.2 0.09 A 4.4 0.39 A 1.9 0.02 A 8.2 0.00 A 0.0		IDM DDIVENAN	EB APPROACH	В	16.7		В	15.4		С	27.7		В	16.7		В	15.4		С	27.7	0.26
NYS ROUTE 120 NB L NB T NB T NB T NB T NB T NB T NB T NB T NB T NB T NB T NB T NB T NB T NB T NB A A 4.8 0.030 A 3.2 0.22 F NB T NB A A 0.0 0.00 A 0.00		IRW DKIVEMAY	WB R	Α	0.0		Α	0.2	0.02	Α	4.3	0.04	Α	0.0	0.01	Α	0.2	0.02	Α	4.3	0.11 0.04
NYS ROUTE 120 NB APPROACH NYS ROUTE 120 NA A A A A A A A A A A A A A A A A A A		NYS ROUTE 120	NB L	Α	5.3		Α	1.9	0.02	Α	8.2	0.09	Α	4.4	0.39	Α	1.9	0.02	Α	8.2	0.09
NYS ROUTE 120 SB L SB T SB R A 3.7 SB R A 3.7 O.28 A 0.6 O.01 B 18.6 O.47 B 14.3 O.71 A 4.2 O.21 B 18.6 O.47 B 14.3 O.71 A 4.2 O.21 B 18.6 O.47 B 14.3 O.71 A 4.2 O.21 B 18.6 O.47 B 14.3 O.71 A 4.2 O.21 B 18.6 O.47 B 14.3 O.71 A 4.2 O.21 B 18.6 O.47 B 14.3 O.71 A 4.2 O.21 B 18.6 O.47 B 14.3 O.71 A 4.2 O.21 B 18.6 O.47 B 14.3 O.71 A 4.2 O.28 A 0.6 O.03 A 0.0 O.01 A 3.5 O.28 A 0.6 O.03 A 0.0 O.01 A 3.5 O.28 A 0.6 O.03 A 0.0 O.01 A 3.5 O.28 A 0.6 O.03 A 0.0 O.01 A 3.5 O.28 A 0.6 O.03 A 0.0 O.01 A 3.5 O.28 A 0.6 O.03 A 0.0 O.01 A 4.2 O.75 O.28 A 0.6 O.03 A 0.0 O.01 A 4.2 O.75 O.28 A 0.6 O.03 A 0.0 O.01 A 4.2 O.75 O.28 A 0.6 O.03 A 0.0 O.01 A 4.2 O.75 O.28 A 0.6 O.03 A 0.0 O.01 A 4.2 O.75 O.28 A 4.2 O.75 O.28 O.28 O.30 O.30 O.30 O.30 O.30 O.30 O.30 O.30			NB R	Α	0.0	0.02	Α	0.0	0.00	Α	0.0	0.00	Α	0.0	0.02	Α	0.0	0.00	Α	0.0	0.00
SB R SB APPROACH B 12.5 A 3.8 B 18.1 B 11.2 A 3.8 B 17.7 OVERALL B 10.0 A 4.2 E 71.0 A 9.1 A 4.2 E 62.1 W/SIGNAL TIMING CHANGES SWISS RE DRIVEWAY EB L-T A 4.3 0.27 A 4.3 0.27 A 4.3 0.27 A 4.3 0.27 A 4.3 0.27 C 30.3 EB APPROACH		NYS ROUTE 120	SB L	Α	2.4	0.04	Α	2.2	0.00	Α	8.0	0.01	Α	2.4	0.04	Α	2.2	0.00	Α	8.0	0.01
OVERALL B 10.0 A 4.2 E 71.0 A 9.1 A 4.2 E 62.1 W/SIGNAL TIMING CHANGES SWISS RE DRIVEWAY EB L-T D 48.9 EB R A 4.3 EB APPROACH C 29.9 IBM DRIVEWAY WB L-T C 27.9 WB APPROACH B 17.3 NYS ROUTE 120 NB L B 17.5 NYS ROUTE 120 SB L F 95.1 NYS ROUTE 120 SB L F 92.3 NYS ROUTE 120 SB L E 78.8 NYS ROUTE 120 SB L B 18.0 NYS ROUTE 120 SB L B 18.0 NYS ROUTE 120 SB L B 18.0 NYS ROUTE 120 SB L B 18.0 NYS ROUTE 120 SB L B 18.0 NYS ROUTE 120 SB L B 18.0 NYS ROUTE 120 SB L B 18.0 NYS ROUTE 120 SB L B 18.0 NYS ROUTE 120 SB L			SB R	Α	3.7	0.28	Α	0.6	0.03	Α	0.0	0.01	Α	3.5	0.28	Α	0.6	0.03	Α	0.0	0.45
W/ SIGNAL TIMING CHANGES																					
SWISS RE DRIVEWAY EB L-T EB R EB APPROACH WB L-T WB APPROACH NYS ROUTE 120 SB L NYS ROUTE 120 SB L NYS ROUTE 120 SB L NYS ROUTE 120 SB L SB R		W/ SIGNAL TIMING O			10.0		^	4.2			71.0		 ^	3.1		^	4.2			VZ.1	
EB R										D	48.2	0.75							D	48.9	0.76
BM DRIVEWAY WB L-T WB R WB APPROACH		TJOILE BRIVETY/II	EB R							Α	4.3	0.27							Α	4.3	0.27
NYS ROUTE 120 WB APPROACH NB L NB T NB R NB R NB R NYS ROUTE 120 NB APPROACH NB T NB R NB R NB R NB R NB R NB R NB R NB R		IBM DRIVEWAY	WB L-T							С	27.9	0.11							С	28.3	0.11
NB T		NYS ROUTE 120	WB APPROACH							В	17.3								В	17.5	0.09
NYS ROUTE 120 NYS RO			NB T							F	95.1	1.14							Е	78.8	1.09
SBT B 18.0 0.45 B 17.6 SBR A 0.0 0.01 A 0.0		NYS ROUTE 120	NB APPROACH							F	92.3								E	76.5	0.01
			SB T							В	18.0	0.45							В	17.6	0.42 0.01
OVERALL E 63.5 D 54.2			OVERALL							E	63.5								D	54.2	

SENSITIVITY ANALYSIS

LEVEL OF SERVICE SUMMARY TABLE

						YEAR	2024 NC)-BUILD)						YEA	AR 2024 I	BUILD			
	LOCATION		W	EEKDAY	′ AM	WEE	KDAY M	IDDAY	W	EEKDAY	′ PM	W	EEKDAY	′ AM	WEE	KDAY M	IDDAY	W	EEKDAY	′ PM
Н			LOS	DELAY	V/C	LOS	DELAY	V/C	LOS	DELAY	V/C	LOS	DELAY	V/C	LOS	DELAY	V/C	LOS	DELAY	V/C
5	NYS ROUTE 120 & AMERIC. UNSIGNALIZED	, ,																		
	NYS ROUTE 120 AMERICA LANE (N) AMERICA LANE (N)	SB L-T WB L WB R	A E B	9.5 40.9 12.4	0.180 0.104 0.024	A B B	8.0 13.4 10.2	0.030 0.026 0.075	B D D	11.1 33.8 31.5	0.015 0.052 0.540	A E B	9.3 36.5 12.2	0.176 0.093 0.023	A B B	8.0 13.2 10.2	0.030 0.026 0.074	B D D	10.8 31.4 28.9	0.015 0.048 0.513
6	NYS ROUTE 120 & COONE																			
	NYS ROUTE 120 COONEY HILL ROAD	NB L-T EB L-R	A D	0.0 31.1	0.000 0.015	A B	0.0 14.3	0.000 0.005	A F	0.0 61.4	0.000 0.019	A C	8.9 24.6	0.003 0.093	A B	7.9 13.2	0.002 0.019	A D	8.8 29.5	0.014 0.069
7	NYS ROUTE 120 113 KING STREET DRIVEWAY / AN																			
	SIGNALIZED NYS ROUTE 120	NWB L NWB T NWB R	A A A	6.9 7.2 1.1	0.34 0.41 0.16	A A A	4.8 5.3 1.7	0.10 0.18 0.02	A B A	6.4 15.6 1.7	0.31 0.79 0.02	A A A	6.5 7.3 1.1	0.30 0.41 0.16	A A A	4.7 5.4 1.7	0.08 0.19 0.02	A B A	7.5 16.1 1.7	0.41 0.80 0.02
	NYS ROUTE 120	NWB APPROACH SEB L-T-R SEB APPROACH NEB L-T	A C C D	5.8 23.7 23.7 44.0	0.80	A B B D	5.0 10.8 10.8 37.0	0.34	B B E	14.1 17.8 17.8 58.0	0.66 0.75	A C C D	5.8 21.5 21.5 37.9	0.75 0.44	A A A D	5.0 9.9 9.9 35.5	0.02	В В В D	14.4 17.4 17.4 42.3	0.64 0.52
	AMERICAN LANE (S)	NEB R NEB APPROACH SWB L-T SWB APPROACH	A C C C	8.7 26.3 32.3 32.3	0.37	A C C B	0.9 22.5 30.7 30.7	0.17	A C E E	8.6 33.3 58.9 58.9	0.38	A B C C	8.6 19.7 31.8 31.8	0.41	A C C C	0.8 21.7 30.7 30.7	0.14	A C D D	8.6 21.5 49.0 49.0	0.40
		OVERALL	В	16.7		В	11.4		С	20.7		В	14.6		В	10.6		В	18.3	
8	NYS ROUTE 120 & GATE\	WAY LANE																		
	SIGNALIZED																			
	NYS ROUTE 120 NYS ROUTE 120 GATEWAY LANE	NB T-R NB APPROACH SB L-T SB APPROACH WB L-R WB APPROACH	A	3.2 3.2 31.8 31.8 17.9	0.49 0.93 0.71	A A A C C	2.3 2.3 4.7 4.7 22.5 22.5	0.20 0.29 0.54	В В F F C C	13.4 13.4 535.4 535.4 30.4 30.4	0.78 2.13 0.82	A A D B B	3.2 3.2 38.8 38.8 17.9	0.48 0.97 0.71	A A C C	2.3 2.3 4.6 4.6 22.6 22.6	0.20 0.28 0.54	В В F F C C	17.0 17.0 872.6 872.6 32.3 32.3	0.85 2.88 0.83
		OVERALL	В	19.2		A	7.3		F	212.0		С	23.0		A	7.3		F	335.3	
	W/ SIGNAL TIMING CH	ANGES							W/C)PTIMIZ	ATION							W/C	PTIMIZ	ATION
	NYS ROUTE 120 NYS ROUTE 120 GATEWAY LANE	NB T-R NB APPROACH SB L-T SB APPROACH WB L-R WB APPROACH	 			11111			B B F F	10.1 10.1 86.7 86.7 106.0 106.0	0.60 1.12 1.14	 			 			8 B F F F	11.4 11.4 137.8 137.8 109.5 109.5	0.64 1.24 1.15
		OVERALL							Е	60.5								E	79.9	
9	NYS ROUTE 120 & NEW KI	NG STREET																		
	SIGNALIZED NYS ROUTE 120 NYS ROUTE 120 NEW KING STREET	NB T NB APPROACH SB T SB APPROACH WB L WB R WB APPROACH	A A A D B D	8.6 8.6 4.1 4.1 38.9 11.3 35.2	0.49 0.49 0.59 0.09	A	7.7 7.7 6.2 6.2 37.6 7.7 32.9	0.19 0.27 0.68 0.12	C	21.9 21.9 9.0 9.0 40.1 4.5 34.3	0.71 0.62 0.86 0.16	A A A D B D	8.5 8.5 4.1 4.1 38.9 11.3 35.2	0.48 0.51 0.59 0.09	A A A D A C	7.6 7.6 6.2 6.2 37.6 7.7 32.9	0.19 0.26 0.68 0.12	C C A A D A C	24.9 24.9 9.2 9.2 40.1 4.5 34.3	0.76 0.64 0.86 0.16
		OVERALL	В	10.4		В	16.9		С	22.2		В	10.2		В	17.0		С	23.3	

SENSITIVITY ANALYSIS

LEVEL OF SERVICE SUMMARY TABLE

	LOCATION					YEAR	2024 NO)-BUILD)						YEA	AR 2024 E	BUILD			
			W	EEKDAY	′ AM	WE	KDAY M	IDDAY	W	EEKDAY	/ PM	W	EEKDAY	/ AM	WEE	KDAY M	IDDAY	W	EEKDA	/ PM
			LOS	DELAY	V/C	LOS	DELAY	V/C	LOS	DELAY	V/C	LOS	DELAY	V/C	LOS	DELAY	V/C	LOS	DELAY	V/C
10	NYS ROUTE 120 & AIRPORT	ROAD																		
	SIGNALIZED																			
	NYS ROUTE 120	NB L NB T T-R	ВВ	16.7 17.3	0.21 0.19	ВВ	13.9 14.0	0.17 0.10	C	30.1 24.6	0.67 0.13	ВВ	16.7 17.3	0.21 0.19	ВВ	13.6 12.7	0.16 0.09	C	31.9 25.2	0.71 0.17
	NYS ROUTE 120	NB APPROACH SB L SB T	B C	17.1 16.2 30.5	0.12 0.37	B B C	14.0 14.1 26.0	0.08 0.22	C D	28.0 21.2 51.8	0.10 0.75	B C	17.1 16.2 30.9	0.12 0.39	B C	13.1 13.8 25.6	0.08 0.22	C C	29.2 21.5 54.6	0.11 0.79
	AIRPORT ROAD	SB R SB APPROACH EB L EB L-T-R EB APPROACH	A C F E	1.2 9.2 23.0 89.0 68.1	0.39 0.53 1.10	A B C C	1.0 7.1 17.3 25.6 23.6	0.31 0.23 0.70	A C C C C	8.4 21.0 24.5 24.4 24.5	0.64 0.54 0.66	A C F E	1.2 9.4 22.9 88.2 67.2	0.41 0.53 1.09	A B C C	1.0 7.0 17.5 26.0 24.0	0.31 0.23 0.70	A C C C C	8.6 21.9 25.3 24.1 24.7	0.64 0.64 0.65
		OVERALL	D	41.4		В	15.1		С	23.7		D	40.8		В	15.1		С	24.4	
	W/ SIGNAL TIMING CHAN	GES																		
	NYS ROUTE 120	NB L NB T T-R	ВВ	18,9 19.0	0.22 0.20							ВВ	19.0 19.0	0.22 0.20						
	NYS ROUTE 120	NB APPROACH SB L SB T SB R	B B C A	19.0 18.3 33.7 1.2	0.13 0.40 0.39				 			B C A	19.0 18.3 34.0 1.2	0.13 0.42 0.40	 			 		
	AIRPORT ROAD	SB APPROACH EB L EB L-T-R EB APPROACH	B C E D	10.1 21.6 67.7 53.1	0.50 1.03	 			 			B C E D	10.2 21.5 66.9 52.6	0.50 1.03	 			 		
		OVERALL	С	34.0								С	33.5							
11	AIRPORT ROAD & I-684 NB ON/0	OFF RAMP																		
	UNSIGNALIZED																			
	I-684 NB ON-RAMP I-684 NB OFF-RAMP	EB L-T NB R	A F	8.8 175.3	0.001 1.295	A B	8.3 12.5	0.006 0.432	B D	10.4 27.1	0.005 0.818		8.9 169.3	0.001 1.280	A B	8.3 12.5	0.006 0.426	B D	10.4 31.5	0.005 0.775
12	AIRPORT ROAD & I-684 SB ON/0	OFF RAMP																		
	UNSIGNALIZED																			
	I-684 NB ON-RAMP I-684 NB OFF-RAMP	WB L SB L	A F	0.0 858.6	0.000 2.815		0.0 18.3	0.000 0.415		0.0 64.6	0.000 0.893		0.0 942.9	0.000 2.999	A C	0.0 17.8	0.000 0.405	A F	0.0 71.9	0.000 0.846

SENSITIVITY ANALYSIS

LEVEL OF SERVICE SUMMARY TABLE

						YEAR	2024 NC)-BUILD)						YEA	AR 2024 I	BUILD			
	LOCATION		10/	EEKDAY	/ ΔM	I WE	KDAY M	IDDAY	١٨/١	EEKDAY	/ DM	۱۸/	EEKDAY	/ AM	I WE	EKDAY M	IDDAY	1 10/	EEKDAY	' DM
				DELAY		LOS	DELAY			DELAY			DELAY		LOS		V/C		DELAY	V/C
13	NYS ROUTE 22 NYS ROUTE 128 / NORTH CAS																			
	SIGNALIZED																			
	NYS ROUTE 22 NYS ROUTE 22	NEB L NEB T NEB R NEB APPROACH SWB L SWB T SWB R	E C A C D C A	59.7 29.4 5.3 32.0 52.6 23.4 4.8	0.76 0.49 0.25 0.84 0.55 0.22	D B A C D B A	48.2 13.1 0.1 24.4 47.2 19.1 5.5	0.69 0.20 0.03 0.38 0.26 0.13	E B A C E C A	59.2 18.7 0.1 29.5 59.0 33.4 6.2	0.83 0.42 0.05 0.44 0.62 0.20	E C A C D C A	59.7 29.2 5.3 31.9 52.6 23.2 4.5	0.76 0.47 0.25 0.84 0.54 0.22	D B A C D B A	47.9 13.0 0.1 24.2 46.9 18.8 5.4	0.69 0.19 0.03 0.38 0.26 0.13	E B A C E C A	59.2 18.6 0.1 29.6 59.0 33.2 6.2	0.83 0.41 0.05 0.44 0.59 0.20
	NYS ROUTE 128	SWB APPROACH SB L-T SB R	C D A	29.5 45.4 8.2	0.56 0.49	B D A	19.9 36.4 7.5	0.46 0.41	C D A	31.5 38.4 6.3	0.49 0.39	C D A	29.4 45.4 8.2	0.56 0.49	B D A	19.6 36.5 7.5	0.46 0.41	C D A	31.3 38.4 6.3	0.49 0.38
	NORTH CASTLE DRIVE (IBM)	SB APPROACH NB L NB T NB R NB APPROACH	C D C A B	23.6 38.4 32.9 5.4 18.9	0.23 0.03 0.17	B C C A B	19.3 30.3 28.7 7.4 16.3	0.12 0.05 0.18	C D C A B	20.8 42.5 30.4 6.4 17.8	0.55 0.07 0.53	C D C A B	23.7 38.4 32.9 5.4 18.9	0.23 0.03 0.17	B C C A B	19.4 30,3 28.7 7.4 16.3	0.12 0.05 0.18	C D C A B	20.6 42.5 30.4 6.4 17.8	0.55 0.07 0.53
		OVERALL	С	29.1		С	21.2		С	26.9		С	29.0		С	21.0		С	26.8	
14	NYS ROUTE 22. N. BROADWAY / SIR JOH W/ DEP IMPROVEMI	N'S PLAZA																		
	SIR JOHN'S PLAZA	EB LL	E	62.5	0.03	C	31.0	0.02	E	67.1	0.10	E	62.5	0.03	C	31.0	0.02	E	67.1	0.10
	NYS ROUTE 22	EB R EB APPROACH SWB L L-R	C E	0.5 21.2 63.3	0.03	А В С	0.3 10.6 31.4	0.03	А С Е	1.5 25.8 66.7	0.11	A C E	0.5 21.2 63.3	0.03	А В С	0.3 10.6 31.4	0.03	C E	1.5 25.8 66.7	0.11
	NYS ROUTE 22	SWB APPROACH NB L-T	E A	63.3 7.7	0.74	C A	31.4 7.9	0.43	E D	66.7 42.8	0.07	E	63.3 7.7	0.74	C	31.4 7.9	0.43	E D	66.7 42.8	0.00
	N. BROADWAY	NB R NB APPROACH SB L-T T-R SB APPROACH	А А В В	0.4 5.3 13.0 13.0	0.19 0.72 	A A A	0.5 5.6 6.7 6.7	0.14 0.27	A C A A	0.5 34.5 8.6 8.6	0.22 0.35 	А А В В	0.4 5.3 13.0 13.0	0.19 0.72 	A A A	0.5 5.6 6.7 6.7	0.14 0.27	A C A A	0.5 34.5 8.6 8.6	0.22 0.35
		OVERALL	В	17.5		В	10.1		С	31.8		С	17.5		Α	10.1		С	31.8	
15	NYS ROUTE 22 CENTRAL WESTCHESTER EX RESERVOIR ROAD / CHUR	(PRESSWAY &																		
	SIGNALIZED																			
	NYS ROUTE 22 RESERVOIR ROAD	EB L EB T-R EB APPROACH WB L-T	F F F	90.1 101.8 96.1 103.4	0.83 0.91 0.74	E E E	66.8 70.0 68.5 73.4	0.72 0.77 0.69	F E F	96.0 78.6 88.4 105.2	0.89 0.70 0.86	F F F	90.1 101.8 96.1 103.4	0.83 0.91 0.74	E E E	66.8 70.0 68.5 73.4	0.72 0.77 0.69	F E F	96.0 78.6 88.4 105.2	0.89 0.70 0.86
	CENTRAL WESTCHESTER EXPRESSWAY	WB R WB APPROACH NB TT NB R	A F E A	0.9 83.1 56.8 1.2	0.12 0.53 0.08	A D E A	6.7 53.7 66.1 4.1	0.20 0.71 0.15	A E F A	10.0 72.8 255.5 9.1	0.29 1.45 0.21	F E A	0.9 83.1 56.7 1.2	0.12 0.53 0.08	A D E A	6.7 53.7 66.1 4.1	0.20 0.71 0.15	A E F A	10.0 72.8 256.4 9.1	0.29 1.46 0.21
	NYS ROUTE 22	NB APPROACH SB L SB T T-R SB APPROACH	D F F	52.0 41.3 137.6 135.4	0.14 1.18	E D D D	55.9 45.0 54.3 53.6	0.23 0.74	F D E E	231.4 53.5 55.5 55.3	0.48 0.67	D F F	51.9 41.3 137.6 135.4	0.14 1.18	E D D D	55.9 45.0 54.2 53.5	0.23 0.74	F D E E	232.3 53.5 55.5 55.3	0.48 0.67
		OVERALL	F	107.5		E	58.1		F	138.7		F	107.6		E	58.1		F	139.2	
	W/ SIGNAL TIMING CH	ANGES	W/ C	OPTIMIZ	ATION				W/C	PTIMIZ	ATION	W/ C	PTIMIZ	ATION				W/C	PTIMIZA	ATION
	NYS ROUTE 22	EB L EB T-R	F F	110.4 130.3	0.91 1.01				F F	131.5 97.5	1.02 0.80	F F	110.4 130.3					F F	131.5 97.5	1.02 0.80
	RESERVOIR ROAD	EB APPROACH WB L-T WB R	F F A	120.7 170.9 1.5	1.04 0.16	 			F F B	116.7 146.7 17.3	1.02 0.38	F F A	120.7 170.9 1.5	1.04 0.16	 			F F B	116.7 146.7 17.3	1.02 0.38
	CENTRAL WESTCHESTER EXPRESSWAY NYS ROUTE 22	WB APPROACH NB TT NB R NB APPROACH SB L SB T T-R	F D A D C E	137.4 43.4 1.0 39.8 31.3 73.1	0.41 0.07 0.11 0.99				F	102.6 83.9 6.5 76.3 113.4 45.5	0.98 0.17 0.91 0.55	F D A D C E	137.4 43.3 1.0 39.7 31.3 73.1	0.41 0.07 0.11 0.99				F F A E F D	102.6 84.2 6.5 76.6 113.4 45.5	0.99 0.17 0.91 0.55
		SB APPROACH OVERALL	Ē	72.1					D E	51.4 79.5		Ē	72.1					D E	51.4 79.7	
		OVERALL	_	13.2						19.0		Ľ	13.2					_	19.1	

 $\label{thm:conds} \textbf{THE ABOVE REPRESENTS THE LEVELS OF SERVICE, VEHICLE DELAY IN SECONDS AND VOLUME-TO-CAPACITY (V/C) RATIO FOR THE ABOVE INTERSECTIONS. } \\$

SENSITIVITY ANALYSIS

QUEUE SUMMARY TABLE

		STORAGE			2024 N	O-BUILD					2024	BUILD		
		LENGTH	А	M	MID	-DAY	F	PM	А	ιM	MID	-DAY	F	PM
		(FT.)	50%	95%	50%	95%	50%	95%	50%	95%	50%	95%	50%	95%
1	NYS ROUTE 22 & NYS ROUTE 120 (NORTH)													
	SIGNALIZED													
	NYS ROUTE 22 NB NB		161' 108'	249' 141'	76' 42'	167' 80'	830' 133'	1146' 202'	147' 105'	231' 137'	73' 41'	161' 78'	802' 130'	1115' 195'
	NYS ROUTE 22 SB SB		305' 0'	458' 0'	78' 0'	151' 0'	266' 0'	367' 0'	287' 0'	434' 0'	76' 0'	147' 0'	261' 0'	361' 0'
	NYS ROUTE 120 SEB L		447'	726'	77'	169'	207'	307'	437'	724'	76'	167'	207'	307'
	W/ SIGNAL TIMING CHANGES													
	NYS ROUTE 22 NB NB		171' 126'	264' 165'	-	-	776' 135'	1067' 192'	155' 122'	241' 160'	-	-	748' 131'	1035' 186'
	NYS ROUTE 22 SB SB	1000+	338'	481' 0'	-	-	292' 0'	431' 0'	317' 0'	470' 0'	-	-	287'	422' 0'
	NYS ROUTE 120 SEB L		406'	650'	-	-	212'	314'	391'	650'	-	-	212'	314'
2	NYS ROUTE 22 & NYS ROUTE 120 (SOUTH)													
	SIGNALIZED													
	NYS ROUTE 22 NB NB		127' 63'	183' 110'	41' 0'	74' 13'	150' 0'	246' 10'	127' 61'	183' 107'	41' 0'	73' 13'	147' 0'	242' 10'
	NYS ROUTE 22 SB SB	215	218' 53'	336' 78'	45' 21'	78' 34;	96' 107'	169' 175'	204' 53'	315' 78'	44' 21'	76' 34'	89' 106'	159' 176'
	NYS ROUTE 120 WB L		28'	68'	15'	41'	179'	317'	28'	68'	14'	41'	175'	311'
3	KING STREET & OLD POST ROAD													
	UNSIGNALIZED													
	OLD POST ROAD WB T-R	1500+	-	5'	-	3'	-	25'	-	5'	-	3'	-	23'
4	NYS ROUTE 120 &													
	SWISS RE DRIVEWAY / IBM DRIVEWAY													
	SIGNALIZED SWISS RE DRIVEWAY EB L	T 620	6'	27'	5'	26'	116'	190'	6'	27'	5'	26'	116'	190'
	EB I	315	0'	9'	0'	9'	0'	33'	0'	9'	0'	9'	0'	33'
	IBM DRIVEWAY WB L WB I		1' 0'	10' 0'	2' 0'	13' 0'	13' 0'	34' 11'	1' 0'	10' 0'	2' 0'	13' 0'	13' 0'	34' 11'
	NYS ROUTE 120 NB NB		1' 0'	33'	1' 0'	6'	7'	23'	1' 0'	33'	1' 0'	6'	7'	23'
	NB NB I		0'	178' 0'	0'	130' 0'	725' 0'	1214' 0'	0'	161' 0'	0'	125' 0'	681' 0'	1165' 0'
	NYS ROUTE 120 SB		0'	9'	0'	2'	0'	2'	0'	9'	0'	2'	0'	2'
	SB SB	1000+	164' 13'	667' 75'	0'	120' 4'	144' 0'	263' 0'	146' 11'	610' 71'	0'	116' 4'	135' 0'	248' 0'
	W/ SIGNAL TIMING CHANGES													
	SWISS RE DRIVEWAY EB L		-	-	-	-	126'	202'	-	-	-	-	128'	204'
	EB I IBM DRIVEWAY WB L		-	-	-	-	0' 14'	35' 36'	-	-	-	-	0' 14'	35' 36'
	WB I		-	-	_	-	0'	11'	-	-	-	-	0'	12'
	NYS ROUTE 120 NB		-	-	-	-	8'	24'	-	-	-	-	8'	24'
	NB -		-	-	-	-	764'	1265'	-	-	-	-	649'	1219'
	NB I		-	-	-	-	0'	0'	-	-	-	-	0'	0'
I	NYS ROUTE 120 SB] -	-	-	-	0'	3'	-	-	-	-	0'	3'
	SB SB	1000+ 275		-	-	-	148' 0'	267' 0'	-	-	-	-	139' 0'	253' 0'
L	33	2.0												

SENSITIVITY ANALYSIS

QUEUE SUMMARY TABLE

			0700405			2024 NO	D-BUILD					2024	חווום		
			STORAGE LENGTH	Δ.					PM		M			I -	PM
			(FT.)	50%	M 95%	MID- 50%	95%	50%	95%	50%	M 95%	50%	-DAY 95%	50%	95%
5	NYS ROUTE 120 & AMERICAN LANE (NORTH) UNSIGNALIZED														
	UNSIGNALIZED														
	NYS ROUTE 120 SB	L-T	175	-	18'	-	3'	-	0'	-	15'	-	3'	-	0'
	AMERICA LANE (N) WB AMERICA LANE (N) WB	L R	350 385	-	3'	-	3' 5'	-	5' 75'	-	8' 3'	-	3' 5'	-	3' 70'
6	NYS ROUTE 120 & COONEY HILL ROAD														
	UNSIGNALIZED														
	NYS ROUTE 120 NB	L-T	1000	-	0'	-	0'	-	0'	-	0'	-	0'	-	0'
	COONEY HILL ROAD EB	L-R	790	-	0'	-	0'	-	3'	-	8'	-	3'	-	5'
7	NYS ROUTE 120 & 113 KING STREET DRIVEWAY / AMERICAN LANE	(S)													
	SIGNALIZED														
	NYS ROUTE 120 NWB NWB	L T	120 1000+	23' 94'	41' 147'	10' 37'	22' 62'	24' 308'	41' 438'	21' 95'	39' 147'	8' 38'	19' 63'	34' 316'	55' 449'
	NWB NYS ROUTE 120 SEB	R L-T-R	200 1000+	0' 302'	17' 467'	0' 83'	6' 140'	0' 216'	6' 306'	0' 276'	17' 423'	0' 80'	6' 136'	0' 206'	6' 293'
	113 KING STREET DRIVEWAY NEB	L-T	300	71'	140'	46'	94'	76'	158'	50'	100'	39'	82'	50'	97'
	NEB AMERICAN LANE (S) SWB	R L-T	95 1000+	0' 13'	48' 37'	9'	0' 29'	0' 74'	43' 155'	0' 13'	52' 37'	9'	0' 29'	0' 72'	46' 141'
8	NYS ROUTE 120 & GATEWAY LANE														
	SIGNALIZED														
	NYS ROUTE 120 NB	T-R	425	27'	45'	13'	35'	61'	567'	27'	45'	13'	35'	66'	625'
	NYS ROUTE 120 SB GATEWAY LANE WB	L-T L-R	1000+ 270	244' 27'	641' 93'	39' 25'	88' 72'	436' 150'	695' 214'	282' 27'	683' 93'	38' 25'	86' 72'	554' 165'	790' 237'
	SIGNALIZED	L-K	270	21	93	25	12		MIZATION	21	95	25	12		MIZATION
	NYS ROUTE 120 NB NYS ROUTE 120 SB	T-R L-T	425 1000+	-	-	-	-	164' 434'	285' 280'	-	-	-	-	196' 485'	319' 358'
	GATEWAY LANE WB	L-R	270	-	-	-	-	143'	308'	-	-	-	-	149'	316'
9	NYS ROUTE 120 & NEW KING STREET														
	SIGNALIZED														
	NYS ROUTE 120 NB	Т	1000+	111'	221'	40'	86'	248'	398'	109'	217'	39'	84'	279'	497'
	NYS ROUTE 120 SB	T	425	37'	63'	29'	102'	88'	52'	38'	63'	28'	101'	81'	44'
	NEW KING STREET WB WB	L R	180 1000	77' 0'	127' 19'	122' 0'	180' 23'	232' 0'	380' 29'	77' 0'	127' 19'	122' 0'	180' 23'	232' 0'	380' 29'

TABLE NO. 4-S

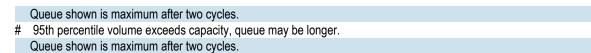
SENSITIVITY ANALYSIS

QUEUE SUMMARY TABLE

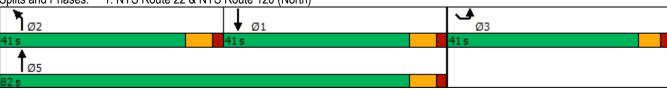
			TORAGE			2024 NO)-BUILD					2024 E	BUILD		
			ENGTH (FT.)	A	М	MID-	-DAY	Р	M	А	М	MID-	DAY	Р	PM
			(,	50%	95%	50%	95%	50%	95%	50%	95%	50%	95%	50%	95%
10	NYS ROUTE 120 & AIRPORT ROAD														
	SIGNALIZED														
	NYS ROUT 120 NB NB	L TT-R 1	385 1000+	32' 30'	62' 58'	21' 12'	61' 37'	120' 41'	269' 90'	32' 30'	62' 58'	20' 7'	60' 36'	124' 45'	280' 97'
	NYS ROUTE 120 SB SB	L	190 1000+	17' 87'	39' 154'	8' 40'	30' 104'	11' 166'	39' 385'	17' 92'	39' 161'	8' 39'	29' 102'	12' 174'	39' 398'
	SB AIRPORT ROAD EB EB	R L L-T-R	460 425 85	0' 168' 574'	22' 278' 855'	0' 42' 160'	20' 85' 274'	159' 201' 213'	245' 291' 314'	0' 165' 572'	22' 274' 853'	0' 42' 162'	20' 83' 273'	165' 222' 216'	253' 320' 316'
	W/ SIGNAL TIMING CHANGES														
	NYS ROUT 120 NB NB	L TT-R 1	385 1000+	36' 33'	67' 62'	-	-	-	-	36' 33'	67' 62'	-	-	-	-
	NYS ROUTE 120 SB SB	L	190 1000+	19' 94'	42' 165'	-	-	-	-	19' 99'	42' 173'	-	-	-	-
	SB AIRPORT ROAD EB EB	R L L-T-R	460 425 85	0' 169' 576'	21' 277' 862'	- - -		- - -	-	0' 166' 573'	22' 273 861'	- - -	- - -	- - -	- - -
11	AIRPORT ROAD & I-684 NB ON/OFF RAMP														
	UNSIGNALIZED														
	I-684 NB ON-RAMP EB I-684 NB OFF-RAMP NB	L-T R	340 950	-	0' 623'	-	0' 55'	-	0' 223'	-	0' 605'	-	0' 55'	-	0' 263'
12	AIRPORT ROAD & I-684 SB ON/OFF RAMP														
	UNSIGNALIZED														
	I-684 NB ON-RAMP WB I-684 NB OFF-RAMP SB	L L 1	425 1000+	-	- 1498'	-	- 50'	-	208'	-	- 1543'	-	- 48'	-	- 223'

TABLE NO. 4-S

SENSITIVITY ANALYSIS

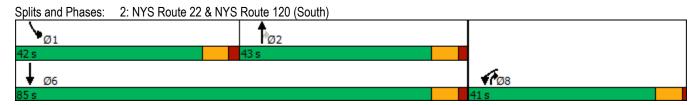

QUEUE SUMMARY TABLE

			STORAGE			2024 N	D-BUILD					2024 I	BUILD		
			LENGTH (FT.)	-	M	MID	-DAY	F	PM	Д	M	MID	-DAY	F	M
			(F1.)	50%	95%	50%	95%	50%	95%	50%	95%	50%	95%	50%	95%
13	NYS ROUTE 22 NYS ROUTE 128 / NORTH CASTLE DE	RIVE (IBM)													
	SIGNALIZED														
	NYS ROUTE 22	NEB NEB	L 680 T 1000+ R 250 L 400	133' 160' 0' 274'	210' 231' 46' 481'	101' 52' 0' 31'	192' 103' 0' 79'	208' 180' 0' 43'	337' 276' 0' 92'	133' 155' 0' 274'	210 223' 46' 481'	99' 51' 0' 31'	186' 100' 0' 78'	208' 175' 0' 43'	337' 270' 0' 92'
		SWB SWB	T 1000+ R 250	225' 4'	357' 50'	67' 0'	135' 34'	239' 0'	357' 45'	218' 3'	347' 48'	66' 0'	131' 33'	235' 0'	351' 45'
	NYS ROUTE 128 NORTH CASTLE DRIVE (IBM)	SB	-T 580 R 250 L 290	102' 0' 20'	169' 62' 50'	63' 0' 12'	127' 53' 36'	103' 0' 87'	179' 57' 160'	102' 0' 20'	169' 61' 50'	63' 0' 12'	126' 53' 36'	103' 0' 87'	179' 57' 160'
	NONTH CASTLE DRIVE (IDIV)	NB	T 1000+ R 225	4' 0'	16' 22'	9' 0'	29' 30'	16' 0'	42' 69'	4' 0'	16' 22'	9' 0'	29' 30'	16' 0'	42' 69'
14	NYS ROUTE 22 & N. BROADWAY / SIR JOHN'S PL W/ DEP IMPROVEMENTS	AZA													
	SIR JOHN'S PLAZA		L 55 R 55	2' 0'	12' 0'	1' 0'	10' 0'	9' 0'	30' 0'	2' 0'	12' 0'	1' 0'	10' 0'	9'	30' 0'
	NYS ROTE 22 NYS ROUTE 22 N. BROADWAY	NB L NB	L-R 450 -T 1000+ R 1000+ T-R 475	129' 125' 0' 343'	195' 261' 7' 670'	37' 60' 0' 38'	77' 193' 12' 120'	125' 1267' 0' 147'	176' 1671' 11' 229'	129' 125' 0' 343'	195' 261' 7' 670'	37' 60' 0' 38'	77' 193' 12' 120'	125' 1267' 0' 147'	176' 1671' 11' 229'
15	NYS ROUTE 22 & CENTRAL WESTCHESTER EXPRES RESERVOIR ROAD / CHURCH ST SIGNALIZED														
	NYS ROUTE 22	EB	L 115	336'	486'	196'	336'	391'	552'	336'	486'	196'	336'	391'	552'
	RESERVOIR ROAD	EB T	-R 730 -T 185 R 185	370' 181' 0'	566' 267' 0'	219' 157' 0'	371' 282' 31'	288' 280' 12'	407' 436' 55'	370' 181' 0'	566' 267' 0'	219' 157' 0'	371' 282' 31'	288' 280' 12'	407' 436' 55'
	CENTRAL WESTCHESTER EXPRESSWAY NYS ROUT 22	NB SB	T 1000+ R 160 L 110 T-R 1000+	311' 0' 29' 1256'	407' 6' 62' 1479'	166' 0' 34' 271'	268' 18' 81' 413'	1111' 22' 67' 463'	1308' 51' 114' 553'	308' 0' 29' 1256'	405' 6' 62' 1479'	166' 0' 34' 270'	268' 18' 81' 413'	1113' 22' 67' 463'	1311' 51' 114' 553'
	W/ SIGNAL TIMING CHANGE	S		W/ OPTI	MIZATION			W/ OPTII	MIZATION	W/ OPTII	MIZATION			W/ OPTII	MIZATION
	NYS ROUTE 22		L 115 -R 730	372' 411'	562' 633'	-	-	449' 322'	669' 463'	372' 411'	562' 633'	-	-	449' 322'	669' 463'
	RESERVOIR ROAD	WB L	-T 185 R 185	206'	372' 0'	-	-	318' 25'	514' 78'	206' 0'	372' 0'	-	-	318' 25'	514' 78'
	CENTRAL WESTCHESTER EXPRESSWAY NYS ROUT 22	NB SB	T 1000+ R 160 L 110 T-R 1000+	276' 0' 26' 1070'	334' 5' 52' 1238'	- - -	- - -	848' 19' 61' 424'	1007' 41' 167' 493'	274' 0' 26' 1070'	331' 5' 52' 1238'	-	-	851' 19' 61' 424'	1008' 41' 167' 493'
		JD I	1-11 1000+	1070	1230	_	-	424	493	1070	1230	-	_	424	493


	ሻ	†	ļ	» J	•	>
Lane Group	NBL	NBT	SBT	SBR	SEL	SER
Lane Configurations	ች	^	^	7	ች	7
Traffic Volume (vph)	230	569	818	226	524	807
Future Volume (vph)	230	569	818	226	524	807
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1900	1900	1900	1900	1900	1900
. ,	10	0%	0%	10	0%	10
Grade (%)	050	0%	U%	F00		^
Storage Length (ft)	250			500	250	0
Storage Lanes	1			1	1	1
Taper Length (ft)	86	0.05	0.05	4.00	86	4.00
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00
Ped Bike Factor				_		
Frt				0.850		0.850
Flt Protected	0.950				0.950	
Satd. Flow (prot)	1478	3209	3303	1478	1604	1436
Flt Permitted	0.950				0.950	
Satd. Flow (perm)	1478	3209	3303	1478	1604	1436
Right Turn on Red				Yes		Yes
Satd. Flow (RTOR)				231		495
Link Speed (mph)		55	55		30	
Link Distance (ft)		767	1064		872	
Travel Time (s)		9.5	13.2		19.8	
Confl. Peds. (#/hr)		9.5	13.2		19.0	
Confl. Bikes (#/hr)	0.00	0.00	0.00	0.00	0.00	0.00
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	14%	5%	2%	2%	5%	5%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)		0%	0%		0%	
Adj. Flow (vph)	235	581	835	231	535	823
Shared Lane Traffic (%)						
Lane Group Flow (vph)	235	581	835	231	535	823
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width(ft)		10	15		10	
Link Offset(ft)		0	0		0	
Crosswalk Width(ft)		16	16		16	
` '		10	10		10	
Two way Left Turn Lane	4.00	4.00	4.00	4.00	4.00	4.00
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (mph)	15			9	15	9
Number of Detectors	1	2	2	1	2	0
Detector Template						
Leading Detector (ft)	35	104	104	0	104	0
Trailing Detector (ft)	-5	0	0	0	0	0
Turn Type	Prot	NA	NA	Free	Prot	Free
Protected Phases	2	5	1		3	
Permitted Phases				Free		Free
Detector Phase	2	5	1		3	
Switch Phase	_		•			

	ሻ	†	ţ	₩ J	•	>
Lane Group	NBL	NBT	SBT	SBR	SEL	SER
Minimum Initial (s)	12.0	12.0	12.0		10.0	
Minimum Split (s)	36.0	36.0	36.0		26.0	
Total Split (s)	41.0	82.0	41.0		41.0	
Total Split (%)	33.3%	66.7%	33.3%		33.3%	
Maximum Green (s)	34.0	75.0	34.0		35.0	
Yellow Time (s)	5.0	5.0	5.0		4.0	
All-Red Time (s)	2.0	2.0	2.0		2.0	
Lost Time Adjust (s)	0.0	0.0	0.0		0.0	
Total Lost Time (s)	7.0	7.0	7.0		6.0	
Lead/Lag	Lead		Lag			
Lead-Lag Optimize?	Yes		Yes			
Vehicle Extension (s)	6.0	6.0	6.0		6.0	
Minimum Gap (s)	4.0	4.0	4.0		4.0	
Time Before Reduce (s)	20.0	20.0	20.0		20.0	
Time To Reduce (s)	8.0	8.0	8.0		5.0	
Recall Mode	None	Min	Min		None	
Walk Time (s)	. 10110	.*****			113110	
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)						
Act Effct Green (s)	25.5	65.8	33.3	114.0	35.1	114.0
Actuated g/C Ratio	0.22	0.58	0.29	1.00	0.31	1.00
v/c Ratio	0.71	0.31	0.23	0.16	1.08	0.57
Control Delay	53.2	12.7	49.7	0.10	103.7	1.7
Queue Delay	0.0	0.0	0.0	0.2	0.0	0.0
Total Delay	53.2	12.7	49.7	0.0	103.7	1.7
LOS	55.2 D	12.7 B	43.7 D	Α	F	1.7 A
Approach Delay	U	24.4	39.0	Λ	41.9	
Approach LOS		24.4 C	39.0 D		41.9 D	
Queue Length 50th (ft)	161	108	305	0	~447	0
Queue Length 95th (ft)	249	141	#458	0	~44 <i>1</i> #726	0
Internal Link Dist (ft)	249	687	984	U	792	U
Turn Bay Length (ft)	250	007	304	500	250	
Base Capacity (vph)	442	2118	988	1478	494	1436
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0.53	0 27	0 05	0 16	1.00	0 57
Reduced v/c Ratio	0.53	0.27	0.85	0.16	1.08	0.57
Intersection Summary	Other					
Area Type:	Other					
Cycle Length: 123	1.4					
Actuated Cycle Length: 11	14					
Natural Cycle: 110						
Control Type: Actuated-Ur	ncoordinated					
Maximum v/c Ratio: 1.08	00.5					100 5
Intersection Signal Delay:					ntersection	
Intersection Capacity Utiliz	zation 81.1%			IC	CU Level	ot Service
Analysis Period (min) 15						

~ Volume exceeds capacity, queue is theoretically infinite.



	•	•	†	/	-	↓
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		^	7	ሻሻ	† †
Traffic Volume (vph)	56	0	478	185	970	655
Future Volume (vph)	56	0	478	185	970	655
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	10	10	11	11
Grade (%)	-8%	12	-2%	10		-1%
Storage Length (ft)	0	0	- Z /0	200	215	-1 /0
Storage Lanes	1	0		200	213	
	25	U			86	
Taper Length (ft) Lane Util. Factor	1.00	1.00	0.95	1.00	0.97	0.95
	1.00	1.00	0.95	1.00	0.97	0.95
Ped Bike Factor				0.050		
Frt	0.050			0.850	0.050	
Flt Protected	0.950	_	0007	4.170	0.950	0.40=
Satd. Flow (prot)	1707	0	3304	1478	3368	3405
Flt Permitted	0.950				0.950	
Satd. Flow (perm)	1707	0	3304	1478	3368	3405
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)				7		
Link Speed (mph)	30		50			50
Link Distance (ft)	334		905			488
Travel Time (s)	7.6		12.3			6.7
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	100%	0%	3%	3%	1%	3%
Bus Blockages (#/hr)	0	0 /0	0	0	0	0
	U	U	U	U	U	U
Parking (#/hr)	00/		00/			0%
Mid-Block Traffic (%)	0%	^	0%	405	1004	
Adj. Flow (vph)	59	0	503	195	1021	689
Shared Lane Traffic (%)				10=	455:	
Lane Group Flow (vph)	59	0	503	195	1021	689
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12		22			22
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane						
Headway Factor	0.95	0.95	1.08	1.08	1.04	1.04
Turning Speed (mph)	15	9		9	15	
Number of Detectors	13	- 3	2	1	13	2
Detector Template	Left		Thru	Right	Left	Thru
· ·						
Leading Detector (ft)	20		100	20	20	100
Trailing Detector (ft)	0		0	0	0	0
Turn Type	Prot		NA	pm+ov	Prot	NA
Protected Phases	8		2	8	1	6
Permitted Phases				2		
Detector Phase	8		2	8	1	6
Switch Phase						

	•	•	†	<i>></i>	/	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Minimum Initial (s)	10.0		12.0	10.0	12.0	12.0
Minimum Split (s)	26.0		36.0	26.0	36.0	36.0
Total Split (s)	41.0		43.0	41.0	42.0	85.0
Total Split (%)	32.5%		34.1%	32.5%	33.3%	67.5%
Maximum Green (s)	35.0		36.0	35.0	35.0	78.0
Yellow Time (s)	5.0		5.0	5.0	5.0	5.0
All-Red Time (s)	1.0		2.0	1.0	2.0	2.0
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0		7.0	6.0	7.0	7.0
Lead/Lag	0.0		Lag	0.0	Lead	1.0
Lead-Lag Optimize?			Yes		Yes	
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0
Minimum Gap (s)	3.0		3.0	3.0	3.0	3.0
	0.0		0.0	0.0	0.0	0.0
Time Before Reduce (s)						
Time To Reduce (s)	0.0		0.0	0.0	0.0	0.0
Recall Mode	None		Min	None	Min	Min
Walk Time (s)						
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)			45.1	0- 1	0- 1	00.1
Act Effct Green (s)	10.3		18.1	35.4	35.1	60.1
Actuated g/C Ratio	0.12		0.22	0.42	0.42	0.72
v/c Ratio	0.28		0.70	0.31	0.72	0.28
Control Delay	38.3		36.0	16.6	24.4	4.4
Queue Delay	0.0		0.0	0.0	0.0	0.0
Total Delay	38.3		36.0	16.6	24.4	4.4
LOS	D		D	В	С	Α
Approach Delay	38.3		30.6			16.4
Approach LOS	D		С			В
Queue Length 50th (ft)	28		127	63	218	53
Queue Length 95th (ft)	68		183	110	336	78
Internal Link Dist (ft)	254		825			408
Turn Bay Length (ft)				200	215	
Base Capacity (vph)	717		1428	1066	1415	3188
Starvation Cap Reductn	0		0	0	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductn	0		0	0	0	0
Reduced v/c Ratio	0.08		0.35	0.18	0.72	0.22
Intersection Summary						
Area Type:	Other					
Cycle Length: 126						
Actuated Cycle Length: 83	3.5					
Natural Cycle: 100	,,,,					
Control Type: Semi Act-Ur	ncoord					
Maximum v/c Ratio: 0.72	100010					
Intersection Signal Delay:	20.9			Ir	ntersectio	n I OS: C
Intersection Capacity Utiliz						of Service
Analysis Period (min) 15	Lation 03.3 /0			I.	OO LEVEI	OI OCIVICE
Analysis Period (min) 15						

	۶	→	•	•	←	4	1	†	~	>	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					f)			4				
Traffic Volume (vph)	0	0	0	0	25	6	1	315	45	0	0	0
Future Volume (vph)	0	0	0	0	25	6	1	315	45	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	13	12	12	12	12
Grade (%)		0%			-5%			-7%			0%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	0		0	0		0	0		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt					0.973			0.983				
Flt Protected												
Satd. Flow (prot)	0	0	0	0	1836	0	0	1747	0	0	0	0
Flt Permitted												
Satd. Flow (perm)	0	0	0	0	1836	0	0	1747	0	0	0	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		124			297			300			404	
Travel Time (s)		2.8			6.8			6.8			9.2	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	0%	0%	4%	0%	0%	16%	3%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	0	0	0	0	28	7	1	358	51	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	0	0	0	35	0	0	410	0	0	0	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	0.97	0.97	0.97	0.96	0.92	0.96	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Stop			Stop			Free			Stop	
Intersection Summary												
	Other											
Control Type: Unsignalized												
Intersection Capacity Utilizati	on 29.4%			IC	CU Level	of Service	A					
Analysis Period (min) 15												

Intersection												
Int Delay, s/veh	8.0											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					1			4			<u> </u>	02.1
Traffic Vol, veh/h	0	0	0	0	25	6	1	315	45	0	0	0
Future Vol, veh/h	0	0	0	0	25	6	1	315	45	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	_	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	2	-	-	0	-	-	0	-	-	16965	-
Grade, %	-	0	-	-	-5	-	-	-7	-	-	0	-
Peak Hour Factor	88	88	88	88	88	88	88	88	88	88	88	88
Heavy Vehicles, %	0	0	0	0	4	0	0	16	3	0	0	0
Mvmt Flow	0	0	0	0	28	7	1	358	51	0	0	0
Major/Minor			N	Minor1		N	/lajor1					
			ľ		386	384	0	0	0			
Conflicting Flow All Stage 1				-	386							
Stage 1 Stage 2				-	300	-	-	-	-			
Critical Hdwy				-	5.54	5.7	4.1	-	-			
Critical Hdwy Stg 1				_	4.54	3. <i>1</i>	4.1	_	-			
Critical Hdwy Stg 2				_	4.54	_	_	_	-			
Follow-up Hdwy				_	4.036	3.3	2.2	_	_			
Pot Cap-1 Maneuver				0	607	705	- 2.2	_				
Stage 1				0	675	-	_	_	_			
Stage 2				0	-	_	_	_	_			
Platoon blocked, %								_	_			
Mov Cap-1 Maneuver				-	0	705	-	-	-			
Mov Cap-2 Maneuver				-	0	-	-	_	-			
Stage 1				-	0	-	-	_	-			
Stage 2				-	0	-	-	_	-			
<u> </u>												
Annragah				WD			ND					
Approach				WB			NB					
HCM Control Delay, s				10.4								
HCM LOS				В								
Minor Lane/Major Mvmt		NBL	NBT	NBRV	VBLn1							
Capacity (veh/h)		-	-	-	705							
HCM Lane V/C Ratio		-	-	-	0.05							
HCM Control Delay (s)		-	-	-	10.4							
HCM Lane LOS		-	-	-	В							
HCM 95th %tile Q(veh)		-	-	-	0.2							

	۶	→	•	•	•	•	1	†	<i>></i>	/	ļ	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્ન	7		ર્ન	7	ř	<u></u>	7	¥		7
Traffic Volume (vph)	16	1	18	4	Ö	3	146	397	28	27	838	289
Future Volume (vph)	16	1	18	4	0	3	146	397	28	27	838	289
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (%)		4%			-1%			7%			-4%	
Storage Length (ft)	0		315	0		125	280		445	150		275
Storage Lanes	0		1	0		1	1		1	1		1
Taper Length (ft)	25			25			86			86		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt			0.850			0.850			0.850			0.850
Flt Protected		0.955			0.950		0.950			0.950		
Satd. Flow (prot)	0	1309	1190	0	1814	1623	1675	1667	1558	1841	1882	1631
Flt Permitted							0.164			0.511		
Satd. Flow (perm)	0	1370	1190	0	1909	1623	289	1667	1558	990	1882	1631
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			37			37			83			188
Link Speed (mph)		30			30			55			55	
Link Distance (ft)		601			392			1478			1166	
Travel Time (s)		13.7			8.9			18.3			14.5	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	38%	0%	33%	0%	0%	0%	4%	10%	0%	0%	3%	1%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	17	1	20	4	0	3	159	432	30	29	911	314
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	18	20	0	4	3	159	432	30	29	911	314
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.03	1.03	1.03	0.99	0.99	0.99	1.05	1.05	1.05	0.97	0.97	0.97
Turning Speed (mph)	15	1.00	9	15	0.00	9	15	1.00	9	15	0.07	9
Number of Detectors	1	2	1	1	2	1	1	2	1	1	2	1
Detector Template	Left			Left			'		,	'		•
Leading Detector (ft)	20	83	35	20	83	35	35	83	35	35	83	35
Trailing Detector (ft)	0	-5	-5	0	-5	-5	-5	-5	-5	-5	-5	-5
Turn Type	Perm	NA	pm+ov	Perm	NA	pm+ov	pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases	1 61111	8	ριτι τ ον 1	i Giiii	4	рит - 07	рит - рг	6	i Giiii	рит-рі 5	2	1 61111
Permitted Phases	8	U	8	4	4	4	6	U	6	2		2
Detector Phase	8	8	1	4	4	5	1	6	6	5	2	2
	0	0		4	4	3	ı	O	0	5		2
Switch Phase												

Lane Group		۶	-	•	•	•	•	1	†	_	-	ţ	4
Minimum Split (s)	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Split (s)	Minimum Initial (s)	5.0	5.0	3.0	5.0	5.0	3.0	3.0	5.0	5.0	3.0	5.0	5.0
Total Split (%) 37.8% 37.8% 22.7% 37.8% 37.8% 22.7% 37.8% 37.8% 22.7% 39.5% 39	Minimum Split (s)	13.0	13.0	10.0	13.0	13.0	10.0	10.0	12.0	12.0	10.0	12.0	12.0
Maximum Green (s) 40.0 40.0 20.0 40.0 20.0 20.0 20.0 40.0 40.0 20.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 70.0 <td>Total Split (s)</td> <td>45.0</td> <td>45.0</td> <td>27.0</td> <td>45.0</td> <td>45.0</td> <td>27.0</td> <td>27.0</td> <td>47.0</td> <td>47.0</td> <td>27.0</td> <td>47.0</td> <td>47.0</td>	Total Split (s)	45.0	45.0	27.0	45.0	45.0	27.0	27.0	47.0	47.0	27.0	47.0	47.0
Yellow Time (s) 4.0 4.0 5.0 4.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 2.0 7.0	Total Split (%)	37.8%	37.8%	22.7%	37.8%	37.8%	22.7%	22.7%	39.5%	39.5%	22.7%	39.5%	39.5%
All-Red Time (s)	Maximum Green (s)	40.0	40.0	20.0	40.0	40.0	20.0	20.0	40.0	40.0	20.0	40.0	40.0
Lost Time Adjust (s) 0.0	Yellow Time (s)	4.0	4.0	5.0	4.0	4.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Total Lost Time (s)	All-Red Time (s)	1.0	1.0		1.0	1.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lead Lead Lead Lead Lead Lead Lead Lag Lag Lead Lag Lag Lead Lag Lag Lead Lag Lag Lead Lag Lag Lead Lag Lag Lead Lag Lag Lead Lag Lag Lead Lag Lag Lead Lag Lag Lead Lag Lag Lead Lag Lag Lead Lag	Lost Time Adjust (s)		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Vest Vest	Total Lost Time (s)		5.0	7.0		5.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
Vehicle Extension (s) 3.0 3.0 2.0 3.0 3.0 2.0 0.0	Lead/Lag			Lead			Lead	Lead	Lag	Lag	Lead	Lag	Lag
Minimum Gap (s) 3.0 3.0 2.0 3.0 3.0 2.0 0.0	Lead-Lag Optimize?			Yes			Yes	Yes	Yes	Yes	Yes	Yes	Yes
Time Before Reduce (s)	Vehicle Extension (s)	3.0	3.0	2.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Time To Reduce (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Minimum Gap (s)	3.0	3.0	2.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Recall Mode None None None None None None None None None Max Max Max Max Max Max Max Walk Time (s)	Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) 6.8 8.4 6.3 7.1 52.3 53.8 53.8 45.4 40.5 40.5 Actuated g/C Ratio 0.11 0.13 0.10 0.11 0.83 0.85 0.85 0.72 0.64 0.64 v/c Ratio 0.12 0.11 0.02 0.01 0.42 0.30 0.02 0.04 0.75 0.28 Control Delay 29.8 4.8 28.5 0.0 5.3 4.8 0.0 2.4 15.8 3.7 LOS 0.0	Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) 6.8 8.4 6.3 7.1 52.3 53.8 53.8 45.4 40.5 40.5 Actuated g/C Ratio 0.11 0.13 0.10 0.11 0.83 0.85 0.85 0.72 0.64 0.64 v/c Ratio 0.12 0.11 0.02 0.01 0.42 0.30 0.02 0.04 0.75 0.28 Control Delay 29.8 4.8 28.5 0.0 5.3 4.8 0.0 2.4 15.8 3.7 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Recall Mode	None	None	None	None	None	None	None	Max	Max	None	Max	Max
Pedestrian Calls (#/hr) Act Effct Green (s) 6.8 8.4 6.3 7.1 52.3 53.8 53.8 45.4 40.5	Walk Time (s)												
Act Effct Green (s) 6.8 8.4 6.3 7.1 52.3 53.8 53.8 45.4 40.5 40.5 Actuated g/C Ratio 0.11 0.13 0.10 0.11 0.83 0.85 0.85 0.72 0.64 0.64 v/c Ratio 0.12 0.11 0.02 0.01 0.42 0.30 0.02 0.04 0.75 0.28 Control Delay 29.8 4.8 28.5 0.0 5.3 4.8 0.0 2.4 15.8 3.7 Queue Delay 0.0	Flash Dont Walk (s)												
Actuated g/C Ratio 0.11 0.13 0.10 0.11 0.83 0.85 0.72 0.64 0.64 v/c Ratio 0.12 0.11 0.02 0.01 0.42 0.30 0.02 0.04 0.75 0.28 Control Delay 29.8 4.8 28.5 0.0 5.3 4.8 0.0 2.4 15.8 3.7 Queue Delay 0.0	Pedestrian Calls (#/hr)												
v/c Ratio 0.12 0.11 0.02 0.01 0.42 0.30 0.02 0.04 0.75 0.28 Control Delay 29.8 4.8 28.5 0.0 5.3 4.8 0.0 2.4 15.8 3.7 Queue Delay 0.0	Act Effct Green (s)										-		40.5
Control Delay 29.8 4.8 28.5 0.0 5.3 4.8 0.0 2.4 15.8 3.7 Queue Delay 0.0	Actuated g/C Ratio		0.11	0.13		0.10	0.11	0.83	0.85	0.85	0.72	0.64	0.64
Queue Delay 0.0 <th< td=""><td>v/c Ratio</td><td></td><td></td><td></td><td></td><td>0.02</td><td>0.01</td><td>0.42</td><td></td><td>0.02</td><td>0.04</td><td>0.75</td><td>0.28</td></th<>	v/c Ratio					0.02	0.01	0.42		0.02	0.04	0.75	0.28
Total Delay 29.8 4.8 28.5 0.0 5.3 4.8 0.0 2.4 15.8 3.7 LOS C A C A A A A A A B A A A A B A A B A B A B	Control Delay												3.7
LOS C A C A A A A A B A Approach Delay 16.7 16.3 4.7 12.5 Approach LOS B B A B Queue Length 50th (ft) 6 0 1 0 1 0 0 0 164 13 Queue Length 95th (ft) 27 9 10 0 33 178 0 9 #667 75 Internal Link Dist (ft) 521 312 1398 1086 Turn Bay Length (ft) 315 125 280 445 150 275 Base Capacity (vph) 880 447 1226 602 691 1420 1340 1117 1208 1114 Starvation Cap Reductn 0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
Approach Delay 16.7 16.3 4.7 12.5 Approach LOS B B A B Queue Length 50th (ft) 6 0 1 0 1 0 0 0 164 13 Queue Length 95th (ft) 27 9 10 0 33 178 0 9 #667 75 Internal Link Dist (ft) 521 312 1398 1086 Turn Bay Length (ft) 315 125 280 445 150 275 Base Capacity (vph) 880 447 1226 602 691 1420 1340 1117 1208 1114 Starvation Cap Reductn 0												15.8	3.7
Approach LOS B B A B Queue Length 50th (ft) 6 0 1 0 1 0 0 0 164 13 Queue Length 95th (ft) 27 9 10 0 33 178 0 9 #667 75 Internal Link Dist (ft) 521 312 1398 1086 Turn Bay Length (ft) 315 125 280 445 150 275 Base Capacity (vph) 880 447 1226 602 691 1420 1340 1117 1208 1114 Starvation Cap Reductn 0	LOS			Α		_	Α	Α		Α	Α		Α
Queue Length 50th (ft) 6 0 1 0 1 0 0 0 164 13 Queue Length 95th (ft) 27 9 10 0 33 178 0 9 #667 75 Internal Link Dist (ft) 521 312 1398 1086 Turn Bay Length (ft) 315 125 280 445 150 275 Base Capacity (vph) 880 447 1226 602 691 1420 1340 1117 1208 1114 Starvation Cap Reductn 0 <t< td=""><td>Approach Delay</td><td></td><td>16.7</td><td></td><td></td><td>16.3</td><td></td><td></td><td>4.7</td><td></td><td></td><td>12.5</td><td></td></t<>	Approach Delay		16.7			16.3			4.7			12.5	
Queue Length 95th (ft) 27 9 10 0 33 178 0 9 #667 75 Internal Link Dist (ft) 521 312 1398 1086 Turn Bay Length (ft) 315 125 280 445 150 275 Base Capacity (vph) 880 447 1226 602 691 1420 1340 1117 1208 1114 Starvation Cap Reductn 0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>													
Internal Link Dist (ft) 521 312 1398 1086 Turn Bay Length (ft) 315 125 280 445 150 275 Base Capacity (vph) 880 447 1226 602 691 1420 1340 1117 1208 1114 Starvation Cap Reductn 0 0 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0 0 0 0	• • • • • • • • • • • • • • • • • • • •							-					
Turn Bay Length (ft) 315 125 280 445 150 275 Base Capacity (vph) 880 447 1226 602 691 1420 1340 1117 1208 1114 Starvation Cap Reductn 0				9			0	33		0	9		75
Base Capacity (vph) 880 447 1226 602 691 1420 1340 1117 1208 1114 Starvation Cap Reductn 0	Internal Link Dist (ft)		521			312			1398			1086	
Starvation Cap Reductn 0										-			
Spillback Cap Reductn 0			880			1226	602	691	1420	1340	1117	1208	1114
Storage Cap Reductn 0 0 0 0 0 0 0 0 0						0	0	0	0	0	0	0	
Reduced v/c Ratio 0.02 0.04 0.00 0.00 0.23 0.30 0.02 0.03 0.75 0.28													
	Reduced v/c Ratio		0.02	0.04		0.00	0.00	0.23	0.30	0.02	0.03	0.75	0.28

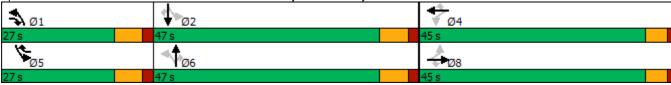
Area Type: Other

Cycle Length: 119

Actuated Cycle Length: 63.1

Natural Cycle: 65

Control Type: Actuated-Uncoordinated


Maximum v/c Ratio: 0.75

Intersection Signal Delay: 10.0 Intersection LOS: B
Intersection Capacity Utilization 75.6% ICU Level of Service D

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Splits and Phases: 4: NYS Route 120 & SwissRe Driveway/IBM Driveway

	•	•	†	~	-	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ች	7	↑	7	ሻ	†
Traffic Volume (vph)	11	11	561	5	167	694
Future Volume (vph)	11	11	561	5	167	694
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	12	12	10	10
Grade (%)	-3%		2%			-1%
Storage Length (ft)	0	0		15	175	
Storage Lanes	1	1		1	1	
Taper Length (ft)	25				86	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt		0.850		0.850		
Flt Protected	0.950				0.950	
Satd. Flow (prot)	1771	1320	1742	1599	1676	1714
Flt Permitted	0.950				0.950	
Satd. Flow (perm)	1771	1320	1742	1599	1676	1714
Link Speed (mph)	25		55			55
Link Distance (ft)	589		993			1478
Travel Time (s)	16.1		12.3			18.3
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	20%	8%	0%	1%	4%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						•
Mid-Block Traffic (%)	0%	, -	0%			0%
Adj. Flow (vph)	12	12	597	5	178	738
Shared Lane Traffic (%)					,	
Lane Group Flow (vph)	12	12	597	5	178	738
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	11		12			12
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane						
Headway Factor	1.02	1.02	1.01	1.01	1.09	1.09
Turning Speed (mph)	15	9		9	15	
Sign Control	Stop		Free			Free
Intersection Summary						
* 1	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizat	ion 52.1%			IC	CU Level of	of Service A
Analysis Period (min) 15						

Intersection						
Int Delay, s/veh	1.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
	VVDL T					
Lane Configurations		7	f 61	Ť	167	604
Traffic Vol., veh/h	11	11	561	5	167	694
Future Vol, veh/h	11	11	561	5	167	694
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	Yield	-	Free	475	None
Storage Length	0	0	-	15	175	-
Veh in Median Storage,		-	0	-	-	0
Grade, %	-3	-	2	-	-	-1
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	0	20	8	0	1	4
Mvmt Flow	12	12	597	5	178	738
Major/Minor N	/linor1	N	Major1		Major2	
Conflicting Flow All	1691	597	0		597	0
Stage 1	597			-	59 <i>1</i>	
		-	-	-	-	-
Stage 2	1094	-	-	-		-
Critical Hdwy	5.8	6.1	-	-	4.11	-
Critical Hdwy Stg 1	4.8	-	-	-	-	-
Critical Hdwy Stg 2	4.8	-	-	-	-	-
Follow-up Hdwy	3.5	3.48	-	-	2.209	-
Pot Cap-1 Maneuver	137	495	-	0	985	-
Stage 1	612	-	-	0	-	-
Stage 2	389	-	-	0	-	-
Platoon blocked, %			-			-
Mov Cap-1 Maneuver	112	495	-	-	985	-
Mov Cap-2 Maneuver	112	-	-	-	-	-
Stage 1	612	-	-	-	-	-
Stage 2	319	-	-	-	-	-
Annroach	WB		NB		SB	
Approach Delever						
HCM Control Delay, s	26.7		0		1.8	
HCM LOS	D					
Minor Lane/Major Mvmt		NBTV	VBLn1V	VBLn2	SBL	SBT
Capacity (veh/h)		-		495	985	_
HCM Lane V/C Ratio			0.104		0.18	_
HCM Control Delay (s)		_	40.9	12.4	9.5	_
HCM Lane LOS		_	E	В	A	_
HCM 95th %tile Q(veh)		_	0.3	0.1	0.7	_
TOWN JOHN JUHIC Q(VEII)			0.0	0.1	0.1	

	۶	•	4	†	ļ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			4	†	
Traffic Volume (vph)	1	1	0	565	701	3
Future Volume (vph)	1	1	0	565	701	3
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	11	11	11	11
Grade (%)	3%			5%	-2%	
Storage Length (ft)	0	0	0	0,70		0
Storage Lanes	1	0	0			0
Taper Length (ft)	25	U	25			U
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.932				0.999	
FIt Protected	0.932				0.333	
		0	0	1640	1700	0
Satd. Flow (prot)	1135	0	0	1643	1782	0
Flt Permitted	0.976	^	^	4040	4700	^
Satd. Flow (perm)	1135	0	0	1643	1782	0
Link Speed (mph)	30			55	55	
Link Distance (ft)	639			1813	993	
Travel Time (s)	14.5			22.5	12.3	
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	100%	0%	0%	9%	4%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%			0%	0%	
Adj. Flow (vph)	1	1	0	595	738	3
Shared Lane Traffic (%)	•	•	•			
Lane Group Flow (vph)	2	0	0	595	741	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12	Right	Leit	0	0	Right
, ,						
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane	4.00	4.00	4.00	4.00	4.00	4.00
Headway Factor	1.02	1.02	1.08	1.08	1.03	1.03
Turning Speed (mph)	15	9	15			9
Sign Control	Stop			Free	Free	
Intersection Summary						
Area Type:	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizat	tion 47 1%			IC	CULevel	of Service
Analysis Period (min) 15				10	J LOVOI V	J. OJ. VIOO /
raidiyolo i chod (ililii) 10						

Intersection						
Int Delay, s/veh	0					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y	LDIX	TVDL	H INDI) }	ODIN
Traffic Vol, veh/h		1	0	565	701	3
Future Vol, veh/h	1	1	0	565	701	3
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-		-	None
Storage Length	0	-	_	-	_	-
Veh in Median Storage,	-	_	_	0	0	_
Grade, %	3	_	_	5	-2	_
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	100	0	0	9	4	0
Mvmt Flow	1	1	0	595	738	3
WWIIIL FIOW	ı	ı	U	595	130	3
Major/Minor N	linor2	N	/lajor1	N	/lajor2	
Conflicting Flow All	1335	740	741	0	-	0
Stage 1	740	-	-	-	-	-
Stage 2	595	-	-	-	-	-
Critical Hdwy	8	6.5	4.1	-	-	-
Critical Hdwy Stg 1	7	-	-	-	-	-
Critical Hdwy Stg 2	7	-	-	-	-	-
Follow-up Hdwy	4.4	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	85	395	875	-	-	-
Stage 1	295	-	-	-	-	-
Stage 2	362	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	85	395	875	-	-	-
Mov Cap-2 Maneuver	85	-	_	_	_	-
Stage 1	295	_	_	_	_	_
Stage 2	362	_	_	_	_	_
-						
Approach	EB		NB		SB	
HCM Control Delay, s	31.1		0		0	
HCM LOS	D					
Minor Lane/Major Mvmt		NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		875	-		-	-
		-		0.015	_	_
HCM Lane V/C Ratio						_
HCM Lane V/C Ratio		0	_	31.1	-	
HCM Control Delay (s)		0 A	-	*	- -	_
		0 A 0	- -	31.1 D	-	

	4	\mathbf{x}	À	_	*	₹	ን	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		4		ř	†	7		ર્ન	7		ર્ન	7
Traffic Volume (vph)	1	571	131	133	433	158	132	Ō	132	26	Ō	0
Future Volume (vph)	1	571	131	133	433	158	132	0	132	26	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	11	11	11	11	10	10	10	11	11	11
Grade (%)		-4%			1%			-5%			1%	
Storage Length (ft)	0		0	120		200	0		95	0		0
Storage Lanes	0		0	1		1	0		1	0		1
Taper Length (ft)	25			86			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.975				0.850			0.850			
Flt Protected				0.950				0.950			0.950	
Satd. Flow (prot)	0	1769	0	1736	1677	1494	0	1727	1545	0	1536	1827
Flt Permitted	•	1100	J	0.273		1 10 1	· ·	0.739	10 10	•	0.622	1021
Satd. Flow (perm)	0	1769	0	499	1677	1494	0	1343	1545	0	1006	1827
Right Turn on Red	•	1100	Yes	100	1011	Yes	J	1010	Yes	•	1000	Yes
Satd. Flow (RTOR)		21	100			170			142			100
Link Speed (mph)		55			55	170		30	172		25	
Link Opeca (mph) Link Distance (ft)		1813			2280			328			518	
Travel Time (s)		22.5			28.3			7.5			14.1	
Confl. Peds. (#/hr)		22.5			20.5			7.5			14.1	
Confl. Bikes (#/hr)												
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	4%	0%	0%	9%	4%	0%	0%	0%	13%	0%	0%
. ,	0 /8	0	0 /8	0 %	9 /0	0	0 %	0 %	0 %	0	0 %	0 /0
Bus Blockages (#/hr) Parking (#/hr)	U	U	U	U	U	U	U	U	U	U	U	U
Mid-Block Traffic (%)		0%			0%			0%			0%	
` ,	1	614	141	143	466	170	142	0%	142	28	0%	0
Adj. Flow (vph) Shared Lane Traffic (%)	1	014	141	143	400	170	142	U	142	20	U	U
. ,	٥	756	٥	143	466	170	٥	142	142	٥	28	0
Lane Group Flow (vph)	0		0			170	0		No	0		0
Enter Blocked Intersection	No	No	No	No	No	No	No	No Left		No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left		Right	Left	Left	Right
Median Width(ft)		11			11 0			0			0	
Link Offset(ft)								0				
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane	1.00	1.00	1.00	1.05	1.05	1 05	1.00	1.00	1.00	1.05	1.05	1.05
Headway Factor	1.02	1.02	1.02	1.05	1.05	1.05	1.06	1.06	1.06	1.05	1.05	1.05
Turning Speed (mph)	15	_	9	15	0	9	15	0	9	15	0	9
Number of Detectors	1	2		1	2	1	1	2	1	1	2	1
Detector Template	Left	00		0.5	00	0.5	Left	00	0.5	Left	00	0.5
Leading Detector (ft)	20	83		35	83	35	20	83	35	20	83	35
Trailing Detector (ft)	0	-5		-5	-5	-5	0	-5	-5	0	-5	-5
Turn Type	Perm	NA		pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases		2		1	6			8			4	
Permitted Phases	2			6		6	8		8	4		4
Detector Phase	2	2		1	6	6	8	8	8	4	4	4
Switch Phase												

	•	\mathbf{x}	Ž	F	×	₹	ን	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Minimum Initial (s)	10.0	10.0		3.0	10.0	10.0	3.0	3.0	3.0	5.0	5.0	5.0
Minimum Split (s)	17.0	17.0		10.0	17.0	17.0	10.0	10.0	10.0	10.0	10.0	10.0
Total Split (s)	52.0	52.0		13.0	65.0	65.0	20.0	20.0	20.0	20.0	20.0	20.0
Total Split (%)	61.2%	61.2%		15.3%	76.5%	76.5%	23.5%	23.5%	23.5%	23.5%	23.5%	23.5%
Maximum Green (s)	45.0	45.0		6.0	58.0	58.0	15.0	15.0	15.0	15.0	15.0	15.0
Yellow Time (s)	5.0	5.0		5.0	5.0	5.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)		0.0		0.0	0.0	0.0		0.0	0.0		0.0	0.0
Total Lost Time (s)		7.0		7.0	7.0	7.0		5.0	5.0		5.0	5.0
Lead/Lag	Lag	Lag		Lead								
Lead-Lag Optimize?	Yes	Yes		Yes								
Vehicle Extension (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Minimum Gap (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Time Before Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Recall Mode	Max	Max		None	Max	Max	Max	Max	Max	Max	Max	Max
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		45.2		58.0	58.0	58.0		15.0	15.0		15.0	
Actuated g/C Ratio		0.53		0.68	0.68	0.68		0.18	0.18		0.18	
v/c Ratio		0.80		0.34	0.41	0.16		0.60	0.37		0.16	
Control Delay		23.7		6.9	7.2	1.1		44.0	8.7		32.3	
Queue Delay		0.0		0.0	0.0	0.0		0.0	0.0		0.0	
Total Delay		23.7		6.9	7.2	1.1		44.0	8.7		32.3	
LOS		С		Α	Α	Α		D	Α		С	
Approach Delay		23.7			5.8			26.3			32.3	
Approach LOS		С			Α			С			С	
Queue Length 50th (ft)		302		23	94	0		71	0		13	
Queue Length 95th (ft)		467		41	147	17		#140	48		37	
Internal Link Dist (ft)		1733			2200			248	_		438	
Turn Bay Length (ft)				120		200			95			
Base Capacity (vph)		949		427	1144	1073		237	389		177	
Starvation Cap Reductn		0		0	0	0		0	0		0	
Spillback Cap Reductn		0		0	0	0		0	0		0	
Storage Cap Reductn		0		0	0	0		0	0		0	
Reduced v/c Ratio		0.80		0.33	0.41	0.16		0.60	0.37		0.16	
Interposition Cumment												

Area Type: Other

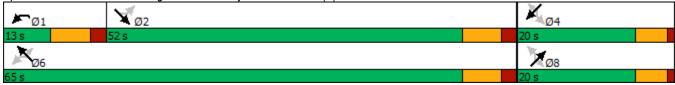
Cycle Length: 85

Actuated Cycle Length: 85

Natural Cycle: 60

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.80

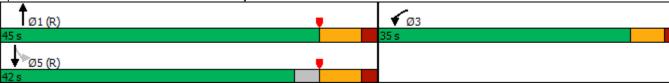

Intersection Signal Delay: 16.7
Intersection Capacity Utilization 90.7%

Intersection LOS: B ICU Level of Service E

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

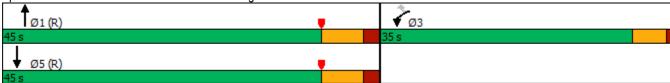
Splits and Phases: 7: 113 King Street Driveway/American Lane (S) & NYS Route 120



	•	•	†	~	\	ţ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	**	11511	7>	, tort	355	<u>⊕</u>
Traffic Volume (vph)	54	223	501	44	225	504
Future Volume (vph)	54	223	501	44	225	504
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1900	1900	1900	1900	1900	1900
	-6%	12	2%	11	11	0%
Grade (%)		^	Z70	^	0	U%
Storage Length (ft)	0	0		0	0	
Storage Lanes	1	0		0	0	
Taper Length (ft)	25	4.00	4.00	4.00	25	4.00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt	0.891		0.989			
Flt Protected	0.990					0.985
Satd. Flow (prot)	1692	0	1630	0	0	1745
Flt Permitted	0.990					0.646
Satd. Flow (perm)	1692	0	1630	0	0	1144
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)	237		8			
Link Speed (mph)	30		55			55
Link Distance (ft)	328		519			557
Travel Time (s)	7.5		6.4			6.9
Confl. Peds. (#/hr)	1.5		0.4			0.9
Confl. Bikes (#/hr)	0.04	0.04	0.04	0.04	0.04	0.04
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	2%	10%	14%	3%	4%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	57	237	533	47	239	536
Shared Lane Traffic (%)						
Lane Group Flow (vph)	294	0	580	0	0	775
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12	3	0	3		0
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane	10		10			10
Headway Factor	0.96	0.96	1.06	1.06	1.04	1.04
•			1.00			1.04
Turning Speed (mph)	15	9	0	9	15	^
Number of Detectors	1		2		1	2
Detector Template					Left	
Leading Detector (ft)	35		83		20	83
Trailing Detector (ft)	-5		-5		0	-5
Turn Type	Prot		NA		Perm	NA
Protected Phases	3		1			5
Permitted Phases					5	
Detector Phase	3		1		5	5
	•					•
Switch Phase						

	•	•	†	/	/	ţ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Minimum Initial (s)	5.0		5.0		5.0	5.0
Minimum Split (s)	10.0		12.0		12.0	12.0
Total Split (s)	35.0		45.0		42.0	42.0
Total Split (%)	43.8%		56.3%		52.5%	52.5%
Maximum Green (s)	30.0		38.0		35.0	35.0
Yellow Time (s)	4.0		5.0		5.0	5.0
All-Red Time (s)	1.0		2.0		2.0	2.0
Lost Time Adjust (s)	0.0		0.0		2.0	0.0
Total Lost Time (s)	5.0		7.0			7.0
Lead/Lag	0.0		7.0			1.0
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0		3.0		3.0	3.0
Minimum Gap (s)	3.0		3.0		3.0	3.0
Time Before Reduce (s)	0.0		0.0		0.0	0.0
Time To Reduce (s)	0.0		0.0		0.0	0.0
\ <i>\</i>						
Recall Mode	None		C-Max		C-Max	C-IVIAX
Walk Time (s) Flash Dont Walk (s)						
Pedestrian Calls (#/hr)						
Act Effct Green (s)	9.7		58.3			58.3
Actuated g/C Ratio	0.12		0.73			0.73
v/c Ratio	0.71		0.49			0.93
Control Delay	17.9		3.2			31.8
Queue Delay	0.0		0.0			0.0
Total Delay	17.9		3.2			31.8
LOS	17.9 B		3.2 A			31.0 C
	17.9		3.2			31.8
Approach LOS						
Approach LOS	B		A			C
Queue Length 50th (ft)	27		27			244
Queue Length 95th (ft)	93		45			#641
Internal Link Dist (ft)	248		439			477
Turn Bay Length (ft)						
Base Capacity (vph)	782		1190			834
Starvation Cap Reductn	0		2			0
Spillback Cap Reductn	0		0			0
Storage Cap Reductn	0		0			0
Reduced v/c Ratio	0.38		0.49			0.93
Intersection Summary						
Area Type:	Other					
Cycle Length: 80						
Actuated Cycle Length: 80						
Offset: 13 (16%), Reference	ced to phase 1	I:NBT an	d 5:SBTL	., Start of	f Yellow	
Natural Cycle: 70						
Control Type: Actuated-Co	ordinated					
Maximum v/c Ratio: 0.93						
Intersection Signal Delay:	19.2			lr	ntersectio	n LOS: B
Intersection Capacity Utiliz						of Service
Analysis Period (min) 15	-41011 100.070			10	JO LOVOI	OI OCIVIOC
miaiyaia i Gilou (IIIII) 10						

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.



	•	•	†	/	>	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ነ ነ	7	↑			<u> </u>
Traffic Volume (vph)	157	24	521	0	0	558
Future Volume (vph)	157	24	521	0	0	558
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
	1900	1900	1900	1900	1900	1900
Lane Width (ft)		13		11	11	
Grade (%)	-2%	475	1%	^	0	1%
Storage Length (ft)	0	175		0	0	
Storage Lanes	1	1		0	0	
Taper Length (ft)	25				25	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt		0.850				
Flt Protected	0.950					
Satd. Flow (prot)	1688	1492	1646	0	0	1757
Flt Permitted	0.950					
Satd. Flow (perm)	1688	1492	1646	0	0	1757
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)		25		7.00		
Link Speed (mph)	30	20	55			55
Link Opeed (mpn) Link Distance (ft)	321		928			519
						6.4
Travel Time (s)	7.3		11.5			0.4
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)	• -		=	=	=	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	8%	13%	11%	0%	0%	4%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	165	25	548	0	0	587
Shared Lane Traffic (%)	100	20	310			301
Lane Group Flow (vph)	165	25	548	0	0	587
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12		0			0
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane						
Headway Factor	0.99	0.95	1.05	1.05	1.05	1.05
Turning Speed (mph)	15	9		9	15	
Number of Detectors	1	1	2			2
Detector Template						
Leading Detector (ft)	35	35	83			83
Trailing Detector (ft)	-5	-5	-5			-5
Turn Type	Prot	Perm	NA			NA
Protected Phases	3	1 01111	1			5
Permitted Phases	J	3	I			J
	2		1_			
Detector Phase	3	3	1			5
Switch Phase						

	•	•	†	<i>></i>	/	†
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Minimum Initial (s)	5.0	5.0	5.0			5.0
Minimum Split (s)	10.0	10.0	12.0			12.0
Total Split (s)	35.0	35.0	45.0			45.0
Total Split (%)	43.8%	43.8%	56.3%			56.3%
Maximum Green (s)	30.0	30.0	38.0			38.0
Yellow Time (s)	4.0	4.0	5.0			5.0
All-Red Time (s)	1.0	1.0	2.0			2.0
Lost Time Adjust (s)	0.0	0.0	0.0			0.0
Total Lost Time (s)	5.0	5.0	7.0			7.0
Lead/Lag	0.0	3.0	, .0			, .0
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0	3.0	3.0			3.0
Minimum Gap (s)	3.0	3.0	3.0			3.0
Time Before Reduce (s)	0.0	0.0	0.0			0.0
Time To Reduce (s)	0.0	0.0	0.0			0.0
Recall Mode	None	None	C-Max			C-Max
Walk Time (s)	NOTIE	NONE	O-IVIAX			O-IVIAX
` ,						
Flash Dont Walk (s)						
Pedestrian Calls (#/hr) Act Effct Green (s)	13.3	13.3	54.7			54.7
\ /			0.68			
Actuated g/C Ratio	0.17	0.17				0.68
v/c Ratio	0.59	0.09	0.49			0.49
Control Delay	38.9	11.3	8.6			3.7
Queue Delay	0.0	0.0	0.0			0.4
Total Delay	38.9	11.3	8.6			4.1
LOS	D	В	A			A
Approach Delay	35.2		8.6			4.1
Approach LOS	D		Α			Α
Queue Length 50th (ft)	77	0	111			37
Queue Length 95th (ft)	127	19	221			m63
Internal Link Dist (ft)	241		848			439
Turn Bay Length (ft)		175				
Base Capacity (vph)	633	575	1125			1201
Starvation Cap Reductn	0	0	0			210
Spillback Cap Reductn	0	0	0			0
Storage Cap Reductn	0	0	0			0
Reduced v/c Ratio	0.26	0.04	0.49			0.59
Intersection Summary						
Area Type:	Other					
Cycle Length: 80						
Actuated Cycle Length: 80)					
Offset: 13 (16%), Reference		1:NBT a	nd 5:SBT.	Start of Y	'ellow	
Natural Cycle: 40			,,			
Control Type: Actuated-Co	ordinated					
Maximum v/c Ratio: 0.59						
Intersection Signal Delay:	10 4			Int	tersection	I OS: B
Intersection Capacity Utiliz						of Service
Analysis Period (min) 15	Lauon 40.1%			IC	O LEVEI (JI JEIVICE
Analysis Penou (IIIII) 15						

m Volume for 95th percentile queue is metered by upstream signal.

Lane Group		۶	-	•	•	—	•	4	†	<i>></i>	/	ţ	</th
Traffic Volume (vph)	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph) 393 413 307 0 0 0 89 127 55 49 170 495 fedeal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 190	Lane Configurations	Ť	4					7	ħβ		ř	<u></u>	7
Ideal Flow (yphpi)	Traffic Volume (vph)	393		307	0	0	0	89		55	49	170	495
Ideal Flow (yphpi)	Future Volume (vph)		413	307	0	0	0	89	127	55	49	170	
Lane Width (ft)	` ' '		1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (%) 1% -4% -1% 1% 460 Storage Length (ft) 0 0 0 0 385 0 190 460 Storage Lenges 1 0 0 0 1 0 1 1 1 Taper Length (ft) 25 25 86 86 86 86 Lane Utili. Factor 0.95 0.95 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00 Ped Bike Factor 7 0.950 0.950 0.950 0.850 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.950 0.950 0.950 0.850 1.00 1.00 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950		12	12	12	16	16	16	12	12	12	12	12	12
Storage Length (ft)			1%										
Storage Lanes	· ,	0		0	0		0	385		0	190		460
Taper Length (ft)	Storage Lanes	1		0	0		0	1		0	1		1
PedB Bike Factor Fit	Taper Length (ft)	25			25			86			86		
PedB Bike Factor Fit		0.95	0.95	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	1.00	1.00
Fit Protected 0.950 0.997 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.581 0.630 0.630 0.630 0.581 0.630 0.630 0.630 0.581 0.630 0.630 0.630 0.581 0.630 0.63	Ped Bike Factor												
Satd. Flow (prot) 1580 1613 0 0 0 1695 3179 0 1727 1734 1530 Fit Permitted 0.950 0.997 0 0 0.581 0.630 0 Satd. Flow (perm) 1580 1613 0 0 0 1037 3179 0 1145 1734 1530 Right Turn on Red Yes Yes 59 Yes 527 Link Speed (mph) 30 30 55 55 Link Distance (ft) 176 314 586 596 Travel Time (s) 4.0 7.1 7.3 7.4 Confl. Peds. (#/hr) 7.1 7.3 9.4 0.94	Frt		0.939						0.954				0.850
Fit Permitted	Flt Protected	0.950	0.997					0.950			0.950		
Fit Permitted 0.950 0.997 0.581 0.630 0.630 0.631 0.630 0.63	Satd. Flow (prot)	1580	1613	0	0	0	0	1695	3179	0	1727	1734	1530
Satd. Flow (perm) 1580 1613 0 0 0 1037 3179 0 1145 1734 1530 Right Turn on Red Yes	FIt Permitted		0.997					0.581			0.630		
Right Turn on Red Yes Yes Yes Yes Yes Satd. Flow (RTOR) 33 527 Link Speed (mph) 30 30 55 55 55 Link Distance (ft) 176 314 586 596 7.4 Croff. Peds. (#hr) 7.1 7.3 7.4 7.4 Confl. Peds. (#hr) 8 4.0 0.94 </td <td>Satd. Flow (perm)</td> <td></td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td>3179</td> <td>0</td> <td></td> <td>1734</td> <td>1530</td>	Satd. Flow (perm)			0	0	0	0		3179	0		1734	1530
Satd. Flow (RTOR) 33 59 527 Link Speed (mph) 30 30 55 55 Link Distance (ft) 176 314 586 596 Travel Time (s) 4.0 7.1 7.3 7.4 Confl. Peds. (#/hr) V V V V V V V 0.94				Yes			Yes			Yes			
Link Speed (mph) 30 30 55 55 Link Distance (ft) 176 314 586 596 Travel Time (s) 4.0 7.1 7.3 7.4 Confl. Peds. (#/hr) 586 596 596 Confl. Bikes (#/hr) 586 596 596 Peak Hour Factor 0.94 0			33						59				
Link Distance (ft) 176 314 586 596 Travel Time (s) 4.0 7.1 7.3 7.4 Confl. Peds. (#/hr) Confl. Bikes (#/hr) Peak Hour Factor 0.94 0.9	,					30						55	
Travel Time (s) 4.0 7.1 7.3 7.4 Confl. Peds. (#/hr) Confl. Bikes (#/hr) Peak Hour Factor 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94													
Confl. Peds. (#/hr) Confl. Bikes (#/hr) Peak Hour Factor 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94													
Confl. Bikes (#/hr) Peak Hour Factor 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94	. ,												
Peak Hour Factor 0.94 0.96 100%	,												
Heavy Vehicles (%) 8% 4% 4% 0% 0% 7% 11% 4% 4% 9% 5% Bus Blockages (#/hr) 0 <td< td=""><td></td><td>0.94</td><td>0.94</td><td>0.94</td><td>0.94</td><td>0.94</td><td>0.94</td><td>0.94</td><td>0.94</td><td>0.94</td><td>0.94</td><td>0.94</td><td>0.94</td></td<>		0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Bus Blockages (#/hr) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Parking (#/hr) Mid-Block Traffic (%) 0% 0 0 95 135 59 52 181 527 527 527 52 181 527 527 52 181 527 52 181 527 52 181 527 52 181 527 52 181 527 52 181 527 52 181 527 52 181 527 52 181 527 52 181 527 52 181 527 52 181 527 52 181 527 52 181 527 52 181 527 52 181 527 52 181 527 52 181 527 52	Heavy Vehicles (%)	8%	4%	4%	0%	0%	0%	7%	11%	4%	4%	9%	5%
Mid-Block Traffic (%) 0% 0% 0% Adj. Flow (vph) 418 439 327 0 0 0 95 135 59 52 181 527 Shared Lane Traffic (%) 10% Use of the color of the colo	• , ,	0	0	0	0	0	0	0	0	0	0	0	0
Adj. Flow (vph) 418 439 327 0 0 0 95 135 59 52 181 527 Shared Lane Traffic (%) 10% Lane Group Flow (vph) 376 808 0 0 0 95 194 0 52 181 527 Enter Blocked Intersection No </td <td>Parking (#/hr)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Parking (#/hr)												
Shared Lane Traffic (%) 10% Lane Group Flow (vph) 376 808 0 0 0 95 194 0 52 181 527 Enter Blocked Intersection No <td< td=""><td>Mid-Block Traffic (%)</td><td></td><td>0%</td><td></td><td></td><td>0%</td><td></td><td></td><td>0%</td><td></td><td></td><td>0%</td><td></td></td<>	Mid-Block Traffic (%)		0%			0%			0%			0%	
Lane Group Flow (vph) 376 808 0 0 0 95 194 0 52 181 527 Enter Blocked Intersection No	Adj. Flow (vph)	418	439	327	0	0	0	95	135	59	52	181	527
Enter Blocked Intersection No No No No No No No No No No No No No	Shared Lane Traffic (%)	10%											
Lane Alignment Left Left Right Left Right Left Right Left Right Left Right Left Right Left Left Right Left Right Left Left Right Left Left Right Left Left Right Left Left Right Left Left Right Left Right Left Right Left Right Left Right Left Right Left Right Left Left Right Left Left Right Left Left Right Left Left Right Left Right Left Left Right Left Left Right Left Left Right Left </td <td>Lane Group Flow (vph)</td> <td>376</td> <td>808</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>95</td> <td>194</td> <td>0</td> <td>52</td> <td>181</td> <td>527</td>	Lane Group Flow (vph)	376	808	0	0	0	0	95	194	0	52	181	527
Median Width(ft) 12 12 12 12 Link Offset(ft) 0 0 0 0 Crosswalk Width(ft) 16 16 16 16	Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Link Offset(ft) 0 0 0 Crosswalk Width(ft) 16 16 16	Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Crosswalk Width(ft) 16 16 16	Median Width(ft)		12			12			12			12	
	Link Offset(ft)		0			0			0			0	
Two way Left Turn Lane	Crosswalk Width(ft)		16			16			16			16	
TWO WAY LOTE TAIN LAID	Two way Left Turn Lane												
Headway Factor 1.01 1.01 0.82 0.82 0.82 0.99 0.99 1.01 1.01 1.01	Headway Factor	1.01	1.01	1.01	0.82	0.82	0.82	0.99	0.99	0.99	1.01	1.01	1.01
Turning Speed (mph) 15 9 15 9 15 9	Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors 1 2 1 2 1	Number of Detectors	1	2					1	2		1	2	1
Detector Template	Detector Template												
Leading Detector (ft) 35 83 35 83 35	Leading Detector (ft)	35	83						83		35		35
Trailing Detector (ft) -5 -5 -5 -5 -5	Trailing Detector (ft)	-5	-5					-5	-5		-5	-5	-5
Turn Type Split NA pm+pt NA pm+pt NA pm+ov	Turn Type	Split	NA					pm+pt	NA		pm+pt	NA	pm+ov
Protected Phases 3 3 6 1 2 5 3		3	3					6	1		2	5	3
Permitted Phases 1 5 5								1					5
Detector Phase 3 3 3 6 1 2 5 3	Detector Phase	3	3					6	1		2	5	3
Switch Phase													

	۶	-	•	•	←	•	4	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	5.0					3.0	8.0		3.0	25.0	5.0
Minimum Split (s)	10.0	10.0					10.0	15.0		10.0	32.0	10.0
Total Split (s)	45.0	45.0					22.0	47.0		22.0	47.0	45.0
Total Split (%)	39.5%	39.5%					19.3%	41.2%		19.3%	41.2%	39.5%
Maximum Green (s)	40.0	40.0					15.0	40.0		15.0	40.0	40.0
Yellow Time (s)	4.0	4.0					5.0	5.0		5.0	5.0	4.0
All-Red Time (s)	1.0	1.0					2.0	2.0		2.0	2.0	1.0
Lost Time Adjust (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0					7.0	7.0		7.0	7.0	5.0
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0					2.0	2.0		2.0	2.0	3.0
Minimum Gap (s)	3.0	3.0					2.0	2.0		2.0	2.0	3.0
Time Before Reduce (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Recall Mode	None	None					None	Min		None	Min	None
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)	40.2	40.2					34.8	27.4		30.2	25.1	73.6
Actuated g/C Ratio	0.45	0.45					0.39	0.30		0.33	0.28	0.82
v/c Ratio	0.53	1.10					0.21	0.19		0.12	0.37	0.39
Control Delay	23.0	89.0					16.7	17.3		16.2	30.5	1.2
Queue Delay	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Total Delay	23.0	89.0					16.7	17.3		16.2	30.5	1.2
LOS	С	F					В	В		В	С	Α
Approach Delay		68.1						17.1			9.2	
Approach LOS		Е						В			Α	
Queue Length 50th (ft)	168	~574					32	30		17	87	0
Queue Length 95th (ft)	278	#855					62	58		39	154	22
Internal Link Dist (ft)		96			234			506			516	
Turn Bay Length (ft)							385			190		460
Base Capacity (vph)	704	737					545	1450		562	773	1345
Starvation Cap Reductn	0	0					0	0		0	0	0
Spillback Cap Reductn	0	0					0	0		0	0	0
Storage Cap Reductn	0	0					0	0		0	0	0
Reduced v/c Ratio	0.53	1.10					0.17	0.13		0.09	0.23	0.39
Intersection Summary												

Area Type: Other

Cycle Length: 114

Actuated Cycle Length: 90.2

Natural Cycle: 90

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 1.10 Intersection Signal Delay: 41.4 Intersection Capacity Utilization 72.7%

Intersection LOS: D
ICU Level of Service C

Analysis Period (min) 15

[~] Volume exceeds capacity, queue is theoretically infinite.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	۶	→	•	•	←	4	1	†	~	\	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્ન			£				7			
Traffic Volume (vph)	1	599	0	0	447	138	0	0	514	0	0	0
Future Volume (vph)	1	599	0	0	447	138	0	0	514	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	15	15	15	12	12	12	13	13	13	16	16	16
Grade (%)		1%			-1%			1%			2%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	0		0	0		0	0		1	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt					0.968				0.865			
Flt Protected												
Satd. Flow (prot)	0	2039	0	0	1765	0	0	0	1565	0	0	0
Flt Permitted												
Satd. Flow (perm)	0	2039	0	0	1765	0	0	0	1565	0	0	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		331			176			301			377	
Travel Time (s)		7.5			4.0			6.8			8.6	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	2%	0%	0%	4%	7%	0%	0%	8%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)		20/			00/			20/			00/	
Mid-Block Traffic (%)	4	0%	•	•	0%	450	^	0%	F74	•	0%	0
Adj. Flow (vph)	1	666	0	0	497	153	0	0	571	0	0	0
Shared Lane Traffic (%)	0	007	0	0	050	0	0	0	F74	0	•	0
Lane Group Flow (vph)	0	667	0	0	650	0	0	0	571	0	0	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Headway Factor	0.89	0.89	0.89	0.99	0.99	0.99	0.96	0.96	0.96	0.86	0.86	0.86
Turning Speed (mph) Sign Control	15	Free	9	15	Free	9	15	Stop	9	15	Stop	9
Intersection Summary								·			·	
, and the second	Other											
Control Type: Unsignalized	-											
Interpretion Consoits Hillingt	70.40/			10		4 0	_					

Intersection Capacity Utilization 70.1% Analysis Period (min) 15 ICU Level of Service C

latana atian													
Intersection	53												
Int Delay, s/veh	ეა												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
ane Configurations		सी			₽				- 7				
raffic Vol, veh/h	1	599	0	0	447	138	0	0	514	0	0	0	
uture Vol, veh/h	1	599	0	0	447	138	0	0	514	0	0	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	-	-	-	-	-	-	0	-	-	-	
eh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	16983	-	
Grade, %	-	1	-	-	-1	-	-	1	-	-	2	-	
eak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90	
leavy Vehicles, %	0	2	0	0	4	7	0	0	8	0	0	0	
lvmt Flow	1	666	0	0	497	153	0	0	571	0	0	0	
ajor/Minor N	Major1		N	Major2		N	Minor1						
Conflicting Flow All	650	0		viajui <u>-</u>	_	0	-	_	666				
Stage 1	-		_										
•	-	-	-	-	-	-	-	-	-				
Stage 2	4.1							-	6.38				
itical Hdwy	4.1	-	-	-	-	-	-	-	0.30				
ritical Hdwy Stg 1	-	-	-	-	-	-	-	-	-				
ritical Hdwy Stg 2	-	-	-	-	-	-	-	-	2 270				
ollow-up Hdwy	2.2	-	-	-	-	-	-	-	3.372				
ot Cap-1 Maneuver	946	-	0	0	-	-	0		~ 441				
Stage 1	-	-	0	0	-	-	0	0	-				
Stage 2	-	-	0	0	-	-	0	0	-				
latoon blocked, %	0.40	-			-	-		0	444				
Nov Cap-1 Maneuver	946	-	-	-	-	-	-		~ 441				
Nov Cap-2 Maneuver	-	-	-	-	-	-	-	0	-				
Stage 1	-	-	-	-	-	-	-	0	-				
Stage 2	-	-	-	-	-	-	-	0	-				
pproach	EB			WB			NB						
ICM Control Delay, s	0			0			175.3						
ICM LOS							F						
linor Lane/Major Mvm	t	NBLn1	EBL	EBT	WBT	WBR							
apacity (veh/h)		441	946	-	_	-							
CM Lane V/C Ratio		1.295		-	-	_							
CM Control Delay (s)		175.3	8.8	0	-	_							
CM Lane LOS		F	A	A	-	_							
CM 95th %tile Q(veh)		24.9	0	-	-	_							
· · · · · ·													
otes	.,	Φ -			\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>		(NL C	c .	+ A11			
: Volume exceeds cap	acity	\$: De	lay exc	eeds 30	JUS ·	+: Comp	outation	Not De	etined	^: All r	najor v	olume in plate	oon

	۶	→	•	•	—	•	1	†	~	/	Ţ	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					ર્ન						4	
Traffic Volume (vph)	0	0	0	447	0	0	0	0	0	600	0	0
Future Volume (vph)	0	0	0	447	0	0	0	0	0	600	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	14	14	13	13	12
Grade (%)		0%			-1%			2%			1%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	0		0	0		0	0		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt												
Flt Protected					0.950						0.950	
Satd. Flow (prot)	0	0	0	0	1744	0	0	0	0	0	1819	0
Flt Permitted					0.950						0.950	
Satd. Flow (perm)	0	0	0	0	1744	0	0	0	0	0	1819	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		71			331			377			345	
Travel Time (s)		1.6			7.5			8.6			7.8	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	0%	4%	0%	0%	0%	0%	0%	2%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	0	0	0	514	0	0	0	0	0	690	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	0	0	0	514	0	0	0	0	0	690	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	0.99	0.99	0.99	1.01	0.93	0.93	0.96	0.96	1.01
Turning Speed (mph)	15	_	9	15	_	9	15		9	15		9
Sign Control		Free			Free			Stop			Stop	
Intersection Summary												
	Other											
Control Type: Unsignalized												
Intersection Capacity Utilizati	on 64.7%			IC	CU Level of	of Service	С					
Analysis Period (min) 15												

Intersection												
Int Delay, s/veh	492											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					सी						सी	02.1
Traffic Vol, veh/h	0	0	0	447	0	0	0	0	0	600	0	0
Future Vol, veh/h	0	0	0	447	0	0	0	0	0	600	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
•	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	_	-	16974	-	-	0	-
Grade, %	-	0	-	-	-1	-	-	2	-	-	1	-
Peak Hour Factor	87	87	87	87	87	87	87	87	87	87	87	87
Heavy Vehicles, %	0	0	0	4	0	0	0	0	0	2	0	0
Mvmt Flow	0	0	0	514	0	0	0	0	0	690	0	0
Major/Minor				Major2					ı	Minor2		
Conflicting Flow All				0	0	0				1028	1028	_
Stage 1				-	-	-				1028	1028	_
Stage 2				_	_	_				0	0	_
Critical Hdwy				4.14	_	_				6.62	6.7	_
Critical Hdwy Stg 1					_	_				5.62	5.7	_
Critical Hdwy Stg 2				_	_	_				-	J.1 -	_
Follow-up Hdwy				2.236	_	_				3.518	4	_
Pot Cap-1 Maneuver				-	_	0				~ 245	223	0
Stage 1				-	_	0				~ 326	297	0
Stage 2				-	-	0				-	-	0
Platoon blocked, %					_							
Mov Cap-1 Maneuver				-	-	-				~ 245	0	-
Mov Cap-2 Maneuver				-	-	-				~ 245	0	-
Stage 1				-	-	-				~ 326	0	-
Stage 2				-	-	-				-	0	-
Approach				WB						SB		
HCM Control Delay, s				770					¢	858.6		
HCM LOS									φ	636.6 F		
TIOW LOO										'		
NA:		MDI	MOT	ODL 4								
Minor Lane/Major Mvmt		WBL	WB1	SBLn1								
Capacity (veh/h)		-	-	245								
HCM Lane V/C Ratio		-		2.815								
HCM Control Delay (s)		-	-\$	858.6								
HCM Lane LOS		-	-	F								
HCM 95th %tile Q(veh)		-	-	59.9								
Notes												
~: Volume exceeds capa	city	\$: De	lay exc	eeds 30)0s -	+: Comp	outation	Not De	efined	*: All ı	major v	olume i
	•		•			-						

	4	\mathbf{x}	À	F	*	₹	ን	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		ર્ન	7	, j	†	7	7	† †	7	ř	† †	7
Traffic Volume (vph)	136	26	229	35	7	57	199	563	152	420	887	177
Future Volume (vph)	136	26	229	35	7	57	199	563	152	420	887	177
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	15	12	12	12	12	11	12	12	12	12	12
Grade (%)		0%			0%			0%			0%	
Storage Length (ft)	0		250	0		225	680		250	400		250
Storage Lanes	0		1	1		1	1		1	1		1
Taper Length (ft)	25			25			86			86		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Ped Bike Factor												
Frt			0.850			0.850			0.850			0.850
Flt Protected		0.960		0.950			0.950			0.950		
Satd. Flow (prot)	0	1929	1495	1357	1429	1455	1662	3471	1553	1787	3539	1553
Flt Permitted		0.756		0.568			0.950			0.950		
Satd. Flow (perm)	0	1519	1495	811	1429	1455	1662	3471	1553	1787	3539	1553
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			236			79			157			170
Link Speed (mph)		30			30			55			55	
Link Distance (ft)		610			598			1191			735	
Travel Time (s)		13.9			13.6			14.8			9.1	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	4%	4%	8%	33%	33%	11%	5%	4%	4%	1%	2%	4%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	140	27	236	36	7	59	205	580	157	433	914	182
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	167	236	36	7	59	205	580	157	433	914	182
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12	<u> </u>		12			12	J
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	0.88	1.00	1.00	1.00	1.00	1.04	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1	1	1	1	1	2	1	1	2	1	1
Detector Template	Left											
Leading Detector (ft)	20	43	6	6	6	6	83	6	6	83	6	6
Trailing Detector (ft)	0	0	0	0	0	0	-5	0	0	-5	0	0
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases		3	. 5	. 5	3	. 5	6	1	. 5	2	5	3
Permitted Phases	3		3	3		3			1	_		5
Detector Phase	3	3	3	3	3	3	6	1	1	2	5	5
Switch Phase		- 0		- 0	- 0		- 0	-				- 0

	₩.	\mathbf{x}	Ž	F	×	₹	7	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	2.0	10.0	10.0	2.0	10.0	10.0
Minimum Split (s)	31.0	31.0	31.0	31.0	31.0	31.0	16.0	42.0	42.0	16.0	42.0	42.0
Total Split (s)	46.0	46.0	46.0	46.0	46.0	46.0	36.0	42.0	42.0	36.0	42.0	42.0
Total Split (%)	37.1%	37.1%	37.1%	37.1%	37.1%	37.1%	29.0%	33.9%	33.9%	29.0%	33.9%	33.9%
Maximum Green (s)	40.0	40.0	40.0	40.0	40.0	40.0	30.0	36.0	36.0	30.0	36.0	36.0
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	6.0	6.0	6.0	6.0	6.0	6.0	2.0	6.0	6.0	2.0	6.0	6.0
Minimum Gap (s)	3.0	3.0	3.0	3.0	3.0	3.0	2.0	3.0	3.0	2.0	4.0	4.0
Time Before Reduce (s)	20.0	20.0	20.0	20.0	20.0	20.0	0.0	20.0	20.0	0.0	20.0	20.0
Time To Reduce (s)	10.0	10.0	10.0	10.0	10.0	10.0	0.0	10.0	10.0	0.0	10.0	10.0
Recall Mode	Min	Min	Min	Min	Min	Min	None	Max	Max	None	Max	Max
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		20.5	20.5	20.5	20.5	20.5	17.1	36.1	36.1	30.1	49.1	49.1
Actuated g/C Ratio		0.20	0.20	0.20	0.20	0.20	0.16	0.34	0.34	0.29	0.47	0.47
v/c Ratio		0.56	0.49	0.23	0.03	0.17	0.76	0.49	0.25	0.84	0.55	0.22
Control Delay		45.4	8.2	38.4	32.9	5.4	59.7	29.4	5.3	52.6	23.4	4.8
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		45.4	8.2	38.4	32.9	5.4	59.7	29.4	5.3	52.6	23.4	4.8
LOS		D	Α	D	С	Α	Е	С	Α	D	С	Α
Approach Delay		23.6			18.9			32.0			29.5	
Approach LOS		С			В			С			С	
Queue Length 50th (ft)		102	0	20	4	0	133	160	0	274	225	4
Queue Length 95th (ft)		169	62	50	16	22	210	231	46	#481	357	50
Internal Link Dist (ft)		530			518			1111			655	
Turn Bay Length (ft)			250			225	680		250	400		250
Base Capacity (vph)		581	718	310	546	605	477	1195	638	513	1658	818
Starvation Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio		0.29	0.33	0.12	0.01	0.10	0.43	0.49	0.25	0.84	0.55	0.22

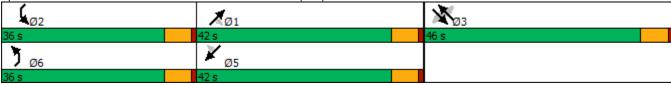
Area Type: Other

Cycle Length: 124

Actuated Cycle Length: 104.7

Natural Cycle: 100

Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.84


Intersection Signal Delay: 29.1
Intersection Capacity Utilization 69.4%

Intersection LOS: C
ICU Level of Service C

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Splits and Phases: 13: NYS Route 22 & North Castle Drive (IBM)/NYS Route 128

	_#	•	•	†	7	₩	ļ	4	€	</th <th>₺</th> <th></th>	₺	
Lane Group	EBL	EBR	NBL	NBT	NBR	SBL	SBT	SBR	SWL	SWR	SWR2	
Lane Configurations	ă	7		ર્ન	7		413		ችች/			
Traffic Volume (vph)	2	4	3	495	246	0	1216	2	315	2	1	
Future Volume (vph)	2	4	3	495	246	0	1216	2	315	2	1	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Lane Width (ft)	10	10	11	11	11	10	10	10	11	11	11	
Grade (%)	0%			4%			1%		0%			
Storage Length (ft)	0	0	0		0	0		0	0	0		
Storage Lanes	1	1	0		1	0		0	2	0		
Taper Length (ft)	25		25			25			25			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	*0.67	*0.67	*0.67	0.97	0.95	0.95	
Ped Bike Factor				1.00			1.00		1.00			
Frt		0.850			0.850				0.999			
Flt Protected	0.950								0.953			
Satd. Flow (prot)	1685	1507	0	1667	1342	0	2296	0	3058	0	0	
Flt Permitted	0.950		-	0.989		•		-	0.953	-	•	
Satd. Flow (perm)	1685	1507	0	1649	1342	0	2296	0	3058	0	0	
Right Turn on Red		Yes	-	70.70	Yes	•		No		-	No	
Satd. Flow (RTOR)		72			251							
Link Speed (mph)	30			35			35		35			
Link Distance (ft)	155			796			597		998			
Travel Time (s)	3.5			15.5			11.6		19.4			
Confl. Peds. (#/hr)	0.0		1				•	1		1		
Confl. Bikes (#/hr)			-					•		•		
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	
Heavy Vehicles (%)	0%	0%	0%	8%	14%	0%	3%	0%	11%	0%	0%	
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	
Parking (#/hr)												
Mid-Block Traffic (%)	0%			0%			0%		0%			
Adj. Flow (vph)	2	4	3	505	251	0	1241	2	321	2	1	
Shared Lane Traffic (%)												
Lane Group Flow (vph)	2	4	0	508	251	0	1243	0	324	0	0	
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Left	Right	Left	Left	Right	Left	Right	Right	
Median Width(ft)	10	J •		0	J		0	J	22	J	J -	
Link Offset(ft)	0			0			0		0			
Crosswalk Width(ft)	16			16			16		16			
Two way Left Turn Lane												
Headway Factor	1.09	1.09	1.07	1.07	1.07	1.10	1.10	1.10	1.04	1.04	1.04	
Turning Speed (mph)	15	9	15		9	15		9	15	9	9	
Number of Detectors	1	1	1	2	1	1	2	-	1	-	•	
Detector Template	•	•	Left	_	•	Left	_					
Leading Detector (ft)	35	35	20	83	35	20	83		35			
Trailing Detector (ft)	-5	-5	0	-5	-5	0	-5		-5			
Turn Type	Prot	Perm	Perm	NA	pm+ov		NA		Prot			
Protected Phases	3	. 5	. 5	1	4		5		4			
Permitted Phases		3	1		1	5	•					
Detector Phase	3	3	1	1	4	5	5		4			
Switch Phase	-	0			т	0	0					

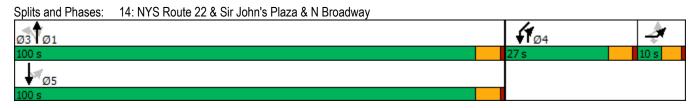
	⊸	•	4	†	1	4	ţ	4	4	</th <th>t</th> <th></th>	t	
Lane Group	EBL	EBR	NBL	NBT	NBR	SBL	SBT	SBR	SWL	SWR	SWR2	
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0			
Minimum Split (s)	10.0	10.0	11.0	11.0	11.0	11.0	11.0		11.0			
Total Split (s)	10.0	10.0	100.0	100.0	27.0	100.0	100.0		27.0			
Total Split (%)	7.3%	7.3%	73.0%	73.0%	19.7%	73.0%	73.0%		19.7%			
Maximum Green (s)	5.0	5.0	94.0	94.0	21.0	94.0	94.0		21.0			
Yellow Time (s)	4.0	4.0	5.0	5.0	5.0	5.0	5.0		5.0			
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0			
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0		0.0			
Total Lost Time (s)	5.0	5.0		6.0	6.0		6.0		6.0			
Lead/Lag	Lag	Lag			Lead				Lead			
Lead-Lag Optimize?	Yes	Yes			Yes				Yes			
Vehicle Extension (s)	5.0	5.0	5.0	5.0	3.0	5.0	5.0		3.0			
Minimum Gap (s)	5.0	5.0	5.0	5.0	3.0	5.0	5.0		3.0			
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0			
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0			
Recall Mode	None	None	Max	Max	None	Max	Max		None			
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)	5.0	5.0		94.2	123.1		94.2		17.9			
Actuated g/C Ratio	0.04	0.04		0.75	0.98		0.75		0.14			
v/c Ratio	0.03	0.03		0.41	0.19		0.72		0.74			
Control Delay	62.5	0.5		7.7	0.4		13.0		63.3			
Queue Delay	0.0	0.0		0.0	0.0		0.0		0.0			
Total Delay	62.5	0.5		7.7	0.4		13.0		63.3			
LOS	Е	Α		Α	Α		В		Е			
Approach Delay	21.2			5.3			13.0		63.3			
Approach LOS	С			Α			В		Е			
Queue Length 50th (ft)	2	0		125	0		343		129			
Queue Length 95th (ft)	12	0		261	7		670		195			
Internal Link Dist (ft)	75			716			517		918			
Turn Bay Length (ft)												
Base Capacity (vph)	66	129		1232	1308		1716		510			
Starvation Cap Reductn	0	0		0	0		0		0			
Spillback Cap Reductn	0	0		0	0		0		0			
Storage Cap Reductn	0	0		0	0		0		0			
Reduced v/c Ratio	0.03	0.03		0.41	0.19		0.72		0.64			
Intersection Summary												
Area Type:	Other											
Cycle Length: 137												
Actuated Cycle Length: 13	26											

Actuated Cycle Length: 126

Natural Cycle: 80

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.74


Intersection Signal Delay: 17.5

Intersection Capacity Utilization 61.1%

Analysis Period (min) 15

* User Entered Value

Intersection LOS: B
ICU Level of Service B

	۶	→	•	•	←	•	†	<i>></i>	/	ţ	4	≽ J
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR2	NBT	NBR	SBL	SBT	SBR	SBR2
Lane Configurations	ሻ	f)			ર્ન	7	^	7	7	∱ }		
Traffic Volume (vph)	270	77	213	73	66	34	524	49	34	1236	248	1
Future Volume (vph)	270	77	213	73	66	34	524	49	34	1236	248	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	11	12	12	12	11	11	12	12	12	12
Grade (%)		2%			2%		4%			-6%		
Storage Length (ft)	115		0	0				160	110		0	
Storage Lanes	1		0	0				1	1		0	
Taper Length (ft)	86			25					86			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	0.95	0.95
Ped Bike Factor	1.00	0.98			1.00	0.99	0.00			0.00	0.00	0.00
Frt		0.890				0.850		0.850		0.975		
Flt Protected		0.000			0.974	0.000		0.000	0.950			
Satd. Flow (prot)	1595	1555	0	0	1755	1508	3257	1500	1805	3475	0	0
Flt Permitted	.000		•		0.974		0_0.		0.279			
Satd. Flow (perm)	1590	1555	0	0	1748	1487	3257	1500	530	3475	0	0
Right Turn on Red	1000	1000	No	•	11 10	Yes	0201	Yes	000	0110	•	No
Satd. Flow (RTOR)			110			76		76				110
Link Speed (mph)		35			30	10	45	7.0		35		
Link Distance (ft)		532			475		529			778		
Travel Time (s)		10.4			10.8		8.0			15.2		
Confl. Peds. (#/hr)	2	10.4	6	6	10.0	2	0.0			10.2		
Confl. Bikes (#/hr)	_					_						
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	14%	6%	1%	3%	6%	6%	5%	2%	3%	3%	11%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)		U	- U	U		U	U	<u> </u>		- U	U	J
Mid-Block Traffic (%)		0%			0%		0%			0%		
Adj. Flow (vph)	284	81	224	77	69	36	552	52	36	1301	261	1
Shared Lane Traffic (%)	204	01	<i>LL</i> ¬		00	00	002	02	00	1001	201	
Lane Group Flow (vph)	284	305	0	0	146	36	552	52	36	1563	0	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Right	Left	Left	Right	Right
Median Width(ft)	Loit	11	ragin	LOIL	11	rtigitt	12	rtigitt	Loit	12	ragin	ragin
Link Offset(ft)		0			0		0			0		
Crosswalk Width(ft)		16			16		16			16		
Two way Left Turn Lane		10			10		10			10		
Headway Factor	1.06	1.06	1.06	1.01	1.01	1.01	1.07	1.07	0.96	0.96	0.96	0.96
Turning Speed (mph)	1.00	1.00	9	1.01	1.01	9	1.07	9	15	0.30	9	9
Number of Detectors	13	2	3	1	2	1	2	1	13	2	3	3
Detector Template	ı			Left		ı		ı	ı			
Leading Detector (ft)	35	83		20	83	35	83	35	35	83		
Trailing Detector (ft)	-5	-5		0	-5	-5	-5	-5	-5	-5		
• ,				-								
Turn Type Protected Phases	Split	NA 3		Split 4	NA 4	pm+ov	NA 6	pm+ov 4	pm+pt	NA 2		
	3	3		4	4	5	O	6	5 2	Z		
Permitted Phases	2	3		4	4	4	6			0		
Detector Phase	3	3		4	4	5	р	4	5	2		
Switch Phase												

Synchro 10 Report Page 38 18002018A - N.T.

Lane Group Ø7
Lane Configurations
Traffic Volume (vph)
Future Volume (vph)
Ideal Flow (vphpl)
Lane Width (ft)
Grade (%)
Storage Length (ft)
Storage Lanes
Taper Length (ft)
Lane Util. Factor
Ped Bike Factor
Frt
Fit Protected
Satd. Flow (prot)
Fit Permitted
Satd. Flow (perm)
Right Turn on Red
Satd. Flow (RTOR)
Link Speed (mph)
Link Distance (ft)
Travel Time (s)
Confl. Peds. (#/hr)
Confl. Bikes (#/hr)
Peak Hour Factor
Growth Factor
Heavy Vehicles (%)
Bus Blockages (#/hr)
Parking (#/hr)
Mid-Block Traffic (%)
Adj. Flow (vph)
Shared Lane Traffic (%)
Lane Group Flow (vph)
Enter Blocked Intersection
Lane Alignment
Median Width(ft)
Link Offset(ft)
Crosswalk Width(ft)
Two way Left Turn Lane
Headway Factor
Turning Speed (mph)
Number of Detectors
Detector Template
Leading Detector (ft)
Trailing Detector (ft)
Turn Type
Protected Phases 7
Permitted Phases
Detector Phase
Switch Phase

Synchro 10 Report Page 39

	•	-	\rightarrow	•	•	•	†	/	>	ļ	4	» J
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR2	NBT	NBR	SBL	SBT	SBR	SBR2
Minimum Initial (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0	5.0		
Minimum Split (s)	39.0	39.0		11.0	11.0	11.0	11.0	11.0	11.0	31.0		
Total Split (s)	51.0	51.0		36.0	36.0	26.0	51.0	36.0	26.0	77.0		
Total Split (%)	25.5%	25.5%		18.0%	18.0%	13.0%	25.5%	18.0%	13.0%	38.5%		
Maximum Green (s)	45.0	45.0		30.0	30.0	20.0	45.0	30.0	20.0	71.0		
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0		
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0		
Lost Time Adjust (s)	0.0	0.0			0.0	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	6.0	6.0			6.0	6.0	6.0	6.0	6.0	6.0		
Lead/Lag	Lead	Lead		Lag	Lag	Lead	Lag	Lag	Lead			
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes			
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0		
Minimum Gap (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0		
Time Before Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Time To Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Recall Mode	None	None		None	None	None	Min	None	None	Min		
Walk Time (s)	8.0	8.0								8.0		
Flash Dont Walk (s)	25.0	25.0								17.0		
Pedestrian Calls (#/hr)	6	6								0		
Act Effct Green (s)	40.4	40.4			20.9	28.9	59.9	80.8	71.3	71.3		
Actuated g/C Ratio	0.22	0.22			0.11	0.15	0.32	0.43	0.38	0.38		
v/c Ratio	0.83	0.91			0.74	0.12	0.53	0.08	0.14	1.18		
Control Delay	90.1	101.8			103.4	0.9	56.8	1.2	41.3	137.6		
Queue Delay	0.0	0.0			0.0	0.0	0.0	0.0	0.0	0.0		
Total Delay	90.1	101.8			103.4	0.9	56.8	1.2	41.3	137.6		
LOS	F	F			F	Α	Е	Α	D	F		
Approach Delay		96.1			83.1		52.0			135.4		
Approach LOS		F			F		D			F		
Queue Length 50th (ft)	336	370			181	0	311	0	29	~1256		
Queue Length 95th (ft)	#486	#566			267	0	407	6	62	#1479		
Internal Link Dist (ft)		452			395		449			698		
Turn Bay Length (ft)	115					180		160	110			
Base Capacity (vph)	385	376			283	388	1043	761	339	1325		
Starvation Cap Reductn	0	0			0	0	0	0	0	0		
Spillback Cap Reductn	0	0			0	0	0	0	0	0		
Storage Cap Reductn	0	0			0	0	0	0	0	0		
Reduced v/c Ratio	0.74	0.81			0.52	0.09	0.53	0.07	0.11	1.18		
Intersection Summary												

Area Type: Other

Cycle Length: 200

Actuated Cycle Length: 186.8

Natural Cycle: 150

Control Type: Actuated-Uncoordinated

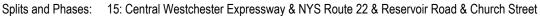
Maximum v/c Ratio: 1.18 Intersection Signal Delay: 107.5 Intersection Capacity Utilization 92.5%

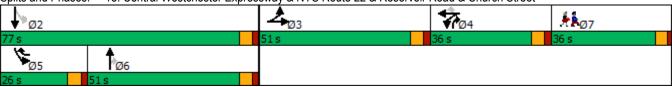
Intersection LOS: F ICU Level of Service F

Analysis Period (min) 15

~ Volume exceeds capacity, queue is theoretically infinite.

Synchro 10 Report Page 40

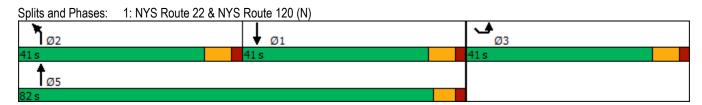

Lane Group	Ø7
Minimum Initial (s)	8.0
Minimum Split (s)	36.0
Total Split (s)	36.0
Total Split (%)	18%
Maximum Green (s)	31.0
Yellow Time (s)	3.5
All-Red Time (s)	1.5
Lost Time Adjust (s)	
Total Lost Time (s)	
Lead/Lag	
Lead-Lag Optimize?	
Vehicle Extension (s)	3.0
Minimum Gap (s)	3.0
Time Before Reduce (s)	0.0
Time To Reduce (s)	0.0
Recall Mode	Ped
Walk Time (s)	8.0
Flash Dont Walk (s)	23.0
Pedestrian Calls (#/hr)	2
Act Effct Green (s)	
Actuated g/C Ratio	
v/c Ratio	
Control Delay	
Queue Delay	
Total Delay	
LOS	
Approach Delay	
Approach LOS	
Queue Length 50th (ft)	
Queue Length 95th (ft)	
Internal Link Dist (ft)	
Turn Bay Length (ft)	
Base Capacity (vph)	
Starvation Cap Reductn	
Spillback Cap Reductn	
Storage Cap Reductn	
Reduced v/c Ratio	
Intersection Summary	
intersection summary	


Synchro 10 Report Page 41 18002018A - N.T.

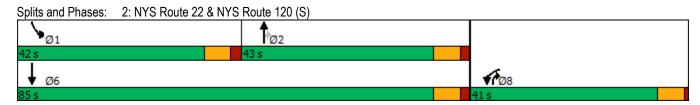
Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.



18002018A - N.T. Page 42


	ሻ	†	ļ	» J	•	>
Lane Group	NBL	NBT	SBT	SBR	SEL	SER
Lane Configurations	T T	^	↑ ↑	7	ሻ	7
Traffic Volume (vph)	181	391	366	234	184	215
Future Volume (vph)	181	391	366	234	184	215
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1900	1900	1900	1900	1900	1900
. ,	10			10		10
Grade (%)	050	0%	0%	500	0%	0
Storage Length (ft)	250			500	250	0
Storage Lanes	1			1	1	1
Taper Length (ft)	86				86	
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00
Ped Bike Factor						
Frt				0.850		0.850
Flt Protected	0.950				0.950	
Satd. Flow (prot)	1620	3209	3240	1436	1560	1449
Flt Permitted	0.950				0.950	
Satd. Flow (perm)	1620	3209	3240	1436	1560	1449
Right Turn on Red	1020	0200	0210	Yes	1300	Yes
Satd. Flow (RTOR)				244		224
Link Speed (mph)		55	55	244	30	224
		767	1064		872	
Link Distance (ft)						
Travel Time (s)		9.5	13.2		19.8	
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	4%	5%	4%	5%	8%	4%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)		0%	0%		0%	
Adj. Flow (vph)	189	407	381	244	192	224
Shared Lane Traffic (%)		.51	001		102	1
Lane Group Flow (vph)	189	407	381	244	192	224
Enter Blocked Intersection	No	No	No	No	No	No
		Left				
Lane Alignment	Left		Left	Right	Left	Right
Median Width(ft)		10	15		10	
Link Offset(ft)		0	0		0	
Crosswalk Width(ft)		16	16		16	
Two way Left Turn Lane						
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (mph)	15			9	15	9
Number of Detectors	1	2	2	1	2	0
Detector Template						
Leading Detector (ft)	35	104	104	0	104	0
Trailing Detector (ft)	-5	0	0	0	0	0
Turn Type	Prot	NA	NA	Free	Prot	Free
Protected Phases	2	5	1	1166	3	1166
		Ü	I	Eroo	J	Eroo
Permitted Phases	0	-	4	Free	_	Free
Detector Phase	2	5	1		3	
Switch Phase						

	ሻ	†	Ţ	≽ J	•	>
Lane Group	NBL	NBT	SBT	SBR	SEL	SER
Minimum Initial (s)	12.0	12.0	12.0		10.0	
Minimum Split (s)	36.0	36.0	36.0		26.0	
Total Split (s)	41.0	82.0	41.0		41.0	
Total Split (%)	33.3%	66.7%	33.3%		33.3%	
Maximum Green (s)	34.0	76.0	34.0		34.0	
Yellow Time (s)	5.0	4.0	5.0		5.0	
All-Red Time (s)	2.0	2.0	2.0		2.0	
Lost Time Adjust (s)	0.0	0.0	0.0		0.0	
Total Lost Time (s)	7.0	6.0	7.0		7.0	
Lead/Lag	Lead		Lag			
Lead-Lag Optimize?	Yes		Yes			
Vehicle Extension (s)	6.0	6.0	6.0		6.0	
Minimum Gap (s)	4.0	4.0	4.0		4.0	
Time Before Reduce (s)	20.0	20.0	20.0		20.0	
Time To Reduce (s)	8.0	8.0	8.0		5.0	
Recall Mode	None	Min	Min		None	
Walk Time (s)	140110		141111		140110	
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)						
Act Effct Green (s)	17.7	44.3	18.3	75.8	18.1	75.8
Actuated g/C Ratio	0.23	0.58	0.24	1.00	0.24	1.00
v/c Ratio	0.23	0.36	0.24	0.17	0.24	0.15
Control Delay	32.0	8.1	28.3	0.17	32.2	0.13
•	0.0	0.0	0.0	0.0	0.0	0.2
Queue Delay	32.0	8.1	28.3	0.0	32.2	0.0
Total Delay LOS	32.0 C	8.1 A	28.3 C	0.3 A	32.2 C	
	U			А		Α
Approach Delay		15.7	17.4		15.0	
Approach LOS	70	B	B 70	^	B 77	0
Queue Length 50th (ft)	76 167	42	78	0	77	0
Queue Length 95th (ft)	167	80	151	0	169	0
Internal Link Dist (ft)	0-0	687	984	500	792	
Turn Bay Length (ft)	250	0000	4500	500	250	4440
Base Capacity (vph)	751	3009	1503	1436	723	1449
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.25	0.14	0.25	0.17	0.27	0.15
Intersection Summary						
Area Type:	Other					
Cycle Length: 123						
Actuated Cycle Length: 75	5.8					
Natural Cycle: 100						
Control Type: Actuated-Un	ncoordinated					
Maximum v/c Ratio: 0.52						
Intersection Signal Delay:	16.2			Ir	ntersection	LOS: B
Intersection Capacity Utiliz				IC	CU Level o	of Service
Analysis Period (min) 15						
, ,						

	•	•	†	/	-	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	**		† †	7	ሻሻ	↑ ↑
Traffic Volume (vph)	50	0	268	58	297	284
Future Volume (vph)	50	0	268	58	297	284
· · ·			1900	1900	1900	1900
Ideal Flow (vphpl)	1900 12	1900				1900
Lane Width (ft)		12	10	10	11	
Grade (%)	-8%	_	-2%	200	0.15	-1%
Storage Length (ft)	0	0		200	215	
Storage Lanes	1	0		1	2	
Taper Length (ft)	25				86	
Lane Util. Factor	1.00	1.00	0.95	1.00	0.97	0.95
Ped Bike Factor						
Frt				0.850		
Flt Protected	0.950				0.950	
Satd. Flow (prot)	1823	0	3210	1478	3209	3372
Flt Permitted	0.950				0.950	
Satd. Flow (perm)	1823	0	3210	1478	3209	3372
Right Turn on Red	.020	Yes	02.10	Yes	0200	
Satd. Flow (RTOR)		100		62		
Link Speed (mph)	55		50	UZ		50
Link Distance (ft)	334		905			488
` ,						
Travel Time (s)	4.1		12.3			6.7
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	3%	0%	6%	3%	6%	4%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	54	0	288	62	319	305
Shared Lane Traffic (%)	•				0.0	
Lane Group Flow (vph)	54	0	288	62	319	305
Enter Blocked Intersection	No	No	No	No	No	No
	Left	Right	Left	Right	Left	Left
Lane Alignment		Rigili		Rigiti	Leit	
Median Width(ft)	12		22			22
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane						
Headway Factor	0.95	0.95	1.08	1.08	1.04	1.04
Turning Speed (mph)	15	9		9	15	
Number of Detectors	1		2	1	1	2
Detector Template	Left		Thru	Right	Left	Thru
Leading Detector (ft)	20		100	20	20	100
Trailing Detector (ft)	0		0	0	0	0
Turn Type	Prot		NA	pm+ov	Prot	NA
Protected Phases	8		2	8	1	6
Permitted Phases				2		U
Detector Phase	8		2	8	1	6
	0		2	0	I	O
Switch Phase						

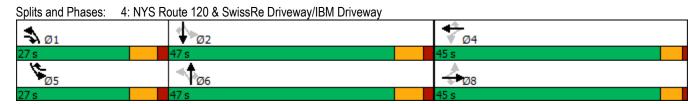
	•	•	†	<i>></i>	/	ţ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Minimum Initial (s)	10.0		12.0	10.0	12.0	12.0
Minimum Split (s)	26.0		36.0	26.0	36.0	36.0
Total Split (s)	41.0		43.0	41.0	42.0	85.0
Total Split (%)	32.5%		34.1%	32.5%	33.3%	67.5%
Maximum Green (s)	35.0		36.0	35.0	35.0	78.0
Yellow Time (s)	5.0		5.0	5.0	5.0	5.0
All-Red Time (s)	1.0		2.0	1.0	2.0	2.0
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0		7.0	6.0	7.0	7.0
Lead/Lag			Lag	- 0.0	Lead	
Lead-Lag Optimize?			Yes		Yes	
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0
Minimum Gap (s)	3.0		3.0	3.0	3.0	3.0
Time Before Reduce (s)	0.0		0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0		0.0	0.0	0.0	0.0
Recall Mode	None		Min	None	Min	Min
Walk Time (s)	140116		171111	140116	(VIII (IVIIII
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)						
Act Effct Green (s)	10.2		12.5	29.9	12.6	34.1
Actuated g/C Ratio	0.20		0.24	0.58	0.25	0.66
v/c Ratio	0.20		0.24	0.56	0.25	0.00
	20.4		19.4	2.4	19.5	5.2
Control Delay	20.4 0.0				0.0	
Queue Delay			0.0	0.0		0.0
Total Delay	20.4		19.4	2.4	19.5	5.2
LOS	C		B	Α	В	A
Approach Delay	20.4		16.4			12.5
Approach LOS	C		В			В
Queue Length 50th (ft)	15		41	0	45	21
Queue Length 95th (ft)	41		74	13	78	34
Internal Link Dist (ft)	254		825			408
Turn Bay Length (ft)				200	215	
Base Capacity (vph)	1268		2298	1447	2232	3372
Starvation Cap Reductn	0		0	0	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductn	0		0	0	0	0
Reduced v/c Ratio	0.04		0.13	0.04	0.14	0.09
Intersection Summary	011					
Area Type:	Other					
Cycle Length: 126						
Actuated Cycle Length: 51	.4					
Natural Cycle: 100						
O (IT O IA (II	ncoord					
Control Type: Semi Act-Ur						
Maximum v/c Ratio: 0.41						
				lr	ntersectio	n LOS: B
Maximum v/c Ratio: 0.41	14.3					n LOS: B of Service

	۶	→	•	•	←	•	1	†	~	/	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					₽			4				
Traffic Volume (vph)	0	0	0	0	14	1	1	301	6	0	0	0
Future Volume (vph)	0	0	0	0	14	1	1	301	6	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	13	12	12	12	12
Grade (%)		0%			-5%			-7%			0%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	0		0	0		0	0		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt					0.992			0.997				
Flt Protected												
Satd. Flow (prot)	0	0	0	0	1797	0	0	1963	0	0	0	0
Flt Permitted												
Satd. Flow (perm)	0	0	0	0	1797	0	0	1963	0	0	0	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		124			297			300			404	
Travel Time (s)		2.8			6.8			6.8			9.2	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	0%	0%	8%	0%	100%	3%	0%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												J
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	0	0	0	0	16	1	1	334	7	0	0	0
Shared Lane Traffic (%)	· ·	· ·	•	•	10	•	•	001	•	· ·	· ·	
Lane Group Flow (vph)	0	0	0	0	17	0	0	342	0	0	0	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	LOIL	0	ragiit	LOIL	0	rtigit	LOIL	0	rtigitt	LOIL	0	rtigitt
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.00	1.00	1.00	0.97	0.97	0.97	0.96	0.92	0.96	1.00	1.00	1.00
Turning Speed (mph)	1.00	1.00	9	15	0.31	9	15	0.52	9	1.00	1.00	9
Sign Control	13	Stop	9	13	Stop	9	13	Free	9	13	Stop	9
		Stop			Зюр			1166			Stop	
Intersection Summary	Other											
Area Type: Control Type: Unsignalized	Juliel											
	on 26 20/			16	III ovol	of Service	. ^					
Intersection Capacity Utilizati	UII ZU.3%			IC	o Level (JI SEIVICE	. A					
Analysis Period (min) 15												

Interception												
Intersection Int Delay, s/veh	0.5											
int Delay, 5/Ven												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					ĵ.			4				
Traffic Vol, veh/h	0	0	0	0	14	1	1	301	6	0	0	0
Future Vol, veh/h	0	0	0	0	14	1	1	301	6	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	2	-	-	0	-	-	0	-	-	16965	-
Grade, %	-	0	-	-	-5	-	-	-7	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	0	0	0	0	8	0	100	3	0	0	0	0
Mvmt Flow	0	0	0	0	16	1	1	334	7	0	0	0
Major/Minor			N	/linor1		N	/lajor1					
Conflicting Flow All				-	340	338	0	0	0			
Stage 1				_	340	-	-	-	-			
Stage 2				_	0	_	_	_	<u>-</u>			
Critical Hdwy				_	5.58	5.7	5.1	_	_			
Critical Hdwy Stg 1				_	4.58	-	-	_	_			
Critical Hdwy Stg 2				_	50	_	_	_	_			
Follow-up Hdwy				<u>-</u>	4.072	3.3	3.1	_	<u>-</u>			
Pot Cap-1 Maneuver				0	629	743	-	_	_			
Stage 1				0	691		_	_	_			
Stage 2				0	-	_	_	_	_			
Platoon blocked, %				0				_	_			
Mov Cap-1 Maneuver				_	0	743	_	_	_			
Mov Cap-2 Maneuver				_	0	-	_	_	<u>-</u>			
Stage 1					0	_	_					
Stage 2				_	0	_	_	_	_			
Olugo Z					J							
Approach				WB			NB					
HCM Control Delay, s				10			ND					
HCM LOS				В								
I IOWI LOO				D								
Minor Lane/Major Mvmt		NBL	NBT	NRRV	VBLn1							
Capacity (veh/h)		HUL	1101	-	743							
HCM Lane V/C Ratio		-	-		0.022							
		-	-									
HCM Long LOS		-	-	-	10							
HCM Lane LOS		-	-	-	B							
HCM 95th %tile Q(veh)		-	-	-	0.1							

	۶	→	•	•	•	•	4	†	<i>></i>	/	ļ	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	7		ર્ન	7	ሻ	1	7	7	^	7
Traffic Volume (vph)	18	Ö	18	6	Ö	4	16	336	3	4	312	39
Future Volume (vph)	18	0	18	6	0	4	16	336	3	4	312	39
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (%)		4%			-1%			7%			-4%	
Storage Length (ft)	0		315	0		125	280		445	150		275
Storage Lanes	0		1	0		1	1		1	1		1
Taper Length (ft)	25			25			86			86		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor							1.00					0.98
Frt			0.850			0.850			0.850			0.850
Flt Protected		0.950			0.950		0.950			0.950		
Satd. Flow (prot)	0	1769	1583	0	1814	1623	1742	1798	1558	1841	1828	1647
FIt Permitted							0.550			0.549		
Satd. Flow (perm)	0	1862	1583	0	1909	1623	1007	1798	1558	1064	1828	1622
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			37			37			83			83
Link Speed (mph)		30			30			55			55	
Link Distance (ft)		601			392			1478			1166	
Travel Time (s)		13.7			8.9			18.3			14.5	
Confl. Peds. (#/hr)							4					4
Confl. Bikes (#/hr)												
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	2%	0%	0%	6%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	19	0	19	6	0	4	17	354	3	4	328	41
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	19	19	0	6	4	17	354	3	4	328	41
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0	•		0			12	J		12	J
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.03	1.03	1.03	0.99	0.99	0.99	1.05	1.05	1.05	0.97	0.97	0.97
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2	1	1	2	1	1	2	1
Detector Template	Left			Left								
Leading Detector (ft)	20	83	35	20	83	35	35	83	35	35	83	35
Trailing Detector (ft)	0	-5	-5	0	-5	-5	-5	-5	-5	-5	-5	-5
Turn Type	Perm	NA	pm+ov	Perm	NA	pm+ov	pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases	. 5	8	1	. 5	4	5	1	6	. 3	5	2	. 3
Permitted Phases	8	J	8	4	f	4	6		6	2	_	2
Detector Phase	8	8	1	4	4	5	1	6	6	5	2	2
Switch Phase	J	- 0	-		7	- 3	1	0	0		L	
CTTION I HOUSE												

	۶	→	•	•	←	•	4	†	<i>></i>	/	+	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	5.0	3.0	5.0	5.0	3.0	3.0	5.0	5.0	3.0	5.0	5.0
Minimum Split (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	12.0	12.0	10.0	12.0	12.0
Total Split (s)	45.0	45.0	27.0	45.0	45.0	27.0	27.0	47.0	47.0	27.0	47.0	47.0
Total Split (%)	37.8%	37.8%	22.7%	37.8%	37.8%	22.7%	22.7%	39.5%	39.5%	22.7%	39.5%	39.5%
Maximum Green (s)	40.0	40.0	20.0	40.0	40.0	20.0	20.0	40.0	40.0	20.0	40.0	40.0
Yellow Time (s)	4.0	4.0	5.0	4.0	4.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	1.0	1.0	2.0	1.0	1.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		5.0	7.0		5.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
Lead/Lag			Lead			Lead	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?			Yes			Yes	Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0	2.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Minimum Gap (s)	3.0	3.0	2.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Recall Mode	None	None	None	None	None	None	None	Max	Max	None	Max	Max
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)		0.0	7.0		0.0	0.0	F0 0	FF 4	FF 4	40.4	54.4	F4 4
Act Effet Green (s)		6.6 0.11	7.0 0.12		6.3 0.10	6.9 0.11	50.0 0.83	55.1 0.91	55.1 0.91	48.4 0.80	51.1 0.85	51.1
Actuated g/C Ratio v/c Ratio		0.11	0.12		0.10	0.11	0.03	0.91	0.00	0.00	0.65	0.85
Control Delay		26.3	4.5		26.2	0.02	1.9	3.2	0.00	2.2	4.2	0.03
Queue Delay		0.0	0.0		0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		26.3	4.5		26.2	0.0	1.9	3.2	0.0	2.2	4.2	0.6
LOS		20.5 C	4.5 A		20.2 C	Α	Α	J.2	Α	Α.Α	Α.2	Α
Approach Delay		15.4			15.8			3.2			3.8	
Approach LOS		В			В			Α			Α	
Queue Length 50th (ft)		5	0		2	0	1	0	0	0	0	0
Queue Length 95th (ft)		26	9		13	0	6	130	0	2	120	4
Internal Link Dist (ft)		521			312			1398			1086	·
Turn Bay Length (ft)		021	315		0.12	125	280	1000	445	150	1000	275
Base Capacity (vph)		1257	614		1288	629	1099	1639	1428	1162	1548	1386
Starvation Cap Reductn		0	0		0	0	0	0	0	0	0	0
Spillback Cap Reductn		0	0		0	0	0	0	0	0	0	0
Storage Cap Reductn		0	0		0	0	0	0	0	0	0	0
Reduced v/c Ratio		0.02	0.03		0.00	0.01	0.02	0.22	0.00	0.00	0.21	0.03
Intersection Summary												
	Other											
Cycle Length: 119												
Actuated Cycle Length: 60.4												
Natural Cycle: 40												
Control Type: Actuated-Unco	ordinated											
Maximum v/c Ratio: 0.22												


Intersection LOS: A

ICU Level of Service A

Intersection Signal Delay: 4.2

Analysis Period (min) 15

Intersection Capacity Utilization 41.0%

	•	•	†	/	>	↓
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ň	7	†	7	*	†
Traffic Volume (vph)	11	53	303	0	35	302
Future Volume (vph)	11	53	303	0	35	302
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	12	12	10	10
Grade (%)	-3%		2%			-1%
Storage Length (ft)	0	0		15	175	
Storage Lanes	1	1		1	1	
Taper Length (ft)	25				86	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt		0.850				
Flt Protected	0.950				0.950	
Satd. Flow (prot)	1771	1585	1826	1881	1644	1666
FIt Permitted	0.950				0.950	
Satd. Flow (perm)	1771	1585	1826	1881	1644	1666
Link Speed (mph)	25		55			55
Link Distance (ft)	589		993			1478
Travel Time (s)	16.1		12.3			18.3
Confl. Peds. (#/hr)	1	1		1	1	
Confl. Bikes (#/hr)						
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	3%	0%	3%	7%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	12	56	319	0	37	318
Shared Lane Traffic (%)						
Lane Group Flow (vph)	12	56	319	0	37	318
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	11		12			12
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane						
Headway Factor	1.02	1.02	1.01	1.01	1.09	1.09
Turning Speed (mph)	15	9		9	15	
Sign Control	Stop		Free			Free
Intersection Summary						
Area Type:	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizati						
IIILEI SECTION Capacity Offizati	on 32.9%			IC	CU Level o	of Service A

Intersection						
Int Delay, s/veh	1.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ሻ	7	↑	7	ኘ	<u> </u>
Traffic Vol, veh/h	11	53	303	0	35	302
Future Vol, veh/h	11	53	303	0	35	302
Conflicting Peds, #/hr	1	1	0	1	1	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	Yield	-	Free	-	None
Storage Length	0	0	_	15	175	-
Veh in Median Storage,		-	0	-	-	0
Grade, %	-3	_	2	_	_	-1
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	0	0	3	0	3	7
Mymt Flow	12	56	319	0	37	318
IVIVIIIL I IOW	12	50	313	U	31	310
Major/Minor N	/linor1		Major1		Major2	
Conflicting Flow All	713	321	0	-	320	0
Stage 1	320	-	-	-	-	-
Stage 2	393	-	-	-	-	-
Critical Hdwy	5.8	5.9	-	-	4.13	-
Critical Hdwy Stg 1	4.8	-	-	-	-	-
Critical Hdwy Stg 2	4.8	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	2.227	-
Pot Cap-1 Maneuver	452	744	-	0	1234	-
Stage 1	781	-	-	0	-	-
Stage 2	733	-	-	0	-	-
Platoon blocked, %			-			-
Mov Cap-1 Maneuver	438	743	-	-	1233	-
Mov Cap-2 Maneuver	438	-	_	-	_	-
Stage 1	780	_	_	_	_	_
Stage 2	710	_	_	_	_	_
Clago L	7.10					
Approach	WB		NB		SB	
HCM Control Delay, s	10.7		0		0.8	
HCM LOS	В					
Minor Lane/Major Mvmt		NBTV	VBLn1V	VBLn2	SBL	SBT
Capacity (veh/h)		_	438	743	1233	_
HCM Lane V/C Ratio		_	0.026		0.03	-
HCM Control Delay (s)		_	13.4	10.2	8	-
HCM Lane LOS		_	В	В	A	-
HCM 95th %tile Q(veh)		_	0.1	0.2	0.1	_
			J. 1	J.L	5.1	

	۶	*	1	†		4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			4	f)	
Traffic Volume (vph)	2	0	0	301	311	1
Future Volume (vph)	2	0	0	301	311	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	11	11	11	11
Grade (%)	3%			5%	-2%	
Storage Length (ft)	0	0	0			0
Storage Lanes	1	0	0			0
Taper Length (ft)	25		25			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt						
Flt Protected	0.950					
Satd. Flow (prot)	1778	0	0	1722	1750	0
Flt Permitted	0.950					
Satd. Flow (perm)	1778	0	0	1722	1750	0
Link Speed (mph)	30			55	55	
Link Distance (ft)	639			1813	993	
Travel Time (s)	14.5			22.5	12.3	
Confl. Peds. (#/hr)	1	1	1			1
Confl. Bikes (#/hr)						
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	0%	4%	6%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)				-		
Mid-Block Traffic (%)	0%			0%	0%	
Adj. Flow (vph)	2	0	0	320	331	1
Shared Lane Traffic (%)						•
Lane Group Flow (vph)	2	0	0	320	332	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12		_0.0	0	0	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane	10			10	10	
Headway Factor	1.02	1.02	1.08	1.08	1.03	1.03
Turning Speed (mph)	15	9	1.00	1.00	1.00	9
Sign Control	Stop	3	10	Free	Free	3
•	Otop					
Intersection Summary	0.11					
	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizat	tion 26.8%			IC	U Level o	of Service
Analysis Period (min) 15						

Intersection						
Int Delay, s/veh	0					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			4	\$	UDIN
Traffic Vol, veh/h	2	0	0	301	311	1
Future Vol, veh/h	2	0	0	301	311	1
Conflicting Peds, #/hr	1	1	1	0	0	1
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	NOHE	_	INOHE
			-	0	0	-
Veh in Median Storage,	# 0 3	-	-		-2	-
Grade, %		- 04	- 04	5		
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	0	0	0	4	6	0
Mvmt Flow	2	0	0	320	331	1
Major/Minor M	1inor2	N	Major1	N	/lajor2	
Conflicting Flow All	654	334	333	0		0
Stage 1	333	-	-	-	_	-
Stage 2	321	_	_	_	_	_
Critical Hdwy	7	6.5	4.1	_	_	_
Critical Hdwy Stg 1	6	0.5	7.1	_	_	_
	6			-	-	_
Critical Hdwy Stg 2		2 2	2.2			
Follow-up Hdwy	3.5	3.3		-	-	-
Pot Cap-1 Maneuver	390	693	1238	-	-	-
Stage 1	691	-	-	-	-	-
Stage 2	701	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	389	692	1237	-	-	-
Mov Cap-2 Maneuver	389	-	-	-	-	-
Stage 1	690	-	-	-	-	-
Stage 2	700	-	-	-	-	-
J						
A mara a ala	ED		ND		CD	
Approach	EB		NB		SB	
HCM Control Delay, s	14.3		0		0	
HCM LOS	В					
Minor Lane/Major Mvmt		NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1237	_	389	_	_
HCM Lane V/C Ratio		-	_	0.005	_	_
HCM Control Delay (s)		0	_	14.3	_	-
		A	_	В	_	_
HCM Lane LOS						
HCM Lane LOS HCM 95th %tile Q(veh)		0	_	0	_	_

		₩	\mathbf{x}	À	_	*	₹	ን	×	~	Ĺ	×	*
Traffic Volume (vph)	Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Traffic Volume (vph)	Lane Configurations		4		ř		7		ર્ન	7		ની	7
Future Volume (vph) 2	Traffic Volume (vph)	2		91	61		22	91		61	19		
Ideal Flow (ryphpi)		2	218	91	61	209	22	91	0	61	19	0	0
Lane Width (ft)		1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)			11	11	11	11	11	10	10	10	11	11	11
Storage Langth (ft)	. ,		-4%						-5%				
Storage Lanes		0		0	120		200	0		95	0		0
Taper Length (ff)	Storage Lanes	0		0	1		1	0		1	0		1
Lane Unil Factor	Taper Length (ft)	25			86			25			25		
Fit Protected		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit Protected	Ped Bike Factor		1.00				0.99						
Fit Protected			0.960				0.850			0.850			
Fit Permitted					0.950				0.950			0.950	
Fit Permitted	Satd. Flow (prot)	0	1721	0	1736	1774	1553	0	1727	1545	0	1638	1827
Satd. Flow (perm)				-				•			-		
Page Page		0		0		1774	1534	0		1545	0		1827
Satid. Flow (RTOR) 37 28 30 32 32 32 32 32 32 32													
Link Speed (mph)			37										
Link Distance (ft)						55			30			25	
Travel Time (s)	, ,												
Confi. Peds. (#/hr)	` /												
Confile Bikes (#/hr) Peak Hour Factor 0.94		1					1						
Peak Hour Factor		•					•						
Growth Factor 100%	, ,	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Heavy Vehicles (%) 50% 6% 0% 0% 0% 0% 0% 0%													
Bus Blockages (#/hr)	Heavy Vehicles (%)		6%	0%	0%		0%	0%		0%	6%		
Parking (#/hr) Mid-Block Traffic (%) 0% 0% 0% 0% 0% 0% 0%	. ,												
Mid-Block Traffic (%) 0% 0% 0% 0% 0% 0% Adj. Flow (vph) 2 232 97 65 222 23 97 0 65 20 <													
Adj. Flow (vph) 2 232 97 65 222 23 97 0 65 20 0 0 Shared Lane Traffic (%) Lane Group Flow (vph) 0 331 0 65 222 23 0 97 65 0 20 0 Enter Blocked Intersection No 1 1			0%			0%			0%			0%	
Shared Lane Traffic (%) Lane Group Flow (vph) 0 331 0 65 222 23 0 97 65 0 20 0	` ,	2		97	65		23	97		65	20		0
Lane Group Flow (vph) 0 331 0 65 222 23 0 97 65 0 20 0 Enter Blocked Intersection No </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>													
Enter Blocked Intersection No <th< td=""><td>` ,</td><td>0</td><td>331</td><td>0</td><td>65</td><td>222</td><td>23</td><td>0</td><td>97</td><td>65</td><td>0</td><td>20</td><td>0</td></th<>	` ,	0	331	0	65	222	23	0	97	65	0	20	0
Lane Alignment Left Left Right Left Left Right Left Left Right Left Left Right Left Right Median Width(ft) 11						No			No	No	No		
Median Width(ft) 11 11 11 0 0 Link Offset(ft) 0 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 16 Two way Left Turn Lane Turning Speed (mph) 1.02 1.02 1.05 1.05 1.06 1.06 1.06 1.05 1.05 1.05 1.06 1.06 1.06 1.05 1.05 1.05 1.05 1.06 1.06 1.06 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.06 1.06 1.06 1.05	Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Link Offset(ft) 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 Two way Left Turn Lane Headway Factor 1.02 1.02 1.02 1.05 1.05 1.06 1.06 1.06 1.05 1.05 1.05 Turning Speed (mph) 15 9 15 10 105 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05			11						0			0	J
Crosswalk Width(ft) 16 16 16 16 16 Two way Left Turn Lane Headway Factor 1.02 1.02 1.02 1.05 1.05 1.06 1.06 1.06 1.05 1.05 1.05 Turning Speed (mph) 15 9 15 9 15 9 15 9 Number of Detectors 1 2 1 2 1 2 1 1			0			0			0			0	
Two way Left Turn Lane Headway Factor 1.02 1.02 1.02 1.05 1.05 1.06 1.06 1.06 1.05 1.05 1.05 Turning Speed (mph) 15 9 15 9 15 9 15 9 Number of Detectors 1 2 1 2 1 1 2 <						16						16	
Headway Factor 1.02 1.02 1.02 1.05 1.05 1.06 1.06 1.06 1.06 1.05 1.05 1.05 Turning Speed (mph) 15 9 15 10 15 10 1													
Turning Speed (mph) 15 9 15 9 15 9 15 9 Number of Detectors 1 2 1 2 1 2 1 3 3 3		1.02	1.02	1.02	1.05	1.05	1.05	1.06	1.06	1.06	1.05	1.05	1.05
Number of Detectors 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 3	Turning Speed (mph)	15		9	15		9	15			15		
Leading Detector (ft) 20 83 35 83 35 20 83 35 20 83 35 Trailing Detector (ft) 0 -5 -5 -5 -5 0 -5 -5 0 -5 -5 -5 -5 -5 0 -5 -8			2			2	1	1	2	1	1	2	1
Leading Detector (ft) 20 83 35 83 35 20 83 35 20 83 35 Trailing Detector (ft) 0 -5 -5 -5 -5 0 -5 -5 0 -5 -5 -5 -5 -5 0 -5 -8	Detector Template	Left						Left			Left		
Trailing Detector (ft) 0 -5 -5 -5 -5 0 -5 -5 0 -5 -5 -5 Turn Type Perm NA pm+pt NA Perm Perm NA Perm Perm NA Perm NA Perm Perm NA Perm Perm NA Perm NA Perm NA Perm Perm NA Perm NA Perm NA Perm NA Perm Perm NA Perm NA Perm Perm NA		20	83		35	83	35		83	35	20	83	35
Turn Type Perm NA pm+pt NA Perm Perm Perm Perm NA Perm Protected Phases 2 1 6 8 4 4 Permitted Phases 2 6 6 8 8 4 4 Detector Phase 2 2 1 6 8 8 8 4 4								0					
Protected Phases 2 1 6 8 4 Permitted Phases 2 6 6 8 8 4 4 Detector Phase 2 2 1 6 6 8 8 4 4 4													
Permitted Phases 2 6 6 8 8 4 4 Detector Phase 2 2 1 6 6 8 8 4 4 4	• • • • • • • • • • • • • • • • • • • •												
Detector Phase 2 2 1 6 6 8 8 4 4 4		2			6		6	8		8	4		4
			2			6			8			4	
	Switch Phase												

Synchro 10 Report Page 16

	•	\mathbf{x}	Ž	F	×	₹	ን	×	~	Ĺ	K	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Minimum Initial (s)	10.0	10.0		3.0	10.0	10.0	3.0	3.0	3.0	5.0	5.0	5.0
Minimum Split (s)	17.0	17.0		10.0	17.0	17.0	10.0	10.0	10.0	10.0	10.0	10.0
Total Split (s)	52.0	52.0		13.0	65.0	65.0	20.0	20.0	20.0	20.0	20.0	20.0
Total Split (%)	61.2%	61.2%		15.3%	76.5%	76.5%	23.5%	23.5%	23.5%	23.5%	23.5%	23.5%
Maximum Green (s)	45.0	45.0		6.0	58.0	58.0	15.0	15.0	15.0	15.0	15.0	15.0
Yellow Time (s)	5.0	5.0		5.0	5.0	5.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)		0.0		0.0	0.0	0.0		0.0	0.0		0.0	0.0
Total Lost Time (s)		7.0		7.0	7.0	7.0		5.0	5.0		5.0	5.0
Lead/Lag	Lag	Lag		Lead								
Lead-Lag Optimize?	Yes	Yes		Yes								
Vehicle Extension (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Minimum Gap (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Time Before Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Recall Mode	Max	Max		None	Max	Max	Max	Max	Max	Max	Max	Max
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		47.9		58.0	58.0	58.0		15.0	15.0		15.0	
Actuated g/C Ratio		0.56		0.68	0.68	0.68		0.18	0.18		0.18	
v/c Ratio		0.34		0.10	0.18	0.02		0.41	0.17		0.09	
Control Delay		10.8		4.8	5.3	1.7		37.0	0.9		30.7	
Queue Delay		0.0		0.0	0.0	0.0		0.0	0.0		0.0	
Total Delay		10.8		4.8	5.3	1.7		37.0	0.9		30.7	
LOS		В		Α	Α	Α		D	Α		С	
Approach Delay		10.8			5.0			22.5			30.7	
Approach LOS		В			Α			С			С	
Queue Length 50th (ft)		83		10	37	0		46	0		9	
Queue Length 95th (ft)		140		22	62	6		94	0		29	
Internal Link Dist (ft)		1733			2200			248			438	
Turn Bay Length (ft)				120		200			95			
Base Capacity (vph)		984		674	1210	1054		238	388		211	
Starvation Cap Reductn		0		0	0	0		0	0		0	
Spillback Cap Reductn		0		0	0	0		0	0		0	
Storage Cap Reductn		0		0	0	0		0	0		0	
Reduced v/c Ratio		0.34		0.10	0.18	0.02		0.41	0.17		0.09	

Intersection Summary

Area Type: Other

Cycle Length: 85

Actuated Cycle Length: 85

Natural Cycle: 40

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.41

Intersection Signal Delay: 11.4 Intersection Capacity Utilization 55.7%

Analysis Period (min) 15

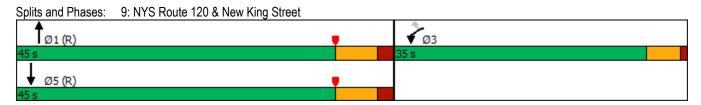
Intersection LOS: B ICU Level of Service B

Synchro 10 Report 18002018A - N.T.

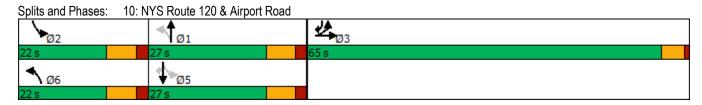
Splits and Phases: 7: 113 King Street Driveway/American Lane (S) & NYS Route 120 ₩_{Ø2} ►ø1 V_{Ø8}

18002018A - N.T. Page 18

Lane Group WBL WBR NBT NBR SBL SBT Lane Configurations 1 1 3 84 213 Traffic Volume (vph) 50 81 211 34 84 213 Future Volume (vphpl) 10 1900<
Lane Configurations
Traffic Volume (vph) 50 81 211 34 84 213 Future Volume (vph) 50 81 211 34 84 213 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 Lane Width (ft) 12 12 11
Future Volume (vph)
Ideal Flow (vphpl)
Lane Width (ft) 12 12 11 11 11 11 Grade (%) -6% 2% 0% Storage Length (ft) 0 0 0 0 Storage Lanes 1 0 0 0 0 Taper Length (ft) 25 25 25 25 Lane Util. Factor 1.00
Grade (%) -6% 2% 0% Storage Length (ft) 0 0 0 0 Storage Lanes 1 0 0 0 Taper Length (ft) 25 25 25 Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 Ped Bike Factor 7tt 0.981 0.981 0.986
Storage Length (ft) 0 0 0 0 Storage Lanes 1 0 0 0 Taper Length (ft) 25 25 Lane Util. Factor 1.00<
Storage Lanes
Taper Length (ft) 25
Lane Util. Factor
Ped Bike Factor
Frt 0.917 0.981 0.986 Satd. Flow (prot) 1639 0 1724 0 0 1704 Fit Permitted 0.981 0.843 0.843 0.843 0.843 0.843 0 0 1457 0.843 0 0 1457 0.843 0 0 1457 0.843 0 0.843 0 0 1457 0.843 0.843 0 0 1457 0 0 1457 0 0 1457 0 0 1457 0 0 1457 0 0 1457 0 0 1457 0 0 1457 0 0 1457 0 0 1457 0 0 1457 0 0 0 0 1457 0 0 0 0 0 1457 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Fit Protected 0.981 0.986 Satd. Flow (prot) 1639 0 1724 0 0 1704 Fit Permitted 0.981 0.843 Satd. Flow (perm) 1639 0 1724 0 0 1457 Right Turn on Red Yes Yes Yes Satd. Flow (RTOR) 84 14 Link Speed (mph) 30 55 55 55 Link Distance (ft) 328 519 557 Travel Time (s) 7.5 6.4 6.9 Confl. Peds. (#/hr) Confl. Bikes (#/hr) Peak Hour Factor 0.96 0.96 0.96 0.96 0.96 0.96 0.96 Growth Factor 100% 100% 100% 100% 100% 100% 100% Heavy Vehicles (%) 8% 7% 1% 19% 2% 8% 8% 8% 8% 8% 8% 8
Satd. Flow (prot) 1639 0 1724 0 0 1704 Flt Permitted 0.981 0.843 Satd. Flow (perm) 1639 0 1724 0 0 1457 Right Turn on Red Yes Yes Yes Yes Satd. Flow (RTOR) 84 14 Link Speed (mph) 30 55 55 55 Link Distance (ft) 328 519 557 557 Travel Time (s) 7.5 6.4 6.9 6.9 Confl. Peds. (#/hr) Confl. Peds. (#/hr) Confl. Bikes (#/hr) Confl. Bikes (#/hr) Confl. Peds. (#/hr) Confl. Bikes (#/hr) 0.96 <t< td=""></t<>
Fit Permitted 0.981 0.843 Satd. Flow (perm) 1639 0 1724 0 0 1457 Right Turn on Red Yes Yes Yes Satd. Flow (RTOR) 84 14 14 14 14 14 14 15 14 16 16 16 16 16 16 16 16 16 10 16 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 <t< td=""></t<>
Satd. Flow (perm) 1639 0 1724 0 0 1457 Right Turn on Red Yes Yes Yes Satd. Flow (RTOR) 84 14 14 Link Speed (mph) 30 55 55 Link Distance (ft) 328 519 557 Travel Time (s) 7.5 6.4 6.9 Confl. Peds. (#/hr) Confl. Bikes (#/hr) Confl. Bikes (#/hr) 0.96
Right Turn on Red Yes Yes Satd. Flow (RTOR) 84 14 Link Speed (mph) 30 55 55 Link Distance (ft) 328 519 557 Travel Time (s) 7.5 6.4 6.9 Confl. Peds. (#/hr) Confl. Bikes (#/hr) Peak Hour Factor 0.96 0.96 0.96 0.96 0.96 Growth Factor 100%
Satd. Flow (RTOR) 84 14 Link Speed (mph) 30 55 55 Link Distance (ft) 328 519 557 Travel Time (s) 7.5 6.4 6.9 Confl. Peds. (#/hr) Confl. Bikes (#/hr) Peak Hour Factor 0.96 0.96 0.96 0.96 0.96 0.96 Growth Factor 100%
Link Speed (mph) 30 55 55 Link Distance (ft) 328 519 557 Travel Time (s) 7.5 6.4 6.9 Confl. Peds. (#/hr) Confl. Bikes (#/hr) Peak Hour Factor 0.96 <t< td=""></t<>
Link Distance (ft) 328 519 557 Travel Time (s) 7.5 6.4 6.9 Confl. Peds. (#/hr) Confl. Bikes (#/hr) Peak Hour Factor 0.96 0
Travel Time (s) 7.5 6.4 6.9 Confl. Peds. (#/hr) Confl. Bikes (#/hr) Peak Hour Factor 0.96 0.96 0.96 0.96 0.96 0.96 Growth Factor 100% 100% 100% 100% 100% 100% 100% 100
Confl. Peds. (#/hr) Confl. Bikes (#/hr) Peak Hour Factor 0.96 0.98 8% 8% 8% 8% 8% 8% 8% 8% 8% 8% 8% 8% 8% 8% 8 222 84 220 35 88 222 84 220 35 88 222 <td< td=""></td<>
Confl. Bikes (#/hr) Peak Hour Factor 0.96 0.96 0.96 0.96 0.96 0.96 Growth Factor 100% 100% 100% 100% 100% 100% Heavy Vehicles (%) 8% 7% 1% 19% 2% 8% Bus Blockages (#/hr) 0 0 0 0 0 0 0 Parking (#/hr) Mid-Block Traffic (%) 0% 0% 0% Adj. Flow (vph) 52 84 220 35 88 222 Shared Lane Traffic (%) Lane Group Flow (vph) 136 0 255 0 0 310 Enter Blocked Intersection No No No No No No No Lane Alignment Left Right Left Right Left Left Median Width(ft) 12 0 0 Link Offset(ft) 0 0 0 0 Crosswalk Width(ft) 16 16 16 Two way Left Turn Lane
Peak Hour Factor 0.96 100%
Growth Factor 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 8% 9% <t< td=""></t<>
Heavy Vehicles (%) 8% 7% 1% 19% 2% 8% Bus Blockages (#/hr) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0% 0 310 0 <td< td=""></td<>
Bus Blockages (#/hr) 0 0 0 0 0 0 0 0 0 Parking (#/hr) Mid-Block Traffic (%) 0% 0% 0% 0% Adj. Flow (vph) 52 84 220 35 88 222 Shared Lane Traffic (%) Lane Group Flow (vph) 136 0 255 0 0 310 Enter Blocked Intersection No No No No No No No Lane Alignment Left Right Left Right Left Left Median Width(ft) 12 0 0 0 Link Offset(ft) 0 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 Two way Left Turn Lane
Parking (#/hr) Mid-Block Traffic (%) 0% 0% 0% Adj. Flow (vph) 52 84 220 35 88 222 Shared Lane Traffic (%) Lane Group Flow (vph) 136 0 255 0 0 310 Enter Blocked Intersection No </td
Mid-Block Traffic (%) 0% 0% Adj. Flow (vph) 52 84 220 35 88 222 Shared Lane Traffic (%) Lane Group Flow (vph) 136 0 255 0 0 310 Enter Blocked Intersection No
Adj. Flow (vph) 52 84 220 35 88 222 Shared Lane Traffic (%) Lane Group Flow (vph) 136 0 255 0 0 310 Enter Blocked Intersection No
Adj. Flow (vph) 52 84 220 35 88 222 Shared Lane Traffic (%) Lane Group Flow (vph) 136 0 255 0 0 310 Enter Blocked Intersection No
Shared Lane Traffic (%) Lane Group Flow (vph) 136 0 255 0 0 310 Enter Blocked Intersection No N
Lane Group Flow (vph) 136 0 255 0 0 310 Enter Blocked Intersection No N
Enter Blocked Intersection No No No No No No Lane Alignment Left Right Left Right Left Left Median Width(ft) 12 0 0 0 Link Offset(ft) 0 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 Two way Left Turn Lane
Lane Alignment Left Right Left Right Left
Median Width(ft) 12 0 0 Link Offset(ft) 0 0 0 Crosswalk Width(ft) 16 16 16 Two way Left Turn Lane 16 16 16
Link Offset(ft) 0 0 0 Crosswalk Width(ft) 16 16 16 Two way Left Turn Lane 16 16 16
Crosswalk Width(ft) 16 16 16 Two way Left Turn Lane
Two way Left Turn Lane
Turning Speed (mph) 15 9 9 15
Number of Detectors 1 2 1 2
Detector Template Left
Leading Detector (ft) 35 83 20 83
Trailing Detector (ft) -5 -5 0 -5
Turn Type Prot NA Perm NA
Protected Phases 3 1 5
Permitted Phases 5
Detector Phase 3 1 5 5
Switch Phase


	•	•	†	~	>	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Minimum Initial (s)	5.0		5.0		5.0	5.0
Minimum Split (s)	10.0		12.0		12.0	12.0
Total Split (s)	35.0		45.0		45.0	45.0
Total Split (%)	43.8%		56.3%		56.3%	56.3%
Maximum Green (s)	30.0		38.0		38.0	38.0
Yellow Time (s)	4.0		5.0		5.0	5.0
All-Red Time (s)	1.0		2.0		2.0	2.0
Lost Time Adjust (s)	0.0		0.0		2.0	0.0
Total Lost Time (s)	5.0		7.0			7.0
Lead/Lag	3.0		1.0			7.0
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0		3.0		3.0	3.0
	3.0		3.0		3.0	3.0
Minimum Gap (s)						
Time Before Reduce (s)	0.0		0.0		0.0	0.0
Time To Reduce (s)	0.0		0.0		0.0	0.0
Recall Mode	None		C-Max		C-Max	C-Max
Walk Time (s)						
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)			=0.0			
Act Effct Green (s)	8.7		59.3			59.3
Actuated g/C Ratio	0.11		0.74			0.74
v/c Ratio	0.54		0.20			0.29
Control Delay	22.5		2.3			4.7
Queue Delay	0.0		0.0			0.0
Total Delay	22.5		2.3			4.7
LOS	С		Α			Α
Approach Delay	22.5		2.3			4.7
Approach LOS	С		Α			Α
Queue Length 50th (ft)	25		13			39
Queue Length 95th (ft)	72		35			88
Internal Link Dist (ft)	248		439			477
Turn Bay Length (ft)						
Base Capacity (vph)	667		1282			1080
Starvation Cap Reductn	0		0			0
Spillback Cap Reductn	0		0			0
Storage Cap Reductn	0		0			0
Reduced v/c Ratio	0.20		0.20			0.29
Intersection Summary	0.20		0.20			0.23
Area Type:	Other					
Cycle Length: 80	Outel					
)					
Actuated Cycle Length: 80		1.NDT ~:	od E.CDTI	Ctort of	Vallau	
Offset: 13 (16%), Referen	ced to phase	i.ing i ai	iu 5:981L	., Siart of	reliow	
Natural Cycle: 40	a malling a Co. A					
Control Type: Actuated-Co	pordinated					
Maximum v/c Ratio: 0.54	- ^					
Intersection Signal Delay:						n LOS: A
Intersection Capacity Utiliz	zation 52.6%			IC	CU Level	of Service
Analysis Period (min) 15						

	•	•	†	/	\	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ሻ	7	<u>↑</u>	, LDIT	JDL	<u> </u>
Traffic Volume (vph)	245	46	199	0	0	264
Future Volume (vph)	245	46	199	0	0	264
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1900	1900	1900	1900	1900	1900
. ,		13		11	11	
Grade (%)	-2%	475	1%	^	^	1%
Storage Length (ft)	0	175		0	0	
Storage Lanes	1	1		0	0	
Taper Length (ft)	25				25	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt		0.850				
Flt Protected	0.950					
Satd. Flow (prot)	1770	1686	1740	0	0	1692
Flt Permitted	0.950					
Satd. Flow (perm)	1770	1686	1740	0	0	1692
Right Turn on Red		Yes		Yes	•	
Satd. Flow (RTOR)		49		. 00		
Link Speed (mph)	30	70	55			55
Link Distance (ft)	321		928			519
Travel Time (s)	7.3		11.5			6.4
. ,	1.3		11.5			0.4
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)	0.00	0.00	0.00	0.00	0.00	0.00
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	3%	0%	5%	0%	0%	8%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	263	49	214	0	0	284
Shared Lane Traffic (%)				-	-	
Lane Group Flow (vph)	263	49	214	0	0	284
Enter Blocked Intersection	No	No	No	No	No	No
	Left		Left		Left	Left
Lane Alignment		Right		Right	Leit	
Median Width(ft)	12		0			0
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane						
Headway Factor	0.99	0.95	1.05	1.05	1.05	1.05
Turning Speed (mph)	15	9		9	15	
Number of Detectors	1	1	2			2
Detector Template						
Leading Detector (ft)	35	35	83			83
Trailing Detector (ft)	-5	-5	-5			-5
Turn Type	Prot	Perm	NA			NA
Protected Phases	3	. 51111	1			5
Permitted Phases	- 0	3				3
	2		1			E
Detector Phase	3	3	1			5
Switch Phase						


	•	•	†	/	>	↓	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Minimum Initial (s)	5.0	5.0	5.0			5.0	
Minimum Split (s)	10.0	10.0	12.0			12.0	
Total Split (s)	35.0	35.0	45.0			45.0	
Total Split (%)	43.8%	43.8%	56.3%			56.3%	
Maximum Green (s)	30.0	30.0	38.0			38.0	
Yellow Time (s)	4.0	4.0	5.0			5.0	
All-Red Time (s)	1.0	1.0	2.0			2.0	
Lost Time Adjust (s)	0.0	0.0	0.0			0.0	
Total Lost Time (s)	5.0	5.0	7.0			7.0	
Lead/Lag	0.0	0.0	7.0			1.0	
Lead-Lag Optimize?							
Vehicle Extension (s)	3.0	3.0	3.0			3.0	
Minimum Gap (s)	3.0	3.0	3.0			3.0	
Time Before Reduce (s)	0.0	0.0	0.0			0.0	
Time To Reduce (s)	0.0	0.0	0.0			0.0	
Recall Mode	None	None	C-Max			C-Max	
Walk Time (s)	140116	140116	O IVION			JIVIUA	
Flash Dont Walk (s)							
Pedestrian Calls (#/hr)							
Act Effct Green (s)	17.4	17.4	50.6			50.6	
Actuated g/C Ratio	0.22	0.22	0.63			0.63	
v/c Ratio	0.22	0.22	0.03			0.03	
Control Delay	37.6	7.7	7.7			6.2	
Queue Delay	0.0	0.0	0.0			0.2	
Total Delay	37.6	7.7	7.7			6.2	
LOS	37.0 D	Α.	Α			0.2 A	
Approach Delay	32.9	A	7.7			6.2	
Approach LOS	32.9 C		7.7 A			0.2 A	
Queue Length 50th (ft)	122	0	40			29	
	180	23	86			102	
Queue Length 95th (ft)		23					
Internal Link Dist (ft)	241	175	848			439	
Turn Bay Length (ft)	660	175	1101			1074	
Base Capacity (vph)	663	662	1101			1071	
Starvation Cap Reductn	0	0	0			0	
Spillback Cap Reductn	0	0	0			0	
Storage Cap Reductn	0 10	0.07	0 10			0	
Reduced v/c Ratio	0.40	0.07	0.19			0.27	
Intersection Summary	Other						
Area Type:	Otner						
Cycle Length: 80							
Actuated Cycle Length: 80		A.NDT -	l C.ODT	011()	/ - II		
Offset: 13 (16%), Reference	ea to pnase	I:NRI 9	na 5:5BT,	Start of Y	ellow		
Natural Cycle: 40	ا - ا - ما اسما						
Control Type: Actuated-Co	ordinated						
Maximum v/c Ratio: 0.68	10.0					1.00.5	
Intersection Signal Delay: 1					tersection		
Intersection Capacity Utiliza	ation 37.5%			IC	U Level of	of Service A	Α

Analysis Period (min) 15

	۶	→	•	•	-	•	•	†	<i>></i>	/	ţ	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	4					7	∱ î≽		7	^	7
Traffic Volume (vph)	133	298	76	0	0	0	83	66	45	33	107	369
Future Volume (vph)	133	298	76	0	0	0	83	66	45	33	107	369
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	16	16	16	12	12	12	12	12	12
Grade (%)		1%			-4%			-1%			1%	
Storage Length (ft)	0		0	0		0	385		0	190		460
Storage Lanes	1		0	0		0	1		0	1		1
Taper Length (ft)	25			25			86			86		
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.970						0.939				0.850
Flt Protected	0.950	0.998					0.950			0.950		
Satd. Flow (prot)	1595	1670	0	0	0	0	1711	3308	0	1694	1750	1545
Flt Permitted	0.950	0.998					0.598			0.675		
Satd. Flow (perm)	1595	1670	0	0	0	0	1077	3308	0	1204	1750	1545
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		16						49				401
Link Speed (mph)		30			30			55			55	
Link Distance (ft)		176			314			586			596	
Travel Time (s)		4.0			7.1			7.3			7.4	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	7%	4%	4%	0%	0%	0%	6%	5%	0%	6%	8%	4%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	145	324	83	0	0	0	90	72	49	36	116	401
Shared Lane Traffic (%)	10%											
Lane Group Flow (vph)	130	422	0	0	0	0	90	121	0	36	116	401
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12	_		12	_		12	_		12	_
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.01	1.01	1.01	0.82	0.82	0.82	0.99	0.99	0.99	1.01	1.01	1.01
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2					1	2		1	2	1
Detector Template												
Leading Detector (ft)	35	83					35	83		35	83	35
Trailing Detector (ft)	-5	-5					-5	-5		-5	-5	-5
Turn Type	Split	NA					pm+pt	NA		pm+pt	NA	pm+ov
Protected Phases	3	3					6	1		2	5	. 3
Permitted Phases							1			5		5
Detector Phase	3	3					6	1		2	5	3
Switch Phase												

	٠	→	•	•	+	•	•	†	/	/	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	5.0					3.0	8.0		3.0	20.0	5.0
Minimum Split (s)	10.0	10.0					10.0	15.0		10.0	27.0	10.0
Total Split (s)	65.0	65.0					22.0	27.0		22.0	27.0	65.0
Total Split (%)	57.0%	57.0%					19.3%	23.7%		19.3%	23.7%	57.0%
Maximum Green (s)	60.0	60.0					15.0	20.0		15.0	20.0	60.0
Yellow Time (s)	4.0	4.0					5.0	5.0		5.0	5.0	4.0
All-Red Time (s)	1.0	1.0					2.0	2.0		2.0	2.0	1.0
Lost Time Adjust (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0					7.0	7.0		7.0	7.0	5.0
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0					2.0	2.0		2.0	2.0	3.0
Minimum Gap (s)	3.0	3.0					2.0	2.0		2.0	2.0	3.0
Time Before Reduce (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Recall Mode	None	None					None	Min		None	Min	None
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)	25.3	25.3					30.7	25.8		25.5	21.2	55.4
Actuated g/C Ratio	0.36	0.36					0.43	0.36		0.36	0.30	0.78
v/c Ratio	0.23	0.70					0.17	0.10		0.08	0.22	0.31
Control Delay	17.3	25.6					13.9	14.0		14.1	26.0	1.0
Queue Delay	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Total Delay	17.3	25.6					13.9	14.0		14.1	26.0	1.0
LOS	В	С					В	В		В	С	Α
Approach Delay		23.6						14.0			7.1	
Approach LOS		С						В			Α	
Queue Length 50th (ft)	42	160					21	12		8	40	0
Queue Length 95th (ft)	85	274					61	37		30	104	20
Internal Link Dist (ft)		96			234			506			516	
Turn Bay Length (ft)							385			190		460
Base Capacity (vph)	1325	1390					641	1237		654	524	1535
Starvation Cap Reductn	0	0					0	0		0	0	0
Spillback Cap Reductn	0	0					0	0		0	0	0
Storage Cap Reductn	0	0					0	0		0	0	0
Reduced v/c Ratio	0.10	0.30					0.14	0.10		0.06	0.22	0.26
Intersection Summary												
Area Type:	Other											
Cycle Length: 114												
Actuated Cycle Length: 70	0.7											
Natural Cycle: 60												
Control Type: Actuated-U	ncoordinated											
Maximum v/c Ratio: 0.70												
Intersection Signal Delay:	15.1				tersection							
Intersection Capacity Utiliz	zation 42.8%			IC	CU Level	of Service	Α					
Analysis Period (min) 15												

	۶	→	•	•	←	•	1	†	/	>	↓	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્ન			f)				7			
Traffic Volume (vph)	6	176	0	0	273	180	0	0	332	0	0	0
Future Volume (vph)	6	176	0	0	273	180	0	0	332	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	15	15	15	12	12	12	13	13	13	16	16	16
Grade (%)		1%			-1%			1%			2%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	0		0	0		0	0		1	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt					0.946				0.865			
Flt Protected		0.998										
Satd. Flow (prot)	0	1980	0	0	1724	0	0	0	1594	0	0	0
Flt Permitted		0.998										
Satd. Flow (perm)	0	1980	0	0	1724	0	0	0	1594	0	0	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		331			176			301			377	
Travel Time (s)		7.5			4.0			6.8			8.6	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	5%	0%	0%	4%	6%	0%	0%	6%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	7	191	0	0	297	196	0	0	361	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	198	0	0	493	0	0	0	361	0	0	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	0.89	0.89	0.89	0.99	0.99	0.99	0.96	0.96	0.96	0.86	0.86	0.86
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Free			Free			Stop			Stop	
Intersection Summary												
	Other											
Control Type: Unsignalized												
Intersection Capacity Utilizati	on 36.8%			IC	CU Level	of Service	A					
Analysis Period (min) 15												

Note Section
Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR
Traffic Vol, veh/h
Traffic Vol, veh/h
Traffic Vol, veh/h 6 176 0 0 273 180 0 0 332 0 0 0 Future Vol, veh/h 6 176 0 0 273 180 0 0 332 0 0 0 0 Conflicting Peds, #/hr 0
Future Vol, veh/h 6 176 0 0 273 180 0 0 332 0 0 0 Conflicting Peds, #/hr 0<
Sign Control Free None - None - None - None - None - None - None - None - None - None - None - None - None - None - - 0 - - 0 - - 0 - - 0 - - 16983 - - 2 - 2 92 92 92 92 92 92 92 92 92
Sign Control Free None - None - None - None - None - None - None - None - None - None - None - None - None - - None - - 0 - - 0 - - 0 - - 16983 - - - - 2 92 92 92 92 92 92 92 92 92 92 92
RT Channelized - None - None - None - None - None Storage Length None None None Storage Length
Veh in Median Storage, # - 0 - - 0 - - 16983 - Grade, % - 1 - - - 1 - - 1 - - 2 - Peak Hour Factor 92 9
Grade, % - 1 - - - 1 - - 1 - - 2 - Peak Hour Factor 92
Peak Hour Factor 92
Major/Minor Major1 Major2 Minor1 Conflicting Flow All 493 0 - - 0 - - 191 Stage 1 -
Mvmt Flow 7 191 0 0 297 196 0 0 361 0 0 0 Major/Minor Major1 Major2 Minor1 Vision 1 Vision 2 Vision 3 Vi
Major/Minor Major1 Major2 Minor1 Conflicting Flow All 493 0 - - 0 - 191 Stage 1 - - - - - - - Stage 2 - - - - - - - Critical Hdwy 4.1 - - - - - 6.36 Critical Hdwy Stg 1 - - - - - - - Critical Hdwy Stg 2 - - - - - - -
Conflicting Flow All 493 0 - - 0 - - 191 Stage 1 - - - - - - - - Stage 2 - - - - - - - - Critical Hdwy 4.1 - - - - - - 6.36 Critical Hdwy Stg 1 - - - - - - - - Critical Hdwy Stg 2 - - - - - - - -
Conflicting Flow All 493 0 - - 0 - - 191 Stage 1 - - - - - - - - Stage 2 - - - - - - - - Critical Hdwy 4.1 - - - - - 6.36 Critical Hdwy Stg 1 - - - - - - - Critical Hdwy Stg 2 - - - - - - -
Conflicting Flow All 493 0 - - 0 - - 191 Stage 1 - - - - - - - - Stage 2 - - - - - - - - Critical Hdwy 4.1 - - - - - 6.36 Critical Hdwy Stg 1 - - - - - - - Critical Hdwy Stg 2 - - - - - - -
Stage 1 - </td
Stage 2 - - - - - - - - - - - - - - - 6.36 Critical Hdwy Stg 1 - <
Critical Hdwy 4.1 - - - - - 6.36 Critical Hdwy Stg 1 - - - - - - - - Critical Hdwy Stg 2 - - - - - - - -
Critical Hdwy Stg 1 -
Critical Hdwy Stg 2
Follow-up Hdwy 2.2 3.354
Pot Cap-1 Maneuver 1081 - 0 0 0 0 836
Stage 1 0 0 0 0 -
Stage 2 0 0 0 0 -
Platoon blocked, %
Mov Cap-1 Maneuver 1081 0 836
Mov Cap-2 Maneuver 0 -
Stage 1 0 -
Stage 2 0 -
Approach EB WB NB
HCM Control Delay, s 0.3 0 12.5
HCM LOS B
TIOM LOG
M' I M' M I NDIA EDI EDT MOT MOD
Minor Lane/Major Mvmt NBLn1 EBL EBT WBT WBR
Capacity (veh/h) 836 1081
HCM Lane V/C Ratio 0.432 0.006
HCM Control Delay (s) 12.5 8.3 0
HUNTION LINE
HCM Lane LOS B A A HCM 95th %tile Q(veh) 2.2 0

	۶	→	*	•	←	4	1	†	~	/	+	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					ર્ન						ર્ન	
Traffic Volume (vph)	0	0	0	278	0	0	0	0	0	182	0	0
Future Volume (vph)	0	0	0	278	0	0	0	0	0	182	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	14	14	13	13	12
Grade (%)		0%			-1%			2%			1%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	0		0	0		0	0		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt												
Flt Protected					0.950						0.950	
Satd. Flow (prot)	0	0	0	0	1744	0	0	0	0	0	1767	0
Flt Permitted					0.950						0.950	
Satd. Flow (perm)	0	0	0	0	1744	0	0	0	0	0	1767	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		71			331			377			345	
Travel Time (s)		1.6			7.5			8.6			7.8	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	0%	4%	0%	0%	0%	0%	0%	5%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%	_		0%	
Adj. Flow (vph)	0	0	0	290	0	0	0	0	0	190	0	0
Shared Lane Traffic (%)						_	_	_				
Lane Group Flow (vph)	0	0	0	0	290	0	0	0	0	0	190	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		4.00										
Headway Factor	1.00	1.00	1.00	0.99	0.99	0.99	1.01	0.93	0.93	0.96	0.96	1.01
Turning Speed (mph)	15	_	9	15	_	9	15	0.	9	15	0:	9
Sign Control		Free			Free			Stop			Stop	
Intersection Summary												
	Other											
Control Type: Unsignalized												
Intersection Capacity Utilizati	on 32.2%			IC	CU Level	of Service	A					
Analysis Period (min) 15												

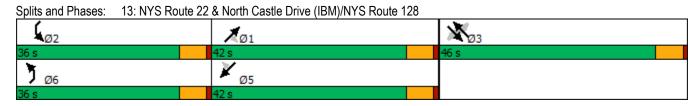
Intersection												
Int Delay, s/veh	7.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					4						4	
Traffic Vol, veh/h	0	0	0	278	0	0	0	0	0	182	0	0
Future Vol, veh/h	0	0	0	278	0	0	0	0	0	182	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	<u>-</u>	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	16974	-	-	0	-
Grade, %	-	0	-	-	-1	-	-	2	-	-	1	-
Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96
Heavy Vehicles, %	0	0	0	4	0	0	0	0	0	5	0	0
Mvmt Flow	0	0	0	290	0	0	0	0	0	190	0	0
Major/Minor			1	Major2					N	/linor2		
Conflicting Flow All				0	0	0				580	580	_
Stage 1				-	-	-				580	580	_
Stage 2				-	-	-				0	0	-
Critical Hdwy				4.14	-	-				6.65	6.7	-
Critical Hdwy Stg 1				-	-	-				5.65	5.7	-
Critical Hdwy Stg 2				-	-	-				-	-	-
Follow-up Hdwy				2.236	-	-				3.545	4	-
Pot Cap-1 Maneuver				-	-	0				457	415	0
Stage 1				-	-	0				536	487	0
Stage 2				-	-	0				-	-	0
Platoon blocked, %					-							
Mov Cap-1 Maneuver				-	-	-				457	0	-
Mov Cap-2 Maneuver				-	-	-				457	0	-
Stage 1				-	-	-				536	0	-
Stage 2				-	-	-				-	0	-
Approach				WB						SB		
HCM Control Delay, s										18.3		
HCM LOS										С		
Minor Lane/Major Mvm	t	WBL	WBT :	SBLn1								
Capacity (veh/h)		_	_	457								
HCM Lane V/C Ratio		_	_	0.415								
HCM Control Delay (s)		_	_	18.3								
HCM Lane LOS		_	_	C								
HCM 95th %tile Q(veh)		-	-	2								

	y	×	7	_	*	*	ን	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		4	1	*	†	7	ሻ	^	7	ሻ	^	7
Traffic Volume (vph)	118	9	184	26	19	68	189	336	29	58	363	87
Future Volume (vph)	118	9	184	26	19	68	189	336	29	58	363	87
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	15	12	12	12	12	11	12	12	12	12	12
Grade (%)		0%			0%			0%			0%	
Storage Length (ft)	0		250	0		225	680		250	400		250
Storage Lanes	0		1	1		1	1		1	1		1
Taper Length (ft)	25			25			86			86		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Ped Bike Factor			0.99	1.00								
Frt			0.850			0.850			0.850			0.850
Flt Protected		0.955		0.950			0.950			0.950		
Satd. Flow (prot)	0	1890	1583	1543	1900	1615	1678	3343	1615	1805	3438	1482
Flt Permitted		0.726		0.673			0.950			0.950		
Satd. Flow (perm)	0	1437	1563	1092	1900	1615	1678	3343	1615	1805	3438	1482
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			192			79			79			91
Link Speed (mph)		30			30			55			55	
Link Distance (ft)		610			598			1191			735	
Travel Time (s)		13.9			13.6			14.8			9.1	
Confl. Peds. (#/hr)			1	1								
Confl. Bikes (#/hr)												
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	6%	0%	2%	17%	0%	0%	4%	8%	0%	0%	5%	9%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	123	9	192	27	20	71	197	350	30	60	378	91
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	132	192	27	20	71	197	350	30	60	378	91
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	0.88	1.00	1.00	1.00	1.00	1.04	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1	1	1	1	1	2	1	1	2	1	1
Detector Template	Left											
Leading Detector (ft)	20	43	6	6	6	6	83	6	6	83	6	6
Trailing Detector (ft)	0	0	0	0	0	0	-5	0	0	-5	0	0
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases		3			3		6	1		2	5	
Permitted Phases	3		3	3		3			1			5
Detector Phase	3	3	3	3	3	3	6	1	1	2	5	5
Switch Phase												

	₩.	\mathbf{x}	Ž	F	×	₹	7	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	2.0	10.0	10.0	2.0	10.0	10.0
Minimum Split (s)	31.0	31.0	31.0	31.0	31.0	31.0	16.0	42.0	42.0	16.0	42.0	42.0
Total Split (s)	46.0	46.0	46.0	46.0	46.0	46.0	36.0	42.0	42.0	36.0	42.0	42.0
Total Split (%)	37.1%	37.1%	37.1%	37.1%	37.1%	37.1%	29.0%	33.9%	33.9%	29.0%	33.9%	33.9%
Maximum Green (s)	40.0	40.0	40.0	40.0	40.0	40.0	30.0	36.0	36.0	30.0	36.0	36.0
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	6.0	6.0	6.0	6.0	6.0	6.0	2.0	6.0	6.0	2.0	6.0	6.0
Minimum Gap (s)	3.0	3.0	3.0	3.0	3.0	3.0	2.0	3.0	3.0	2.0	4.0	4.0
Time Before Reduce (s)	20.0	20.0	20.0	20.0	20.0	20.0	0.0	20.0	20.0	0.0	20.0	20.0
Time To Reduce (s)	10.0	10.0	10.0	10.0	10.0	10.0	0.0	10.0	10.0	0.0	10.0	10.0
Recall Mode	Min	Min	Min	Min	Min	Min	None	Max	Max	None	Max	Max
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		17.5	17.5	17.5	17.5	17.5	14.7	46.2	46.2	7.6	36.5	36.5
Actuated g/C Ratio		0.20	0.20	0.20	0.20	0.20	0.17	0.53	0.53	0.09	0.42	0.42
v/c Ratio		0.46	0.41	0.12	0.05	0.18	0.69	0.20	0.03	0.38	0.26	0.13
Control Delay		36.4	7.5	30.3	28.7	7.4	48.2	13.1	0.1	47.2	19.1	5.5
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		36.4	7.5	30.3	28.7	7.4	48.2	13.1	0.1	47.2	19.1	5.5
LOS		D	Α	С	С	Α	D	В	Α	D	В	Α
Approach Delay		19.3			16.3			24.4			19.9	
Approach LOS		В			В			С			В	
Queue Length 50th (ft)		63	0	12	9	0	101	52	0	31	67	0
Queue Length 95th (ft)		127	53	36	29	30	192	103	0	79	135	34
Internal Link Dist (ft)		530			518			1111			655	
Turn Bay Length (ft)			250			225	680		250	400		250
Base Capacity (vph)		670	831	509	886	795	587	1776	895	631	1443	675
Starvation Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio		0.20	0.23	0.05	0.02	0.09	0.34	0.20	0.03	0.10	0.26	0.13

Intersection Summary

Area Type: Other


Cycle Length: 124 Actuated Cycle Length: 87 Natural Cycle: 90

Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.69 Intersection Signal Delay: 21.2 Intersection Capacity Utilization 49.2%

Intersection LOS: C ICU Level of Service A

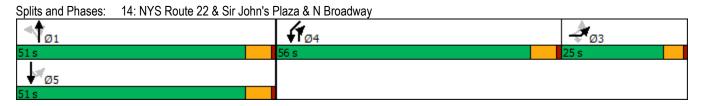
Analysis Period (min) 15

18002018A - N.T.

	ၨ	≭	\rightarrow	•	†	7	(w	ļ	4	€	✓	
Lane Group	EBL2	EBL	EBR	NBL	NBT	NBR	SBL	SBT	SBR	SWL	SWR	
Lane Configurations		ă	7		ર્ન	7		4T>		444		
Traffic Volume (vph)	3	0	6	4	400	178	0	375	2	179	0	
Future Volume (vph)	3	0	6	4	400	178	0	375	2	179	0	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Lane Width (ft)	10	10	10	11	11	11	10	10	10	11	11	
Grade (%)		0%			4%			1%		0%		
Storage Length (ft)		0	0	0		0	0		0	0	0	
Storage Lanes		1	1	0		1	0		0	2	0	
Taper Length (ft)		25		25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	*0.67	*0.67	*0.67	0.97	0.95	
Ped Bike Factor	,,,,,,				1.00	.,		1.00				
Frt			0.850			0.850		0.999				
Flt Protected		0.950								0.950		
Satd. Flow (prot)	0	1685	1133	0	1744	1391	0	2229	0	3164	0	
Flt Permitted		0.950		•	0.996					0.950	•	
Satd. Flow (perm)	0	1685	1133	0	1737	1391	0	2229	0	3164	0	
Right Turn on Red	•		Yes	•		Yes			No	0.0.	•	
Satd. Flow (RTOR)			74			185						
Link Speed (mph)		30			35	100		35		35		
Link Distance (ft)		155			796			597		511		
Travel Time (s)		3.5			15.5			11.6		10.0		
Confl. Peds. (#/hr)		0.0		1	10.0			11.0	1	10.0	1	
Confl. Bikes (#/hr)				•					•		•	
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	
Heavy Vehicles (%)	0%	0%	33%	25%	3%	10%	0%	6%	0%	7%	0%	
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%		0%		
Adj. Flow (vph)	3	0	6	4	417	185	0	391	2	186	0	
Shared Lane Traffic (%)	U	· ·	U	т.	717	100	U	001	_	100	U	
Lane Group Flow (vph)	0	3	6	0	421	185	0	393	0	186	0	
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Right	
Median Width(ft)	LOIL	10	ragnt	LOIL	0	rtigitt	LOIL	0	rtigiit	22	rtigitt	
Link Offset(ft)		0			0			0		0		
Crosswalk Width(ft)		16			16			16		16		
Two way Left Turn Lane		10			10			10		10		
Headway Factor	1.09	1.09	1.09	1.07	1.07	1.07	1.10	1.10	1.10	1.04	1.04	
Turning Speed (mph)	1.03	1.03	9	1.07	1.07	9	1.10	1.10	9	1.04	9	
Number of Detectors	13	13	1	13	2	1	1	2	9	13	9	
Detector Template	Left	ı	ı	Left		ı	Left			·		
Leading Detector (ft)	20	35	35	20	83	35	20	83		35		
Trailing Detector (ft)	0	ან -5	-5	0	-5	ან -5	0	-5		ან -5		
		-ⴢ Prot	-5 Perm	Perm	c- NA		U	-5 NA		-ი Prot		
Turn Type Protected Phases	Perm	3	r eiiii	FEIIII		pm+ov						
	2	3	2	1	1	4	E	5		4		
Permitted Phases	3	2	3	1	1	· · · · · · · · · · · · · · · · · · ·	5	Г		1		
Detector Phase	3	3	3	1	1	4	5	5		4		
Switch Phase												

	۶	_#	•	4	†	7	4	ţ	4	√	✓	
Lane Group	EBL2	EBL	EBR	NBL	NBT	NBR	SBL	SBT	SBR	SWL	SWR	
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0		
Minimum Split (s)	10.0	10.0	10.0	11.0	11.0	11.0	11.0	11.0		11.0		
Total Split (s)	25.0	25.0	25.0	51.0	51.0	56.0	51.0	51.0		56.0		
Total Split (%)	18.9%	18.9%	18.9%	38.6%	38.6%	42.4%	38.6%	38.6%		42.4%		
Maximum Green (s)	20.0	20.0	20.0	45.0	45.0	50.0	45.0	45.0		50.0		
Yellow Time (s)	4.0	4.0	4.0	5.0	5.0	5.0	5.0	5.0		5.0		
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0		
Lost Time Adjust (s)		0.0	0.0		0.0	0.0		0.0		0.0		
Total Lost Time (s)		5.0	5.0		6.0	6.0		6.0		6.0		
Lead/Lag	Lag	Lag	Lag			Lead				Lead		
Lead-Lag Optimize?	Yes	Yes	Yes			Yes				Yes		
Vehicle Extension (s)	5.0	5.0	5.0	5.0	5.0	3.0	5.0	5.0		3.0		
Minimum Gap (s)	5.0	5.0	5.0	5.0	5.0	3.0	5.0	5.0		3.0		
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0		
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0		
Recall Mode	None	None	None	Max	Max	None	Max	Max		None		
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		7.9	7.9		45.4	66.0		45.4		9.5		
Actuated g/C Ratio		0.11	0.11		0.66	0.95		0.66		0.14		
v/c Ratio		0.02	0.03		0.37	0.14		0.27		0.43		
Control Delay		30.7	0.3		7.8	0.5		6.7		31.4		
Queue Delay		0.0	0.0		0.0	0.0		0.0		0.0		
Total Delay		30.7	0.3		7.8	0.5		6.7		31.4		
LOS		С	Α		Α	Α		Α		С		
Approach Delay		10.4			5.6			6.7		31.4		
Approach LOS		В			Α			Α		С		
Queue Length 50th (ft)		1	0		59	0		38		36		
Queue Length 95th (ft)		10	0		192	12		120		76		
Internal Link Dist (ft)		75			716			517		431		
Turn Bay Length (ft)												
Base Capacity (vph)		491	382		1138	1391		1461		2304		
Starvation Cap Reductn		0	0		0	0		0		0		
Spillback Cap Reductn		0	0		0	0		0		0		
Storage Cap Reductn		0	0		0	0		0		0		
Reduced v/c Ratio		0.01	0.02		0.37	0.13		0.27		0.08		
Intersection Summary												
Area Type:	Other											
	_											
	9.2											
•												
	ncoord											
Cycle Length: 132 Actuated Cycle Length: 69 Natural Cycle: 40 Control Type: Semi Act-Ur	0.2											

Intersection LOS: B


ICU Level of Service A

Analysis Period (min) 15

* User Entered Value

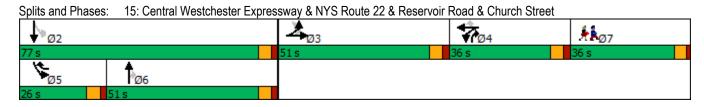
Maximum v/c Ratio: 0.43 Intersection Signal Delay: 10.0

Intersection Capacity Utilization 47.7%

	>	۶	→	•	•	+	*_	•	†	<i>></i>	/	
Lane Group	EBL2	EBL	EBT	EBR	WBL	WBT	WBR	WBR2	NBT	NBR	SBL	SBT
Lane Configurations		ř	f)			ર્ન		*	^	7	ሻ	↑ ↑
Traffic Volume (vph)	1	217	148	94	64	106	1	71	346	68	47	373
Future Volume (vph)	1	217	148	94	64	106	1	71	346	68	47	373
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	11	11	12	12	12	12	11	11	12	12
Grade (%)			2%			2%			4%			-6%
Storage Length (ft)		115		0	0		180			160	110	
Storage Lanes		1		0	0		1			1	1	
Taper Length (ft)		86			25						86	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95
Ped Bike Factor		0.99	0.99			1.00		0.99				0.99
Frt			0.942			0.999		0.850		0.850		0.945
Flt Protected						0.982					0.950	
Satd. Flow (prot)	0	1639	1683	0	0	1834	0	1599	3353	1443	1859	3254
Flt Permitted	· ·	1000	1000		J	0.982		1000	0000	1110	0.260	020 1
Satd. Flow (perm)	0	1627	1683	0	0	1825	0	1576	3353	1443	509	3254
Right Turn on Red	· ·	1021	1000	No	J	1020		Yes	0000	Yes	000	020 1
Satd. Flow (RTOR)				110				76		76		
Link Speed (mph)			35			30		, ,	45	10		35
Link Distance (ft)			532			475			529			778
Travel Time (s)			10.4			10.8			8.0			15.2
Confl. Peds. (#/hr)	3	2	10.4	10	10	10.0	3	2	0.0			10.2
Confl. Bikes (#/hr)	3			10	10		0					
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	11%	1%	0%	0%	1%	0%	0%	2%	6%	0%	3%
Bus Blockages (#/hr)	0	0	0	0	0	0	0 /0	0	0	0	0	0
Parking (#/hr)	U	U	U	U	U	· ·	· ·	U	· ·	U	U	J
Mid-Block Traffic (%)			0%			0%			0%			0%
Adj. Flow (vph)	1	231	157	100	68	113	1	76	368	72	50	397
Shared Lane Traffic (%)	ı	201	101	100	00	110	ı	70	300	12	30	331
Lane Group Flow (vph)	0	232	257	0	0	182	0	76	368	72	50	628
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Left	Right	Right	Left	Right	Left	Left
Median Width(ft)	LGIL	Leit	11	Right	LGIL	11	Right	rtigitt	12	rtigiit	Leit	12
Link Offset(ft)			0			0			0			0
Crosswalk Width(ft)			16			16			16			16
Two way Left Turn Lane			10			10			10			10
Headway Factor	1.06	1.06	1.06	1.06	1.01	1.01	1.01	1.01	1.07	1.07	0.96	0.96
Turning Speed (mph)	1.00	1.00	1.00	9	1.01	1.01	9	9	1.07	9	15	0.90
Number of Detectors	13	13	2	9	13	2	9	1	2	1	13	2
Detector Template	Left	ı			Left			ı		ı	ı	
Leading Detector (ft)	20	35	83		20	83		35	83	35	35	83
Trailing Detector (ft)	0	-5	-5		0	-5		-5	-5	-5	-5	-5
. ,	Perm		G- NA			-5 NA			G- NA			-5 NA
Turn Type Protected Phases	reiiii	Split	NA 3		Split 4			pm+ov	NA 6	pm+ov	pm+pt	NA 2
	2	3	3		4	4		5	O	4	5 2	2
Permitted Phases	3	2	2		1	_1_		4	c	6		2
Detector Phase Switch Phase	3	3	3		4	4		5	6	4	5	2
SWILLII FIIASE												

Synchro 10 Report 18002018A - N.T. Page 38

Lane Group	SBR	Ø7			
Lane Coup Lane Configurations	ומט	DI -			
Traffic Volume (vph)	217				
Future Volume (vph)	217				
Ideal Flow (vphpl)	1900				
Lane Width (ft)	12				
Grade (%)	^				
Storage Length (ft)	0				
Storage Lanes	0				
Taper Length (ft)	0.05				
Lane Util. Factor	0.95				
Ped Bike Factor					
Frt					
Flt Protected					
Satd. Flow (prot)	0				
Flt Permitted					
Satd. Flow (perm)	0				
Right Turn on Red					
Satd. Flow (RTOR)					
Link Speed (mph)					
Link Distance (ft)					
Travel Time (s)					
Confl. Peds. (#/hr)	1				
Confl. Bikes (#/hr)					
Peak Hour Factor	0.94				
Growth Factor	100%				
Heavy Vehicles (%)	14%				
Bus Blockages (#/hr)	0				
Parking (#/hr)					
Mid-Block Traffic (%)					
Adj. Flow (vph)	231				
Shared Lane Traffic (%)					
Lane Group Flow (vph)	0				
Enter Blocked Intersection	No				
Lane Alignment	Right				
Median Width(ft)					
Link Offset(ft)					
Crosswalk Width(ft)					
Two way Left Turn Lane					
Headway Factor	0.96				
Turning Speed (mph)	9				
Number of Detectors	9				
Detector Template					
Leading Detector (ft)					
Trailing Detector (ft)					
Turn Type		7			
Protected Phases		7			
Permitted Phases					
Detector Phase					
Switch Phase					


	>	۶	-	•	•	•	*_	•	†	<i>></i>	\	ļ
Lane Group	EBL2	EBL	EBT	EBR	WBL	WBT	WBR	WBR2	NBT	NBR	SBL	SBT
Minimum Initial (s)	5.0	5.0	5.0		5.0	5.0		5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	39.0	39.0	39.0		11.0	11.0		11.0	11.0	11.0	11.0	31.0
Total Split (s)	51.0	51.0	51.0		36.0	36.0		26.0	51.0	36.0	26.0	77.0
Total Split (%)	25.5%	25.5%	25.5%		18.0%	18.0%		13.0%	25.5%	18.0%	13.0%	38.5%
Maximum Green (s)	45.0	45.0	45.0		30.0	30.0		20.0	45.0	30.0	20.0	71.0
Yellow Time (s)	4.0	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)		0.0	0.0			0.0		0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		6.0	6.0			6.0		6.0	6.0	6.0	6.0	6.0
Lead/Lag	Lead	Lead	Lead		Lag	Lag		Lead	Lag	Lag	Lead	
Lead-Lag Optimize?	Yes	Yes	Yes		Yes	Yes		Yes	Yes	Yes	Yes	
Vehicle Extension (s)	3.0	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0
Minimum Gap (s)	3.0	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0
Time Before Reduce (s)	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0
Recall Mode	None	None	None		None	None		None	Min	None	None	Min
Walk Time (s)	8.0	8.0	8.0									8.0
Flash Dont Walk (s)	25.0	25.0	25.0									17.0
Pedestrian Calls (#/hr)	6	6	6									0
Act Effct Green (s)		27.9	27.9			20.1		29.0	21.6	41.7	36.6	36.6
Actuated g/C Ratio		0.20	0.20			0.14		0.21	0.15	0.30	0.26	0.26
v/c Ratio		0.72	0.77			0.69		0.20	0.71	0.15	0.23	0.74
Control Delay		66.8	70.0			73.4		6.7	66.1	4.1	45.0	54.3
Queue Delay		0.0	0.0			0.0		0.0	0.0	0.0	0.0	0.0
Total Delay		66.8	70.0			73.4		6.7	66.1	4.1	45.0	54.3
LOS		E	E			E		A	E	Α	D	D
Approach Delay		_	68.5			53.7			55.9	, ,		53.6
Approach LOS			E			D			E			D
Queue Length 50th (ft)		196	219			157		0	166	0	34	271
Queue Length 95th (ft)		336	371			282		31	268	18	81	413
Internal Link Dist (ft)		000	452			395		0.	449	10	0.	698
Turn Bay Length (ft)		115	102			000		180	110	160	110	000
Base Capacity (vph)		535	554			402		514	1104	587	330	1690
Starvation Cap Reductn		0	0			0		0	0	0	0	0
Spillback Cap Reductn		0	0			0		0	0	0	0	0
Storage Cap Reductn		0	0			0		0	0	0	0	0
Reduced v/c Ratio		0.43	0.46			0.45		0.15	0.33	0.12	0.15	0.37
Intersection Summary												
Area Type:	Other											
Cycle Length: 200	JJ.											
Actuated Cycle Length: 13	9.9											
Natural Cycle: 120												
Control Type: Actuated-Un	coordinated											
Maximum v/c Ratio: 0.77												
Intersection Signal Delay:	58 1			In	tersectio	n I OS: F						
Intersection Capacity Litilization						of Convice	. C					

ICU Level of Service C

Intersection Capacity Utilization 70.2%

Analysis Period (min) 15

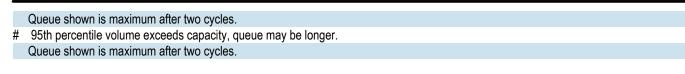
Year 2024 No-Build Traffic Volumes - Sensitivity Analysis Weekday Peak Mid-Day Hour 15: Central Westchester Expressway & NYS Route 22 & Reservoir Road & Church Street (20/2020)

18002018A - N.T. Page 41

Minimum Initial (s) 8.0 Minimum Split (s) 36.0 Total Split (%) 18% Maximum Green (s) 31.0 Yellow Time (s) 3.5 All-Red Time (s) 1.5 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#hr) 2 Act Effet Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay Los Approach Los Queue Length 95th (ft) Internal Link Dist (ft) Tum Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Storage Cap Reductn Reduced v/c Ratio Vic Ratio Corage Cap Reductn Storage Cap Reductn Storage Cap Reductn			
Minimum Split (s) 36.0 Total Split (s) 36.0 Total Split (s) 36.0 Total Split (s) 18% Maximum Green (s) 31.0 Yellow Time (s) 3.5 All-Red Time (s) 1.5 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effet Green (s) Actuated g/C Ratio V/c Ratio Control Delay Queue Delay Total Delay LoS Approach LoS Queue Length 95th (ft) Internal Link Dist (ft) Tum Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio	Lane Group	SBR Ø7	
Total Split (s) 36.0 Total Split (%) 18% Maximum Green (s) 31.0 Yellow Time (s) 3.5 All-Red Time (s) 1.5 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#hr) 2 Act Effct Green (s) Actuated g/C Ratio V/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Total Split (%) 18% Maximum Green (s) 31.0 Yellow Time (s) 3.5 All-Red Time (s) 1.5 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (v/ph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Maximum Green (s) 31.0 Yellow Time (s) 3.5 All-Red Time (s) 1.5 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (v/ph) Starvation Cap Reductn Spillback Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio	Total Split (s)		
Yellow Time (s) 3.5 All-Red Time (s) 1.5 Lost Time Adjust (s) 1.5 Total Lost Time (s) 1.5 Lead/Lag 1.5 Lead-Lag Optimize? 1.0 Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effet Green (s) Actuated g/C Ratio V/c Ratio Vic Ratio Control Delay Queue Delay Total Delay Vic Ratio LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
All-Red Time (s) 1.5 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio	Maximum Green (s)	31.0	
Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Reduced v/c Ratio	Yellow Time (s)		
Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio	All-Red Time (s)	1.5	
Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio	Lead/Lag		
Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effet Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio	Lead-Lag Optimize?		
Time Before Reduce (s) Time To Reduce (s) Time To Reduce (s) Recall Mode Recall Mode Ped Walk Time (s) Resolution Calls (#/hr) Redestrian Calls (#/hr) Retain Calls (#			
Time To Reduce (s) Recall Mode Recall Mode Ped Walk Time (s) Resh Dont Walk (s) Pedestrian Calls (#/hr) Pedestrian Calls (#/hr) Pedestrian Calls (#/hr) Act Effct Green (s) Actuated g/C Ratio V/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Reduced v/c Ratio			
Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Pedestrian Calls (#/hr) Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Reduced v/c Ratio	Flash Dont Walk (s)	23.0	
Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio		2	
V/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio	Act Effct Green (s)		
Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio	•		
Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio	Turn Bay Length (ft)		
Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Storage Cap Reductn Reduced v/c Ratio	Starvation Cap Reductn		
Reduced v/c Ratio			
	Reduced v/c Ratio		
Intersection Summary	Intersection Summary		

Synchro 10 Report Page 42 18002018A - N.T.

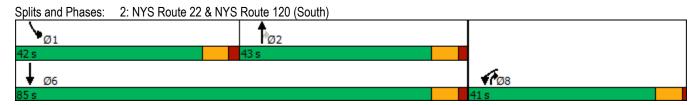
	ኘ	†	↓	≽ J	•	>
Lane Group	NBL	NBT	SBT	SBR	SEL	SER
Lane Configurations	ኝ	^	^	7	ች	7
Traffic Volume (vph)	733	749	700	603	281	281
Future Volume (vph)	733	749	700	603	281	281
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	10	10	10	10	10	10
Grade (%)	10	0%	0%	10	0%	
Storage Length (ft)	250	3 70	3 70	500	250	0
Storage Lanes	1			1	1	1
Taper Length (ft)	86				86	
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00
Ped Bike Factor	1.00	0.50	0.50	1.00	1.00	1.00
Frt				0.850		0.850
Flt Protected	0.950			0.000	0.950	0.000
Satd. Flow (prot)	1685	3336	3336	1507	1685	1507
Flt Permitted	0.950	3330	3330	1307	0.950	1307
		3226	3226	1507		1507
Satd. Flow (perm)	1685	3336	3336	1507	1685	
Right Turn on Red				Yes		Yes
Satd. Flow (RTOR)				641	00	299
Link Speed (mph)		55	55		30	
Link Distance (ft)		767	1064		872	
Travel Time (s)		9.5	13.2		19.8	
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	1%	1%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)		0%	0%		0%	
Adj. Flow (vph)	780	797	745	641	299	299
Shared Lane Traffic (%)						
Lane Group Flow (vph)	780	797	745	641	299	299
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width(ft)	Loit	10	15	Tagrit	10	Tugin
Link Offset(ft)		0	0		0	
Crosswalk Width(ft)		16	16		16	
Two way Left Turn Lane		10	10		10	
	1.09	1.00	1.00	1.09	1 00	1.09
Headway Factor		1.09	1.09		1.09	
Turning Speed (mph)	15	2	0	9	15	9
Number of Detectors	1	2	2	1	2	0
Detector Template	٥٢	404	404	^	404	^
Leading Detector (ft)	35	104	104	0	104	0
Trailing Detector (ft)	-5	0	0	_ 0	0	_ 0
Turn Type	Prot	NA	NA	Free	Prot	Free
Protected Phases	2	5	1		3	
Permitted Phases				Free		Free
Detector Phase					_	
Switch Phase	2	5	1		3	


	ሻ	†	ļ	» J	•	>
Lane Group	NBL	NBT	SBT	SBR	SEL	SER
Minimum Initial (s)	12.0	12.0	12.0		10.0	
Minimum Split (s)	36.0	36.0	36.0		26.0	
Total Split (s)	41.0	82.0	41.0		41.0	
Total Split (%)	33.3%	66.7%	33.3%		33.3%	
Maximum Green (s)	34.0	75.0	34.0		35.0	
Yellow Time (s)	5.0	5.0	5.0		4.0	
All-Red Time (s)	2.0	2.0	2.0		2.0	
Lost Time Adjust (s)	0.0	0.0	0.0		0.0	
Total Lost Time (s)	7.0	7.0	7.0		6.0	
Lead/Lag	Lead		Lag			
Lead-Lag Optimize?	Yes		Yes			
Vehicle Extension (s)	6.0	6.0	6.0		6.0	
Minimum Gap (s)	4.0	4.0	4.0		4.0	
Time Before Reduce (s)	20.0	20.0	20.0		20.0	
Time To Reduce (s)	8.0	8.0	8.0		5.0	
Recall Mode	None	Min	Min		None	
Walk Time (s)						
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)						
Act Effct Green (s)	34.2	73.1	31.9	113.4	27.2	113.4
Actuated g/C Ratio	0.30	0.64	0.28	1.00	0.24	1.00
v/c Ratio	1.54	0.37	0.80	0.43	0.74	0.20
Control Delay	281.5	10.6	45.6	0.9	51.7	0.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	281.5	10.6	45.6	0.9	51.7	0.3
LOS	F	В	D	Α	D	Α
Approach Delay		144.6	24.9		26.0	
Approach LOS		F	С		С	
Queue Length 50th (ft)	~830	133	266	0	207	0
Queue Length 95th (ft)	#1146	202	367	0	307	0
Internal Link Dist (ft)		687	984		792	,
Turn Bay Length (ft)	250			500	250	
Base Capacity (vph)	508	2219	1006	1507	523	1507
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	1.54	0.36	0.74	0.43	0.57	0.20
Intersection Summary						
Area Type:	Other					
Cycle Length: 123						
Actuated Cycle Length: 11	13.4					
Natural Cycle: 130						
Control Type: Actuated-U	ncoordinated					
Maximum v/c Ratio: 1.54						
Intersection Signal Delay:	78.1			lr	ntersection	LOS: F
Intersection Canacity Litili						of Convice

ICU Level of Service F

~ Volume exceeds capacity, queue is theoretically infinite.

Intersection Capacity Utilization 92.2%


Analysis Period (min) 15

	•	•	†	~	-	↓
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		^	7	ሻሻ	↑ ↑
Traffic Volume (vph)	314	16	531	40	338	643
Future Volume (vph)	314	16	531	40	338	643
	1900	1900	1900	1900	1900	1900
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)		12		10	11	
Grade (%)	-8%	^	-2%	000	045	-1%
Storage Length (ft)	0	0		200	215	
Storage Lanes	1	0		1	2	
Taper Length (ft)	25				86	
Lane Util. Factor	1.00	1.00	0.95	1.00	0.97	0.95
Ped Bike Factor						
Frt	0.993			0.850		
Flt Protected	0.955				0.950	
Satd. Flow (prot)	1856	0	3403	1464	3335	3472
Flt Permitted	0.955				0.950	
Satd. Flow (perm)	1856	0	3403	1464	3335	3472
Right Turn on Red		Yes	0.00	Yes		•
Satd. Flow (RTOR)	2	100		47		
Link Speed (mph)	30		50	71		50
Link Distance (ft)	334		905			488
	7.6		12.3			6.7
Travel Time (s)	7.0		12.3			0.7
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	1%	0%	0%	4%	2%	1%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	369	19	625	47	398	756
Shared Lane Traffic (%)						
Lane Group Flow (vph)	388	0	625	47	398	756
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12	ragiit	22	ragni	LGIL	22
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane	0.05	0.05	4.00	4.00	4.04	4.04
Headway Factor	0.95	0.95	1.08	1.08	1.04	1.04
Turning Speed (mph)	15	9		9	15	
Number of Detectors	1		2	1	1	2
Detector Template	Left		Thru	Right	Left	Thru
Leading Detector (ft)	20		100	20	20	100
Trailing Detector (ft)	0		0	0	0	0
Turn Type	Prot		NA	pm+ov	Prot	NA
Protected Phases	8		2	8	1	6
Permitted Phases				2		
Detector Phase	8		2	8	1	6
Switch Phase	U			U		U
- CWILGIT HOSE						

	•	•	†	<i>></i>	/	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Minimum Initial (s)	10.0		12.0	10.0	12.0	12.0
Minimum Split (s)	26.0		36.0	26.0	36.0	36.0
Total Split (s)	41.0		43.0	41.0	42.0	85.0
Total Split (%)	32.5%		34.1%	32.5%	33.3%	67.5%
Maximum Green (s)	35.0		36.0	35.0	35.0	78.0
Yellow Time (s)	5.0		5.0	5.0	5.0	5.0
All-Red Time (s)	1.0		2.0	1.0	2.0	2.0
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0		7.0	6.0	7.0	7.0
Lead/Lag			Lag	3.0	Lead	
Lead-Lag Optimize?			Yes		Yes	
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0
Minimum Gap (s)	3.0		3.0	3.0	3.0	3.0
Time Before Reduce (s)	0.0		0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0		0.0	0.0	0.0	0.0
Recall Mode	None		Min	None	Min	Min
Walk Time (s)	INOTIC		IVIIII	NOHE	IVIIII	IVIIII
` '						
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)	00 G		22.2	E2 4	16.0	46.4
Act Effct Green (s)	23.6		22.2	53.1	16.8	
Actuated g/C Ratio	0.28		0.27	0.64	0.20	0.56
v/c Ratio	0.74		0.69	0.05	0.59	0.39
Control Delay	37.6		33.0	1.9	36.3	11.7
Queue Delay	0.0		0.0	0.0	0.0	0.0
Total Delay	37.6		33.0	1.9	36.3	11.7
LOS	D		С	Α	D	В
Approach Delay	37.6		30.8			20.2
Approach LOS	D		С			С
Queue Length 50th (ft)	179		150	0	96	107
Queue Length 95th (ft)	317		246	10	169	175
Internal Link Dist (ft)	254		825			408
Turn Bay Length (ft)				200	215	
Base Capacity (vph)	814		1533	1169	1460	3116
Starvation Cap Reductn	0		0	0	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductn	0		0	0	0	0
Reduced v/c Ratio	0.48		0.41	0.04	0.27	0.24
Intersection Summary						
Area Type:	Other					
Cycle Length: 126						
Actuated Cycle Length: 83	3.5					
Natural Cycle: 100						
Control Type: Semi Act-Ur	ncoord					
Maximum v/c Ratio: 0.74						
Intersection Signal Delay:	26.5			lr	ntersectio	n LOS: C
Intersection Capacity Utiliz						of Service
Analysis Period (min) 15					2 20101	55. VIOC
raidy old i ollou (illiii) 10						

	۶	→	•	•	←	4	1	†	~	/	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					f)			4				
Traffic Volume (vph)	0	0	0	0	50	7	2	927	29	0	0	0
Future Volume (vph)	0	0	0	0	50	7	2	927	29	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	13	12	12	12	12
Grade (%)		0%			-5%			-7%			0%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	0		0	0		0	0		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt					0.983			0.996				
Flt Protected												
Satd. Flow (prot)	0	0	0	0	1850	0	0	2002	0	0	0	0
Flt Permitted												
Satd. Flow (perm)	0	0	0	0	1850	0	0	2002	0	0	0	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		124			297			300			404	
Travel Time (s)		2.8			6.8			6.8			9.2	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	0%	0%	4%	0%	0%	1%	4%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	0	0	0	0	62	9	2	1144	36	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	0	0	0	71	0	0	1182	0	0	0	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	0.97	0.97	0.97	0.96	0.92	0.96	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Stop			Stop			Free			Stop	
Intersection Summary												
J 1	Other											
Control Type: Unsignalized												
Intersection Capacity Utilizati	on 60.7%			IC	CU Level	of Service	В					
Analysis Period (min) 15												

Intersection												
Int Delay, s/veh	1.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					î,			4				
Traffic Vol, veh/h	0	0	0	0	50	7	2	927	29	0	0	0
Future Vol, veh/h	0	0	0	0	50	7	2	927	29	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	2	-	-	0	-	-	0	-	-	16965	-
Grade, %	-	0	-	-	-5	-	-	-7	-	-	0	-
Peak Hour Factor	81	81	81	81	81	81	81	81	81	81	81	81
Heavy Vehicles, %	0	0	0	0	4	0	0	1	4	0	0	0
Mvmt Flow	0	0	0	0	62	9	2	1144	36	0	0	0
Major/Minor			N	Minor1		N	/lajor1					
Conflicting Flow All				-	1166	1162	0	0	0			
Stage 1				-	1166	- 1102	-	-	-			
Stage 2				_	0	-	_					
Critical Hdwy				_	5.54	5.7	4.1	_	_			
Critical Hdwy Stg 1				_	4.54	-	- T. I	_	_			
Critical Hdwy Stg 2				_	5	_	_	_	_			
Follow-up Hdwy				_	4.036	3.3	2.2	_	_			
Pot Cap-1 Maneuver				0	266	282	-	_	_			
Stage 1				0	367	-	_	_	_			
Stage 2				0	-	_	_	_	_			
Platoon blocked, %				- 0				_	_			
Mov Cap-1 Maneuver				-	0	282	_	_	_			
Mov Cap-1 Maneuver				_	0	-	_	_	_			
Stage 1				-	0	_	_	_	_			
Stage 2				_	0	_	_	_	_			
5.0.g0 L					J							
Approach				WB			NB					
HCM Control Delay, s				22			.10					
HCM LOS				C								
TIOW LOS				U								
Minor Lane/Major Mvmt		NBL	NBT	NDD	WBLn1							
		NDL	INDI									
Capacity (veh/h)		-	-	-	282							
HCM Control Dolov (a)		-	-	-	0.25							
HCM Long LOS		-	-	-	22							
HCM Lane LOS		-	-	-	C							
HCM 95th %tile Q(veh)		-	-	-	1							

	۶	→	•	•	←	•	•	†	<i>></i>	/	ţ	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	7		4	7	7	†	7	7	†	7
Traffic Volume (vph)	205	0	146	25	2	23	35	1060	0	1	367	10
Future Volume (vph)	205	0	146	25	2	23	35	1060	0	1	367	10
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (%)		4%			-1%			7%			-4%	
Storage Length (ft)	0		315	0		125	280		445	150		275
Storage Lanes	0		1	0		1	1		1	1		1
Taper Length (ft)	25			25			86			86		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt			0.850			0.850						0.850
Flt Protected		0.950			0.955		0.950			0.950		
Satd. Flow (prot)	0	1769	1479	0	1767	1623	1476	1815	1834	1841	1882	1647
Flt Permitted	•	0.737			0.666	.020	0.403			0.090		
Satd. Flow (perm)	0	1372	1479	0	1232	1623	626	1815	1834	174	1882	1647
Right Turn on Red		1012	Yes		1202	Yes	020	1010	Yes		1002	Yes
Satd. Flow (RTOR)			168			37			100			83
Link Speed (mph)		30	100		30	O1		55			55	00
Link Distance (ft)		601			392			1478			1166	
Travel Time (s)		13.7			8.9			18.3			14.5	
Confl. Peds. (#/hr)		10.7			0.0			10.0			11.0	
Confl. Bikes (#/hr)												
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	7%	0%	50%	0%	18%	1%	0%	0%	3%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	236	0	168	29	2	26	40	1218	0	1	422	11
Shared Lane Traffic (%)	200	U	100	20		20	70	1210	U		722	
Lane Group Flow (vph)	0	236	168	0	31	26	40	1218	0	1	422	11
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	LOIL	0	rtigitt	LOIL	0	rtigiit	LOIL	12	ragni	LOIL	12	rtigrit
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.03	1.03	1.03	0.99	0.99	0.99	1.05	1.05	1.05	0.97	0.97	0.97
Turning Speed (mph)	15	1.00	9	15	0.55	9	1.05	1.00	9	15	0.51	9
Number of Detectors	13	2	1	13	2	1	1	2	1	1	2	1
Detector Template	Left			Left		1	ı		ı	ı		ı
Leading Detector (ft)	20	83	35	20	83	35	35	83	35	35	83	35
. ,	0	-5	-5	0	-5	-5	-5	-5	-5	-5	-5	-5
Trailing Detector (ft)												
Turn Type	Perm	NA	pm+ov	Perm	NA	pm+ov	pm+pt	NA	Perm	pm+pt	NA 2	Perm
Protected Phases	0	8	1	4	4	5	1	6	^	5	2	0
Permitted Phases	8		8	4	,	4	6		6	2	_	2
Detector Phase	8	8	1	4	4	5	1	6	6	5	2	2
Switch Phase												

	•	→	•	•	•	•	1	†	<i>></i>	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	5.0	3.0	5.0	5.0	3.0	3.0	5.0	5.0	3.0	5.0	5.0
Minimum Split (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	12.0	12.0	10.0	12.0	12.0
Total Split (s)	45.0	45.0	27.0	45.0	45.0	27.0	27.0	47.0	47.0	27.0	47.0	47.0
Total Split (%)	37.8%	37.8%	22.7%	37.8%	37.8%	22.7%	22.7%	39.5%	39.5%	22.7%	39.5%	39.5%
Maximum Green (s)	40.0	40.0	20.0	40.0	40.0	20.0	20.0	40.0	40.0	20.0	40.0	40.0
Yellow Time (s)	4.0	4.0	5.0	4.0	4.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	1.0	1.0	2.0	1.0	1.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		5.0	7.0		5.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
Lead/Lag			Lead			Lead	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?			Yes			Yes	Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0	2.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Minimum Gap (s)	3.0	3.0	2.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Recall Mode	None	None	None	None	None	None	None	Max	Max	None	Max	Max
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		19.7	30.4		19.7	29.4	51.1	48.6		44.9	40.2	40.2
Actuated g/C Ratio		0.23	0.36		0.23	0.35	0.60	0.57		0.53	0.47	0.47
v/c Ratio		0.74	0.26		0.11	0.04	0.09	1.17		0.01	0.47	0.01
Control Delay		44.6	4.0		25.7	4.3	8.2	108.8		8.0	18.6	0.0
Queue Delay		0.0	0.0		0.0	0.0	0.0	0.0		0.0	0.0	0.0
Total Delay		44.6	4.0		25.7	4.3	8.2	108.8		8.0	18.6	0.0
LOS		D	Α		С	Α	Α	F		Α	В	Α
Approach Delay		27.7			16.0			105.6			18.1	
Approach LOS		С			В			F			В	
Queue Length 50th (ft)		116	0		13	0	7	~725		0	144	0
Queue Length 95th (ft)		190	33		34	11	23	#1214		2	263	0
Internal Link Dist (ft)		521			312			1398			1086	
Turn Bay Length (ft)			315			125	280			150		275
Base Capacity (vph)		651	862		584	876	592	1041		504	893	825
Starvation Cap Reductn		0	0		0	0	0	0		0	0	0
Spillback Cap Reductn		0	0		0	0	0	0		0	0	0
Storage Cap Reductn		0	0		0	0	0	0		0	0	0
Reduced v/c Ratio		0.36	0.19		0.05	0.03	0.07	1.17		0.00	0.47	0.01

Intersection Summary

Area Type: Other

Cycle Length: 119

Actuated Cycle Length: 84.7

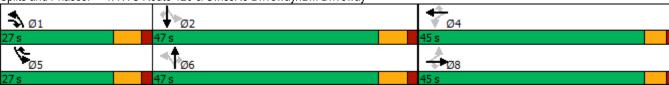
Natural Cycle: 140

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 1.17 Intersection Signal Delay: 71.0 Intersection Capacity Utilization 86.3%

Intersection LOS: E ICU Level of Service E

Analysis Period (min) 15


[~] Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	•	4	†	~	>	↓
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ሻ	7	†	7	ሻ	†
Traffic Volume (vph)	6	136	960	1	8	529
Future Volume (vph)	6	136	960	1	8	529
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	12	12	10	10
Grade (%)	-3%		2%			-1%
Storage Length (ft)	0	0		15	175	
Storage Lanes	1	1		1	1	
Taper Length (ft)	25	1.00	1.00	1.00	86	1.00
Lane Util. Factor Ped Bike Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850		0.850		
Flt Protected	0.950	0.000		0.050	0.950	
Satd. Flow (prot)	1771	1554	1862	1599	1512	1714
Flt Permitted	0.950	1004	1002	1000	0.950	17 17
Satd. Flow (perm)	1771	1554	1862	1599	1512	1714
Link Speed (mph)	25	.501	55	1300	1012	55
Link Distance (ft)	589		993			1478
Travel Time (s)	16.1		12.3			18.3
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	2%	1%	0%	12%	4%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	7	155	1091	1	9	601
Shared Lane Traffic (%)	_	4	1001			001
Lane Group Flow (vph)	7	155	1091	. 1	9	601
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	11		12			12
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane	1.00	1.00	1.01	1.01	1.00	1.09
Headway Factor Turning Speed (mph)	1.02 15	1.02	1.01	1.01	1.09 15	1.09
Sign Control	Stop	9	Free	9	15	Free
	Stop		1166			1166
Intersection Summary	24h					
	Other					
Control Type: Unsignalized	CF C0/			10	NIII amal	of Complete
Intersection Capacity Utilizati	ion 65.6%			IC	U Level (of Service (
Analysis Period (min) 15						

Intersection						
Int Delay, s/veh	2.8					
		WDD	NDT	NDD	CDI	CDT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	<u>ች</u>	120	↑	7	<u>ች</u>	†
Traffic Vol, veh/h	6	136	960	1	8	529
Future Vol, veh/h	6	136	960	1	8	529
Conflicting Peds, #/hr	0	0	_ 0	_ 0	0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	Yield	-	Free		None
Storage Length	0	0	-	15	175	-
Veh in Median Storage		-	0	-	-	0
Grade, %	-3	-	2	-	-	-1
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, %	0	2	1	0	12	4
Mvmt Flow	7	155	1091	1	9	601
Major/Minor	Minor1	, n	Major1	_R	/loior?	
	Minor1		Major1		Major2	
Conflicting Flow All	1710	1091	0	-	1091	0
Stage 1	1091	-	-	-	-	-
Stage 2	619	-	-	-	-	-
Critical Hdwy	5.8	5.92	-	-	4.22	-
Critical Hdwy Stg 1	4.8	-	-	-	-	-
Critical Hdwy Stg 2	4.8	-	-	-	-	-
Follow-up Hdwy	3.5	3.318	-	-	2.308	-
Pot Cap-1 Maneuver	134	286	-	0	604	-
Stage 1	390	-	-	0	-	-
Stage 2	600	-	-	0	-	-
Platoon blocked, %			-			-
Mov Cap-1 Maneuver	132	286	_	_	604	_
Mov Cap-2 Maneuver	132	-	_	_	-	_
Stage 1	390	_	_	_	_	_
Stage 2	591	_	_	_	_	_
Staye 2	391	_			-	_
Approach	WB		NB		SB	
HCM Control Delay, s	31.6		0		0.2	
HCM LOS	D					
		NET	VDI 414	VDI 0	0.51	007
Minor Lane/Major Mvm	t	NRIA	VBLn1V		SBL	SBT
Capacity (veh/h)		-		286	604	-
HCM Lane V/C Ratio		-	0.052		0.015	-
HCM Control Delay (s)		-	33.8	31.5	11.1	-
HCM Lane LOS		-	D	D	В	-
HCM 95th %tile Q(veh)		-	0.2	3	0	-

Lane Group EBL EBR NBL NBT SBR Lane Configurations ★ ★ ★ ★ Traffic Volume (vph) 1 0 0 960 536 0 Future Volume (vph) 1 0 0 960 536 0 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 Lane Width (ft) 12 12 11 11 11 11 Grade (%) 3% 5% -2% 5 Storage Length (ft) 0 0 0 0
Lane Configurations Y 1 L Traffic Volume (vph) 1 0 0 960 536 0 Future Volume (vph) 1 0 0 960 536 0 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 Lane Width (ft) 12 12 11 11 11 11 Grade (%) 3% 5% -2%
Traffic Volume (vph) 1 0 0 960 536 0 Future Volume (vph) 1 0 0 960 536 0 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 Lane Width (ft) 12 12 11 11 11 11 Grade (%) 3% 5% -2%
Future Volume (vph) 1 0 0 960 536 0 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 Lane Width (ft) 12 12 11 11 11 11 Grade (%) 3% 5% -2%
Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 Lane Width (ft) 12 12 11 11 11 11 Grade (%) 3% 5% -2%
Lane Width (ft) 12 12 11 11 11 11 Grade (%) 3% 5% -2%
Grade (%) 5% -2%
Taper Length (ft) 25 25
Lane Util. Factor 1.00 1.00 1.00 1.00 1.00
Ped Bike Factor
Frt
Flt Protected 0.950
Satd. Flow (prot) 1778 0 0 1756 1801 0
Flt Permitted 0.950
Satd. Flow (perm) 1778 0 0 1756 1801 0
Link Speed (mph) 30 55 55
Link Distance (ft) 639 1813 993
Travel Time (s) 14.5 22.5 12.3
Confl. Peds. (#/hr)
Confl. Bikes (#/hr)
Peak Hour Factor 0.83 0.83 0.83 0.83 0.83
Growth Factor 100% 100% 100% 100% 100% 100%
Heavy Vehicles (%) 0% 0% 0% 2% 3% 0%
Bus Blockages (#/hr) 0 0 0 0 0 0
Parking (#/hr)
Mid-Block Traffic (%) 0% 0%
Adj. Flow (vph) 1 0 0 1157 646 0
Shared Lane Traffic (%)
Lane Group Flow (vph) 1 0 0 1157 646 0
Enter Blocked Intersection No No No No No
Lane Alignment Left Right Left Left Right
Median Width(ft) 12 0 0
Link Offset(ft) 0 0 0
Crosswalk Width(ft) 16 16 16
Two way Left Turn Lane
Headway Factor 1.02 1.08 1.08 1.03 1.03
Turning Speed (mph) 15 9 15 9
Sign Control Stop Free Free
Intersection Summary
Area Type: Other
Control Type: Unsignalized
Intersection Capacity Utilization 60.5% ICU Level of Service E
Analysis Period (min) 15

Intersection						
Int Delay, s/veh	0					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	EBL W	EDK	INDL			אמט
Traffic Vol, veh/h	T 1	0	٥	ब्री 960	Љ 536	0
Future Vol, veh/h	1	0	0	960	536	0
Conflicting Peds, #/hr	0	0	0	900	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	Stop -	None	riee -		riee -	
Storage Length	0	NOHE -	-	None -		None
Veh in Median Storage			_	0	0	_
Grade, %	3	_	_	5	-2	_
Peak Hour Factor	83	83	83	83	83	83
Heavy Vehicles, %	0	0	0	2	3	0
Mvmt Flow	1	0	0	1157	646	0
WWITE I IOW		U	U	1131	040	U
Major/Minor I	Minor2		/lajor1	N	//ajor2	
Conflicting Flow All	1803	646	646	0	-	0
Stage 1	646	-	-	-	-	-
Stage 2	1157	-	-	-	-	-
Critical Hdwy	7	6.5	4.1	-	-	-
Critical Hdwy Stg 1	6	-	-	-	-	-
Critical Hdwy Stg 2	6	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	65	450	949	-	-	-
Stage 1	472	-	-	-	-	-
Stage 2	249	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	65	450	949	-	-	-
Mov Cap-2 Maneuver	65	-	-	-	-	-
Stage 1	472	-	-	-	-	-
Stage 2	249	-	-	-	-	-
Approach	EB		NB		SB	
	61.4		0		0	
HCM Control Delay, s HCM LOS	61.4 F		U		U	
HOW LOS	Г					
Minor Lane/Major Mvm	ıt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		949	-	65	-	-
HCM Lane V/C Ratio		-	-	0.019	-	-
HCM Control Delay (s)		0	-	61.4	-	-
HCM Lane LOS		Α	-	F	-	-
HCM 95th %tile Q(veh)		0	-	0.1	-	-

		₩.	\mathbf{x}	À	_	×	₹	ን	×	~	Ĺ	×	*
Traffic Volume (vph)	Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Traffic Volume (γph)	Lane Configurations		4		ř		7		ર્ન	7		ની	7
Future Volume (vph) 2	Traffic Volume (vph)	2		128	127		20	127		127	124		
Ideal Flow (ryphpi)		2	406	128	127	833	20	127	0	127	124	0	0
Lane Width (ft)		1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)			11	11	11	11	11	10	10	10	11	11	11
Storage Length (ft)	. ,		-4%						-5%				
Storage Lanes		0		0	120		200	0		95	0		0
Taper Length (ff)	Storage Lanes	0		0	1		1	0		1	0		1
Lane Unil Factor		25			86			25			25		
Ped Bike Factor 0.998 1.00 1.		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit Protected			0.99										
Fit Protected			0.968				0.850			0.850			
Fit Permitted					0.950				0.950			0.950	
Fit Permitted	Satd. Flow (prot)	0	1764	0	1736	1792	1412	0	1727	1545	0	1702	1827
Satd. Flow (perm)				-				•			-		
Page Page	Satd. Flow (perm)	0		0		1792	1412	0		1545	0		1827
Satid. Flow (RTOR)													
Link Speed (mph)	•		28										
Link Distance (ft)						55			30			25	
Travel Time (s)	,												
Confi. Peds. (#/hr) Confi. Bikes (#/hr)	` /												
Confile Bikes (#/hr) Peak Hour Factor 0.86				1	1								
Peak Hour Factor				•	•								
Growth Factor 100%	, ,	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Heavy Vehicles (%)													
Bus Blockages (#/hr) 0 0 0 0 0 0 0 0 0	Heavy Vehicles (%)		3%	0%	0%	2%	10%	0%		0%	2%		
Parking (#/hr) Mid-Block Traffic (%) 0% 0% 0% 0% 0% 0% 0%	. ,												
Mid-Block Traffic (%) 0% 0% 0% 0% 0% 0% Adj. Flow (vph) 2 472 149 148 969 23 148 0 148 144 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 144 0 0 0 0 0 0 148 148 0 144 0 0 0 0 0 0 144 0 144 0 0 0 148 148 0 144 0 0 0 148 148 0 144 0													
Adj. Flow (vph) 2 472 149 148 969 23 148 0 148 144 0 0 Shared Lane Traffic (%) Lane Group Flow (vph) 0 623 0 148 969 23 0 148 148 0 144 0 Enter Blocked Intersection No Do Do Do Do </td <td></td> <td></td> <td>0%</td> <td></td> <td></td> <td>0%</td> <td></td> <td></td> <td>0%</td> <td></td> <td></td> <td>0%</td> <td></td>			0%			0%			0%			0%	
Shared Lane Traffic (%) Lane Group Flow (vph) 0 623 0 148 969 23 0 148 148 0 144 0	` ,	2	472	149	148		23	148		148	144		0
Lane Group Flow (vph) 0 623 0 148 969 23 0 148 148 0 144 0 Enter Blocked Intersection No													
Enter Blocked Intersection	` ,	0	623	0	148	969	23	0	148	148	0	144	0
Median Width(ft) 11 11 11 0 0 Link Offset(ft) 0 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 16 Two way Left Turn Lane Feadway Factor 1.02 1.02 1.05 1.05 1.05 1.06 1.06 1.06 1.05 1.05 1.05 1.06 1.06 1.06 1.05 1.05 1.05 1.05 1.06 1.06 1.06 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.06 1.06 1.06 1.05 1		No	No	No	No	No	No	No	No	No	No	No	No
Median Width(ft) 11 11 11 0 0 Link Offset(ft) 0 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 16 Two way Left Turn Lane Feadway Factor 1.02 1.02 1.05 1.05 1.05 1.06 1.06 1.06 1.05 1.05 1.05 1.06 1.06 1.06 1.05 1.05 1.05 1.05 1.06 1.06 1.06 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.06 1.06 1.06 1.05 1	Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Link Offset(ft) 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 Two way Left Turn Lane Headway Factor 1.02 1.02 1.02 1.05 1.05 1.06 1.06 1.06 1.05 1.05 1.05 Turning Speed (mph) 15 9 15 10 105 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05			11						0			0	J
Crosswalk Width(ft) 16 16 16 16 16 Two way Left Turn Lane Headway Factor 1.02 1.02 1.02 1.05 1.05 1.06 1.06 1.06 1.05 1.05 1.05 Turning Speed (mph) 15 9 15 9 15 9 15 9 Number of Detectors 1 2 1 2 1 2 1 1			0			0			0			0	
Two way Left Turn Lane Headway Factor 1.02 1.02 1.02 1.05 1.05 1.06 1.06 1.06 1.05 1.05 1.05 Turning Speed (mph) 15 9 15 9 15 9 15 9 Number of Detectors 1 2 1 2 1 1 2 <						16						16	
Headway Factor 1.02 1.02 1.02 1.05 1.05 1.06 1.06 1.06 1.06 1.05 1.05 1.05 Turning Speed (mph) 15 9 15 10 15 10 1													
Turning Speed (mph) 15 9 15 9 15 9 15 9 Number of Detectors 1 2 1 2 1 2 1 3 3 3		1.02	1.02	1.02	1.05	1.05	1.05	1.06	1.06	1.06	1.05	1.05	1.05
Number of Detectors 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 3	Turning Speed (mph)	15		9	15		9	15			15		
Leading Detector (ft) 20 83 35 83 35 20 83 35 20 83 35 Trailing Detector (ft) 0 -5 -5 -5 -5 0 -5 -5 0 -5 -5 -5 -5 -5 0 -5 -8			2			2	1	1	2	1	1	2	1
Leading Detector (ft) 20 83 35 83 35 20 83 35 20 83 35 Trailing Detector (ft) 0 -5 -5 -5 -5 0 -5 -5 0 -5 -5 -5 -5 -5 0 -5 -8	Detector Template	Left						Left			Left		
Trailing Detector (ft) 0 -5 -5 -5 -5 0 -5 -5 0 -5 -5 -5 Turn Type Perm NA pm+pt NA Perm Perm NA Perm Perm NA Perm NA Perm Perm NA Perm NA Perm Perm NA Perm NA Perm Perm NA Perm NA Perm Perm NA Perm NA Perm NA Perm Perm NA Perm NA Perm Perm NA Perm		20	83		35	83	35		83	35	20	83	35
Turn Type Perm NA pm+pt NA Perm Perm Perm Perm NA Perm Protected Phases 2 1 6 8 4 4 Permitted Phases 2 6 6 8 8 4 4 Detector Phase 2 2 1 6 8 8 8 4 4								0					
Protected Phases 2 1 6 8 4 Permitted Phases 2 6 6 8 8 4 4 Detector Phase 2 2 1 6 6 8 8 4 4 4													
Permitted Phases 2 6 6 8 8 4 4 Detector Phase 2 2 1 6 6 8 8 4 4 4	• • • • • • • • • • • • • • • • • • • •										·		
Detector Phase 2 2 1 6 6 8 8 4 4 4		2			6		6	8		8	4		4
			2			6			8			4	
	Switch Phase												

	-	\mathbf{x}	À	~	×	₹	7	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Minimum Initial (s)	10.0	10.0		3.0	10.0	10.0	3.0	3.0	3.0	5.0	5.0	5.0
Minimum Split (s)	17.0	17.0		10.0	17.0	17.0	10.0	10.0	10.0	10.0	10.0	10.0
Total Split (s)	52.0	52.0		13.0	65.0	65.0	20.0	20.0	20.0	20.0	20.0	20.0
Total Split (%)	61.2%	61.2%		15.3%	76.5%	76.5%	23.5%	23.5%	23.5%	23.5%	23.5%	23.5%
Maximum Green (s)	45.0	45.0		6.0	58.0	58.0	15.0	15.0	15.0	15.0	15.0	15.0
Yellow Time (s)	5.0	5.0		5.0	5.0	5.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)		0.0		0.0	0.0	0.0		0.0	0.0		0.0	0.0
Total Lost Time (s)		7.0		7.0	7.0	7.0		5.0	5.0		5.0	5.0
Lead/Lag	Lag	Lag		Lead								
Lead-Lag Optimize?	Yes	Yes		Yes								
Vehicle Extension (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Minimum Gap (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Time Before Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Recall Mode	Max	Max		None	Max	Max	Max	Max	Max	Max	Max	Max
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		45.1		58.0	58.0	58.0		15.0	15.0		15.0	
Actuated g/C Ratio		0.53		0.68	0.68	0.68		0.18	0.18		0.18	
v/c Ratio		0.66		0.31	0.79	0.02		0.75	0.38		0.75	
Control Delay		17.8		6.4	15.6	1.7		58.0	8.6		58.9	
Queue Delay		0.0		0.0	0.0	0.0		0.0	0.0		0.0	
Total Delay		17.8		6.4	15.6	1.7		58.0	8.6		58.9	
LOS		В		Α	В	Α		Е	Α		Е	
Approach Delay		17.8			14.1			33.3			58.9	
Approach LOS		В			В			С			Е	
Queue Length 50th (ft)		216		24	308	0		76	0		74	
Queue Length 95th (ft)		306		41	438	6		#158	43		#155	
Internal Link Dist (ft)		1733			2200			248			438	
Turn Bay Length (ft)				120		200			95			
Base Capacity (vph)		948		487	1222	971		198	394		192	
Starvation Cap Reductn		0		0	0	0		0	0		0	
Spillback Cap Reductn		0		0	0	0		0	0		0	
Storage Cap Reductn		0		0	0	0		0	0		0	
Reduced v/c Ratio		0.66		0.30	0.79	0.02		0.75	0.38		0.75	

Intersection Summary

Area Type: Other

Cycle Length: 85

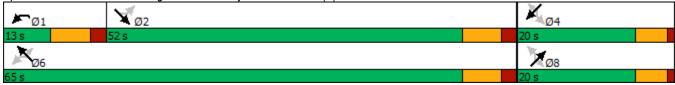
Actuated Cycle Length: 85

Natural Cycle: 60

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.79

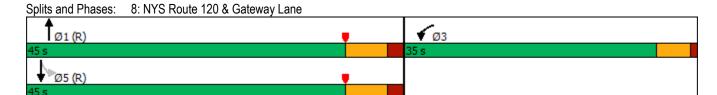
Intersection Signal Delay: 20.7
Intersection Capacity Utilization 102.7%


Intersection LOS: C
ICU Level of Service G

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

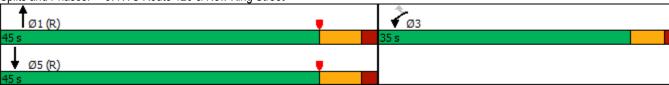
Queue shown is maximum after two cycles.


Splits and Phases: 7: 113 King Street Driveway/American Lane (S) & NYS Route 120

	•	•	†	/	>	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		7>	, tort	- JDL	<u>⊕</u>
Traffic Volume (vph)	82	318	661	41	223	433
Future Volume (vph)	82	318	661	41	223	433
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1900	1900	1900	1900	1900	1900
	-6%	12	2%	11	11	0%
Grade (%)		0	Ζ%	^	0	0%
Storage Length (ft)	0	0		0	0	
Storage Lanes	1	0		0	0	
Taper Length (ft)	25	4.00	4.00	4.00	25	4.00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt	0.893		0.992			
Flt Protected	0.990					0.983
Satd. Flow (prot)	1709	0	1767	0	0	1753
Flt Permitted	0.990					0.338
Satd. Flow (perm)	1709	0	1767	0	0	603
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)	136	. 50	5	. 30		
Link Speed (mph)	30		55			55
Link Distance (ft)	328		519			557
Travel Time (s)	7.5		6.4			6.9
	7.5		0.4			0.9
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)	0.00	0.00	0.00	0.00	0.00	0.00
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	6%	0%	2%	3%	1%	4%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	93	361	751	47	253	492
Shared Lane Traffic (%)						
Lane Group Flow (vph)	454	0	798	0	0	745
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12	ragin	0	ragin	Lon	0
Link Offset(ft)	0		0			0
	16		16			16
Crosswalk Width(ft)	10		10			10
Two way Left Turn Lane	0.00	0.00	4.00	4.00	4.04	4.04
Headway Factor	0.96	0.96	1.06	1.06	1.04	1.04
Turning Speed (mph)	15	9		9	15	
Number of Detectors	1		2		1	2
Detector Template					Left	
Leading Detector (ft)	35		83		20	83
Trailing Detector (ft)	-5		-5		0	-5
Turn Type	Prot		NA		Perm	NA
Protected Phases	3		1			5
Permitted Phases	-		-		5	-
Detector Phase	3		1		5	5
Switch Phase	- 0		-		- 0	
SWILLII FIIASE						

	•	•	†	~	/	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Minimum Initial (s)	5.0		5.0		5.0	5.0
Minimum Split (s)	10.0		12.0		12.0	12.0
Total Split (s)	35.0		45.0		45.0	45.0
Total Split (%)	43.8%		56.3%		56.3%	56.3%
Maximum Green (s)	30.0		38.0		38.0	38.0
Yellow Time (s)	4.0		5.0		5.0	5.0
All-Red Time (s)	1.0		2.0		2.0	2.0
Lost Time Adjust (s)	0.0		0.0		2.0	0.0
Total Lost Time (s)	5.0		7.0			7.0
Lead/Lag	3.0		1.0			7.0
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0		3.0		3.0	3.0
Minimum Gap (s)	3.0		3.0		3.0	3.0
Time Before Reduce (s)	0.0		0.0		0.0	0.0
Time To Reduce (s)	0.0		0.0		0.0	0.0
· ,						
Recall Mode	None		C-Max		C-Max	C-Max
Walk Time (s)						
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)	04.5		40.5			40.5
Act Effct Green (s)	21.5		46.5			46.5
Actuated g/C Ratio	0.27		0.58			0.58
v/c Ratio	0.82		0.78			2.13
Control Delay	30.4		13.4			535.4
Queue Delay	0.0		0.0			0.0
Total Delay	30.4		13.4			535.4
LOS	С		В			F
Approach Delay	30.4		13.4			535.4
Approach LOS	С		В			F
Queue Length 50th (ft)	150		61			~436
Queue Length 95th (ft)	214		#567			#695
Internal Link Dist (ft)	248		439			477
Turn Bay Length (ft)						
Base Capacity (vph)	725		1029			350
Starvation Cap Reductn	0		0			0
Spillback Cap Reductn	0		0			0
Storage Cap Reductn	0		0			0
Reduced v/c Ratio	0.63		0.78			2.13
Intersection Summary						
Area Type:	Other					
Cycle Length: 80						
Actuated Cycle Length: 80)					
Offset: 13 (16%), Reference		1·NRT ar	nd 5:SRTI	Start of	f Yellow	
Natural Cycle: 60	ood to pridate	ו.ויוטו מו	10 0.0DTL	., Gtart O	i i CiiOvv	
Control Type: Actuated-Co	ordinated					
Maximum v/c Ratio: 2.13	Jordinaled					
	212.0			l.	atorocati-	n I OC. F
Intersection Signal Delay:					ntersectio	
Intersection Capacity Utiliz	zation 112.4%			10	JU Level	of Service
Analysis Period (min) 15						

- Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.



	•	•	†	/	>	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*	7	†			↑
Traffic Volume (vph)	486	95	608	0	0	515
Future Volume (vph)	486	95	608	0	0	515
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1300	1300	11	11	11	11
Grade (%)	-2%	10	1%	11	11	1%
Storage Length (ft)	-270	175	1 /0	0	0	1 /0
Storage Lanes	1	1/3		0	0	
Taper Length (ft)	25			U	25	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850				
FIt Protected	0.050	0.000				
	0.950	1660	1700	0	0	1740
Satd. Flow (prot)	1805	1669	1792	0	0	1740
Flt Permitted	0.950	1000	1700	^	^	4740
Satd. Flow (perm)	1805	1669	1792	0	0	1740
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)		102				
Link Speed (mph)	30		55			55
Link Distance (ft)	321		928			519
Travel Time (s)	7.3		11.5			6.4
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	1%	1%	2%	0%	0%	5%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	523	102	654	0	0	554
Shared Lane Traffic (%)						
Lane Group Flow (vph)	523	102	654	0	0	554
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12	J	0	J		0
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane	10		10			10
Headway Factor	0.99	0.95	1.05	1.05	1.05	1.05
Turning Speed (mph)	15	9	1.00	9	1.03	1.00
Number of Detectors	13	1	2	9	10	2
Detector Template	l	I				
Leading Detector (ft)	35	35	83			83
	ან -5	ან -5	-5			-5
Trailing Detector (ft)						
Turn Type	Prot	Perm	NA			NA
Protected Phases	3	^	1			5
Permitted Phases	•	3				_
Detector Phase	3	3	1			5
Switch Phase						

Minimum Initial (s) 5.0 5.0 5.0 5.0 1.0 1.0 1.0 1.0 1.0 1.2 1.2 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		•	•	†	<i>></i>	-	↓
Minimum Initial (s) 5.0 5.0 5.0 5.0 12.0 Minimum Split (s) 10.0 10.0 12.0 12.0 12.0 12.0 15.0 Minimum Split (s) 35.0 35.0 35.0 45.0 45.0 45.0 16.0 12.0 16.0 13.0 12.0 15.0 16.0 15.0 16.0 15.0 15.0 16.0 15.0 16.0 15.0 16.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Minimum Split (s) 10.0 10.0 12.0 12.0 12.0 10.0 10.1 12.0 10.0 12.0 10.0 12.0 10.0 12.0 10.0 12.0 10.0 12.0 10.0 12.0 10.0 12.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14							
Total Split (s)							
Total Split (\$\tilde{\text{W}}\$)							
Maximum Green (s) 30.0 30.0 38.0 38.0 38.0 (rellow Time (s) 4.0 4.0 5.0 5.0 Matheway Time (s) 1.0 1.0 2.0 2.0 2.0 Matheway Time (s) 1.0 1.0 2.0 2.0 2.0 Matheway Time (s) 1.0 1.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0							
Action A							
All-Red Time (s)	· ,						
Cost Time Adjust (s) 0.0							
Total Lost Time (s) 5.0 5.0 7.0 7.0	` '						
Lead/Lag Lead-Lag Optimize? //ehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 //imimum Gap (s) 3.0 3.0 3.0 3.0 3.0 //imimum Gap (s) 0.0 0.0 0.0 0.0 //ime To Reduce (s) 0.0 0.0 0.0 0.0 //ime To Reduce (s) 0.0 0.0 0.0 0.0 //ime To Reduce (s) 0.0 0.0 0.0 0.0 //ime To Reduce (s) 0.0 0.0 0.0 0.0 //ime To Reduce (s) 0.0 0.0 0.0 0.0 //ime To Reduce (s) 0.0 0.0 0.0 0.0 //ime To Reduce (s) 0.0 0.0 0.0 0.0 //ime To Reduce (s) 0.0 0.0 0.0 0.0 //ime To Reduce (s) 0.0 0.0 0.0 0.0 //ime To Reduce (s) 0.0 0.0 0.0 0.0 //ime To Reduce (s) 0.0 0.0 0.0 0.0 //ime To Reduce (s) 0.0 0.0 0.0 0.5 //ime Reduce (s) 0.0 0.0 0.5 0.0 //ime Reduce (s) 0.0 0.0 0.5 0.0 //ime Reduce Delay 0.0 0.0 0.5 0.3 //ime To Reduce (s) 0.0 0.0 0.5 0.3 //ime To Reduce (s) 0.0 0.0 0.5 0.3 //ime To Reduce (s) 0.0 0.0 0.5 0.3 //ime To Reduce (s) 0.0 0.0 0.5 0.3 //ime To Reduce (s) 0.0 0.0 0.5 0.3 //ime To Reduce (s) 0.0 0.0 0.5 0.3 //ime To Reduce (s) 0.0 0.0 0.0 0.5 //ime To Reduce (s) 0.0 0.0 0.0 0.0 //ime To Reduce (s) 0.0 0.0 0.0 0.0 //ime To Reduce (s) 0.0 0.0 0.0 0.0 //ime To Reduce (s) 0.0 0.0 0.0 0.0 //ime To Reduce (s) 0.0 0.0 0.0 //ime To Reduce (s) 0.0 0.0 0.0 //ime To Reduce (s) 0.0 0.0 0.0 //ime To Reduce (s) 0.0 0.0 0.0 //ime To Reduce (s) 0.0 0.0 0.0 //ime To Reduce (s) 0.0 0.0 0.0 //ime To Reduce (so 0.0 0.0 0.0 //ime To Reduce (so 0.0 0.0 0.0 //ime To Reduce (so 0.0 0.0 0.0 //ime To To Reduce (so 0.0 0.0 0.0 //ime To To Reduce (so 0.0 0.0 0.0 //ime To To To To To To To To To To To To To							
Lead-Lag Optimize?		0.0	0.0	1.0			1.0
Vehicle Extension (s) 3.0							
Minimum Gap (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0		3.0	3.0	3.0			3.0
Fine Before Reduce (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.							
Fime To Reduce (s) 0.0 0.0 0.0 0.0 0.0 Recall Mode None None C-Max C-Max Malk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effet Green (s) 26.9 26.9 41.1 41.1 Actuated g/C Ratio 0.34 0.34 0.51 0.51 0.51 0.62 0.64 0.71 0.62 0.65 0.65 0.65 0.71 0.62 0.65 0.65 0.71 0.62 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65							
Recall Mode							
Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) 26.9 26.9 41.1 41.1 Actuated g/C Ratio 0.34 0.34 0.51 0.51 I/c Ratio 0.86 0.16 0.71 0.62 Control Delay 40.1 4.5 21.4 8.7 Queue Delay 0.0 0.0 0.5 0.3 Fotal Delay 40.1 4.5 21.9 9.0 LOS D A C A Approach Delay 34.3 21.9 9.0 Approach LOS C C A Queue Length 50th (ft) 232 0 248 88 Queue Length 95th (ft) #380 29 398 m52 Internal Link Dist (ft) 241 848 439 Furn Bay Length (ft) 175 3 3 3 Sase Capacity (vph) 676 689 921 894 Starvation Cap Reductn 0 0 0 62 Spillback Cap Reductn	\ /						
Pedestrian Calls (#/hr) Pedestrian Calls		INUTIE	NOTIE	O-IVIAX			O-IVIAX
Pedestrian Calls (#/hr) Act Effct Green (s) 26.9 26.9 41.1 41.1 Actuated g/C Ratio 0.34 0.34 0.51 0.51 Actuated g/C Ratio 0.86 0.16 0.71 0.62 Control Delay 40.1 4.5 21.4 8.7 Queue Delay 0.0 0.0 0.5 0.3 Fotal Delay 40.1 4.5 21.9 9.0 Approach Delay 34.3 21.9 9.0 Approach LOS C C A Queue Length 50th (ft) 232 0 248 88 Queue Length 95th (ft) #380 29 398 m52 Internal Link Dist (ft) 241 848 439 Furn Bay Length (ft) 175 Base Capacity (yph) 676 689 921 894 Starvation Cap Reductn 0 0 0 62 Spillback Cap Reductn 0 0 0 0 62 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.77 0.15 0.76 0.67 Intersection Summary Area Type: Other Cycle Length: 80 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.86 Intersection Signal Delay: 22.2 Intersection LOS: C							
Act Effet Green (s) 26.9 26.9 41.1 41.1 Actuated g/C Ratio 0.34 0.34 0.51 0.51 v/c Ratio 0.86 0.16 0.71 0.62 control Delay 40.1 4.5 21.4 8.7 Queue Delay 0.0 0.0 0.5 0.3 Fotal Delay 40.1 4.5 21.9 9.0 0.3 Fotal Delay 40.1 4.5 21.9 9.0 0.0 0.0 0.5 0.3 Fotal Delay 34.3 21.9 9.0 Approach Delay 34.3 21.9 9.0 Approach LOS C C A Approach LOS C C A Approach LOS C C A Approach LOS C C A Approach LOS C C A Approach Los C C A Approach Los C C A Approach Los C C A Approach Los C C C A Approach Los C C C A Approach Los C C C A Approach Los C C C A Approach Los C C C A Approach Los C C C A Approach Los C C C A Approach Los C C C A Approach Los C C C A Approach Los C C C A Approach Los C C C A Approach Los C C C A Approach Los C C C A Approach Los C C C C A Approach Los C C C C A Approach Los C C C C C C C C C C C C C C C C C C C							
Actuated g/C Ratio 0.34 0.34 0.51 0.51 Actuated g/C Ratio 0.86 0.16 0.71 0.62 Control Delay 40.1 4.5 21.4 8.7 Queue Delay 0.0 0.0 0.5 0.3 Fotal Delay 40.1 4.5 21.9 9.0 Approach Delay 34.3 21.9 9.0 Approach LOS C C A Queue Length 50th (ft) 232 0 248 88 Queue Length 95th (ft) #380 29 398 m52 Internal Link Dist (ft) 175 Base Capacity (vph) 676 689 921 894 Starvation Cap Reductn 0 0 0 62 Spillback Cap Reductn 0 0 0 0 62 Spillback Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.77 0.15 0.76 0.67 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.86 Intersection Signal Delay: 22.2 Intersection LOS: C		26.0	26.0	11 1			11 1
### Area Type: Order Ratio O.86 O.16 O.71 O.62 Control Delay 40.1 4.5 21.4 8.7 Queue Delay O.0 O.0 O.5 O.3 Fotal Delay 40.1 4.5 21.9 9.0 Approach Delay 34.3 21.9 9.0 Approach LOS C C C A Queue Length 50th (ft) 232 O 248 88 Queue Length 95th (ft) #### ### ### ### ### ### ### ### ###							
Control Delay							
Queue Delay 0.0 0.0 0.5 0.3 Fotal Delay 40.1 4.5 21.9 9.0 LOS D A C A Approach Delay 34.3 21.9 9.0 Approach LOS C C A Queue Length 50th (ft) 232 0 248 88 Queue Length 95th (ft) #380 29 398 m52 Internal Link Dist (ft) 241 848 439 Furn Bay Length (ft) 175 Base Capacity (vph) 676 689 921 894 Starvation Cap Reductn 0 0 0 0 62 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.77 0.15 0.76 0.67 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.86 Intersection Signal Delay: 22.2 Intersection LOS: C							
Approach Delay	•						
D							
Approach Delay 34.3 21.9 9.0 Approach LOS C C A Queue Length 50th (ft) 232 0 248 88 Queue Length 95th (ft) #380 29 398 m52 Internal Link Dist (ft) 241 848 439 Furn Bay Length (ft) 175 Base Capacity (vph) 676 689 921 894 Starvation Cap Reductn 0 0 0 0 62 Spillback Cap Reductn 0 0 0 0 62 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.77 0.15 0.76 0.67 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Diffset: 13 (16%), Referenced to phase 1:NBT and 5:SBT, Start of Yellow Natural Cycle: 60 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.86 Intersection Signal Delay: 22.2 Intersection LOS: C							
Approach LOS C C A Queue Length 50th (ft) 232 0 248 88 Queue Length 95th (ft) #380 29 398 m52 Internal Link Dist (ft) 241 848 439 Turn Bay Length (ft) 175 Base Capacity (vph) 676 689 921 894 Starvation Cap Reductn 0 0 0 0 62 Spillback Cap Reductn 0 3 59 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.77 0.15 0.76 0.67 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBT, Start of Yellow Natural Cycle: 60 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.86 Intersection Signal Delay: 22.2 Intersection LOS: C			А				
Queue Length 50th (ft) 232 0 248 88 Queue Length 95th (ft) #380 29 398 m52 Internal Link Dist (ft) 241 848 439 Furn Bay Length (ft) 175 3 58 Base Capacity (vph) 676 689 921 894 Starvation Cap Reductn 0 0 0 62 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0							
Queue Length 95th (ft) #380 29 398 m52 Internal Link Dist (ft) 241 848 439 Furn Bay Length (ft) 175 Base Capacity (vph) 676 689 921 894 Starvation Cap Reductn 0 0 0 62 Spillback Cap Reductn 0 3 59 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.77 0.15 0.76 0.67 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBT, Start of Yellow Natural Cycle: 60 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.86 Intersection Signal Delay: 22.2 Intersection LOS: C			^				
National Link Dist (ft)							
Furn Bay Length (ft) 175 Base Capacity (vph) 676 689 921 894 Starvation Cap Reductn 0 0 0 0 62 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.77 0.15 0.76 0.67 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBT, Start of Yellow Natural Cycle: 60 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.86 Intersection Signal Delay: 22.2 Intersection LOS: C			29				
Base Capacity (vph) 676 689 921 894 Base Capacity (vph) 676 689 921 894 Base Capacity (vph) 0 0 0 62 Base Capacity (vph) 0 0 0 0 Base Capacity (vph) 0 0 0 0 Base Capacity (vph) 0 0 0 0 Base Capacity (vph) 0 0 0 0 Base Capacity (vph) 0 0 0 0 Base Capacity (vph) 0 0 0 0 0 Base Capacity (vph) 0 <t< td=""><td></td><td>241</td><td>4</td><td>848</td><td></td><td></td><td>439</td></t<>		241	4	848			439
Starvation Cap Reductn 0 0 0 0 62 Spillback Cap Reductn 0 3 59 0 Storage Cap Reductn 0 0 0 0 0 0 Reduced v/c Ratio 0.77 0.15 0.76 0.67 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBT, Start of Yellow Natural Cycle: 60 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.86 Intersection Signal Delay: 22.2 Intersection LOS: C							
Spillback Cap Reductn 0 3 59 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.77 0.15 0.76 0.67 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBT, Start of Yellow Natural Cycle: 60 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.86 Intersection Signal Delay: 22.2 Intersection LOS: C							
Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.77 0.15 0.76 0.67 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBT, Start of Yellow Natural Cycle: 60 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.86 Intersection Signal Delay: 22.2 Intersection LOS: C							
Reduced v/c Ratio 0.77 0.15 0.76 0.67 Intersection Summary Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBT, Start of Yellow Natural Cycle: 60 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.86 Intersection Signal Delay: 22.2 Intersection LOS: C							
Area Type: Other Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBT, Start of Yellow Natural Cycle: 60 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.86 Intersection Signal Delay: 22.2 Intersection LOS: C							
Area Type: Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBT, Start of Yellow Natural Cycle: 60 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.86 Intersection Signal Delay: 22.2 Intersection LOS: C	Reduced v/c Ratio	0.77	0.15	0.76			0.67
Cycle Length: 80 Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBT, Start of Yellow Natural Cycle: 60 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.86 Intersection Signal Delay: 22.2 Intersection LOS: C	Intersection Summary						
Actuated Cycle Length: 80 Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBT, Start of Yellow Natural Cycle: 60 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.86 Intersection Signal Delay: 22.2 Intersection LOS: C	, ,	Other					
Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBT, Start of Yellow Natural Cycle: 60 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.86 ntersection Signal Delay: 22.2 Intersection LOS: C	Cycle Length: 80						
Natural Cycle: 60 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.86 ntersection Signal Delay: 22.2 Intersection LOS: C	Actuated Cycle Length: 80						
Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.86 ntersection Signal Delay: 22.2 Intersection LOS: C	Offset: 13 (16%), Reference	d to phase	1:NBT a	nd 5:SBT,	Start of Y	'ellow	
Maximum v/c Ratio: 0.86 ntersection Signal Delay: 22.2 Intersection LOS: C	Natural Cycle: 60						
ntersection Signal Delay: 22.2 Intersection LOS: C	Control Type: Actuated-Coo	rdinated					
ntersection Signal Delay: 22.2 Intersection LOS: C	Maximum v/c Ratio: 0.86						
		2.2			Int	tersection	n LOS: C
ntersection Capacity Utilization 68.9% ICU Level of Service C	Intersection Capacity Utiliza						
	Analysis Period (min) 15					, 10101	

- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
- m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 9: NYS Route 120 & New King Street

	۶	-	•	•	—	•	•	†	<i>></i>	>	ţ	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	4					ሻ	ħβ		7		7
Traffic Volume (vph)	447	268	130	0	0	0	297	161	23	33	279	689
Future Volume (vph)	447	268	130	0	0	0	297	161	23	33	279	689
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	16	16	16	12	12	12	12	12	12
Grade (%)		1%			-4%			-1%			1%	
Storage Length (ft)	0		0	0		0	385		0	190		460
Storage Lanes	1		0	0		0	1		0	1		1
Taper Length (ft)	25			25			86			86		
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.956						0.982				0.850
Flt Protected	0.950	0.995					0.950			0.950		
Satd. Flow (prot)	1689	1686	0	0	0	0	1796	3385	0	1633	1800	1575
Flt Permitted	0.950	0.995					0.305			0.629		
Satd. Flow (perm)	1689	1686	0	0	0	0	577	3385	0	1081	1800	1575
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		28						12				118
Link Speed (mph)		30			30			55			55	
Link Distance (ft)		176			314			586			596	
Travel Time (s)		4.0			7.1			7.3			7.4	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	1%	2%	0%	0%	0%	0%	1%	6%	0%	10%	5%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	476	285	138	0	0	0	316	171	24	35	297	733
Shared Lane Traffic (%)	10%											
Lane Group Flow (vph)	428	471	0	0	0	0	316	195	0	35	297	733
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12	J		12			12	J
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.01	1.01	1.01	0.82	0.82	0.82	0.99	0.99	0.99	1.01	1.01	1.01
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2					1	2		1	2	1
Detector Template												
Leading Detector (ft)	35	83					35	83		35	83	35
Trailing Detector (ft)	-5	-5					-5	-5		-5	-5	-5
Turn Type	Split	NA					pm+pt	NA		pm+pt	NA	pm+ov
Protected Phases	3	3					6	1		2	5	3
Permitted Phases							1			5		5
Detector Phase	3	3					6	1		2	5	3
Switch Phase												

	۶	→	•	•	←	•	4	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	5.0					3.0	8.0		3.0	20.0	5.0
Minimum Split (s)	10.0	10.0					10.0	15.0		10.0	27.0	10.0
Total Split (s)	65.0	65.0					22.0	27.0		22.0	27.0	65.0
Total Split (%)	57.0%	57.0%					19.3%	23.7%		19.3%	23.7%	57.0%
Maximum Green (s)	60.0	60.0					15.0	20.0		15.0	20.0	60.0
Yellow Time (s)	4.0	4.0					5.0	5.0		5.0	5.0	4.0
All-Red Time (s)	1.0	1.0					2.0	2.0		2.0	2.0	1.0
Lost Time Adjust (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0					7.0	7.0		7.0	7.0	5.0
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0					2.0	2.0		2.0	2.0	3.0
Minimum Gap (s)	3.0	3.0					2.0	2.0		2.0	2.0	3.0
Time Before Reduce (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Recall Mode	None	None					None	Min		None	Min	None
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)	39.2	39.2					42.8	35.3		26.3	20.4	66.8
Actuated g/C Ratio	0.42	0.42					0.45	0.37		0.28	0.22	0.71
v/c Ratio	0.61	0.66					0.69	0.15		0.10	0.76	0.64
Control Delay	24.5	24.4					30.1	24.6		21.2	51.8	8.4
Queue Delay	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Total Delay	24.5	24.4					30.1	24.6		21.2	51.8	8.4
LOS	С	С					С	С		С	D	Α
Approach Delay		24.5						28.0			21.0	
Approach LOS		С						С			С	
Queue Length 50th (ft)	201	213					120	41		11	166	159
Queue Length 95th (ft)	291	314					#269	90		39	#385	245
Internal Link Dist (ft)		96			234			506			516	
Turn Bay Length (ft)							385			190		460
Base Capacity (vph)	1096	1104					459	1273		498	389	1442
Starvation Cap Reductn	0	0					0	0		0	0	0
Spillback Cap Reductn	0	0					0	0		0	0	0
Storage Cap Reductn	0	0					0	0		0	0	0
Reduced v/c Ratio	0.39	0.43					0.69	0.15		0.07	0.76	0.51

Intersection Summary

Area Type: Other

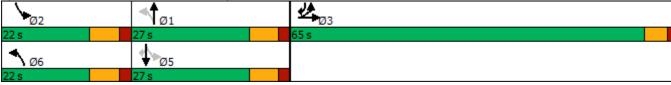
Cycle Length: 114

Actuated Cycle Length: 94.3

Natural Cycle: 70

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.76


Intersection Signal Delay: 23.7 Intersection LOS: C
Intersection Capacity Utilization 72.3% ICU Level of Service C

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	۶	→	•	•	←	•	4	†	/	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્ન			£				7			
Traffic Volume (vph)	3	255	0	0	399	588	0	0	590	0	0	0
Future Volume (vph)	3	255	0	0	399	588	0	0	590	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	15	15	15	12	12	12	13	13	13	16	16	16
Grade (%)		1%			-1%			1%			2%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	0		0	0		0	0		1	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt					0.920				0.865			
Flt Protected		0.999										
Satd. Flow (prot)	0	2037	0	0	1716	0	0	0	1690	0	0	0
Flt Permitted		0.999										
Satd. Flow (perm)	0	2037	0	0	1716	0	0	0	1690	0	0	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		331			176			301			377	
Travel Time (s)		7.5			4.0			6.8			8.6	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	2%	0%	0%	3%	2%	0%	0%	0%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	3	271	0	0	424	626	0	0	628	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	274	0	0	1050	0	0	0	628	0	0	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	0.89	0.89	0.89	0.99	0.99	0.99	0.96	0.96	0.96	0.86	0.86	0.86
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Free			Free			Stop			Stop	
Intersection Summary												
Area Tuna.) the ear											

Area Type:
Control Type: Unsignalized Other

Intersection Capacity Utilization 60.4% Analysis Period (min) 15

ICU Level of Service B

Intersection												
Int Delay, s/veh	8.7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			ĵ.				1			
Traffic Vol, veh/h	3	255	0	0	399	588	0	0	590	0	0	0
Future Vol, veh/h	3	255	0	0	399	588	0	0	590	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	_	-	None	-	_	None	-	_	None	_	_	None
Storage Length	_	-	_	_	-	-	-	_	0	-	-	_
Veh in Median Storage,	# -	0	-	-	0	_	-	0	_	-	16983	_
Grade, %	_	1	_	_	-1	-	-	1	-	-	2	_
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles, %	0	2	0	0	3	2	0	0	0	0	0	0
Mvmt Flow	3	271	0	0	424	626	0	0	628	0	0	0
Major/Minor Ma	ajor1		ı	Major2			/linor1					
	1050	0		- viajoiz	_	0	-	_	271			
Stage 1	-	-			_	-			-			
Stage 2	_		_	_	_		-	_	_			
Critical Hdwy	4.1	_			_			_	6.3			
Critical Hdwy Stg 1	4.1		_	_	_		_	_	0.5			
Critical Hdwy Stg 2	_	_			_		_	_	_			
Follow-up Hdwy	2.2		_	_	_	-	_	_	3.3			
Pot Cap-1 Maneuver	671	_	0	0	_	-	0	0	767			
Stage 1	-		0	0	_	_	0	0	- 101			
Stage 2	_	_	0	0	_	-	0	0	_			
Platoon blocked, %		_	U	- 0	_	_	U	U				
Mov Cap-1 Maneuver	671	_	_	_	_	_	_	0	767			
Mov Cap-2 Maneuver	-	_	_	_	_	_	_	0	-			
Stage 1	_	_	_	_	_	_	_	0	_			
Stage 2	_	_	_	_	_	_	_	0	_			
olugo z								J				
Approach	EB			WB			NB					
HCM Control Delay, s	0.1			0			27.1					
HCM LOS	V. I			- 0			D					
							J					
Minor Lane/Major Mvmt	N	NBLn1	EBL	EBT	WBT	WBR						
Capacity (veh/h)		767	671									
HCM Lane V/C Ratio		0.818		_	_	_						
HCM Control Delay (s)		27.1	10.4	0	_	_						
HCM Lane LOS		D	В	A	_	_						
HCM 95th %tile Q(veh)		8.9	0	-	_	_						
		3.0										

	۶	→	•	•	←	•	4	†	~	>	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					ર્ન						ર્ન	
Traffic Volume (vph)	0	0	0	399	0	0	0	0	0	259	0	0
Future Volume (vph)	0	0	0	399	0	0	0	0	0	259	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	14	14	13	13	12
Grade (%)		0%			-1%			2%			1%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	0		0	0		0	0		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt												
Flt Protected					0.950						0.950	
Satd. Flow (prot)	0	0	0	0	1761	0	0	0	0	0	1819	0
FIt Permitted					0.950						0.950	
Satd. Flow (perm)	0	0	0	0	1761	0	0	0	0	0	1819	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		182			331			377			345	
Travel Time (s)		4.1			7.5			8.6			7.8	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	0%	3%	0%	0%	0%	0%	0%	2%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	0	0	0	429	0	0	0	0	0	278	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	0	0	0	429	0	0	0	0	0	278	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	0.99	0.99	0.99	1.01	0.93	0.93	0.96	0.96	1.01
Turning Speed (mph)	15		9	15		9	15	_	9	15	_	9
Sign Control		Free			Free			Stop			Stop	
Intersection Summary												
	Other											
Control Type: Unsignalized												
Intersection Capacity Utilizati	on 43.1%			IC	CU Level	of Service	A					
Analysis Period (min) 15												

Int Delay, s/veh 25.4
THE FOR THE WELL WELL WELL AND AND ADD ONL OUR CORP.
Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR
Lane Configurations 4
Traffic Vol, veh/h 0 0 0 399 0 0 0 0 259 0 0
Future Vol, veh/h 0 0 0 399 0 0 0 0 259 0 0
Conflicting Peds, #/hr 0 0 0 0 0 0 0 0 0 0 0
Sign Control Free Free Free Free Free Free Stop Stop Stop Stop Stop
RT Channelized None None None
Storage Length
Veh in Median Storage, # - 0 16974 0 -
Grade, % - 01 2 1 -
Peak Hour Factor 93 93 93 93 93 93 93 93 93 93 93
Heavy Vehicles, % 0 0 0 3 0 0 0 0 2 0 0
Mvmt Flow 0 0 0 429 0 0 0 0 278 0 0
Major/Minor Major2 Minor2
Conflicting Flow All 0 0 0 858 858 -
Stage 1 858 858 -
Stage 2 0 0 -
Critical Hdwy 4.13 6.62 6.7 -
Critical Hdwy Stg 1 5.62 5.7 -
Critical Hdwy Stg 2
Follow-up Hdwy 2.227 3.518 4 -
Pot Cap-1 Maneuver 0 312 283 0
Stage 1 - 0 396 359 0
Stage 2 0 0
Platoon blocked, %
Mov Cap-1 Maneuver 312 0 -
Mov Cap-2 Maneuver 312 0 -
Stage 1 396 0 -
Stage 2 0 -
Approach WB SB
HCM Control Delay, s 64.6
HCM LOS F
1
Minor Lane/Major Mvmt WBL WBT SBLn1
Capacity (veh/h) 312
HCM Lane V/C Ratio - 0.893
HCM Control Delay (s) 64.6
HCM Lane LOS F
HCM 95th %tile Q(veh) 8.3

Lane Configurations		₩	×	À	F	×	₹	Ť	×	~	Ĺ	×	*
Traffic Volume (vph)	Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Traffic \(\text{Volume \(\text{Vph} \) \\ \text{Vph} \) \\ \text{Vph} \\ \text{Vph} \) \\ \text{Vph} \\ \text	Lane Configurations		ર્ન	7	ሻ	1	7	ሻ	^	7	ሻ	^	7
Future Volume (vph) 171 6 217 147 32 350 313 767 35 62 766 124 126 126 1490 1900	Traffic Volume (vph)	171		217	147		350	313		35	62		
Lane Worldhy (fth)	Future Volume (vph)	171	6	217	147	32	350	313	767	35	62	766	124
Lane Width (ft)	Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)		12	15	12	12	12	12	11	12	12	12	12	12
Storage Length (ft)	Grade (%)		0%			0%			0%			0%	
Storage Lanes		0		250	0		225	680		250	400		250
Lane Utili, Factor	Storage Lanes	0		1	1		1	1		1	1		1
Ped Bike Factor 0.899 1.00	Taper Length (ft)	25			25			86			86		
Fit	Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Filt Protected 0.954 0.950 0.950 0.950 0.950	Ped Bike Factor			0.99	1.00								
Satd. Flow (prot) 0 1956 1615 1770 1900 1615 1771 3574 1324 1805 3539 1599 1514 1514 1074 1900 1615 1711 3574 1324 1805 3539 1599 1514 1074 1900 1615 1711 3574 1324 1805 3539 1599 1598 1514 1074 1900 1615 1711 3574 1324 1805 3539 1599 1598 1514 1074	Frt			0.850			0.850			0.850			0.850
Fit Permitted	Flt Protected		0.954		0.950			0.950			0.950		
Fit Permitted 0.710 0.577 0.950 0.95	Satd. Flow (prot)	0	1956	1615	1770	1900	1615	1711	3574	1324	1805	3539	1599
Processor Proc			0.710		0.577			0.950			0.950		
Page Page	Satd. Flow (perm)	0	1456	1594	1074	1900	1615	1711	3574	1324	1805	3539	1599
Said. Flow (RTOR)				Yes			Yes			Yes			Yes
Link Speed (mph)				219			354			79			125
Link Distance (ft)			30			30			55			55	
Confl. Peds. (#/hr)			610			598			1191			735	
Confl. Peds. (#/hr)	` ,		13.9			13.6			14.8			9.1	
Confl. Bikes (#hr)	. ,			1	1								
Growth Factor 100%	Confl. Bikes (#/hr)												
Heavy Vehicles (%)	Peak Hour Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Bus Blockages (#/hr) 0 0 0 0 0 0 0 0 0	Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Bus Blockages (#/hr) 0 0 0 0 0 0 0 0 0	Heavy Vehicles (%)	2%	0%	0%	2%	0%	0%	2%	1%	22%	0%	2%	1%
Parking (#/hr) Mid-Block Traffic (%) 0% 0% 0% 0% 0% 0% 0%		0	0	0	0	0	0	0	0	0	0	0	0
Mid-Block Traffic (%) 0% 0% 0% 0% 0% 0% Adj. Flow (vph) 173 6 219 148 32 354 316 775 35 63 774 125 Shared Lane Traffic (%) Lane Group Flow (vph) 0 179 219 148 32 354 316 775 35 63 774 125 Enter Blocked Intersection No													
Adj. Flow (vph) 173 6 219 148 32 354 316 775 35 63 774 125 Shared Lane Traffic (%) Lane Group Flow (vph) 0 179 219 148 32 354 316 775 35 63 774 125 Enter Blocked Intersection No			0%			0%			0%			0%	
Lane Group Flow (vph) 0 179 219 148 32 354 316 775 35 63 774 125 Enter Blocked Intersection Lane Alignment Left Left Right Left Left Left Left Left Left Left Left Left Left Left Right Left Left Left Left Left Right Left Left Left Left Right Left<		173	6	219	148	32	354	316	775	35	63	774	125
Lane Group Flow (vph) 0 179 219 148 32 354 316 775 35 63 774 125 Enter Blocked Intersection Lane Alignment Left Left Right Left Left Left Left Left Left Left Left Left Left Left Right Left Left Left Left Left Right Left Left Left Left Right Left<	Shared Lane Traffic (%)												
Lane Alignment Left Left Right Left Left Right Left Left Right Left Left Right Left Left Right Median Width(ft) 12		0	179	219	148	32	354	316	775	35	63	774	125
Median Width(ft) 12 12 12 12 12 Link Offset(ft) 0 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 Two way Left Turn Lane 1.00 <td>Enter Blocked Intersection</td> <td>No</td> <td>No</td> <td>No</td> <td>No</td> <td>No</td> <td>No</td> <td>No</td> <td>No</td> <td>No</td> <td>No</td> <td>No</td> <td>No</td>	Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Link Offset(ft) 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 Two way Left Turn Lane Headway Factor 1.00 0.88 1.00 1.00 1.00 1.04 1.00 1.00 1.00 1.00 Turning Speed (mph) 15 9 15 0 0 0	Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Link Offset(ft) 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 Two way Left Turn Lane Headway Factor 1.00 0.88 1.00 1.00 1.00 1.04 1.00 1.00 1.00 1.00 Turning Speed (mph) 15 9 15 0 0 0	Median Width(ft)		12	•		12			12			12	
Two way Left Turn Lane Headway Factor 1.00 0.88 1.00			0			0			0			0	
Headway Factor 1.00 0.88 1.00	Crosswalk Width(ft)		16			16			16			16	
Turning Speed (mph) 15 9 15 9 15 9 15 9 15 9 15 9 15 9 15 9 15 9 15 9 15 9 15 9 15 9 15 9 NA 9 NA 15 9 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 2 5 5 1 2 5 5 5 5 2	. ,												
Turning Speed (mph) 15 9 15 9 15 9 15 9 15 9 15 9 15 9 15 9 15 9 15 9 15 9 15 9 15 9 15 9 NA 9 NA 15 9 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 2 5 5 1 2 5 5 5 5 2	•	1.00	0.88	1.00	1.00	1.00	1.00	1.04	1.00	1.00	1.00	1.00	1.00
Number of Detectors 1 1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1 1 2 1 1 2 1 2 5 5 2 5		15		9			9	15					9
Leading Detector (ft) 20 43 6 6 6 6 83 6 6 83 6 6 Trailing Detector (ft) 0 0 0 0 0 0 -5 0 0 -5 0 0 Turn Type Perm NA Perm Perm NA Perm Prot	Number of Detectors	1	1	1	1	1	1	2	1	1	2	1	1
Leading Detector (ft) 20 43 6 6 6 6 83 6 6 83 6 6 Trailing Detector (ft) 0 0 0 0 0 0 -5 0 0 -5 0 0 Turn Type Perm NA Perm Perm NA Perm Prot	Detector Template	Left											
Trailing Detector (ft) 0 0 0 0 0 0 0 -5 0 0 -5 0 0 Turn Type Perm NA Perm Prot NA Perm Prot NA Perm Prot NA Perm Prot NA Perm	· ·	20	43	6	6	6	6	83	6	6	83	6	6
Turn Type Perm NA Perm Perm NA Perm Prot NA Perm Prot NA Perm Prot NA Perm Prot NA Perm Prot NA Perm Prot NA Perm Prot NA Perm Prot NA Perm Prot NA Perm Prot NA Perm Prot NA Perm Prot NA Perm Prot NA Perm Prot NA Perm Prot NA Perm Prot NA Perm Prot NA Perm Prot NA Perm Prot NA Perm Perm Prot NA Perm		0		0	0	0	0			0		0	0
Protected Phases 3 3 6 1 2 5 Permitted Phases 3 3 3 3 1 5 Detector Phase 3 3 3 3 6 1 1 2 5 5		Perm	NA	Perm	Perm	NA	Perm	Prot		Perm	Prot	NA	Perm
Permitted Phases 3 3 3 3 1 5 Detector Phase 3 3 3 3 6 1 1 2 5 5													
Detector Phase 3 3 3 3 3 6 1 1 2 5 5		3		3	3		3			1			5
			3			3		6	1		2	5	
	Switch Phase	-									_		

	₩.	\mathbf{x}	Ž	F	×	₹	7	*	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	2.0	10.0	10.0	2.0	10.0	10.0
Minimum Split (s)	31.0	31.0	31.0	31.0	31.0	31.0	16.0	42.0	42.0	16.0	42.0	42.0
Total Split (s)	46.0	46.0	46.0	46.0	46.0	46.0	36.0	42.0	42.0	36.0	42.0	42.0
Total Split (%)	37.1%	37.1%	37.1%	37.1%	37.1%	37.1%	29.0%	33.9%	33.9%	29.0%	33.9%	33.9%
Maximum Green (s)	40.0	40.0	40.0	40.0	40.0	40.0	30.0	36.0	36.0	30.0	36.0	36.0
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	6.0	6.0	6.0	6.0	6.0	6.0	2.0	6.0	6.0	2.0	6.0	6.0
Minimum Gap (s)	3.0	3.0	3.0	3.0	3.0	3.0	2.0	3.0	3.0	2.0	4.0	4.0
Time Before Reduce (s)	20.0	20.0	20.0	20.0	20.0	20.0	0.0	20.0	20.0	0.0	20.0	20.0
Time To Reduce (s)	10.0	10.0	10.0	10.0	10.0	10.0	0.0	10.0	10.0	0.0	10.0	10.0
Recall Mode	Min	Min	Min	Min	Min	Min	None	Max	Max	None	Max	Max
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		26.5	26.5	26.5	26.5	26.5	23.2	54.3	54.3	8.3	36.6	36.6
Actuated g/C Ratio		0.25	0.25	0.25	0.25	0.25	0.22	0.52	0.52	0.08	0.35	0.35
v/c Ratio		0.49	0.39	0.55	0.07	0.53	0.83	0.42	0.05	0.44	0.62	0.20
Control Delay		38.4	6.3	42.5	30.4	6.4	59.2	18.7	0.1	59.0	33.4	6.2
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		38.4	6.3	42.5	30.4	6.4	59.2	18.7	0.1	59.0	33.4	6.2
LOS		D	Α	D	С	Α	Е	В	Α	Е	С	Α
Approach Delay		20.8			17.8			29.5			31.5	
Approach LOS		С			В			С			С	
Queue Length 50th (ft)		103	0	87	16	0	208	180	0	43	239	0
Queue Length 95th (ft)		179	57	160	42	69	#337	276	0	92	357	45
Internal Link Dist (ft)		530			518			1111			655	
Turn Bay Length (ft)			250			225	680		250	400		250
Base Capacity (vph)		566	753	417	739	844	499	1853	724	526	1239	641
Starvation Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio		0.32	0.29	0.35	0.04	0.42	0.63	0.42	0.05	0.12	0.62	0.20

Intersection Summary

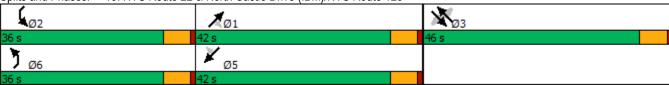
Area Type: Other

Cycle Length: 124

Actuated Cycle Length: 104.6

Natural Cycle: 90

Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.83


Intersection Signal Delay: 26.9 Intersection LOS: C
Intersection Capacity Utilization 70.0% ICU Level of Service C

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 13: NYS Route 22 & North Castle Drive (IBM)/NYS Route 128

	•	≭	\rightarrow	•	†	7	(w	ļ	4	€	✓	
Lane Group	EBL2	EBL	EBR	NBL	NBT	NBR	SBL	SBT	SBR	SWL	SWR	
Lane Configurations		ă	7		ર્ન	7		4T>		ሻሻ		
Traffic Volume (vph)	8	2	16	5	1214	296	0	551	5	255	2	
Future Volume (vph)	8	2	16	5	1214	296	0	551	5	255	2	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Lane Width (ft)	10	10	10	11	11	11	10	10	10	11	11	
Grade (%)		0%			4%			1%		0%		
Storage Length (ft)		0	0	0		0	0		0	0	0	
Storage Lanes		1	1	0		1	0		0	2	0	
Taper Length (ft)		25		25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	*0.67	*0.67	*0.67	0.97	0.95	
Ped Bike Factor					1.00	.,		1.00		1.00		
Frt			0.850			0.850		0.999		0.999		
Flt Protected		0.950								0.953		
Satd. Flow (prot)	0	1685	1507	0	1782	1500	0	2316	0	3294	0	
Flt Permitted	•	0.950		•	0.997				•	0.953	•	
Satd. Flow (perm)	0	1685	1507	0	1777	1500	0	2316	0	3294	0	
Right Turn on Red	•		Yes	•		Yes			No	020 .	•	
Satd. Flow (RTOR)			63			312						
Link Speed (mph)		30			35	0.12		35		35		
Link Distance (ft)		155			796			597		511		
Travel Time (s)		3.5			15.5			11.6		10.0		
Confl. Peds. (#/hr)		0.0		2	10.0			11.0	2	10.0	2	
Confl. Bikes (#/hr)				_					_		_	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	
Heavy Vehicles (%)	0%	0%	0%	0%	1%	2%	0%	2%	0%	3%	0%	
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%		0%		
Adj. Flow (vph)	8	2	17	5	1278	312	0	580	5	268	2	
Shared Lane Traffic (%)	O .		.,	U	1210	012	U	000	U	200		
Lane Group Flow (vph)	0	10	17	0	1283	312	0	585	0	270	0	
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Right	
Median Width(ft)	LOIL	10	rtigiit	LOIL	0	rtigitt	LOIL	0	rtigitt	22	rtigitt	
Link Offset(ft)		0			0			0		0		
Crosswalk Width(ft)		16			16			16		16		
Two way Left Turn Lane		10			10			10		10		
Headway Factor	1.09	1.09	1.09	1.07	1.07	1.07	1.10	1.10	1.10	1.04	1.04	
Turning Speed (mph)	1.03	1.03	9	1.07	1.07	9	1.10	1.10	9	1.04	9	
Number of Detectors	13	13	1	13	2	1	1	2	9	13	9	
Detector Template	Left	ı	ı	Left		·	Left			ı		
Leading Detector (ft)	20	35	35	20	83	35	20	83		35		
Trailing Detector (ft)	0	ან -5	ან -5	0	-5	ან -5	0	-5		ან -5		
		-ⴢ Prot	-5 Perm	Perm	c- NA		U	-5 NA		-ა Prot		
Turn Type Protected Phases	Perm	3	FEIIII	FEIIII		pm+ov						
	2	3	2	1	1	4	E	5		4		
Permitted Phases	3	2	3	1	1	· · · · · · · · · · · · · · · · · · ·	5	Г				
Detector Phase	3	3	3	1	1	4	5	5		4		
Switch Phase												

	۶	_#	•	4	†	7	4	ţ	4	€	✓
Lane Group	EBL2	EBL	EBR	NBL	NBT	NBR	SBL	SBT	SBR	SWL	SWR
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	
Minimum Split (s)	10.0	10.0	10.0	11.0	11.0	11.0	11.0	11.0		11.0	
Total Split (s)	20.0	20.0	20.0	106.0	106.0	31.0	106.0	106.0		31.0	
Total Split (%)	12.7%	12.7%	12.7%	67.5%	67.5%	19.7%	67.5%	67.5%		19.7%	
Maximum Green (s)	15.0	15.0	15.0	100.0	100.0	25.0	100.0	100.0		25.0	
Yellow Time (s)	4.0	4.0	4.0	5.0	5.0	5.0	5.0	5.0		5.0	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	
Lost Time Adjust (s)		0.0	0.0		0.0	0.0		0.0		0.0	
Total Lost Time (s)		5.0	5.0		6.0	6.0		6.0		6.0	
Lead/Lag	Lag	Lag	Lag			Lead				Lead	
Lead-Lag Optimize?	Yes	Yes	Yes			Yes				Yes	
Vehicle Extension (s)	5.0	5.0	5.0	5.0	5.0	3.0	5.0	5.0		3.0	
Minimum Gap (s)	5.0	5.0	5.0	5.0	5.0	3.0	5.0	5.0		3.0	
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	
Recall Mode	None	None	None	Max	Max	None	Max	Max		None	
Walk Time (s)											
Flash Dont Walk (s)											
Pedestrian Calls (#/hr)											
Act Effct Green (s)		8.6	8.6		100.6	126.3		100.6		17.0	
Actuated g/C Ratio		0.06	0.06		0.73	0.92		0.73		0.12	
v/c Ratio		0.10	0.11		0.99	0.22		0.35		0.67	
Control Delay		67.1	1.5		42.8	0.5		8.6		66.7	
Queue Delay		0.0	0.0		0.0	0.0		0.0		0.0	
Total Delay		67.1	1.5		42.8	0.5		8.6		66.7	
LOS		Ε	Α		D	Α		Α		Ε	
Approach Delay		25.8			34.5			8.6		66.7	
Approach LOS		С			С			Α		Е	
Queue Length 50th (ft)		9	0		~1267	0		147		125	
Queue Length 95th (ft)		30	0		#1671	11		229		176	
Internal Link Dist (ft)		75			716			517		431	
Turn Bay Length (ft)											
Base Capacity (vph)		184	221		1298	1426		1692		601	
Starvation Cap Reductn		0	0		0	0		0		0	
Spillback Cap Reductn		0	0		0	0		0		0	
Storage Cap Reductn		0	0		0	0		0		0	
Reduced v/c Ratio		0.05	0.08		0.99	0.22		0.35		0.45	
Intersection Summary											
7.1	Other										
Cycle Length: 157	_										

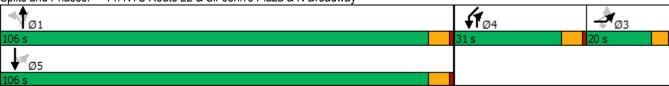
Actuated Cycle Length: 137.7

Natural Cycle: 100

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.99

Intersection Signal Delay: 31.8


Intersection Capacity Utilization 93.5%

Analysis Period (min) 15 User Entered Value

Intersection LOS: C ICU Level of Service F

- Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 14: NYS Route 22 & Sir John's Plaza & N Broadway

	۶	→	•	•	+	*_	•	†	/	/	↓	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	WBR2	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ň	ĥ			ર્ન		7	^	7	ř	↑ ↑	
Traffic Volume (vph)	315	148	95	79	142	3	115	1192	129	75	581	207
Future Volume (vph)	315	148	95	79	142	3	115	1192	129	75	581	207
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	11	12	12	12	12	11	11	12	12	12
Grade (%)		2%			2%			4%			-6%	
Storage Length (ft)	115		0	0		180			160	110		0
Storage Lanes	1		0	0		1			1	1		0
Taper Length (ft)	86			25						86		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	0.95
Ped Bike Factor					1.00							
Frt		0.941			0.998		0.850		0.850		0.961	
Flt Protected					0.983					0.950		
Satd. Flow (prot)	1732	1688	0	0	1810	0	1599	3420	1515	1859	3520	0
Flt Permitted					0.983					0.078		
Satd. Flow (perm)	1732	1688	0	0	1810	0	1599	3420	1515	153	3520	0
Right Turn on Red			No				Yes		Yes			
Satd. Flow (RTOR)							102		76			
Link Speed (mph)		35			30			45			35	
Link Distance (ft)		532			475			529			778	
Travel Time (s)		10.4			10.8			8.0			15.2	
Confl. Peds. (#/hr)						2						
Confl. Bikes (#/hr)												
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	5%	1%	2%	0%	3%	0%	0%	0%	1%	0%	1%	3%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	325	153	98	81	146	3	119	1229	133	77	599	213
Shared Lane Traffic (%)												
Lane Group Flow (vph)	325	251	0	0	230	0	119	1229	133	77	812	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Right	Left	Right	Left	Left	Right
Median Width(ft)		11	_		11	_	_	12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.06	1.06	1.06	1.01	1.01	1.01	1.01	1.07	1.07	0.96	0.96	0.96
Turning Speed (mph)	15		9	15		9	9		9	15		9
Number of Detectors	1	2		1	2		1	2	1	1	2	
Detector Template				Left								
Leading Detector (ft)	35	83		20	83		35	83	35	35	83	
Trailing Detector (ft)	-5	-5		0	-5		-5	-5	-5	-5	-5	
Turn Type	Split	NA		Split	NA		pm+ov	NA	pm+ov	pm+pt	NA	
Protected Phases	3	3		4	4		5	6	4	5	2	
Permitted Phases							4		6	2		
Detector Phase	3	3		4	4		5	6	4	5	2	
Switch Phase												

Synchro 10 Report Page 38

Lana Group	Ø7	
Lane Group	ν.	
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Ideal Flow (vphpl)		
Lane Width (ft)		
Grade (%)		
Storage Length (ft)		
Storage Lanes		
Taper Length (ft)		
Lane Util. Factor		
Ped Bike Factor		
Frt		
Flt Protected		
Satd. Flow (prot)		
Flt Permitted		
Satd. Flow (perm)		
Right Turn on Red		
Satd. Flow (RTOR)		
Link Speed (mph)		
Link Distance (ft)		
Travel Time (s)		
Confl. Peds. (#/hr)		
Confl. Bikes (#/hr)		
Peak Hour Factor		
Growth Factor		
Heavy Vehicles (%)		
Bus Blockages (#/hr)		
Parking (#/hr)		
Mid-Block Traffic (%)		
Adj. Flow (vph)		
Shared Lane Traffic (%)		
Lane Group Flow (vph)		
Enter Blocked Intersection		
Lane Alignment		
Median Width(ft)		
Link Offset(ft)		
Crosswalk Width(ft)		
Two way Left Turn Lane		
Headway Factor		
Turning Speed (mph)		
Number of Detectors		
Detector Template		
Leading Detector (ft)		
Trailing Detector (ft)		
Turn Type		
Protected Phases	7	
Permitted Phases		
Detector Phase		
Switch Phase		

Synchro 10 Report Page 39

	•	→	\rightarrow	•	←	*_	•	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	WBR2	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	39.0	39.0		11.0	11.0		11.0	11.0	11.0	11.0	31.0	
Total Split (s)	51.0	51.0		36.0	36.0		26.0	51.0	36.0	26.0	77.0	
Total Split (%)	25.5%	25.5%		18.0%	18.0%		13.0%	25.5%	18.0%	13.0%	38.5%	
Maximum Green (s)	45.0	45.0		30.0	30.0		20.0	45.0	30.0	20.0	71.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0			0.0		0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0			6.0		6.0	6.0	6.0	6.0	6.0	
Lead/Lag	Lead	Lead		Lag	Lag		Lead	Lag	Lag	Lead		
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes	Yes	Yes		
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Minimum Gap (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Time Before Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Recall Mode	None	None		None	None		None	Min	None	None	Min	
Walk Time (s)	8.0	8.0									8.0	
Flash Dont Walk (s)	25.0	25.0									17.0	
Pedestrian Calls (#/hr)	6	6									0	
Act Effct Green (s)	38.6	38.6			27.0		38.5	45.2	72.2	62.8	62.8	
Actuated g/C Ratio	0.21	0.21			0.15		0.21	0.25	0.40	0.34	0.34	
v/c Ratio	0.89	0.70			0.86		0.29	1.45	0.21	0.48	0.67	
Control Delay	96.0	78.6			105.2		10.0	255.5	9.1	53.5	55.5	
Queue Delay	0.0	0.0			0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay	96.0	78.6			105.2		10.0	255.5	9.1	53.5	55.5	
LOS	F	Е			F		Α	F	Α	D	Е	
Approach Delay		88.4			72.8			231.4			55.3	
Approach LOS		F			Е			F			Е	
Queue Length 50th (ft)	391	288			280		12	~1111	22	67	463	
Queue Length 95th (ft)	#552	407			#436		55	#1308	51	114	553	
Internal Link Dist (ft)		452			395			449			698	
Turn Bay Length (ft)	115						180		160	110		
Base Capacity (vph)	428	417			298		488	846	669	240	1375	
Starvation Cap Reductn	0	0			0		0	0	0	0	0	
Spillback Cap Reductn	0	0			0		0	0	0	0	0	
Storage Cap Reductn	0	0			0		0	0	0	0	0	
Reduced v/c Ratio	0.76	0.60			0.77		0.24	1.45	0.20	0.32	0.59	
Intono ation Common on												

Intersection Summary

Area Type: Other

Cycle Length: 200

Actuated Cycle Length: 182.7

Natural Cycle: 150

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 1.45 Intersection Signal Delay: 138.7

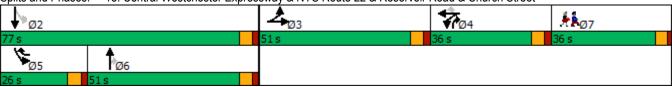
Intersection Capacity Utilization 86.6%

Analysis Period (min) 15

Intersection LOS: F ICU Level of Service E

[~] Volume exceeds capacity, queue is theoretically infinite.

Lane Group	Ø7
Minimum Initial (s)	8.0
Minimum Split (s)	36.0
Total Split (s)	36.0
Total Split (%)	18%
Maximum Green (s)	31.0
Yellow Time (s)	3.5
All-Red Time (s)	1.5
Lost Time Adjust (s)	
Total Lost Time (s)	
Lead/Lag	
Lead-Lag Optimize?	
Vehicle Extension (s)	3.0
Minimum Gap (s)	3.0
Time Before Reduce (s)	0.0
Time To Reduce (s)	0.0
Recall Mode	Ped
Walk Time (s)	8.0
Flash Dont Walk (s)	23.0
Pedestrian Calls (#/hr)	2
Act Effct Green (s)	
Actuated g/C Ratio	
v/c Ratio	
Control Delay	
Queue Delay	
Total Delay	
LOS	
Approach Delay	
Approach LOS	
Queue Length 50th (ft)	
Queue Length 95th (ft)	
Internal Link Dist (ft)	
Turn Bay Length (ft)	
Base Capacity (vph)	
Starvation Cap Reductn	
Spillback Cap Reductn	
Storage Cap Reductn	
Reduced v/c Ratio	
Intersection Summary	
intersection summary	


Synchro 10 Report Page 41 18002018A - N.T.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

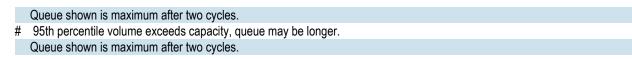
Splits and Phases: 15: Central Westchester Expressway & NYS Route 22 & Reservoir Road & Church Street

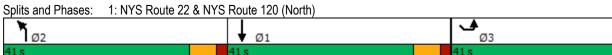
18002018A - N.T. Page 42

	ሽ	†	ļ	» J	•	>
Lane Group	NBL	NBT	SBT	SBR	SEL	SER
Lane Configurations	ች	^	^	7	ች	7
Traffic Volume (vph)	214	554	794	226	524	786
Future Volume (vph)	214	554	794	226	524	786
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1900	1900	1900	1900	1900	1900
` '	10	0%	0%	10	0%	10
Grade (%)	050	0%	0%	F00		^
Storage Length (ft)	250			500	250	0
Storage Lanes	1			1	1	1
Taper Length (ft)	86				86	
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00
Ped Bike Factor						
Frt				0.850		0.850
Flt Protected	0.950				0.950	
Satd. Flow (prot)	1478	3209	3303	1478	1604	1436
Flt Permitted	0.950				0.950	
Satd. Flow (perm)	1478	3209	3303	1478	1604	1436
Right Turn on Red	1710	0200	0000	Yes	1007	Yes
				231		483
Satd. Flow (RTOR)		EE	EE	231	20	400
Link Speed (mph)		55 767	55		30	
Link Distance (ft)		767	1064		872	
Travel Time (s)		9.5	13.2		19.8	
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	14%	5%	2%	2%	5%	5%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)			,	•	•	•
Mid-Block Traffic (%)		0%	0%		0%	
Adj. Flow (vph)	218	565	810	231	535	802
	210	303	010	201	555	002
Shared Lane Traffic (%)	040	EGE	040	024	E2E	000
Lane Group Flow (vph)	218	565	810	231	535	802
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width(ft)		10	15		10	
Link Offset(ft)		0	0		0	
Crosswalk Width(ft)		16	16		16	
Two way Left Turn Lane						
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (mph)	15			9	15	9
Number of Detectors	1	2	2	1	2	0
Detector Template	l l			'		U
· ·	25	104	104	0	104	0
Leading Detector (ft)	35	104		0		0
Trailing Detector (ft)	-5	0	0	0	0	0
Turn Type	Prot	NA	NA	Free	Prot	Free
Protected Phases	2	5	1		3	
Permitted Phases				Free		Free
Detector Phase	2	5	1		3	
Switch Phase						
- Inton Fidou						

	ሻ	†	ļ	¥J	•	>
Lane Group	NBL	NBT	SBT	SBR	SEL	SER
Minimum Initial (s)	12.0	12.0	12.0		10.0	
Minimum Split (s)	36.0	36.0	36.0		26.0	
Total Split (s)	41.0	82.0	41.0		41.0	
Total Split (%)	33.3%	66.7%	33.3%		33.3%	
Maximum Green (s)	34.0	75.0	34.0		35.0	
Yellow Time (s)	5.0	5.0	5.0		4.0	
All-Red Time (s)	2.0	2.0	2.0		2.0	
Lost Time Adjust (s)	0.0	0.0	0.0		0.0	
Total Lost Time (s)	7.0	7.0	7.0		6.0	
Lead/Lag	Lead		Lag			
Lead-Lag Optimize?	Yes		Yes			
Vehicle Extension (s)	6.0	6.0	6.0		6.0	
Minimum Gap (s)	4.0	4.0	4.0		4.0	
Time Before Reduce (s)	20.0	20.0	20.0		20.0	
Time To Reduce (s)	8.0	8.0	8.0		5.0	
Recall Mode	None	Min	Min		None	
Walk Time (s)	NOTIC	141111	191111		140110	
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)						
Act Effct Green (s)	24.4	64.0	32.6	112.3	35.2	112.3
Actuated g/C Ratio	0.22	0.57	0.29	1.00	0.31	1.00
v/c Ratio	0.22	0.37	0.29	0.16	1.07	0.56
Control Delay	51.8	12.8	47.5	0.10	97.3	1.6
•	0.0	0.0	0.0	0.2	0.0	0.0
Queue Delay	51.8	12.8	47.5	0.0	97.3	1.6
Total Delay						
LOS Approach Delay	D	B	D 27.0	Α	F	Α
Approach Delay		23.7	37.0		39.9	
Approach LOS	4.47	C	D		D	^
Queue Length 50th (ft)	147	105	287	0	~437	0
Queue Length 95th (ft)	231	137	#434	0	#724	0
Internal Link Dist (ft)		687	984		792	
Turn Bay Length (ft)	250	0.1-1	100-	500	250	4 : 2 2
Base Capacity (vph)	450	2154	1005	1478	502	1436
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.48	0.26	0.81	0.16	1.07	0.56
Intersection Summary						
Area Type:	Other					
Cycle Length: 123	JJ.					
Actuated Cycle Length: 11	2.3					
Natural Cycle: 110	2.0					
Control Type: Actuated-Ur	ncoordinated					
Control Type. Actuated-Of	icoordinated					

Intersection LOS: C

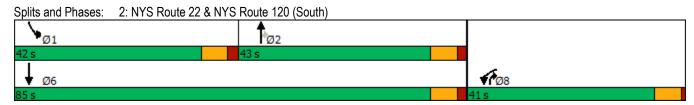

ICU Level of Service D


Analysis Period (min) 15

Intersection Capacity Utilization 79.5%

~ Volume exceeds capacity, queue is theoretically infinite.

Maximum v/c Ratio: 1.07 Intersection Signal Delay: 34.9



†ø5

	•	•	†	/	>	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		^	7	75	† †
Traffic Volume (vph)	56	0	478	182	924	655
Future Volume (vph)	56	0	478	182	924	655
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1900	1900	1900	1900	1900	1900
Grade (%)	-8%	12	-2%	10	11	-1%
` ,		^	-270	200	045	-170
Storage Length (ft)	0	0		200	215	
Storage Lanes	1	0		1	2	
Taper Length (ft)	25	4.00	0.05	4.00	86	0.05
Lane Util. Factor	1.00	1.00	0.95	1.00	0.97	0.95
Ped Bike Factor						
Frt				0.850		
Flt Protected	0.950				0.950	
Satd. Flow (prot)	1707	0	3304	1478	3368	3405
Flt Permitted	0.950				0.950	
Satd. Flow (perm)	1707	0	3304	1478	3368	3405
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)				9		
Link Speed (mph)	30		50	•		50
Link Opeca (mpn) Link Distance (ft)	334		905			488
Travel Time (s)	7.6		12.3			6.7
Confl. Peds. (#/hr)	7.0		12.0			0.7
, ,						
Confl. Bikes (#/hr)	0.05	0.05	0.05	0.05	0.05	0.05
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	10%	0%	3%	3%	1%	3%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	59	0	503	192	973	689
Shared Lane Traffic (%)						
Lane Group Flow (vph)	59	0	503	192	973	689
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12	i agiit	22	i tigiit	20.0	22
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
	10		10			10
Two way Left Turn Lane	0.05	0.05	4.00	4.00	4.04	4.04
Headway Factor	0.95	0.95	1.08	1.08	1.04	1.04
Turning Speed (mph)	15	9		9	15	
Number of Detectors	1		2	1	1	2
Detector Template	Left		Thru	Right	Left	Thru
Leading Detector (ft)	20		100	20	20	100
Trailing Detector (ft)	0		0	0	0	0
Turn Type	Prot		NA	pm+ov	Prot	NA
Protected Phases	8		2	. 8	1	6
Permitted Phases				2		
Detector Phase	8		2	8	1	6
Switch Phase	•		_	•	•	
- Triange						

	•	•	†	<i>></i>	/	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Minimum Initial (s)	10.0		12.0	10.0	12.0	12.0
Minimum Split (s)	26.0		36.0	26.0	36.0	36.0
Total Split (s)	41.0		43.0	41.0	42.0	85.0
Total Split (%)	32.5%		34.1%	32.5%	33.3%	67.5%
Maximum Green (s)	35.0		36.0	35.0	35.0	78.0
Yellow Time (s)	5.0		5.0	5.0	5.0	5.0
All-Red Time (s)	1.0		2.0	1.0	2.0	2.0
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0		7.0	6.0	7.0	7.0
Lead/Lag	0.0			0.0	Lead	7.0
			Lag			
Lead-Lag Optimize?	2.0		Yes	2.0	Yes	2.0
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0
Minimum Gap (s)	3.0		3.0	3.0	3.0	3.0
Time Before Reduce (s)	0.0		0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0		0.0	0.0	0.0	0.0
Recall Mode	None		Min	None	Min	Min
Walk Time (s)						
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)						
Act Effct Green (s)	10.3		18.1	35.4	35.1	60.1
Actuated g/C Ratio	0.12		0.22	0.42	0.42	0.72
v/c Ratio	0.28		0.70	0.30	0.69	0.28
Control Delay	38.3		36.0	16.4	23.5	4.4
Queue Delay	0.0		0.0	0.0	0.0	0.0
Total Delay	38.3		36.0	16.4	23.5	4.4
LOS	D		D	В	C	Α
Approach Delay	38.3		30.6			15.6
Approach LOS	50.5 D		30.0 C			13.0 B
Queue Length 50th (ft)	28		127	61	204	53
	68		183	107	315	78
Queue Length 95th (ft)				107	313	
Internal Link Dist (ft)	254		825	000	045	408
Turn Bay Length (ft)	747		4.400	200	215	2400
Base Capacity (vph)	717		1428	1067	1415	3188
Starvation Cap Reductn	0		0	0	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductn	0		0	0	0	0
Reduced v/c Ratio	0.08		0.35	0.18	0.69	0.22
Intersection Summary						
Area Type:	Other					
Cycle Length: 126						
Actuated Cycle Length: 8	33.5					
Natural Cycle: 100	70.0					
Control Type: Semi Act-L	Incoord					
Maximum v/c Ratio: 0.70						
				I.	atorecatio	n I OS: C
Intersection Signal Delay					ntersectio	
Internación - O-11111	1:1: 0 / 00/					
Intersection Capacity Util Analysis Period (min) 15				10	CU Level	or Service

	۶	→	*	•	←	4	1	†	~	/	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					f)			4				
Traffic Volume (vph)	0	0	0	0	25	6	1	284	45	0	0	0
Future Volume (vph)	0	0	0	0	25	6	1	284	45	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	13	12	12	12	12
Grade (%)		0%			-5%			-7%			0%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	0		0	0		0	0		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt					0.973			0.982				
Flt Protected												
Satd. Flow (prot)	0	0	0	0	1836	0	0	1748	0	0	0	0
Flt Permitted												
Satd. Flow (perm)	0	0	0	0	1836	0	0	1748	0	0	0	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		124			297			300			404	
Travel Time (s)		2.8			6.8			6.8			9.2	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	0%	0%	4%	0%	0%	16%	3%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	0	0	0	0	28	7	1	323	51	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	0	0	0	35	0	0	375	0	0	0	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	0.97	0.97	0.97	0.96	0.92	0.96	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15	_	9	15		9
Sign Control		Stop			Stop			Free			Stop	
Intersection Summary												
	Other											
Control Type: Unsignalized												
Intersection Capacity Utilizati	on 27.7%			IC	CU Level	of Service	A					
Analysis Period (min) 15												

Intersection												
Int Delay, s/veh	0.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					f)			4				
Traffic Vol, veh/h	0	0	0	0	25	6	1	284	45	0	0	0
Future Vol, veh/h	0	0	0	0	25	6	1	284	45	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	_	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	_	-	-	-
Veh in Median Storage,	# -	2	-	-	0	-	-	0	-	-	16965	-
Grade, %	-	0	-	-	-5	-	-	-7	-	-	0	-
Peak Hour Factor	88	88	88	88	88	88	88	88	88	88	88	88
Heavy Vehicles, %	0	0	0	0	4	0	0	16	3	0	0	0
Mvmt Flow	0	0	0	0	28	7	1	323	51	0	0	0
Major/Minor			N	Minor1		N	/lajor1					
Conflicting Flow All			- 1	-	351	349	0	0	0			
Stage 1				_	351	-	-	-	-			
Stage 2					0	_	_	_	_			
Critical Hdwy				_	5.54	5.7	4.1	_	_			
Critical Hdwy Stg 1				_	4.54	-	-	_	_			
Critical Hdwy Stg 2				_	5-	_	_	_	_			
Follow-up Hdwy				_	4.036	3.3	2.2	_	_			
Pot Cap-1 Maneuver				0	629	734		_	_			
Stage 1				0	693	-	_	_	_			
Stage 2				0	-	_	_	_	_			
Platoon blocked, %								_	_			
Mov Cap-1 Maneuver				-	0	734	-	_	-			
Mov Cap-2 Maneuver				-	0	-	-	_	_			
Stage 1				-	0	-	-	_	-			
Stage 2				-	0	-	-	_	_			
J												
Approach				WB			NB					
HCM Control Delay, s				10.2								
HCM LOS				В								
TIOM EGG												
Minor Lane/Major Mvmt		NBL	NBT	NDDI	WBLn1							
		INDL	INDI									
Capacity (veh/h)		-	-	-								
HCM Control Dolov (a)		-	-	-	0.048							
HCM Long LOS		-	-	-	10.2							
HCM Lane LOS		-	-	-	В							
HCM 95th %tile Q(veh)		-	-	-	0.2							

	۶	→	•	•	•	•	4	†	<i>></i>	>	ţ	</th
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્ન	7		ર્ન	7	ň	<u></u>	7	ň		7
Traffic Volume (vph)	16	1	18	4	Ö	3	146	367	28	27	790	289
Future Volume (vph)	16	1	18	4	0	3	146	367	28	27	790	289
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (%)		4%			-1%			7%			-4%	
Storage Length (ft)	0		315	0		125	280		445	150		275
Storage Lanes	0		1	0		1	1		1	1		1
Taper Length (ft)	25			25			86			86		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt			0.850			0.850			0.850			0.850
Flt Protected		0.955			0.950		0.950			0.950		
Satd. Flow (prot)	0	1309	1190	0	1814	1623	1675	1667	1558	1841	1882	1631
Flt Permitted							0.193			0.527		
Satd. Flow (perm)	0	1370	1190	0	1909	1623	340	1667	1558	1021	1882	1631
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			37			37			83			200
Link Speed (mph)		30			30			55			55	
Link Distance (ft)		601			392			1478			1166	
Travel Time (s)		13.7			8.9			18.3			14.5	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	38%	0%	33%	0%	0%	0%	4%	10%	0%	0%	3%	1%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	17	1	20	4	0	3	159	399	30	29	859	314
Shared Lane Traffic (%)										-		
Lane Group Flow (vph)	0	18	20	0	4	3	159	399	30	29	859	314
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane											.,	
Headway Factor	1.03	1.03	1.03	0.99	0.99	0.99	1.05	1.05	1.05	0.97	0.97	0.97
Turning Speed (mph)	15	1.00	9	15	0.00	9	15	1.00	9	15	0.01	9
Number of Detectors	1	2	1	1	2	1	1	2	1	1	2	1
Detector Template	Left		'	Left		•	'		,	•		•
Leading Detector (ft)	20	83	35	20	83	35	35	83	35	35	83	35
Trailing Detector (ft)	0	-5	-5	0	-5	-5	-5	-5	-5	-5	-5	-5
Turn Type	Perm	NA	pm+ov	Perm	NA	pm+ov	pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases	1 61111	8	ριτι τ ον 1	i Giiii	4	рит - 07	рит-рі 1	6	i Giiii	рит-рі 5	2	i Giiii
Permitted Phases	8	U	8	4	4	4	6	U	6	2		2
Detector Phase	8	8	1	4	4	5	1	6	6	5	2	2
	0	0	I	4	4	3	ı	O	0	3		2
Switch Phase												

	۶	→	•	•	←	*	1	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	5.0	3.0	5.0	5.0	3.0	3.0	5.0	5.0	3.0	5.0	5.0
Minimum Split (s)	13.0	13.0	10.0	13.0	13.0	10.0	10.0	12.0	12.0	10.0	12.0	12.0
Total Split (s)	45.0	45.0	27.0	45.0	45.0	27.0	27.0	47.0	47.0	27.0	47.0	47.0
Total Split (%)	37.8%	37.8%	22.7%	37.8%	37.8%	22.7%	22.7%	39.5%	39.5%	22.7%	39.5%	39.5%
Maximum Green (s)	40.0	40.0	20.0	40.0	40.0	20.0	20.0	40.0	40.0	20.0	40.0	40.0
Yellow Time (s)	4.0	4.0	5.0	4.0	4.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	1.0	1.0	2.0	1.0	1.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		5.0	7.0		5.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
Lead/Lag			Lead			Lead	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?			Yes			Yes	Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0	2.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Minimum Gap (s)	3.0	3.0	2.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Recall Mode	None	None	None	None	None	None	None	Max	Max	None	Max	Max
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		6.8	8.4		6.3	7.1	52.3	53.8	53.8	45.4	40.5	40.5
Actuated g/C Ratio		0.11	0.13		0.10	0.11	0.83	0.85	0.85	0.72	0.64	0.64
v/c Ratio		0.12	0.11		0.02	0.01	0.39	0.28	0.02	0.04	0.71	0.28
Control Delay		29.8	4.8		28.5	0.0	4.4	4.7	0.0	2.4	14.3	3.5
Queue Delay		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		29.8	4.8		28.5	0.0	4.4	4.7	0.0	2.4	14.3	3.5
LOS		С	Α		С	Α	Α	Α	Α	Α	В	Α
Approach Delay		16.7			16.3			4.3			11.2	
Approach LOS		В			В			Α			В	
Queue Length 50th (ft)		6	0		1	0	1	0	0	0	146	11
Queue Length 95th (ft)		27	9		10	0	33	161	0	9	#610	71
Internal Link Dist (ft)		521			312			1398			1086	
Turn Bay Length (ft)			315			125	280		445	150		275
Base Capacity (vph)		880	447		1226	602	718	1420	1340	1133	1208	1118
Starvation Cap Reductn		0	0		0	0	0	0	0	0	0	0
Spillback Cap Reductn		0	0		0	0	0	0	0	0	0	0
Storage Cap Reductn		0	0		0	0	0	0	0	0	0	0
Reduced v/c Ratio		0.02	0.04		0.00	0.00	0.22	0.28	0.02	0.03	0.71	0.28

Intersection LOS: A

ICU Level of Service D

Intersection Summary

Area Type: Other

Cycle Length: 119

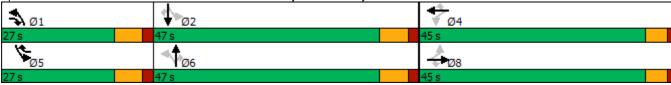
Actuated Cycle Length: 63.1

Natural Cycle: 60

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.71

Intersection Signal Delay: 9.1


Intersection Capacity Utilization 73.1%

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Synchro 10 Report Page 10 Queue shown is maximum after two cycles.

Splits and Phases: 4: NYS Route 120 & SwissRe Driveway/IBM Driveway

	•	•	†	/	\	↓
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ሻ	7	†	7	ች	†
Traffic Volume (vph)	11	11	531	5	167	645
Future Volume (vph)	11	11	531	5	167	645
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	12	12	10	10
Grade (%)	-3%		2%			-1%
Storage Length (ft)	0	0	_,,	15	175	.,,
Storage Lanes	1	1		1	1	
Taper Length (ft)	25	•		•	86	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850		0.850		
Flt Protected	0.950	0.000		0.000	0.950	
	1771	1320	1742	1599	1676	1714
Satd. Flow (prot) Flt Permitted		1320	1742	1033	0.950	17 14
	0.950	1200	1740	1500		1711
Satd. Flow (perm)	1771	1320	1742	1599	1676	1714
Link Speed (mph)	25		55			55
Link Distance (ft)	589		993			1478
Travel Time (s)	16.1		12.3			18.3
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	20%	8%	0%	1%	4%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	12	12	565	5	178	686
Shared Lane Traffic (%)						
Lane Group Flow (vph)	12	12	565	5	178	686
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	11	ragiit	12	ragin	LUIT	12
Link Offset(ft)	0		0			0
	16		16			16
Crosswalk Width(ft)	10		10			10
Two way Left Turn Lane	4.00	4.00	1.04	1.04	1.00	1.00
Headway Factor	1.02	1.02	1.01	1.01	1.09	1.09
Turning Speed (mph)	15	9	_	9	15	_
Sign Control	Stop		Free			Free
Intersection Summary						
	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizat	ion 50.5%			IC	CU Level	of Service
Analysis Period (min) 15						
, , ,						

18002018A - N.T.

Intersection						
Int Delay, s/veh	1.5					
		WDD	NDT	NDD	CDI	CDT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ች	7	†	_ 7	107	↑
Traffic Vol, veh/h	11	11	531	5	167	645
Future Vol, veh/h	11	11	531	5	167	645
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	Yield	-	Free	-	None
Storage Length	0	0	-	15	175	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	-3	-	2	-	-	-1
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	0	20	8	0	1	4
Mvmt Flow	12	12	565	5	178	686
Miller 1011			000		110	000
Major/Minor	Minor1	N	Major1		Major2	
Conflicting Flow All	1607	565	0	-	565	0
Stage 1	565	-	-	-	-	-
Stage 2	1042	-	-	-	-	-
Critical Hdwy	5.8	6.1	_	-	4.11	_
Critical Hdwy Stg 1	4.8	-	_	_	_	_
Critical Hdwy Stg 2	4.8	_	_	_	_	_
Follow-up Hdwy	3.5	3.48	_	_	2.209	_
Pot Cap-1 Maneuver	153	515	_	0	1012	_
Stage 1	629	-	_	0	1012	
Stage 2	408	-	-	0	-	-
Platoon blocked, %	400		-		1010	-
Mov Cap-1 Maneuver	126	515	-	-	1012	-
Mov Cap-2 Maneuver	126	-	-	-	-	-
Stage 1	629	-	-	-	-	-
Stage 2	336	-	-	-	-	-
Annroach	MD		NB		CD	
Approach	WB				SB	
HCM Control Delay, s	24.4		0		1.9	
HCM LOS	С					
Minor Lane/Major Mvm	nt	NRTM	VBLn1V	VRI n2	SBL	SBT
	IC.	או טאו				ושט
Capacity (veh/h)		-	126	515	1012	-
HCM Lane V/C Ratio		-		0.023		-
HCM Control Delay (s)		-	36.5	12.2	9.3	-
HCM Lane LOS		-	Е	В	Α	-
HCM 95th %tile Q(veh))	-	0.3	0.1	0.6	-

	•	•	1	†	↓	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			4	f)	
Traffic Volume (vph)	6	12	3	530	651	4
Future Volume (vph)	6	12	3	530	651	4
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	11	11	11	11
Grade (%)	3%			5%	-2%	
Storage Length (ft)	0	0	0			0
Storage Lanes	1	0	0			0
Taper Length (ft)	25		25			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt	0.908				0.999	
Flt Protected	0.984					
Satd. Flow (prot)	1271	0	0	1644	1782	0
Flt Permitted	0.984					
Satd. Flow (perm)	1271	0	0	1644	1782	0
Link Speed (mph)	30			55	55	
Link Distance (ft)	639			1813	993	
Travel Time (s)	14.5			22.5	12.3	
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	100%	0%	0%	9%	4%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%			0%	0%	
Adj. Flow (vph)	6	13	3	558	685	4
Shared Lane Traffic (%)						
Lane Group Flow (vph)	19	0	0	561	689	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12			0	0	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	1.02	1.02	1.08	1.08	1.03	1.03
Turning Speed (mph)	15	9	15			9
Sign Control	Stop			Free	Free	
Intersection Summary						
	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizat	tion 44 5%			IC	CU Level	of Service
Analysis Period (min) 15				10	20 20101	J. 551 1100 /
raidiyələ i ollou (IIIII) 13						

Intersection						
Int Delay, s/veh	0.4					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			4	ĵ.	
Traffic Vol, veh/h	6	12	3	530	651	4
Future Vol, veh/h	6	12	3	530	651	4
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-		-	
Storage Length	0	-	_	-	_	-
Veh in Median Storage		_	_	0	0	_
Grade, %	3	_	_	5	-2	_
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	100	0	0	9	4	0
Mymt Flow	6	13	3	558	685	4
IVIVIII I IOW	U	10	J	330	000	7
	Minor2		Major1	N	/lajor2	
Conflicting Flow All	1251	687	689	0	-	0
Stage 1	687	-	-	-	-	-
Stage 2	564	-	-	-	-	-
Critical Hdwy	8	6.5	4.1	-	-	-
Critical Hdwy Stg 1	7	-	-	-	-	-
Critical Hdwy Stg 2	7	-	-	-	-	-
Follow-up Hdwy	4.4	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	99	425	915	-	-	-
Stage 1	318	-	-	-	-	-
Stage 2	378	-	-	-	_	-
Platoon blocked, %				-	_	_
Mov Cap-1 Maneuver	99	425	915	_	_	_
Mov Cap-2 Maneuver	99	-	-	_	_	_
Stage 1	316	_	_	_	_	_
Stage 2	378	_	_	_	_	_
Olage 2	370					
Approach	EB		NB		SB	
HCM Control Delay, s	24.6		0.1		0	
HCM LOS	С					
Minor Lane/Major Mvm	nt	NBL	NRT	EBLn1	SBT	SBR
	IL.	915		203		
Capacity (veh/h)			-		-	-
HCM Central Delay (a)		0.003		0.093	-	-
HCM Long LOS		8.9	0	24.6	-	-
HCM Lane LOS	١	A	Α	C	-	-
HCM 95th %tile Q(veh)	0	-	0.3	-	-

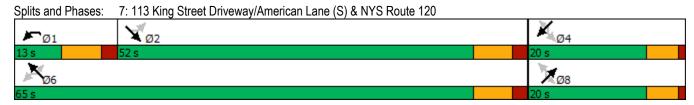
	7	×	À	~	×	₹	ን	×	~	Ĺ	×	*~
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		4		ř	<u></u>	7		4	*		ર્ન	7
Traffic Volume (vph)	1	582	81	124	436	158	97	Ö	157	26	Ö	0
Future Volume (vph)	1	582	81	124	436	158	97	0	157	26	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	11	11	11	11	10	10	10	11	11	11
Grade (%)		-4%			1%			-5%			1%	
Storage Length (ft)	0		0	120		200	0		95	0		0
Storage Lanes	0		0	1		1	0		1	0		1
Taper Length (ft)	25			86			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.984				0.850			0.850			
Flt Protected				0.950				0.950			0.950	
Satd. Flow (prot)	0	1781	0	1736	1677	1494	0	1727	1545	0	1536	1827
Flt Permitted				0.289				0.739			0.690	
Satd. Flow (perm)	0	1781	0	528	1677	1494	0	1343	1545	0	1116	1827
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		12				170			169			
Link Speed (mph)		55			55			30			25	
Link Distance (ft)		1813			2280			328			518	
Travel Time (s)		22.5			28.3			7.5			14.1	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	4%	0%	0%	9%	4%	0%	0%	0%	13%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	1	626	87	133	469	170	104	0	169	28	0	0
Shared Lane Traffic (%)								-				
Lane Group Flow (vph)	0	714	0	133	469	170	0	104	169	0	28	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		11			11			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane								.,				
Headway Factor	1.02	1.02	1.02	1.05	1.05	1.05	1.06	1.06	1.06	1.05	1.05	1.05
Turning Speed (mph)	15	1.02	9	15	1.00	9	15	1.00	9	15	1.00	9
Number of Detectors	1	2		1	2	1	1	2	1	1	2	1
Detector Template	Left			'		•	Left		'	Left		•
Leading Detector (ft)	20	83		35	83	35	20	83	35	20	83	35
Trailing Detector (ft)	0	-5		-5	-5	-5	0	-5	-5	0	-5	-5
Turn Type	Perm	NA		pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases	1 51111	2		рш+рt 1	6	i Giiii	i Giiii	8	i Giiii	i Giiii	4	i Giiii
Permitted Phases	2			6	0	6	8	0	8	4	4	4
Detector Phase	2	2		1	6	6	8	8	8	4	4	4
	2	Z		ı	O	O	0	0	0	4	4	4
Switch Phase												

	J	×	À	~	×	₹	7	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Minimum Initial (s)	10.0	10.0		3.0	10.0	10.0	3.0	3.0	3.0	5.0	5.0	5.0
Minimum Split (s)	17.0	17.0		10.0	17.0	17.0	10.0	10.0	10.0	10.0	10.0	10.0
Total Split (s)	52.0	52.0		13.0	65.0	65.0	20.0	20.0	20.0	20.0	20.0	20.0
Total Split (%)	61.2%	61.2%		15.3%	76.5%	76.5%	23.5%	23.5%	23.5%	23.5%	23.5%	23.5%
Maximum Green (s)	45.0	45.0		6.0	58.0	58.0	15.0	15.0	15.0	15.0	15.0	15.0
Yellow Time (s)	5.0	5.0		5.0	5.0	5.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)		0.0		0.0	0.0	0.0		0.0	0.0		0.0	0.0
Total Lost Time (s)		7.0		7.0	7.0	7.0		5.0	5.0		5.0	5.0
Lead/Lag	Lag	Lag		Lead								
Lead-Lag Optimize?	Yes	Yes		Yes								
Vehicle Extension (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Minimum Gap (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Time Before Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Recall Mode	Max	Max		None	Max	Max	Max	Max	Max	Max	Max	Max
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		45.2		58.0	58.0	58.0		15.0	15.0		15.0	
Actuated g/C Ratio		0.53		0.68	0.68	0.68		0.18	0.18		0.18	
v/c Ratio		0.75		0.30	0.41	0.16		0.44	0.41		0.14	
Control Delay		21.5		6.5	7.3	1.1		37.9	8.6		31.8	
Queue Delay		0.0		0.0	0.0	0.0		0.0	0.0		0.0	
Total Delay		21.5		6.5	7.3	1.1		37.9	8.6		31.8	
LOS		С		Α	Α	Α		D	Α		С	
Approach Delay		21.5			5.8			19.7			31.8	
Approach LOS		С			Α			В			С	
Queue Length 50th (ft)		276		21	95	0		50	0		13	
Queue Length 95th (ft)		423		39	147	17		100	52		37	
Internal Link Dist (ft)		1733			2200			248			438	
Turn Bay Length (ft)				120		200			95			
Base Capacity (vph)		952		445	1144	1073		237	411		196	
Starvation Cap Reductn		0		0	0	0		0	0		0	
Spillback Cap Reductn		0		0	0	0		0	0		0	
Storage Cap Reductn		0		0	0	0		0	0		0	
Reduced v/c Ratio		0.75		0.30	0.41	0.16		0.44	0.41		0.14	
Intersection Summary												
Area Type:	Other											
Cycle Length: 85												

Cycle Length: 85

Actuated Cycle Length: 85

Natural Cycle: 60


Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.75
Intersection Signal Delay: 14.6

Intersection Capacity Utilization 86.4%

Intersection LOS: B
ICU Level of Service E

Analysis Period (min) 15

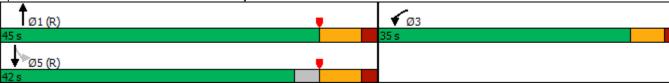
	•	•	†	-	>	ţ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W	11511	7>	, LDIT	JDL	<u> </u>
Traffic Volume (vph)	54	223	495	44	234	532
Future Volume (vph)	54	223	495	44	234	532
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1900	1900	1900	1900	1900	1900
	-6%	12	2%	- 11	- 11	0%
Grade (%)		^	Z70	^	^	U%
Storage Length (ft)	0	0		0	0	
Storage Lanes	1	0		0	0	
Taper Length (ft)	25	4.00	4.00	4.00	25	4.00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt	0.891		0.989			
Flt Protected	0.990					0.985
Satd. Flow (prot)	1692	0	1630	0	0	1745
Flt Permitted	0.990					0.652
Satd. Flow (perm)	1692	0	1630	0	0	1155
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)	237		8			
Link Speed (mph)	30		55			55
Link Distance (ft)	328		519			557
Travel Time (s)	7.5		6.4			6.9
Confl. Peds. (#/hr)	7.5		0.4			0.9
Confl. Bikes (#/hr)	0.04	0.04	0.04	0.04	0.04	0.04
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	2%	10%	14%	3%	4%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	57	237	527	47	249	566
Shared Lane Traffic (%)						
Lane Group Flow (vph)	294	0	574	0	0	815
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12	. ugiit	0		LUIT	0
Link Offset(ft)	0		0			0
	16		16			16
Crosswalk Width(ft)	10		10			10
Two way Left Turn Lane	0.00	0.00	4.00	4.00	4.04	4.04
Headway Factor	0.96	0.96	1.06	1.06	1.04	1.04
Turning Speed (mph)	15	9		9	15	
Number of Detectors	1		2		1	2
Detector Template					Left	
Leading Detector (ft)	35		83		20	83
Trailing Detector (ft)	-5		-5		0	-5
Turn Type	Prot		NA		Perm	NA
Protected Phases	3		1			5
Permitted Phases	-		-		5	
Detector Phase	3		1		5	5
Switch Phase	U		'		U	U

	•	•	†	/	>	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Minimum Initial (s)	5.0		5.0		5.0	5.0
Minimum Split (s)	10.0		12.0		12.0	12.0
Total Split (s)	35.0		45.0		42.0	42.0
Total Split (%)	43.8%		56.3%		52.5%	52.5%
Maximum Green (s)	30.0		38.0		35.0	35.0
Yellow Time (s)	4.0		5.0		5.0	5.0
All-Red Time (s)	1.0		2.0		2.0	2.0
Lost Time Adjust (s)	0.0		0.0		2.0	0.0
Total Lost Time (s)	5.0		7.0			7.0
` ,	5.0		1.0			7.0
Lead/Lag						
Lead-Lag Optimize?	2.0		2.0		2.0	2.0
Vehicle Extension (s)	3.0		3.0		3.0	3.0
Minimum Gap (s)	3.0		3.0		3.0	3.0
Time Before Reduce (s)	0.0		0.0		0.0	0.0
Time To Reduce (s)	0.0		0.0		0.0	0.0
Recall Mode	None		C-Max		C-Max	C-Max
Walk Time (s)						
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)						
Act Effct Green (s)	9.7		58.3			58.3
Actuated g/C Ratio	0.12		0.73			0.73
v/c Ratio	0.71		0.48			0.97
Control Delay	17.9		3.2			38.8
Queue Delay	0.0		0.0			0.0
Total Delay	17.9		3.2			38.8
LOS	В		A			D
Approach Delay	17.9		3.2			38.8
Approach LOS	В		A			D
Queue Length 50th (ft)	27		27			282
Queue Length 95th (ft)	93		45			#683
	248		439			477
Internal Link Dist (ft)	240		439			411
Turn Bay Length (ft)	700		4400			044
Base Capacity (vph)	782		1190			841
Starvation Cap Reductn	0		6			0
Spillback Cap Reductn	0		0			0
Storage Cap Reductn	0		0			0
Reduced v/c Ratio	0.38		0.48			0.97
Intersection Summary						
Area Type:	Other					
Cycle Length: 80	Cuioi					
Actuated Cycle Length: 80						
Offset: 13 (16%), Reference		1·NRT a	nd 5.CRTI	Start o	f Vallow	
, , ,	Led to priase	I.NDI al	IU 3.301L	., Start U	I Tellow	
Natural Cycle: 70						
Control Type: Actuated-Co	ordinated					

Intersection LOS: C

ICU Level of Service G

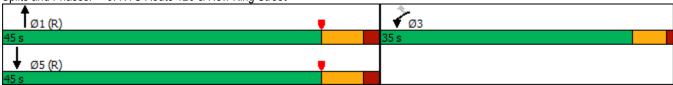
Synchro 10 Report Page 20


Maximum v/c Ratio: 0.97 Intersection Signal Delay: 23.0

Analysis Period (min) 15

Intersection Capacity Utilization 102.2%

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.


	•	•	†	/	\	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ሻ	7	†			†
Traffic Volume (vph)	157	24	515	0	0	586
Future Volume (vph)	157	24	515	0	0	586
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	13	11	11	11	11
Grade (%)	-2%	10	1%			1%
Storage Length (ft)	0	175	1 /0	0	0	1 /0
Storage Lanes	1	1/3		0	0	
Taper Length (ft)	25			U	25	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	1.00	1.00	1.00	1.00	1.00
		0.050				
Frt	0.050	0.850				
Flt Protected	0.950	1400	1010	^		4757
Satd. Flow (prot)	1688	1492	1646	0	0	1757
FIt Permitted	0.950	4 / 2 2	10.5			4=
Satd. Flow (perm)	1688	1492	1646	0	0	1757
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)		25				
Link Speed (mph)	30		55			55
Link Distance (ft)	321		928			519
Travel Time (s)	7.3		11.5			6.4
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	8%	13%	11%	0%	0%	4%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)				-	•	
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	165	25	542	0	0	617
Shared Lane Traffic (%)	100	20	UTL	U	0	017
Lane Group Flow (vph)	165	25	542	0	0	617
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12		0			0
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane						
Headway Factor	0.99	0.95	1.05	1.05	1.05	1.05
Turning Speed (mph)	15	9		9	15	
Number of Detectors	1	1	2			2
Detector Template						
Leading Detector (ft)	35	35	83			83
Trailing Detector (ft)	-5	-5	-5			-5
Turn Type	Prot	Perm	NA			NA
Protected Phases	3	. 5	1			5
Permitted Phases		3				-
Detector Phase	3	3	1			5
	J	3	I			ິນ
Switch Phase						

	•	•	†	<i>></i>	/	↓
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Minimum Initial (s)	5.0	5.0	5.0			5.0
Minimum Split (s)	10.0	10.0	12.0			12.0
Total Split (s)	35.0	35.0	45.0			45.0
Total Split (%)	43.8%	43.8%	56.3%			56.3%
Maximum Green (s)	30.0	30.0	38.0			38.0
Yellow Time (s)	4.0	4.0	5.0			5.0
All-Red Time (s)	1.0	1.0	2.0			2.0
Lost Time Adjust (s)	0.0	0.0	0.0			0.0
Total Lost Time (s)	5.0	5.0	7.0			7.0
Lead/Lag	5.0	3.0	7.0			1.0
Lead-Lag Optimize?						
	3.0	3.0	3.0			3.0
Vehicle Extension (s)						
Minimum Gap (s)	3.0	3.0	3.0			3.0
Time Before Reduce (s)	0.0	0.0	0.0			0.0
Time To Reduce (s)	0.0	0.0	0.0			0.0
Recall Mode	None	None	C-Max			C-Max
Walk Time (s)						
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)						
Act Effct Green (s)	13.3	13.3	54.7			54.7
Actuated g/C Ratio	0.17	0.17	0.68			0.68
v/c Ratio	0.59	0.09	0.48			0.51
Control Delay	38.9	11.3	8.5			3.7
Queue Delay	0.0	0.0	0.0			0.4
Total Delay	38.9	11.3	8.5			4.1
LOS	D	В	Α			Α
Approach Delay	35.2		8.5			4.1
Approach LOS	D		A			Α
Queue Length 50th (ft)	77	0	109			38
Queue Length 95th (ft)	127	19	217			m63
Internal Link Dist (ft)	241	13	848			439
Turn Bay Length (ft)	271	175	0-10			700
Base Capacity (vph)	633	575	1125			1201
Starvation Cap Reductn	033	0	0			207
Spillback Cap Reductn	0	0	0			0
Storage Cap Reductn	0	0	0			0
Reduced v/c Ratio	0.26	0.04	0.48			0.62
Intersection Summary						
Area Type:	Other					
Cycle Length: 80						
Actuated Cycle Length: 80)					
Offset: 13 (16%), Referen		1:NBT a	nd 5:SBT.	Start of Y	'ellow	
Natural Cycle: 45	ļ		,			
Control Type: Actuated-Co	oordinated					
Maximum v/c Ratio: 0.59						
Intersection Signal Delay:	10.2			In	tersection	n LOS: B
Intersection Capacity Utiliz						of Service
Analysis Period (min) 15	Lauon 43.3 //			IC	O LEVEL	OI OCIVICE

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Lane Grough		۶	-	•	•	•	•	4	†	/	>	ţ	✓
Traffic Volume (γph)	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (γph)	Lane Configurations	7	4					7	∱ }		ň	<u></u>	7
Fiture Volume (vph)	Traffic Volume (vph)	387		307	0	0	0	89		55	49	179	514
Ideal Flow (ryphoi)	` ' '	387	413	307	0	0	0	89	127	55	49	179	514
Lane Width (ft)	· · · /				1900	1900	1900	1900					1900
Strate S													
Storage Length (ff)													
Storage Lanes	· ,	0		0	0		0	385		0	190		460
Lane Util. Factor 0.95 0.95 1.00 1.00 1.00 1.00 1.00 0.95 0.95 1.00 1.00 1.00 0.95 0.95 1.00 1.00 0.80		1		0	0		0	1		0	1		1
Lane Util. Factor	Taper Length (ft)	25			25			86			86		
Fit		0.95	0.95	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	1.00	1.00
Fit	Ped Bike Factor												
Fit Protected			0.939						0.954				0.850
Satd. Flow (prot) 1580		0.950						0.950			0.950		
Fit Permitted				0	0	0	0		3179	0		1734	1530
Satd. Flow (perm) 1580 1614 0 0 0 0 1012 3179 0 1145 1734 1530 1781 1734 1530 1781 1734 1530 1783 17	" ,			•		•							.000
Right Turn on Red Yes Yes 59 547 Satd. Flow (RTOR) 33 30 55 55 57 Link Distance (ft) 176 314 586 596 596 Travel Time (s) 4.0 7.1 7.1 7.3 586 596 Confl. Bikes (#hr) 7.1 7.3 7.3 7.4 7.4 Confl. Bikes (#hr) 7.2 7.3 7.4 7.4 7.4 Peak Hour Factor 10.94 0.94<				0	0	0	0		3179	0		1734	1530
Satd. Flow (RTOR) 33 33 55 55 Link Speed (mph) 30 314 586 556 Link Distance (ft) 176 314 586 596 Travel Time (s) 4.0 7.1 7.3 7.4 Confl. Peds. (#/hr) 586 596 596 Peak Hour Factor 0.94<	,,	1000	1011		•	J		1012	0110		1110	1101	
Link Speed (mph) 30 30 30 30 55 55 Link Distance (ft) 176 314 586 596 Travel Time (s) 4.0 7.1 7.3 7.4 Confl. Peds. (#hr) Verification of the standard of the sta			33	100			100		59	100			
Link Distance (ft) 176 314 586 596 Cronfl. Peds. (#/hr) 4.0 7.1 7.3 7.4 Confl. Peds. (#/hr) Confl. Bikes (#/hr) V V V Peak Hour Factor 0.94 <	` ,					30						55	0+1
Travel Time (s) 4.0 7.1 7.3 7.4 7.4 Confl. Peds. (#/hr) Confl. Bikes (#/hr) S S S S S S S S S S S S 0.94 0													
Confl. Peds. (#/hr)	\ /												
Confl. Bikes (#/hr)	. ,		4.0			7.1			7.5			7.7	
Peak Hour Factor 0.94 0.96 55 85 85 85 85 85 85 85 85 85 85 84 80 80 80 80 80 80 80 80 80 80 80 80 80													
Growth Factor 100%		0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	U 04	0.04	0.04
Heavy Vehicles (%)													
Bus Blockages (#/hr) 0 0 0 0 0 0 0 0 0													
Parking (#hr) Mid-Block Traffic (%) 0% 0% 0% 0% 0% 0% 0%	, ,												
Mid-Block Traffic (%) 0% 0% 0% 0% 0% 0% Adj. Flow (vph) 412 439 327 0 0 95 135 59 52 190 547 Shared Lane Traffic (%) 10% Value Value 52 190 547 Shared Lane Traffic (%) 10% Value <td< td=""><td></td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td></td<>		U	U	U	U	U	U	U	U	U	U	U	U
Adj. Flow (vph) 412 439 327 0 0 95 135 59 52 190 547 Shared Lane Traffic (%) 10% Lane Group Flow (vph) 371 807 0 0 0 95 194 0 52 190 547 Enter Blocked Intersection No			00/			00/			00/			00/	
Shared Lane Traffic (%) 10% 10	· /	440		207	0		٥	05		50	E 0		E 4.7
Lane Group Flow (vph) 371 807 0 0 0 0 95 194 0 52 190 547 Enter Blocked Intersection No N			439	321	U	U	U	95	135	59	52	190	547
Enter Blocked Intersection No <th< td=""><td>\ /</td><td></td><td>007</td><td>0</td><td>0</td><td>^</td><td>^</td><td>٥٢</td><td>101</td><td>^</td><td>50</td><td>400</td><td>E 4.7</td></th<>	\ /		007	0	0	^	^	٥٢	101	^	50	400	E 4.7
Lane Alignment Left Left Right Left Left Right Left Left Right Left Left Right Left Left Right Left Left Left Left Right Left </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>													
Median Width(ft) 12 16 10													
Link Offset(ft) 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 Two way Left Turn Lane Headway Factor 1.01 1.01 1.01 0.82 0.82 0.99 0.99 0.99 1.01 1.01 1.01 Turning Speed (mph) 15 9 15		Left		Right	Left		Right	Left		Right	Left		Right
Crosswalk Width(ft) 16 16 16 16 16 Two way Left Turn Lane Headway Factor 1.01 1.01 1.01 0.82 0.82 0.99 0.99 0.99 1.01 1.01 1.01 Turning Speed (mph) 15 9 15 10 10 10 10 10 10	` '												
Two way Left Turn Lane Headway Factor 1.01 1.01 1.01 0.82 0.82 0.82 0.99 0.99 1.01 1.01 1.01 Turning Speed (mph) 15 9 15 10 2 15 15 15 15 15 15													
Headway Factor 1.01 1.01 1.01 0.82 0.82 0.82 0.99 0.99 0.99 1.01 1.01 1.01 Turning Speed (mph) 15 9 15 15 15 15 15 15 15 15 15 15	. ,		16			16			16			16	
Turning Speed (mph) 15 9 15 1 2 1 2 1 2 1 2 3													
Number of Detectors 1 2 2 5 3 3 3 3 3 3 3 3 3 9 9m+pt NA pm+pt NA			1.01			0.82			0.99			1.01	
Detector Template Leading Detector (ft) 35 83 35 83 35 Trailing Detector (ft) -5<				9	15		9		_	9		_	9
Leading Detector (ft) 35 83 35 83 35 Trailing Detector (ft) -5		1	2					1	2		1	2	1
Trailing Detector (ft) -5 -5 -5 -5 -5 -5 -5 -5 Turn Type Split NA pm+pt NA													
Turn Type Split NA pm+pt NA pm+pt NA pm+ov Protected Phases 3 3 6 1 2 5 3 Permitted Phases 1 5 5 5 Detector Phase 3 3 6 1 2 5 3													
Protected Phases 3 3 6 1 2 5 3 Permitted Phases 1 5 5 Detector Phase 3 3 6 1 2 5 3													-5
Permitted Phases 1 5 5 Detector Phase 3 3 6 1 2 5 3		Split						pm+pt			pm+pt		pm+ov
Detector Phase 3 3 6 1 2 5 3		3	3					6	1		2	5	3
	Permitted Phases							1					
Switch Phase	Detector Phase	3	3					6	1		2	5	3
OTHER FIRE	Switch Phase												

	۶	-	•	•	←	•	4	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	5.0					3.0	8.0		3.0	25.0	5.0
Minimum Split (s)	10.0	10.0					10.0	15.0		10.0	32.0	10.0
Total Split (s)	45.0	45.0					22.0	47.0		22.0	47.0	45.0
Total Split (%)	39.5%	39.5%					19.3%	41.2%		19.3%	41.2%	39.5%
Maximum Green (s)	40.0	40.0					15.0	40.0		15.0	40.0	40.0
Yellow Time (s)	4.0	4.0					5.0	5.0		5.0	5.0	4.0
All-Red Time (s)	1.0	1.0					2.0	2.0		2.0	2.0	1.0
Lost Time Adjust (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0					7.0	7.0		7.0	7.0	5.0
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0					2.0	2.0		2.0	2.0	3.0
Minimum Gap (s)	3.0	3.0					2.0	2.0		2.0	2.0	3.0
Time Before Reduce (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Recall Mode	None	None					None	Min		None	Min	None
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)	40.2	40.2					34.8	27.4		30.2	25.1	73.6
Actuated g/C Ratio	0.45	0.45					0.39	0.30		0.33	0.28	0.82
v/c Ratio	0.53	1.09					0.21	0.19		0.12	0.39	0.41
Control Delay	22.9	88.2					16.7	17.3		16.2	30.9	1.2
Queue Delay	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Total Delay	22.9	88.2					16.7	17.3		16.2	30.9	1.2
LOS	С	F					В	В		В	С	Α
Approach Delay		67.6						17.1			9.4	
Approach LOS		Ε						В			Α	
Queue Length 50th (ft)	165	~572					32	30		17	92	0
Queue Length 95th (ft)	274	#853					62	58		39	161	22
Internal Link Dist (ft)		96			234			506			516	
Turn Bay Length (ft)							385			190		460
Base Capacity (vph)	704	738					539	1450		562	773	1349
Starvation Cap Reductn	0	0					0	0		0	0	0
Spillback Cap Reductn	0	0					0	0		0	0	0
Storage Cap Reductn	0	0					0	0		0	0	0
Reduced v/c Ratio	0.53	1.09					0.18	0.13		0.09	0.25	0.41

Intersection Summary

Area Type: Other

Cycle Length: 114

Actuated Cycle Length: 90.2

Natural Cycle: 90

Control Type: Actuated-Uncoordinated

Intersection Capacity Utilization 72.5%

Maximum v/c Ratio: 1.09 Intersection Signal Delay: 40.8

Intersection LOS: D
ICU Level of Service C


Analysis Period (min) 15

~ Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

- # 95th percentile volume exceeds capacity, queue may be longer.
 - Queue shown is maximum after two cycles.

Splits and Phases: 10: NYS Route 120 & Airport Road

Lane Group EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT Lane Configurations 1 599 0 0 466 138 0 0 508 0 0 Future Volume (vph) 1 599 0 0 466 138 0 0 508 0 0 Ideal Flow (vphpl) 1900 <	0 0 1900 16 0
Traffic Volume (vph) 1 599 0 0 466 138 0 0 508 0 0 Future Volume (vph) 1 599 0 0 466 138 0 0 508 0 0 Ideal Flow (vphpl) 1900	0 1900 16
Future Volume (vph) 1 599 0 0 466 138 0 0 508 0 0 Ideal Flow (vphpl) 1900 <t< td=""><td>0 1900 16</td></t<>	0 1900 16
Ideal Flow (vphpl) 1900 <td>1900 16</td>	1900 16
Lane Width (ft) 15 15 15 12 12 12 13 13 13 16 16 Grade (%) 1% -1% 1% 2%	16 0
Grade (%) 1% -1% 1% 2%	0
Storage Length (ft) 0 0 0 0 0	
	0
Storage Lanes 0 0 0 0 1 0	
Taper Length (ft) 25 25 25 25	
Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	1.00
Ped Bike Factor	
Frt 0.969 0.865	
Flt Protected	
Satd. Flow (prot) 0 2039 0 0 1768 0 0 0 1565 0 0	0
Flt Permitted /	
Satd. Flow (perm) 0 2039 0 0 1768 0 0 0 1565 0 0	0
Link Speed (mph) 30 30 30	
Link Distance (ft) 331 176 301 377	
Travel Time (s) 7.5 4.0 6.8 8.6	
Confl. Peds. (#/hr)	
Confl. Bikes (#/hr)	
Peak Hour Factor 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9	0.90
Growth Factor 100% 100% 100% 100% 100% 100% 100% 100	100%
Heavy Vehicles (%) 0% 2% 0% 0% 4% 7% 0% 0% 8% 0% 0%	0%
Bus Blockages (#/hr) 0 0 0 0 0 0 0 0 0	0
Parking (#/hr)	
Mid-Block Traffic (%) 0% 0% 0%	
Adj. Flow (vph) 1 666 0 0 518 153 0 0 564 0 0	0
Shared Lane Traffic (%)	
Lane Group Flow (vph) 0 667 0 0 671 0 0 564 0 0	0
Enter Blocked Intersection No No No No No No No No No	No
Lane Alignment Left Left Right Left Right Left Right Left Left	Right
Median Width(ft) 0 0 0	
Link Offset(ft) 0 0 0	
Crosswalk Width(ft) 16 16 16 16	
Two way Left Turn Lane	
Headway Factor 0.89 0.89 0.89 0.99 0.99 0.96 0.96 0.96 0.86 0.86	0.86
Turning Speed (mph) 15 9 15 9 15	9
Sign Control Free Free Stop Stop	
Intersection Summary	

Area Type:
Control Type: Unsignalized Other

Intersection Capacity Utilization 69.7% Analysis Period (min) 15

ICU Level of Service C

Intersection													
Int Delay, s/veh	50.2												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4	LDIX	1100	1>	VI DIX	HUL	1101	7	ODL	051	ODIT	
Traffic Vol, veh/h	1	599	0	0	466	138	0	0	508	0	0	0	
Future Vol, veh/h	1	599	0	0	466	138	0	0	508	0	0	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	_	_	-	_	_	-	_	_	0	_	_	-	
Veh in Median Storage	e.# -	0	_	_	0	-	_	0	-	_	16983	_	
Grade, %	- -	1	_	_	-1	-	_	1	_	_	2	_	
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90	
Heavy Vehicles, %	0	2	0	0	4	7	0	0	8	0	0	0	
Nvmt Flow	1	666	0	0	518	153	0	0	564	0	0	0	
THE TOWN	•	000	•	•	0.0	100	•		001	•			
Majar/Minar	Maiaut			Maia#0			Min = =1						
	Major1	^		Major2			Minor1		000				
Conflicting Flow All	671	0	-	-	-	0	-	-	666				
Stage 1	-	-	-	-	-	-	-	-	-				
Stage 2	-	-	-	-	-	-	-	-	-				
Critical Hdwy	4.1	-	-	-	-	-	-	-	6.38				
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-				
Critical Hdwy Stg 2	2.2	-	-	-	-	-	-	-	2 272				
Follow-up Hdwy	929	-	-	-	-	-	-	-	3.372 ~ 441				
Pot Cap-1 Maneuver		-	0	0	-	-	0		~ 441				
Stage 1 Stage 2	-	-	0	0	-	-	0	0	-				
Platoon blocked, %	-	-	U	U	-	-	U	U	-				
Mov Cap-1 Maneuver	929		_	_	_	-	_	٥	~ 441				
Mov Cap-1 Maneuver	323	-	-	_	-	-	-	0	- 441				
Stage 1	-						_	0	_				
Stage 2	_	_	_	_	_		_	0	_				
Olage 2								U					
A 1	- FD			MD			ND						
Approach	EB			WB			NB 400.2						
HCM Control Delay, s	0			0			169.3						
HCM LOS							F						
Minor Lane/Major Mvn	nt	NBLn1	EBL	EBT	WBT	WBR	_						
Capacity (veh/h)		441	929	-	-	-							
HCM Lane V/C Ratio		1.28		-	-	-							
HCM Control Delay (s))	169.3	8.9	0	-	-							
HCM Lane LOS		F	Α	Α	-	-							
HCM 95th %tile Q(veh	1)	24.2	0	-	-	-							
Votes													
~: Volume exceeds ca	pacity	\$· De	elay exc	eeds 30)0s	+: Comp	outation	Not De	efined	*: All 1	maior v	olume in	platoon
James skoodad da	Paorty	ψ. Δ	J.a. Ono	2000 00		. 00111	Jacation	. 101 00	Ju	. 7 11 1		J. W. 110 111	. pia.0011

	۶	→	\rightarrow	•	←	•	4	†	/	\	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					ર્ન						ર્ન	
Traffic Volume (vph)	0	0	0	466	0	0	0	0	0	600	0	0
Future Volume (vph)	0	0	0	466	0	0	0	0	0	600	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	14	14	13	13	12
Grade (%)		0%			-1%			2%			1%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	0		0	0		0	0		0	0		0
Taper Length (ft)	25			25			25		-	25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt												
Flt Protected					0.950						0.950	
Satd. Flow (prot)	0	0	0	0	1744	0	0	0	0	0	1819	0
Flt Permitted	•	J	J	•	0.950	J		J	•	•	0.950	J
Satd. Flow (perm)	0	0	0	0	1744	0	0	0	0	0	1819	0
Link Speed (mph)	U	30	U	U	30	U	U	30	U	U	30	U
Link Distance (ft)		71			331			377			345	
Travel Time (s)		1.6			7.5			8.6			7.8	
Confl. Peds. (#/hr)		1.0			1.5			0.0			7.0	
Confl. Bikes (#/hr)												
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
	0%		0%	4%	0%	0%	0%	0%	0%	2%	0%	0%
Heavy Vehicles (%)		0%										
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)		00/			00/			00/			00/	
Mid-Block Traffic (%)	0	0%	^	F00	0%	^	^	0%	^	000	0%	0
Adj. Flow (vph)	0	0	0	536	0	0	0	0	0	690	0	0
Shared Lane Traffic (%)	•	•	•	•	500	•	•	•	•	•	200	0
Lane Group Flow (vph)	0	0	0	0	536	0	0	0	0	0	690	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	0.99	0.99	0.99	1.01	0.93	0.93	0.96	0.96	1.01
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Free			Free			Stop			Stop	
Intersection Summary												
	Other											
Control Type: Unsignalized												

Control Type: Unsignalized

Intersection Capacity Utilization 65.7% Analysis Period (min) 15

ICU Level of Service C

Intersection														
Int Delay, s/veh 5	30.7													
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		
Lane Configurations					4						र्स			
Traffic Vol, veh/h	0	0	0	466	0	0	0	0	0	600	0	0		
Future Vol, veh/h	0	0	0	466	0	0	0	0	0	600	0	0		
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0		
	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop		
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None		
Storage Length	_	_	-	_	_	-	_	_	-	_	_	-		
Veh in Median Storage,	# -	0	_	_	0	_	_	16974	_	_	0	_		
Grade, %	_	0	_	_	-1	_	_	2	_	_	1	_		
Peak Hour Factor	87	87	87	87	87	87	87	87	87	87	87	87		
Heavy Vehicles, %	0	0	0	4	0	0	0	0	0	2	0	0		
Mvmt Flow	0	0	0	536	0	0	0	0	0	690	0	0		
WWW.CTIOW	U	U	U	550	U	U	U	U	U	030	U	U		
Major/Minor				//ajor2					N	/linor2				
Conflicting Flow All				0	0	0				1072	1072	_		
Stage 1				-	-	-				1072	1072	_		
Stage 2				_	_	_				0	0	_		
Critical Hdwy				4.14	_	_				6.62	6.7	_		
Critical Hdwy Stg 1				7.17	_	_				5.62	5.7	_		
Critical Hdwy Stg 2				_	_	_				-	J.1 -	_		
Follow-up Hdwy				2.236	_	_				3.518	4			
Pot Cap-1 Maneuver				-	_	0				~ 230	209	0		
Stage 1				_	_	0				~ 310	282	0		
Stage 2				_	_	0				-	-	0		
Platoon blocked, %					_	U						U		
Mov Cap-1 Maneuver				_	_	_				~ 230	0	_		
Mov Cap-1 Maneuver				-	_	_				~ 230	0	_		
Stage 1				_	_	_				~ 310	0	_		
_				_	-	_				310	0	-		
Stage 2				-	-	-				-	U	-		
Approach				WB						SB				
HCM Control Delay, s				VVD					¢	942.9				
HCM LOS									φ	942.9 F				
TIOW LOS										Г				
Minor Lane/Major Mvmt		WBL	WBT S	SBI n1										
Capacity (veh/h)			-	230										
HCM Lane V/C Ratio		-		2.999										
HCM Control Delay (s)		-		942.9										
HCM Lane LOS		-	-φ	942.9 F										
HCM 95th %tile Q(veh)		<u>-</u>	- -	61.7										
` ′				01.7										
Notes	.,	Α. 5.						N	c .	4 A 17				
~: Volume exceeds capa	icity	\$: De	lay exc	eeds 30	00s -	+: Comp	utation	Not De	etined	*: All ı	major v	olume ir	platoon	

Lane Group		4	\mathbf{x}	À	F	×	₹	Ť	×	~	Ĺ	×	*
Tradific Volume (vph)	Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Traffic Volume (vph)	Lane Configurations		ર્ન	7	ř		7	ň	^	7	ř	^	7
Future Volume (vph) 136		136		226			57			152	420		177
Ideal Flow (ryphpi)		136	26	226		7		199	547	152	420	866	
Lane Width (ft)		1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (%)			15	12		12	12	11	12	12	12	12	12
Storage Langth (ft)			0%			0%			0%			0%	
Storage Lanes		0		250	0		225	680		250	400		250
Taper Length (ff)	Storage Lanes	0		1	1		1	1		1	1		1
Ped Bike Factor Frt	Taper Length (ft)	25			25			86			86		
Ped Bike Factor		1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Fith													
Fit Protected 0.960 0.95	Frt			0.850			0.850			0.850			0.850
Satd. Flow (prot)			0.960		0.950			0.950			0.950		
Fit Permitted	Satd. Flow (prot)	0	1929	1495	1357	1429	1455	1662	3471	1553		3539	1553
Satd. Flow (perm)													
Page Page		0		1495		1429	1455		3471	1553		3539	1553
Satd, Flow (RTOR) 233 79 157 174 Link Speed (mph) 30 30 55 55 Link Distance (ft) 610 598 1191 735 Travel Time (s) 13.9 13.6 14.8 9.1 Confl. Peds. (#/hr) Confl. Reds. (#/hr) Confl. Peak Hour Factor 0.97 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>													
Link Speed (mph) 30 30 30 558 1191 735 Link Distance (ft) 610 598 1191 735 Travel Time (s) 13.9 13.6 14.8 9.1 Confl. Peds. (#hr) 50 14.8 9.1 Confl. Bikes (#hr) 50 50 14.8 9.1 Peak Hour Factor 0.97 0													
Link Distance (fty 13.9 13.9 13.6 14.8 9.1	,		30			30			55			55	
Travel Time (s)	,		610										
Confi. Peds. (#/hr)													
Confl. Bikes (#/hr)													
Peak Hour Factor 0.97 0.													
Heavy Vehicles (%)		0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Bus Blockages (#/hr) 0 0 0 0 0 0 0 0 0	Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Bus Blockages (#/hr) 0 0 0 0 0 0 0 0 0	Heavy Vehicles (%)	4%	4%	8%	33%	33%	11%	5%	4%	4%	1%	2%	4%
Parking (#hr) Mid-Block Traffic (%) 0% 0% 0% 0% 0% 0% 0%	. ,			0		0	0	0	0		0		
Mid-Block Traffic (%) 0% 0% 0% 0% 0% 0% 0% Adj. Flow (vph) 140 27 233 36 7 59 205 564 157 433 893 182 Shared Lane Traffic (%) Lane Group Flow (vph) 0 167 233 36 7 59 205 564 157 433 893 182 Enter Blocked Intersection No													
Adj. Flow (vph) 140 27 233 36 7 59 205 564 157 433 893 182 Shared Lane Traffic (%) Lane Group Flow (vph) 0 167 233 36 7 59 205 564 157 433 893 182 Enter Blocked Intersection Log (processed) No <td< td=""><td></td><td></td><td>0%</td><td></td><td></td><td>0%</td><td></td><td></td><td>0%</td><td></td><td></td><td>0%</td><td></td></td<>			0%			0%			0%			0%	
Shared Lane Traffic (%)	` ,	140	27	233	36		59	205	564	157	433	893	182
Lane Group Flow (vph) 0 167 233 36 7 59 205 564 157 433 893 182 Enter Blocked Intersection No													
Enter Blocked Intersection No <th< td=""><td></td><td>0</td><td>167</td><td>233</td><td>36</td><td>7</td><td>59</td><td>205</td><td>564</td><td>157</td><td>433</td><td>893</td><td>182</td></th<>		0	167	233	36	7	59	205	564	157	433	893	182
Median Width(ft) 12 12 12 12 12 Link Offset(ft) 0 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 16 Two way Left Turn Lane Headway Factor 1.00 0.88 1.00 1.00 1.00 1.04 1.00 1.00 1.00 1.00 Turning Speed (mph) 15 9 15 0 <t< td=""><td></td><td>No</td><td>No</td><td>No</td><td>No</td><td>No</td><td>No</td><td>No</td><td>No</td><td>No</td><td>No</td><td>No</td><td>No</td></t<>		No	No	No	No	No	No	No	No	No	No	No	No
Median Width(ft) 12 16 10 10 100 </td <td>Lane Alignment</td> <td>Left</td> <td>Left</td> <td>Right</td> <td>Left</td> <td>Left</td> <td>Right</td> <td>Left</td> <td>Left</td> <td>Right</td> <td>Left</td> <td>Left</td> <td>Right</td>	Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Link Offset(ft) 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 Two way Left Turn Lane Headway Factor 1.00 0.88 1.00 1.00 1.00 1.04 1.00 1.00 1.00 1.00 Turning Speed (mph) 15 9 15 0 0 0				•			•						J
Crosswalk Width(ft) 16 16 16 16 16 Two way Left Turn Lane Headway Factor 1.00 0.88 1.00 1.00 1.00 1.04 1.00			0			0			0			0	
Two way Left Turn Lane Headway Factor 1.00 0.88 1.00 1.00 1.00 1.00 1.00 1.00						16						16	
Headway Factor 1.00 0.88 1.00													
Number of Detectors 1 1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 2 5 0		1.00	0.88	1.00	1.00	1.00	1.00	1.04	1.00	1.00	1.00	1.00	1.00
Number of Detectors 1 1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 2 5 0	Turning Speed (mph)	15		9	15		9	15			15		9
Leading Detector (ft) 20 43 6 6 6 6 83 6 6 83 6 6 83 6 6 7 6 7 83 6 6 83 6 6 83 6 6 83 6 6 83 6 6 6 83 6 6 83 6 6 83 6 6 83 6 6 83 6 6 83 6 6 83 6 6 83 6 6 83 6 6 83 6 0		1	1	1		1	1	2	1	1	2	1	1
Leading Detector (ft) 20 43 6 6 6 6 83 6 6 83 6 6 83 6 6 7 6 7 83 6 6 83 6 6 83 6 6 83 6 6 83 6 6 6 83 6 6 83 6 6 83 6 6 83 6 6 83 6 6 83 6 6 83 6 6 83 6 6 83 6 6 83 6 0	Detector Template	Left											
Trailing Detector (ft) 0 0 0 0 0 0 0 -5 0 0 -5 0 0 Turn Type Perm NA Perm Prot NA Perm Prot NA Perm Prot NA Perm Prot NA Perm		20	43	6	6	6	6	83	6	6	83	6	6
Turn Type Perm NA Perm Perm NA Perm Prot NA Perm Prot NA Perm Prot NA Perm Prot NA Perm Protected Phases 3 3 3 3 1 2 5 Permitted Phases 3 3 3 3 6 1 1 2 5 5 Detector Phase 3 3 3 3 6 1 1 2 5 5		0	0	0	0	0	0	-5	0	0	-5	0	0
Protected Phases 3 3 6 1 2 5 Permitted Phases 3 3 3 3 1 5 Detector Phase 3 3 3 3 6 1 1 2 5 5		Perm	NA	Perm	Perm	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Permitted Phases 3 3 3 3 1 5 Detector Phase 3 3 3 3 6 1 1 2 5 5	• • • • • • • • • • • • • • • • • • • •												
Detector Phase 3 3 3 3 3 6 1 1 2 5 5		3		3	3		3			1			5
			3			3		6	1	1	2	5	
	Switch Phase												

	₩.	×	À	~	×	₹	7	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	2.0	10.0	10.0	2.0	10.0	10.0
Minimum Split (s)	31.0	31.0	31.0	31.0	31.0	31.0	16.0	42.0	42.0	16.0	42.0	42.0
Total Split (s)	46.0	46.0	46.0	46.0	46.0	46.0	36.0	42.0	42.0	36.0	42.0	42.0
Total Split (%)	37.1%	37.1%	37.1%	37.1%	37.1%	37.1%	29.0%	33.9%	33.9%	29.0%	33.9%	33.9%
Maximum Green (s)	40.0	40.0	40.0	40.0	40.0	40.0	30.0	36.0	36.0	30.0	36.0	36.0
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	6.0	6.0	6.0	6.0	6.0	6.0	2.0	6.0	6.0	2.0	6.0	6.0
Minimum Gap (s)	3.0	3.0	3.0	3.0	3.0	3.0	2.0	3.0	3.0	2.0	4.0	4.0
Time Before Reduce (s)	20.0	20.0	20.0	20.0	20.0	20.0	0.0	20.0	20.0	0.0	20.0	20.0
Time To Reduce (s)	10.0	10.0	10.0	10.0	10.0	10.0	0.0	10.0	10.0	0.0	10.0	10.0
Recall Mode	Min	Min	Min	Min	Min	Min	None	Max	Max	None	Max	Max
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		20.5	20.5	20.5	20.5	20.5	17.1	36.1	36.1	30.1	49.1	49.1
Actuated g/C Ratio		0.20	0.20	0.20	0.20	0.20	0.16	0.34	0.34	0.29	0.47	0.47
v/c Ratio		0.56	0.49	0.23	0.03	0.17	0.76	0.47	0.25	0.84	0.54	0.22
Control Delay		45.4	8.2	38.4	32.9	5.4	59.7	29.2	5.3	52.6	23.2	4.5
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		45.4	8.2	38.4	32.9	5.4	59.7	29.2	5.3	52.6	23.2	4.5
LOS		D	Α	D	С	Α	Е	С	Α	D	С	Α
Approach Delay		23.7			18.9			31.9			29.4	
Approach LOS		С			В			С			С	
Queue Length 50th (ft)		102	0	20	4	0	133	155	0	274	218	3
Queue Length 95th (ft)		169	61	50	16	22	210	223	46	#481	347	48
Internal Link Dist (ft)		530			518			1111			655	
Turn Bay Length (ft)			250			225	680		250	400		250
Base Capacity (vph)		581	716	310	546	605	477	1195	638	513	1658	820
Starvation Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio		0.29	0.33	0.12	0.01	0.10	0.43	0.47	0.25	0.84	0.54	0.22

Intersection Summary

Area Type: Other

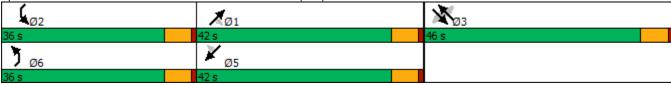
Cycle Length: 124

Actuated Cycle Length: 104.7

Natural Cycle: 100

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.84


Intersection Signal Delay: 29.0 Intersection LOS: C
Intersection Capacity Utilization 69.0% ICU Level of Service C

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 13: NYS Route 22 & North Castle Drive (IBM)/NYS Route 128

	_#	•	•	†	7	L.	ţ	4	€	</th <th>ŧ</th> <th></th>	ŧ	
Lane Group	EBL	EBR	NBL	NBT	NBR	SBL	SBT	SBR	SWL	SWR	SWR2	
Lane Configurations	Ä	7		ર્ન	7		€ 1}		44			
Traffic Volume (vph)	2	4	3	495	244	0	1216	2	315	2	1	
Future Volume (vph)	2	4	3	495	244	0	1216	2	315	2	1	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Lane Width (ft)	10	10	11	11	11	10	10	10	11	11	11	
Grade (%)	0%			4%			1%		0%			
Storage Length (ft)	0	0	0		0	0		0	0	0		
Storage Lanes	1	1	0		1	0		0	2	0		
Taper Length (ft)	25		25			25			25			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	*0.67	*0.67	*0.67	0.97	0.95	0.95	
Ped Bike Factor				1.00			1.00		1.00			
Frt		0.850			0.850				0.999			
Flt Protected	0.950								0.953			
Satd. Flow (prot)	1685	1507	0	1667	1342	0	2296	0	3058	0	0	
Flt Permitted	0.950			0.989					0.953			
Satd. Flow (perm)	1685	1507	0	1649	1342	0	2296	0	3058	0	0	
Right Turn on Red		Yes			Yes			No			No	
Satd. Flow (RTOR)		72			249							
Link Speed (mph)	30			35			35		35			
Link Distance (ft)	155			796			597		998			
Travel Time (s)	3.5			15.5			11.6		19.4			
Confl. Peds. (#/hr)	0.0		1					1		1		
Confl. Bikes (#/hr)			•					•		•		
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	
Heavy Vehicles (%)	0%	0%	0%	8%	14%	0%	3%	0%	11%	0%	0%	
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	
Parking (#/hr)												
Mid-Block Traffic (%)	0%			0%			0%		0%			
Adj. Flow (vph)	2	4	3	505	249	0	1241	2	321	2	1	
Shared Lane Traffic (%)	_	•				•		_	V	_	•	
Lane Group Flow (vph)	2	4	0	508	249	0	1243	0	324	0	0	
Enter Blocked Intersection	No	No.	No	No	No	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Left	Right	Left	Left	Right	Left	Right	Right	
Median Width(ft)	10	i tigiti	2010	0	rugiit	Lon	0	i ugiit	22	i ugiic	. ug.ic	
Link Offset(ft)	0			0			0		0			
Crosswalk Width(ft)	16			16			16		16			
Two way Left Turn Lane	10			10			10					
Headway Factor	1.09	1.09	1.07	1.07	1.07	1.10	1.10	1.10	1.04	1.04	1.04	
Turning Speed (mph)	15	9	15	1.07	9	15	1.10	9	15	9	9	
Number of Detectors	1	1	1	2	1	1	2	3	1	3	3	
Detector Template	'		Left		'	Left						
Leading Detector (ft)	35	35	20	83	35	20	83		35			
Trailing Detector (ft)	-5	-5	0	-5	-5	0	-5		-5			
Turn Type	Prot	Perm	Perm	NA	pm+ov	U	NA		Prot			
Protected Phases	3	i Cilli	i Cilli	1	4		5		4			
Permitted Phases	J	3	1		1	5	5		4			
Detector Phase	3	3	1	1	4	5	5		4			
Switch Phase	3	3		I I	4	Ü	ິນ		4			
SWILLII FIIASE												

	_≉	\rightarrow	4	†	Ť	(w	ļ	4	4	</th <th>t</th> <th></th>	t	
Lane Group	EBL	EBR	NBL	NBT	NBR	SBL	SBT	SBR	SWL	SWR	SWR2	
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0			
Minimum Split (s)	10.0	10.0	11.0	11.0	11.0	11.0	11.0		11.0			
Total Split (s)	10.0	10.0	100.0	100.0	27.0	100.0	100.0		27.0			
Total Split (%)	7.3%	7.3%	73.0%	73.0%	19.7%	73.0%	73.0%		19.7%			
Maximum Green (s)	5.0	5.0	94.0	94.0	21.0	94.0	94.0		21.0			
Yellow Time (s)	4.0	4.0	5.0	5.0	5.0	5.0	5.0		5.0			
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0			
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0		0.0			
Total Lost Time (s)	5.0	5.0		6.0	6.0		6.0		6.0			
Lead/Lag	Lag	Lag			Lead				Lead			
Lead-Lag Optimize?	Yes	Yes			Yes				Yes			
Vehicle Extension (s)	5.0	5.0	5.0	5.0	3.0	5.0	5.0		3.0			
Minimum Gap (s)	5.0	5.0	5.0	5.0	3.0	5.0	5.0		3.0			
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0			
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0			
Recall Mode	None	None	Max	Max	None	Max	Max		None			
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)	5.0	5.0		94.2	123.1		94.2		17.9			
Actuated g/C Ratio	0.04	0.04		0.75	0.98		0.75		0.14			
v/c Ratio	0.03	0.03		0.41	0.19		0.72		0.74			
Control Delay	62.5	0.5		7.7	0.4		13.0		63.3			
Queue Delay	0.0	0.0		0.0	0.0		0.0		0.0			
Total Delay	62.5	0.5		7.7	0.4		13.0		63.3			
LOS	Е	Α		Α	Α		В		Е			
Approach Delay	21.2			5.3			13.0		63.3			
Approach LOS	С			Α			В		Ε			
Queue Length 50th (ft)	2	0		125	0		343		129			
Queue Length 95th (ft)	12	0		261	7		670		195			
Internal Link Dist (ft)	75			716			517		918			
Turn Bay Length (ft)												
Base Capacity (vph)	66	129		1232	1308		1716		510			
Starvation Cap Reductn	0	0		0	0		0		0			
Spillback Cap Reductn	0	0		0	0		0		0			
Storage Cap Reductn	0	0		0	0		0		0			
Reduced v/c Ratio	0.03	0.03		0.41	0.19		0.72		0.64			
Intersection Summary												
Δrea Tyne:	Other											

Area Type: Other

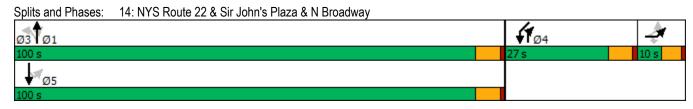
Cycle Length: 137

Actuated Cycle Length: 126

Natural Cycle: 80

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.74


Intersection Signal Delay: 17.5

Intersection Capacity Utilization 61.1%

Analysis Period (min) 15

* User Entered Value

Intersection LOS: B ICU Level of Service B

Lane Group		٠	→	•	•	←	•	†	<i>></i>	/	↓	4	₩ J
Traffic Volume (vph)	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR2	NBT	NBR	SBL	SBT	SBR	SBR2
Traffic Volume (vph)	Lane Configurations	*	î,			र्स	7	^	7	*	♦ %		
Future Volume (vph)				213	73				49			248	1
Ideal Flow (yphpi)													1
Lane Width (ft)	` ' '						1900			1900		1900	1900
Storage Length (ft)													
Storage Length (ff)			2%					4%					
Storage Lanes		115		0	0				160	110		0	
Taper Length (ft)				0	0							0	
Lane Util. Factor		86			25					86			
Ped Bike Factor 1.00 0.98 1.00 0.99 1.00 0.890 0.850 0.850 0.975 1.00 0.890 1.00 0.890 1.00 0.890 0.850 0.975 1.00 1		1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	0.95	0.95
Fit Protected 1595 1595 1595 0 0 1755 1508 3257 1500 1805 3475 0 0 0 0 0 0 0 0 0	Ped Bike Factor		0.98			1.00	0.99						
Satd. Flow (prot) 1595 1595 0 0 1755 1508 3257 1500 1805 3475 0 0 Fit Permitted 0.974 0.974 1500 0.281 0 0 Satd. Flow (perm) 1590 1555 0 0 1748 1487 3257 1500 534 3475 0 0 Right Turn on Red No Yes Yes Yes Yes No No Satd. Flow (RTOR) 76 76 76 76 76 10.4 10.8 30 45 35 35 Link Speed (mph) 35 33 45 529 778 78 79 79 79	Frt		0.890				0.850		0.850		0.975		
Fit Permitted	Flt Protected					0.974				0.950			
Fit Permitted	Satd. Flow (prot)	1595	1555	0	0	1755	1508	3257	1500	1805	3475	0	0
No										0.281			
No		1590	1555	0	0		1487	3257	1500		3475	0	0
Satd. Flow (RTOR) 35 30 45 35 Link Speed (mph) 532 475 529 778 Travel Time (s) 10.4 10.8 8.0 15.2 Confl. Peds. (#/hr) 2 6 6 2 Confl. Bikes (#/hr) 8.0 15.2 15.2 Peak Hour Factor 0.95 </td <td></td> <td></td> <td></td> <td>No</td> <td></td> <td></td> <td>Yes</td> <td></td> <td>Yes</td> <td></td> <td></td> <td></td> <td>No</td>				No			Yes		Yes				No
Link Speed (mph) 35 30 45 35 Link Distance (ft) 532 475 529 778 Travel Time (s) 10.4 10.8 8.0 15.2 Confl. Peds. (#lhr) 2 6 6 2 Confl. Bikes (#lhr) 0.95	•												
Link Distance (ft) 532 475 529 778 Travel Time (s) 10.4 10.8 8.0 15.2 Confl. Peds. (#/hr) 2 6 6 2 Confl. Bikes (#/hr) 2 0.95			35			30		45			35		
Travel Time (s)						475							
Confl. Peds. (#/hr) 2 6 6 6 2 Confl. Bikes (#/hr) Peak Hour Factor 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95						10.8		8.0					
Confl. Bikes (#/hr) Peak Hour Factor 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	. ,	2		6	6		2						
Peak Hour Factor 0.95													
Heavy Vehicles (%)		0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Bus Blockages (#/hr) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Bus Blockages (#/hr) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Heavy Vehicles (%)	14%	6%	1%	3%	6%	6%	5%	2%	3%	3%	11%	0%
Parking (#/hr) Mid-Block Traffic (%) 0% 0% 0% Adj. Flow (vph) 284 81 224 77 69 36 548 52 36 1301 261 1 Shared Lane Traffic (%) Lane Group Flow (vph) 284 305 0 0 146 36 548 52 36 1563 0 0 Enter Blocked Intersection No <td< td=""><td></td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></td<>		0	0	0	0	0	0	0	0	0	0	0	0
Mid-Block Traffic (%) 0% 0% 0% 0% Adj. Flow (vph) 284 81 224 77 69 36 548 52 36 1301 261 1 Shared Lane Traffic (%) Lane Group Flow (vph) 284 305 0 0 146 36 548 52 36 1563 0 0 Enter Blocked Intersection No													
Adj. Flow (vph) 284 81 224 77 69 36 548 52 36 1301 261 1 Shared Lane Traffic (%) Lane Group Flow (vph) 284 305 0 0 146 36 548 52 36 1563 0 0 Enter Blocked Intersection No 10 No			0%			0%		0%			0%		
Lane Group Flow (vph) 284 305 0 0 146 36 548 52 36 1563 0 0 Enter Blocked Intersection No <td< td=""><td></td><td>284</td><td>81</td><td>224</td><td>77</td><td>69</td><td>36</td><td>548</td><td>52</td><td>36</td><td>1301</td><td>261</td><td>1</td></td<>		284	81	224	77	69	36	548	52	36	1301	261	1
Lane Group Flow (vph) 284 305 0 0 146 36 548 52 36 1563 0 0 Enter Blocked Intersection No <td< td=""><td>Shared Lane Traffic (%)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Shared Lane Traffic (%)												
Lane Alignment Left Left Right Left Right Left Right Left Right Left Right	Lane Group Flow (vph)	284	305	0	0	146	36	548	52	36	1563	0	0
Median Width(ft) 11 11 12 12 Link Offset(ft) 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 Two way Left Turn Lane 1.06 1.06 1.01 1.01 1.01 1.07 1.07 0.96 0.96 0.96 0.96	Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Median Width(ft) 11 11 12 12 Link Offset(ft) 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 Two way Left Turn Lane 1.06 1.06 1.01 1.01 1.01 1.07 1.07 0.96 0.96 0.96 0.96	Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Right	Left	Left	Right	Right
Crosswalk Width(ft) 16 16 16 16 Two way Left Turn Lane Headway Factor 1.06 1.06 1.01 1.01 1.01 1.07 0.96 0.96 0.96 0.96							•					•	
Crosswalk Width(ft) 16 16 16 16 Two way Left Turn Lane Headway Factor 1.06 1.06 1.01 1.01 1.01 1.07 1.07 0.96 0.96 0.96 0.96	Link Offset(ft)		0			0		0			0		
Two way Left Turn Lane Headway Factor 1.06 1.06 1.01 1.01 1.01 1.07 1.07 0.96 0.96 0.96 0.96			16			16		16			16		
Headway Factor 1.06 1.06 1.06 1.01 1.01 1.01 1.07 1.07 0.96 0.96 0.96													
		1.06	1.06	1.06	1.01	1.01	1.01	1.07	1.07	0.96	0.96	0.96	0.96
	Turning Speed (mph)	15		9	15		9		9	15		9	9
Number of Detectors 1 2 1 2 1 2 1 2			2			2		2			2		
Detector Template Left	Detector Template				Left								
Leading Detector (ft) 35 83 20 83 35 83 35 83		35	83		20	83	35	83	35	35	83		
Trailing Detector (ft) -5 -5 -5 -5 -5 -5	Trailing Detector (ft)		-5		0	-5					-5		
Turn Type Split NA Split NA pm+ov NA pm+ov pm+pt NA		Split	NA		Split	NA	pm+ov	NA	pm+ov	pm+pt	NA		
Protected Phases 3 3 4 4 5 6 4 5 2							•						
Permitted Phases 4 6 2													
Detector Phase 3 3 4 4 5 6 4 5 2		3	3		4	4		6			2		
Switch Phase			-										

Lane Group	Ø7
Lane Configurations	
Traffic Volume (vph)	
Future Volume (vph)	
Ideal Flow (vphpl)	
Lane Width (ft)	
Grade (%)	
,	
Storage Length (ft) Storage Lanes	
Taper Length (ft)	
Lane Util. Factor	
Ped Bike Factor	
Frt	
Flt Protected	
Satd. Flow (prot)	
Flt Permitted	
Satd. Flow (perm)	
Right Turn on Red	
Satd. Flow (RTOR)	
Link Speed (mph)	
Link Distance (ft)	
Travel Time (s)	
Confl. Peds. (#/hr)	
Confl. Bikes (#/hr)	
Peak Hour Factor	
Growth Factor	
Heavy Vehicles (%)	
Bus Blockages (#/hr)	
Parking (#/hr)	
Mid-Block Traffic (%)	
Adj. Flow (vph)	
Shared Lane Traffic (%)	
Lane Group Flow (vph)	
Enter Blocked Intersection	
Lane Alignment	
Median Width(ft)	
Link Offset(ft)	
Crosswalk Width(ft)	
Two way Left Turn Lane	
Headway Factor	
Turning Speed (mph)	
Number of Detectors	
Detector Template	
Leading Detector (ft)	
Trailing Detector (ft)	
Turn Type	
Protected Phases	7
Permitted Phases	
Detector Phase	
Switch Phase	

Synchro 10 Report Page 39

	•	→	\rightarrow	•	←	•	†	/	>	ļ	4	≽J
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR2	NBT	NBR	SBL	SBT	SBR	SBR2
Minimum Initial (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0	5.0		
Minimum Split (s)	39.0	39.0		11.0	11.0	11.0	11.0	11.0	11.0	31.0		
Total Split (s)	51.0	51.0		36.0	36.0	26.0	51.0	36.0	26.0	77.0		
Total Split (%)	25.5%	25.5%		18.0%	18.0%	13.0%	25.5%	18.0%	13.0%	38.5%		
Maximum Green (s)	45.0	45.0		30.0	30.0	20.0	45.0	30.0	20.0	71.0		
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0		
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0		
Lost Time Adjust (s)	0.0	0.0			0.0	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	6.0	6.0			6.0	6.0	6.0	6.0	6.0	6.0		
Lead/Lag	Lead	Lead		Lag	Lag	Lead	Lag	Lag	Lead			
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes			
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0		
Minimum Gap (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0		
Time Before Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Time To Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Recall Mode	None	None		None	None	None	Min	None	None	Min		
Walk Time (s)	8.0	8.0								8.0		
Flash Dont Walk (s)	25.0	25.0								17.0		
Pedestrian Calls (#/hr)	6	6								0		
Act Effct Green (s)	40.4	40.4			20.9	28.9	59.9	80.8	71.3	71.3		
Actuated g/C Ratio	0.22	0.22			0.11	0.15	0.32	0.43	0.38	0.38		
v/c Ratio	0.83	0.91			0.74	0.12	0.53	0.08	0.14	1.18		
Control Delay	90.1	101.8			103.4	0.9	56.7	1.2	41.3	137.6		
Queue Delay	0.0	0.0			0.0	0.0	0.0	0.0	0.0	0.0		
Total Delay	90.1	101.8			103.4	0.9	56.7	1.2	41.3	137.6		
LOS	F	F			F	Α	Е	Α	D	F		
Approach Delay		96.1			83.1		51.9			135.4		
Approach LOS		F			F		D			F		
Queue Length 50th (ft)	336	370			181	0	308	0	29	~1256		
Queue Length 95th (ft)	#486	#566			267	0	405	6	62	#1479		
Internal Link Dist (ft)		452			395		449			698		
Turn Bay Length (ft)	115					180		160	110			
Base Capacity (vph)	385	376			283	388	1043	761	340	1325		
Starvation Cap Reductn	0	0			0	0	0	0	0	0		
Spillback Cap Reductn	0	0			0	0	0	0	0	0		
Storage Cap Reductn	0	0			0	0	0	0	0	0		
Reduced v/c Ratio	0.74	0.81			0.52	0.09	0.53	0.07	0.11	1.18		
Intersection Summary												

Intersection Summary

Area Type: Other

Cycle Length: 200

Actuated Cycle Length: 186.8

Natural Cycle: 150

Control Type: Actuated-Uncoordinated

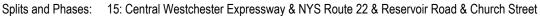
Maximum v/c Ratio: 1.18 Intersection Signal Delay: 107.6 Intersection Capacity Utilization 92.5%

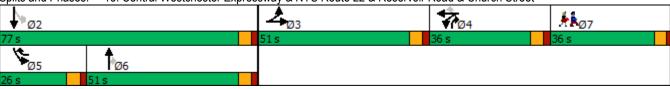
Intersection LOS: F ICU Level of Service F

Analysis Period (min) 15

Synchro 10 Report Page 40

[~] Volume exceeds capacity, queue is theoretically infinite.

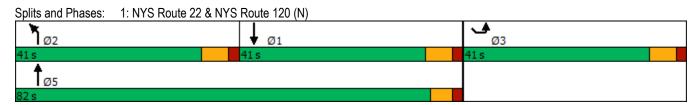

Lane Group	Ø7
Minimum Initial (s)	8.0
Minimum Split (s)	36.0
Total Split (s)	36.0
Total Split (%)	18%
Maximum Green (s)	31.0
	31.0
Yellow Time (s) All-Red Time (s)	1.5
	1.5
Lost Time Adjust (s)	
Total Lost Time (s)	
Lead/Lag	
Lead-Lag Optimize?	2.0
Vehicle Extension (s)	3.0
Minimum Gap (s)	3.0
Time Before Reduce (s)	0.0
Time To Reduce (s)	0.0
Recall Mode	Ped
Walk Time (s)	8.0
Flash Dont Walk (s)	23.0
Pedestrian Calls (#/hr)	2
Act Effct Green (s)	
Actuated g/C Ratio	
v/c Ratio	
Control Delay	
Queue Delay	
Total Delay	
LOS	
Approach Delay	
Approach LOS	
Queue Length 50th (ft)	
Queue Length 95th (ft)	
Internal Link Dist (ft)	
Turn Bay Length (ft)	
Base Capacity (vph)	
Starvation Cap Reductn	
Spillback Cap Reductn	
Storage Cap Reductn	
Reduced v/c Ratio	
Interception Cummens	
Intersection Summary	


Synchro 10 Report Page 41 18002018A - N.T.

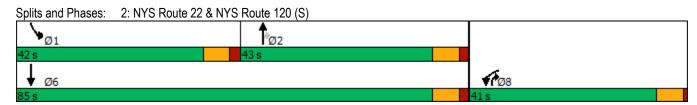
Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.



18002018A - N.T. Page 42


	ሻ	†	↓	» J	•	>
Lane Group	NBL	NBT	SBT	SBR	SEL	SER
Lane Configurations	ሻ	^	^	7	ሻ	7
Traffic Volume (vph)	177	385	360	234	184	212
Future Volume (vph)	177	385	360	234	184	212
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1900	1900	1900	1900	1900	1900
. ,	10			10		10
Grade (%)	050	0%	0%	500	0%	0
Storage Length (ft)	250			500	250	0
Storage Lanes	1			1	1	1
Taper Length (ft)	86	. =			86	
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00
Ped Bike Factor						
Frt				0.850		0.850
Flt Protected	0.950				0.950	
Satd. Flow (prot)	1620	3209	3240	1436	1560	1449
Flt Permitted	0.950				0.950	
Satd. Flow (perm)	1620	3209	3240	1436	1560	1449
Right Turn on Red				Yes		Yes
Satd. Flow (RTOR)				244		221
Link Speed (mph)		55	55	-11	30	
Link Distance (ft)		767	1064		872	
Travel Time (s)		9.5	13.2		19.8	
` /		9.5	13.2		19.0	
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)	0.00	0.00	0.00	0.00	0.00	0.00
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	4%	5%	4%	5%	8%	4%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)		0%	0%		0%	
Adj. Flow (vph)	184	401	375	244	192	221
Shared Lane Traffic (%)						
Lane Group Flow (vph)	184	401	375	244	192	221
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width(ft)	LGIL	10	15	ragnt	10	rtigit
					0	
Link Offset(ft)		0	0			
Crosswalk Width(ft)		16	16		16	
Two way Left Turn Lane						
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (mph)	15			9	15	9
Number of Detectors	1	2	2	1	2	0
Detector Template						
Leading Detector (ft)	35	104	104	0	104	0
Trailing Detector (ft)	-5	0	0	0	0	0
Turn Type	Prot	NA	NA	Free	Prot	Free
Protected Phases	2	5	1		3	
Permitted Phases	_			Free		Free
Detector Phase	2	5	1	1100	3	1100
	2	5	1		3	
Switch Phase						

	ሻ	†		≽ J	•	\
Lane Group	NBL	NBT	SBT	SBR	SEL	SER
Minimum Initial (s)	12.0	12.0	12.0		10.0	
Minimum Split (s)	36.0	36.0	36.0		26.0	
Total Split (s)	41.0	82.0	41.0		41.0	
Total Split (%)	33.3%	66.7%	33.3%		33.3%	
Maximum Green (s)	34.0	76.0	34.0		34.0	
Yellow Time (s)	5.0	4.0	5.0		5.0	
All-Red Time (s)	2.0	2.0	2.0		2.0	
Lost Time Adjust (s)	0.0	0.0	0.0		0.0	
Total Lost Time (s)	7.0	6.0	7.0		7.0	
Lead/Lag	Lead		Lag			
Lead-Lag Optimize?	Yes		Yes			
Vehicle Extension (s)	6.0	6.0	6.0		6.0	
Minimum Gap (s)	4.0	4.0	4.0		4.0	
Time Before Reduce (s)	20.0	20.0	20.0		20.0	
Time To Reduce (s)	8.0	8.0	8.0		5.0	
Recall Mode	None	Min	Min		None	
Walk Time (s)	INOTIC	141111	IVIIII		140116	
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)						
Act Effct Green (s)	17.5	43.8	18.1	75.2	18.0	75.2
Actuated g/C Ratio	0.23	0.58	0.24	1.00	0.24	1.00
v/c Ratio	0.23	0.36	0.24	0.17	0.24	0.15
Control Delay	31.7	8.1	28.1	0.17	31.9	0.13
	0.0	0.0	0.0	0.0	0.0	0.2
Queue Delay	31.7	8.1	28.1	0.0	31.9	0.0
Total Delay LOS	31.7 C	8.1 A	28.1 C	0.3 A	31.9 C	
	U			А		Α
Approach Delay		15.5	17.1		15.0	
Approach LOS	70	B	B 76	^	B 76	0
Queue Length 50th (ft)	73	41	76	0	76	0
Queue Length 95th (ft)	161	78	147	0	167	0
Internal Link Dist (ft)	0=0	687	984	500	792	
Turn Bay Length (ft)	250	0010	4=10	500	250	4440
Base Capacity (vph)	756	3019	1513	1436	728	1449
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.24	0.13	0.25	0.17	0.26	0.15
Intersection Summary						
Area Type:	Other					
Cycle Length: 123						
Actuated Cycle Length: 75	.2					
Natural Cycle: 100						
Control Type: Actuated-Un	coordinated					
Maximum v/c Ratio: 0.52						
Intersection Signal Delay:	16.0			Ir	ntersection	LOS: B
Intersection Capacity Utiliz				IC	CU Level o	of Service
Analysis Period (min) 15						
. ,						

	•	•	†	/	>	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	**		^	7	ሻሻ	↑ ↑
Traffic Volume (vph)	49	0	268	57	288	284
Future Volume (vph)	49	0	268	57	288	284
· · · /			1900	1900		
Ideal Flow (vphpl)	1900	1900			1900	1900
Lane Width (ft)	12	12	10	10	11	11
Grade (%)	-8%	•	-2%	000	0.15	-1%
Storage Length (ft)	0	0		200	215	
Storage Lanes	1	0		1	2	
Taper Length (ft)	25				86	
Lane Util. Factor	1.00	1.00	0.95	1.00	0.97	0.95
Ped Bike Factor						
Frt				0.850		
Flt Protected	0.950				0.950	
Satd. Flow (prot)	1823	0	3210	1478	3209	3372
Flt Permitted	0.950				0.950	
Satd. Flow (perm)	1823	0	3210	1478	3209	3372
Right Turn on Red	1020	Yes	3210	Yes	3230	301 L
Satd. Flow (RTOR)		100		61		
Link Speed (mph)	55		50	U		50
Link Distance (ft)	334		905			488
` ,						
Travel Time (s)	4.1		12.3			6.7
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	3%	0%	6%	3%	6%	4%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	53	0	288	61	310	305
Shared Lane Traffic (%)		•		•	0.0	
Lane Group Flow (vph)	53	0	288	61	310	305
Enter Blocked Intersection	No	No	No	No	No	No
	Left	Right	Left	Right	Left	Left
Lane Alignment		Rigiil		Rigili	Leit	
Median Width(ft)	12		22			22
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane						
Headway Factor	0.95	0.95	1.08	1.08	1.04	1.04
Turning Speed (mph)	15	9		9	15	
Number of Detectors	1		2	1	1	2
Detector Template	Left		Thru	Right	Left	Thru
Leading Detector (ft)	20		100	20	20	100
Trailing Detector (ft)	0		0	0	0	0
Turn Type	Prot		NA	pm+ov	Prot	NA
Protected Phases	8		2	8	1	6
Permitted Phases			_	2		
Detector Phase	8		2	8	1	6
	0		2	0	1	U
Switch Phase						

	•	•	†	<i>></i>	/	ţ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Minimum Initial (s)	10.0		12.0	10.0	12.0	12.0
Minimum Split (s)	26.0		36.0	26.0	36.0	36.0
Total Split (s)	41.0		43.0	41.0	42.0	85.0
Total Split (%)	32.5%		34.1%	32.5%	33.3%	67.5%
Maximum Green (s)	35.0		36.0	35.0	35.0	78.0
Yellow Time (s)	5.0		5.0	5.0	5.0	5.0
All-Red Time (s)	1.0		2.0	1.0	2.0	2.0
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0		7.0	6.0	7.0	7.0
Lead/Lag			Lag	- 0.0	Lead	
Lead-Lag Optimize?			Yes		Yes	
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0
Minimum Gap (s)	3.0		3.0	3.0	3.0	3.0
Time Before Reduce (s)	0.0		0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0		0.0	0.0	0.0	0.0
Recall Mode	None		Min	None	Min	Min
Walk Time (s)	140116		171111	140116	(VIII (IVIIII
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)						
Act Effct Green (s)	10.2		12.5	29.9	12.6	34.1
Actuated g/C Ratio	0.20		0.24	0.58	0.25	0.66
v/c Ratio	0.20		0.24	0.56	0.25	0.00
	20.4		19.3	2.4	19.5	5.2
Control Delay	0.0		0.0		0.0	
Queue Delay				0.0		0.0
Total Delay	20.4		19.3	2.4	19.5	5.2
LOS	C		B	Α	В	A
Approach Delay	20.4		16.4			12.4
Approach LOS	С		В			В
Queue Length 50th (ft)	14		41	0	44	21
Queue Length 95th (ft)	41		73	13	76	34
Internal Link Dist (ft)	254		825			408
Turn Bay Length (ft)				200	215	
Base Capacity (vph)	1269		2299	1448	2234	3372
Starvation Cap Reductn	0		0	0	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductn	0		0	0	0	0
Reduced v/c Ratio	0.04		0.13	0.04	0.14	0.09
Intersection Summary	0.11					
Area Type:	Other					
Cycle Length: 126						
Actuated Cycle Length: 51	.4					
Natural Cycle: 100						
Control Type: Semi Act-Ur	ncoord					
Maximum v/c Ratio: 0.40						
Maximum v/c Ratio: 0.40 Intersection Signal Delay:	14.2			lr	ntersectio	n LOS: B
						n LOS: B of Service

	۶	→	•	•	←	•	•	†	/	/	ļ	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					f)			4				
Traffic Volume (vph)	0	0	0	0	14	1	1	293	6	0	0	0
Future Volume (vph)	0	0	0	0	14	1	1	293	6	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	13	12	12	12	12
Grade (%)		0%			-5%			-7%			0%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	0		0	0		0	0		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt					0.992			0.997				
Flt Protected												
Satd. Flow (prot)	0	0	0	0	1797	0	0	1963	0	0	0	0
Flt Permitted												
Satd. Flow (perm)	0	0	0	0	1797	0	0	1963	0	0	0	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		124			297			300			404	
Travel Time (s)		2.8			6.8			6.8			9.2	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	0%	0%	8%	0%	100%	3%	0%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	0	0	0	0	16	1	1	326	7	0	0	0
Shared Lane Traffic (%)				_					_		_	_
Lane Group Flow (vph)	0	0	0	0	17	0	0	334	0	0	0	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane	4.00	4.00	4.00	2.07		0.07	0.00	0.00		4.00	4.00	4.00
Headway Factor	1.00	1.00	1.00	0.97	0.97	0.97	0.96	0.92	0.96	1.00	1.00	1.00
Turning Speed (mph)	15	01	9	15	0,	9	15	_	9	15	01	9
Sign Control		Stop			Stop			Free			Stop	
Intersection Summary												
	Other											
Control Type: Unsignalized												
Intersection Canacity Litilizat	ion 25 00/			10	المرمالا	of Convice	. ^					

Intersection Capacity Utilization 25.8% Analysis Period (min) 15

ICU Level of Service A

Intersection												
Int Delay, s/veh	0.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					f)			4				
Traffic Vol, veh/h	0	0	0	0	14	1	1	293	6	0	0	0
Future Vol, veh/h	0	0	0	0	14	1	1	293	6	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None	<u>-</u>	<u>-</u>	None	-	-	None	<u>-</u>	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	2	-	-	0	-	-	0	-	-	16965	-
Grade, %	-	0	-	-	-5	-	-	-7	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	0	0	0	0	8	0	100	3	0	0	0	0
Mvmt Flow	0	0	0	0	16	1	1	326	7	0	0	0
Major/Minor			I	Minor1		N	//ajor1					
Conflicting Flow All				-	332	330	0	0	0			
Stage 1				-	332	-	-	-	-			
Stage 2				-	0	-	-	_	-			
Critical Hdwy				-	5.58	5.7	5.1	_	-			
Critical Hdwy Stg 1				-	4.58	-	-	-	-			
Critical Hdwy Stg 2				-	_	-	-	-	-			
Follow-up Hdwy				-	4.072	3.3	3.1	-	-			
Pot Cap-1 Maneuver				0	634	750	-	-	-			
Stage 1				0	695	-	-	-	-			
Stage 2				0	-	-	-	-	-			
Platoon blocked, %								-	-			
Mov Cap-1 Maneuver				-	0	750	-	-	-			
Mov Cap-2 Maneuver				-	0	-	-	-	-			
Stage 1				-	0	-	-	-	-			
Stage 2				-	0	-	-	-	-			
Approach				WB			NB					
HCM Control Delay, s				9.9								
HCM LOS				A								
Minor Lane/Major Mvmt		NBL	NBT	NRRI	WBLn1							
Capacity (veh/h)		NDL	INDI	-								
HCM Lane V/C Ratio		-	-		0.022							
HCM Control Delay (s)		-	-	-	9.9							
HCM Lane LOS		-	-	-	9.9 A							
HCM 95th %tile Q(veh)		-	-	-	0.1							
HOW SOUL WILLE CALLED		-	-	-	0.1							

Lane Configurations	SBR 39 39 1900 12 275 1 1.00 0.98 0.850 1647 1622 Yes 83
Traffic Volume (vph)	39 39 1900 12 275 1 1.00 0.98 0.850 1647 1622 Yes
Traffic Volume (vph)	39 39 1900 12 275 1 1.00 0.98 0.850 1647 1622 Yes
Future Volume (vph)	1900 12 275 1 1.00 0.98 0.850 1647 1622 Yes
Ideal Flow (vphpl)	12 275 1 1.00 0.98 0.850 1647 1622 Yes
Lane Width (ft) 12	12 275 1 1.00 0.98 0.850 1647 1622 Yes
Grade (%) 4% -1% 7% -4% Storage Length (ft) 0 315 0 125 280 445 150 Storage Lanes 0 1 0 1 1 1 1 1 Taper Length (ft) 25 25 86 86 86 86 86 1.00 <td< td=""><td>1 1.00 0.98).850 1647 1622 Yes</td></td<>	1 1.00 0.98).850 1647 1622 Yes
Storage Length (ft) 0 315 0 125 280 445 150 Storage Lanes 0 1 0 1 1 1 1 1 Taper Length (ft) 25 25 86 86 86 Lane Util. Factor 1.00 1.0	1 1.00 0.98).850 1647 1622 Yes
Storage Lanes 0 1 0 1 2 2 <	1 1.00 0.98).850 1647 1622 Yes
Taper Length (ft) 25 25 86 86 Lane Util. Factor 1.00 </td <td>0.98 0.850 1647 1622 Yes</td>	0.98 0.850 1647 1622 Yes
Lane Util. Factor 1.00 <td>0.98 0.850 1647 1622 Yes</td>	0.98 0.850 1647 1622 Yes
Ped Bike Factor 1.00 C Frt 0.850 0.850 0.850 0.850 Flt Protected 0.950 0.950 0.950 0.950 Satd. Flow (prot) 0 1769 1583 0 1814 1623 1742 1798 1558 1841 1828 1 Flt Permitted 0.555	0.98 0.850 1647 1622 Yes
Frt 0.850 0.850 0.850 0.950 Satd. Flow (prot) 0.950 0.950 0.950 0.950 Satd. Flow (prot) 0.1769 1583 0.1814 1623 1742 1798 1558 1841 1828 1 Flt Permitted 0.555	0.850 1647 1622 Yes
Fit Protected 0.950 0.950 0.950 0.950 Satd. Flow (prot) 0 1769 1583 0 1814 1623 1742 1798 1558 1841 1828 1 1 Flt Permitted 0.555 0.555 0.555 Satd. Flow (perm) 0 1862 1583 0 1909 1623 1016 1798 1558 1076 1828 1 1 Right Turn on Red Yes Yes Yes Satd. Flow (RTOR) 37 37 83 Link Speed (mph) 30 30 55 55 Link Distance (ft) 601 392 1478 1166 Travel Time (s) 13.7 8.9 18.3 14.5 Confl. Peds. (#/hr) 4 Confl. Bikes (#/hr) 4	1647 1622 Yes
Satd. Flow (prot) 0 1769 1583 0 1814 1623 1742 1798 1558 1841 1828 1 Flt Permitted 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 1076 1828 1 1 1828 1 1 1588 1076 1828 1 1 1 1 1076 1828 1	1622 Yes
Fit Permitted 0.555 0.555 Satd. Flow (perm) 0 1862 1583 0 1909 1623 1016 1798 1558 1076 1828 1 Right Turn on Red Yes Yes Satd. Flow (RTOR) 37 37 Link Speed (mph) 30 30 55 Link Distance (ft) 601 392 1478 1166 Travel Time (s) 13.7 8.9 18.3 14.5 Confl. Peds. (#/hr) 4 Confl. Bikes (#/hr)	1622 Yes
Satd. Flow (perm) 0 1862 1583 0 1909 1623 1016 1798 1558 1076 1828 1 Right Turn on Red Yes Yes Yes Yes Yes Yes Satd. Flow (RTOR) 37 37 83 Link Speed (mph) 30 30 55 55 Link Distance (ft) 601 392 1478 1166 Travel Time (s) 13.7 8.9 18.3 14.5 Confl. Peds. (#/hr) 4 Confl. Bikes (#/hr)	Yes
Right Turn on Red Yes Yes Yes Satd. Flow (RTOR) 37 37 83 Link Speed (mph) 30 30 55 55 Link Distance (ft) 601 392 1478 1166 Travel Time (s) 13.7 8.9 18.3 14.5 Confl. Peds. (#/hr) 4 Confl. Bikes (#/hr) 4	Yes
Satd. Flow (RTOR) 37 37 83 Link Speed (mph) 30 30 55 55 Link Distance (ft) 601 392 1478 1166 Travel Time (s) 13.7 8.9 18.3 14.5 Confl. Peds. (#/hr) 4 Confl. Bikes (#/hr)	
Link Speed (mph) 30 30 55 55 Link Distance (ft) 601 392 1478 1166 Travel Time (s) 13.7 8.9 18.3 14.5 Confl. Peds. (#/hr) 4 Confl. Bikes (#/hr) 4	
Link Distance (ft) 601 392 1478 1166 Travel Time (s) 13.7 8.9 18.3 14.5 Confl. Peds. (#/hr) 4 Confl. Bikes (#/hr)	
Travel Time (s) 13.7 8.9 18.3 14.5 Confl. Peds. (#/hr) 4 Confl. Bikes (#/hr)	
Confl. Peds. (#/hr) Confl. Bikes (#/hr)	
Confl. Bikes (#/hr)	4
Peak Hour Factor 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	0.95
	100%
Heavy Vehicles (%) 0% 0% 0% 0% 0% 0% 0% 0% 6%	0%
Bus Blockages (#/hr) 0 0 0 0 0 0 0 0 0 0	0
Parking (#/hr)	
Mid-Block Traffic (%) 0% 0% 0%	
Adj. Flow (vph) 19 0 19 6 0 4 17 343 3 4 318	41
Shared Lane Traffic (%)	
Lane Group Flow (vph) 0 19 19 0 6 4 17 343 3 4 318	41
Enter Blocked Intersection No No No No No No No No No No	No
	Right
Median Width(ft) 0 0 12 12	J
Link Offset(ft) 0 0 0 0	
Crosswalk Width(ft) 16 16 16 16	
Two way Left Turn Lane	
	0.97
Turning Speed (mph) 15 9 15 9 15 9 15	9
Number of Detectors 1 2 1 1 2 1 1 2 1 2 2 1 2 2 1 1 2 2 1 1 2	1
Detector Template Left Left	
Leading Detector (ft) 20 83 35 20 83 35 35 83 35 83	35
Trailing Detector (ft) 0 -5 -5 -5 -5 -5 -5 -5	-5
• ()	Perm
Protected Phases 8 1 4 5 1 6 5 2	
Permitted Phases 8 8 4 4 6 6 2	2
Detector Phase 8 8 1 4 4 5 1 6 6 5 2	2
Switch Phase	

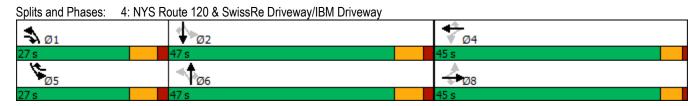
	٠	→	•	•	←	4	4	†	<i>></i>	/	+	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	5.0	3.0	5.0	5.0	3.0	3.0	5.0	5.0	3.0	5.0	5.0
Minimum Split (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	12.0	12.0	10.0	12.0	12.0
Total Split (s)	45.0	45.0	27.0	45.0	45.0	27.0	27.0	47.0	47.0	27.0	47.0	47.0
Total Split (%)	37.8%	37.8%	22.7%	37.8%	37.8%	22.7%	22.7%	39.5%	39.5%	22.7%	39.5%	39.5%
Maximum Green (s)	40.0	40.0	20.0	40.0	40.0	20.0	20.0	40.0	40.0	20.0	40.0	40.0
Yellow Time (s)	4.0	4.0	5.0	4.0	4.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	1.0	1.0	2.0	1.0	1.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		5.0	7.0		5.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
Lead/Lag			Lead			Lead	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?			Yes			Yes	Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0	2.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Minimum Gap (s)	3.0	3.0	2.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Recall Mode	None	None	None	None	None	None	None	Max	Max	None	Max	Max
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		6.6	7.0		6.3	6.9	50.0	55.1	55.1	48.4	51.1	51.1
Actuated g/C Ratio		0.11	0.12		0.10	0.11	0.83	0.91	0.91	0.80	0.85	0.85
v/c Ratio		0.09	0.09		0.03	0.02	0.02	0.21	0.00	0.00	0.21	0.03
Control Delay		26.3	4.5		26.2	0.2	1.9	3.2	0.0	2.2	4.2	0.6
Queue Delay		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		26.3	4.5		26.2	0.2	1.9	3.2	0.0	2.2	4.2	0.6
LOS		С	Α		С	Α	Α	Α	Α	Α	Α	Α
Approach Delay		15.4			15.8			3.1			3.8	
Approach LOS		В			В			Α			Α	
Queue Length 50th (ft)		5	0		2	0	1	0	0	0	0	0
Queue Length 95th (ft)		26	9		13	0	6	125	0	2	116	4
Internal Link Dist (ft)		521			312			1398			1086	
Turn Bay Length (ft)			315			125	280		445	150		275
Base Capacity (vph)		1257	614		1288	629	1104	1639	1428	1168	1548	1386
Starvation Cap Reductn		0	0		0	0	0	0	0	0	0	0
Spillback Cap Reductn		0	0		0	0	0	0	0	0	0	0
Storage Cap Reductn		0	0		0	0	0	0	0	0	0	0
Reduced v/c Ratio		0.02	0.03		0.00	0.01	0.02	0.21	0.00	0.00	0.21	0.03
Intersection Summary												
Area Type:	Other											

Cycle Length: 119

Actuated Cycle Length: 60.4

Natural Cycle: 40

Control Type: Actuated-Uncoordinated


Maximum v/c Ratio: 0.21 Intersection Signal Delay: 4.2

Intersection Capacity Utilization 40.5%

Analysis Period (min) 15

Intersection LOS: A

ICU Level of Service A

	•	4	†	~	-	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ሻ	7	†	7	ሻ	†
Traffic Volume (vph)	11	53	293	0	35	292
Future Volume (vph)	11	53	293	0	35	292
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	12	12	10	10
Grade (%)	-3%		2%			-1%
Storage Length (ft)	0	0		15	175	
Storage Lanes	1	1		1	1	
Taper Length (ft)	25				86	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt		0.850				
Flt Protected	0.950				0.950	
Satd. Flow (prot)	1771	1585	1826	1881	1644	1666
Flt Permitted	0.950				0.950	
Satd. Flow (perm)	1771	1585	1826	1881	1644	1666
Link Speed (mph)	25		55			55
Link Distance (ft)	589		993			1478
Travel Time (s)	16.1		12.3			18.3
Confl. Peds. (#/hr)	1	1		1	1	
Confl. Bikes (#/hr)						
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	3%	0%	3%	7%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	12	56	308	0	37	307
Shared Lane Traffic (%)						
Lane Group Flow (vph)	12	56	308	0	37	307
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	11		12			12
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane						
Headway Factor	1.02	1.02	1.01	1.01	1.09	1.09
Turning Speed (mph)	15	9		9	15	
Sign Control	Stop		Free			Free
Intersection Summary						
, , , , , , , , , , , , , , , , , , ,	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizat	tion 32.4%			IC	CU Level	of Service
Analysis Period (min) 15						
, ,						

Intersection						
Int Delay, s/veh	1.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ሻ	7	↑	7	ች	
Traffic Vol, veh/h	11	53	293	0	35	292
Future Vol, veh/h	11	53	293	0	35	292
Conflicting Peds, #/hr	1	1	0	1	1	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	Yield	-	Free	-	None
Storage Length	0	0	_	15	175	-
Veh in Median Storage,		-	0	-	-	0
Grade, %	-3	_	2	_	_	-1
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	95	93	3	0	3	7
Mymt Flow	12	56	308	0	37	307
MOLL LIOM	12	50	300	U	31	307
Major/Minor M	1inor1	N	Major1		Major2	
Conflicting Flow All	691	310	0	_	309	0
Stage 1	309	-	_	_	-	_
Stage 2	382	_	_	_	_	_
Critical Hdwy	5.8	5.9	_	_	4.13	_
Critical Hdwy Stg 1	4.8	-	_	_	٠.١٥	_
Critical Hdwy Stg 2	4.8	_	_	_	_	_
Follow-up Hdwy	3.5	3.3	_	_	2.227	_
Pot Cap-1 Maneuver	464	754	_	0	1246	_
Stage 1	789	-	_	0	1240	_
Stage 2	740	_	_	0	_	_
	740	-		U	-	
Platoon blocked, %	440	750	-		1015	-
Mov Cap-1 Maneuver	449	753	-	-	1245	-
Mov Cap-2 Maneuver	449	-	-	-	-	-
Stage 1	788	-	-	-	-	-
Stage 2	717	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	10.7		0		0.9	
HCM LOS	10.7 B		U		0.9	
TIGIVI LOS	D					
Minor Lane/Major Mvmt		NBTV	VBLn1V	VBLn2	SBL	SBT
Capacity (veh/h)			449	753	1245	-
HCM Lane V/C Ratio		_	0.026		0.03	-
HCM Control Delay (s)		-	13.2	10.2	8	_
HCM Lane LOS		-	В	В	A	-
HCM 95th %tile Q(veh)		_	0.1	0.2	0.1	_
			7.1	7.2	J. ,	

	•	•	4	†	ļ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			4	f)	
Traffic Volume (vph)	6	2	2	287	298	5
Future Volume (vph)	6	2	2	287	298	5
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	11	11	11	11
Grade (%)	3%			5%	-2%	• • •
Storage Length (ft)	0	0	0	0,70	270	0
Storage Lanes	1	0	0			0
Taper Length (ft)	25	U	25			U
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	1.00	1.00	1.00	1.00	1.00
	0.066				0.000	
Frt	0.966				0.998	
Flt Protected	0.964	^	^	4700	4740	^
Satd. Flow (prot)	1743	0	0	1722	1748	0
Flt Permitted	0.964					
Satd. Flow (perm)	1743	0	0	1722	1748	0
Link Speed (mph)	30			55	55	
Link Distance (ft)	639			1813	993	
Travel Time (s)	14.5			22.5	12.3	
Confl. Peds. (#/hr)	1	1	1			1
Confl. Bikes (#/hr)						
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	0%	4%	6%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)	J J	<u> </u>	<u> </u>		<u> </u>	J J
Mid-Block Traffic (%)	0%			0%	0%	
` ,	6	2	2	305	317	5
Adj. Flow (vph)	0	Z	Z	305	311	5
Shared Lane Traffic (%)	0	0	0	207	200	0
Lane Group Flow (vph)	8	0	0	307	322	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12			0	0	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	1.02	1.02	1.08	1.08	1.03	1.03
Turning Speed (mph)	15	9	15			9
Sign Control	Stop			Free	Free	
Intersection Summary						
	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizat	ion 27 0%			10	اللميما	of Service
	1011 27.0 /0			IC	O LEVEL	UI OCIVICE
Analysis Period (min) 15						

Intersection						
Int Delay, s/veh	0.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥	LDIX	NDL	H INDI) }	ODIX
Traffic Vol, veh/h	6	2	2	287	298	5
Future Vol, veh/h	6	2	2	287	298	5
Conflicting Peds, #/hr	1	1	1	207	290	1
	Stop	Stop	Free	Free	Free	Free
RT Channelized	Slop -	None	-		-	
Storage Length	0	-	_	-		NOILE
Veh in Median Storage,		-	_	0	0	_
Grade, %	3	-	-	5	-2	-
Peak Hour Factor	94	94	94	94	-2 94	94
Heavy Vehicles, %	0	0	0	4	6	0
Mvmt Flow	6	2	2	305	317	5
Major/Minor Mi	inor2	N	Major1	N	/lajor2	
Conflicting Flow All	631	322	323	0	-	0
Stage 1	321	_	_	-	_	-
Stage 2	310	_	-	_	-	_
Critical Hdwy	7	6.5	4.1	_	_	_
Critical Hdwy Stg 1	6	-	-	_	_	_
Critical Hdwy Stg 2	6	_	_	_	_	_
Follow-up Hdwy	3.5	3.3	2.2	_	_	_
Pot Cap-1 Maneuver	403	704	1248	_	_	_
Stage 1	701	-	-	_	_	_
Stage 2	711	_	_	_	_	_
Platoon blocked, %	711				_	_
Mov Cap-1 Maneuver	401	703	1247		_	
Mov Cap-1 Maneuver	401	100	1241		_	_
Stage 1	699	-	-	-	-	-
SIACIPI	0.99	-	-	-	-	-
· ·				_	-	-
Stage 2	710	-	-			
· ·		-	-			
· ·		-	NB		SB	
Stage 2 Approach	710 EB	-				
Stage 2 Approach HCM Control Delay, s	710 EB 13.2	-	NB 0.1		SB 0	
Stage 2 Approach	710 EB					
Stage 2 Approach HCM Control Delay, s HCM LOS	710 EB 13.2		0.1	EDI »4	0	CDD.
Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt	710 EB 13.2	NBL	0.1	EBLn1		SBR
Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h)	710 EB 13.2	NBL 1247	0.1 NBT	449	0 SBT	-
Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio	710 EB 13.2	NBL 1247 0.002	0.1 NBT -	449 0.019	0 SBT -	-
Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	710 EB 13.2	NBL 1247 0.002 7.9	0.1 NBT - - 0	449 0.019 13.2	0 SBT - -	- - -
Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio	710 EB 13.2	NBL 1247 0.002	0.1 NBT -	449 0.019	0 SBT -	-

	J	×	À	~	*	₹	ን	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		4		*	†	7		4	7		ર્ન	7
Traffic Volume (vph)	2	220	78	52	212	22	78	0	52	19	0	0
Future Volume (vph)	2	220	78	52	212	22	78	0	52	19	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	11	11	11	11	10	10	10	11	11	11
Grade (%)		-4%			1%			-5%			1%	
Storage Length (ft)	0	.,,	0	120	. , ,	200	0	• 70	95	0	. , ,	0
Storage Lanes	0		0	1		1	0		1	0		1
Taper Length (ft)	25		•	86		•	25		-	25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	1.00	1.00	1.00	1.00	0.99	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.965				0.850			0.850			
Flt Protected		0.500		0.950		0.000		0.950	0.000		0.950	
Satd. Flow (prot)	0	1726	0	1736	1774	1553	0	1727	1545	0	1638	1827
Flt Permitted	U	0.999	U	0.508	1117	1000	U	0.744	1070	U	0.703	1021
Satd. Flow (perm)	0	1725	0	928	1774	1534	0	1352	1545	0	1212	1827
Right Turn on Red	U	1125	Yes	320	1117	Yes	U	1002	Yes	U	1212	Yes
Satd. Flow (RTOR)		32	163			26			141			163
Link Speed (mph)		55			55	20		30	141		25	
Link Distance (ft)		1813			2280			328			518	
Travel Time (s)		22.5			28.3			7.5			14.1	
Confl. Peds. (#/hr)	1	22.5			20.3	1		7.5			14.1	
Confl. Bikes (#/hr)	ı					ı						
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
	50%	6%	0%	0%	3%	0%	0%	0%	0%	6%	0%	0%
Heavy Vehicles (%)			0%		3% 0						0%	
Bus Blockages (#/hr)	0	0	U	0	U	0	0	0	0	0	U	0
Parking (#/hr)		0%			0%			0%			0%	
Mid-Block Traffic (%)	2	234	83	55	226	23	83	0%	55	20	0%	0
Adj. Flow (vph)	2	234	03	55	220	23	03	U	55	20	U	U
Shared Lane Traffic (%)	0	319	0	55	226	23	0	83	55	0	20	0
Lane Group Flow (vph)			No		No	No	No					0 No
Enter Blocked Intersection	No	No		No				No	No	No	No	
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		11			11			0			0	
Link Offset(ft)		16			16			16			16	
Crosswalk Width(ft)		10			10			10			10	
Two way Left Turn Lane	1.00	1.00	1.00	1.05	1.05	1.05	1.00	1.00	1.00	1.05	1.05	1.05
Headway Factor	1.02	1.02	1.02	1.05	1.05	1.05	1.06	1.06	1.06	1.05	1.05	1.05
Turning Speed (mph)	15	^	9	15	_	9	15	_	9	15	0	9
Number of Detectors	1	2		1	2	1	1	2	1	1 - #	2	1
Detector Template	Left	00		25	00	25	Left	00	25	Left	00	25
Leading Detector (ft)	20	83		35	83	35	20	83	35	20	83	35
Trailing Detector (ft)	0	-5		-5	-5	-5	0	-5	-5	0	-5	-5
Turn Type	Perm	NA		pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases		2		1	6			8		4	4	
Permitted Phases	2			6		6	8		8	4		4
Detector Phase	2	2		1	6	6	8	8	8	4	4	4
Switch Phase												

	₩.	×	À	F	×	₹	7	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Minimum Initial (s)	10.0	10.0		3.0	10.0	10.0	3.0	3.0	3.0	5.0	5.0	5.0
Minimum Split (s)	17.0	17.0		10.0	17.0	17.0	10.0	10.0	10.0	10.0	10.0	10.0
Total Split (s)	52.0	52.0		13.0	65.0	65.0	20.0	20.0	20.0	20.0	20.0	20.0
Total Split (%)	61.2%	61.2%		15.3%	76.5%	76.5%	23.5%	23.5%	23.5%	23.5%	23.5%	23.5%
Maximum Green (s)	45.0	45.0		6.0	58.0	58.0	15.0	15.0	15.0	15.0	15.0	15.0
Yellow Time (s)	5.0	5.0		5.0	5.0	5.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)		0.0		0.0	0.0	0.0		0.0	0.0		0.0	0.0
Total Lost Time (s)		7.0		7.0	7.0	7.0		5.0	5.0		5.0	5.0
Lead/Lag	Lag	Lag		Lead								
Lead-Lag Optimize?	Yes	Yes		Yes								
Vehicle Extension (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Minimum Gap (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Time Before Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Recall Mode	Max	Max		None	Max	Max	Max	Max	Max	Max	Max	Max
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		50.3		58.0	58.0	58.0		15.0	15.0		15.0	
Actuated g/C Ratio		0.59		0.68	0.68	0.68		0.18	0.18		0.18	
v/c Ratio		0.31		0.08	0.19	0.02		0.35	0.14		0.09	
Control Delay		9.9		4.7	5.4	1.7		35.5	0.8		30.7	
Queue Delay		0.0		0.0	0.0	0.0		0.0	0.0		0.0	
Total Delay		9.9		4.7	5.4	1.7		35.5	0.8		30.7	
LOS		Α		Α	Α	Α		D	Α		С	
Approach Delay		9.9			5.0			21.7			30.7	
Approach LOS		Α			Α			С			С	
Queue Length 50th (ft)		80		8	38	0		39	0		9	
Queue Length 95th (ft)		136		19	63	6		82	0		29	
Internal Link Dist (ft)		1733			2200			248			438	
Turn Bay Length (ft)				120		200			95			
Base Capacity (vph)		1034		690	1210	1054		238	388		213	
Starvation Cap Reductn		0		0	0	0		0	0		0	
Spillback Cap Reductn		0		0	0	0		0	0		0	
Storage Cap Reductn		0		0	0	0		0	0		0	
Reduced v/c Ratio		0.31		0.08	0.19	0.02		0.35	0.14		0.09	
Intersection Summary												

Area Type: Other

Cycle Length: 85

Actuated Cycle Length: 85

Natural Cycle: 40

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.35 Intersection Signal Delay: 10.6 Intersection Capacity Utilization 54.4%

Intersection LOS: B ICU Level of Service A

Analysis Period (min) 15

18002018A - N.T. Page 17 Splits and Phases: 7: 113 King Street Driveway/American Lane (S) & NYS Route 120 K_{Ø4} ₩_{Ø2} ►ø1 V_{Ø8}

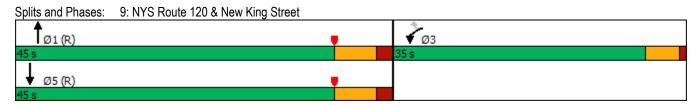
18002018A - N.T. Page 18

	•	•	†	~	\	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	**		1>			4
Traffic Volume (vph)	50	80	206	34	83	208
Future Volume (vph)	50	80	206	34	83	208
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	11	11	11	11
Grade (%)	-6%	14	2%	11	11	0%
Storage Length (ft)	0	0	2 /0	0	0	0 70
Storage Lanes	1	0		0	0	
Taper Length (ft)	25	U		U	25	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.917		0.981			
Flt Protected	0.917		0.301			0.986
Satd. Flow (prot)	1639	0	1723	0	0	1704
,		U	1723	U	U	0.846
Fit Permitted	0.981	0	4700	0	0	
Satd. Flow (perm)	1639	0	1723	0	0	1462
Right Turn on Red	- 00	Yes	, ,	Yes		
Satd. Flow (RTOR)	83		14			
Link Speed (mph)	30		55			55
Link Distance (ft)	328		519			557
Travel Time (s)	7.5		6.4			6.9
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	8%	7%	1%	19%	2%	8%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	52	83	215	35	86	217
Shared Lane Traffic (%)						
Lane Group Flow (vph)	135	0	250	0	0	303
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12	ragin	0	rugiit	Loit	0
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane	10		10			10
	0.06	0.06	1.06	1.06	1.04	1.04
Headway Factor	0.96	0.96	1.06	1.06 9	1.04	1.04
Turning Speed (mph)	15	9	0	9	15	0
Number of Detectors	1		2		1	2
Detector Template	05		00		Left	20
Leading Detector (ft)	35		83		20	83
Trailing Detector (ft)	-5		-5		0	-5
Turn Type	Prot		NA		Perm	NA
Protected Phases	3		1			5
Permitted Phases					5	
Detector Phase	3		1		5	5
Switch Phase	3		•		•	U

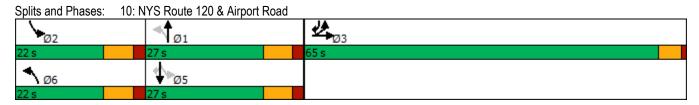
	•	•	†	~	>	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Minimum Initial (s)	5.0		5.0		5.0	5.0
Minimum Split (s)	10.0		12.0		12.0	12.0
Total Split (s)	35.0		45.0		45.0	45.0
Total Split (%)	43.8%		56.3%		56.3%	56.3%
Maximum Green (s)	30.0		38.0		38.0	38.0
Yellow Time (s)	4.0		5.0		5.0	5.0
All-Red Time (s)	1.0		2.0		2.0	2.0
Lost Time Adjust (s)	0.0		0.0		2.0	0.0
Total Lost Time (s)	5.0		7.0			7.0
Lead/Lag	5.0		1.0			1.0
•						
Lead-Lag Optimize?	2.0		2.0		2.0	2.0
Vehicle Extension (s)	3.0		3.0		3.0	3.0
Minimum Gap (s)	3.0		3.0		3.0	3.0
Time Before Reduce (s)	0.0		0.0		0.0	0.0
Time To Reduce (s)	0.0		0.0		0.0	0.0
Recall Mode	None		C-Max		C-Max	C-Max
Walk Time (s)						
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)						
Act Effct Green (s)	8.7		59.3			59.3
Actuated g/C Ratio	0.11		0.74			0.74
v/c Ratio	0.54		0.20			0.28
Control Delay	22.6		2.3			4.6
Queue Delay	0.0		0.0			0.0
Total Delay	22.6		2.3			4.6
LOS	C		A			A
Approach Delay	22.6		2.3			4.6
Approach LOS	C		Α			A
Queue Length 50th (ft)	25		13			38
Queue Length 95th (ft)	72		35			86
Internal Link Dist (ft)	248		439			477
` ,	240		403			411
Turn Bay Length (ft)	SSS		1201			1001
Base Capacity (vph)	666		1281			1084
Starvation Cap Reductn	0		0			0
Spillback Cap Reductn	0		0			0
Storage Cap Reductn	0		0			0
Reduced v/c Ratio	0.20		0.20			0.28
Intersection Summary						
Area Type:	Other					
Cycle Length: 80						
Actuated Cycle Length: 80						
Offset: 13 (16%), Reference		1:NBT at	nd 5:SBTI	. Start o	f Yellow	
Natural Cycle: 40	ora to pridoo		5.0511	_, כנמונ 0		
Control Type: Actuated-Co	oordinated					
John Type. Actuated-Co	Jordinaled					

Intersection LOS: A ICU Level of Service A

Analysis Period (min) 15


Intersection Capacity Utilization 52.0%

Maximum v/c Ratio: 0.54 Intersection Signal Delay: 7.3


	•	•	†	/	>	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*	7	†			†
Traffic Volume (vph)	245	46	194	0	0	259
Future Volume (vph)	245	46	194	0	0	259
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	13	11	11	11	11
Grade (%)	-2%	. •	1%			1%
Storage Length (ft)	0	175	. , ,	0	0	. , ,
Storage Lanes	1	1		0	0	
Taper Length (ft)	25				25	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	7.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850				
Flt Protected	0.950	0.000				
Satd. Flow (prot)	1770	1686	1740	0	0	1692
Flt Permitted	0.950	1000	1740	U	U	1032
Satd. Flow (perm)	1770	1686	1740	0	0	1692
Right Turn on Red	1770	Yes	1740	Yes	U	1092
		49		165		
Satd. Flow (RTOR)	30	49	EE			55
Link Speed (mph)	30 321		55 928			519
Link Distance (ft)			928 11.5			
Travel Time (s)	7.3		11.5			6.4
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)	0.00	0.00	0.00	0.00	0.00	0.00
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	3%	0%	5%	0%	0%	8%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	263	49	209	0	0	278
Shared Lane Traffic (%)						
Lane Group Flow (vph)	263	49	209	0	0	278
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12		0			0
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane						
Headway Factor	0.99	0.95	1.05	1.05	1.05	1.05
Turning Speed (mph)	15	9		9	15	
Number of Detectors	1	1	2			2
Detector Template		·	_			_
Leading Detector (ft)	35	35	83			83
Trailing Detector (ft)	-5	-5	-5			-5
Turn Type	Prot	Perm	NA			NA
Protected Phases	3	. 51111	1			5
Permitted Phases		3				- 0
Detector Phase	3	3	1			5
Switch Phase	3	3				บ

Lane Group Minimum Initial (s) Minimum Split (s) Total Split (s)	WBL	WBR				
Minimum Initial (s) Minimum Split (s)		WDD	NBT	NBR	SBL	SBT
Minimum Split (s)	5.0	5.0	5.0			5.0
	10.0	10.0	12.0			12.0
p (- /	35.0	35.0	45.0			45.0
Total Split (%)	43.8%	43.8%	56.3%			56.3%
Maximum Green (s)	30.0	30.0	38.0			38.0
Yellow Time (s)	4.0	4.0	5.0			5.0
All-Red Time (s)	1.0	1.0	2.0			2.0
Lost Time Adjust (s)	0.0	0.0	0.0			0.0
Total Lost Time (s)	5.0	5.0	7.0			7.0
Lead/Lag	0.0	0.0	1.0			1.0
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0	3.0	3.0			3.0
Minimum Gap (s)	3.0	3.0	3.0			3.0
Time Before Reduce (s)	0.0	0.0	0.0			0.0
Time To Reduce (s)	0.0	0.0	0.0			0.0
Recall Mode	None	None	C-Max			C-Max
Walk Time (s)	INUIT	140116	O-IVIAA			J-IVIAX
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)						
Act Effct Green (s)	17.4	17.4	50.6			50.6
Actuated g/C Ratio	0.22	0.22	0.63			0.63
v/c Ratio	0.22	0.22	0.03			0.03
Control Delay	37.6	7.7	7.6			6.2
Queue Delay	0.0	0.0	0.0			0.2
Total Delay	37.6	7.7	7.6			6.2
LOS	37.0 D	7.7 A	7.0 A			6.2 A
	32.9	А	7.6			6.2
Approach LOS	32.9 C		7.0 A			6.2 A
Approach LOS	122	0	39			28
Queue Length 50th (ft)		0	39 84			
Queue Length 95th (ft)	180	23				101
Internal Link Dist (ft)	241	475	848			439
Turn Bay Length (ft)	CCO	175	1101			1074
Base Capacity (vph)	663	662	1101			1071
Starvation Cap Reductn	0	0	0			0
Spillback Cap Reductn	0	0	0			0
Storage Cap Reductn	0	0	0			0
Reduced v/c Ratio	0.40	0.07	0.19			0.26
Intersection Summary						
Area Type:	Other					
Cycle Length: 80						
Actuated Cycle Length: 80						
Offset: 13 (16%), Referen	ced to phase	1:NBT a	nd 5:SBT,	Start of Y	ellow	
Natural Cycle: 40						
Control Type: Actuated-C	oordinated					
Maximum v/c Ratio: 0.68						
Intersection Signal Delay:	17.0			Int	tersection	n LOS: B
Intersection Capacity Utili						of Service
Analysis Period (min) 15						

	۶	→	•	•	←	•	4	†	/	>	ļ	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	4					ሻ	∱ }		ሻ		7
Traffic Volume (vph)	130	298	76	0	0	0	83	64	45	33	105	366
Future Volume (vph)	130	298	76	0	0	0	83	64	45	33	105	366
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	16	16	16	12	12	12	12	12	12
Grade (%)		1%			-4%			-1%			1%	
Storage Length (ft)	0		0	0		0	385		0	190		460
Storage Lanes	1		0	0		0	1		0	1		1
Taper Length (ft)	25			25			86			86		
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.970						0.938				0.850
Flt Protected	0.950	0.998					0.950			0.950		
Satd. Flow (prot)	1595	1670	0	0	0	0	1711	3306	0	1694	1750	1545
Flt Permitted	0.950	0.998	•		•		0.580			0.677		
Satd. Flow (perm)	1595	1670	0	0	0	0	1045	3306	0	1207	1750	1545
Right Turn on Red	1000	1010	Yes	· ·	J	Yes	1010	0000	Yes	1201	1100	Yes
Satd. Flow (RTOR)		16	100			100		49	100			398
Link Speed (mph)		30			30			55			55	030
Link Distance (ft)		176			314			586			596	
Travel Time (s)		4.0			7.1			7.3			7.4	
Confl. Peds. (#/hr)		т.0			7.1			7.5			7.7	
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	7%	4%	4%	0%	0%	0%	6%	5%	0%	6%	8%	4%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)	U	U	U	U	U	U	U	U	U	U	U	J
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	141	324	83	0	0	0	90	70	49	36	114	398
Shared Lane Traffic (%)	10%	0 2 4	00	U	U	U	30	70	70	30	117	330
Lane Group Flow (vph)	127	421	0	0	0	0	90	119	0	36	114	398
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	LOIL	12	rtigitt	LOIL	12	rtigitt	LOIL	12	rtigitt	LOIL	12	rtigitt
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.01	1.01	1.01	0.82	0.82	0.82	0.99	0.99	0.99	1.01	1.01	1.01
Turning Speed (mph)	1.01	1.01	9	15	0.02	9	15	0.55	9	1.01	1.01	9
Number of Detectors	1	2	9	13		9	13	2	9	13	2	1
Detector Template	ı						ı			ı		ı
Leading Detector (ft)	35	83					35	83		35	83	35
Trailing Detector (ft)	-5	-5					-5	-5		-5	-5	-5
								NA				
Turn Type Protected Phases	Split 3	NA 3					pm+pt	NA 1		pm+pt	NA 5	bm+ov
Protected Phases Permitted Phases	S	J					6			2	3	3
	3	3					6	1		5 2	5	5 3
Detector Phase	3	3					Ö			Z	5	3
Switch Phase												

	ၨ	→	*	•	+	•	•	†	~	\	↓	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	5.0					3.0	8.0		3.0	20.0	5.0
Minimum Split (s)	10.0	10.0					10.0	15.0		10.0	27.0	10.0
Total Split (s)	65.0	65.0					22.0	27.0		22.0	27.0	65.0
Total Split (%)	57.0%	57.0%					19.3%	23.7%		19.3%	23.7%	57.0%
Maximum Green (s)	60.0	60.0					15.0	20.0		15.0	20.0	60.0
Yellow Time (s)	4.0	4.0					5.0	5.0		5.0	5.0	4.0
All-Red Time (s)	1.0	1.0					2.0	2.0		2.0	2.0	1.0
Lost Time Adjust (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0					7.0	7.0		7.0	7.0	5.0
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0					2.0	2.0		2.0	2.0	3.0
Minimum Gap (s)	3.0	3.0					2.0	2.0		2.0	2.0	3.0
Time Before Reduce (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Recall Mode	None	None					None	Min		None	Min	None
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)	24.9	24.9					31.7	28.3		25.4	21.1	55.0
Actuated g/C Ratio	0.35	0.35					0.45	0.40		0.36	0.30	0.78
v/c Ratio	0.23	0.70					0.16	0.09		0.08	0.22	0.31
Control Delay	17.5	26.0					13.6	12.7		13.8	25.6	1.0
Queue Delay	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Total Delay	17.5	26.0					13.6	12.7		13.8	25.6	1.0
LOS	В	С					В	В		В	С	Α
Approach Delay		24.0						13.1			7.0	
Approach LOS		С						В			Α	
Queue Length 50th (ft)	42	162					20	7		8	39	0
Queue Length 95th (ft)	83	273					60	36		29	102	20
Internal Link Dist (ft)		96			234			506			516	
Turn Bay Length (ft)							385			190		460
Base Capacity (vph)	1330	1395					637	1357		659	525	1537
Starvation Cap Reductn	0	0					0	0		0	0	0
Spillback Cap Reductn	0	0					0	0		0	0	0
Storage Cap Reductn	0	0					0	0		0	0	0
Reduced v/c Ratio	0.10	0.30					0.14	0.09		0.05	0.22	0.26
Intersection Summary												
	ther											
Cycle Length: 114												
Actuated Cycle Length: 70.4												
Natural Cycle: 60												
Control Type: Actuated-Uncoo	ordinated											
Maximum v/c Ratio: 0.70												
Intersection Signal Delay: 15.1	1				tersection							
					tersection U Level o		Α					

	۶	→	•	•	←	•	1	†	~	/	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્ન			f)				7			
Traffic Volume (vph)	6	176	0	0	270	180	0	0	328	0	0	0
Future Volume (vph)	6	176	0	0	270	180	0	0	328	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	15	15	15	12	12	12	13	13	13	16	16	16
Grade (%)		1%			-1%			1%			2%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	0		0	0		0	0		1	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt					0.946				0.865			
Flt Protected		0.998										
Satd. Flow (prot)	0	1980	0	0	1724	0	0	0	1594	0	0	0
Flt Permitted		0.998										
Satd. Flow (perm)	0	1980	0	0	1724	0	0	0	1594	0	0	0
Link Speed (mph)		30	-	-	30			30		-	30	
Link Distance (ft)		331			176			301			377	
Travel Time (s)		7.5			4.0			6.8			8.6	
Confl. Peds. (#/hr)								0.0			0.0	
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	5%	0%	0%	4%	6%	0%	0%	6%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)						•	•					
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	7	191	0	0	293	196	0	0	357	0	0	0
Shared Lane Traffic (%)	•	101	J	· ·	200	100		J	001	J	· ·	J
Lane Group Flow (vph)	0	198	0	0	489	0	0	0	357	0	0	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	LOIL	0	rtigitt	LOIL	0	rtigit	LOIL	0	ragnt	LOIL	0	rtigitt
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	0.89	0.89	0.89	0.99	0.99	0.99	0.96	0.96	0.96	0.86	0.86	0.86
Turning Speed (mph)	15	0.03	9	15	0.55	9	15	0.90	9	15	0.00	9
Sign Control	10	Free	9	13	Eroo	9	13	Ston	9	13	Ston	9
		FIEE			Free			Stop			Stop	
Intersection Summary	201											
	Other											
Control Type: Unsignalized	00.004											
Intersection Capacity Utilizati	on 36.6%			IC	U Level	of Service	A					

Analysis Period (min) 15

Intersection												
Int Delay, s/veh	4.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		सी			f)				7			
Traffic Vol, veh/h	6	176	0	0	270	180	0	0	328	0	0	0
Future Vol, veh/h	6	176	0	0	270	180	0	0	328	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	0	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	16983	-
Grade, %	-	1	-	-	-1	-	-	1	-	-	2	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	0	5	0	0	4	6	0	0	6	0	0	0
Mvmt Flow	7	191	0	0	293	196	0	0	357	0	0	0
Major/Minor N	1ajor1		ľ	Major2		N	/linor1					
Conflicting Flow All	489	0	_		_	0	-	_	191			
Stage 1	_	-	_	_	_	-	-	_	-			
Stage 2	_	-	_	_	_	-	-	-	_			
Critical Hdwy	4.1	-	-	-	-	-	-	-	6.36			
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-			
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-			
Follow-up Hdwy	2.2	-	-	-	-	-	-	-	3.354			
Pot Cap-1 Maneuver	1085	-	0	0	-	-	0	0	836			
Stage 1	-	-	0	0	-	-	0	0	-			
Stage 2	-	-	0	0	-	-	0	0	-			
Platoon blocked, %		-			-	-						
Mov Cap-1 Maneuver	1085	-	-	-	-	-	-	0	836			
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	0	-			
Stage 1	-	-	-	-	-	-	-	0	-			
Stage 2	-	-	-	-	-	-	-	0	-			
Approach	EB			WB			NB					
HCM Control Delay, s	0.3			0			12.5					
HCM LOS							В					
Minor Lane/Major Mvmt	N	NBLn1	EBL	EBT	WBT	WBR						
Capacity (veh/h)	•	836	1085	-	-	-						
HCM Lane V/C Ratio		0.426		_	_	_						
HCM Control Delay (s)		12.5	8.3	0	_	_						
HCM Lane LOS		12.3 B	Α	A	_	_						
HCM 95th %tile Q(veh)		2.2	0	-	_	_						

	۶	→	•	•	←	4	1	†	~	/	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					ર્ન						ર્ન	
Traffic Volume (vph)	0	0	0	270	0	0	0	0	0	182	0	0
Future Volume (vph)	0	0	0	270	0	0	0	0	0	182	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	14	14	13	13	12
Grade (%)		0%			-1%			2%			1%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	0		0	0		0	0		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt												
Flt Protected					0.950						0.950	
Satd. Flow (prot)	0	0	0	0	1744	0	0	0	0	0	1767	0
FIt Permitted					0.950						0.950	
Satd. Flow (perm)	0	0	0	0	1744	0	0	0	0	0	1767	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		71			331			377			345	
Travel Time (s)		1.6			7.5			8.6			7.8	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	0%	4%	0%	0%	0%	0%	0%	5%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	0	0	0	281	0	0	0	0	0	190	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	0	0	0	281	0	0	0	0	0	190	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	0.99	0.99	0.99	1.01	0.93	0.93	0.96	0.96	1.01
Turning Speed (mph)	15	_	9	15	_	9	15		9	15		9
Sign Control		Free			Free			Stop			Stop	
Intersection Summary												
· · · · · · · · · · · · · · · · · · ·	Other											
Control Type: Unsignalized												
Intersection Capacity Utilizati	on 31.7%			IC	CU Level	of Service	A					
Analysis Period (min) 15												

Intersection												
Int Delay, s/veh	7.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					र्स						र्स	
Traffic Vol, veh/h	0	0	0	270	0	0	0	0	0	182	0	0
Future Vol, veh/h	0	0	0	270	0	0	0	0	0	182	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-		<u>-</u>	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	16974	-	-	0	-
Grade, %	-	0	-	-	-1	-	-	2	-	-	1	-
Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96
Heavy Vehicles, %	0	0	0	4	0	0	0	0	0	5	0	0
Mvmt Flow	0	0	0	281	0	0	0	0	0	190	0	0
Major/Minor				Major2					N	/linor2		
Conflicting Flow All				0	0	0				562	562	-
Stage 1				-	-	-				562	562	-
Stage 2				-	-	-				0	0	-
Critical Hdwy				4.14	-	-				6.65	6.7	-
Critical Hdwy Stg 1				-	-	-				5.65	5.7	-
Critical Hdwy Stg 2				-	-	-				-	-	-
Follow-up Hdwy				2.236	-	-				3.545	4	-
Pot Cap-1 Maneuver				-	-	0				468	425	0
Stage 1				-	-	0				547	497	0
Stage 2				-	-	0				-	-	0
Platoon blocked, %					-							
Mov Cap-1 Maneuver				-	-	-				468	0	-
Mov Cap-2 Maneuver				-	-	-				468	0	-
Stage 1				-	-	-				547	0	-
Stage 2				-	-	-				-	0	-
Approach				WB						SB		
HCM Control Delay, s										17.8		
HCM LOS										С		
Minor Lane/Major Mvm	t	WBL	WBT :	SBLn1								
Capacity (veh/h)		-	_	468								
HCM Lane V/C Ratio		-	-	0.405								
HCM Control Delay (s)		-	-	17.8								
HCM Lane LOS		-	-	С								
HCM 95th %tile Q(veh)		-	-	1.9								

	₩	\mathbf{x}	À	~	*	₹	ን	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		ર્ન	7	ř	†	7	*	^	7	7	† †	7
Traffic Volume (vph)	118	9	182	26	19	68	186	332	29	58	359	87
Future Volume (vph)	118	9	182	26	19	68	186	332	29	58	359	87
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	15	12	12	12	12	11	12	12	12	12	12
Grade (%)		0%			0%			0%			0%	
Storage Length (ft)	0		250	0		225	680		250	400		250
Storage Lanes	0		1	1		1	1		1	1		1
Taper Length (ft)	25			25			86			86		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Ped Bike Factor			0.99	1.00								
Frt			0.850			0.850			0.850			0.850
Flt Protected		0.955		0.950			0.950			0.950		
Satd. Flow (prot)	0	1890	1583	1543	1900	1615	1678	3343	1615	1805	3438	1482
FIt Permitted		0.726		0.673			0.950			0.950		
Satd. Flow (perm)	0	1437	1563	1092	1900	1615	1678	3343	1615	1805	3438	1482
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			190			79			79			91
Link Speed (mph)		30			30			55			55	
Link Distance (ft)		610			598			1191			735	
Travel Time (s)		13.9			13.6			14.8			9.1	
Confl. Peds. (#/hr)			1	1								
Confl. Bikes (#/hr)												
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	6%	0%	2%	17%	0%	0%	4%	8%	0%	0%	5%	9%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	123	9	190	27	20	71	194	346	30	60	374	91
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	132	190	27	20	71	194	346	30	60	374	91
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	0.88	1.00	1.00	1.00	1.00	1.04	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1	1	1	1	1	2	1	1	2	1	1
Detector Template	Left											
Leading Detector (ft)	20	43	6	6	6	6	83	6	6	83	6	6
Trailing Detector (ft)	0	0	0	0	0	0	-5	0	0	-5	0	0
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases		3			3		6	1		2	5	
Permitted Phases	3		3	3		3			1			5
Detector Phase	3	3	3	3	3	3	6	1	1	2	5	5
Switch Phase												

	₩.	\mathbf{x}	À	~	×	*	7	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	2.0	10.0	10.0	2.0	10.0	10.0
Minimum Split (s)	31.0	31.0	31.0	31.0	31.0	31.0	16.0	42.0	42.0	16.0	42.0	42.0
Total Split (s)	46.0	46.0	46.0	46.0	46.0	46.0	36.0	42.0	42.0	36.0	42.0	42.0
Total Split (%)	37.1%	37.1%	37.1%	37.1%	37.1%	37.1%	29.0%	33.9%	33.9%	29.0%	33.9%	33.9%
Maximum Green (s)	40.0	40.0	40.0	40.0	40.0	40.0	30.0	36.0	36.0	30.0	36.0	36.0
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	6.0	6.0	6.0	6.0	6.0	6.0	2.0	6.0	6.0	2.0	6.0	6.0
Minimum Gap (s)	3.0	3.0	3.0	3.0	3.0	3.0	2.0	3.0	3.0	2.0	4.0	4.0
Time Before Reduce (s)	20.0	20.0	20.0	20.0	20.0	20.0	0.0	20.0	20.0	0.0	20.0	20.0
Time To Reduce (s)	10.0	10.0	10.0	10.0	10.0	10.0	0.0	10.0	10.0	0.0	10.0	10.0
Recall Mode	Min	Min	Min	Min	Min	Min	None	Max	Max	None	Max	Max
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		17.3	17.3	17.3	17.3	17.3	14.5	46.0	46.0	7.5	36.5	36.5
Actuated g/C Ratio		0.20	0.20	0.20	0.20	0.20	0.17	0.53	0.53	0.09	0.42	0.42
v/c Ratio		0.46	0.41	0.12	0.05	0.18	0.69	0.19	0.03	0.38	0.26	0.13
Control Delay		36.5	7.5	30.3	28.7	7.4	47.9	13.0	0.1	46.9	18.8	5.4
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		36.5	7.5	30.3	28.7	7.4	47.9	13.0	0.1	46.9	18.8	5.4
LOS		D	Α	С	С	Α	D	В	Α	D	В	Α
Approach Delay		19.4			16.3			24.2			19.6	
Approach LOS		В			В			С			В	
Queue Length 50th (ft)		63	0	12	9	0	99	51	0	31	66	0
Queue Length 95th (ft)		126	53	36	29	30	186	100	0	78	131	33
Internal Link Dist (ft)		530			518			1111			655	
Turn Bay Length (ft)			250			225	680		250	400		250
Base Capacity (vph)		672	832	511	889	798	589	1776	895	634	1449	677
Starvation Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio		0.20	0.23	0.05	0.02	0.09	0.33	0.19	0.03	0.09	0.26	0.13

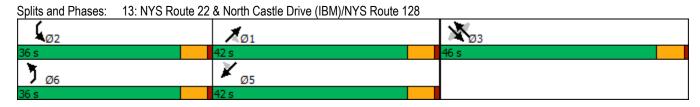
Intersection Summary

Area Type: Other

Cycle Length: 124

Actuated Cycle Length: 86.5

Natural Cycle: 90


Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.69

Intersection Signal Delay: 21.0 Intersection Capacity Utilization 48.9%

Intersection LOS: C
ICU Level of Service A

Analysis Period (min) 15

	۶	_#	•	•	†	7	(w	Ţ	4	4	1	
Lane Group	EBL2	EBL	EBR	NBL	NBT	NBR	SBL	SBT	SBR	SWL	SWR	
Lane Configurations		Ä	7		ર્ની	7		413-		444		
Traffic Volume (vph)	3	0	6	4	400	181	0	375	2	182	0	
Future Volume (vph)	3	0	6	4	400	181	0	375	2	182	0	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Lane Width (ft)	10	10	10	11	11	11	10	10	10	11	11	
Grade (%)		0%			4%			1%		0%		
Storage Length (ft)		0	0	0		0	0		0	0	0	
Storage Lanes		1	1	0		1	0		0	2	0	
Taper Length (ft)		25		25			25			25	-	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	*0.67	*0.67	*0.67	0.97	0.95	
Ped Bike Factor					1.00			1.00				
Frt			0.850			0.850		0.999				
Flt Protected		0.950								0.950		
Satd. Flow (prot)	0	1685	1133	0	1744	1391	0	2229	0	3164	0	
Flt Permitted		0.950	1100		0.996	1001	•			0.950	· ·	
Satd. Flow (perm)	0	1685	1133	0	1737	1391	0	2229	0	3164	0	
Right Turn on Red		1000	Yes		1101	Yes	•		No	0101	· ·	
Satd. Flow (RTOR)			74			189						
Link Speed (mph)		30			35	100		35		35		
Link Distance (ft)		155			796			597		511		
Travel Time (s)		3.5			15.5			11.6		10.0		
Confl. Peds. (#/hr)		0.0		1	10.0			11.0	1	10.0	1	
Confl. Bikes (#/hr)				•							•	
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	
Heavy Vehicles (%)	0%	0%	33%	25%	3%	10%	0%	6%	0%	7%	0%	
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%		0%		
Adj. Flow (vph)	3	0	6	4	417	189	0	391	2	190	0	
Shared Lane Traffic (%)	U	U	J	-	717	100	U	001	_	150	U	
Lane Group Flow (vph)	0	3	6	0	421	189	0	393	0	190	0	
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Right	
Median Width(ft)	LOIL	10	rtigitt	LOIL	0	ragiit	LOIL	0	rtigitt	22	rtigiit	
Link Offset(ft)		0			0			0		0		
Crosswalk Width(ft)		16			16			16		16		
Two way Left Turn Lane		10			10			10		10		
Headway Factor	1.09	1.09	1.09	1.07	1.07	1.07	1.10	1.10	1.10	1.04	1.04	
Turning Speed (mph)	1.05	1.03	9	1.07	1.07	9	1.10	1.10	9	15	9	
Number of Detectors	1	1	1	15	2	1	1	2	9	13	9	
Detector Template	Left	ı	ı	Left		ı	Left			ı		
Leading Detector (ft)	20	35	35	20	83	35	20	83		35		
Trailing Detector (ft)	0	-5	-5	0	-5	-5	0	-5		-5		
Turn Type	Perm	-ა Prot		Perm	-5 NA		U	-5 NA		-ი Prot		
Protected Phases	reiiii	3	Perm	reiiii	NA 1	pm+ov 4		NA 5				
	2	3	2	1			E	5		4		
Permitted Phases	3	2	3	1	- 1	1	5	F		A		
Detector Phase	3	3	3	1	1	4	5	5		4		
Switch Phase												

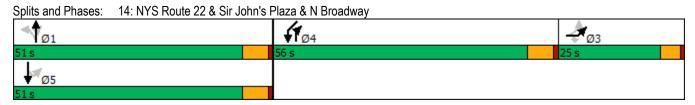
	۶	_#	•	4	†	7	4	ļ	4	₹	✓	
Lane Group	EBL2	EBL	EBR	NBL	NBT	NBR	SBL	SBT	SBR	SWL	SWR	
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0		
Minimum Split (s)	10.0	10.0	10.0	11.0	11.0	11.0	11.0	11.0		11.0		
Total Split (s)	25.0	25.0	25.0	51.0	51.0	56.0	51.0	51.0		56.0		
Total Split (%)	18.9%	18.9%	18.9%	38.6%	38.6%	42.4%	38.6%	38.6%		42.4%		
Maximum Green (s)	20.0	20.0	20.0	45.0	45.0	50.0	45.0	45.0		50.0		
Yellow Time (s)	4.0	4.0	4.0	5.0	5.0	5.0	5.0	5.0		5.0		
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0		
Lost Time Adjust (s)		0.0	0.0		0.0	0.0		0.0		0.0		
Total Lost Time (s)		5.0	5.0		6.0	6.0		6.0		6.0		
Lead/Lag	Lag	Lag	Lag			Lead				Lead		
Lead-Lag Optimize?	Yes	Yes	Yes			Yes				Yes		
Vehicle Extension (s)	5.0	5.0	5.0	5.0	5.0	3.0	5.0	5.0		3.0		
Minimum Gap (s)	5.0	5.0	5.0	5.0	5.0	3.0	5.0	5.0		3.0		
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0		
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0		
Recall Mode	None	None	None	Max	Max	None	Max	Max		None		
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		7.9	7.9		45.4	66.1		45.4		9.6		
Actuated g/C Ratio		0.11	0.11		0.66	0.95		0.66		0.14		
v/c Ratio		0.02	0.03		0.37	0.14		0.27		0.43		
Control Delay		31.0	0.3		7.9	0.5		6.7		31.4		
Queue Delay		0.0	0.0		0.0	0.0		0.0		0.0		
Total Delay		31.0	0.3		7.9	0.5		6.7		31.4		
LOS		С	Α		Α	Α		Α		С		
Approach Delay		10.6			5.6			6.7		31.4		
Approach LOS		В			Α			Α		С		
Queue Length 50th (ft)		1	0		60	0		38		37		
Queue Length 95th (ft)		10	0		193	12		120		77		
Internal Link Dist (ft)		75			716			517		431		
Turn Bay Length (ft)												
Base Capacity (vph)		490	382		1137	1391		1459		2301		
Starvation Cap Reductn		0	0		0	0		0		0		
Spillback Cap Reductn		0	0		0	0		0		0		
Storage Cap Reductn		0	0		0	0		0		0		
Reduced v/c Ratio		0.01	0.02		0.37	0.14		0.27		0.08		
Intersection Summary												
Area Type:	Other											
Cycle Length: 132												
Actuated Cycle Length: 69	9.3											
Natural Cycle: 40												

Intersection LOS: B

ICU Level of Service A

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.43


Intersection Signal Delay: 10.1

Intersection Capacity Utilization 47.8%

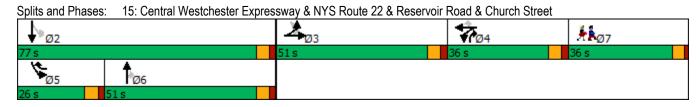
Analysis Period (min) 15

User Entered Value

Synchro 10 Report Page 36

Lane Group EBL2 EBL EBL EBR WBL WBT WBR WBR2 NBT NBR SBL Lane Configurations 1	SBT † 1 372 372
Traffic Volume (vph) 1 217 148 94 64 106 1 71 346 68 47 Future Volume (vph) 1 217 148 94 64 106 1 71 346 68 47 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900	372
Traffic Volume (vph) 1 217 148 94 64 106 1 71 346 68 47 Future Volume (vph) 1 217 148 94 64 106 1 71 346 68 47 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900	372
Future Volume (vph) 1 217 148 94 64 106 1 71 346 68 47 Ideal Flow (vphpl) 1900 <td>372</td>	372
Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 190	
$\lambda + \lambda + \lambda$	1900
	12
Grade (%) 2% 4%	-6%
Storage Length (ft) 115 0 0 180 160 110	- 7.
Storage Lanes 1 0 0 1 1 1 1	
Taper Length (ft) 86 25 86	
Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 1.00 1.00	0.95
Ped Bike Factor 0.99 0.99 1.00 0.99	0.99
Frt 0.942 0.999 0.850 0.850	0.945
Fit Protected 0.982 0.950	0.0.0
Satd. Flow (prot) 0 1639 1683 0 0 1834 0 1599 3353 1443 1859	3253
Flt Permitted 0.982 0.260	0200
Satd. Flow (perm) 0 1627 1683 0 0 1825 0 1576 3353 1443 509	3253
Right Turn on Red No Yes Yes	3233
Satd. Flow (RTOR) 76 76	
Link Speed (mph) 35 30 45	35
Link Distance (ft) 532 475 529	778
Travel Time (s) 10.4 10.8 8.0	15.2
Confl. Peds. (#/hr) 3 2 10 10 3 2	15.2
Confl. Bikes (#/hr)	
Peak Hour Factor 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94	0.94
Growth Factor 100% 100% 100% 100% 100% 100% 100% 100	100%
	3%
	0
	U
Parking (#/hr) Mid-Block Traffic (%) 0% 0%	0%
, \ \ \ /	396
Shared Lane Traffic (%)	607
Lane Group Flow (vph) 0 232 257 0 0 182 0 76 368 72 50	627
Enter Blocked Intersection No No No No No No No No No No No	No
Lane Alignment Left Left Right Left Right Right Left Right Left	Left
Median Width(ft) 11 11 12	12
Link Offset(ft) 0 0 0	0
Crosswalk Width(ft) 16 16	16
Two way Left Turn Lane	0.00
Headway Factor 1.06 1.06 1.06 1.01 1.01 1.01 1.01 1.07 1.07 0.96	0.96
Turning Speed (mph) 15 15 9 15 9 9 15	
Number of Detectors 1 1 2 1 2 1 1	2
Detector Template Left Left	
Leading Detector (ft) 20 35 83 20 83 35 83 35 35	83
Trailing Detector (ft) 0 -5 -5 -5 -5 -5 -5	-5
Turn Type Perm Split NA Split NA pm+ov NA pm+ov pm+pt	NA
Protected Phases 3 3 4 4 5 6 4 5	2
Permitted Phases 3 4 6 2	
Detector Phase 3 3 3 4 4 5 6 4 5	2
Switch Phase	

Synchro 10 Report 18002018A - N.T. Page 38


1	000	~7
Lane Group	SBR	Ø7
LareConfigurations		
Traffic Volume (vph)	217	
Future Volume (vph)	217	
Ideal Flow (vphpl)	1900	
Lane Width (ft)	12	
Grade (%)		
Storage Length (ft)	0	
Storage Lanes	0	
Taper Length (ft)		
Lane Util. Factor	0.95	
Ped Bike Factor		
Frt		
Flt Protected		
Satd. Flow (prot)	0	
Flt Permitted		
Satd. Flow (perm)	0	
Right Turn on Red		
Satd. Flow (RTOR)		
Link Speed (mph)		
Link Distance (ft)		
Travel Time (s)		
Confl. Peds. (#/hr)	1	
Confl. Bikes (#/hr)	•	
Peak Hour Factor	0.94	
Growth Factor	100%	
Heavy Vehicles (%)	14%	
Bus Blockages (#/hr)	0	
Parking (#/hr)	<u> </u>	
Mid-Block Traffic (%)		
Adj. Flow (vph)	231	
Shared Lane Traffic (%)	201	
Lane Group Flow (vph)	0	
Enter Blocked Intersection	No	
Lane Alignment	Right	
Median Width(ft)	Rigiil	
Link Offset(ft)		
Crosswalk Width(ft)		
Two way Left Turn Lane	0.96	
Headway Factor	0.96	
Turning Speed (mph) Number of Detectors	9	
Detector Template		
Leading Detector (ft)		
Trailing Detector (ft)		
Turn Type		7
Protected Phases		7
Permitted Phases		
Detector Phase		
Switch Phase		

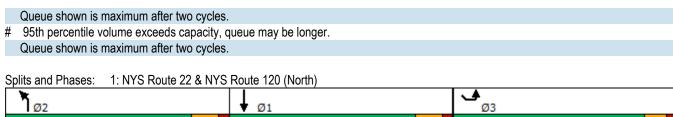
	*	۶	-	•	•	←	*_	•	†	<i>></i>	\	ļ
Lane Group	EBL2	EBL	EBT	EBR	WBL	WBT	WBR	WBR2	NBT	NBR	SBL	SBT
Minimum Initial (s)	5.0	5.0	5.0		5.0	5.0		5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	39.0	39.0	39.0		11.0	11.0		11.0	11.0	11.0	11.0	31.0
Total Split (s)	51.0	51.0	51.0		36.0	36.0		26.0	51.0	36.0	26.0	77.0
Total Split (%)	25.5%	25.5%	25.5%		18.0%	18.0%		13.0%	25.5%	18.0%	13.0%	38.5%
Maximum Green (s)	45.0	45.0	45.0		30.0	30.0		20.0	45.0	30.0	20.0	71.0
Yellow Time (s)	4.0	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)		0.0	0.0			0.0		0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		6.0	6.0			6.0		6.0	6.0	6.0	6.0	6.0
Lead/Lag	Lead	Lead	Lead		Lag	Lag		Lead	Lag	Lag	Lead	
Lead-Lag Optimize?	Yes	Yes	Yes		Yes	Yes		Yes	Yes	Yes	Yes	
Vehicle Extension (s)	3.0	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0
Minimum Gap (s)	3.0	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0
Time Before Reduce (s)	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0
Recall Mode	None	None	None		None	None		None	Min	None	None	Min
Walk Time (s)	8.0	8.0	8.0									8.0
Flash Dont Walk (s)	25.0	25.0	25.0									17.0
Pedestrian Calls (#/hr)	6	6	6									0
Act Effct Green (s)		27.9	27.9			20.1		29.0	21.6	41.7	36.6	36.6
Actuated g/C Ratio		0.20	0.20			0.14		0.21	0.15	0.30	0.26	0.26
v/c Ratio		0.72	0.77			0.69		0.20	0.71	0.15	0.23	0.74
Control Delay		66.8	70.0			73.4		6.7	66.1	4.1	45.0	54.2
Queue Delay		0.0	0.0			0.0		0.0	0.0	0.0	0.0	0.0
Total Delay		66.8	70.0			73.4		6.7	66.1	4.1	45.0	54.2
LOS		E	E			Е		Α	Е	Α	D	D
Approach Delay			68.5			53.7			55.9			53.5
Approach LOS			E			D			E			D
Queue Length 50th (ft)		196	219			157		0	166	0	34	270
Queue Length 95th (ft)		336	371			282		31	268	18	81	413
Internal Link Dist (ft)			452			395		<u> </u>	449		<u> </u>	698
Turn Bay Length (ft)		115	102			000		180	110	160	110	000
Base Capacity (vph)		535	554			402		514	1104	587	330	1690
Starvation Cap Reductn		0	0			0		0	0	0	0	0
Spillback Cap Reductn		0	0			0		0	0	0	0	0
Storage Cap Reductn		0	0			0		0	0	0	0	0
Reduced v/c Ratio		0.43	0.46			0.45		0.15	0.33	0.12	0.15	0.37
Intersection Summary												
Area Type:	Other											
Cycle Length: 200												
Actuated Cycle Length: 139	9.9											
Natural Cycle: 120												
Control Type: Actuated-Und	coordinated											

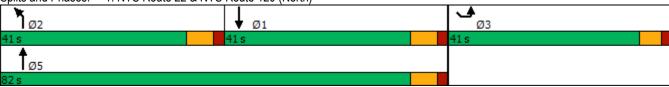
Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.77 Intersection Signal Delay: 58.1 Intersection Capacity Utilization 70.2% Analysis Period (min) 15

Intersection LOS: E ICU Level of Service C

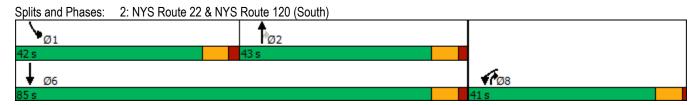
18002018A - N.T. Page 41


Lana Craun	SBR	Ø7
Lane Group	SDR	8.0
Minimum Initial (s)		36.0
Minimum Split (s)		
Total Split (s)		36.0
Total Split (%)		18%
Maximum Green (s)		31.0
Yellow Time (s)		3.5
All-Red Time (s)		1.5
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag		
Lead-Lag Optimize?		
Vehicle Extension (s)		3.0
Minimum Gap (s)		3.0
Time Before Reduce (s)		0.0
Time To Reduce (s)		0.0
Recall Mode		Ped
Walk Time (s)		8.0
Flash Dont Walk (s)		23.0
Pedestrian Calls (#/hr)		2
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (ft)		
Queue Length 95th (ft)		
Internal Link Dist (ft)		
Turn Bay Length (ft)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Reduced V/C Rallo		
Intersection Summary		


Synchro 10 Report Page 42 18002018A - N.T.

	ሻ	†	ţ	» J	•	>
Lane Group	NBL	NBT	SBT	SBR	SEL	SER
Lane Configurations	ች	^	† †	#	ች	7
Traffic Volume (vph)	716	731	691	603	281	269
Future Volume (vph)	716	731	691	603	281	269
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1900	1900	1900	1900	1900	1900
. ,	10	0%	0%	10	0%	10
Grade (%)	050	U%	U%	E00		0
Storage Length (ft)	250			500	250	0
Storage Lanes	1			1	1	1
Taper Length (ft)	86				86	
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00
Ped Bike Factor						
Frt				0.850		0.850
Flt Protected	0.950				0.950	
Satd. Flow (prot)	1685	3336	3336	1507	1685	1507
Flt Permitted	0.950				0.950	
Satd. Flow (perm)	1685	3336	3336	1507	1685	1507
Right Turn on Red	1000	3000	3000	Yes	1000	Yes
Satd. Flow (RTOR)				641		286
		55	55	041	30	200
Link Speed (mph)						
Link Distance (ft)		767	1064		872	
Travel Time (s)		9.5	13.2		19.8	
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	1%	1%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)		0%	0%		0%	
Adj. Flow (vph)	762	778	735	641	299	286
Shared Lane Traffic (%)	102	110	100	071	200	200
	762	778	735	641	299	286
Lane Group Flow (vph)						
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width(ft)		10	15		10	
Link Offset(ft)		0	0		0	
Crosswalk Width(ft)		16	16		16	
Two way Left Turn Lane						
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (mph)	15			9	15	9
Number of Detectors	1	2	2	1	2	0
Detector Template	'	_	_		_	
Leading Detector (ft)	35	104	104	0	104	0
Trailing Detector (ft)	-5	0	0	0	0	0
Turn Type	Prot	NA	NA	Free	Prot	Free
Protected Phases	2	5	1	_	3	_
Permitted Phases				Free		Free
Detector Phase	2	5	1		3	
Switch Phase						

	ሻ	†	 	≽ J	•	\
Lane Group	NBL	NBT	SBT	SBR	SEL	SER
Minimum Initial (s)	12.0	12.0	12.0		10.0	
Minimum Split (s)	36.0	36.0	36.0		26.0	
Total Split (s)	41.0	82.0	41.0		41.0	
Total Split (%)	33.3%	66.7%	33.3%		33.3%	
Maximum Green (s)	34.0	75.0	34.0		35.0	
Yellow Time (s)	5.0	5.0	5.0		4.0	
All-Red Time (s)	2.0	2.0	2.0		2.0	
Lost Time Adjust (s)	0.0	0.0	0.0		0.0	
Total Lost Time (s)	7.0	7.0	7.0		6.0	
Lead/Lag	Lead	1.0	Lag		0.0	
Lead-Lag Optimize?	Yes		Yes			
Vehicle Extension (s)	6.0	6.0	6.0		6.0	
	4.0	4.0	4.0		4.0	
Minimum Gap (s)						
Time Before Reduce (s)	20.0	20.0	20.0		20.0	
Time To Reduce (s)	8.0	8.0	8.0		5.0	
Recall Mode	None	Min	Min		None	
Walk Time (s)						
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)	2.2		01 -	440.0	07.0	440.0
Act Effct Green (s)	34.2	72.7	31.5	113.0	27.2	113.0
Actuated g/C Ratio	0.30	0.64	0.28	1.00	0.24	1.00
v/c Ratio	1.49	0.36	0.79	0.43	0.74	0.19
Control Delay	263.6	10.5	45.5	0.9	51.5	0.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	263.6	10.5	45.5	0.9	51.5	0.3
LOS	F	В	D	Α	D	Α
Approach Delay		135.8	24.7		26.5	
Approach LOS		F	С		С	
Queue Length 50th (ft)	~802	130	261	0	207	0
Queue Length 95th (ft)	#1115	195	361	0	307	0
Internal Link Dist (ft)		687	984		792	
Turn Bay Length (ft)	250			500	250	
Base Capacity (vph)	510	2229	1010	1507	525	1507
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	1.49	0.35	0.73	0.43	0.57	0.19
Intersection Summary						
Area Type:	Other					
Cycle Length: 123						
Actuated Cycle Length: 11	3					
Natural Cycle: 120						
Control Type: Actuated-Ur	ncoordinated					
Maximum v/c Ratio: 1.49						
Intersection Signal Delay:	73.9			Ir	tersection	LOS: F
Intersection Capacity Utiliz						of Service
Analysis Period (min) 15	-aaon 31.070			IC	O LEVEL	JI OUI VIUE
Alialysis reliou (IIIII) 15	., .					


~ Volume exceeds capacity, queue is theoretically infinite.

	•	•	†	~	-	↓
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W	11511	^	7	ሻሻ	↑ ↑
Traffic Volume (vph)	313	16	531	42	318	643
Future Volume (vph)	313	16	531	42	318	643
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1900	1900	1900	1900	1900	1900
	-8%	12	-2%	10	11	-1%
Grade (%)		^	-270	200	045	-170
Storage Length (ft)	0	0		200	215	
Storage Lanes	1	0		1	2	
Taper Length (ft)	25	4.00	0.05	4.00	86	0.05
Lane Util. Factor	1.00	1.00	0.95	1.00	0.97	0.95
Ped Bike Factor						
Frt	0.993			0.850		
Flt Protected	0.955				0.950	
Satd. Flow (prot)	1856	0	3403	1464	3335	3472
Flt Permitted	0.955				0.950	
Satd. Flow (perm)	1856	0	3403	1464	3335	3472
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)	2	. 50		49		
Link Speed (mph)	30		50			50
Link Distance (ft)	334		905			488
Travel Time (s)	7.6		12.3			6.7
	7.0		12.3			0.7
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)	0.05	0.05	0.05	0.05	0.05	0.05
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	1%	0%	0%	4%	2%	1%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	368	19	625	49	374	756
Shared Lane Traffic (%)						
Lane Group Flow (vph)	387	0	625	49	374	756
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12	ragin	22	ragiit	Lon	22
Link Offset(ft)	0		0			0
						16
Crosswalk Width(ft)	16		16			10
Two way Left Turn Lane	0.05	0.05	4.00	4.00	4.04	4.04
Headway Factor	0.95	0.95	1.08	1.08	1.04	1.04
Turning Speed (mph)	15	9		9	15	
Number of Detectors	1		2	1	1	2
Detector Template	Left		Thru	Right	Left	Thru
Leading Detector (ft)	20		100	20	20	100
Trailing Detector (ft)	0		0	0	0	0
Turn Type	Prot		NA	pm+ov	Prot	NA
Protected Phases	8		2	8	1	6
Permitted Phases				2		
Detector Phase	8		2	8	1	6
Switch Phase						U
Swillin Filase						

	•	•	†	<i>></i>	/	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Minimum Initial (s)	10.0		12.0	10.0	12.0	12.0
Minimum Split (s)	26.0		36.0	26.0	36.0	36.0
Total Split (s)	41.0		43.0	41.0	42.0	85.0
Total Split (%)	32.5%		34.1%	32.5%	33.3%	67.5%
Maximum Green (s)	35.0		36.0	35.0	35.0	78.0
Yellow Time (s)	5.0		5.0	5.0	5.0	5.0
All-Red Time (s)	1.0		2.0	1.0	2.0	2.0
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0		7.0	6.0	7.0	7.0
	0.0			0.0		7.0
Lead/Lag			Lag		Lead	
Lead-Lag Optimize?	2.0		Yes	2.0	Yes	2.0
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0
Minimum Gap (s)	3.0		3.0	3.0	3.0	3.0
Time Before Reduce (s)	0.0		0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0		0.0	0.0	0.0	0.0
Recall Mode	None		Min	None	Min	Min
Walk Time (s)						
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)						
Act Effct Green (s)	23.3		22.1	52.7	16.2	45.5
Actuated g/C Ratio	0.28		0.27	0.64	0.20	0.55
v/c Ratio	0.74		0.69	0.05	0.57	0.39
Control Delay	37.0		32.4	1.9	35.9	11.7
Queue Delay	0.0		0.0	0.0	0.0	0.0
Total Delay	37.0		32.4	1.9	35.9	11.7
LOS	D		С	Α	D	В
Approach Delay	37.0		30.2			19.7
Approach LOS	D		С			В
Queue Length 50th (ft)	175		147	0	89	106
Queue Length 95th (ft)	311		242	10	159	176
Internal Link Dist (ft)	254		825	10	100	408
Turn Bay Length (ft)	207		UZU	200	215	700
Base Capacity (vph)	824		1552	1181	1478	3143
	0		0	0	0	0
Starvation Cap Reductn			0			
Spillback Cap Reductn	0			0	0	0
Storage Cap Reductn	0		0	0	0	0
Reduced v/c Ratio	0.47		0.40	0.04	0.25	0.24
Intersection Summary						
Area Type:	Other					
Cycle Length: 126						
Actuated Cycle Length: 82	0.4					
Natural Cycle: 100	·					
Control Type: Semi Act-U	ncoord					
Maximum v/c Ratio: 0.74	icoord					
Intersection Signal Delay:	26.0			ءا	ntersectio	n I OS·C
,						
Intersection Capacity Utiliz	zation 59.7%			I	JU Level	of Service
Analysis Period (min) 15						

	۶	→	•	•	←	•	4	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					f)			4				
Traffic Volume (vph)	0	0	0	0	50	7	2	893	29	0	0	0
Future Volume (vph)	0	0	0	0	50	7	2	893	29	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	13	12	12	12	12
Grade (%)		0%			-5%			-7%			0%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	0		0	0		0	0		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt					0.983			0.996				
Flt Protected												
Satd. Flow (prot)	0	0	0	0	1850	0	0	2002	0	0	0	0
Flt Permitted												
Satd. Flow (perm)	0	0	0	0	1850	0	0	2002	0	0	0	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		124			297			300			404	
Travel Time (s)		2.8			6.8			6.8			9.2	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	0%	0%	4%	0%	0%	1%	4%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	0	0	0	0	62	9	2	1102	36	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	0	0	0	71	0	0	1140	0	0	0	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	0.97	0.97	0.97	0.96	0.92	0.96	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Stop			Stop			Free			Stop	
Intersection Summary												
Area Type:	Other											
Control Type: Unsignalized												

Control Type: Unsignalized

Intersection Capacity Utilization 58.9% Analysis Period (min) 15

ICU Level of Service B

Intersection												
Int Delay, s/veh	1.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					î,			4				
Traffic Vol, veh/h	0	0	0	0	50	7	2	893	29	0	0	0
Future Vol, veh/h	0	0	0	0	50	7	2	893	29	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None	<u>.</u>	·-	None	-	-	None	<u>-</u>	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	2	-	-	0	-	-	0	-	-	16965	-
Grade, %	-	0	-	-	-5	-	-	-7	-	-	0	-
Peak Hour Factor	81	81	81	81	81	81	81	81	81	81	81	81
Heavy Vehicles, %	0	0	0	0	4	0	0	1	4	0	0	0
Mvmt Flow	0	0	0	0	62	9	2	1102	36	0	0	0
Major/Minor			N	Minor1		N	/lajor1					
Conflicting Flow All				-	1124	1120	0	0	0			
Stage 1				_	1124	-	-	-	-			
Stage 2				_	0	_	_	_	_			
Critical Hdwy				_	5.54	5.7	4.1	_	_			
Critical Hdwy Stg 1				_	4.54	-	-	_	_			
Critical Hdwy Stg 2				-		_	_	_	_			
Follow-up Hdwy				_	4.036	3.3	2.2	_	_			
Pot Cap-1 Maneuver				0	278	296		_	_			
Stage 1				0	380	-	_	_	_			
Stage 2				0	-	_	_	_	_			
Platoon blocked, %								_	_			
Mov Cap-1 Maneuver				-	0	296	-	_	-			
Mov Cap-2 Maneuver				_	0	-	-	_	-			
Stage 1				-	0	-	-	_	-			
Stage 2				-	0	-	-	_	_			
J												
Approach				WB			NB					
HCM Control Delay, s				20.9								
HCM LOS				C								
110M 200												
Minor Lanc/Major Mumi		NBL	NBT	NDD	WBLn1							
Minor Lane/Major Mymt		INDL	INDI									
Capacity (veh/h)		-	-	-	296							
HCM Control Dolor (a)		-	-		0.238							
HCM Control Delay (s)		-	-	-	_0.0							
HCM CEth (/tile O(veh)		-	-	-	С							
HCM 95th %tile Q(veh)		-	-	-	0.9							

	۶	→	•	•	•	•	•	†	<i>></i>	/	ţ	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	7		ર્ન	7	7	†	7	7	†	7
Traffic Volume (vph)	205	0	146	25	2	23	35	1025	0	1	348	10
Future Volume (vph)	205	0	146	25	2	23	35	1025	0	1	348	10
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (%)		4%			-1%			7%			-4%	
Storage Length (ft)	0		315	0		125	280		445	150		275
Storage Lanes	0		1	0		1	1		1	1		1
Taper Length (ft)	25			25			86			86		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt			0.850			0.850						0.850
Flt Protected		0.950			0.955		0.950			0.950		
Satd. Flow (prot)	0	1769	1479	0	1767	1623	1476	1815	1834	1841	1882	1647
Flt Permitted	•	0.737			0.666	.020	0.422			0.090		
Satd. Flow (perm)	0	1372	1479	0	1232	1623	656	1815	1834	174	1882	1647
Right Turn on Red		1012	Yes		1202	Yes	000	1010	Yes		1002	Yes
Satd. Flow (RTOR)			168			37			100			83
Link Speed (mph)		30	100		30	O1		55			55	00
Link Distance (ft)		601			392			1478			1166	
Travel Time (s)		13.7			8.9			18.3			14.5	
Confl. Peds. (#/hr)		10.1			0.0			10.0			11.0	
Confl. Bikes (#/hr)												
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	7%	0%	50%	0%	18%	1%	0%	0%	3%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	236	0	168	29	2	26	40	1178	0	1	400	11
Shared Lane Traffic (%)	200	U	100	20		20	70	1170	J		400	
Lane Group Flow (vph)	0	236	168	0	31	26	40	1178	0	1	400	11
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Leit	0	rtigiit	Leit	0	rtigiit	LGIL	12	ragni	LGIL	12	rtigiit
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.03	1.03	1.03	0.99	0.99	0.99	1.05	1.05	1.05	0.97	0.97	0.97
Turning Speed (mph)	1.03	1.03	1.03	15	0.99	9	1.05	1.05	1.03	15	0.97	9
Number of Detectors	13	2	1	1	2	1	13	2	1	1	2	1
Detector Template	Left	2	1	Left	2	ı	ı	2	I	I		I
Leading Detector (ft)	20	83	35	20	83	35	35	83	35	35	83	35
. ,	0	-5	-5	0	-5	-5	-5	-5	-5	-5	-5	-5
Trailing Detector (ft)												
Turn Type	Perm	NA	pm+ov	Perm	NA	pm+ov	pm+pt	NA	Perm	pm+pt	NA 2	Perm
Protected Phases	0	8	1	4	4	5	1	6	^	5	2	0
Permitted Phases	8		8	4	,	4	6		6	2	_	2
Detector Phase	8	8	1	4	4	5	1	6	6	5	2	2
Switch Phase												

	•	→	•	•	•	•	1	†	<i>></i>	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	5.0	3.0	5.0	5.0	3.0	3.0	5.0	5.0	3.0	5.0	5.0
Minimum Split (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	12.0	12.0	10.0	12.0	12.0
Total Split (s)	45.0	45.0	27.0	45.0	45.0	27.0	27.0	47.0	47.0	27.0	47.0	47.0
Total Split (%)	37.8%	37.8%	22.7%	37.8%	37.8%	22.7%	22.7%	39.5%	39.5%	22.7%	39.5%	39.5%
Maximum Green (s)	40.0	40.0	20.0	40.0	40.0	20.0	20.0	40.0	40.0	20.0	40.0	40.0
Yellow Time (s)	4.0	4.0	5.0	4.0	4.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	1.0	1.0	2.0	1.0	1.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		5.0	7.0		5.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
Lead/Lag			Lead			Lead	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?			Yes			Yes	Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0	2.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Minimum Gap (s)	3.0	3.0	2.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Recall Mode	None	None	None	None	None	None	None	Max	Max	None	Max	Max
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		19.7	30.4		19.7	29.4	51.1	48.6		44.9	40.2	40.2
Actuated g/C Ratio		0.23	0.36		0.23	0.35	0.60	0.57		0.53	0.47	0.47
v/c Ratio		0.74	0.26		0.11	0.04	0.09	1.13		0.01	0.45	0.01
Control Delay		44.6	4.0		25.7	4.3	8.2	93.5		8.0	18.2	0.0
Queue Delay		0.0	0.0		0.0	0.0	0.0	0.0		0.0	0.0	0.0
Total Delay		44.6	4.0		25.7	4.3	8.2	93.5		8.0	18.2	0.0
LOS		D	Α		С	Α	Α	F		Α	В	Α
Approach Delay		27.7			16.0			90.7			17.7	
Approach LOS		С			В			F			В	
Queue Length 50th (ft)		116	0		13	0	7	~681		0	135	0
Queue Length 95th (ft)		190	33		34	11	23	#1165		2	248	0
Internal Link Dist (ft)		521			312			1398			1086	
Turn Bay Length (ft)			315			125	280			150		275
Base Capacity (vph)		651	862		584	876	604	1041		504	893	825
Starvation Cap Reductn		0	0		0	0	0	0		0	0	0
Spillback Cap Reductn		0	0		0	0	0	0		0	0	0
Storage Cap Reductn		0	0		0	0	0	0		0	0	0
Reduced v/c Ratio		0.36	0.19		0.05	0.03	0.07	1.13		0.00	0.45	0.01

Intersection Summary

Area Type: Other

Cycle Length: 119

Actuated Cycle Length: 84.7

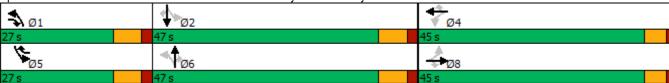
Natural Cycle: 120

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 1.13 Intersection Signal Delay: 62.1 Intersection Capacity Utilization 84.5%

Intersection LOS: E
ICU Level of Service E

Analysis Period (min) 15


~ Volume exceeds capacity, queue is theoretically infinite.

Synchro 10 Report Page 10 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	•	•	†	/	>	ļ			
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT			
Lane Configurations	ሻ	7	↑	7	ሻ	†			
Traffic Volume (vph)	6	136	924	1	8	511			
Future Volume (vph)	6	136	924	1	8	511			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Lane Width (ft)	11	11	12	12	10	10			
Grade (%)	-3%		2%			-1%			
Storage Length (ft)	0	0		15	175				
Storage Lanes	1	1		1	1				
Taper Length (ft)	25				86				
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00			
Ped Bike Factor									
Frt		0.850		0.850					
Flt Protected	0.950				0.950				
Satd. Flow (prot)	1771	1554	1862	1599	1512	1714			
Flt Permitted	0.950	. 50 .	. 302	. 300	0.950				
Satd. Flow (perm)	1771	1554	1862	1599	1512	1714			
Link Speed (mph)	25	1301	55	1300	1012	55			
Link Distance (ft)	589		993			1478			
Travel Time (s)	16.1		12.3			18.3			
Confl. Peds. (#/hr)	10.1		12.0			10.0			
Confl. Bikes (#/hr)									
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88			
Growth Factor	100%	100%	100%	100%	100%	100%			
Heavy Vehicles (%)	0%	2%	1%	0%	12%	4%			
Bus Blockages (#/hr)	0 /8	0	0	0 /0	0	0			
Parking (#/hr)	U	U	U	U	U	U			
	0%		0%			0%			
Mid-Block Traffic (%)	7	155		1	0	581			
Adj. Flow (vph)	I	100	1050	I	9	501			
Shared Lane Traffic (%)	7	155	1050	_1_	0	E01			
Lane Group Flow (vph)	7 No.	155 No.	1050	1	9 No.	581			
Enter Blocked Intersection	No	No	No	No	No	No			
Lane Alignment	Left	Right	Left	Right	Left	Left			
Median Width(ft)	11		12			12			
Link Offset(ft)	0		0			0			
Crosswalk Width(ft)	16		16			16			
Two way Left Turn Lane									
Headway Factor	1.02	1.02	1.01	1.01	1.09	1.09			
Turning Speed (mph)	15	9		9	15				
Sign Control	Stop		Free			Free			
Intersection Summary									
Area Type: Other									
Control Type: Unsignalized									
Intersection Capacity Utilizat	ion 63.7%			IC	CU Level o	of Service			
Analysis Period (min) 15									
, , , , , , , , , , , , , , , , , , , ,									

Intersection						
Int Delay, s/veh	2.7					
		WDD	NDT	NDD	CDI	CDT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ነ	126	024		<u></u>	†
Traffic Vol, veh/h	6	136 136	924 924	1	8	511 511
Future Vol, veh/h Conflicting Peds, #/hr	0	0	924	1	8	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	Stop -	Yield	riee -	Free	riee -	None
Storage Length	0	o Tielu	-	15	175	None
Veh in Median Storage		-	0	-	- 175	0
Grade, %	-3	-	2	_	_	-1
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, %	0	2	1	00	12	4
Mymt Flow	7	155	1050	1	9	581
IVIVIIIL FIOW	ı	100	1030	ļ	9	501
Major/Minor I	Minor1	ľ	Major1		Major2	
Conflicting Flow All	1649	1050	0	-	1050	0
Stage 1	1050	-	-	-	-	-
Stage 2	599	-	-	-	-	-
Critical Hdwy	5.8	5.92	-	-	4.22	-
Critical Hdwy Stg 1	4.8	-	-	-	-	-
Critical Hdwy Stg 2	4.8	-	-	-	-	-
Follow-up Hdwy	3.5	3.318	-	-	2.308	-
Pot Cap-1 Maneuver	145	301	-	0	626	-
Stage 1	405	-	-	0	-	-
Stage 2	611	-	-	0	-	-
Platoon blocked, %			-			-
Mov Cap-1 Maneuver	143	301	-	-	626	-
Mov Cap-2 Maneuver	143	-	-	-	-	-
Stage 1	405	-	-	-	-	-
Stage 2	602	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	29		0		0.2	
HCM LOS	D					
Minor Lane/Major Mvm	t	NBTV	VBLn1V	VBLn2	SBL	SBT
Capacity (veh/h)		-	143	301	626	-
HCM Lane V/C Ratio		-	0.048	0.513	0.015	-
HCM Control Delay (s)		-	31.4	28.9	10.8	-
HCM Lane LOS		-	D	D	В	-
HCM 95th %tile Q(veh)		-	0.1	2.8	0	-

	۶	•	4	†	ļ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			4	1>	
Traffic Volume (vph)	3	6	11	922	512	5
Future Volume (vph)	3	6	11	922	512	5
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	11	11	11	11
Grade (%)	3%			5%	-2%	
Storage Length (ft)	0	0	0			0
Storage Lanes	1	0	0			0
Taper Length (ft)	25	•	25			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.914				0.999	
Flt Protected	0.982			0.999	0.000	
Satd. Flow (prot)	1680	0	0	1754	1800	0
Flt Permitted	0.982	U	U	0.999	1000	U
Satd. Flow (perm)	1680	0	0	1754	1800	0
Link Speed (mph)	30	U	U	55	55	U
Link Speed (mpn) Link Distance (ft)	639			1813	993	
Travel Time (s)	14.5			22.5	12.3	
	14.5			22.5	12.3	
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)	0.00	0.00	0.00	0.00	0.00	0.00
Peak Hour Factor	0.83	0.83	0.83	0.83	0.83	0.83
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	0%	2%	3%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%			0%	0%	
Adj. Flow (vph)	4	7	13	1111	617	6
Shared Lane Traffic (%)						
Lane Group Flow (vph)	11	0	0	1124	623	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12			0	0	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	1.02	1.02	1.08	1.08	1.03	1.03
Turning Speed (mph)	15	9	15			9
Sign Control	Stop			Free	Free	
Intersection Summary						
	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizat	tion 67 3%			ır	III evel	of Service (
Analysis Period (min) 15	uoii 01.0/0			IC	O LEVEL	or oervice (
Analysis i Gilou (IIIIII) 13						

Intersection						
Int Delay, s/veh	0.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
		LDIX	NDL			SDIX
Lane Configurations	¥	^	4.4	4	}	г
Traffic Vol, veh/h	3	6	11	922	512	5
Future Vol, veh/h	3	6	11	922	512	5
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	, # 0	-	-	0	0	-
Grade, %	3	_	_	5	-2	-
Peak Hour Factor	83	83	83	83	83	83
Heavy Vehicles, %	0	0	0	2	3	0
Mymt Flow	4	7	13	1111	617	6
MINITIL FIOW	4	1	13	1111	017	0
Major/Minor	Minor2	N	//ajor1	N	/lajor2	
Conflicting Flow All	1757	620	623	0		0
Stage 1	620	-	-	-	_	-
Stage 2	1137	-	_	_	_	_
Critical Hdwy	7	6.5	4.1	-	-	-
Critical Hdwy Stg 1	6	-	-	-	-	-
Critical Hdwy Stg 2	6	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	70	467	968	-	-	-
Stage 1	487	-	-	-	-	-
Stage 2	256	-	-	-	-	-
Platoon blocked, %				_	_	_
Mov Cap-1 Maneuver	68	467	968	_	_	_
Mov Cap-1 Maneuver	68	407	300		_	
				<u>-</u>		
Stage 1	470	-	-	-	-	-
Stage 2	256	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	29.5		0.1		0	
HCM LOS			U. I		U	
HOIVI LUS	D					
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		968	-		-	
HCM Lane V/C Ratio		0.014		0.069		
					-	-
HCM Control Delay (s)		8.8	0	29.5	-	-
HCM Lane LOS		A	Α	D	-	-
HCM 95th %tile Q(veh)	0	-	0.2	-	-

Lane Group		₹	×	À	~	×	₹	ን	×	~	Ĺ	×	*~
Traffic Volume (vph)	Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Traffic Volume (vph)	Lane Configurations		43-		ř	*	7		ની	7		ર્ન	7
Ideal Flow (yoph)		2		104	176		20	89		142	124		
Lane Width (ft)	Future Volume (vph)	2	412	104	176	844	20	89	0	142	124	0	0
Lane Width (ft)	,	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)				11	11		11		10				
Storage Langth (ft)													
Storage Lanes 0		0		0	120		200	0		95	0		0
Taper Length (ff)		0		0	1		1	0		1	0		1
Lane Util. Factor		25			86			25			25		
Ped Bike Factor		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fith Protected			1.00										
Fit Protected							0.850			0.850			
Satd. Flow (prot)					0.950				0.950			0.950	
Fit Permitted		0	1773	0		1792	1412	0		1545	0		1827
Satd. Flow (perm)	,, ,			-				_			-		
Page Page		0		0		1792	1412	0		1545	0		1827
Satid. Flow (RTOR) 23 28 30 30 25 30 25 30 328	,,				*			-			•		
Link Speed (mph) 55 55 55 30 25 Link Distance (ft) 1813 2280 328 518 Travel Time (s) 22.5 28.3 7.5 14.1 Confl. Peds. (#hr) 32.5 28.3 7.5 0.86 14.1 Confl. Bikes (#hr) 57 5 0.86			23										
Link Distance (ft)	,					55			30			25	
Travel Time (s)													
Confi. Peds. (#/hr) Confi. Bikes (#/hr)	` '												
Confl. Bikes (#/hr)	. ,			1	1	20.0							
Peak Hour Factor				•	•								
Growth Factor 100%		0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Heavy Vehicles (%)													
Bus Blockages (#/hr) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0													
Parking (#hr) Mid-Block Traffic (%) 0% 0% 0% 0% 0% 0% 0%	, ,												
Mid-Block Traffic (%) 0% 0% 0% 0% 0% 0% 0% Adj. Flow (vph) 2 479 121 205 981 23 103 0 165 144 0 0 0 Shared Lane Traffic (%) Lane Group Flow (vph) 0 602 0 205 981 23 0 103 165 0 144 0 0 No			-	-	-	-				-	-	-	
Adj. Flow (vph) 2 479 121 205 981 23 103 0 165 144 0 0 Shared Lane Traffic (%) Lane Group Flow (vph) 0 602 0 205 981 23 0 103 165 0 144 0 Enter Blocked Intersection No Do Do Do Do </td <td></td> <td></td> <td>0%</td> <td></td> <td></td> <td>0%</td> <td></td> <td></td> <td>0%</td> <td></td> <td></td> <td>0%</td> <td></td>			0%			0%			0%			0%	
Shared Lane Traffic (%) Lane Group Flow (vph) 0 602 0 205 981 23 0 103 165 0 144 0	` '	2		121	205		23	103		165	144		0
Lane Group Flow (vph) 0 602 0 205 981 23 0 103 165 0 144 0 Enter Blocked Intersection No	, , ,								-				
Enter Blocked Intersection No <th< td=""><td>. ,</td><td>0</td><td>602</td><td>0</td><td>205</td><td>981</td><td>23</td><td>0</td><td>103</td><td>165</td><td>0</td><td>144</td><td>0</td></th<>	. ,	0	602	0	205	981	23	0	103	165	0	144	0
Left Left Right Left Right Left Right Left Right Left Left Right Left Right Left Right Left Right Left Right Left Right Median Width(ft) 11													
Median Width(ft) 11 11 11 0 0 Link Offset(ft) 0 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 Two way Left Turn Lane Headway Factor 1.02 1.02 1.05 1.05 1.06 1.06 1.06 1.05 1.05 1.05 1.06 1.06 1.06 1.05 1.05 1.05 1.05 1.06 1.06 1.06 1.05 1.05 1.05 1.05 1.05 1.06 1.06 1.06 1.05													
Link Offset(ft) 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 Two way Left Turn Lane Headway Factor 1.02 1.02 1.05 1.05 1.05 1.06 1.06 1.06 1.05 1.05 1.05 Turning Speed (mph) 15 9 15 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 </td <td></td> <td></td> <td></td> <td>J</td> <td></td> <td></td> <td>J</td> <td></td> <td></td> <td>J</td> <td></td> <td></td> <td>J •</td>				J			J			J			J •
Crosswalk Width(ft) 16 16 16 16 16 Two way Left Turn Lane Headway Factor 1.02 1.02 1.02 1.05 1.05 1.06 1.06 1.06 1.05 1.05 1.05 Turning Speed (mph) 15 9 15 9 15 9 15 9 Number of Detectors 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1	` /								0				
Two way Left Turn Lane Headway Factor 1.02 1.02 1.02 1.05 1.05 1.06 1.06 1.06 1.05 1.05 1.05 Turning Speed (mph) 15 9 15 9 15 9 15 9 Number of Detectors 1 2 1 2 1 1 1 <			16			16						16	
Headway Factor 1.02 1.02 1.02 1.05 1.05 1.06 1.06 1.06 1.06 1.05 1.05 1.05 Turning Speed (mph) 15 9 15 9 15 9 15 9 Number of Detectors 1 2 1 2 1	. ,												
Turning Speed (mph) 15 9 15 9 15 9 15 9 Number of Detectors 1 2 1 2 1 2 1 3 3 3		1.02	1.02	1.02	1.05	1.05	1.05	1.06	1.06	1.06	1.05	1.05	1.05
Number of Detectors 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 3 3 3													
Detector Template Left Left Leading Detector (ft) 20 83 35 83 35 20 83 35 20 83 35 Trailing Detector (ft) 0 -5 -5 -5 -5 0 -5 -5 0 -5 -5 -5 Turn Type Perm NA pm+pt NA Perm Perm NA Perm Perm NA Perm Protected Phases 2 1 6 8 8 4 4 Detector Phase 2 2 1 6 8 8 8 4 4			2			2			2	1	1	2	1
Leading Detector (ft) 20 83 35 83 35 20 83 35 20 83 35 Trailing Detector (ft) 0 -5 -5 -5 -5 0 -5 -5 0 -5 -5 -5 -5 -5 0 -5 -5 -5 -5 -5 -5 0 -5 -5 -5 -5 -5 -5 0 -5		Left						Left			Left		
Trailing Detector (ft) 0 -5 -5 -5 -5 0 -5 -5 0 -5 -5 Tum Type Perm NA Perm Perm NA Perm Perm NA Perm Perm NA			83		35	83	35		83	35		83	35
Turn Type Perm NA pm+pt NA Perm Perm Perm Perm NA Perm Protected Phases 2 1 6 8 4 4 Permitted Phases 2 6 6 8 8 4 4 Detector Phase 2 2 1 6 8 8 8 4 4													
Protected Phases 2 1 6 8 4 Permitted Phases 2 6 6 8 8 4 4 Detector Phase 2 2 1 6 6 8 8 4 4 4											-		
Permitted Phases 2 6 6 8 8 4 4 Detector Phase 2 2 1 6 6 8 8 4 4 4		. 5					. 5	. 5		. 5	. 5		. 3
Detector Phase 2 2 1 6 6 8 8 4 4 4		2			•		6	8		8	4	•	4
			2			6			8			4	
	Switch Phase	_	_					-		-			

	₩.	\mathbf{x}	À	*	×	₹	7	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Minimum Initial (s)	10.0	10.0		3.0	10.0	10.0	3.0	3.0	3.0	5.0	5.0	5.0
Minimum Split (s)	17.0	17.0		10.0	17.0	17.0	10.0	10.0	10.0	10.0	10.0	10.0
Total Split (s)	52.0	52.0		13.0	65.0	65.0	20.0	20.0	20.0	20.0	20.0	20.0
Total Split (%)	61.2%	61.2%		15.3%	76.5%	76.5%	23.5%	23.5%	23.5%	23.5%	23.5%	23.5%
Maximum Green (s)	45.0	45.0		6.0	58.0	58.0	15.0	15.0	15.0	15.0	15.0	15.0
Yellow Time (s)	5.0	5.0		5.0	5.0	5.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)		0.0		0.0	0.0	0.0		0.0	0.0		0.0	0.0
Total Lost Time (s)		7.0		7.0	7.0	7.0		5.0	5.0		5.0	5.0
Lead/Lag	Lag	Lag		Lead								
Lead-Lag Optimize?	Yes	Yes		Yes								
Vehicle Extension (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Minimum Gap (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Time Before Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Recall Mode	Max	Max		None	Max	Max	Max	Max	Max	Max	Max	Max
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		45.0		58.0	58.0	58.0		15.0	15.0		15.0	
Actuated g/C Ratio		0.53		0.68	0.68	0.68		0.18	0.18		0.18	
v/c Ratio		0.64		0.41	0.80	0.02		0.52	0.40		0.66	
Control Delay		17.4		7.5	16.1	1.7		42.3	8.6		49.0	
Queue Delay		0.0		0.0	0.0	0.0		0.0	0.0		0.0	
Total Delay		17.4		7.5	16.1	1.7		42.3	8.6		49.0	
LOS		В		Α	В	Α		D	Α		D	
Approach Delay		17.4			14.4			21.5			49.0	
Approach LOS		В			В			С			D	
Queue Length 50th (ft)		206		34	316	0		50	0		72	
Queue Length 95th (ft)		293		55	449	6		97	46		#141	
Internal Link Dist (ft)		1733			2200			248			438	
Turn Bay Length (ft)				120		200			95			
Base Capacity (vph)		947		496	1222	971		198	408		218	
Starvation Cap Reductn		0		0	0	0		0	0		0	
Spillback Cap Reductn		0		0	0	0		0	0		0	
Storage Cap Reductn		0		0	0	0		0	0		0	
Reduced v/c Ratio		0.64		0.41	0.80	0.02		0.52	0.40		0.66	

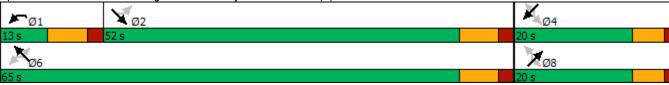
Area Type: Other

Cycle Length: 85

Actuated Cycle Length: 85

Natural Cycle: 60

Control Type: Actuated-Uncoordinated


Maximum v/c Ratio: 0.80

Intersection Signal Delay: 18.3 Intersection Capacity Utilization 101.9% Intersection LOS: B
ICU Level of Service G

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

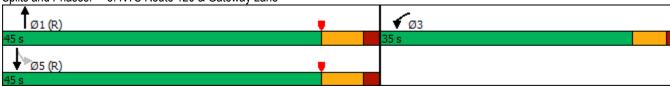
Splits and Phases: 7: 113 King Street Driveway/American Lane (S) & NYS Route 120

	•	•	†	-	-	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		7	HOIN	355	<u> </u>
Traffic Volume (vph)	82	332	708	41	229	449
Future Volume (vph)	82	332	708	41	229	449
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1900	1900	1900	1900	1900	1900
	-6%	12	2%	11	11	0%
Grade (%)		^	Z70	0	0	U%
Storage Length (ft)	0	0		0	0	
Storage Lanes	1	0		0	0	
Taper Length (ft)	25	4.00	4.00	4.00	25	4.00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt	0.892		0.993			
Flt Protected	0.990					0.983
Satd. Flow (prot)	1708	0	1769	0	0	1753
Flt Permitted	0.990					0.265
Satd. Flow (perm)	1708	0	1769	0	0	473
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)	116	. 50	5	. 50		
Link Speed (mph)	30		55			55
Link Distance (ft)	328		519			557
Travel Time (s)	7.5		6.4			6.9
	7.5		0.4			0.9
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)	0.00	0.00	0.00	0.00	0.00	0.00
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	6%	0%	2%	3%	1%	4%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	93	377	805	47	260	510
Shared Lane Traffic (%)						
Lane Group Flow (vph)	470	0	852	0	0	770
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12		0		Lon	0
Link Offset(ft)	0		0			0
	16		16			16
Crosswalk Width(ft)	10		10			10
Two way Left Turn Lane	0.00	0.00	4.00	4.00	4.04	4.04
Headway Factor	0.96	0.96	1.06	1.06	1.04	1.04
Turning Speed (mph)	15	9		9	15	
Number of Detectors	1		2		1	2
Detector Template					Left	
Leading Detector (ft)	35		83		20	83
Trailing Detector (ft)	-5		-5		0	-5
Turn Type	Prot		NA		Perm	NA
Protected Phases	3		1			5
Permitted Phases	-		-		5	
Detector Phase	3		1		5	5
Switch Phase	J				3	0
SWILCH FHASE						

	•	•	†	/	>	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Minimum Initial (s)	5.0		5.0		5.0	5.0
Minimum Split (s)	10.0		12.0		12.0	12.0
Total Split (s)	35.0		45.0		45.0	45.0
Total Split (%)	43.8%		56.3%		56.3%	56.3%
Maximum Green (s)	30.0		38.0		38.0	38.0
Yellow Time (s)	4.0		5.0		5.0	5.0
All-Red Time (s)	1.0		2.0		2.0	2.0
Lost Time Adjust (s)	0.0		0.0			0.0
Total Lost Time (s)	5.0		7.0			7.0
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0		3.0		3.0	3.0
Minimum Gap (s)	3.0		3.0		3.0	3.0
Time Before Reduce (s)	0.0		0.0		0.0	0.0
Time To Reduce (s)	0.0		0.0		0.0	0.0
Recall Mode	None		C-Max		C-Max	C-Max
Walk Time (s)	140110		O WIGA		JIVIUX	JIVIUX
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)						
Act Effct Green (s)	22.7		45.3			45.3
Actuated g/C Ratio	0.28		0.57			0.57
v/c Ratio	0.20		0.85			2.88
Control Delay	32.3		17.0			872.6
Queue Delay	0.0		0.0			0.0
Total Delay	32.3		17.0			872.6
LOS	32.3 C		17.0 B			672.0 F
	32.3		17.0			872.6
Approach LOS						
Approach LOS	C 165		B			F 554
Queue Length 50th (ft)	165		66 #625			~554 #700
Queue Length 95th (ft)	237		#625			#790
Internal Link Dist (ft)	248		439			477
Turn Bay Length (ft)	740		4000			007
Base Capacity (vph)	713		1003			267
Starvation Cap Reductn	0		0			0
Spillback Cap Reductn	0		0			0
Storage Cap Reductn	0		0			0
Reduced v/c Ratio	0.66		0.85			2.88
Intersection Summary						
Area Type:	Other					
Cycle Length: 80						
Actuated Cycle Length: 80)					
Offset: 13 (16%), Reference		1:NBT ar	nd 5:SBTL	. Start of	f Yellow	

Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow

Natural Cycle: 65


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 2.88

Intersection Signal Delay: 335.3 Intersection LOS: F
Intersection Capacity Utilization 116.9% ICU Level of Service H

- Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

	•	•	†	/	>	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ች	7	†			†
Traffic Volume (vph)	486	95	654	0	0	531
Future Volume (vph)	486	95	654	0	0	531
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1900	1300	1900	1900	1900	1900
	-2%	13	1%	11	- 11	1%
Grade (%)		475	1 70	^	^	1 70
Storage Length (ft)	0	175		0	0	
Storage Lanes	1	1		0	0	
Taper Length (ft)	25	4.00	4.00	4.00	25	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt		0.850				
Flt Protected	0.950					
Satd. Flow (prot)	1805	1669	1792	0	0	1740
Flt Permitted	0.950					
Satd. Flow (perm)	1805	1669	1792	0	0	1740
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)		102				
Link Speed (mph)	30		55			55
Link Distance (ft)	321		928			519
Travel Time (s)	7.3		11.5			6.4
Confl. Peds. (#/hr)	1.5		11.5			0.4
Confl. Bikes (#/hr)	0.00	0.00	0.00	0.00	0.00	0.00
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	1%	1%	2%	0%	0%	5%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	523	102	703	0	0	571
Shared Lane Traffic (%)						
Lane Group Flow (vph)	523	102	703	0	0	571
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12		0		_3.,	0
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane	10		10			10
	0.00	0.05	1.05	1.05	1.05	1 05
Headway Factor	0.99	0.95	1.05	1.05	1.05	1.05
Turning Speed (mph)	15	9	^	9	15	^
Number of Detectors	1	1	2			2
Detector Template						
Leading Detector (ft)	35	35	83			83
Trailing Detector (ft)	-5	-5	-5			-5
Turn Type	Prot	Perm	NA			NA
Protected Phases	3		1			5
Permitted Phases		3				
Detector Phase	3	3	1			5
Switch Phase		-				-

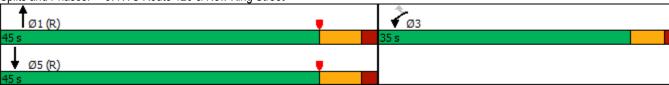
	€	•	†	~	-	ţ	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Minimum Initial (s)	5.0	5.0	5.0			5.0	
Minimum Split (s)	10.0	10.0	12.0			12.0	
Total Split (s)	35.0	35.0	45.0			45.0	
Total Split (%)	43.8%	43.8%	56.3%			56.3%	
Maximum Green (s)	30.0	30.0	38.0			38.0	
Yellow Time (s)	4.0	4.0	5.0			5.0	
All-Red Time (s)	1.0	1.0	2.0			2.0	
Lost Time Adjust (s)	0.0	0.0	0.0			0.0	
Total Lost Time (s)	5.0	5.0	7.0			7.0	
Lead/Lag							
Lead-Lag Optimize?							
Vehicle Extension (s)	3.0	3.0	3.0			3.0	
Minimum Gap (s)	3.0	3.0	3.0			3.0	
Time Before Reduce (s)	0.0	0.0	0.0			0.0	
Time To Reduce (s)	0.0	0.0	0.0			0.0	
Recall Mode	None	None	C-Max			C-Max	
Walk Time (s)							
Flash Dont Walk (s)							
Pedestrian Calls (#/hr)							
Act Effct Green (s)	26.9	26.9	41.1			41.1	
Actuated g/C Ratio	0.34	0.34	0.51			0.51	
v/c Ratio	0.86	0.16	0.76			0.64	
Control Delay	40.1	4.5	23.8			8.8	
Queue Delay	0.0	0.0	1.1			0.4	
Total Delay	40.1	4.5	24.9			9.2	
LOS	D	Α	С			Α	
Approach Delay	34.3		24.9			9.2	
Approach LOS	С		С			Α	
Queue Length 50th (ft)	232	0	279			81	
Queue Length 95th (ft)	#380	29	#497			m44	
Internal Link Dist (ft)	241		848			439	
Turn Bay Length (ft)		175					
Base Capacity (vph)	676	689	921			894	
Starvation Cap Reductn	0	0	0			66	
Spillback Cap Reductn	0	4	72			0	
Storage Cap Reductn	0	0	0			0	
Reduced v/c Ratio	0.77	0.15	0.83			0.69	
Intersection Summary							
Area Type:	Othor						

Area Type: Other

Cycle Length: 80
Actuated Cycle Length: 80

Offset: 13 (16%), Referenced to phase 1:NBT and 5:SBT, Start of Yellow

Natural Cycle: 60


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.86 Intersection Signal Delay: 23.3 Intersection Capacity Utilization 71.3%

Intersection LOS: C
ICU Level of Service C

- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
- m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 9: NYS Route 120 & New King Street

	۶	-	•	•	←	•	•	†	/	\	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	4					7	∱ ∱		7	†	7
Traffic Volume (vph)	480	268	130	0	0	0	297	175	23	33	285	699
Future Volume (vph)	480	268	130	0	0	0	297	175	23	33	285	699
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	16	16	16	12	12	12	12	12	12
Grade (%)		1%			-4%			-1%			1%	
Storage Length (ft)	0		0	0		0	385		0	190		460
Storage Lanes	1		0	0		0	1		0	1		1
Taper Length (ft)	25			25			86			86		
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.956						0.983				0.850
Flt Protected	0.950	0.995					0.950			0.950		
Satd. Flow (prot)	1689	1686	0	0	0	0	1796	3386	0	1633	1800	1575
Flt Permitted	0.950	0.995					0.290			0.620		
Satd. Flow (perm)	1689	1686	0	0	0	0	548	3386	0	1066	1800	1575
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		27						11				114
Link Speed (mph)		30			30			55			55	
Link Distance (ft)		176			314			586			596	
Travel Time (s)		4.0			7.1			7.3			7.4	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	1%	2%	0%	0%	0%	0%	1%	6%	0%	10%	5%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	511	285	138	0	0	0	316	186	24	35	303	744
Shared Lane Traffic (%)	10%											
Lane Group Flow (vph)	460	474	0	0	0	0	316	210	0	35	303	744
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.01	1.01	1.01	0.82	0.82	0.82	0.99	0.99	0.99	1.01	1.01	1.01
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2					1	2		1	2	1
Detector Template												
Leading Detector (ft)	35	83					35	83		35	83	35
Trailing Detector (ft)	-5	-5					-5	-5		-5	-5	-5
Turn Type	Split	NA					pm+pt	NA		pm+pt	NA	pm+ov
Protected Phases	3	3					6	1		2	5	3
Permitted Phases							1			5		5
Detector Phase	3	3					6	1		2	5	3
Switch Phase	-											- 3

	۶	-	•	•	←	•	4	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	5.0					3.0	8.0		3.0	20.0	5.0
Minimum Split (s)	10.0	10.0					10.0	15.0		10.0	27.0	10.0
Total Split (s)	65.0	65.0					22.0	27.0		22.0	27.0	65.0
Total Split (%)	57.0%	57.0%					19.3%	23.7%		19.3%	23.7%	57.0%
Maximum Green (s)	60.0	60.0					15.0	20.0		15.0	20.0	60.0
Yellow Time (s)	4.0	4.0					5.0	5.0		5.0	5.0	4.0
All-Red Time (s)	1.0	1.0					2.0	2.0		2.0	2.0	1.0
Lost Time Adjust (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0					7.0	7.0		7.0	7.0	5.0
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0					2.0	2.0		2.0	2.0	3.0
Minimum Gap (s)	3.0	3.0					2.0	2.0		2.0	2.0	3.0
Time Before Reduce (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Recall Mode	None	None					None	Min		None	Min	None
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)	40.5	40.5					42.7	35.1		26.3	20.4	68.0
Actuated g/C Ratio	0.42	0.42					0.45	0.37		0.28	0.21	0.71
v/c Ratio	0.64	0.65					0.71	0.17		0.11	0.79	0.64
Control Delay	25.3	24.1					31.9	25.2		21.5	54.6	8.6
Queue Delay	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Total Delay	25.3	24.1					31.9	25.2		21.5	54.6	8.6
LOS	С	С					С	С		С	D	Α
Approach Delay		24.7						29.2			21.9	
Approach LOS		С						С			С	
Queue Length 50th (ft)	222	216					124	45		12	174	165
Queue Length 95th (ft)	320	316					#280	97		39	#398	253
Internal Link Dist (ft)		96			234			506			516	
Turn Bay Length (ft)							385			190		460
Base Capacity (vph)	1080	1088					444	1252		488	383	1434
Starvation Cap Reductn	0	0					0	0		0	0	0
Spillback Cap Reductn	0	0					0	0		0	0	0
Storage Cap Reductn	0	0					0	0		0	0	0
Reduced v/c Ratio	0.43	0.44					0.71	0.17		0.07	0.79	0.52

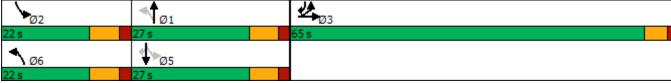
Area Type: Other

Cycle Length: 114

Actuated Cycle Length: 95.5

Natural Cycle: 70

Control Type: Actuated-Uncoordinated


Maximum v/c Ratio: 0.79

Intersection Signal Delay: 24.4 Intersection LOS: C
Intersection Capacity Utilization 73.2% ICU Level of Service D

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

	۶	→	*	•	←	4	1	†	~	-	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્ન			f)				7			
Traffic Volume (vph)	3	255	0	0	409	588	0	0	622	0	0	0
Future Volume (vph)	3	255	0	0	409	588	0	0	622	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	15	15	15	12	12	12	13	13	13	16	16	16
Grade (%)		1%			-1%			1%			2%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	0		0	0		0	0		1	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt					0.920				0.865			
Flt Protected		0.999										
Satd. Flow (prot)	0	2037	0	0	1715	0	0	0	1690	0	0	0
Flt Permitted		0.999										
Satd. Flow (perm)	0	2037	0	0	1715	0	0	0	1690	0	0	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		331			176			301			377	
Travel Time (s)		7.5			4.0			6.8			8.6	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	2%	0%	0%	3%	2%	0%	0%	0%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	3	271	0	0	435	626	0	0	662	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	274	0	0	1061	0	0	0	662	0	0	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	0.89	0.89	0.89	0.99	0.99	0.99	0.96	0.96	0.96	0.86	0.86	0.86
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Free			Free			Stop			Stop	
Intersection Summary												

Area Type: Other Control Type: Unsignalized

Intersection Capacity Utilization 60.9%

ICU Level of Service B

Intersection													
Int Delay, s/veh	10.5												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		स			ĵ.				7				
Traffic Vol, veh/h	3	255	0	0	409	588	0	0	622	0	0	0	
Future Vol, veh/h	3	255	0	0	409	588	0	0	622	0	0	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	_	_	None	-	_	None	-	_	None	_	_	None	
Storage Length	_	-	_	_	_	-	-	_	0	_	-	_	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	16983	-	
Grade, %	_	1	_	_	-1	-	-	1	_	_	2	_	
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94	
Heavy Vehicles, %	0	2	0	0	3	2	0	0	0	0	0	0	
Mvmt Flow	3	271	0	0	435	626	0	0	662	0	0	0	
Major/Minor M	lajor1		ı	Major2		N	/linor1						
	1061	0	-		-	0	-	-	271				
Stage 1	-	-	-	-	-	-	-	-	-				
Stage 2	-	-	-	-	-	-	-	-	-				
Critical Hdwy	4.1	-	-	-	-	-	-	-	6.3				
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-				
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-				
Follow-up Hdwy	2.2	-	-	-	-	-	-	-	3.3				
Pot Cap-1 Maneuver	664	-	0	0	-	-	0	0	767				
Stage 1	-	-	0	0	-	-	0	0	-				
Stage 2	-	-	0	0	-	-	0	0	-				
Platoon blocked, %		-			-	-							
Mov Cap-1 Maneuver	664	-	-	-	-	-	-	0	767				
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	0	-				
Stage 1	-	-	-	-	-	-	-	0	-				
Stage 2	-	-	-	-	-	-	-	0	-				
ŭ													
Approach	EB			WB			NB						
HCM Control Delay, s	0.1			0			31.5						
HCM LOS							D						
Minor Lane/Major Mvmt	N	NBLn1	EBL	EBT	WBT	WBR							
Capacity (veh/h)		767	664	-	-	-							
HCM Lane V/C Ratio		0.863		-	-	-							
HCM Control Delay (s)		31.5	10.4	0	-	-							
HCM Lane LOS		D	В	Α	-	-							
HCM 95th %tile Q(veh)		10.5	0	-	-	-							

	۶	→	•	•	←	•	•	†	~	/	ţ	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					ર્ન						4	
Traffic Volume (vph)	0	0	0	409	0	0	0	0	0	259	0	0
Future Volume (vph)	0	0	0	409	0	0	0	0	0	259	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	14	14	13	13	12
Grade (%)		0%			-1%			2%			1%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	0		0	0		0	0		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt												
Flt Protected					0.950						0.950	
Satd. Flow (prot)	0	0	0	0	1761	0	0	0	0	0	1819	0
FIt Permitted					0.950						0.950	
Satd. Flow (perm)	0	0	0	0	1761	0	0	0	0	0	1819	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		182			331			377			345	
Travel Time (s)		4.1			7.5			8.6			7.8	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	0%	3%	0%	0%	0%	0%	0%	2%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	0	0	0	440	0	0	0	0	0	278	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	0	0	0	440	0	0	0	0	0	278	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0	•		0			0	J
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	0.99	0.99	0.99	1.01	0.93	0.93	0.96	0.96	1.01
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Free			Free			Stop			Stop	
Intersection Summary												
	Other											
Control Type: Unsignalized												
Intersection Capacity Utilizati	ion 43.7%			IC	CU Level	of Service	A					
					2 2 2 3 7 6 1 7							

Intersection												
Int Delay, s/veh	27.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					4						र्स	
Traffic Vol, veh/h	0	0	0	409	Ö	0	0	0	0	259	0	0
Future Vol, veh/h	0	0	0	409	0	0	0	0	0	259	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	, # -	0	-	-	0	-	-	16974	-	-	0	-
Grade, %	-	0	-	-	-1	-	-	2	-	-	1	-
Peak Hour Factor	93	93	93	93	93	93	93	93	93	93	93	93
Heavy Vehicles, %	0	0	0	3	0	0	0	0	0	2	0	0
Mvmt Flow	0	0	0	440	0	0	0	0	0	278	0	0
Major/Minor			N	Major2					ľ	Minor2		
Conflicting Flow All				0	0	0				880	880	-
Stage 1				-	-	-				880	880	-
Stage 2				_	-	-				0	0	-
Critical Hdwy				4.13	-	-				6.62	6.7	-
Critical Hdwy Stg 1				-	-	-				5.62	5.7	-
Critical Hdwy Stg 2				-	-	-				-	-	-
Follow-up Hdwy				2.227	-	-				3.518	4	-
Pot Cap-1 Maneuver				-	-	0				302	274	0
Stage 1				-	-	0				386	350	0
Stage 2				-	-	0				-	-	0
Platoon blocked, %					-							
Mov Cap-1 Maneuver				-	-	-				302	0	-
Mov Cap-2 Maneuver				-	-	-				302	0	-
Stage 1				-	-	-				386	0	-
Stage 2				-	-	-				-	0	-
Approach				WB						SB		
HCM Control Delay, s										71.9		
HCM LOS										F		
Minor Lane/Major Mvmt	t	WBL	WBT S	SBLn1								
Capacity (veh/h)		-	-	302								
HCM Lane V/C Ratio		_	_	0.922								
HCM Control Delay (s)		-	-	71.9								
HCM Lane LOS		_	_	F								
HCM 95th %tile Q(veh)		-	-	8.9								

Lane Configurations		₩	×	À	F	×	₹	Ť	×	~	Ĺ	×	*
Traffic Volume (vph)	Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Traffic Volume (vph)	Lane Configurations		ર્ન	7	ሻ	1	7	ሻ	^	7	ሻ	^	7
Ideal Flow (ryphp) 1900	Traffic Volume (vph)	171		220	147		350	313		35	62		
Lane Width (fth)	Future Volume (vph)	171	6	220	147	32	350	313	750	35	62	755	124
Lane Width (ft)	Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)		12	15	12	12	12	12	11	12	12	12	12	12
Storage Length (ft)	Grade (%)		0%			0%			0%			0%	
Storage Lanes		0		250	0		225	680		250	400		250
Lane Ufil. Factor	Storage Lanes	0		1	1		1	1		1	1		1
Ped Bike Factor 0.895 0.850 0.	Taper Length (ft)	25			25			86			86		
Fit	Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Filt Protected 0.954 0.950 0.950 0.950 0.950	Ped Bike Factor			0.99	1.00								
Satid. Flow (prot) 0 1956 1615 1770 1900 1615 1711 3574 1324 1805 3539 1599 11 Permitted 0.710 0.577 0.950	Frt			0.850			0.850			0.850			0.850
Fit Permitted	Flt Protected		0.954		0.950			0.950			0.950		
Filt Permitted 0,710 0,577 0,950 0,9	Satd. Flow (prot)	0	1956	1615	1770	1900	1615	1711	3574	1324	1805	3539	1599
Page Page			0.710		0.577			0.950			0.950		
Page Page	Satd. Flow (perm)	0	1456	1594	1074	1900	1615	1711	3574	1324	1805	3539	1599
Said Flow (RTOR) Said				Yes			Yes			Yes			Yes
Link Speed (mph)				222			354			79			125
Travel Time (s)			30			30			55			55	
Confl. Peds. (#hr)	Link Distance (ft)		610			598			1191			735	
Confl. Peds. (#hr)	` ,		13.9			13.6			14.8			9.1	
Confl. Bikes (#lrhr) Peak Hour Factor 0.99	. ,			1	1								
Growth Factor 100%	Confl. Bikes (#/hr)												
Heavy Vehicles (%) 2% 0% 0% 2% 0% 0% 2% 1% 22% 0% 2% 1%	Peak Hour Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Bus Blockages (#/hr) 0 0 0 0 0 0 0 0 0	Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Bus Blockages (#/hr) 0 0 0 0 0 0 0 0 0	Heavy Vehicles (%)	2%	0%	0%	2%	0%	0%	2%	1%	22%	0%	2%	1%
Parking (#/hr) Mid-Block Traffic (%) 0% 0% 0% 0% 0% 0% 0%		0	0	0	0	0	0	0	0	0	0	0	0
Mid-Block Traffic (%) 0% 0% 0% 0% 0% 0% Adj. Flow (vph) 173 6 222 148 32 354 316 758 35 63 763 125 Shared Lane Traffic (%) Lane Group Flow (vph) 0 179 222 148 32 354 316 758 35 63 763 125 Enter Blocked Intersection No													
Adj. Flow (vph) 173 6 222 148 32 354 316 758 35 63 763 125 Shared Lane Traffic (%) Lane Group Flow (vph) 0 179 222 148 32 354 316 758 35 63 763 125 Enter Blocked Intersection No			0%			0%			0%			0%	
Lane Group Flow (vph) 0 179 222 148 32 354 316 758 35 63 763 125 Enter Blocked Intersection Lane Alignment Left Left Right Left Left Left Left Left Left Left Right Left Left Left Right Left Left Left Left Left Right Left<		173	6	222	148	32	354	316	758	35	63	763	125
Lane Group Flow (vph) 0 179 222 148 32 354 316 758 35 63 763 125 Enter Blocked Intersection Lane Alignment Left Left Right Left Left Left Left Left Left Left Right Left Left Left Right Left Left Left Left Left Right Left<													
Left Left Left Right Left Right Left Right Left Right Left Right Left Right Left Right Left Right Left Right Left Right Left Right Left Right Median Width(ft) 12		0	179	222	148	32	354	316	758	35	63	763	125
Median Width(ft) 12 12 12 12 12 Link Offset(ft) 0 0 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 16 16 Two way Left Turn Lane Headway Factor 1.00 0.88 1.00 1.00 1.00 1.04 1.00	Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Link Offset(ft) 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 Two way Left Turn Lane Headway Factor 1.00 0.88 1.00 1.00 1.00 1.04 1.00 1.00 1.00 1.00 Turning Speed (mph) 15 9 15 0 0 0	Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Link Offset(ft) 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 Two way Left Turn Lane Headway Factor 1.00 0.88 1.00 1.00 1.00 1.04 1.00 1.00 1.00 1.00 Turning Speed (mph) 15 9 15 0 0 0							•						J
Crosswalk Width(ff) 16 16 16 16 16 16 16 16 Two way Left Turn Lane Two way Left Turn Lane Headway Factor 1.00 0.88 1.00 <t< td=""><td></td><td></td><td>0</td><td></td><td></td><td>0</td><td></td><td></td><td>0</td><td></td><td></td><td>0</td><td></td></t<>			0			0			0			0	
Two way Left Turn Lane Headway Factor 1.00 0.88 1.00			16			16			16			16	
Headway Factor 1.00 0.88 1.00	. ,												
Turning Speed (mph) 15 9 15 9 15 9 15 9 Number of Detectors 1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 2 1	•	1.00	0.88	1.00	1.00	1.00	1.00	1.04	1.00	1.00	1.00	1.00	1.00
Number of Detectors 1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1 1 2 1 1 2 1 2 1 1 1 1 1 1 2 5 5 2 5 5		15		9			9	15					9
Detector Template Left Leading Detector (ft) 20 43 6 6 6 83 6 6 83 6 6 6 Trailing Detector (ft) 0 0 0 0 0 0 -5 0 0 -5 0 0 Turn Type Perm NA Perm Perm NA Perm Prot NA Perm Prot NA Perm Prot NA Perm Perm Perm Perm Perm Perm NA Perm	• ,		1	1		1	1		1	1		1	1
Leading Detector (ft) 20 43 6 6 6 6 83 6 6 83 6 6 Trailing Detector (ft) 0 0 0 0 0 0 -5 0 0 -5 0 0 Turn Type Perm NA Perm Perm NA Perm Prot		Left											
Trailing Detector (ft) 0 0 0 0 0 0 0 -5 0 0 -5 0 0 Turn Type Perm NA Perm Prot NA Perm Prot NA Perm Prot NA Perm Prot NA Perm	· ·		43	6	6	6	6	83	6	6	83	6	6
Turn Type Perm NA Perm Perm NA Perm Prot NA Perm Prot NA Perm Prot NA Perm Prot NA Perm Prot NA Perm Prot NA Perm Prot NA Perm Permitted Phases 3 3 3 3 1 5 Detector Phase 3 3 3 3 6 1 1 2 5 5													
Protected Phases 3 3 6 1 2 5 Permitted Phases 3 3 3 3 1 5 Detector Phase 3 3 3 3 6 1 1 2 5 5				Perm	Perm	NA	Perm			Perm		NA	Perm
Permitted Phases 3 3 3 3 1 5 Detector Phase 3 3 3 3 6 1 1 2 5 5							2						
Detector Phase 3 3 3 3 3 6 1 1 2 5 5		3		3	3		3			1			5
			3			3		6	1		2	5	
	Switch Phase					•		-			_	- 0	

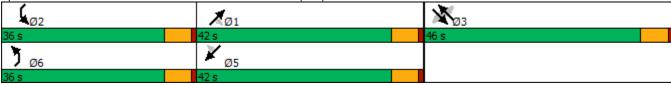
	₩.	×	Ì	F	×	₹	7	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	2.0	10.0	10.0	2.0	10.0	10.0
Minimum Split (s)	31.0	31.0	31.0	31.0	31.0	31.0	16.0	42.0	42.0	16.0	42.0	42.0
Total Split (s)	46.0	46.0	46.0	46.0	46.0	46.0	36.0	42.0	42.0	36.0	42.0	42.0
Total Split (%)	37.1%	37.1%	37.1%	37.1%	37.1%	37.1%	29.0%	33.9%	33.9%	29.0%	33.9%	33.9%
Maximum Green (s)	40.0	40.0	40.0	40.0	40.0	40.0	30.0	36.0	36.0	30.0	36.0	36.0
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	6.0	6.0	6.0	6.0	6.0	6.0	2.0	6.0	6.0	2.0	6.0	6.0
Minimum Gap (s)	3.0	3.0	3.0	3.0	3.0	3.0	2.0	3.0	3.0	2.0	4.0	4.0
Time Before Reduce (s)	20.0	20.0	20.0	20.0	20.0	20.0	0.0	20.0	20.0	0.0	20.0	20.0
Time To Reduce (s)	10.0	10.0	10.0	10.0	10.0	10.0	0.0	10.0	10.0	0.0	10.0	10.0
Recall Mode	Min	Min	Min	Min	Min	Min	None	Max	Max	None	Max	Max
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		26.5	26.5	26.5	26.5	26.5	23.2	54.3	54.3	8.3	36.6	36.6
Actuated g/C Ratio		0.25	0.25	0.25	0.25	0.25	0.22	0.52	0.52	0.08	0.35	0.35
v/c Ratio		0.49	0.39	0.55	0.07	0.53	0.83	0.41	0.05	0.44	0.62	0.20
Control Delay		38.4	6.3	42.5	30.4	6.4	59.2	18.6	0.1	59.0	33.2	6.2
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		38.4	6.3	42.5	30.4	6.4	59.2	18.6	0.1	59.0	33.2	6.2
LOS		D	Α	D	С	Α	Е	В	Α	Е	С	Α
Approach Delay		20.6			17.8			29.6			31.3	
Approach LOS		С			В			С			С	
Queue Length 50th (ft)		103	0	87	16	0	208	175	0	43	235	0
Queue Length 95th (ft)		179	57	160	42	69	#337	270	0	92	351	45
Internal Link Dist (ft)		530			518			1111			655	
Turn Bay Length (ft)			250			225	680		250	400		250
Base Capacity (vph)		566	755	417	739	844	499	1853	724	526	1239	641
Starvation Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn		0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio		0.32	0.29	0.35	0.04	0.42	0.63	0.41	0.05	0.12	0.62	0.20

Area Type: Other

Cycle Length: 124

Actuated Cycle Length: 104.6

Natural Cycle: 90


Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.83

Intersection Signal Delay: 26.8 Intersection LOS: C
Intersection Capacity Utilization 69.7% ICU Level of Service C

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Splits and Phases: 13: NYS Route 22 & North Castle Drive (IBM)/NYS Route 128

	•	≭	\rightarrow	•	†	7	(w	ļ	4	€	✓	
Lane Group	EBL2	EBL	EBR	NBL	NBT	NBR	SBL	SBT	SBR	SWL	SWR	
Lane Configurations		ă	7		ર્ન	7		4T>		ሻሻ		
Traffic Volume (vph)	8	2	16	5	1214	298	0	551	5	255	2	
Future Volume (vph)	8	2	16	5	1214	298	0	551	5	255	2	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Lane Width (ft)	10	10	10	11	11	11	10	10	10	11	11	
Grade (%)		0%			4%			1%		0%		
Storage Length (ft)		0	0	0		0	0		0	0	0	
Storage Lanes		1	1	0		1	0		0	2	0	
Taper Length (ft)		25		25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	*0.67	*0.67	*0.67	0.97	0.95	
Ped Bike Factor					1.00	.,		1.00		1.00		
Frt			0.850			0.850		0.999		0.999		
Flt Protected		0.950								0.953		
Satd. Flow (prot)	0	1685	1507	0	1782	1500	0	2316	0	3294	0	
Flt Permitted	•	0.950		•	0.997				•	0.953	•	
Satd. Flow (perm)	0	1685	1507	0	1777	1500	0	2316	0	3294	0	
Right Turn on Red	•		Yes	•		Yes			No	020 .	•	
Satd. Flow (RTOR)			63			314						
Link Speed (mph)		30			35	• • • • • • • • • • • • • • • • • • • •		35		35		
Link Distance (ft)		155			796			597		511		
Travel Time (s)		3.5			15.5			11.6		10.0		
Confl. Peds. (#/hr)		0.0		2	10.0			11.0	2	10.0	2	
Confl. Bikes (#/hr)				_					_		_	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	
Heavy Vehicles (%)	0%	0%	0%	0%	1%	2%	0%	2%	0%	3%	0%	
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%		0%		
Adj. Flow (vph)	8	2	17	5	1278	314	0	580	5	268	2	
Shared Lane Traffic (%)	O .		.,	U	1210	OTT	U	000	U	200		
Lane Group Flow (vph)	0	10	17	0	1283	314	0	585	0	270	0	
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Right	
Median Width(ft)	LOIL	10	rtigiit	LOIL	0	rtigitt	LOIL	0	rtigitt	22	rtigitt	
Link Offset(ft)		0			0			0		0		
Crosswalk Width(ft)		16			16			16		16		
Two way Left Turn Lane		10			10			10		10		
Headway Factor	1.09	1.09	1.09	1.07	1.07	1.07	1.10	1.10	1.10	1.04	1.04	
Turning Speed (mph)	1.03	1.03	9	1.07	1.07	9	1.10	1.10	9	1.04	9	
Number of Detectors	13	13	1	15	2	1	13	2	9	15	9	
Detector Template	Left	I	ı	Left	۷	ı	Left	۷		ı		
Leading Detector (ft)	20	35	35	20	83	35	20	83		35		
Trailing Detector (ft)	0	ან -5	ან -5	0	-5	ან -5	0	-5		ან -5		
		-ე Prot	-5 Perm	Perm	G- NA		U	-5 NA		-ਹ Prot		
Turn Type Protected Phases	Perm	3	FEIIII	FEIIII		pm+ov						
	2	3	2	1	1	4	E	5		4		
Permitted Phases	3	2	3	1	1	· · · · · · · · · · · · · · · · · · ·	5	Г				
Detector Phase	3	3	3	1	1	4	5	5		4		
Switch Phase												

	۶	⊿	\rightarrow	4	†	7	4	ļ	4	€	✓
Lane Group	EBL2	EBL	EBR	NBL	NBT	NBR	SBL	SBT	SBR	SWL	SWR
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	
Minimum Split (s)	10.0	10.0	10.0	11.0	11.0	11.0	11.0	11.0		11.0	
Total Split (s)	20.0	20.0	20.0	106.0	106.0	31.0	106.0	106.0		31.0	
Total Split (%)	12.7%	12.7%	12.7%	67.5%	67.5%	19.7%	67.5%	67.5%		19.7%	
Maximum Green (s)	15.0	15.0	15.0	100.0	100.0	25.0	100.0	100.0		25.0	
Yellow Time (s)	4.0	4.0	4.0	5.0	5.0	5.0	5.0	5.0		5.0	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	
Lost Time Adjust (s)		0.0	0.0		0.0	0.0		0.0		0.0	
Total Lost Time (s)		5.0	5.0		6.0	6.0		6.0		6.0	
Lead/Lag	Lag	Lag	Lag			Lead				Lead	
Lead-Lag Optimize?	Yes	Yes	Yes			Yes				Yes	
Vehicle Extension (s)	5.0	5.0	5.0	5.0	5.0	3.0	5.0	5.0		3.0	
Minimum Gap (s)	5.0	5.0	5.0	5.0	5.0	3.0	5.0	5.0		3.0	
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	
Recall Mode	None	None	None	Max	Max	None	Max	Max		None	
Walk Time (s)											
Flash Dont Walk (s)											
Pedestrian Calls (#/hr)											
Act Effct Green (s)		8.6	8.6		100.6	126.3		100.6		17.0	
Actuated g/C Ratio		0.06	0.06		0.73	0.92		0.73		0.12	
v/c Ratio		0.10	0.11		0.99	0.22		0.35		0.67	
Control Delay		67.1	1.5		42.8	0.5		8.6		66.7	
Queue Delay		0.0	0.0		0.0	0.0		0.0		0.0	
Total Delay		67.1	1.5		42.8	0.5		8.6		66.7	
LOS		Е	Α		D	Α		Α		Е	
Approach Delay		25.8			34.5			8.6		66.7	
Approach LOS		С			С			Α		Е	
Queue Length 50th (ft)		9	0		~1267	0		147		125	
Queue Length 95th (ft)		30	0		#1671	11		229		176	
Internal Link Dist (ft)		75			716			517		431	
Turn Bay Length (ft)											
Base Capacity (vph)		184	221		1298	1426		1692		601	
Starvation Cap Reductn		0	0		0	0		0		0	
Spillback Cap Reductn		0	0		0	0		0		0	
Storage Cap Reductn		0	0		0	0		0		0	
Reduced v/c Ratio		0.05	0.08		0.99	0.22		0.35		0.45	
Intersection Summary	Oll										

Area Type: Other

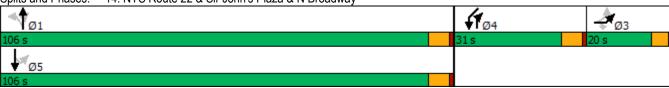
Cycle Length: 157

Actuated Cycle Length: 137.7

Natural Cycle: 100

Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.99

Intersection Signal Delay: 31.8
Intersection Capacity Utilization 93.5%


Intersection LOS: C ICU Level of Service F

Analysis Period (min) 15

* User Entered Value

- Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 14: NYS Route 22 & Sir John's Plaza & N Broadway

	۶	→	•	•	+	*_	•	†	<i>></i>	/	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	WBR2	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ň	ĥ			ર્ન		7	^	7	ř	↑ ↑	
Traffic Volume (vph)	315	148	95	79	142	3	115	1194	129	75	581	207
Future Volume (vph)	315	148	95	79	142	3	115	1194	129	75	581	207
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	11	12	12	12	12	11	11	12	12	12
Grade (%)		2%			2%			4%			-6%	
Storage Length (ft)	115		0	0		180			160	110		0
Storage Lanes	1		0	0		1			1	1		0
Taper Length (ft)	86			25						86		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	0.95
Ped Bike Factor					1.00							
Frt		0.941			0.998		0.850		0.850		0.961	
Flt Protected					0.983					0.950		
Satd. Flow (prot)	1732	1688	0	0	1810	0	1599	3420	1515	1859	3520	0
Flt Permitted					0.983					0.078		
Satd. Flow (perm)	1732	1688	0	0	1810	0	1599	3420	1515	153	3520	0
Right Turn on Red			No				Yes		Yes			
Satd. Flow (RTOR)							102		76			
Link Speed (mph)		35			30			45			35	
Link Distance (ft)		532			475			529			778	
Travel Time (s)		10.4			10.8			8.0			15.2	
Confl. Peds. (#/hr)						2						
Confl. Bikes (#/hr)												
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	5%	1%	2%	0%	3%	0%	0%	0%	1%	0%	1%	3%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	325	153	98	81	146	3	119	1231	133	77	599	213
Shared Lane Traffic (%)												
Lane Group Flow (vph)	325	251	0	0	230	0	119	1231	133	77	812	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Right	Left	Right	Left	Left	Right
Median Width(ft)		11			11	Ū	·	12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.06	1.06	1.06	1.01	1.01	1.01	1.01	1.07	1.07	0.96	0.96	0.96
Turning Speed (mph)	15		9	15		9	9		9	15		9
Number of Detectors	1	2		1	2		1	2	1	1	2	
Detector Template				Left								
Leading Detector (ft)	35	83		20	83		35	83	35	35	83	
Trailing Detector (ft)	-5	-5		0	-5		-5	-5	-5	-5	-5	
Turn Type	Split	NA		Split	NA		pm+ov	NA	pm+ov	pm+pt	NA	
Protected Phases	3	3		4	4		5	6	4	5	2	
Permitted Phases	-						4		6	2		
Detector Phase	3	3		4	4		5	6	4	5	2	
Switch Phase	-	-					-					
SWILCH FIIdSE												

Lane Group	Ø7
Lane Configurations	
Traffic Volume (vph)	
Future Volume (vph)	
Ideal Flow (vphpl)	
Lane Width (ft)	
Grade (%)	
Storage Length (ft)	
Storage Lanes Taper Length (ft)	
Lane Util. Factor	
Ped Bike Factor	
Frt	
Flt Protected	
Satd. Flow (prot)	
Flt Permitted	
Satd. Flow (perm)	
Right Turn on Red	
Satd. Flow (RTOR)	
Link Speed (mph)	
Link Distance (ft)	
Travel Time (s)	
Confl. Peds. (#/hr)	
Confl. Bikes (#/hr)	
Peak Hour Factor	
Growth Factor	
Heavy Vehicles (%)	
Bus Blockages (#/hr)	
Parking (#/hr)	
Mid-Block Traffic (%)	
Adj. Flow (vph)	
Shared Lane Traffic (%)	
Lane Group Flow (vph)	
Enter Blocked Intersection	
Lane Alignment	
Median Width(ft)	
Link Offset(ft)	
Crosswalk Width(ft)	
Two way Left Turn Lane	
Headway Factor	
Turning Speed (mph)	
Number of Detectors	
Detector Template	
Leading Detector (ft)	
Trailing Detector (ft)	
Turn Type	
Protected Phases	7
Permitted Phases	
Detector Phase	
Switch Phase	

Synchro 10 Report Page 39

	•	→	\rightarrow	•	←	*_	•	†	<i>></i>	>	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	WBR2	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	39.0	39.0		11.0	11.0		11.0	11.0	11.0	11.0	31.0	
Total Split (s)	51.0	51.0		36.0	36.0		26.0	51.0	36.0	26.0	77.0	
Total Split (%)	25.5%	25.5%		18.0%	18.0%		13.0%	25.5%	18.0%	13.0%	38.5%	
Maximum Green (s)	45.0	45.0		30.0	30.0		20.0	45.0	30.0	20.0	71.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0			0.0		0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0			6.0		6.0	6.0	6.0	6.0	6.0	
Lead/Lag	Lead	Lead		Lag	Lag		Lead	Lag	Lag	Lead		
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes	Yes	Yes		
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Minimum Gap (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Time Before Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Recall Mode	None	None		None	None		None	Min	None	None	Min	
Walk Time (s)	8.0	8.0									8.0	
Flash Dont Walk (s)	25.0	25.0									17.0	
Pedestrian Calls (#/hr)	6	6									0	
Act Effct Green (s)	38.6	38.6			27.0		38.5	45.2	72.2	62.8	62.8	
Actuated g/C Ratio	0.21	0.21			0.15		0.21	0.25	0.40	0.34	0.34	
v/c Ratio	0.89	0.70			0.86		0.29	1.46	0.21	0.48	0.67	
Control Delay	96.0	78.6			105.2		10.0	256.4	9.1	53.5	55.5	
Queue Delay	0.0	0.0			0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay	96.0	78.6			105.2		10.0	256.4	9.1	53.5	55.5	
LOS	F	Ε			F		Α	F	Α	D	Ε	
Approach Delay		88.4			72.8			232.3			55.3	
Approach LOS		F			Ε			F			Ε	
Queue Length 50th (ft)	391	288			280		12	~1113	22	67	463	
Queue Length 95th (ft)	#552	407			#436		55	#1311	51	114	553	
Internal Link Dist (ft)		452			395			449			698	
Turn Bay Length (ft)	115						180		160	110		
Base Capacity (vph)	428	417			298		488	846	669	240	1375	
Starvation Cap Reductn	0	0			0		0	0	0	0	0	
Spillback Cap Reductn	0	0			0		0	0	0	0	0	
Storage Cap Reductn	0	0			0		0	0	0	0	0	
Reduced v/c Ratio	0.76	0.60			0.77		0.24	1.46	0.20	0.32	0.59	

Area Type: Other

Cycle Length: 200

Actuated Cycle Length: 182.7

Natural Cycle: 150

Control Type: Actuated-Uncoordinated

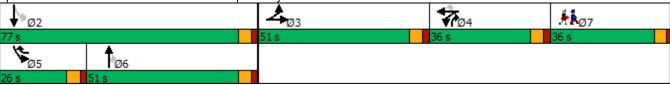
Maximum v/c Ratio: 1.46 Intersection Signal Delay: 139.2 Intersection Capacity Utilization 86.7%

Intersection LOS: F ICU Level of Service E

Analysis Period (min) 15

Synchro 10 Report Page 40

[~] Volume exceeds capacity, queue is theoretically infinite.


Minimum Initial (s) 8.0 Minimum Split (s) 36.0 Total Split (%) 18% Maximum Green (s) 31.0 Yellow Time (s) 3.5 All-Red Time (s) 1.5 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio V/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Tum Bay Length (ft) Base Capacity (v/ph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio Intersection Summary	Lane Group	Ø7		
Minimum Split (s) 36.0 Total Split (s) 36.0 Total Split (%) 18% Maximum Green (s) 31.0 Yellow Time (s) 3.5 All-Red Time (s) 1.5 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Spillback Cap Reductn Reduced v/c Ratio		8.0		
Total Split (s) 36.0 Total Split (%) 18% Maximum Green (s) 31.0 Yellow Time (s) 3.5 All-Red Time (s) 1.5 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Spillback Cap Reductn Reduced v/c Ratio				
Total Split (%) 18% Maximum Green (s) 31.0 Yellow Time (s) 3.5 All-Red Time (s) 1.5 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay Los Approach Los Queue Length 50th (ft) Queue Length 55th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Maximum Green (s) 31.0 Yellow Time (s) 3.5 All-Red Time (s) 1.5 Lost Time Adjust (s) 1.5 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Spillback Cap Reductn Reduced v/c Ratio				
Yellow Time (s) 3.5 All-Red Time (s) 1.5 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 55th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Reduced v/c Ratio				
All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) Minimum Gap (s) Jime Before Reduce (s) Jime Before Reduce (s) Jime To Reduce (s) Recall Mode Ped Walk Time (s) Pedestrian Calls (#/hr) Act Effct Green (s) Actuated g/C Ratio V/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Reduced v/c Ratio				
Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) Minimum Gap (s) Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio V/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) Minimum Gap (s) J. 0.0 Minimum Gap (s) J. 0.0 Time Before Reduce (s) J. 0.0 Recall Mode Ped Walk Time (s) Recall Mode Ped Walk Time (s) Resh Dont Walk (s) Pedestrian Calls (#/hr) Act Leftct Green (s) Actuated g/C Ratio V/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Reduced v/c Ratio				
Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Dolay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio	•			
Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effet Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Reduced v/c Ratio		3.0		
Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Tum Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Reduced v/c Ratio				
Flash Dont Walk (s) Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Pedestrian Calls (#/hr) Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio		* *		
Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Reduced v/c Ratio		2		
v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio				
Storage Cap Reductn Reduced v/c Ratio				
Reduced v/c Ratio				
Intersection Summary				
	Intersection Summary			

Synchro 10 Report Page 41 18002018A - N.T.

95th percentile volume exceeds capacity, queue may be longer.

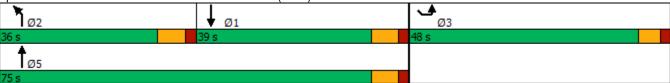
Queue shown is maximum after two cycles.

Splits and Phases: 15: Central Westchester Expressway & NYS Route 22 & Reservoir Road & Church Street

18002018A - N.T. Page 42

	ሻ	†	ļ	≽ J	•	>
Lane Group	NBL	NBT	SBT	SBR	SEL	SER
Lane Configurations	*	^	^	7	ሻ	7
Traffic Volume (vph)	230	569	818	226	524	807
Future Volume (vph)	230	569	818	226	524	807
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	10	10	10	10	10	10
Grade (%)	10	0%	0%	10	0%	10
Storage Length (ft)	250	0 70	070	500	250	0
Storage Lanes	1			1	1	1
Taper Length (ft)	86				86	
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00
Ped Bike Factor	1.00	0.55	0.55	1.00	1.00	1.00
Frt				0.850		0.850
Flt Protected	0.950			0.000	0.950	0.000
Satd. Flow (prot)	1478	3209	3303	1478	1604	1436
Flt Permitted	0.950	3209	3303	1470	0.950	1430
	1478	3200	3202	1478	1604	1436
Satd. Flow (perm)	14/0	3209	3303		1004	
Right Turn on Red				Yes		Yes
Satd. Flow (RTOR)				231	20	495
Link Speed (mph)		55 767	55		30	
Link Distance (ft)		767	1064		872	
Travel Time (s)		9.5	13.2		19.8	
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)	0.00	0.00	0.00	0.00	0.00	0.00
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	14%	5%	2%	2%	5%	5%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)		0%	0%		0%	
Adj. Flow (vph)	235	581	835	231	535	823
Shared Lane Traffic (%)						
Lane Group Flow (vph)	235	581	835	231	535	823
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width(ft)		10	15		10	J
Link Offset(ft)		0	0		0	
Crosswalk Width(ft)		16	16		16	
Two way Left Turn Lane		. •				
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (mph)	1.05	1.00	1.00	9	1.03	9
Number of Detectors	1	2	2	1	2	0
Detector Template	'			'		J
Leading Detector (ft)	35	104	104	0	104	0
Trailing Detector (ft)	-5	0	0	0	0	0
Turn Type	Prot	NA	NA	Free	Prot	Free
Protected Phases	2	NA 5	1 1	riee	3	riee
Permitted Phases	Z	Ü	ı	Free	J	Free
	2	E	1	гіее	3	riee
Detector Phase	2	5	1		3	
Switch Phase						

	ሻ	†	↓	₩ J	•	\
Lane Group	NBL	NBT	SBT	SBR	SEL	SER
Minimum Initial (s)	12.0	12.0	12.0		10.0	
Minimum Split (s)	36.0	36.0	36.0		26.0	
Total Split (s)	36.0	75.0	39.0		48.0	
Total Split (%)	29.3%	61.0%	31.7%		39.0%	
Maximum Green (s)	29.0	68.0	32.0		42.0	
Yellow Time (s)	5.0	5.0	5.0		4.0	
All-Red Time (s)	2.0	2.0	2.0		2.0	
Lost Time Adjust (s)	0.0	0.0	0.0		0.0	
Total Lost Time (s)	7.0	7.0	7.0		6.0	
Lead/Lag	Lead		Lag			
Lead-Lag Optimize?	Yes		Yes			
Vehicle Extension (s)	6.0	6.0	6.0		6.0	
Minimum Gap (s)	4.0	4.0	4.0		4.0	
Time Before Reduce (s)	20.0	20.0	20.0		20.0	
Time To Reduce (s)	8.0	8.0	8.0		5.0	
Recall Mode	None	Min	Min		None	
Walk Time (s)					,	
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)						
Act Effct Green (s)	25.0	64.0	32.0	119.0	42.0	119.0
Actuated g/C Ratio	0.21	0.54	0.27	1.00	0.35	1.00
v/c Ratio	0.76	0.34	0.94	0.16	0.95	0.57
Control Delay	60.5	16.1	62.0	0.2	65.5	1.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	60.5	16.1	62.0	0.2	65.5	1.7
LOS	E	В	E	Α	E	Α
Approach Delay		28.9	48.6		26.8	
Approach LOS		C	D		C	
Queue Length 50th (ft)	171	126	338	0	406	0
Queue Length 95th (ft)	264	165	#481	0	#650	0
Internal Link Dist (ft)		687	984		792	
Turn Bay Length (ft)	250	- 50.	- 30 !	500	250	
Base Capacity (vph)	360	1835	889	1478	566	1436
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.65	0.32	0.94	0.16	0.95	0.57
	0.00					
Intersection Summary Area Type:	Other					
Cycle Length: 123	Olliel					
	10					
Actuated Cycle Length: 11	19					
Natural Cycle: 110	P C I					


Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.95 Intersection Signal Delay: 34.5

Intersection LOS: C Intersection Capacity Utilization 81.1% ICU Level of Service D

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Splits and Phases: 1: NYS Route 22 & NYS Route 120 (North)

	۶	→	•	•	—	•	4	1	~	\	+	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	4					ሻ	∱ }		ሻ	†	7
Traffic Volume (vph)	393	413	307	0	0	0	89	127	55	49	170	495
Future Volume (vph)	393	413	307	0	0	0	89	127	55	49	170	495
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	16	16	16	12	12	12	12	12	12
Grade (%)		1%			-4%			-1%			1%	
Storage Length (ft)	0		0	0		0	385		0	190		460
Storage Lanes	1		0	0		0	1		0	1		1
Taper Length (ft)	25			25			86			86		
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.939						0.954				0.850
Flt Protected	0.950	0.997					0.950			0.950		
Satd. Flow (prot)	1580	1613	0	0	0	0	1695	3179	0	1727	1734	1530
Flt Permitted	0.950	0.997					0.563			0.630		
Satd. Flow (perm)	1580	1613	0	0	0	0	1005	3179	0	1145	1734	1530
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		35						59				527
Link Speed (mph)		30			30			55			55	
Link Distance (ft)		176			314			586			596	
Travel Time (s)		4.0			7.1			7.3			7.4	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	8%	4%	4%	0%	0%	0%	7%	11%	4%	4%	9%	5%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	418	439	327	0	0	0	95	135	59	52	181	527
Shared Lane Traffic (%)	10%											
Lane Group Flow (vph)	376	808	0	0	0	0	95	194	0	52	181	527
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.01	1.01	1.01	0.82	0.82	0.82	0.99	0.99	0.99	1.01	1.01	1.01
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2					1	2		1	2	1
Detector Template												
Leading Detector (ft)	35	83					35	83		35	83	35
Trailing Detector (ft)	-5	-5					-5	-5		-5	-5	-5
Turn Type	Split	NA					pm+pt	NA		pm+pt	NA	pm+ov
Protected Phases	3	3					6	1		2	5	3
Permitted Phases							1			5		5
Detector Phase	3	3					6	1		2	5	3
Switch Phase												

	۶	-	•	•	←	•	4	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	5.0					3.0	8.0		3.0	25.0	5.0
Minimum Split (s)	10.0	10.0					10.0	15.0		10.0	32.0	10.0
Total Split (s)	50.0	50.0					22.0	42.0		22.0	42.0	50.0
Total Split (%)	43.9%	43.9%					19.3%	36.8%		19.3%	36.8%	43.9%
Maximum Green (s)	45.0	45.0					15.0	35.0		15.0	35.0	45.0
Yellow Time (s)	4.0	4.0					5.0	5.0		5.0	5.0	4.0
All-Red Time (s)	1.0	1.0					2.0	2.0		2.0	2.0	1.0
Lost Time Adjust (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0					7.0	7.0		7.0	7.0	5.0
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0					2.0	2.0		2.0	2.0	3.0
Minimum Gap (s)	3.0	3.0					2.0	2.0		2.0	2.0	3.0
Time Before Reduce (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Recall Mode	None	None					None	Min		None	Min	None
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)	45.3	45.3					35.2	27.5		30.4	25.1	78.6
Actuated g/C Ratio	0.47	0.47					0.37	0.29		0.32	0.26	0.82
v/c Ratio	0.50	1.03					0.22	0.20		0.13	0.40	0.39
Control Delay	21.6	67.7					18.9	19.0		18.3	33.7	1.2
Queue Delay	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Total Delay	21.6	67.7					18.9	19.0		18.3	33.7	1.2
LOS	С	Ε					В	В		В	С	Α
Approach Delay		53.1						19.0			10.1	
Approach LOS		D						В			В	
Queue Length 50th (ft)	169	~576					36	33		19	94	0
Queue Length 95th (ft)	277	#862					67	62		42	165	21
Internal Link Dist (ft)		96			234			506			516	
Turn Bay Length (ft)							385			190		460
Base Capacity (vph)	748	782					510	1208		531	639	1352
Starvation Cap Reductn	0	0					0	0		0	0	0
Spillback Cap Reductn	0	0					0	0		0	0	0
Storage Cap Reductn	0	0					0	0		0	0	0
Reduced v/c Ratio	0.50	1.03					0.19	0.16		0.10	0.28	0.39
Intersection Summary												

Area Type: Other

Cycle Length: 114

Actuated Cycle Length: 95.5

Natural Cycle: 90

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 1.03 Intersection Signal Delay: 34.0 Intersection Capacity Utilization 72.7%

Intersection LOS: C
ICU Level of Service C

Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	۶	→	•	•	•	•	†	<i>></i>	/	ţ	1	≽ J
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR2	NBT	NBR	SBL	SBT	SBR	SBR2
Lane Configurations	ሻ	f)			ર્ન	7	^	7	7	∱ }		
Traffic Volume (vph)	270	77	213	73	66	34	524	49	34	1236	248	1
Future Volume (vph)	270	77	213	73	66	34	524	49	34	1236	248	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	11	12	12	12	11	11	12	12	12	12
Grade (%)		2%			2%		4%			-6%		
Storage Length (ft)	115		0	0				160	110		0	
Storage Lanes	1		0	0				1	1		0	
Taper Length (ft)	86			25					86			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	0.95	0.95
Ped Bike Factor	1.00	0.98			1.00	0.98	0.00			0.00	0.00	0.00
Frt		0.890				0.850		0.850		0.975		
Flt Protected					0.974				0.950			
Satd. Flow (prot)	1595	1555	0	0	1755	1508	3257	1500	1805	3475	0	0
Flt Permitted	1000	1000	•	•	0.974	1000	0201	1000	0.330	0110	· ·	J
Satd. Flow (perm)	1590	1555	0	0	1748	1482	3257	1500	627	3475	0	0
Right Turn on Red	1000	1000	No	•	17 10	Yes	0201	Yes	UL1	0170	· ·	No
Satd. Flow (RTOR)			140			76		76				140
Link Speed (mph)		35			30	10	45	70		35		
Link Distance (ft)		532			475		529			778		
Travel Time (s)		10.4			10.8		8.0			15.2		
Confl. Peds. (#/hr)	2	10.4	6	6	10.0	2	0.0			10.2		
Confl. Bikes (#/hr)			U	U								
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	14%	6%	1%	3%	6%	6%	5%	2%	3%	3%	11%	0%
Bus Blockages (#/hr)	0	0 /0	0	0	0 /0	0	0	0	0	0	0	0 /0
Parking (#/hr)	U	U	- U		U	U	U	J	U	U	- U	U
Mid-Block Traffic (%)		0%			0%		0%			0%		
Adj. Flow (vph)	284	81	224	77	69	36	552	52	36	1301	261	1
Shared Lane Traffic (%)	204	01	227	11	03	30	552	JZ	30	1301	201	ı
Lane Group Flow (vph)	284	305	0	0	146	36	552	52	36	1563	0	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Right	Left	Left	Right	Right
Median Width(ft)	Leit	11	rtigrit	Leit	11	rtigrit	12	rtigrit	Leit	12	Right	Night
Link Offset(ft)		0			0		0			0		
Crosswalk Width(ft)		16			16		16			16		
Two way Left Turn Lane		10			10		10			10		
	1.06	1.06	1.06	1.01	1.01	1.01	1.07	1.07	0.96	0.96	0.96	0.96
Headway Factor	1.06	1.00	1.06	1.01	1.01	1.01	1.07	1.07	15	0.96	0.96	0.96
Turning Speed (mph)		2	9	10	2		2			2	9	9
Number of Detectors	1	2		1 - 64	2	1	2	1	1	2		
Detector Template	25	00		Left	00	25	00	25	25	00		
Leading Detector (ft)	35	83		20	83	35	83	35	35	83		
Trailing Detector (ft)	-5	-5		0	-5	-5	-5	-5	-5	-5		
Turn Type	Split	NA		Split	NA	pm+ov	NA	pm+ov	pm+pt	NA		
Protected Phases	3	3		4	4	5	6	4	5	2		
Permitted Phases						4		6	2			
Detector Phase	3	3		4	4	5	6	4	5	2		
Switch Phase												

Synchro 10 Report Page 7

Lane Group	Ø7
Lane Configurations	
Traffic Volume (vph)	
Future Volume (vph)	
Ideal Flow (vphpl)	
Lane Width (ft)	
Grade (%)	
,	
Storage Length (ft) Storage Lanes	
Taper Length (ft)	
Lane Util. Factor	
Ped Bike Factor	
Frt	
Flt Protected	
Satd. Flow (prot)	
Flt Permitted	
Satd. Flow (perm)	
Right Turn on Red	
Satd. Flow (RTOR)	
Link Speed (mph)	
Link Distance (ft)	
Travel Time (s)	
Confl. Peds. (#/hr)	
Confl. Bikes (#/hr)	
Peak Hour Factor	
Growth Factor	
Heavy Vehicles (%)	
Bus Blockages (#/hr)	
Parking (#/hr)	
Mid-Block Traffic (%)	
Adj. Flow (vph)	
Shared Lane Traffic (%)	
Lane Group Flow (vph)	
Enter Blocked Intersection	
Lane Alignment	
Median Width(ft)	
Link Offset(ft)	
Crosswalk Width(ft)	
Two way Left Turn Lane	
Headway Factor	
Turning Speed (mph)	
Number of Detectors	
Detector Template	
Leading Detector (ft)	
Trailing Detector (ft)	
Turn Type	
Protected Phases	7
Permitted Phases	
Detector Phase	
Switch Phase	

	٠	→	\rightarrow	•	•	•	†	<i>></i>	>	ļ	4	» J
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR2	NBT	NBR	SBL	SBT	SBR	SBR2
Minimum Initial (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0	5.0		
Minimum Split (s)	39.0	39.0		11.0	11.0	11.0	11.0	11.0	11.0	31.0		
Total Split (s)	45.0	45.0		22.0	22.0	11.0	86.0	22.0	11.0	97.0		
Total Split (%)	22.5%	22.5%		11.0%	11.0%	5.5%	43.0%	11.0%	5.5%	48.5%		
Maximum Green (s)	39.0	39.0		16.0	16.0	5.0	80.0	16.0	5.0	91.0		
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0		
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0		
Lost Time Adjust (s)	0.0	0.0			0.0	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	6.0	6.0			6.0	6.0	6.0	6.0	6.0	6.0		
Lead/Lag	Lead	Lead		Lag	Lag	Lead	Lag	Lag	Lead			
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes			
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0		
Minimum Gap (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0		
Time Before Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Time To Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Recall Mode	None	None		None	None	None	Min	None	None	Min		
Walk Time (s)	8.0	8.0								8.0		
Flash Dont Walk (s)	25.0	25.0								17.0		
Pedestrian Calls (#/hr)	6	6								0		
Act Effct Green (s)	39.0	39.0			16.0	21.0	82.2	98.2	91.0	91.0		
Actuated g/C Ratio	0.20	0.20			0.08	0.10	0.41	0.49	0.46	0.46		
v/c Ratio	0.91	1.01			1.04	0.16	0.41	0.07	0.11	0.99		
Control Delay	110.4	130.3			170.9	1.5	43.4	1.0	31.3	73.1		
Queue Delay	0.0	0.0			0.0	0.0	0.0	0.0	0.0	0.0		
Total Delay	110.4	130.3			170.9	1.5	43.4	1.0	31.3	73.1		
LOS	F	F			F	Α	D	Α	С	Е		
Approach Delay		120.7			137.4		39.8			72.1		
Approach LOS		F			F		D			Е		
Queue Length 50th (ft)	372	~411			~206	0	276	0	26	1070		
Queue Length 95th (ft)	#562	#633			#372	0	334	5	52	#1238		
Internal Link Dist (ft)		452			395		449			698		
Turn Bay Length (ft)	115					180		160	110			
Base Capacity (vph)	311	303			140	224	1338	775	314	1581		
Starvation Cap Reductn	0	0			0	0	0	0	0	0		
Spillback Cap Reductn	0	0			0	0	0	0	0	0		
Storage Cap Reductn	0	0			0	0	0	0	0	0		
Reduced v/c Ratio	0.91	1.01			1.04	0.16	0.41	0.07	0.11	0.99		
Intersection Summary												
Area Type:	Other											
Cycle Length: 200												
Actuated Cycle Length: 20	0											
Natural Cycle: 150												

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 1.04 Intersection Signal Delay: 79.2 Intersection Capacity Utilization 92.5% Analysis Period (min) 15

Intersection LOS: E ICU Level of Service F

~ Volume exceeds capacity, queue is theoretically infinite.

Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (s) Total Split (%) Maximum Green (s) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) Minimum Gap (s) Time Before Reduce (s) Time To Reduce (s) Recall Mode Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio	Lane Group	Ø7
Minimum Split (s) 36.0 Total Split (s) 36.0 Total Split (%) 18% Maximum Green (s) 31.0 Yellow Time (s) 3.5 All-Red Time (s) 1.5 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		
Total Split (s) 36.0 Total Split (%) 18% Maximum Green (s) 31.0 Yellow Time (s) 3.5 All-Red Time (s) 1.5 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		
Total Split (%) 18% Maximum Green (s) 31.0 Yellow Time (s) 3.5 All-Red Time (s) 1.5 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		
Maximum Green (s) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) Alinimum Gap (s) Time Before Reduce (s) Time To Reduce (s) Recall Mode Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		
Yellow Time (s) 3.5 All-Red Time (s) 1.5 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		31.0
All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) Time To Reduce (s) Recall Mode Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		
Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		
Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		
Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		
Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		
Vehicle Extension (s) Minimum Gap (s) Time Before Reduce (s) Time To Reduce (s) Recall Mode Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		
Minimum Gap (s) Time Before Reduce (s) Time To Reduce (s) Recall Mode Recall Mode Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		3.0
Time Before Reduce (s) Time To Reduce (s) Recall Mode Recall Mode Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn		
Time To Reduce (s) Recall Mode Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn		0.0
Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn		0.0
Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		Ped
Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		
Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		23.0
Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		
Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		
v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		
Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		
Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn	Control Delay	
Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn	•	
Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		
Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		
Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn	Approach Delay	
Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		
Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		
Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		
Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		
Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		
Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		
Spillback Cap Reductn Storage Cap Reductn		
Storage Cap Reductn		
Intersection Summery	Intersection Summary	
Intersection Summary	intersection Summary	

Synchro 10 Report 18002018A - N.T. Page 10

Year 2024 No-Build Traffic Volumes - Sensitivity Analysis with Imp Weekday Peak AM Hour 15: Central Westchester Expressway & NYS Route 22 & Reservoir Road & Church Street/20/2020

Queue shown is maximum after two cycles. # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Splits and Phases: 15: Central Westchester Expressway & NYS Route 22 & Reservoir Road & Church Street Ako7

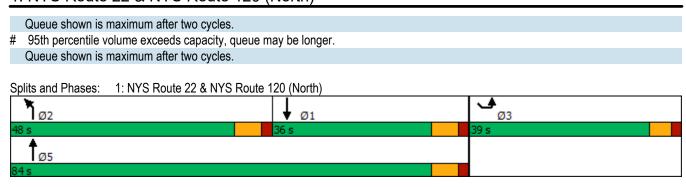
18002018A - N.T. Page 11

	ኘ	†	↓	≽ J	•	>
Lane Group	NBL	NBT	SBT	SBR	SEL	SER
Lane Configurations	ኝ	^	^	7	ች	7
Traffic Volume (vph)	733	749	700	603	281	281
Future Volume (vph)	733	749	700	603	281	281
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	10	10	10	10	10	10
Grade (%)	10	0%	0%	10	0%	
Storage Length (ft)	250	3 70	3 70	500	250	0
Storage Lanes	1			1	1	1
Taper Length (ft)	86				86	
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00
Ped Bike Factor	1.00	0.50	0.50	1.00	1.00	1.00
Frt				0.850		0.850
Flt Protected	0.950			0.000	0.950	0.000
Satd. Flow (prot)	1685	3336	3336	1507	1685	1507
Flt Permitted	0.950	3330	3330	1307	0.950	1307
		3226	3226	1507		1507
Satd. Flow (perm)	1685	3336	3336	1507	1685	
Right Turn on Red				Yes		Yes
Satd. Flow (RTOR)				641	00	299
Link Speed (mph)		55	55		30	
Link Distance (ft)		767	1064		872	
Travel Time (s)		9.5	13.2		19.8	
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	1%	1%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)		0%	0%		0%	
Adj. Flow (vph)	780	797	745	641	299	299
Shared Lane Traffic (%)						
Lane Group Flow (vph)	780	797	745	641	299	299
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width(ft)	Loit	10	15	Tagrit	10	Tugin
Link Offset(ft)		0	0		0	
Crosswalk Width(ft)		16	16		16	
Two way Left Turn Lane		10	10		10	
	1.09	1.00	1.00	1.09	1 00	1.09
Headway Factor		1.09	1.09		1.09	
Turning Speed (mph)	15	2	0	9	15	9
Number of Detectors	1	2	2	1	2	0
Detector Template	٥٢	404	404	^	404	^
Leading Detector (ft)	35	104	104	0	104	0
Trailing Detector (ft)	-5	0	0	_ 0	0	_ 0
Turn Type	Prot	NA	NA	Free	Prot	Free
Protected Phases	2	5	1		3	
Permitted Phases				Free		Free
Detector Phase					_	
Switch Phase	2	5	1		3	

	ሻ	†	↓	≽ J	•	>
Lane Group	NBL	NBT	SBT	SBR	SEL	SER
Minimum Initial (s)	12.0	12.0	12.0		10.0	
Minimum Split (s)	36.0	36.0	36.0		26.0	
Total Split (s)	48.0	84.0	36.0		39.0	
Total Split (%)	39.0%	68.3%	29.3%		31.7%	
Maximum Green (s)	41.0	77.0	29.0		33.0	
Yellow Time (s)	5.0	5.0	5.0		4.0	
All-Red Time (s)	2.0	2.0	2.0		2.0	
Lost Time Adjust (s)	0.0	0.0	0.0		0.0	
Total Lost Time (s)	7.0	7.0	7.0		6.0	
Lead/Lag	Lead		Lag			
Lead-Lag Optimize?	Yes		Yes			
Vehicle Extension (s)	6.0	6.0	6.0		6.0	
Minimum Gap (s)	4.0	4.0	4.0		4.0	
Time Before Reduce (s)	20.0	20.0	20.0		20.0	
Time To Reduce (s)	8.0	8.0	8.0		5.0	
Recall Mode	None	Min	Min		None	
Walk Time (s)						
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)						
Act Effct Green (s)	41.1	77.2	29.1	117.6	27.4	117.6
Actuated g/C Ratio	0.35	0.66	0.25	1.00	0.23	1.00
v/c Ratio	1.33	0.36	0.90	0.43	0.76	0.20
Control Delay	191.3	10.2	59.1	0.9	55.2	0.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	191.3	10.2	59.1	0.9	55.2	0.3
LOS	F	В	Е	Α	Е	Α
Approach Delay		99.8	32.2		27.8	
Approach LOS		F	С		С	
Queue Length 50th (ft)	~776	135	292	0	212	0
Queue Length 95th (ft)	#1067	192	#431	0	314	0
Internal Link Dist (ft)		687	984		792	
Turn Bay Length (ft)	250			500	250	
Base Capacity (vph)	588	2188	824	1507	473	1507
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	1.33	0.36	0.90	0.43	0.63	0.20
Intersection Summary						
Area Type:	Other					
Cycle Length: 123						
Astusted Cycle Langth, 11	7.0					

Actuated Cycle Length: 117.6

Natural Cycle: 130


Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 1.33 Intersection Signal Delay: 61.4 Intersection Capacity Utilization 92.2%

Intersection LOS: E ICU Level of Service F

Analysis Period (min) 15

[~] Volume exceeds capacity, queue is theoretically infinite.

	٠	→	•	•	•	•	4	†	<i>></i>	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્ન	7		र्स	7	ሻ	1	7	7	1	7
Traffic Volume (vph)	205	0	146	25	2	23	35	1060	0	1	367	10
Future Volume (vph)	205	0	146	25	2	23	35	1060	0	1	367	10
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (%)		4%			-1%			7%			-4%	
Storage Length (ft)	0		315	0		125	280		445	150		275
Storage Lanes	0		1	0		1	1		1	1		1
Taper Length (ft)	25			25			86			86		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt			0.850			0.850						0.850
Flt Protected		0.950	0.000		0.955	0.000	0.950			0.950		0.000
Satd. Flow (prot)	0	1769	1479	0	1767	1623	1476	1815	1834	1841	1882	1647
Flt Permitted	0	0.737	1773	U	0.650	1020	0.411	1010	1004	0.081	1002	10-11
Satd. Flow (perm)	0	1372	1479	0	1202	1623	639	1815	1834	157	1882	1647
Right Turn on Red	U	1012	Yes	U	1202	Yes	000	1013	Yes	101	1002	Yes
Satd. Flow (RTOR)			168			37			163			83
Link Speed (mph)		30	100		30	31		55			55	03
		601			392			1478			1166	
Link Distance (ft)					8.9			18.3				
Travel Time (s)		13.7			0.9			10.3			14.5	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	7%	0%	50%	0%	18%	1%	0%	0%	3%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)		•			201			201				
Mid-Block Traffic (%)		0%			0%			0%	_		0%	
Adj. Flow (vph)	236	0	168	29	2	26	40	1218	0	1	422	11
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	236	168	0	31	26	40	1218	0	1	422	11
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.03	1.03	1.03	0.99	0.99	0.99	1.05	1.05	1.05	0.97	0.97	0.97
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2	1	1	2	1	1	2	1
Detector Template	Left			Left								
Leading Detector (ft)	20	83	35	20	83	35	35	83	35	35	83	35
Trailing Detector (ft)	0	-5	-5	0	-5	-5	-5	-5	-5	-5	-5	-5
Turn Type	Perm	NA	pm+ov	Perm	NA	pm+ov	pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases		8	1		4	5	1	6		5	2	
Permitted Phases	8		8	4		4	6		6	2		2
Detector Phase	8	8	1	4	4	5	1	6	6	5	2	2
Switch Phase				•	•		•					_

	•	→	•	•	←	•	4	†	<i>></i>	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	5.0	3.0	5.0	5.0	3.0	3.0	5.0	5.0	3.0	5.0	5.0
Minimum Split (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	12.0	12.0	10.0	12.0	12.0
Total Split (s)	42.0	42.0	25.0	42.0	42.0	25.0	25.0	52.0	52.0	25.0	52.0	52.0
Total Split (%)	35.3%	35.3%	21.0%	35.3%	35.3%	21.0%	21.0%	43.7%	43.7%	21.0%	43.7%	43.7%
Maximum Green (s)	37.0	37.0	18.0	37.0	37.0	18.0	18.0	45.0	45.0	18.0	45.0	45.0
Yellow Time (s)	4.0	4.0	5.0	4.0	4.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	1.0	1.0	2.0	1.0	1.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		5.0	7.0		5.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
Lead/Lag			Lead			Lead	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?			Yes			Yes	Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0	2.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Minimum Gap (s)	3.0	3.0	2.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Recall Mode	None	None	None	None	None	None	None	Max	Max	None	Max	Max
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		20.7	31.4		20.7	30.4	56.2	53.7		49.9	45.3	45.3
Actuated g/C Ratio		0.23	0.35		0.23	0.33	0.62	0.59		0.55	0.50	0.50
v/c Ratio		0.75	0.27		0.11	0.05	0.09	1.14		0.01	0.45	0.01
Control Delay		48.2	4.3		27.9	4.7	8.2	95.1		9.0	18.0	0.0
Queue Delay		0.0	0.0		0.0	0.0	0.0	0.0		0.0	0.0	0.0
Total Delay		48.2	4.3		27.9	4.7	8.2	95.1		9.0	18.0	0.0
LOS		D	Α		С	Α	Α	F		Α	В	Α
Approach Delay		29.9			17.3			92.3			17.6	
Approach LOS		С			В			F			В	
Queue Length 50th (ft)		126	0		14	0	8	~764		0	148	0
Queue Length 95th (ft)		202	35		36	11	24	#1265		3	267	0
Internal Link Dist (ft)		521			312			1398			1086	
Turn Bay Length (ft)			315			125	280			150		275
Base Capacity (vph)		562	801		492	803	575	1072		435	938	862
Starvation Cap Reductn		0	0		0	0	0	0		0	0	0
Spillback Cap Reductn		0	0		0	0	0	0		0	0	0
Storage Cap Reductn		0	0		0	0	0	0		0	0	0
Reduced v/c Ratio		0.42	0.21		0.06	0.03	0.07	1.14		0.00	0.45	0.01

Intersection Summary

Area Type: Other

Cycle Length: 119

Actuated Cycle Length: 90.8

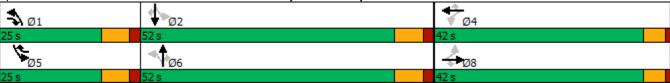
Natural Cycle: 140

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 1.14 Intersection Signal Delay: 63.5 Intersection Capacity Utilization 86.3%

Intersection LOS: E ICU Level of Service E

Analysis Period (min) 15


[~] Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	•	•	†	~	>	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		1			4
Traffic Volume (vph)	82	318	661	41	223	433
Future Volume (vph)	82	318	661	41	223	433
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1900	1900	1900	11	1900	1900
Grade (%)	-6%	12	2%	11	- 11	0%
,		0	Z 70	0	0	0 %
Storage Length (ft)	0	0		0	0	
Storage Lanes	1	0		0	0	
Taper Length (ft)	25	4.00	4.00	4.00	25	4.00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt	0.893		0.992			
Flt Protected	0.990					0.983
Satd. Flow (prot)	1709	0	1767	0	0	1753
Flt Permitted	0.990					0.499
Satd. Flow (perm)	1709	0	1767	0	0	890
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)	*254		11			
Link Speed (mph)	30		55			55
Link Distance (ft)	328		519			557
Travel Time (s)	7.5		6.4			6.9
Confl. Peds. (#/hr)	7.0		0.4			0.0
Confl. Bikes (#/hr)						
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	6%	0%	2%	3%	1%	4%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						•••
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	93	361	751	47	253	492
Shared Lane Traffic (%)						
Lane Group Flow (vph)	454	0	798	0	0	745
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12		0			0
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane	10		10			
Headway Factor	0.96	0.96	1.06	1.06	1.04	1.04
Turning Speed (mph)	15	9	1.00	9	1.04	1.04
	13	9	2	9	13	2
Number of Detectors	ı		2		-	
Detector Template	0.5		00		Left	00
Leading Detector (ft)	35		83		20	83
Trailing Detector (ft)	-5		-5		0	-5
Turn Type	Prot		NA		Perm	NA
Protected Phases	3		1			5
Permitted Phases					5	
Detector Phase	3		1		5	5
Switch Phase						

	•	•	†	~	-	ţ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Minimum Initial (s)	5.0		5.0		5.0	5.0
Minimum Split (s)	10.0		12.0		12.0	12.0
Total Split (s)	13.0		67.0		67.0	67.0
Total Split (%)	16.3%		83.8%		83.8%	83.8%
Maximum Green (s)	8.0		60.0		60.0	60.0
Yellow Time (s)	4.0		5.0		5.0	5.0
All-Red Time (s)	1.0		2.0		2.0	2.0
Lost Time Adjust (s)	0.0		0.0		2.0	0.0
Total Lost Time (s)	5.0		7.0			7.0
Lead/Lag	0.0		7.0			7.0
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0		3.0		3.0	3.0
Minimum Gap (s)	3.0		3.0		3.0	3.0
Time Before Reduce (s)	0.0		0.0		0.0	0.0
Time To Reduce (s)	0.0		0.0		0.0	0.0
Recall Mode	None		C-Max		C-Max	C-Max
Walk Time (s)	110110		O Max		O Max	O Max
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)						
Act Effct Green (s)	8.0		60.0			60.0
Actuated g/C Ratio	0.10		0.75			0.75
v/c Ratio	1.14		0.60			1.12
Control Delay	106.0		9.8			86.7
Queue Delay	0.0		0.3			0.0
Total Delay	106.0		10.1			86.7
LOS	F		В			50.7 F
Approach Delay	106.0		10.1			86.7
Approach LOS	F		В			66.7 F
Queue Length 50th (ft)	~143		164			~434
Queue Length 95th (ft)	#308		285			#280
Internal Link Dist (ft)	248		439			477
Turn Bay Length (ft)	240		400			411
Base Capacity (vph)	399		1328			667
Starvation Cap Reductn	0		120			007
Spillback Cap Reductn	0		0			0
Storage Cap Reductn	0		0			0
Reduced v/c Ratio	1.14		0.66			1.12
	1.14		0.00			1.12
Intersection Summary						

Area Type: Other

Cycle Length: 80

Actuated Cycle Length: 80

Offset: 0 (0%), Referenced to phase 1:NBT and 5:SBTL, Start of Yellow

Natural Cycle: 100

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.14

Intersection Signal Delay: 60.5 Intersection LOS: E
Intersection Capacity Utilization 112.4% ICU Level of Service H

Analysis Period (min) 15

- * User Entered Value
- Volume exceeds capacity, queue is theoretically infinite.
 - Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.
 - Queue shown is maximum after two cycles.

Splits and Phases: 8: NYS Route 120 & Gateway Lane

	۶	→	•	•	←	*_	•	†	<i>></i>	/	↓	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	WBR2	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ĵ.			ર્ન		7	^	7	ř	∱ }	
Traffic Volume (vph)	315	148	95	79	142	3	115	1192	129	75	581	207
Future Volume (vph)	315	148	95	79	142	3	115	1192	129	75	581	207
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	11	12	12	12	12	11	11	12	12	12
Grade (%)		2%			2%			4%			-6%	
Storage Length (ft)	115		0	0		180			160	110		0
Storage Lanes	1		0	0		1			1	1		0
Taper Length (ft)	86			25						86		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	0.95
Ped Bike Factor					1.00							
Frt		0.941			0.998		0.850		0.850		0.961	
Flt Protected					0.983					0.950		
Satd. Flow (prot)	1732	1688	0	0	1810	0	1599	3420	1515	1859	3520	0
Flt Permitted					0.983					0.051		
Satd. Flow (perm)	1732	1688	0	0	1810	0	1599	3420	1515	100	3520	0
Right Turn on Red			No				Yes		Yes			
Satd. Flow (RTOR)							90		76			
Link Speed (mph)		35			30			45			35	
Link Distance (ft)		532			475			529			778	
Travel Time (s)		10.4			10.8			8.0			15.2	
Confl. Peds. (#/hr)						2						
Confl. Bikes (#/hr)												
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	5%	1%	2%	0%	3%	0%	0%	0%	1%	0%	1%	3%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	325	153	98	81	146	3	119	1229	133	77	599	213
Shared Lane Traffic (%)												-
Lane Group Flow (vph)	325	251	0	0	230	0	119	1229	133	77	812	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Right	Left	Right	Left	Left	Right
Median Width(ft)		11			11			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.06	1.06	1.06	1.01	1.01	1.01	1.01	1.07	1.07	0.96	0.96	0.96
Turning Speed (mph)	15	1.00	9	15	1.01	9	9	1.01	9	15	0.00	9
Number of Detectors	1	2	Ū	1	2	•	1	2	1	1	2	J
Detector Template	'			Left			'			'		
Leading Detector (ft)	35	83		20	83		35	83	35	35	83	
Trailing Detector (ft)	-5	-5		0	-5		-5	-5	-5	-5	-5	
Turn Type	Split	NA		Split	NA		pm+ov	NA	pm+ov	pm+pt	NA	
Protected Phases	3	3		Split 4	4		рит - 07	6	μπ - 0ν	рит - рс	2	
Permitted Phases	J	J		4	4		4	U	6	2		
Detector Phase	3	3		4	4		5	6	4	5	2	
	J	J		4	4		5	Ö	4	5		
Switch Phase												

Synchro 10 Report 18002018A - N.T. Page 10

Lane Group	Ø7
Lane Configurations	
Traffic Volume (vph)	
Future Volume (vph)	
Ideal Flow (vphpl)	
Lane Width (ft)	
Grade (%)	
,	
Storage Length (ft) Storage Lanes	
Taper Length (ft)	
Lane Util. Factor	
Ped Bike Factor	
Frt	
Flt Protected	
Satd. Flow (prot)	
Flt Permitted	
Satd. Flow (perm)	
Right Turn on Red	
Satd. Flow (RTOR)	
Link Speed (mph)	
Link Distance (ft)	
Travel Time (s)	
Confl. Peds. (#/hr)	
Confl. Bikes (#/hr)	
Peak Hour Factor	
Growth Factor	
Heavy Vehicles (%)	
Bus Blockages (#/hr)	
Parking (#/hr)	
Mid-Block Traffic (%)	
Adj. Flow (vph)	
Shared Lane Traffic (%)	
Lane Group Flow (vph)	
Enter Blocked Intersection	
Lane Alignment	
Median Width(ft)	
Link Offset(ft)	
Crosswalk Width(ft)	
Two way Left Turn Lane	
Headway Factor	
Turning Speed (mph)	
Number of Detectors	
Detector Template	
Leading Detector (ft)	
Trailing Detector (ft)	
Turn Type	
Protected Phases	7
Permitted Phases	
Detector Phase	
Switch Phase	

Synchro 10 Report Page 11

	۶	→	•	•	←	*_	•	†	/	/	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	WBR2	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	39.0	39.0		11.0	11.0		11.0	11.0	11.0	11.0	31.0	
Total Split (s)	43.0	43.0		31.0	31.0		11.0	79.0	31.0	11.0	90.0	
Total Split (%)	21.5%	21.5%		15.5%	15.5%		5.5%	39.5%	15.5%	5.5%	45.0%	
Maximum Green (s)	37.0	37.0		25.0	25.0		5.0	73.0	25.0	5.0	84.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0			0.0		0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0			6.0		6.0	6.0	6.0	6.0	6.0	
Lead/Lag	Lead	Lead		Lag	Lag		Lead	Lag	Lag	Lead		
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes	Yes	Yes		
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Minimum Gap (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Time Before Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Recall Mode	None	None		None	None		None	Min	None	None	Min	
Walk Time (s)	8.0	8.0									8.0	
Flash Dont Walk (s)	25.0	25.0									17.0	
Pedestrian Calls (#/hr)	6	6									0	
Act Effct Green (s)	37.0	37.0			25.0		30.0	73.0	98.0	84.0	84.0	
Actuated g/C Ratio	0.18	0.18			0.12		0.15	0.36	0.49	0.42	0.42	
v/c Ratio	1.02	0.80			1.02		0.38	0.98	0.17	0.91	0.55	
Control Delay	131.5	97.5			146.7		17.3	83.9	6.5	113.4	45.5	
Queue Delay	0.0	0.0			0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay	131.5	97.5			146.7		17.3	83.9	6.5	113.4	45.5	
LOS	F	F			F		В	F	Α	F	D	
Approach Delay		116.7			102.6			76.3			51.4	
Approach LOS		F			F			E			D	
Queue Length 50th (ft)	~449	322			~318		25	848	19	61	424	
Queue Length 95th (ft)	#669	#463			#514		78	#1007	41	#167	493	
Internal Link Dist (ft)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	452			395			449		,,	698	
Turn Bay Length (ft)	115	102			000		180	1.10	160	110	000	
Base Capacity (vph)	320	312			226		316	1248	781	85	1478	
Starvation Cap Reductn	0	0			0		0	0	0	0	0	
Spillback Cap Reductn	0	0			0		0	0	0	0	0	
Storage Cap Reductn	0	0			0		0	0	0	0	0	
Reduced v/c Ratio	1.02	0.80			1.02		0.38	0.98	0.17	0.91	0.55	
	1.02	0.00			1.02		0.00	0.00	0.17	0.01	0.00	
Intersection Summary	Other											
Area Type:	Other											

Cycle Length: 200 Actuated Cycle Length: 200 Natural Cycle: 150

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 1.02 Intersection Signal Delay: 79.5 Intersection Capacity Utilization 86.6% Analysis Period (min) 15

Intersection LOS: E ICU Level of Service E

~ Volume exceeds capacity, queue is theoretically infinite.

Synchro 10 Report Page 12

Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (s) Total Split (%) Maximum Green (s) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) Minimum Gap (s) Time Before Reduce (s) Time To Reduce (s) Recall Mode Walk Time (s) Pedestrian Calls (#/hr) Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio	Lane Group	Ø7
Minimum Split (s) 36.0 Total Split (s) 36.0 Total Split (%) 18% Maximum Green (s) 31.0 Yellow Time (s) 3.5 All-Red Time (s) 1.5 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		
Total Split (s) 36.0 Total Split (%) 18% Maximum Green (s) 31.0 Yellow Time (s) 3.5 All-Red Time (s) 1.5 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		
Total Split (%) 18% Maximum Green (s) 31.0 Yellow Time (s) 3.5 All-Red Time (s) 1.5 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		
Maximum Green (s) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) Alinimum Gap (s) Time Before Reduce (s) Time To Reduce (s) Recall Mode Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		
Yellow Time (s) 3.5 All-Red Time (s) 1.5 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		31.0
All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) Time To Reduce (s) Recall Mode Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		
Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		
Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		
Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Time To Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		
Lead-Lag Optimize? Vehicle Extension (s) 3.0 Minimum Gap (s) 3.0 Time Before Reduce (s) 0.0 Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		
Vehicle Extension (s) Minimum Gap (s) Time Before Reduce (s) Time To Reduce (s) Recall Mode Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		
Minimum Gap (s) Time Before Reduce (s) Time To Reduce (s) Recall Mode Recall Mode Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		3.0
Time Before Reduce (s) Time To Reduce (s) Recall Mode Recall Mode Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn		
Time To Reduce (s) Recall Mode Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn		0.0
Recall Mode Ped Walk Time (s) 8.0 Flash Dont Walk (s) 23.0 Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn		0.0
Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		Ped
Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		
Pedestrian Calls (#/hr) 2 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		23.0
Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		
Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		
v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		
Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		
Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn	Control Delay	
Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn	•	
Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		
Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		
Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn	Approach Delay	
Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		
Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		
Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		
Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		
Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		
Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn		
Spillback Cap Reductn Storage Cap Reductn		
Storage Cap Reductn		
Intersection Summery	Intersection Summary	
Intersection Summary	intersection Summary	

Synchro 10 Report Page 13 18002018A - N.T.

Year 2024 No-Build Traffic Volumes - Sensitivity Analysis with Imp Weekday Peak PM Hour 15: Central Westchester Expressway & NYS Route 22 & Reservoir Road & Church Street(28/2020)

Synchro 10 Report 18002018A - N.T. Page 14

	ሽ	†	ļ	» J	•	>
Lane Group	NBL	NBT	SBT	SBR	SEL	SER
Lane Configurations	ች	^	^	7	ች	7
Traffic Volume (vph)	214	554	794	226	524	786
Future Volume (vph)	214	554	794	226	524	786
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1900	1900	1900	1900	1900	1900
` '	10	0%	0%	10	0%	10
Grade (%)	050	0%	0%	F00		^
Storage Length (ft)	250			500	250	0
Storage Lanes	1			1	1	1
Taper Length (ft)	86				86	
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00
Ped Bike Factor						
Frt				0.850		0.850
Flt Protected	0.950				0.950	
Satd. Flow (prot)	1478	3209	3303	1478	1604	1436
Flt Permitted	0.950				0.950	
Satd. Flow (perm)	1478	3209	3303	1478	1604	1436
Right Turn on Red	1710	0200	0000	Yes	1007	Yes
				231		483
Satd. Flow (RTOR)		EE	EE	231	20	400
Link Speed (mph)		55 767	55		30	
Link Distance (ft)		767	1064		872	
Travel Time (s)		9.5	13.2		19.8	
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	14%	5%	2%	2%	5%	5%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)			,	•	•	
Mid-Block Traffic (%)		0%	0%		0%	
Adj. Flow (vph)	218	565	810	231	535	802
	210	303	010	201	555	002
Shared Lane Traffic (%)	040	EGE	040	024	E2E	000
Lane Group Flow (vph)	218	565	810	231	535	802
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width(ft)		10	15		10	
Link Offset(ft)		0	0		0	
Crosswalk Width(ft)		16	16		16	
Two way Left Turn Lane						
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (mph)	15			9	15	9
Number of Detectors	1	2	2	1	2	0
Detector Template	l l			'		U
· ·	25	104	104	0	104	0
Leading Detector (ft)	35	104		0		0
Trailing Detector (ft)	-5	0	0	0	0	0
Turn Type	Prot	NA	NA	Free	Prot	Free
Protected Phases	2	5	1		3	
Permitted Phases				Free		Free
Detector Phase	2	5	1		3	
Switch Phase						
- Inton Fidou						

	ሻ	†	ļ	w	•	\
Lane Group	NBL	NBT	SBT	SBR	SEL	SER
Minimum Initial (s)	12.0	12.0	12.0		10.0	
Minimum Split (s)	36.0	36.0	36.0		26.0	
Total Split (s)	37.0	75.0	38.0		48.0	
Total Split (%)	30.1%	61.0%	30.9%		39.0%	
Maximum Green (s)	30.0	68.0	31.0		42.0	
Yellow Time (s)	5.0	5.0	5.0		4.0	
All-Red Time (s)	2.0	2.0	2.0		2.0	
Lost Time Adjust (s)	0.0	0.0	0.0		0.0	
Total Lost Time (s)	7.0	7.0	7.0		6.0	
Lead/Lag	Lead		Lag			
Lead-Lag Optimize?	Yes		Yes			
Vehicle Extension (s)	6.0	6.0	6.0		6.0	
Minimum Gap (s)	4.0	4.0	4.0		4.0	
Time Before Reduce (s)	20.0	20.0	20.0		20.0	
Time To Reduce (s)	8.0	8.0	8.0		5.0	
Recall Mode	None	Min	Min		None	
Walk Time (s)						
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)						
Act Effct Green (s)	24.3	62.4	31.1	117.3	41.9	117.3
Actuated g/C Ratio	0.21	0.53	0.27	1.00	0.36	1.00
v/c Ratio	0.71	0.33	0.93	0.16	0.94	0.56
Control Delay	56.7	16.1	60.0	0.2	62.3	1.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	56.7	16.1	60.0	0.2	62.3	1.6
LOS	E	В	E	A	E	A
Approach Delay		27.4	46.7		25.9	
Approach LOS		C	D		C	
Queue Length 50th (ft)	155	122	317	0	391	0
Queue Length 95th (ft)	241	160	#470	0	#650	0
Internal Link Dist (ft)		687	984		792	
Turn Bay Length (ft)	250	001	001	500	250	
Base Capacity (vph)	378	1864	875	1478	575	1436
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.58	0.30	0.93	0.16	0.93	0.56
	0.00	0.00	0.00	0.10	0.00	0.00
Intersection Summary						
Area Type:	Other					
Cycle Length: 123						
Actuated Cycle Length: 17	17.3					
Natural Cycle: 110						
Control Type: Actuated-U	ncoordinated					
Maximum v/c Ratio: 0.94						
Intersection Signal Delay:	33.1			Ir	ntersection	LOS: C
Intersection Capacity Utiliz	zation 79.5%			IC	CU Level o	of Service
Analysis Daried (min) 15						

95th percentile volume exceeds capacity, queue may be longer.

Analysis Period (min) 15

Queue shown is maximum after two cycles.

	۶	-	•	•	←	•	•	†	~	\	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	, j	4					7	ħβ		ň	+	7
Traffic Volume (vph)	387	413	307	0	0	0	89	127	55	49	179	514
Future Volume (vph)	387	413	307	0	0	0	89	127	55	49	179	514
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	16	16	16	12	12	12	12	12	12
Grade (%)		1%			-4%			-1%			1%	
Storage Length (ft)	0		0	0		0	385		0	190		460
Storage Lanes	1		0	0		0	1		0	1		1
Taper Length (ft)	25			25			86			86		
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.939						0.954				0.850
Flt Protected	0.950	0.997					0.950			0.950		
Satd. Flow (prot)	1580	1614	0	0	0	0	1695	3179	0	1727	1734	1530
Flt Permitted	0.950	0.997					0.548			0.630		
Satd. Flow (perm)	1580	1614	0	0	0	0	978	3179	0	1145	1734	1530
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		36						59				547
Link Speed (mph)		30			30			55			55	
Link Distance (ft)		176			314			586			596	
Travel Time (s)		4.0			7.1			7.3			7.4	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	8%	4%	4%	0%	0%	0%	7%	11%	4%	4%	9%	5%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	412	439	327	0	0	0	95	135	59	52	190	547
Shared Lane Traffic (%)	10%											
Lane Group Flow (vph)	371	807	0	0	0	0	95	194	0	52	190	547
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	<u> </u>
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.01	1.01	1.01	0.82	0.82	0.82	0.99	0.99	0.99	1.01	1.01	1.01
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	_				1	2		1	2	1
Detector Template		_					•	_		•	_	
Leading Detector (ft)	35	83					35	83		35	83	35
Trailing Detector (ft)	-5	-5					-5	-5		-5	-5	-5
Turn Type	Split	NA					pm+pt	NA		pm+pt	NA	pm+ov
Protected Phases	3	3					6	1		2	5	3
Permitted Phases							1			5		5
Detector Phase	3	3					6	1		2	5	3
Switch Phase	3	- 3					- 0				- 3	- 3
OWITOH I HUGO												

	۶	-	\rightarrow	•	←	•	•	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	5.0					3.0	8.0		3.0	25.0	5.0
Minimum Split (s)	10.0	10.0					10.0	15.0		10.0	32.0	10.0
Total Split (s)	50.0	50.0					22.0	42.0		22.0	42.0	50.0
Total Split (%)	43.9%	43.9%					19.3%	36.8%		19.3%	36.8%	43.9%
Maximum Green (s)	45.0	45.0					15.0	35.0		15.0	35.0	45.0
Yellow Time (s)	4.0	4.0					5.0	5.0		5.0	5.0	4.0
All-Red Time (s)	1.0	1.0					2.0	2.0		2.0	2.0	1.0
Lost Time Adjust (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0					7.0	7.0		7.0	7.0	5.0
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0					2.0	2.0		2.0	2.0	3.0
Minimum Gap (s)	3.0	3.0					2.0	2.0		2.0	2.0	3.0
Time Before Reduce (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Recall Mode	None	None					None	Min		None	Min	None
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)	45.3	45.3					35.2	27.5		30.4	25.1	78.6
Actuated g/C Ratio	0.47	0.47					0.37	0.29		0.32	0.26	0.82
v/c Ratio	0.50	1.03					0.22	0.20		0.13	0.42	0.40
Control Delay	21.5	66.9					19.0	19.0		18.3	34.0	1.2
Queue Delay	0.0	0.0					0.0	0.0		0.0	0.0	0.0
Total Delay	21.5	66.9					19.0	19.0		18.3	34.0	1.2
LOS	С	E					В	В		В	С	Α
Approach Delay		52.6						19.0			10.2	
Approach LOS		D						В			В	
Queue Length 50th (ft)	166	~573					36	33		19	99	0
Queue Length 95th (ft)	273	#861					67	62		42	173	22
Internal Link Dist (ft)		96			234			506			516	
Turn Bay Length (ft)							385			190		460
Base Capacity (vph)	748	783					503	1208		531	639	1356
Starvation Cap Reductn	0	0					0	0		0	0	0
Spillback Cap Reductn	0	0					0	0		0	0	0
Storage Cap Reductn	0	0					0	0		0	0	0
Reduced v/c Ratio	0.50	1.03					0.19	0.16		0.10	0.30	0.40

Intersection Summary

Area Type: Other

Cycle Length: 114

Actuated Cycle Length: 95.5

Natural Cycle: 90

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 1.03 Intersection Signal Delay: 33.5 Intersection Capacity Utilization 72.5%

Intersection LOS: C
ICU Level of Service C

Analysis Period (min) 15

~ Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Lane Group		۶	→	•	•	←	•	†	<i>></i>	/	↓	4	₩ J
Traffic Volume (vph)	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR2	NBT	NBR	SBL	SBT	SBR	SBR2
Traffic Volume (vph)	Lane Configurations	ř	î,			ર્વ	*	44	7	¥	↑ Ъ		
Fiture Volume (vph)				213	73							248	1
Ideal Flow (ryphoi)													1
Lane Width (ft)	` ' '												1900
Strate Charle C													
Storage Length (ft)					· -		· -					· -	
Storage Lanes	,	115	_,,	0	0	=70		.,,	160	110	0,0	0	
Taper Length (ft)													
Lane Util. Factor				J					•	· ·			
Ped Bike Factor			1 00	1 00		1 00	1 00	0.95	1 00		0.95	0.95	0.95
Fit				1.00	1.00			0.50	1.00	1.00	0.50	0.50	0.50
Fit Protected 1.59		1.00				1.00			0.850		በ 975		
Satd. Flow (prot) 1595 1555 0 0 1755 1508 3257 1500 1805 3475 0 0 Fil Permitted			0.000			0 974	0.000		0.000	0.950	0.570		
Fit Permitted		1595	1555	Λ	n		1508	3257	1500		3475	0	n
Satd. Flow (perm) 1590 1555 0 0 1748 1482 3257 1500 631 3475 0 0 0 0 0 0 0 0 0		1000	1000	U	U		1300	3231	1500		J + 1 J	U	U
Right Turn on Red No Satd. Flow (RTOR)		1500	1555	Λ	Λ		1/82	3257	1500		3/175	0	Ο
Satd. Flow (RTOR)		1590	1555		U	1740		3231		031	3473	U	
Link Speed (mph)				INO									INO
Link Distance (ft)			25			20	70	15	70		25		
Travel Time (s)													
Confl. Peds. (#/hr)													
Confl. Bikes (#/hr)	` ,	0	10.4	•	•	10.8	0	6.0			15.2		
Peak Hour Factor 0.95 0.96 100% 100% 100% 100% 100% 100% 100% 0		2		б	б		2						
Growth Factor 100%		0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Heavy Vehicles (%)													
Bus Blockages (#/hr) 0 0 0 0 0 0 0 0 0													
Parking (#hr) Mid-Block Traffic (%) 0% 0% 0% 0% 0% 0% 0%	• , ,												
Mid-Block Traffic (%) 0% 0% 0% 0% Adj. Flow (vph) 284 81 224 77 69 36 548 52 36 1301 261 1 Shared Lane Traffic (%) Lane Group Flow (vph) 284 305 0 0 146 36 548 52 36 1563 0 0 Enter Blocked Intersection No		0	0	0	0	0	0	0	0	0	0	0	0
Adj. Flow (vph) 284 81 224 77 69 36 548 52 36 1301 261 1 Shared Lane Traffic (%) Lane Group Flow (vph) 284 305 0 0 146 36 548 52 36 1563 0 0 Enter Blocked Intersection No N			•••			•••		•••			•••		
Shared Lane Traffic (%) Lane Group Flow (vph) 284 305 0 0 146 36 548 52 36 1563 0 0 0	` ,												
Lane Group Flow (vph) 284 305 0 0 146 36 548 52 36 1563 0 0 Enter Blocked Intersection No <td< td=""><td></td><td>284</td><td>81</td><td>224</td><td>77</td><td>69</td><td>36</td><td>548</td><td>52</td><td>36</td><td>1301</td><td>261</td><td>1</td></td<>		284	81	224	77	69	36	548	52	36	1301	261	1
Enter Blocked Intersection No <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td></th<>									_				
Left Left Right Left Right Left Right Left Right Left Right Left Right Right Median Width(ft) 11													
Median Width(ft) 11 11 12 12 Link Offset(ft) 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 Two way Left Turn Lane Headway Factor 1.06 1.06 1.01 1.01 1.01 1.07 1.07 0.96 0.96 0.96 0.96 Turning Speed (mph) 15 9 15 9 9 15 9													
Link Offset(ft) 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 Two way Left Turn Lane Headway Factor 1.06 1.06 1.01 1.01 1.01 1.07 1.07 0.96 0.96 0.96 0.96 Turning Speed (mph) 15 9 15 9 9 15 9 9 Number of Detectors 1 2 1 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 3 3 3		Left		Right	Left		Right		Right	Left		Right	Right
Crosswalk Width(ft) 16 16 16 16 16 16 16 Two way Left Turn Lane Headway Factor 1.06 1.06 1.06 1.01 1.01 1.01 1.07 1.07 0.96 0.96 0.96 0.96 Turning Speed (mph) 15 9 15 9 9 15 9 9 9 Number of Detectors 1 2 1 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 3 3 83 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>													
Two way Left Turn Lane Headway Factor 1.06 1.06 1.06 1.01 1.01 1.01 1.07 1.07 0.96 0.96 0.96 0.96 Turning Speed (mph) 15 9 15 9 9 9 15 9 9 15 9 9 15 9 9 15 9 9 9 15 9 9 9 15 9 9 9 9													
Headway Factor 1.06 1.06 1.06 1.01 1.01 1.07 1.07 0.96	· /		16			16		16			16		
Turning Speed (mph) 15 9 15 9 9 15 9 9 15 9 9 15 9 9 9 15 9 9 15 9 9 15 9 9 9 15 9 9 15 9 9 15 9 9 15 9 9 15 9 9 15 9 9 15 9 9 15 9 9 15 9 9 15 9 9 15 9 9 15 2 9 9 15 2 9 9 15 2 9 9 15 2 9 15 2 1 2 2 2 2 2 3 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>													
Number of Detectors 1 2 1 2 1 2 1 2 1 1 2 Detector Template Left Leading Detector (ft) 35 83 20 83 35 83 35 83 Trailing Detector (ft) -5 -5 0 -5	Headway Factor		1.06			1.01	1.01	1.07	1.07		0.96		
Detector Template Left Leading Detector (ft) 35 83 20 83 35 83 35 83 Trailing Detector (ft) -5 -6 4	Turning Speed (mph)	15		9	15		9		9	15		9	9
Leading Detector (ft) 35 83 20 83 35 83 35 83 Trailing Detector (ft) -5 -5 -5 -5 -5 -5 -5 -5 -5 Turn Type Split NA Split NA pm+ov NA pm+ov pm+pt NA Protected Phases 3 3 4 4 5 6 4 5 2 Permitted Phases 3 3 4 4 5 6 4 5 2 Detector Phase 3 3 4 4 5 6 4 5 2	Number of Detectors	1	2		1	2	1	2	1	1	2		
Trailing Detector (ft) -5 -5 0 -5 -5 -5 -5 -5 -5 Turn Type Split NA Split NA pm+ov NA pm+pt NA Protected Phases 3 3 4 4 5 6 4 5 2 Permitted Phases 3 3 4 4 5 6 4 5 2	Detector Template				Left								
Trailing Detector (ft) -5 -5 0 -5 </td <td>Leading Detector (ft)</td> <td></td> <td></td> <td></td> <td>20</td> <td></td> <td>35</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Leading Detector (ft)				20		35						
Turn Type Split NA Split NA pm+ov NA pm+ov pm+pt NA Protected Phases 3 3 4 4 5 6 4 5 2 Permitted Phases 4 6 2 Detector Phase 3 3 4 4 5 6 4 5 2		-5	-5		0	-5	-5	-5	-5	-5	-5		
Protected Phases 3 3 4 4 5 6 4 5 2 Permitted Phases 4 6 2 Detector Phase 3 3 4 4 5 6 4 5 2	. ,	Split	NA		Split	NA	pm+ov	NA	pm+ov	pm+pt	NA		
Permitted Phases 4 6 2 Detector Phase 3 3 4 4 5 6 4 5 2							•						
Detector Phase 3 3 4 4 5 6 4 5 2													
		3	3		4	4		6			2		
	Switch Phase					•							

Synchro 10 Report 18002018A - N.T. Page 7

Lane Group Ø7
Lane Configurations
Traffic Volume (vph)
Future Volume (vph)
Ideal Flow (vphpl)
Lane Width (ft)
Grade (%)
Storage Length (ft)
Storage Lanes
Taper Length (ft)
Lane Util. Factor
Ped Bike Factor
Frit
Fit Protected
Satd. Flow (prot)
Flt Permitted
Satd. Flow (perm)
Right Turn on Red
Satd. Flow (RTOR)
Link Speed (mph)
Link Distance (ft)
Travel Time (s)
Confl. Peds. (#/hr)
Confl. Bikes (#/hr)
Peak Hour Factor
Growth Factor
Heavy Vehicles (%)
Bus Blockages (#/hr)
Parking (#/hr)
Mid-Block Traffic (%)
Adj. Flow (vph)
Shared Lane Traffic (%)
Lane Group Flow (vph)
Enter Blocked Intersection
Lane Alignment
Median Width(ft)
Link Offset(ft)
Crosswalk Width(ft)
Two way Left Turn Lane
Headway Factor
Turning Speed (mph)
Number of Detectors
Detector Template
Leading Detector (ft)
Trailing Detector (ft)
Turn Type
Protected Phases 7
Permitted Phases
Detector Phase
Switch Phase

Synchro 10 Report Page 8

	۶	→	•	•	+	•	†	~	/	+	4	₩ J
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR2	NBT	NBR	SBL	SBT	SBR	SBR2
Minimum Initial (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0	5.0		
Minimum Split (s)	39.0	39.0		11.0	11.0	11.0	11.0	11.0	11.0	31.0		
Total Split (s)	45.0	45.0		22.0	22.0	11.0	86.0	22.0	11.0	97.0		
Total Split (%)	22.5%	22.5%		11.0%	11.0%	5.5%	43.0%	11.0%	5.5%	48.5%		
Maximum Green (s)	39.0	39.0		16.0	16.0	5.0	80.0	16.0	5.0	91.0		
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0		
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0		
Lost Time Adjust (s)	0.0	0.0			0.0	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	6.0	6.0			6.0	6.0	6.0	6.0	6.0	6.0		
Lead/Lag	Lead	Lead		Lag	Lag	Lead	Lag	Lag	Lead			
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes			
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0		
Minimum Gap (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0		
Time Before Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Time To Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Recall Mode	None	None		None	None	None	Min	None	None	Min		
Walk Time (s)	8.0	8.0								8.0		
Flash Dont Walk (s)	25.0	25.0								17.0		
Pedestrian Calls (#/hr)	6	6								0		
Act Effct Green (s)	39.0	39.0			16.0	21.0	82.2	98.2	91.0	91.0		
Actuated g/C Ratio	0.20	0.20			0.08	0.10	0.41	0.49	0.46	0.46		
v/c Ratio	0.91	1.01			1.04	0.16	0.41	0.07	0.11	0.99		
Control Delay	110.4	130.3			170.9	1.5	43.3	1.0	31.3	73.1		
Queue Delay	0.0	0.0			0.0	0.0	0.0	0.0	0.0	0.0		
Total Delay	110.4	130.3			170.9	1.5	43.3	1.0	31.3	73.1		
LOS	F	F			F	Α	D	Α	С	Е		
Approach Delay		120.7			137.4		39.7			72.1		
Approach LOS		F			F		D			Е		
Queue Length 50th (ft)	372	~411			~206	0	274	0	26	1070		
Queue Length 95th (ft)	#562	#633			#372	0	331	5	52	#1238		
Internal Link Dist (ft)		452			395		449			698		
Turn Bay Length (ft)	115					180		160	110			
Base Capacity (vph)	311	303			140	224	1338	775	316	1581		
Starvation Cap Reductn	0	0			0	0	0	0	0	0		
Spillback Cap Reductn	0	0			0	0	0	0	0	0		
Storage Cap Reductn	0	0			0	0	0	0	0	0		
Reduced v/c Ratio	0.91	1.01			1.04	0.16	0.41	0.07	0.11	0.99		
Intersection Summary												
Area Type:	Other											
Cycle Length: 200												

Cycle Length: 200 Actuated Cycle Length: 200 Natural Cycle: 150

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 1.04 Intersection Signal Delay: 79.2 Intersection Capacity Utilization 92.5% Analysis Period (min) 15

Intersection LOS: E ICU Level of Service F

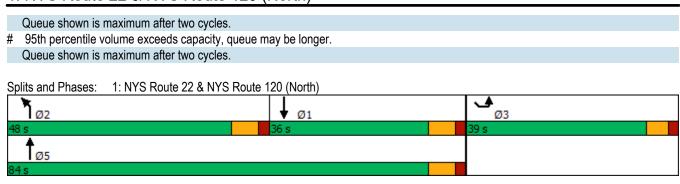
~ Volume exceeds capacity, queue is theoretically infinite.

Lane Group	Ø7
Minimum Initial (s)	8.0
Minimum Split (s)	36.0
Total Split (s)	36.0
Total Split (%)	18%
Maximum Green (s)	31.0
Yellow Time (s)	3.5
All-Red Time (s)	1.5
Lost Time Adjust (s)	
Total Lost Time (s)	
Lead/Lag	
Lead-Lag Optimize?	
Vehicle Extension (s)	3.0
Minimum Gap (s)	3.0
Time Before Reduce (s)	0.0
Time To Reduce (s)	0.0
Recall Mode	Ped
Walk Time (s)	8.0
Flash Dont Walk (s)	23.0
Pedestrian Calls (#/hr)	2
Act Effct Green (s)	
Actuated g/C Ratio	
v/c Ratio	
Control Delay	
Queue Delay	
Total Delay	
LOS	
Approach Delay	
Approach LOS	
Queue Length 50th (ft)	
Queue Length 95th (ft)	
Internal Link Dist (ft)	
Turn Bay Length (ft)	
Base Capacity (vph)	
Starvation Cap Reductn	
Spillback Cap Reductn	
Storage Cap Reductn	
Reduced v/c Ratio	
Intersection Cumment	
Intersection Summary	

Synchro 10 Report Page 10 18002018A - N.T.

Synchro 10 Report 18002018A - N.T. Page 11

	ሻ	†	ţ	» J	•	>
Lane Group	NBL	NBT	SBT	SBR	SEL	SER
Lane Configurations	ች	^	† †	#	ች	7
Traffic Volume (vph)	716	731	691	603	281	269
Future Volume (vph)	716	731	691	603	281	269
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1900	1900	1900	1900	1900	1900
. ,	10	0%	0%	10	0%	10
Grade (%)	050	U%	U%	E00		0
Storage Length (ft)	250			500	250	0
Storage Lanes	1			1	1	1
Taper Length (ft)	86				86	
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00
Ped Bike Factor						
Frt				0.850		0.850
Flt Protected	0.950				0.950	
Satd. Flow (prot)	1685	3336	3336	1507	1685	1507
Flt Permitted	0.950				0.950	
Satd. Flow (perm)	1685	3336	3336	1507	1685	1507
Right Turn on Red	1000	3000	3000	Yes	1000	Yes
Satd. Flow (RTOR)				641		286
		55	55	041	30	200
Link Speed (mph)						
Link Distance (ft)		767	1064		872	
Travel Time (s)		9.5	13.2		19.8	
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	1%	1%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)		0%	0%		0%	
Adj. Flow (vph)	762	778	735	641	299	286
Shared Lane Traffic (%)	102	110	100	071	200	200
	762	778	735	641	299	286
Lane Group Flow (vph)						
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width(ft)		10	15		10	
Link Offset(ft)		0	0		0	
Crosswalk Width(ft)		16	16		16	
Two way Left Turn Lane						
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (mph)	15			9	15	9
Number of Detectors	1	2	2	1	2	0
Detector Template	'	_	_		_	
Leading Detector (ft)	35	104	104	0	104	0
Trailing Detector (ft)	-5	0	0	0	0	0
Turn Type	Prot	NA	NA	Free	Prot	Free
Protected Phases	2	5	1	_	3	_
Permitted Phases				Free		Free
Detector Phase	2	5	1		3	
Switch Phase						


Minimum Initial (s)
Minimum Initial (s) 12.0 12.0 12.0 10.0 Minimum Split (s) 36.0 36.0 36.0 36.0 39.0 Total Split (s) 48.0 84.0 36.0 39.0 Total Split (%) 39.0% 68.3% 29.3% 31.7% Maximum Green (s) 41.0 77.0 29.0 33.0 Yellow Time (s) 5.0 5.0 5.0 4.0 All-Red Time (s) 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Lost Time (s) 7.0 7.0 7.0 6.0 Lead/Lag Lead Lag Lead Lag Lead-Lag Optimize? Yes Yes Yes Ves Vehicle Extension (s) 6.0 6.0 6.0 6.0 Minimum Gap (s) 4.0 4.0 4.0 4.0 Time Before Reduce (s) 8.0 8.0 8.0 5.0 Recall Mode None <td< td=""></td<>
Minimum Split (s) 36.0 36.0 36.0 36.0 39.0 Total Split (s) 48.0 84.0 36.0 39.0 Total Split (%) 39.0% 68.3% 29.3% 31.7% Maximum Green (s) 41.0 77.0 29.0 33.0 Yellow Time (s) 5.0 5.0 5.0 4.0 All-Red Time (s) 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 7.0 7.0 7.0 6.0 Lead/Lag Lead Lag Lead/Lag Lead Lead-Lag Optimize? Yes Yes Yes Vehicle Extension (s) 6.0 6.0 6.0 6.0 Minimum Gap (s) 4.0 4.0 4.0 4.0 Time Before Reduce (s) 8.0 8.0 8.0 5.0 Recall Mode None Min Min None Walk Time (s) None None
Total Split (s)
Total Split (%) 39.0% 68.3% 29.3% 31.7% Maximum Green (s) 41.0 77.0 29.0 33.0 Yellow Time (s) 5.0 5.0 5.0 4.0 All-Red Time (s) 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 7.0 7.0 7.0 6.0 Lead/Lag Lead Lag Lead-Lag Optimize? Yes Yes Vehicle Extension (s) 6.0 6.0 6.0 6.0 Minimum Gap (s) 4.0 4.0 4.0 4.0 Time Before Reduce (s) 20.0 20.0 20.0 20.0 Time To Reduce (s) 8.0 8.0 8.0 5.0 Recall Mode None Min Min None Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) 41.1 77.0 28.9 117.4 27.4 117.4 Actuated g/C Ratio 0.35 0.66 0.25 1.00 0.23 1.00 v/c Ratio 1.29 0.36 0.90 0.43 0.76 0.19 Control Delay 177.8 10.2 58.2 0.9 55.1 0.3 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 177.8 10.2 58.2 0.9 55.1 0.3 LOS F B E A E A Approach LOS F B E A E A Approach LOS F C C C Queue Length 50th (ft) 748 131 287 0 212 0 Queue Length 95th (ft) #1035 186 #422 0 314 0 Internal Link Dist (ft) 792 Turn Bay Length (ft) 250 Base Capacity (vph) 589 2192 825 1507 474 1507 Starvation Cap Reductn 0 0 0 0 0 0 0 0 0
Maximum Green (s) 41.0 77.0 29.0 33.0 Yellow Time (s) 5.0 5.0 5.0 4.0 All-Red Time (s) 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 7.0 7.0 7.0 6.0 Lead/Lag Lead Lag Lead Lead-Lag Optimize? Yes Yes Vehicle Extension (s) 6.0 6.0 6.0 6.0 Minimum Gap (s) 4.0 4.0 4.0 4.0 Time Before Reduce (s) 20.0 20.0 20.0 20.0 Time To Reduce (s) 8.0 8.0 8.0 5.0 Recall Mode None Min Min None Walk Time (s) None Min None None Walk Time (s) Pedestrian Calls (#/hr) Actuated g/C Ratio 0.35 0.66 0.25 1.00 0.23 1.00 V/c Ratio 1.29 0.36 0.90 0.43 0.76 0.19
All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 7.0 7.0 7.0 6.0 Lead/Lag Lead Lag Lead-Lag Optimize? Yes Yes Vehicle Extension (s) 6.0 6.0 6.0 6.0 Minimum Gap (s) 4.0 4.0 4.0 4.0 Time Before Reduce (s) 20.0 20.0 20.0 20.0 Time To Reduce (s) 8.0 8.0 8.0 5.0 Recall Mode None Min Min None Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) 41.1 77.0 28.9 117.4 27.4 117.4 Actuated g/C Ratio 0.35 0.66 0.25 1.00 0.23 1.00 v/c Ratio 1.29 0.36 0.90 0.43 0.76 0.19 Control Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 177.8 10.2 58.2 0.9 55.1 0.3 Queue Delay 177.8 10.2 58.2 0.9 55.1 0.3 LOS F B B E A E A Approach Delay 93.1 31.5 28.3 Approach LOS F C C Queue Length 50th (ft) 4103 186 #422 0 314 0 Internal Link Dist (ft) 687 984 792 Turn Bay Length (ft) 250 500 250 Base Capacity (vph) 589 2192 825 1507 474 1507 Starvation Cap Reductn 0 0 0 0 0 0 0 0
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 7.0 7.0 7.0 6.0 Lead/Lag Lead Lag Lead-Lag Optimize? Yes Yes Vehicle Extension (s) 6.0 6.0 6.0 Minimum Gap (s) 4.0 4.0 4.0 Time Before Reduce (s) 20.0 20.0 20.0 Time To Reduce (s) 8.0 8.0 8.0 5.0 Recall Mode None Min Min None Walk Time (s) None Min Min None Walk Time (s) None Min Min None Walk Time (s) None Min Min None Walk Time (s) None Min Min None Walk Time (s) None Min Min None Walk Time (s) None Min Min None Min None Min None Min None <
Total Lost Time (s) 7.0 7.0 7.0 6.0 Lead/Lag Lead Lag Lead-Lag Optimize? Yes Yes Vehicle Extension (s) 6.0 6.0 6.0 6.0 Minimum Gap (s) 4.0 4.0 4.0 4.0 Time Before Reduce (s) 20.0 20.0 20.0 20.0 Time To Reduce (s) 8.0 8.0 8.0 5.0 Recall Mode None Min Min None Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effet Green (s) 41.1 77.0 28.9 117.4 27.4 117.4 Actuated g/C Ratio 0.35 0.66 0.25 1.00 0.23 1.00 v/c Ratio 1.29 0.36 0.90 0.43 0.76 0.19 Control Delay 177.8 10.2 58.2 0.9 55.1 0.3 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 177.8 10.2 58.2 0.9 55.1 0.3 LOS F B E A E A Approach Delay 93.1 31.5 28.3 Approach LOS F C C Queue Length 50th (ft) 748 131 287 0 212 0 Queue Length 95th (ft) #1035 186 #422 0 314 0 Internal Link Dist (ft) 687 984 792 Turn Bay Length (ft) 250 500 250 Base Capacity (vph) 589 2192 825 1507 474 1507 Starvation Cap Reductn 0 0 0 0 0 0 0
Total Lost Time (s) 7.0 7.0 7.0 6.0 Lead/Lag Lead Lag Lead-Lag Optimize? Yes Yes Vehicle Extension (s) 6.0 6.0 6.0 6.0 Minimum Gap (s) 4.0 4.0 4.0 4.0 Time Before Reduce (s) 20.0 20.0 20.0 20.0 Time To Reduce (s) 8.0 8.0 8.0 5.0 Recall Mode None Min Min None Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effet Green (s) 41.1 77.0 28.9 117.4 27.4 117.4 Actuated g/C Ratio 0.35 0.66 0.25 1.00 0.23 1.00 v/c Ratio 1.29 0.36 0.90 0.43 0.76 0.19 Control Delay 177.8 10.2 58.2 0.9 55.1 0.3 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 177.8 10.2 58.2 0.9 55.1 0.3 LOS F B E A E A Approach Delay 93.1 31.5 28.3 Approach LOS F C C Queue Length 50th (ft) 748 131 287 0 212 0 Queue Length 95th (ft) #1035 186 #422 0 314 0 Internal Link Dist (ft) 687 984 792 Turn Bay Length (ft) 250 500 250 Base Capacity (vph) 589 2192 825 1507 474 1507 Starvation Cap Reductn 0 0 0 0 0 0 0
Lead/Lag Lead Lag Lead-Lag Optimize? Yes Yes Vehicle Extension (s) 6.0 6.0 6.0 Minimum Gap (s) 4.0 4.0 4.0 Time Before Reduce (s) 20.0 20.0 20.0 Time To Reduce (s) 8.0 8.0 8.0 5.0 Recall Mode None Min Min None Walk Time (s) None Min Min None Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effet Green (s) 41.1 77.0 28.9 117.4 27.4 117.4 Act Effet Green (s) 41.1 77.0 28.9 117.4 27.4 117.4 Act Effet Green (s) 41.1 77.0 28.9 117.4 27.4 117.4 Act Effet Green (s) 41.1 77.0 28.9 117.4 27.4 117.4 Act Effet Green (s) 41.1 77.0 28.9 117.4 27.4 117.4 Act Effet
Lead-Lag Optimize? Yes Yes Vehicle Extension (s) 6.0 6.0 6.0 Minimum Gap (s) 4.0 4.0 4.0 Time Before Reduce (s) 20.0 20.0 20.0 Time To Reduce (s) 8.0 8.0 8.0 5.0 Recall Mode None Min Min None Walk Time (s) None Min Min None Walk Time (s) None Win Min None Pedestrian Calls (#/hr) None Win None None Act Effet Green (s) 41.1 77.0 28.9 117.4 27.4 117.4 Act Effet Green (s) 41.1 77.0 28.9 117.4 27.4 117.4 Act Effet Green (s) 41.1 77.0 28.9 117.4 27.4 117.4 Act Effet Green (s) 41.1 77.0 28.9 117.4 27.4 117.4 Act Effet Green (s) 41.1 77.0 28.9 117.4
Vehicle Extension (s) 6.0 6.0 6.0 Minimum Gap (s) 4.0 4.0 4.0 Time Before Reduce (s) 20.0 20.0 20.0 Time To Reduce (s) 8.0 8.0 8.0 5.0 Recall Mode None Min Min None Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effet Green (s) 41.1 77.0 28.9 117.4 27.4 117.4 Actuated g/C Ratio 0.35 0.66 0.25 1.00 0.23 1.00 v/c Ratio 1.29 0.36 0.90 0.43 0.76 0.19 Control Delay 177.8 10.2 58.2 0.9 55.1 0.3 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 177.8 10.2 58.2 0.9 55.1 0.3 LOS F B E A E A
Minimum Gap (s) 4.0 4.0 4.0 20.0
Time Before Reduce (s) 20.0 20.0 20.0 20.0 Time To Reduce (s) 8.0 8.0 8.0 5.0 Recall Mode None Min Min None Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) 41.1 77.0 28.9 117.4 27.4 117.4 Actuated g/C Ratio 0.35 0.66 0.25 1.00 0.23 1.00 v/c Ratio 1.29 0.36 0.90 0.43 0.76 0.19 Control Delay 177.8 10.2 58.2 0.9 55.1 0.3 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 177.8 10.2 58.2 0.9 55.1 0.3 LOS F B E A E A Approach Delay 93.1 31.5 28.3 Approach LOS F C C Queue Length 50th (ft) ~748 131 287 0 212 0 Queue Length 95th (ft) #1035 186 #422 0 314 0 Internal Link Dist (ft) 792 Turn Bay Length (ft) 250 500 250 Base Capacity (vph) 589 2192 825 1507 474 1507 Starvation Cap Reductn 0 0 0 0 0 0 0
Time To Reduce (s) 8.0 8.0 5.0 Recall Mode None Min Min None Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) 41.1 77.0 28.9 117.4 27.4 117.4 Actuated g/C Ratio 0.35 0.66 0.25 1.00 0.23 1.00 v/c Ratio 1.29 0.36 0.90 0.43 0.76 0.19 Control Delay 177.8 10.2 58.2 0.9 55.1 0.3 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 177.8 10.2 58.2 0.9 55.1 0.3 LOS F B E A E A Approach Delay 93.1 31.5 28.3 Approach LOS F C C Queue Length 50th (ft) ~748 131 287 0 212 0 Queue Length 95th (ft) #1035 186 #422 0 314 0 Internal Link Dist (ft) 250 500 250 Base Capacity (vph) 589 2192 825 1507 474 1507 Starvation Cap Reductn 0 0 0 0 0 0 0
Recall Mode None Min Min None Walk Time (s) Flash Dont Walk (s) Flash Dont Walk (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) 41.1 77.0 28.9 117.4 27.4 117.4 Actuated g/C Ratio 0.35 0.66 0.25 1.00 0.23 1.00 v/c Ratio 1.29 0.36 0.90 0.43 0.76 0.19 Control Delay 177.8 10.2 58.2 0.9 55.1 0.3 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 177.8 10.2 58.2 0.9 55.1 0.3 LOS F B E A E A Approach Delay 93.1 31.5 28.3 A Approach LOS F C C C Queue Length 50th (ft) ~748 131 287 0 212 0 Q
Walk Time (s) Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s) 41.1 77.0 28.9 117.4 27.4 117.4 Actuated g/C Ratio 0.35 0.66 0.25 1.00 0.23 1.00 v/c Ratio 1.29 0.36 0.90 0.43 0.76 0.19 Control Delay 177.8 10.2 58.2 0.9 55.1 0.3 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 177.8 10.2 58.2 0.9 55.1 0.3 LOS F B E A E A Approach Delay 93.1 31.5 28.3 Approach LOS F C C C Queue Length 50th (ft) ~748 131 287 0 212 0 Queue Length 95th (ft) #1035 186 #422 0 314 <
Flash Dont Walk (s) Pedestrian Calls (#/hr) Act Effct Green (s)
Pedestrian Calls (#/hr) Act Effct Green (s) 41.1 77.0 28.9 117.4 27.4 117.4 Actuated g/C Ratio 0.35 0.66 0.25 1.00 0.23 1.00 v/c Ratio 1.29 0.36 0.90 0.43 0.76 0.19 Control Delay 177.8 10.2 58.2 0.9 55.1 0.3 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 177.8 10.2 58.2 0.9 55.1 0.3 LOS F B E A E A Approach Delay 93.1 31.5 28.3 Approach LOS F C C Queue Length 50th (ft) ~748 131 287 0 212 0 Queue Length 95th (ft) #1035 186 #422 0 314 0 Internal Link Dist (ft) 687 984 792 Turn Bay Length (ft) 250 500 250 Base Capacity (vph) </td
Act Effct Green (s) 41.1 77.0 28.9 117.4 27.4 117.4 Actuated g/C Ratio 0.35 0.66 0.25 1.00 0.23 1.00 v/c Ratio 1.29 0.36 0.90 0.43 0.76 0.19 Control Delay 177.8 10.2 58.2 0.9 55.1 0.3 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 177.8 10.2 58.2 0.9 55.1 0.3 LOS F B E A E A Approach Delay 93.1 31.5 28.3 Approach LOS F C C C Queue Length 50th (ft) ~748 131 287 0 212 0 Queue Length 95th (ft) #1035 186 #422 0 314 0 Internal Link Dist (ft) 687 984 792 Turn Bay Length (ft) 250 500 250 Base Capacity (vph) 589 2192
Actuated g/C Ratio 0.35 0.66 0.25 1.00 0.23 1.00 v/c Ratio 1.29 0.36 0.90 0.43 0.76 0.19 Control Delay 177.8 10.2 58.2 0.9 55.1 0.3 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 177.8 10.2 58.2 0.9 55.1 0.3 LOS F B E A E A Approach Delay 93.1 31.5 28.3 Approach LOS F C C Queue Length 50th (ft) ~748 131 287 0 212 0 Queue Length 95th (ft) #1035 186 #422 0 314 0 Internal Link Dist (ft) 687 984 792 Turn Bay Length (ft) 250 500 250 Base Capacity (vph) 589 2192 825 1507 474
v/c Ratio 1.29 0.36 0.90 0.43 0.76 0.19 Control Delay 177.8 10.2 58.2 0.9 55.1 0.3 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 177.8 10.2 58.2 0.9 55.1 0.3 LOS F B E A E A Approach Delay 93.1 31.5 28.3 A Approach LOS F C C C Queue Length 50th (ft) ~748 131 287 0 212 0 Queue Length 95th (ft) #1035 186 #422 0 314 0 Internal Link Dist (ft) 687 984 792 7 Turn Bay Length (ft) 250 500 250 Base Capacity (vph) 589 2192 825 1507 474 1507 Starvation Cap Reductn 0 0 0
Control Delay 177.8 10.2 58.2 0.9 55.1 0.3 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 177.8 10.2 58.2 0.9 55.1 0.3 LOS F B E A E A Approach Delay 93.1 31.5 28.3 A Approach LOS F C C C Queue Length 50th (ft) ~748 131 287 0 212 0 Queue Length 95th (ft) #1035 186 #422 0 314 0 0 Internal Link Dist (ft) 687 984 792 7
Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 177.8 10.2 58.2 0.9 55.1 0.3 LOS F B E A E A Approach Delay 93.1 31.5 28.3 A Approach LOS F C C C Queue Length 50th (ft) ~748 131 287 0 212 0 Queue Length 95th (ft) #1035 186 #422 0 314 0 Internal Link Dist (ft) 687 984 792 792 Turn Bay Length (ft) 250 500 250 Base Capacity (vph) 589 2192 825 1507 474 1507 Starvation Cap Reductn 0 0 0 0 0
Total Delay 177.8 10.2 58.2 0.9 55.1 0.3 LOS F B E A E A Approach Delay 93.1 31.5 28.3 A Approach LOS F C C C Queue Length 50th (ft) ~748 131 287 0 212 0 Queue Length 95th (ft) #1035 186 #422 0 314 0 Internal Link Dist (ft) 687 984 792 Turn Bay Length (ft) 250 500 250 Base Capacity (vph) 589 2192 825 1507 474 1507 Starvation Cap Reductn 0 0 0 0 0 0
LOS F B E A E A Approach Delay 93.1 31.5 28.3 Approach LOS F C C Queue Length 50th (ft) ~748 131 287 0 212 0 Queue Length 95th (ft) #1035 186 #422 0 314 0 Internal Link Dist (ft) 687 984 792 Turn Bay Length (ft) 250 500 250 Base Capacity (vph) 589 2192 825 1507 474 1507 Starvation Cap Reductn 0 0 0 0 0
Approach Delay 93.1 31.5 28.3 Approach LOS F C C Queue Length 50th (ft) ~748 131 287 0 212 0 Queue Length 95th (ft) #1035 186 #422 0 314 0 Internal Link Dist (ft) 687 984 792 Turn Bay Length (ft) 250 500 250 Base Capacity (vph) 589 2192 825 1507 474 1507 Starvation Cap Reductn 0 0 0 0 0
Approach LOS F C C Queue Length 50th (ft) ~748 131 287 0 212 0 Queue Length 95th (ft) #1035 186 #422 0 314 0 Internal Link Dist (ft) 687 984 792 Turn Bay Length (ft) 250 500 250 Base Capacity (vph) 589 2192 825 1507 474 1507 Starvation Cap Reductn 0 0 0 0 0
Queue Length 50th (ft) ~748 131 287 0 212 0 Queue Length 95th (ft) #1035 186 #422 0 314 0 Internal Link Dist (ft) 687 984 792 Turn Bay Length (ft) 250 500 250 Base Capacity (vph) 589 2192 825 1507 474 1507 Starvation Cap Reductn 0 0 0 0 0
Queue Length 95th (ft) #1035 186 #422 0 314 0 Internal Link Dist (ft) 687 984 792 Turn Bay Length (ft) 250 500 250 Base Capacity (vph) 589 2192 825 1507 474 1507 Starvation Cap Reductn 0 0 0 0 0
Internal Link Dist (ft) 687 984 792 Turn Bay Length (ft) 250 500 250 Base Capacity (vph) 589 2192 825 1507 474 1507 Starvation Cap Reductn 0 0 0 0 0
Turn Bay Length (ft) 250 500 250 Base Capacity (vph) 589 2192 825 1507 474 1507 Starvation Cap Reductn 0 0 0 0 0
Base Capacity (vph) 589 2192 825 1507 474 1507 Starvation Cap Reductn 0 0 0 0 0
Starvation Cap Reductn 0 0 0 0 0 0
•
SOUIDACK CAN REQUIED U U U U U U U
•
Storage Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Reduced v/c Ratio 1.29 0.35 0.89 0.43 0.63 0.19
Intersection Summary
Area Type: Other
Cycle Length: 123
Actuated Cycle Length: 117.4
Natural Cycle: 120
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 1.29
Intersection Signal Delay: 58.1 Intersection LOS: E

ICU Level of Service F

~ Volume exceeds capacity, queue is theoretically infinite.

Intersection Capacity Utilization 91.0%

Analysis Period (min) 15

	۶	→	•	•	•	•	4	†	<i>></i>	/	ļ	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્ન	7		4	7	ሻ	1	7	7	^	7
Traffic Volume (vph)	205	Ö	146	25	2	23	35	1025	0	1	348	10
Future Volume (vph)	205	0	146	25	2	23	35	1025	0	1	348	10
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (%)		4%			-1%			7%			-4%	
Storage Length (ft)	0		315	0		125	280		445	150		275
Storage Lanes	0		1	0		1	1		1	1		1
Taper Length (ft)	25			25			86			86		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt			0.850			0.850						0.850
Flt Protected		0.950			0.955		0.950			0.950		
Satd. Flow (prot)	0	1769	1479	0	1767	1623	1476	1815	1834	1841	1882	1647
Flt Permitted		0.737			0.647	.020	0.430			0.079		
Satd. Flow (perm)	0	1372	1479	0	1197	1623	668	1815	1834	153	1882	1647
Right Turn on Red	•	1012	Yes		1101	Yes	000	1010	Yes	100	1002	Yes
Satd. Flow (RTOR)			168			37			100			83
Link Speed (mph)		30	100		30	01		55			55	00
Link Distance (ft)		601			392			1478			1166	
Travel Time (s)		13.7			8.9			18.3			14.5	
Confl. Peds. (#/hr)		10.7			0.5			10.0			17.0	
Confl. Bikes (#/hr)												
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	0%	0%	7%	0%	50%	0%	18%	1%	0%	0%	3%	0%
Bus Blockages (#/hr)	0	0 70	0	0 /0	0	0 70	0	0	0 /0	0 /0	0	0 70
Parking (#/hr)	U	U	U	U	U	U	U	U	U	U	U	U
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	236	0 70	168	29	2	26	40	1178	0	1	400	11
Shared Lane Traffic (%)	230	U	100	29	2	20	40	1170	U		400	- 11
Lane Group Flow (vph)	0	236	168	0	31	26	40	1178	0	1	400	11
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Leit	Leit 0	Rigit	Leit	Leit 0	Rigiil	Leit	12	Rigiil	Leit	12	Rigit
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.03	1.03	1.03	0.99	0.99	0.99	1.05	1.05	1.05	0.97	0.97	0.97
Turning Speed (mph)	1.03	1.03	1.03	15	0.33	9	1.03	1.03	1.03	15	0.91	9
Number of Detectors	15	2	1	1	2	1	15	2	1	1	2	1
	Left			Left		<u> </u>	ı		<u>'</u>	I		1
Detector Template Leading Detector (ft)	20	83	35	20	83	35	35	83	35	35	83	35
		-5	ან -5		-5		-5		-5	-5		
Trailing Detector (ft)	0 Dorm			0 Dorm		-5		-5			-5	-5
Turn Type	Perm	NA	pm+ov	Perm	NA	pm+ov	pm+pt	NA	Perm	pm+pt	NA 2	Perm
Protected Phases	0	8	1	4	4	5	1	6	^	5	2	
Permitted Phases	8		8	4	,	4	6	^	6	2	^	2
Detector Phase	8	8	1	4	4	5	1	6	6	5	2	2
Switch Phase												

	۶	→	•	•	←	*	1	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	5.0	3.0	5.0	5.0	3.0	3.0	5.0	5.0	3.0	5.0	5.0
Minimum Split (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	12.0	12.0	10.0	12.0	12.0
Total Split (s)	42.0	42.0	24.0	42.0	42.0	24.0	24.0	53.0	53.0	24.0	53.0	53.0
Total Split (%)	35.3%	35.3%	20.2%	35.3%	35.3%	20.2%	20.2%	44.5%	44.5%	20.2%	44.5%	44.5%
Maximum Green (s)	37.0	37.0	17.0	37.0	37.0	17.0	17.0	46.0	46.0	17.0	46.0	46.0
Yellow Time (s)	4.0	4.0	5.0	4.0	4.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	1.0	1.0	2.0	1.0	1.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		5.0	7.0		5.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
Lead/Lag			Lead			Lead	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?			Yes			Yes	Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0	2.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Minimum Gap (s)	3.0	3.0	2.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Recall Mode	None	None	None	None	None	None	None	Max	Max	None	Max	Max
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (#/hr)												
Act Effct Green (s)		20.9	31.7		20.9	30.6	57.1	54.6		50.9	46.3	46.3
Actuated g/C Ratio		0.23	0.34		0.23	0.33	0.62	0.59		0.55	0.50	0.50
v/c Ratio		0.76	0.27		0.11	0.05	0.09	1.09		0.01	0.42	0.01
Control Delay		48.9	4.3		28.3	4.7	8.2	78.8		9.0	17.6	0.0
Queue Delay		0.0	0.0		0.0	0.0	0.0	0.0		0.0	0.0	0.0
Total Delay		48.9	4.3		28.3	4.7	8.2	78.8		9.0	17.6	0.0
LOS		D	Α		С	Α	Α	Е		Α	В	Α
Approach Delay		30.3			17.5			76.5			17.1	
Approach LOS		С			В			Е			В	
Queue Length 50th (ft)		128	0		14	0	8	~649		0	139	0
Queue Length 95th (ft)		204	35		36	12	24	#1219		3	253	0
Internal Link Dist (ft)		521			312			1398			1086	
Turn Bay Length (ft)			315			125	280			150		275
Base Capacity (vph)		554	781		484	779	578	1077		411	946	869
Starvation Cap Reductn		0	0		0	0	0	0		0	0	0
Spillback Cap Reductn		0	0		0	0	0	0		0	0	0
Storage Cap Reductn		0	0		0	0	0	0		0	0	0
Reduced v/c Ratio		0.43	0.22		0.06	0.03	0.07	1.09		0.00	0.42	0.01

Intersection Summary

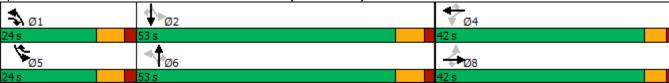
Area Type: Other

Cycle Length: 119
Actuated Cycle Length: 92
Natural Cycle: 120

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 1.09 Intersection Signal Delay: 54.2 Intersection Capacity Utilization 84.5% Analysis Period (min) 15

Intersection LOS: D ICU Level of Service E


~ Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.


	•	•	†	/	>	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		1			4
Traffic Volume (vph)	82	332	708	41	229	449
Future Volume (vph)	82	332	708	41	229	449
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	11	11	11	11
Grade (%)	-6%	12	2%			0%
Storage Length (ft)	0	0	270	0	0	0 /0
Storage Lanes	1	0		0	0	
Taper Length (ft)	25	U		U	25	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.892		0.993			
			0.993			0.002
Flt Protected	0.990	0	4700	0		0.983
Satd. Flow (prot)	1708	0	1769	0	0	1753
FIt Permitted	0.990		/===		_	0.465
Satd. Flow (perm)	1708	0	1769	0	0	829
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)	*265		11			
Link Speed (mph)	30		55			55
Link Distance (ft)	328		519			557
Travel Time (s)	7.5		6.4			6.9
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	6%	0%	2%	3%	1%	4%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%		0%			0%
Adj. Flow (vph)	93	377	805	47	260	510
Shared Lane Traffic (%)	30	011	000	77	200	010
Lane Group Flow (vph)	470	0	852	0	0	770
Enter Blocked Intersection	No	No	No	No	No	No
		Right		Right		
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12		0			0
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane						
Headway Factor	0.96	0.96	1.06	1.06	1.04	1.04
Turning Speed (mph)	15	9		9	15	
Number of Detectors	1		2		1	2
Detector Template					Left	
Leading Detector (ft)	35		83		20	83
Trailing Detector (ft)	-5		-5		0	-5
Turn Type	Prot		NA		Perm	NA
Protected Phases	3		1			5
Permitted Phases			•		5	-
Detector Phase	3		1		5	5
Switch Phase	•		•			
CWILCH I HOSE						

	•	•	†	~	/	ţ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Minimum Initial (s)	5.0		5.0		5.0	5.0
Minimum Split (s)	10.0		12.0		12.0	12.0
Total Split (s)	13.0		67.0		67.0	67.0
Total Split (%)	16.3%		83.8%		83.8%	83.8%
Maximum Green (s)	8.0		60.0		60.0	60.0
Yellow Time (s)	4.0		5.0		5.0	5.0
All-Red Time (s)	1.0		2.0		2.0	2.0
Lost Time Adjust (s)	0.0		0.0			0.0
Total Lost Time (s)	5.0		7.0			7.0
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0		3.0		3.0	3.0
Minimum Gap (s)	3.0		3.0		3.0	3.0
Time Before Reduce (s)	0.0		0.0		0.0	0.0
Time To Reduce (s)	0.0		0.0		0.0	0.0
Recall Mode	None		C-Max		C-Max	C-Max
Walk Time (s)	INOLIC		O-IVIAA		UTIVIAX	U-IVIAA
Flash Dont Walk (s)						
Pedestrian Calls (#/hr)						
Act Effct Green (s)	8.0		60.0			60.0
` ,	0.10		0.75			0.75
Actuated g/C Ratio						
v/c Ratio	1.15		0.64			1.24
Control Delay	109.5		11.0			137.8
Queue Delay	0.1		0.3			0.0
Total Delay	109.5		11.4			137.8
LOS	F		В			F
Approach Delay	109.5		11.4			137.8
Approach LOS	F		В			F
Queue Length 50th (ft)	~149		196			~485
Queue Length 95th (ft)	#316		319			#358
Internal Link Dist (ft)	248		439			477
Turn Bay Length (ft)						
Base Capacity (vph)	409		1329			621
Starvation Cap Reductn	0		120			0
Spillback Cap Reductn	4		0			1
Storage Cap Reductn	0		0			0
Reduced v/c Ratio	1.16		0.70			1.24
Intersection Summary						
Area Type:	Other					
Cycle Length: 80						
Actuated Cycle Length: 80						
Offset: 0 (0%), Referenced	d to phase 1:N	BT and	5:SBTL, S	Start of Y	ellow	
Natural Cycle: 150						
Control Type: Actuated-Co	oordinated					
Maximum v/c Ratio: 1.24						
Intersection Signal Delay:	79.9			Ir	ntersectio	n LOS: F
Intersection Capacity Utiliz						of Service
intersection capacity Utiliz	_uaon 110.370			I	SO FEAGI	or our vice

Analysis Period (min) 15

- * User Entered Value
- Volume exceeds capacity, queue is theoretically infinite.
 - Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.
 - Queue shown is maximum after two cycles.

Splits and Phases: 8: NYS Route 120 & Gateway Lane

	۶	→	•	•	+	*_	•	†	/	/	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	WBR2	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ň	ĵ.			ર્ન		7	^	7	ř	∱ }	
Traffic Volume (vph)	315	148	95	79	142	3	115	1194	129	75	581	207
Future Volume (vph)	315	148	95	79	142	3	115	1194	129	75	581	207
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	11	12	12	12	12	11	11	12	12	12
Grade (%)		2%			2%			4%			-6%	
Storage Length (ft)	115		0	0		180			160	110		0
Storage Lanes	1		0	0		1			1	1		0
Taper Length (ft)	86			25						86		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	0.95
Ped Bike Factor					1.00							
Frt		0.941			0.998		0.850		0.850		0.961	
Flt Protected					0.983					0.950		
Satd. Flow (prot)	1732	1688	0	0	1810	0	1599	3420	1515	1859	3520	0
Flt Permitted					0.983					0.051		
Satd. Flow (perm)	1732	1688	0	0	1810	0	1599	3420	1515	100	3520	0
Right Turn on Red			No				Yes		Yes			
Satd. Flow (RTOR)							90		76			
Link Speed (mph)		35			30			45			35	
Link Distance (ft)		532			475			529			778	
Travel Time (s)		10.4			10.8			8.0			15.2	
Confl. Peds. (#/hr)						2						
Confl. Bikes (#/hr)												
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	5%	1%	2%	0%	3%	0%	0%	0%	1%	0%	1%	3%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	325	153	98	81	146	3	119	1231	133	77	599	213
Shared Lane Traffic (%)												
Lane Group Flow (vph)	325	251	0	0	230	0	119	1231	133	77	812	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Right	Left	Right	Left	Left	Right
Median Width(ft)		11	_		11	_	_	12	_		12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.06	1.06	1.06	1.01	1.01	1.01	1.01	1.07	1.07	0.96	0.96	0.96
Turning Speed (mph)	15		9	15		9	9		9	15		9
Number of Detectors	1	2		1	2		1	2	1	1	2	
Detector Template				Left								
Leading Detector (ft)	35	83		20	83		35	83	35	35	83	
Trailing Detector (ft)	-5	-5		0	-5		-5	-5	-5	-5	-5	
Turn Type	Split	NA		Split	NA		pm+ov	NA	pm+ov	pm+pt	NA	
Protected Phases	3	3		4	4		5	6	4	5	2	
Permitted Phases							4		6	2		
Detector Phase		_					_	^		_	^	
Detector i ridoe	3	3		4	4		5	6	4	5	2	

Lane Group Ø7
Lane Configurations
Traffic Volume (vph)
Future Volume (vph)
Ideal Flow (vphpl)
Lane Width (ft)
Grade (%)
Storage Length (ft)
Storage Lanes
Taper Length (ft)
Lane Util. Factor
Ped Bike Factor
Frit
Fit Protected
Satd. Flow (prot)
Flt Permitted
Satd. Flow (perm)
Right Turn on Red
Satd. Flow (RTOR)
Link Speed (mph)
Link Distance (ft)
Travel Time (s)
Confl. Peds. (#/hr)
Confl. Bikes (#/hr)
Peak Hour Factor
Growth Factor
Heavy Vehicles (%)
Bus Blockages (#/hr)
Parking (#/hr)
Mid-Block Traffic (%)
Adj. Flow (vph)
Shared Lane Traffic (%)
Lane Group Flow (vph)
Enter Blocked Intersection
Lane Alignment
Median Width(ft)
Link Offset(ft)
Crosswalk Width(ft)
Two way Left Turn Lane
Headway Factor
Turning Speed (mph)
Number of Detectors
Detector Template
Leading Detector (ft)
Trailing Detector (ft)
Turn Type
Protected Phases 7
Permitted Phases
Detector Phase
Switch Phase

	ᄼ	→	\rightarrow	•	←	*_	•	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	WBR2	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	39.0	39.0		11.0	11.0		11.0	11.0	11.0	11.0	31.0	
Total Split (s)	43.0	43.0		31.0	31.0		11.0	79.0	31.0	11.0	90.0	
Total Split (%)	21.5%	21.5%		15.5%	15.5%		5.5%	39.5%	15.5%	5.5%	45.0%	
Maximum Green (s)	37.0	37.0		25.0	25.0		5.0	73.0	25.0	5.0	84.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0			0.0		0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0			6.0		6.0	6.0	6.0	6.0	6.0	
Lead/Lag	Lead	Lead		Lag	Lag		Lead	Lag	Lag	Lead		
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes	Yes	Yes		
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Minimum Gap (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Time Before Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Recall Mode	None	None		None	None		None	Min	None	None	Min	
Walk Time (s)	8.0	8.0									8.0	
Flash Dont Walk (s)	25.0	25.0									17.0	
Pedestrian Calls (#/hr)	6	6									0	
Act Effct Green (s)	37.0	37.0			25.0		30.0	73.0	98.0	84.0	84.0	
Actuated g/C Ratio	0.18	0.18			0.12		0.15	0.36	0.49	0.42	0.42	
v/c Ratio	1.02	0.80			1.02		0.38	0.99	0.17	0.91	0.55	
Control Delay	131.5	97.5			146.7		17.3	84.2	6.5	113.4	45.5	
Queue Delay	0.0	0.0			0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay	131.5	97.5			146.7		17.3	84.2	6.5	113.4	45.5	
LOS	F	F			F		В	F	Α	F	D	
Approach Delay		116.7			102.6			76.6			51.4	
Approach LOS		F			F			Е			D	
Queue Length 50th (ft)	~449	322			~318		25	851	19	61	424	
Queue Length 95th (ft)	#669	#463			#514		78	#1008	41	#167	493	
Internal Link Dist (ft)		452			395			449			698	
Turn Bay Length (ft)	115						180		160	110		
Base Capacity (vph)	320	312			226		316	1248	781	85	1478	
Starvation Cap Reductn	0	0			0		0	0	0	0	0	
Spillback Cap Reductn	0	0			0		0	0	0	0	0	
Storage Cap Reductn	0	0			0		0	0	0	0	0	
Reduced v/c Ratio	1.02	0.80			1.02		0.38	0.99	0.17	0.91	0.55	
Intersection Summary												

Intersection Summary

Area Type: Other

Cycle Length: 200 Actuated Cycle Length: 200

Natural Cycle: 150

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 1.02 Intersection Signal Delay: 79.7 Intersection Capacity Utilization 86.7%

Intersection LOS: E ICU Level of Service E

Analysis Period (min) 15

[~] Volume exceeds capacity, queue is theoretically infinite.

Lane Group	Ø7
Minimum Initial (s)	8.0
Minimum Split (s)	36.0
Total Split (s)	36.0
Total Split (%)	18%
Maximum Green (s)	31.0
Yellow Time (s)	3.5
All-Red Time (s)	1.5
Lost Time Adjust (s)	
Total Lost Time (s)	
Lead/Lag	
Lead-Lag Optimize?	
Vehicle Extension (s)	3.0
Minimum Gap (s)	3.0
Time Before Reduce (s)	0.0
Time To Reduce (s)	0.0
Recall Mode	Ped
Walk Time (s)	8.0
Flash Dont Walk (s)	23.0
Pedestrian Calls (#/hr)	2
Act Effct Green (s)	
Actuated g/C Ratio	
v/c Ratio	
Control Delay	
Queue Delay	
Total Delay	
LOS	
Approach Delay	
Approach LOS	
Queue Length 50th (ft)	
Queue Length 95th (ft)	
Internal Link Dist (ft)	
Turn Bay Length (ft)	
Base Capacity (vph)	
Starvation Cap Reductn	
Spillback Cap Reductn	
Storage Cap Reductn	
Reduced v/c Ratio	
Intersection Summary	

Synchro 10 Report Page 13 18002018A - N.T.

Year 2024 Build Traffic Volumes - Sensitivity Analysis - with Imp Weekday Peak PM Hour 15: Central Westchester Expressway & NYS Route 22 & Reservoir Road & Church Street/28/2020

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

Splits and Phases: 15: Central Westchester Expressway & NYS Route 22 & Reservoir Road & Church Street

Appendix H-1 Rutgers CUPR Multipliers for NY

Rutgers University, Center for Urban Policy Research Residential Demographic Multipliers

Estimates of the Occupants of New Housing

(Residents, School-Age Children, Public School-Age Children) by State, Housing Type, Housing Size, and Housing Price

Prepared by:

Robert W. Burchell, Ph.D.
David Listokin, Ph.D.
William Dolphin, M.A.
Center for Urban Policy Research
Edward J. Bloustein School of Planning
and Public Policy
Rutgers, The State University of New Jersey
New Brunswick, New Jersey

DESCRIPTION, DEFINITION, AND ORGANIZATION OF RESIDENTIAL DEMOGRAPHIC MULTIPLIERS

The national, state, and District of Columbia residential demographic multipliers are derived from the 2000 U.S. Census 5-Percent Public Use Microdata Sample (PUMS). The demographic multipliers include the following data fields and organization:

- 1. Household Size (HS): Total persons per housing unit.
- 2. *Age distribution of the household members* organized into the following age categories: 0–4, 5–13, 14–17, 18–24, 25–44, 45–64, 65–74, 75+.
- 3. *Total school-age children (SAC)* or number of persons in the household of school age, defined as those 5 to 17 years old. (The SAC is the same as the combined number of household members in the 5–13 and 14–17 age categories.)
- 4. *Total public school-age children (PSAC)*, or the SAC who attend public schools.
- 5. *The SAC and PSAC by grade group* organized as follows: kindergarten (K)–grade 2, grades 3–6, grades 7–9, grades 10–12, and grade 9 by itself. The above data permit the analyst to tabulate the SAC and PSAC by differing school levels (e.g., K–6, 7–12, and 9–12).

The demographic fields shown above are differentiated by *housing type*, *housing size*, *housing price*, *and housing tenure*—four variables that have been found by Rutgers University to be associated with statistically significant differences in the HS, SAC, and PSAC. The multipliers are calculated for *new housing*, here defined as units enumerated in the 2000 census and built from 1990-2000.

The housing or structure types include the following: *single-family detached; single-family attached,* sometimes referred to as townhouses or townhomes; *larger* (5-or-more-unit) multifamily buildings, such as garden apartments or stacked flats; *smaller multifamily structures* (2 to 4 units), such as a starter two-family home; and mobile homes. As the 2000 census, the source for the residential multipliers, does not have information on the stories in a housing structure (this was last available in the 1980 census), multiplier presentations cannot disaggregate multifamily housing into garden, mid-rise, and high-rise categories.

Housing-unit size is measured by the number of bedrooms, and data are presented for housing units ranging from *1 to 5 bedrooms*. There is an association between housing type and number of bedrooms, and the demographic multiplier tables present the common configurations for each housing type. For instance, demographic data are shown for 1- through 3-bedroom multifamily units and not for 4- to 5-bedroom units of this type because multifamily housing tends to be built with fewer rather than more bedrooms. The opposite is the case for single-family detached homes; in this instance, data are presented for 2- to 5-bedroom units as opposed to 1-bedroom units because detached housing is typically built with more rather than fewer bedrooms.

Housing is additionally classified by tenure: *ownership* or *rental*. According to the census, "A housing unit is owner-occupied if the owner or co-owner lives in the unit even if it is mortgaged or not fully paid for. . . . All occupied housing units that are not owner-occupied, whether they are rented for cash rent or occupied without payment of cash rent, are classified as renter-occupied."

There is a further differentiation of the demographic profiles by housing value or rent. The census definitions for "value" and "rent" are shown on the Definitions page; with regard to the latter, the current study indicates the "gross rent" (rent with utilities) rather than the "contract rent."

Values and gross rents reported in the 2000 census are updated to 2005 using a residential price inflation index available from the Federal Housing Finance Board. A separate price index is applied for the nation, for each of the 50 states, and for the District of Columbia.

The demographic profiles by 2005 housing values and gross rents are organized following a four-tiered classification: all *value or rent housing*, and then housing arrayed by *terciles* (*thirds*) *of value or rent* (units at the 1st–33rd percentile of value or rent; units at the 33rd through 66th percentile of value or rent; and units at the 67th–100th percentile of value or rent.)

DEFINITIONS OF DATA CONTAINED IN THE U.S. CENSUS OF POPULATION AND HOUSING PUBLIC USE MICRODATA SAMPLE (PUMS) 2000 AND OTHER MULTIPLIER TERMS

TERMS	DEFINITION/COMMENT
Bedrooms (BR)	The number of rooms that would be listed as bedrooms if the house, apartment, or mobile home were listed on the market for sale or rent even if these rooms are currently used for other purposes.
Housing Categories (Structure Type)	<i>Single-family, detached.</i> This is a 1-unit structure detached from any other house; that is, with open space on all four sides. Such structures are considered detached if they have an adjoining shed or garage.
	<i>Single-family attached.</i> This is a 1-unit structure that has one or more walls extending from ground to roof separating it from adjoining structures. In row houses (sometimes called townhouses), double houses, or houses attached to nonresidential structures, each house is a separate, attached structure if the dividing or common wall goes from ground to roof.
	2-4 units. These are units in structures containing 2, 3, or 4 housing units.
	5+ units. These are units in structures containing 5 or more housing units.
	<i>Mobile home</i> . Both occupied and vacant mobile homes to which no permanent rooms have been added are counted in this category. Mobile homes used only for business purposes or for extra sleeping space, and mobile homes for sale on a dealer's lot, at the factory, or in storage, are not counted in the housing inventory. In 1990, the category was "mobile home or trailer."
Household Size	The total number of persons in a housing unit.
Housing Tenure (Ownership or Rental)	A <i>housing unit</i> is owner-occupied if the owner or co-owner lives in the unit even if it is mortgaged or not fully paid for. All occupied housing units that are not owner-occupied, whether they are rented for cash rent or occupied without payment of cash rent, are classified as renter-occupied.
Housing Unit	A <i>housing unit</i> may be a house, an apartment, a mobile home, a group of rooms, or a single room that is occupied (or if vacant, is intended for occupancy as separate living quarters).
Housing Value (Rent)	Housing value is the census respondent's estimate of how much the property would sell for if it were for sale. In the current study, the value of a rented unit in a 1- to 4-unit structure is estimated to be 100 times the monthly <i>gross rent</i> , and all such units are included with owner-occupied units in calculating the multipliers. The housing value and rents indicated by the 2000 census were updated to 2005 using a residential price inflation index (available from the Federal Housing Finance Board) for the nation, for each state, and for the District of Columbia. Housing value or rent is categorized into a four-tier classification: all value (or rent) housing, and then housing units arrayed by terciles (thirds) of value (or rent).
Housing Rent (Contract Rent)	Contract rent is the monthly rent agreed to or contracted for, regardless of any furnishings, utilities, fees, meals, or services that may be included.
Housing Rent (Gross Rent)	Gross rent is the <i>contract rent</i> plus the estimated average monthly cost of utilities (electric, gas, water and sewer) and fuels (oil, coal, kerosene, wood, and the like) if these are paid by the renter (or paid for the renter by someone else). In the current study, the monthly gross rents are indicated in the demographic table.
Insufficient Sample	This notation in a table means that fewer than 600 weighted observations were counted for a housing type/bedroom/value combination or for an entire housing type/bedroom combination.
Public School-Age Children (PSAC)	The school-age children attending public school.
Residential Demographic Multipliers	Multipliers show the population associated with different <i>housing categories</i> as well as housing differentiated by <i>housing value</i> , housing size (<i>bedrooms</i>), and <i>housing tenure</i> .
School-Age Children (SAC)	The household members of elementary and secondary school age, defined here as those 5 through 17 years of age.

NEW YORK (1--1) ALL PERSONS IN UNIT: TOTAL PERSONS AND PERSONS BY AGE

STRUCTURE TYPE	m	AGE AGE										
/BEDROOMS/ VALUE (2005)/TENURE	TOTAL PERSONS	0-4	5-13	14-17	18-24	25-44	45-64	65-74	75+			
Single-Family Detached, 2 BR												
All Values	2.31	0.16	0.23	0.06	0.10	0.80	0.64	0.20	0.12			
Less than \$106,000	2.25	0.15		0.09	0.10	0.82	0.56	0.16	0.09			
\$106,000 to \$164,500	2.31	0.15		0.05	0.12	0.79	0.67	0.19	0.14			
More than \$164,500	2.37	0.17	0.20	0.04	0.08	0.77	0.71	0.25	0.14			
Single-Family Detached, 3 BR		0.17	0.20	0.0.	0.00	0.,,	0.71	0.20	0.1.			
All Values	3.06	0.31	0.55	0.16	0.12	1.21	0.56	0.11	0.05			
Less than \$135,000	3.09	0.27		0.20	0.15	1.21	0.47	0.09	0.06			
\$135,000 to \$194,500	3.11	0.36		0.16	0.11	1.28	0.50	0.11	0.05			
More than \$194,500	2.95	0.28		0.13	0.11	1.10	0.72	0.12	0.04			
Single-Family Detached, 4 BR												
All Values	3.76	0.42	0.91	0.26	0.15	1.35	0.58	0.07	0.03			
Less than \$224,500	3.87	0.38		0.34	0.19	1.40	0.50	0.07	0.03			
\$224,500 to \$329,500	3.74	0.43	0.91	0.24	0.12	1.39	0.56	0.06	0.03			
More than \$329,500	3.67	0.43		0.19	0.14	1.26	0.68	0.08	0.04			
Single-Family Detached, 5 BR												
All Values	4.52	0.47	1.16	0.42	0.24	1.36	0.70	0.11	0.06			
Less than \$329,500	4.84	0.46	1.18	0.56	0.34	1.47	0.60	0.15	0.07			
\$329,500 to \$748,500	4.43	0.47	1.13	0.38	0.20	1.35	0.72	0.10	0.07			
More than \$748,500	4.23	0.51	1.19	0.29	0.15	1.18	0.85	0.05	0.03			
Single-Family Attached, 2 BR												
All Values	2.16	0.16	0.16	0.06	0.13	0.73	0.57	0.23	0.13			
Less than \$135,000	2.10	0.17	0.19	0.07	0.11	0.81	0.48	0.18	0.10			
\$135,000 to \$194,500	2.23	0.17	0.18	0.06	0.16	0.75	0.56	0.22	0.13			
More than \$194,500	2.09	0.13	0.10	0.03	0.07	0.58	0.70	0.30	0.17			
Single-Family Attached, 3 BR												
All Values	3.08	0.28	0.44	0.18	0.24	1.01	0.69	0.16	0.07			
Less than \$164,500	3.10	0.26	0.60	0.21	0.27	0.96	0.59	0.14	0.08			
\$164,500 to \$269,500	3.17	0.30	0.45	0.19	0.25	1.06	0.70	0.15	0.07			
More than \$269,500	2.83	0.28	0.26	0.12	0.22	0.95	0.76	0.18	0.05			
Single-Family Attached, 4 BR												
All Values	3.83	0.26	0.88	0.31	0.34	1.11	0.71	0.14	0.09			
Less than \$224,500	4.09	0.15	1.15	0.39	0.60	1.09	0.61	0.07	0.03			
\$224,500 to \$329,500	3.89	0.28	0.78	0.34	0.28	1.09	0.73	0.23	0.15			
More than \$329,500				I	nsufficie	nt Sampl	e					
5+ Units-Own, 1 BR												
All Values	1.86	0.08		0.02	0.12	0.84	0.32	0.19	0.14			
Less than \$164,500	1.99	0.09	0.21	0.00	0.12	0.68	0.34	0.36	0.20			
\$164,500 to \$269,500	1.82	0.09	0.16	0.03	0.05	0.87	0.31	0.14	0.17			
More than \$269,500	1.77	0.05	0.10	0.04	0.19	0.94	0.32	0.09	0.04			
5+ Units-Own, 2 BR												
All Values	1.88	0.08	0.11	0.04	0.08	0.56	0.54	0.25	0.21			
Less than \$135,000	1.54	0.12	0.08	0.01	0.06	0.43	0.45	0.17	0.21			
\$135,000 to \$329,500	2.05	0.07	0.12	0.06	0.09	0.55	0.55	0.32	0.27			
More than \$329,500	1.88	0.07	0.11	0.03	0.09	0.70	0.59	0.19	0.09			
5+ Units-Own, 3 BR												
All Values	3.00	0.34	0.35	0.25	0.13	1.00	0.72	0.10	0.11			
Less than \$224,500					nsufficie							
\$224,500 to \$748,500					nsufficie							
More than \$748,500				I	nsufficie	nt Sampl	e					

NEW YORK (1--2) ALL PERSONS IN UNIT: TOTAL PERSONS AND PERSONS BY AGE

STRUCTURE TYPE	TOTAL				<u>A</u> (<u>GE</u>			
/BEDROOMS/ VALUE (2005)/TENURE	PERSONS	0-4	5-13	14-17	18-24	25-44	45-64	65-74	75+
5+ Units-Rent, 1 BR									
All Values	1.66	0.10	0.13	0.03	0.15	0.58	0.25	0.18	0.24
Less than \$500	1.32	0.03	0.07	0.03	0.05	0.15	0.21	0.37	0.41
\$500 to \$1,000	1.99	0.18		0.05	0.24		0.29	0.11	0.15
More than \$1,000	1.67	0.08	0.06	0.02	0.14	0.87	0.25	0.07	0.17
5+ Units–Rent, 2 BR	1.07	0.00	0.00	0.02	0.11	0.07	0.23	0.07	0.17
All Values	2.51	0.27	0.38	0.12	0.25	0.95	0.34	0.08	0.12
Less than \$750	2.68	0.31	0.57	0.17	0.28		0.28	0.08	0.08
\$750 to \$1,100	2.55	0.29		0.17	0.25		0.33	0.07	0.13
More than \$1,100	2.31	0.19		0.06	0.23	0.98	0.40	0.10	0.16
5+ Units–Rent, 3 BR	2.31	0.17	0.10	0.00	0.23	0.70	0.40	0.10	0.10
All Values	4.20	0.52	0.97	0.40	0.63	1.17	0.45	0.06	0.02
Less than \$750	4.23	0.55		0.47	0.59		0.32	0.08	0.01
\$750 to \$1,250	4.54	0.61	1.11	0.39	0.68		0.50	0.04	0.02
More than \$1,250	3.81	0.39		0.33	0.63	1.20	0.51	0.05	0.03
2-4 Units, 1 BR									
All Values	2.20	0.16	0.21	0.10	0.24	0.85	0.40	0.13	0.11
Less than \$74,500	1.92	0.16		0.06	0.16		0.38	0.14	0.14
\$74,500 to \$110,000	2.14	0.14		0.09	0.28	0.83	0.35		0.08
More than \$110,000	2.54	0.19		0.14	0.28	1.00	0.47	0.12	0.12
2-4 Units, 2 BR									
All Values	2.58	0.29	0.36	0.14	0.28	0.92	0.38	0.11	0.10
Less than \$86,000	2.49	0.30		0.12	0.41	0.85	0.33	0.08	0.05
\$86,000 to \$132,000	2.63	0.29		0.12	0.25	1.03	0.34		0.08
More than \$132,000	2.63	0.27	0.29	0.16	0.18	0.89	0.49	0.17	0.18
2-4 Units, 3 BR									
All Values	3.73	0.42	0.77	0.27	0.35	1.30	0.51	0.08	0.04
Less than \$113,500	3.73	0.44	0.84	0.31	0.40		0.34	0.08	0.01
\$113,500 to \$213,500	3.83	0.41	0.84	0.28	0.36		0.46	0.06	0.06
More than \$213,500	3.62	0.39		0.21	0.28	1.24	0.73	0.11	0.03
Mobile, 2 BR									
All Values	2.00	0.13	0.19	0.06	0.12	0.59	0.55	0.22	0.13
Less than \$33,000	1.89	0.11	0.15	0.05	0.14	0.56	0.53	0.23	0.12
\$33,000 to \$54,000	1.98	0.11	0.21	0.05	0.10	0.60	0.56	0.20	0.15
More than \$54,000	2.12	0.16	0.19	0.08	0.15	0.61	0.56	0.25	0.12
Mobile, 3 BR									
All Values	2.94	0.27	0.50	0.20	0.20	1.06	0.52	0.13	0.06
Less than \$45,000	2.93	0.29	0.53	0.20	0.23	1.08	0.43	0.12	0.06
\$45,000 to \$66,000	2.93	0.27		0.19	0.19		0.54	0.13	0.06
More than \$66,000	2.97	0.24		0.21	0.19	1.06	0.59	0.14	0.07
Mobile, 4 BR									
All Values	4.34	0.32	1.07	0.63	0.35	1.40	0.49	0.05	0.04
Less than \$54,000						nt Sampl			
\$54,000 to \$78,000	4.41	0.35	0.96	0.64	0.38	1.53	0.46	0.04	0.05
More than \$78,000						nt Sampl			

NEW YORK (2--1) ALL SCHOOL CHILDREN: SCHOOL-AGE CHILDREN (SAC)

		GRADE						
STRUCTURE TYPE		GALIDE						
/BEDROOMS/ VALUE (2005)/TENURE	TOTAL SAC	K-2	3-6	7-9	10-12	Gr. 9 Only		
Single-Family Detached, 2 BR								
All Values	0.30	0.09	0.10	0.07	0.04	0.02		
Less than \$106,000	0.36	0.08	0.11	0.10	0.06	0.03		
\$106,000 to \$164,500	0.28	0.08	0.10	0.06	0.03	0.03		
More than \$164,500	0.25	0.10	0.07	0.05	0.03	0.02		
Single-Family Detached, 3 BR								
All Values	0.71	0.21	0.24	0.15	0.11	0.05		
Less than \$135,000	0.85	0.23	0.29	0.19	0.14	0.06		
\$135,000 to \$194,500	0.71	0.22	0.24	0.14	0.11	0.05		
More than \$194,500	0.58	0.18	0.20	0.12	0.09	0.04		
Single-Family Detached, 4 BR								
All Values	1.16	0.32	0.41	0.25	0.18	0.07		
Less than \$224,500	1.29	0.30	0.45	0.29	0.25	0.10		
\$224,500 to \$329,500	1.15	0.34	0.39	0.24	0.17	0.07		
More than \$329,500	1.05	0.31	0.38	0.23	0.14	0.06		
Single-Family Detached, 5 BR								
All Values	1.58	0.39	0.53	0.36	0.30	0.12		
Less than \$329,500	1.75	0.37	0.54	0.46	0.38	0.19		
\$329,500 to \$748,500	1.51	0.38	0.52	0.33	0.29	0.09		
More than \$748,500	1.47	0.45	0.54	0.27	0.21	0.08		
Single-Family Attached, 2 BR								
All Values	0.22	0.08	0.07	0.04	0.04	0.02		
Less than \$135,000	0.25	0.09	0.07	0.04	0.05	0.02		
\$135,000 to \$194,500	0.25	0.08	0.08	0.04	0.04	0.02		
More than \$194,500	0.14	0.05	0.04	0.03	0.02	0.02		
Single-Family Attached, 3 BR								
All Values	0.62	0.14	0.22	0.13	0.14	0.04		
Less than \$164,500	0.81	0.19	0.33	0.14	0.15	0.06		
\$164,500 to \$269,500	0.64	0.13	0.21	0.14	0.16	0.03		
More than \$269,500	0.39	0.09	0.11	0.11	0.08	0.05		
Single-Family Attached, 4 BR	4.40	0.40	0.40					
All Values	1.19	0.19	0.48	0.29	0.24	0.07		
Less than \$224,500	1.54	0.26	0.62	0.39	0.27	0.12		
\$224,500 to \$329,500	1.12	0.09			0.27	0.07		
More than \$329,500			Insuf	ficient S	ample			
5+ Units-Own, 1 BR								
All Values	0.18	0.06	0.08	0.02	0.02	0.00		
Less than \$164,500	0.21	0.06	0.08	0.06	0.00	0.00		
\$164,500 to \$269,500	0.19	0.08	0.08	0.00	0.03	0.00		
More than \$269,500	0.14	0.02	0.08	0.00	0.04	0.00		
5+ Units-Own, 2 BR								
All Values	0.15	0.03	0.04	0.05	0.03	0.02		
Less than \$135,000	0.09	0.02	0.00	0.06	0.01	0.00		
\$135,000 to \$329,500	0.19	0.06	0.06	0.04	0.03	0.03		
More than \$329,500	0.14	0.00	0.06	0.05	0.03	0.00		
5+ Units-Own, 3 BR								
All Values	0.59	0.13	0.11	0.16	0.19	0.06		
Less than \$224,500				ficient S				
\$224,500 to \$748,500				ficient S				
More than \$748,500			Insuf	ficient S	ample			

NEW YORK (2--2) ALL SCHOOL CHILDREN: SCHOOL-AGE CHILDREN (SAC)

		<u>GRADE</u>								
STRUCTURE TYPE /BEDROOMS/	TOTAL					Gr. 9				
VALUE (2005)/TENURE	SAC	K-2	3-6	7-9	10-12	Only				
5+ Units-Rent, 1 BR										
All Values	0.16	0.06	0.05	0.03	0.02	0.01				
Less than \$500	0.10	0.03	0.03	0.02	0.01	0.01				
\$500 to \$1,000	0.30	0.11	0.10	0.05	0.04	0.01				
More than \$1,000	0.08	0.03	0.02	0.02	0.01	0.01				
5+ Units-Rent, 2 BR										
All Values	0.49	0.15	0.17	0.10	0.09	0.03				
Less than \$750	0.74	0.20	0.29	0.12	0.13	0.04				
\$750 to \$1,100	0.51	0.16	0.15	0.11	0.09	0.03				
More than \$1,100	0.23	0.07	0.06	0.05	0.04	0.01				
5+ Units-Rent, 3 BR										
All Values	1.36	0.30	0.48	0.31	0.27	0.12				
Less than \$750	1.59	0.27	0.63	0.38	0.32	0.15				
\$750 to \$1,250	1.50	0.37	0.51	0.34	0.28	0.11				
More than \$1,250	1.00	0.25	0.31	0.21	0.23	0.10				
2-4 Units, 1 BR										
All Values	0.30	0.09	0.08	0.07	0.07	0.02				
Less than \$74,500	0.25	0.06	0.07	0.08	0.05	0.02				
\$74,500 to \$110,000	0.30	0.10	0.09	0.04	0.07	0.02				
More than \$110,000	0.36	0.11	0.06	0.08	0.10	0.04				
2-4 Units, 2 BR										
All Values	0.49	0.12	0.17	0.10	0.10	0.03				
Less than \$86,000	0.47	0.12	0.16	0.10	0.09	0.03				
\$86,000 to \$132,000	0.55	0.14	0.21	0.11	0.09	0.03				
More than \$132,000	0.45	0.10	0.13	0.10	0.12	0.04				
2-4 Units, 3 BR										
All Values	1.04	0.25	0.37	0.21	0.20	0.07				
Less than \$113,500	1.16	0.28	0.42	0.25	0.20	0.11				
\$113,500 to \$213,500	1.11	0.27	0.42	0.20	0.22	0.06				
More than \$213,500	0.83	0.21	0.27	0.18	0.17	0.04				
Mobile, 2 BR										
All Values	0.25	0.07	0.09	0.04	0.05	0.01				
Less than \$33,000	0.19	0.07	0.05	0.04	0.04	0.01				
\$33,000 to \$54,000	0.26	0.07	0.12	0.03	0.04	0.01				
More than \$54,000	0.27	0.08	0.07	0.05	0.06	0.02				
Mobile, 3 BR										
All Values	0.70	0.17	0.23	0.16	0.13	0.06				
Less than \$45,000	0.72	0.20	0.23	0.15	0.14	0.06				
\$45,000 to \$66,000	0.69	0.16	0.26	0.16	0.11	0.07				
More than \$66,000	0.68	0.16	0.21	0.16	0.15	0.06				
Mobile, 4 BR										
All Values	1.70	0.31	0.52	0.40	0.46	0.17				
Less than \$54,000				ficient S	•					
\$54,000 to \$78,000	1.60	0.31	0.48	0.32	0.49	0.15				
More than \$78,000	1		Insuf	ficient S	ample					

NEW YORK (3--1) ALL PUBLIC SCHOOL CHILDREN: SCHOOL-AGE CHILDREN IN PUBLIC SCHOOL (PSAC)

STRUCTURE TYPE		PUBLIC SCHOOL GRADE				<u>)E</u>
/BEDROOMS/ VALUE (2005)/TENURE	TOTAL PSAC	K-2	3-6	7-9	10-12	Gr. 9 Only
Single-Family Detached, 2 BR						
All Values	0.27	0.07	0.09	0.07	0.04	0.02
Less than \$106,000	0.32	0.08	0.10	0.09	0.06	0.03
\$106,000 to \$164,500	0.26	0.07	0.10	0.06	0.03	0.03
More than \$164,500	0.21	0.07	0.07	0.05	0.02	0.02
Single-Family Detached, 3 BR						
All Values	0.64	0.18	0.22	0.14	0.10	0.05
Less than \$135,000	0.79	0.21	0.27	0.18	0.13	0.05
\$135,000 to \$194,500	0.63	0.18	0.22	0.13	0.10	0.05
More than \$194,500	0.50	0.14	0.17	0.11	0.08	0.04
Single-Family Detached, 4 BR						
All Values	1.00	0.25	0.36	0.23	0.17	0.07
Less than \$224,500	1.15	0.25	0.41	0.27	0.23	0.09
\$224,500 to \$329,500	0.98	0.27	0.34	0.22	0.16	0.06
More than \$329,500	0.87	0.24	0.32	0.19	0.11	0.05
Single-Family Detached, 5 BR						
All Values	1.23	0.29	0.41	0.28	0.24	0.10
Less than \$329,500	1.48	0.30	0.45	0.41	0.32	0.17
\$329,500 to \$748,500	1.14	0.26	0.40	0.24	0.23	0.08
More than \$748,500	1.03	0.34	0.38	0.17	0.14	0.06
Single-Family Attached, 2 BR						
All Values	0.17	0.06	0.05	0.03	0.03	0.01
Less than \$135,000	0.23	0.08	0.07	0.04	0.04	0.02
\$135,000 to \$194,500	0.18	0.06	0.06	0.03	0.04	0.01
More than \$194,500	0.11	0.03	0.03	0.03	0.02	0.02
Single-Family Attached, 3 BR						
All Values	0.52	0.11	0.19	0.11	0.11	0.03
Less than \$164,500	0.69	0.15	0.28	0.12	0.13	0.05
\$164,500 to \$269,500	0.54	0.11	0.18	0.12	0.13	0.03
More than \$269,500	0.28	0.06	0.10	0.08	0.05	0.03
Single-Family Attached, 4 BR						
All Values	0.86	0.11	0.31	0.23	0.21	0.06
Less than \$224,500	0.98	0.17	0.35	0.25	0.20	0.08
\$224,500 to \$329,500	0.92	0.06	0.32	0.27	0.27	0.07
More than \$329,500			Insuf	ficient S	ample	
5+ Units-Own, 1 BR						
All Values	0.15	0.05	0.07	0.01	0.02	0.00
Less than \$164,500	0.18	0.06	0.08	0.04	0.00	0.00
\$164,500 to \$269,500	0.16	0.06	0.08	0.00	0.03	0.00
More than \$269,500	0.10	0.02	0.05	0.00	0.04	0.00
5+ Units-Own, 2 BR						
All Values	0.09	0.02	0.04	0.02	0.01	0.01
Less than \$135,000	0.00	0.00	0.00	0.00	0.00	0.00
\$135,000 to \$329,500	0.15	0.05	0.06	0.02	0.03	0.02
More than \$329,500 5+ Units-Own, 3 BR	0.05	0.00	0.03	0.02	0.00	0.00
All Values	0.49	0.10	0.07	0.14	0.19	0.06
Less than \$224,500	0.49	0.10		0.14 ficient S		0.00
\$224,500 to \$748,500				ficient S		
\$224,500 to \$748,500 More than \$748,500				ficient S		
1V1010 man \$/40,500	I	1	msuī	ncient S	ampie	

NEW YORK (3--2) ALL PUBLIC SCHOOL CHILDREN: SCHOOL-AGE CHILDREN IN PUBLIC SCHOOL (PSAC)

		PUBLIC SCHOOL GRADE				<u>DE</u>
STRUCTURE TYPE /BEDROOMS/ VALUE (2005)/TENURE	TOTAL PSAC	K-2	3-6	7-9	10-12	Gr. 9 Only
5+ Units-Rent, 1 BR						
All Values	0.15	0.05	0.05	0.03	0.02	0.01
Less than \$500	0.09	0.03	0.03	0.02	0.01	0.01
\$500 to \$1,000	0.27	0.09	0.09	0.05	0.04	0.01
More than \$1,000	0.07	0.02	0.02	0.01	0.01	0.01
5+ Units-Rent, 2 BR						
All Values	0.43	0.13	0.14	0.08	0.08	0.03
Less than \$750	0.67	0.19	0.26	0.11	0.12	0.04
\$750 to \$1,100	0.45	0.14	0.13	0.09	0.08	0.03
More than \$1,100	0.16	0.05	0.05	0.04	0.03	0.01
5+ Units-Rent, 3 BR						
All Values	1.07	0.23	0.37	0.25	0.23	0.09
Less than \$750	1.27	0.22	0.47	0.30	0.29	0.10
\$750 to \$1,250	1.30	0.31	0.44	0.31	0.23	0.11
More than \$1,250	0.63	0.14	0.20	0.12	0.17	0.06
2-4 Units, 1 BR						
All Values	0.27	0.08	0.07	0.06	0.07	0.02
Less than \$74,500	0.23	0.06	0.07	0.07	0.04	0.02
\$74,500 to \$110,000	0.28	0.09	0.09	0.04	0.06	0.02
More than \$110,000	0.30	0.09	0.05	0.07	0.09	0.03
2-4 Units, 2 BR						
All Values	0.43	0.10	0.14	0.10	0.09	0.03
Less than \$86,000	0.44	0.11	0.15	0.09	0.09	0.03
\$86,000 to \$132,000	0.48	0.10	0.18	0.11	0.09	0.03
More than \$132,000	0.36	0.08	0.09	0.09	0.11	0.03
2-4 Units, 3 BR						
All Values	0.83	0.17	0.29	0.19	0.18	0.06
Less than \$113,500	1.02	0.20	0.37	0.25	0.19	0.11
\$113,500 to \$213,500	0.86	0.18	0.32	0.16	0.19	0.04
More than \$213,500	0.62	0.12	0.18	0.17	0.15	0.03
Mobile, 2 BR						
All Values	0.24	0.07	0.08	0.04	0.05	0.01
Less than \$33,000	0.19	0.07	0.05	0.04	0.04	0.01
\$33,000 to \$54,000	0.25	0.07	0.11	0.03	0.04	0.01
More than \$54,000	0.27	0.08	0.07	0.05	0.06	0.02
Mobile, 3 BR						
All Values	0.69	0.17	0.23	0.16	0.13	0.06
Less than \$45,000	0.71	0.20	0.23	0.15	0.14	0.05
\$45,000 to \$66,000	0.68	0.15	0.26	0.16	0.11	0.07
More than \$66,000	0.67	0.15	0.21	0.15	0.15	0.06
Mobile, 4 BR						
All Values	1.61	0.28	0.50	0.38	0.45	0.16
Less than \$54,000				ficient S	-	
\$54,000 to \$78,000	1.56	0.31	0.46	0.29	0.49	0.13
More than \$78,000		Insufficient Sample				

Appendix H-2 Armonk Fire Department and EMS Letter

ARMONK FIRE DEPARTMENT PO BOX 116 ARMONK, NEW YORK 10504 OFFICE OF THE CHIEF

TEL 914-273-3357 FAX 914-273-3178

November 18, 2019

Krithika Prabhakaran AKRF 34 South Broadway White Plains, NY 10601

Dear Mr. Prabhakaran,

Thank you for taking the time to write to me regarding the proposed development of 113 King Street. In this document you will find the answers to your questions as well as the estimated impact on the Armonk Fire Department.

The Armonk Fire Department is 100% Volunteer and relies on community support to ensure the safety of the town. We respond to approximately 1,100 medical and fire calls per year throughout Armonk, Banksville, and surrounding communities. The Town of North Castle has seen dramatic growth over the last number of years, and as a result the amount of alarms have also risen. The department has seen a 17 percent increase in call volume over the last 5 years alone. The members of the Armonk Fire Department save the residents and businesses millions of dollars in taxes.

Unfortunately new developments, including ones like the proposed 113 King Street, have brought an increase in call volume, but not a similar increase in membership. In my opinion 113 King Street development will have a significant strain on the department and surrounding communities. I hope this document helps you to evaluate the impact development at 113 King Street.

Staff size:

See attached document from North Castle Fire District # 2.

Department Apparatus:

The Armonk Fire Department provides not only fire suppression, but also emergency medical service. We are also a primary responding agency for the Westchester County Airport, and New York City Kensico Reservoir.

Our fleet of apparatus includes:

- 1. 1st due attack engine (1998)
- 2. Source engine (1976)
- 3. Brush / Spare engine (1991)
- 4. Tanker (1994)
- 5. Rescue (2012)
- 6. (3) Ambulances
- 7. (3) Chief vehicles
- 8. (1) Utility
- 9. (1) Polaris UTV
- 10. (1) Boat

It is important to note that we do not currently possess a ladder truck and as a result rely on mutual aid from departments like: North White Plains, Chappaqua, Purchase, and Bedford Hills. Considering the scale of the project and the amount of livable space not within reach of ground ladders, specifically the residential units, it will be crucial for the department to have a ladder truck. This development, like others are creating an increase need for the fire department and may end up creating additional tax burdens to the residents while at the same time being constrained to the 2% New York State tax cap. Possession of a ladder truck with a development of this size would be crucial for the fire department and to help ensure the safety of all residents at 113 King Street.

Location of headquarters:

There is only one firehouse that serves all of Armonk, located at 400 Bedford Road. It is approximately 3.9 miles from 113 King Street. Responding apparatus are required to navigate a number of substantial intersections and heavy traffic along the route, especially during rush hour.

Number of responses:

See attached document from North Castle Fire District # 2.

Average response time:

See attached document from North Castle Fire District # 2.

Increase in demand for Fire and EMS services resulting in the project:

113 King Street is an incredibly large development and will have a severe impact on the department. Below is my analysis of the expected increase in call volume 113 King Street will generate. Based upon the plans and your answers to previous questions, I

have created estimates based on current and similar developments and their call volume over the last 2 years.

• 125 room hotel

The proposed hotel is larger than LaQuinta on Business Park Drive. It is expected that the hotel will create 9 EMS calls per year, and 6 Fire Calls, for a total of 15 additional alarms.

• Restaurant / Bar

o The proposed restaurant, although the current size is unknown, is expected to be busy due to the location, and density of residents and hotel guests in the area. Based on this assumption, we expect the restaurant will be similar to the Modern Barn, or Fortina and will generate between 2 – 5 EMS calls per year, and 3 – 9 Fire Calls per year for a total of **5-14** additional alarms.

• Fitness center / pool

 We do not have a comparable fitness center and pool in our district however we expect that it will create an additional 2 EMS calls and 2 Fire calls for a total of 4 additional alarms.

• 150 residential units

- O The district does not have any similar sized apartment buildings. In this case we have compared 20 Whippoorwill Road East, which has 22 apartments of similar size, and 4, 6, and 8 Agnew Farm Road which contains 24 units. Based on these comparisons, we expect the apartments to generate 12 EMS calls and 30 Fire calls for a total of **42 additional alarms**.
- 22 townhomes 94 attached and semi attached townhomes
 - O A development of 22 town homes is similar to other developments in our response area. It is estimated that the town homes will generate 3 EMS calls and 6 fire alarms for a total of **9 additional alarms**.

Southern Office Building

o We have a large number of large office spaces throughout our district. We estimate that it will generate an additional 10 EMS calls and 5 Fire calls per year for a total of **15 additional alarms.**

Overall we expect this project will add an additional 99 calls representing a 9% increase in alarms.

Adequacy of access to the site:

Without having additional details regarding layout of the development it is too difficult to determine the adequacy of the site. A seven story above grade building may

be of concern to Westchester County Airport, due to the proximity of the flight path to the property.

Although details are limited, it appears as if this project will have a significant impact on the fire department and community as a whole.

Please contact me with any further questions

Sincerely,

Phil Goulet

Chief of Department

Armonk Fire Department

400 Bedford Road, Armonk, NY, 10504

chief@armonkfd.com

914-273-3357

Appendix H-3 North Castle Police Department Letter

TOWN OF NORTH CASTLE

15 BEDFORD ROAD Armonk, New York 10504

Established 1736

April 22, 2021

DEPARTMENT OF POLICE Tel: 914-273-9500 Fax: 914-273-5412

Krithika Prabhakaran AKRF, Inc. 34 South Broadway Suite 401 White Plains, NY 10601

Re: Airport Campus 113 King Street

Ms. Prabhakaran:

The Town of North Castle Police Department is a full time municipal police department. The Department provides police services to the three hamlets in the Town of North Castle; Armonk, Banksville, and North White Plains. These services are carried out under the direction of Police Chief Peter J. Simonsen. The Department has an authorized strength of thirty two Officers, and three civilian staff members. The Department is a New York State Accredited law enforcement agency.

The Department is divided into the Patrol Division and the Detective Division. The Patrol Division is commanded by a Police Lieutenant. The Patrol Division is staffed by sworn members who provide police coverage on a twenty four hours basis, which is divided into three eight hour shifts. Further, there are three patrol sectors which generally correspond to each hamlet's geographical boundaries and encompass the twenty six square miles of the Town. Within the Patrol Division there are a number of units that carry out specialized services and community policing initiatives. These units are the Bicycle Patrol Unit, the Child Safety Seat Unit, the School Resource Officer Unit, the Commercial Vehicle Enforcement Unit, and the Accident Investigation Unit. The Detective Division is commanded by a Detective Sergeant. The Detective Division investigates reported crimes and deploys a number of initiatives for crime prevention purposes. There is an administrative Police Lieutenant, who is responsible for the administrative matters assigned to him by the Chief of Police.

The Department places a strong emphasis on training to ensure all Department members have the necessary skills to carry out their duties. This Department is unique in that there are currently twenty two Officers who are certified Emergency Medical Technicians, and the Department is a New York State Department of Health certified basic life support (non-transporting) emergency medical service agency. This unique training enables a collaborative working relationship with the all-volunteer emergency medical services and fire departments to ensure the best possible service to those who live, work, or travel through the Town of North Castle.

TOWN OF NORTH CASTLE

15 BEDFORD ROAD Armonk, New York 10504

Established 1736

DEPARTMENT OF POLICE Tel: 914-273-9500 Fax: 914-273-5412

The Department provides police services to the community with a fleet of 17 vehicles. The Department's fleet is equipped with various equipment including mobile computers, license plate readers, and emergency medical equipment. The Department also has eight mountain bicycles and two motorized all-terrain vehicles.

The Department's headquarters is located in Armonk, within the Town Hall building. The hamlet of North White Plains has a police substation that is located in the community center/library, and enables officers assigned to that patrol sector to interact with community members and prepare reports without leaving their patrol area.

This Department did receive your request for information regarding the proposed project at 113 King Street, and the Department has concerns related to the delivery of police services to this proposed development. The Police Department currently operates at an efficient level with the Town's existing population, and the proposed addition of;

- 1. Conversion of one of the existing office buildings into a 125 key hotel with spa/fitness/restaurant
- 2. Construction of a multi-family residential building (7 stories above grade) with 150 units
- 3. Construction of 22 two story attached townhouses

These would certainly create an increase in calls for service, likely provide a strain on current Department resources, and require the need for additional officer(s) and equipment (vehicles) to supplement the delivery of police services. The proposed development will likely affect all three patrol shifts, as there would be a need to provide police services to the hotel and residential components during all tours (24 hour basis).

The Department has the following number of incidents documented in our records management system for 113 and 175 King Street (Swiss Re) for the below calendar years;

	2016	2017	2018
1. 113 King Sreet:	6	16	9
2. 175 King Street:	31	26	24

TOWN OF NORTH CASTLE

15 BEDFORD ROAD Armonk, New York 10504

Established 1736

DEPARTMENT OF POLICE Tel: 914-273-9500 Fax: 914-273-5412

These incidents numbers reflect calls for service or officer initiated events (ie. car stop) at the listed locations. Response times vary to the area of the proposed site, due to the existence of other calls for service or other varying conditions.

The Route 120 South corridor is largely comprised of commercial businesses, and the Westchester County Airport is the most notable business on that corridor. There are no current crime trends in the vicinity of the proposed site, but the Department does address a number of traffic issues in the area, due to Route 120 South being a main artery for motorists accessing the Airport, Interstate 684, or traveling to Connecticut. The Department addresses these issues with directed traffic enforcement and increased police presence.

The main entrance at 113 King Street is regulated by a NYS DOT traffic signal, which ensures an orderly and safe point of access to the site. The proposed project lists Cooney Hill Road as the point of access for the 22 two story townhouses. Cooney Hill Road currently is used as an access point for one residence and the personnel that work at the NYC DEP facility on that roadway. Increased vehicle and pedestrian traffic at the Route 120 South/Cooney Hill Road intersection is a very large concern for the Police Department. The proposed residential component would add increased vehicle and possible pedestrian volume during peak travel times at this intersection. The Police Department believes that a study must be undertaken to determine if sidewalks, increased street lighting, and a traffic signal is needed at this intersection for the proposed project.

It is anticipated that the Police Department would have to add Officers to provide proper police coverage to the new development, to ensure that the current standard of police protection to the Town is continued. Please state what type of police call volume would be anticipated based on similar sized/located hotels that have a spa/fitness/restaurant component and residential buildings with the proposed amount of units.

The Police Department looks forward to working with all involved stakeholders on this proposed project.

Thank you,

Sgt. T. McCormack

Appendix H-4 BHCSD Letter

BYRAM HILLS SCHOOL DISTRICT

10 Tripp Lane, Armonk, New York 10504 914-273-4082, Ext. 5910 Fax: 914-273-2516

Jen Lamia, Ed.D. Superintendent of Schools

To: Peter Feroe, AICP Date: June 8, 2020

As per your letter I understand that you are retained by Airport Campus I-V LLC ("Applicant") to assess the potential environmental impacts of the redevelopment of the 113 King Street site ("Project Site"), also known as Airport Campus or the former MBIA offices. I enclose this letter as a response to the requested information about potential impacts of the Project to the Byram Hills CSD.

Your letter identified the proposed part of the project, as follows, and you asked how it may affect the schools:

- construction of a multi-family residential building to the north of the northern office building (7 stories above grade) of 5 residential stories with ±149 units; approximately 110 two-bedroom units and 39 one bedroom units.
- construction of 22 two-story, three-bedroom attached townhouses in the northern portion of Site.

It should be noted that with respect to the Proposed Project, there is a potential impact on the District with a need for new building spaces and other cost considerations. The District opinion is as follows:

- Contrary to the assertion in your letter, enrollment projections for the District indicate that there
 will **not be** any additional significant enrollment decline. Rather, our enrollment is projected to
 remain relatively steady. Furthermore, the enrollment projection and increased enrollment
 may be affected by the pandemic.
- The District enrollment of over 2800 students in 2007-2008 that you identified had the District at capacity. With other proposed housing development projects in process in the District, the project proposed in your letter may require additional classroom space, teachers, and aides.
- To meet the needs of your proposal it is certain that the District will require additional buses and drivers/monitors to account for students living at the Airport Campus location.
- Regarding your enrollment projections, the Rutgers multipliers are known to be extremely conservative numbers. Furthermore, your case study projections of other schools are not a fair comparison to Byram Hills as most of those schools do not have similar rankings. Finally, the case study projections showing the total number of units and the total number of students enrolled is inconsistent, indicating that these numbers may not be valid for comparison. For example, Bronxville yielded 31 students to 110 units while Mamaroneck only yielded 14 students to 227 units in 1, 2, and 3 bedroom units. It is also unclear if these units are located in similar settings, which may have affected the disparate numbers produced.

Proposed Project – Estimated Public School Age Children: Case Study Method

Development	Unix Mix	School District	No. of Students Enrolled*	Total No. of Units	Ratio	Ratio Applied to Proposed Multifamily Building
125 Parkway Road (Avalon)	1-BR, 2-BR, and 3-BR units	Bronxville	31	110	0.282**	42
15 Kensington Road (Villa BVX)	1-BR, 2-BR, and 3-BR units	Bronxville	4	53	0.076	11
300 Columbus Avenue (The Avenue at Crestwood)	41 Studio, 6 1-BR units	Eastchester Union Free	2	47	0.043	6
55 First Street (Marbury Corners)	55 Condos and 6 Lofts	Pelham Union Free	4	61	0.066	10
64 Midland Place (Quarry Place)	1-BR, 2-BR, and 2-BR + Den	Tuckahoe Union Free	4	108	0.037	6
746 Mamaroneck Avenue (Avalon Willow)	1-BR, 2-BR, and 3-BR units	Mamaroneck Union Free	14	227	0.060	9
	Total		59	606	0.097	14.4

Notes:

*Based on average enrollment of 2015–2016 through 2018–2019 school years, where available.

Sources:

Bronxville School District; Eastchester Union Free School District; Pelham Union Free School District; Tuckahoe Union Free School District; and Mamaroneck Union Free School District;

www.apartments.com,http://theavenueatcrestwood.com/,www.trulia.com,https://gdcllc.com/portfolio_item/marbury-corners/, https://quarryplaceattuckahoe.com/find-your-apartment/,http://www.trinityassociatesllc.com/our-projects/

In conclusion, the District is concerned that the estimated number of students from the Proposed Project is lower than what may be expected, and that students from other projects proposed to the town may already potentially bring the District enrollment to its limit. I hope that this information is helpful to you

Thank you,

Jen Lamia, Ed.D.

Offamia

Superintendent of Schools

^{**} Ratio inflated due to the number of three-bedroom rental units within the Avalon building. As supported by the Rutgers CUPR multipliers, three-bedroom units can be expected to have a greater number of school age children. The Proposed Project does not include any three-bedroom rental units.

Appendix I-1 Comparable Townhouse Properties

Table I-1-1
Comparable Townhouse Properties

	Comparable Fowning									
Address	Parcel ID	Year Built	AV	MV	Lot Area (sf)	Living Area (SF)				
20 AGNEW FARM RD	107.16-2-1	2003	\$22,000	\$956,521	8,712	2,329				
18 AGNEW FARM RD	107.16-2-2	2000	\$21,600	\$939,130	8,276	2,540				
16 AGNEW FARM RD	107.16-2-3	2001	\$17,900	\$778,260	12,632	2,299				
14 AGNEW FARM RD	107.16-2-4	2002	\$20,600	\$895,652	9,583	2,540				
12 AGNEW FARM RD	107.16-2-5	2001	\$19,400	\$843,478	9,583	2,540				
10 AGNEW FARM RD	107.16-2-6	2002	\$19,400	\$843,478	11,761	2,540				
5 AGNEW FARM RD	107.16-1-33	2002	\$19,300	\$839,130	5,663	2,540				
7 AGNEW FARM RD	107.16-1-32	2001	\$19,200	\$834,782	5,227	2,540				
9 AGNEW FARM RD	107.16-1-31	2002	\$19,600	\$852,173	5,227	2,299				
11 AGNEW FARM RD	107.16-1-30	2001	\$20,800	\$904,347	5,227	2,299				
15 AGNEW FARM RD	107.16-1-29	2002	\$18,500	\$804,347	5,663	2,299				
17 AGNEW FARM RD	107.16-1-28	2001	\$17,900	\$778,260	5,663	2,299				
19 AGNEW FARM RD	107.16-1-27	2000	\$21,000	\$913,043	7,405	2,329				
21 AGNEW FARM RD	107.16-1-26	2001	\$20,500	\$891,304	6,098	2,329				
23 AGNEW FARM RD	107.16-1-25	2000	\$17,500	\$760,869	6,098	2,329				
25 AGNEW FARM RD	107.16-1-24	2000	\$17,500	\$760,869	7,405	2,540				
27 AGNEW FARM RD	107.16-1-23	2001	\$17,400	\$756,521	9,148	2,066				
29 AGNEW FARM RD	107.16-1-52	2001	\$17,100	\$743,478	8,712	2,066				
31 AGNEW FARM RD	107.16-1-53	2002	\$16,400	\$713,043	5,227	2,066				
33 AGNEW FARM RD	107.16-1-54	2002	\$16,100	\$700,000	4,792	2,066				
35 AGNEW FARM RD	107.16-1-55	2002	\$17,100	\$743,478	5,227	2,066				
37 AGNEW FARM RD	107.16-1-56	2002	\$16,400	\$713,043	5,227	2,066				
39 AGNEW FARM RD	107.16-1-57	2002	\$16,400	\$713,043	6,098	2,066				
41 AGNEW FARM RD	107.16-1-58	2003	\$16,500	\$717,391	6,534	2,066				
43 AGNEW FARM RD	107.16-1-59	2003	\$16,600	\$721,739	6,098	2,066				
45 AGNEW FARM RD	107.16-1-60	2003	\$16,200	\$704,347	10,890	2,066				
8 CARUSO PL	107.16-1-61	2002	\$19,200	\$834,782	12,632	3,016				
6 CARUSO PL	107.16-1-62	2002	\$19,000	\$826,086	13,068	2,853				
8 HOPKINS LN	107.16-1-34	2002	\$21,100	\$917,391	6,534	2,540				
6 HOPKINS LN	107.16-1-35	2002	\$17,900	\$778,260	6,534	2,299				
4 HOPKINS LN	107.16-1-36	2002	\$19,650	\$854,347	6,098	2,299				
2 HOPKINS LN	107.16-1-37	2000	\$18,200	\$791,304	5,227	2,540				
5 HOPKINS LN	107.16-1-42	2002	\$16,500	\$717,391	5,663	2,066				

T HOPKINS LN 107.16-1-43 2002 \$16,600 \$678,260 6,534 2,066 11 HOPKINS LN 107.16-1-44 2002 \$16,700 \$726,086 6,534 2,066 11 HOPKINS LN 107.16-1-45 2002 \$16,200 \$704,347 6,534 2,066 15 HOPKINS LN 107.16-1-46 2002 \$16,600 \$721,739 5,663 2,066 17 HOPKINS LN 107.16-1-46 2002 \$16,600 \$721,739 5,663 2,066 17 HOPKINS LN 107.16-1-48 2002 \$16,400 \$713,043 5,227 2,066 19 HOPKINS LN 107.16-1-48 2002 \$19,200 \$834,782 5,227 2,066 21 HOPKINS LN 107.16-1-49 2002 \$16,500 \$717,391 5,227 2,066 21 HOPKINS LN 107.16-1-49 2002 \$16,500 \$717,391 5,227 2,066 21 HOPKINS LN 107.16-1-51 2002 \$22,000 \$986,521 7,405 2,501 25 HOPKINS LN 107.16-1-51 2002 \$22,000 \$998,695 6,534 2,540 40 AGNEW FARM RD 107.16-1-13 2002 \$16,900 \$734,782 7,405 2,066 38 AGNEW FARM RD 107.16-1-14 2003 \$16,900 \$734,782 7,405 2,066 36 AGNEW FARM RD 107.16-1-15 2002 \$16,500 \$717,391 5,663 2,066 34 AGNEW FARM RD 107.16-1-16 2003 \$16,500 \$717,391 5,663 2,066 34 AGNEW FARM RD 107.16-1-16 2003 \$16,500 \$717,391 5,663 2,066 32 AGNEW FARM RD 107.16-1-16 2003 \$16,400 \$733,043 6,534 2,540 30 AGNEW FARM RD 107.16-1-17 1999 \$21,900 \$992,173 9,148 2,540 30 AGNEW FARM RD 107.16-1-18 2001 \$20,700 \$990,000 7,405 2,299 28 AGNEW FARM RD 107.16-1-20 1999 \$19,000 \$826,066 7,405 2,299 24 AGNEW FARM RD 107.16-1-20 1999 \$19,000 \$826,066 7,405 2,299 24 AGNEW FARM RD 107.16-1-20 1999 \$19,000 \$826,066 7,405 2,299 9 AGNEW FARM RD 107.16-1-39 2002 \$21,300 \$895,652 7,405 2,540 5 CARUSO PL 107.16-1-68 2002 \$21,300 \$895,652 7,405 2,540 5 CARUSO PL 107.16-1-68 2002 \$21,300 \$893,137 7,405 2,319 3 CARUSO PL 107.16-1-68 2002 \$17,900 \$826,086 5,534 2,540 5 CARUSO PL 107.16-1-68 2002 \$21,500 \$893,782 5,227 2,2661 17 CARUSO PL 107.16-1-69 2002 \$21,500 \$893,782 5,227 2,299 9 CARUSO PL 107.16-1-69 2002 \$21,500 \$893,782 5,227 2,299 9 CARUSO PL 107.16-1-69 2002 \$19,000 \$826,086 5,227 2,239 9 CARUSO PL 107.16-1-69 2002 \$17,900 \$893,782 5,227 2,2661 17 CARUSO PL 107.16-1-69 2002 \$17,900 \$893,782 5,227 2,2661 17 CARUSO PL 107.16-1-69 2002 \$17,900 \$893,782 5,227 2,2661 17 CARUSO PL 107.16-1-70 2002 \$17,900 \$993,78							
11 HOPKINS LN 107.16-1-45 2002 \$16,200 \$704,347 6,534 2,066 15 HOPKINS LN 107.16-1-46 2002 \$16,600 \$721,739 5,663 2,066 17 HOPKINS LN 107.16-1-47 2002 \$16,600 \$721,739 5,663 2,066 19 HOPKINS LN 107.16-1-48 2002 \$16,400 \$713,043 5,227 2,066 19 HOPKINS LN 107.16-1-48 2002 \$16,500 \$717,391 5,227 2,066 21 HOPKINS LN 107.16-1-49 2002 \$16,500 \$717,391 5,227 2,066 21 HOPKINS LN 107.16-1-49 2002 \$16,500 \$717,391 5,227 2,066 23 HOPKINS LN 107.16-1-51 2002 \$22,000 \$956,521 7,405 2,501 25 HOPKINS LN 107.16-1-51 2002 \$22,000 \$956,521 7,405 2,501 25 HOPKINS LN 107.16-1-51 2002 \$20,900 \$908,695 6,534 2,540 40 AGNEW FARM RD 107.16-1-13 2002 \$16,900 \$734,782 7,405 2,066 38 AGNEW FARM RD 107.16-1-15 2002 \$16,500 \$717,391 5,663 2,066 38 AGNEW FARM RD 107.16-1-16 2003 \$17,500 \$760,869 7,405 2,066 34 AGNEW FARM RD 107.16-1-16 2003 \$16,400 \$713,043 6,534 2,066 32 AGNEW FARM RD 107.16-1-18 2002 \$16,500 \$713,043 6,534 2,066 32 AGNEW FARM RD 107.16-1-18 2001 \$20,700 \$900,000 7,405 2,299 28 AGNEW FARM RD 107.16-1-19 2000 \$92,100 \$952,173 9,148 2,540 26 AGNEW FARM RD 107.16-1-19 2000 \$91,000 \$952,173 9,148 2,540 26 AGNEW FARM RD 107.16-1-20 1999 \$19,000 \$952,173 9,148 2,540 26 AGNEW FARM RD 107.16-1-20 1999 \$19,000 \$852,086 7,405 2,299 24 AGNEW FARM RD 107.16-1-20 1999 \$19,000 \$852,086 7,405 2,299 24 AGNEW FARM RD 107.16-1-20 1999 \$19,000 \$852,086 7,405 2,299 24 AGNEW FARM RD 107.16-1-20 1999 \$19,000 \$852,086 6,534 2,540 50 AGNEW FARM RD 107.16-1-63 2002 \$21,300 \$926,086 6,534 2,540 50 AGNEW FARM RD 107.16-1-63 2002 \$21,300 \$926,086 6,534 2,540 50 AGNEW FARM RD 107.16-1-63 2002 \$21,300 \$926,086 6,534 2,540 50 AGNEW FARM RD 107.16-1-68 2002 \$21,300 \$926,086 6,534 2,540 50 AGNEW FARM RD 107.16-1-68 2002 \$21,300 \$926,086 6,534 2,540 50 AGNEW FARM RD 107.16-1-69 2002 \$21,300 \$934,782 5,227 2,299 19 CARUSO PL 107.16-1-68 2002 \$19,000 \$826,086 5,227 2,299 19 CARUSO PL 107.16-1-68 2002 \$19,000 \$826,086 5,227 2,299 19 CARUSO PL 107.16-1-69 2002 \$19,000 \$934,378 2 5,227 2,319 49 AGNEW FARM RD 107.16-1-70 2002 \$17,000 \$934,378 2 5,227 2,319 50 AG	7 HOPKINS LN	107.16-1-43	2002	\$15,600	\$678,260	6,534	2,066
15 HOPKINS LN	9 HOPKINS LN	107.16-1-44	2002	\$16,700	\$726,086	6,534	2,066
17 HOPKINS LN 107.16-1-47 2002 \$16,400 \$713,043 5,227 2,066 19 HOPKINS LN 107.16-1-48 2002 \$19,200 \$834,782 5,227 2,066 21 HOPKINS LN 107.16-1-49 2002 \$16,500 \$717,391 5,227 2,066 23 HOPKINS LN 107.16-1-50 2002 \$22,000 \$956,521 7,405 2,501 25 HOPKINS LN 107.16-1-51 2002 \$22,000 \$956,521 7,405 2,501 40 AGNEW FARM RD 107.16-1-13 2002 \$16,900 \$734,782 7,405 2,066 38 AGNEW FARM RD 107.16-1-14 2003 \$17,500 \$760,869 7,405 2,066 36 AGNEW FARM RD 107.16-1-15 2002 \$16,500 \$717,391 5,663 2,066 34 AGNEW FARM RD 107.16-1-15 2002 \$16,500 \$717,391 5,663 2,066 34 AGNEW FARM RD 107.16-1-16 2003 \$16,400 \$713,043 6,534 2,066 32 AGNEW FARM RD 107.16-1-16 2003 \$16,400 \$713,043 6,534 2,066 32 AGNEW FARM RD 107.16-1-18 2001 \$20,700 \$900,000 7,405 2,299 28 AGNEW FARM RD 107.16-1-19 2000 \$20,600 \$895,652 7,405 2,299 24 AGNEW FARM RD 107.16-1-19 2000 \$20,600 \$895,652 7,405 2,540 26 AGNEW FARM RD 107.16-1-20 1999 \$19,000 \$826,086 7,405 2,299 24 AGNEW FARM RD 107.16-1-22 1999 \$19,000 \$826,086 7,405 2,299 24 AGNEW FARM RD 107.16-1-22 1999 \$19,000 \$826,086 7,405 2,299 7 CARUSO PL 107.16-1-39 2002 \$21,300 \$895,652 7,405 2,540 22 AGNEW FARM RD 107.16-1-20 1999 \$19,000 \$826,086 7,405 2,299 7 CARUSO PL 107.16-1-63 2003 \$19,300 \$895,652 7,405 2,540 11 CARUSO PL 107.16-1-63 2003 \$19,300 \$839,130 7,405 2,299 9 CARUSO PL 107.16-1-64 2002 \$20,000 \$889,565 10,890 2,299 9 CARUSO PL 107.16-1-66 2002 \$21,300 \$839,130 7,405 2,299 9 CARUSO PL 107.16-1-66 2002 \$21,300 \$839,130 7,405 2,299 9 CARUSO PL 107.16-1-67 2002 \$19,000 \$826,086 5,227 2,299 9 CARUSO PL 107.16-1-67 2002 \$19,000 \$826,086 5,227 2,299 9 CARUSO PL 107.16-1-70 2002 \$20,000 \$899,000 5,620 5,227 2,299 9 CARUSO PL 107.16-1-70 2002 \$17,000 \$778,260 13,504 2,794 51 AGNEW FARM RD 107.16-1-71 2004 \$22,000 \$896,551 13,504 2,794 51 AGNEW FARM RD 107.16-1-71 2000 \$17,000 \$778,260 13,504 2,794 51 AGNEW FARM RD 107.16-1-71 2000 \$20,000 \$898,000 5,227 2,319 49 AGNEW FARM RD 107.16-1-71 2004 \$22,000 \$896,551 3,049 2,404 57 AGNEW FARM RD 107.16-3-21.17 2004 \$22,000 \$956,521 3,049 2,404 9 CIDER MILL CIR 1	11 HOPKINS LN	107.16-1-45	2002	\$16,200	\$704,347	6,534	2,066
19 HOPKINS LN	15 HOPKINS LN	107.16-1-46	2002	\$16,600	\$721,739	5,663	2,066
21 HOPKINS LN 107.16-1-49 2002 \$16,500 \$717,391 5,227 2,066 23 HOPKINS LN 107.16-1-50 2002 \$22,000 \$956,521 7,405 2,501 25 HOPKINS LN 107.16-1-51 2002 \$22,000 \$996,695 6,534 2,540 40 AGNEW FARM RD 107.16-1-13 2002 \$16,900 \$734,782 7,405 2,066 38 AGNEW FARM RD 107.16-1-15 2002 \$16,900 \$734,782 7,405 2,066 36 AGNEW FARM RD 107.16-1-15 2002 \$16,500 \$7717,391 5,663 2,066 36 AGNEW FARM RD 107.16-1-15 2002 \$16,500 \$717,391 5,663 2,066 34 AGNEW FARM RD 107.16-1-16 2003 \$16,400 \$713,043 6,534 2,066 32 AGNEW FARM RD 107.16-1-17 1999 \$21,900 \$952,173 9,148 2,540 30 AGNEW FARM RD 107.16-1-17 1999 \$21,900 \$952,173 9,148 2,540 30 AGNEW FARM RD 107.16-1-19 2000 \$20,600 \$895,652 7,405 2,299 28 AGNEW FARM RD 107.16-1-19 2000 \$20,600 \$895,652 7,405 2,540 26 AGNEW FARM RD 107.16-1-20 1999 \$19,000 \$826,086 7,405 2,299 24 AGNEW FARM RD 107.16-1-21 2000 \$19,700 \$856,521 7,405 2,540 22 AGNEW FARM RD 107.16-1-22 1999 \$19,000 \$856,521 7,405 2,540 22 AGNEW FARM RD 107.16-1-22 1999 \$19,000 \$856,521 7,405 2,540 22 AGNEW FARM RD 107.16-1-20 1999 \$19,000 \$856,521 7,405 2,540 22 AGNEW FARM RD 107.16-1-20 1999 \$19,000 \$856,521 7,405 2,540 25 AGNEW FARM RD 107.16-1-20 1999 \$19,000 \$856,521 7,405 2,540 25 AGNEW FARM RD 107.16-1-20 1999 \$19,000 \$856,521 7,405 2,540 25 AGNEW FARM RD 107.16-1-20 1999 \$19,000 \$856,521 7,405 2,540 25 AGNEW FARM RD 107.16-1-20 1999 \$19,000 \$856,521 7,405 2,540 25 AGNEW FARM RD 107.16-1-40 2002 \$21,300 \$926,086 6,534 2,540 5 CARUSO PL 107.16-1-64 2002 \$21,300 \$893,130 7,405 2,299 7 CARUSO PL 107.16-1-66 2002 \$21,300 \$839,130 7,405 2,299 19 CARUSO PL 107.16-1-66 2002 \$19,000 \$869,565 10,890 2,299 9 CARUSO PL 107.16-1-68 2002 \$19,000 \$826,086 6,098 2,716 15 CARUSO PL 107.16-1-68 2002 \$19,000 \$826,086 6,098 2,716 15 CARUSO PL 107.16-1-68 2002 \$19,000 \$826,086 6,098 2,716 15 CARUSO PL 107.16-1-68 2002 \$19,000 \$826,086 5,227 2,319 49 AGNEW FARM RD 107.16-1-70 2002 \$17,000 \$778,260 13,504 2,794 55 AGNEW FARM RD 107.16-1-70 2002 \$17,000 \$934,782 5,227 2,399 19 CARUSO PL 107.16-1-70 2002 \$17,000 \$943,478 7,841 2,319 3 CIDER	17 HOPKINS LN	107.16-1-47	2002	\$16,400	\$713,043	5,227	2,066
23 HOPKINS LN 107.16-1-50 2002 \$22,000 \$956,521 7,405 2,501 25 HOPKINS LN 107.16-1-51 2002 \$20,900 \$908,695 6,534 2,540 40 AGNEW FARM RD 107.16-1-13 2002 \$16,900 \$734,782 7,405 2,066 38 AGNEW FARM RD 107.16-1-14 2003 \$17,500 \$760,869 7,405 2,066 36 AGNEW FARM RD 107.16-1-15 2002 \$16,500 \$717,391 5,663 2,066 34 AGNEW FARM RD 107.16-1-15 2002 \$16,500 \$717,391 5,663 2,066 34 AGNEW FARM RD 107.16-1-16 2003 \$16,400 \$713,043 6,534 2,066 32 AGNEW FARM RD 107.16-1-17 1999 \$21,900 \$952,173 9,148 2,540 30 AGNEW FARM RD 107.16-1-18 2001 \$20,700 \$900,000 7,405 2,299 28 AGNEW FARM RD 107.16-1-18 2001 \$20,700 \$900,000 7,405 2,299 28 AGNEW FARM RD 107.16-1-19 2000 \$20,600 \$895,652 7,405 2,299 24 AGNEW FARM RD 107.16-1-20 1999 \$19,000 \$826,086 7,405 2,299 24 AGNEW FARM RD 107.16-1-21 2000 \$19,700 \$856,521 7,405 2,540 22 AGNEW FARM RD 107.16-1-22 1999 \$19,600 \$852,173 7,405 2,540 5 CARUSO PL 107.16-1-39 2002 \$21,300 \$926,086 6,534 2,540 5 CARUSO PL 107.16-1-39 2002 \$21,300 \$926,086 6,534 2,540 5 CARUSO PL 107.16-1-63 2003 \$19,300 \$869,565 10,890 2,299 7 CARUSO PL 107.16-1-63 2003 \$19,300 \$839,130 7,405 2,299 9 CARUSO PL 107.16-1-65 2002 \$20,000 \$869,565 10,890 2,299 9 CARUSO PL 107.16-1-66 2002 \$21,300 \$926,086 6,534 2,540 11 CARUSO PL 107.16-1-66 2002 \$21,300 \$936,086 5,663 2,540 11 CARUSO PL 107.16-1-66 2002 \$21,500 \$893,782 5,227 2,661 17 CARUSO PL 107.16-1-68 2002 \$19,000 \$826,086 5,227 2,299 9 CARUSO PL 107.16-1-68 2002 \$19,000 \$826,086 5,227 2,299 19 CARUSO PL 107.16-1-68 2002 \$17,400 \$826,086 5,227 2,299 19 CARUSO PL 107.16-1-70 2002 \$17,900 \$778,260 11,326 2,794 57 AGNEW FARM RD 107.16-1-71 1999 \$17,900 \$778,260 11,326 2,794 57 AGNEW FARM RD 107.16-1-71 2004 \$22,000 \$893,304 7,881 2,319 3 CIDER MILL CIR 107.16-3-21.17 2004 \$22,000 \$996,521 3,049 2,404 9 CIDER MILL CIR 107.16-3-21.17 2004 \$22,000 \$995,521 3,049 2,404 9 CIDER MILL CIR 107.16-3-21.19 2004 \$22,000 \$995,521 3,049 2,404 9 CIDER MILL CIR 107.16-3-21.20 2004 \$22,000 \$995,521 3,049 2,404 9 CIDER MILL CIR 107.16-3-21.20 2004 \$22,000 \$995,521 3,049 2,404 9 CIDER M	19 HOPKINS LN	107.16-1-48	2002	\$19,200	\$834,782	5,227	2,066
25 HOPKINS LN 107.16-1-51 2002 \$20,900 \$908,695 6,534 2,540 40 AGNEW FARM RD 107.16-1-13 2002 \$16,900 \$734,782 7,405 2,066 38 AGNEW FARM RD 107.16-1-14 2003 \$17,500 \$760,869 7,405 2,066 36 AGNEW FARM RD 107.16-1-15 2002 \$16,500 \$717,391 5,663 2,066 34 AGNEW FARM RD 107.16-1-16 2003 \$16,400 \$713,043 6,534 2,066 32 AGNEW FARM RD 107.16-1-16 2003 \$16,400 \$713,043 6,534 2,066 32 AGNEW FARM RD 107.16-1-17 1999 \$21,900 \$952,173 9,148 2,540 30 AGNEW FARM RD 107.16-1-18 2001 \$20,700 \$900,000 7,405 2,299 28 AGNEW FARM RD 107.16-1-19 2000 \$20,600 \$895,652 7,405 2,299 24 AGNEW FARM RD 107.16-1-20 1999 \$19,000 \$826,086 7,405 2,299 24 AGNEW FARM RD 107.16-1-21 2000 \$19,700 \$856,521 7,405 2,540 22 AGNEW FARM RD 107.16-1-22 1999 \$19,000 \$852,173 7,405 2,540 22 AGNEW FARM RD 107.16-1-22 1999 \$19,000 \$852,173 7,405 2,540 5 CARUSO PL 107.16-1-39 2002 \$21,300 \$926,086 6,534 2,540 5 CARUSO PL 107.16-1-40 2002 \$22,000 \$869,565 10,890 2,299 7 CARUSO PL 107.16-1-64 2002 \$22,000 \$889,655 10,890 2,299 9 CARUSO PL 107.16-1-64 2002 \$20,000 \$886,956 5,663 2,540 11 CARUSO PL 107.16-1-65 2002 \$19,000 \$826,086 6,098 2,716 15 CARUSO PL 107.16-1-66 2002 \$21,300 \$934,782 5,227 2,661 17 CARUSO PL 107.16-1-67 2002 \$19,000 \$826,086 5,227 2,299 19 CARUSO PL 107.16-1-68 2002 \$17,400 \$826,086 5,227 2,299 19 CARUSO PL 107.16-1-68 2002 \$17,400 \$826,086 5,227 2,299 19 CARUSO PL 107.16-1-68 2002 \$17,400 \$826,086 5,227 2,299 19 CARUSO PL 107.16-1-67 2002 \$17,400 \$826,086 5,227 2,319 49 AGNEW FARM RD 107.16-1-70 2002 \$17,400 \$778,260 13,504 2,794 51 AGNEW FARM RD 107.16-1-71 1999 \$17,900 \$778,260 13,504 2,794 51 AGNEW FARM RD 107.16-1-71 1999 \$17,900 \$778,260 13,504 2,794 51 AGNEW FARM RD 107.16-1-71 2004 \$22,000 \$986,521 3,049 2,404 51 AGNEW FARM RD 107.16-1-74 2000 \$21,700 \$943,478 7,841 2,540 57 AGNEW FARM RD 107.16-1-74 2000 \$21,700 \$943,478 7,841 2,540 57 AGNEW FARM RD 107.16-1-74 2000 \$20,500 \$891,304 7,841 2,349 51 AGNEW FARM RD 107.16-1-74 2000 \$20,500 \$891,304 7,841 2,349 51 AGNEW FARM RD 107.16-3-21.19 2004 \$22,000 \$956,521 3,049 2,404 9 CIDER MI	21 HOPKINS LN	107.16-1-49	2002	\$16,500	\$717,391	5,227	2,066
40 AGNEW FARM RD 107.16-1-13 2002 \$16,900 \$734,782 7,405 2,066 38 AGNEW FARM RD 107.16-1-14 2003 \$17,500 \$760,869 7,405 2,066 36 AGNEW FARM RD 107.16-1-15 2002 \$16,500 \$717,391 5,663 2,066 34 AGNEW FARM RD 107.16-1-16 2003 \$16,400 \$713,043 6,534 2,066 32 AGNEW FARM RD 107.16-1-17 1999 \$21,900 \$952,173 9,148 2,540 30 AGNEW FARM RD 107.16-1-18 2001 \$20,700 \$900,000 7,405 2,299 28 AGNEW FARM RD 107.16-1-19 2000 \$20,600 \$895,652 7,405 2,299 24 AGNEW FARM RD 107.16-1-20 1999 \$19,000 \$826,086 7,405 2,299 24 AGNEW FARM RD 107.16-1-21 2000 \$19,700 \$856,521 7,405 2,299 24 AGNEW FARM RD 107.16-1-21 2000 \$19,700 \$856,521 7,405 2,240 22 AGNEW FARM RD 107.16-1-21 2000 \$19,700 \$856,521 7,405 2,299 7 CARUSO PL 107.16-1-39 2002 \$21,300 \$826,086 6,534 2,540 15 CARUSO PL 107.16-1-63 2003 \$19,300 \$839,130 7,405 2,299 7 CARUSO PL 107.16-1-64 2002 \$20,400 \$886,956 10,890 2,299 9 CARUSO PL 107.16-1-64 2002 \$20,400 \$886,956 5,663 2,540 11 CARUSO PL 107.16-1-65 2002 \$19,000 \$826,086 6,098 2,716 15 CARUSO PL 107.16-1-66 2002 \$21,500 \$826,086 5,227 2,299 19 CARUSO PL 107.16-1-67 2002 \$19,000 \$826,086 5,227 2,299 19 CARUSO PL 107.16-1-67 2002 \$19,000 \$826,086 5,227 2,299 19 CARUSO PL 107.16-1-68 2002 \$19,000 \$826,086 5,227 2,299 19 CARUSO PL 107.16-1-68 2002 \$19,000 \$826,086 5,227 2,299 19 CARUSO PL 107.16-1-67 2002 \$19,000 \$826,086 5,227 2,299 19 CARUSO PL 107.16-1-68 2002 \$19,000 \$826,086 5,227 2,299 19 CARUSO PL 107.16-1-67 2002 \$19,000 \$826,086 5,227 2,299 19 CARUSO PL 107.16-1-67 2002 \$19,000 \$826,086 5,227 2,299 19 CARUSO PL 107.16-1-70 2002 \$17,900 \$778,260 13,504 2,794 51 AGNEW FARM RD 107.16-1-71 1999 \$17,900 \$778,260 13,504 2,794 51 AGNEW FARM RD 107.16-1-71 1999 \$17,900 \$778,260 13,504 2,794 55 AGNEW FARM RD 107.16-1-74 2000 \$21,500 \$891,304 7,841 2,319 3 CIDER MILL CIR 107.16-3-21.17 2004 \$22,000 \$865,521 3,049 2,404 9 CIDER MILL CIR 107.16-3-21.19 2004 \$22,000 \$956,521 3,049 2,404 9 CIDER MILL CIR 107.16-3-21.20 2004 \$21,700 \$943,478 29,185 2,398	23 HOPKINS LN	107.16-1-50	2002	\$22,000	\$956,521	7,405	2,501
38 AGNEW FARM RD 107.16-1-14 2003 \$17,500 \$760,869 7,405 2,066 36 AGNEW FARM RD 107.16-1-15 2002 \$16,500 \$717,391 5,663 2,066 34 AGNEW FARM RD 107.16-1-16 2003 \$16,400 \$713,043 6,534 2,066 32 AGNEW FARM RD 107.16-1-17 1999 \$21,900 \$952,173 9,148 2,540 30 AGNEW FARM RD 107.16-1-18 2001 \$20,700 \$900,000 7,405 2,299 28 AGNEW FARM RD 107.16-1-19 2000 \$20,600 \$895,652 7,405 2,540 26 AGNEW FARM RD 107.16-1-20 1999 \$19,000 \$826,086 7,405 2,299 24 AGNEW FARM RD 107.16-1-21 2000 \$19,700 \$856,521 7,405 2,540 22 AGNEW FARM RD 107.16-1-22 1999 \$19,000 \$856,521 7,405 2,540 22 AGNEW FARM RD 107.16-1-22 1999 \$19,600 \$852,173 7,405 2,540 22 AGNEW FARM RD 107.16-1-22 1999 \$19,600 \$852,173 7,405 2,319 3 CARUSO PL 107.16-1-39 2002 \$21,300 \$926,086 6,534 2,540 5 CARUSO PL 107.16-1-60 2002 \$20,000 \$869,565 10,890 2,299 9 CARUSO PL 107.16-1-64 2002 \$20,000 \$869,565 10,890 2,299 9 CARUSO PL 107.16-1-64 2002 \$20,400 \$886,956 5,663 2,540 11 CARUSO PL 107.16-1-64 2002 \$20,400 \$886,956 5,663 2,540 11 CARUSO PL 107.16-1-66 2002 \$21,300 \$926,086 6,098 2,716 15 CARUSO PL 107.16-1-66 2002 \$21,500 \$826,086 6,098 2,716 15 CARUSO PL 107.16-1-68 2002 \$19,000 \$826,086 5,227 2,299 19 CARUSO PL 107.16-1-68 2002 \$19,000 \$826,086 5,227 2,299 19 CARUSO PL 107.16-1-68 2002 \$19,000 \$826,086 5,227 2,299 19 CARUSO PL 107.16-1-68 2002 \$19,000 \$826,086 5,227 2,299 19 CARUSO PL 107.16-1-68 2002 \$17,400 \$826,086 5,227 2,299 19 CARUSO PL 107.16-1-68 2002 \$17,400 \$826,086 5,227 2,299 19 CARUSO PL 107.16-1-68 2002 \$17,400 \$826,086 5,227 2,299 19 CARUSO PL 107.16-1-70 2002 \$17,900 \$778,260 13,504 2,794 51 AGNEW FARM RD 107.16-1-71 1999 \$17,900 \$778,260 13,504 2,794 51 AGNEW FARM RD 107.16-1-71 1999 \$17,900 \$778,260 13,504 2,794 51 AGNEW FARM RD 107.16-1-74 2000 \$20,500 \$891,304 7,841 2,540 57 AGNEW FARM RD 107.16-1-74 2000 \$20,500 \$891,304 7,841 2,540 57 AGNEW FARM RD 107.16-1-74 2000 \$20,500 \$891,304 7,841 2,540 57 AGNEW FARM RD 107.16-3-21.18 2004 \$22,000 \$956,521 3,049 2,404 9 CIDER MILL CIR 107.16-3-21.18 2004 \$22,000 \$956,521 3,049 2,404 9 CIDER MILL CIR 107	25 HOPKINS LN	107.16-1-51	2002	\$20,900	\$908,695	6,534	2,540
36 AGNEW FARM RD 107.16-1-15 2002 \$16,500 \$717,391 5,663 2,066 34 AGNEW FARM RD 107.16-1-16 2003 \$16,400 \$713,043 6,534 2,066 32 AGNEW FARM RD 107.16-1-17 1999 \$21,900 \$952,173 9,148 2,540 30 AGNEW FARM RD 107.16-1-18 2001 \$20,700 \$900,000 7,405 2,299 28 AGNEW FARM RD 107.16-1-19 2000 \$20,600 \$895,652 7,405 2,540 26 AGNEW FARM RD 107.16-1-20 1999 \$19,000 \$826,086 7,405 2,299 24 AGNEW FARM RD 107.16-1-21 2000 \$19,700 \$856,521 7,405 2,540 22 AGNEW FARM RD 107.16-1-21 2000 \$19,700 \$856,521 7,405 2,540 22 AGNEW FARM RD 107.16-1-22 1999 \$19,600 \$852,173 7,405 2,540 22 AGNEW FARM RD 107.16-1-39 2002 \$21,300 \$926,086 6,534 2,540 5 CARUSO PL 107.16-1-39 2002 \$20,000 \$869,565 10,890 2,299 7 CARUSO PL 107.16-1-64 2002 \$20,000 \$869,565 10,890 2,299 9 CARUSO PL 107.16-1-64 2002 \$20,400 \$886,956 5,663 2,540 11 CARUSO PL 107.16-1-65 2002 \$19,000 \$826,086 6,098 2,716 15 CARUSO PL 107.16-1-66 2002 \$21,300 \$934,782 5,227 2,661 17 CARUSO PL 107.16-1-67 2002 \$19,000 \$826,086 5,227 2,299 19 CARUSO PL 107.16-1-67 2002 \$19,000 \$826,086 5,227 2,299 19 CARUSO PL 107.16-1-67 2002 \$19,000 \$826,086 5,227 2,299 19 CARUSO PL 107.16-1-67 2002 \$19,000 \$826,086 5,227 2,299 19 CARUSO PL 107.16-1-67 2002 \$19,000 \$826,086 5,227 2,319 49 AGNEW FARM RD 107.16-1-67 2002 \$17,400 \$758,260 5,227 2,319 49 AGNEW FARM RD 107.16-1-70 2002 \$17,400 \$758,260 13,504 2,794 51 AGNEW FARM RD 107.16-1-70 2002 \$17,900 \$778,260 11,326 2,794 55 AGNEW FARM RD 107.16-1-74 2000 \$20,500 \$891,304 7,841 2,319 3 CIDER MILL CIR 107.16-3-21.17 2004 \$23,000 \$1,000,000 3,049 2,398 5 CIDER MILL CIR 107.16-3-21.18 2004 \$22,000 \$956,521 3,049 2,404 9 CIDER MILL CIR 107.16-3-21.19 2004 \$22,000 \$956,521 3,049 2,404 9 CIDER MILL CIR 107.16-3-21.20 2004 \$21,700 \$943,478 29,185 2,398	40 AGNEW FARM RD	107.16-1-13	2002	\$16,900	\$734,782	7,405	2,066
34 AGNEW FARM RD 107.16-1-16 2003 \$16,400 \$713,043 6,534 2,066 32 AGNEW FARM RD 107.16-1-17 1999 \$21,900 \$952,173 9,148 2,540 30 AGNEW FARM RD 107.16-1-18 2001 \$20,700 \$900,000 7,405 2,299 28 AGNEW FARM RD 107.16-1-19 2000 \$20,600 \$895,652 7,405 2,540 26 AGNEW FARM RD 107.16-1-20 1999 \$19,000 \$826,086 7,405 2,299 24 AGNEW FARM RD 107.16-1-21 2000 \$19,700 \$856,521 7,405 2,540 22 AGNEW FARM RD 107.16-1-22 1999 \$19,600 \$852,173 7,405 2,540 22 AGNEW FARM RD 107.16-1-22 1999 \$19,600 \$852,173 7,405 2,319 3 CARUSO PL 107.16-1-39 2002 \$21,300 \$926,086 6,534 2,540 5 CARUSO PL 107.16-1-63 2003 \$19,700 \$869,565 10,890 2,299 7 CARUSO PL 107.16-1-63 2003 \$19,300 \$839,130 7,405 2,299 9 CARUSO PL 107.16-1-64 2002 \$20,000 \$889,565 5,663 2,540 11 CARUSO PL 107.16-1-65 2002 \$19,000 \$826,086 6,098 2,716 15 CARUSO PL 107.16-1-66 2002 \$21,500 \$934,782 5,227 2,661 17 CARUSO PL 107.16-1-68 2002 \$19,000 \$826,086 5,227 2,299 19 CARUSO PL 107.16-1-68 2002 \$19,000 \$826,086 5,227 2,299 19 CARUSO PL 107.16-1-68 2002 \$19,000 \$826,086 5,227 2,299 19 CARUSO PL 107.16-1-68 2002 \$19,000 \$826,086 5,227 2,299 19 CARUSO PL 107.16-1-68 2002 \$17,400 \$836,086 5,227 2,299 19 CARUSO PL 107.16-1-68 2002 \$19,000 \$826,086 5,227 2,299 19 CARUSO PL 107.16-1-67 2002 \$19,000 \$826,086 5,227 2,299 19 CARUSO PL 107.16-1-70 2002 \$17,400 \$758,260 5,227 2,319 49 AGNEW FARM RD 107.16-1-70 2002 \$17,400 \$758,260 13,504 2,794 51 AGNEW FARM RD 107.16-1-71 1999 \$17,900 \$778,260 13,504 2,794 55 AGNEW FARM RD 107.16-1-74 2000 \$21,700 \$943,478 7,841 2,540 57 AGNEW FARM RD 107.16-1-74 2000 \$20,500 \$891,304 7,841 2,319 3 CIDER MILL CIR 107.16-3-21.18 2004 \$22,000 \$956,521 3,049 2,404 7 CIDER MILL CIR 107.16-3-21.18 2004 \$22,000 \$956,521 3,049 2,404 7 CIDER MILL CIR 107.16-3-21.18 2004 \$22,000 \$956,521 3,049 2,404 9 CIDER MILL CIR 107.16-3-21.20 2004 \$22,000 \$956,521 3,049 2,404 9 CIDER MILL CIR 107.16-3-21.20 2004 \$22,000 \$956,521 3,049 2,404	38 AGNEW FARM RD	107.16-1-14	2003	\$17,500	\$760,869	7,405	2,066
32 AGNEW FARM RD 107.16-1-17 1999 \$21,900 \$952,173 9,148 2,540 30 AGNEW FARM RD 107.16-1-18 2001 \$20,700 \$900,000 7,405 2,299 28 AGNEW FARM RD 107.16-1-19 2000 \$20,600 \$895,652 7,405 2,540 26 AGNEW FARM RD 107.16-1-20 1999 \$19,000 \$826,086 7,405 2,299 24 AGNEW FARM RD 107.16-1-21 2000 \$19,700 \$856,521 7,405 2,540 22 AGNEW FARM RD 107.16-1-22 1999 \$19,600 \$852,173 7,405 2,540 22 AGNEW FARM RD 107.16-1-39 2002 \$21,300 \$926,086 6,534 2,540 5 CARUSO PL 107.16-1-39 2002 \$21,300 \$926,086 6,534 2,540 5 CARUSO PL 107.16-1-63 2003 \$19,300 \$839,130 7,405 2,299 7 CARUSO PL 107.16-1-64 2002 \$20,000 \$869,565 10,890 2,299 7 CARUSO PL 107.16-1-64 2002 \$20,000 \$886,956 5,663 2,540 11 CARUSO PL 107.16-1-65 2002 \$19,000 \$826,086 6,098 2,716 15 CARUSO PL 107.16-1-66 2002 \$21,500 \$934,782 5,227 2,661 17 CARUSO PL 107.16-1-67 2002 \$19,000 \$826,086 5,227 2,299 19 CARUSO PL 107.16-1-67 2002 \$19,000 \$826,086 5,227 2,299 19 CARUSO PL 107.16-1-68 2002 \$17,440 \$758,260 5,227 2,319 49 AGNEW FARM RD 107.16-1-70 2002 \$17,440 \$758,260 13,504 2,794 51 AGNEW FARM RD 107.16-1-71 1999 \$17,900 \$778,260 13,504 2,794 55 AGNEW FARM RD 107.16-1-71 1999 \$17,900 \$778,260 13,504 2,794 55 AGNEW FARM RD 107.16-1-74 2000 \$21,700 \$943,478 7,841 2,319 3 CIDER MILL CIR 107.16-3-21.17 2004 \$22,000 \$956,521 3,049 2,404 9 CIDER MILL CIR 107.16-3-21.18 2004 \$22,000 \$956,521 3,049 2,404 9 CIDER MILL CIR 107.16-3-21.20 2004 \$21,700 \$943,478 29,185 2,398	36 AGNEW FARM RD	107.16-1-15	2002	\$16,500	\$717,391	5,663	2,066
30 AGNEW FARM RD	34 AGNEW FARM RD	107.16-1-16	2003	\$16,400	\$713,043	6,534	2,066
28 AGNEW FARM RD 107.16-1-19 2000 \$20,600 \$895,652 7,405 2,540 26 AGNEW FARM RD 107.16-1-20 1999 \$19,000 \$826,086 7,405 2,299 24 AGNEW FARM RD 107.16-1-21 2000 \$19,700 \$856,521 7,405 2,540 22 AGNEW FARM RD 107.16-1-22 1999 \$19,600 \$852,173 7,405 2,319 3 CARUSO PL 107.16-1-39 2002 \$21,300 \$926,086 6,534 2,540 5 CARUSO PL 107.16-1-40 2002 \$220,000 \$869,565 10,890 2,299 7 CARUSO PL 107.16-1-63 2003 \$19,300 \$839,130 7,405 2,299 9 CARUSO PL 107.16-1-64 2002 \$20,400 \$886,956 5,663 2,540 11 CARUSO PL 107.16-1-65 2002 \$19,000 \$826,086 6,098 2,716 15 CARUSO PL 107.16-1-67 2002 \$19,000 \$826,086 5,227 2,661 17 CARUSO PL 107.16-1-	32 AGNEW FARM RD	107.16-1-17	1999	\$21,900	\$952,173	9,148	2,540
26 AGNEW FARM RD 107.16-1-20 1999 \$19,000 \$826,086 7,405 2,299 24 AGNEW FARM RD 107.16-1-21 2000 \$19,700 \$856,521 7,405 2,540 22 AGNEW FARM RD 107.16-1-22 1999 \$19,600 \$852,173 7,405 2,319 3 CARUSO PL 107.16-1-39 2002 \$21,300 \$926,086 6,534 2,540 5 CARUSO PL 107.16-1-40 2002 \$20,000 \$869,565 10,890 2,299 7 CARUSO PL 107.16-1-63 2003 \$19,300 \$839,130 7,405 2,299 9 CARUSO PL 107.16-1-64 2002 \$20,400 \$866,956 5,663 2,540 11 CARUSO PL 107.16-1-65 2002 \$19,000 \$826,086 6,098 2,716 15 CARUSO PL 107.16-1-66 2002 \$19,000 \$826,086 5,227 2,661 17 CARUSO PL 107.16-1-67 2002 \$19,000 \$826,086 5,227 2,299 19 CARUSO PL 107.16-1-67 <td>30 AGNEW FARM RD</td> <td>107.16-1-18</td> <td>2001</td> <td>\$20,700</td> <td>\$900,000</td> <td>7,405</td> <td>2,299</td>	30 AGNEW FARM RD	107.16-1-18	2001	\$20,700	\$900,000	7,405	2,299
24 AGNEW FARM RD 107.16-1-21 2000 \$19,700 \$856,521 7,405 2,540 22 AGNEW FARM RD 107.16-1-22 1999 \$19,600 \$852,173 7,405 2,319 3 CARUSO PL 107.16-1-39 2002 \$21,300 \$926,086 6,534 2,540 5 CARUSO PL 107.16-1-40 2002 \$20,000 \$869,565 10,890 2,299 7 CARUSO PL 107.16-1-63 2003 \$19,300 \$839,130 7,405 2,299 9 CARUSO PL 107.16-1-64 2002 \$20,400 \$886,956 5,663 2,540 11 CARUSO PL 107.16-1-65 2002 \$19,000 \$826,086 6,098 2,716 15 CARUSO PL 107.16-1-66 2002 \$21,500 \$934,782 5,227 2,661 17 CARUSO PL 107.16-1-67 2002 \$19,000 \$826,086 5,227 2,319 49 AGNEW FARM RD 107.16-1-70 2002 \$17,440 \$758,260 5,227 2,319 49 AGNEW FARM RD 107.16-1-7	28 AGNEW FARM RD	107.16-1-19	2000	\$20,600	\$895,652	7,405	2,540
22 AGNEW FARM RD 107.16-1-22 1999 \$19,600 \$852,173 7,405 2,319 3 CARUSO PL 107.16-1-39 2002 \$21,300 \$926,086 6,534 2,540 5 CARUSO PL 107.16-1-40 2002 \$20,000 \$869,565 10,890 2,299 7 CARUSO PL 107.16-1-63 2003 \$19,300 \$839,130 7,405 2,299 9 CARUSO PL 107.16-1-64 2002 \$20,400 \$886,956 5,663 2,540 11 CARUSO PL 107.16-1-65 2002 \$19,000 \$826,086 6,098 2,716 15 CARUSO PL 107.16-1-66 2002 \$21,500 \$934,782 5,227 2,661 17 CARUSO PL 107.16-1-67 2002 \$19,000 \$826,086 5,227 2,299 19 CARUSO PL 107.16-1-68 2002 \$17,440 \$758,260 5,227 2,319 49 AGNEW FARM RD 107.16-1-70 2002 \$17,900 \$778,260 13,504 2,794 51 AGNEW FARM RD 107.16-1-73 </td <td>26 AGNEW FARM RD</td> <td>107.16-1-20</td> <td>1999</td> <td>\$19,000</td> <td>\$826,086</td> <td>7,405</td> <td>2,299</td>	26 AGNEW FARM RD	107.16-1-20	1999	\$19,000	\$826,086	7,405	2,299
3 CARUSO PL 107.16-1-39 2002 \$21,300 \$926,086 6,534 2,540 5 CARUSO PL 107.16-1-40 2002 \$20,000 \$869,565 10,890 2,299 7 CARUSO PL 107.16-1-63 2003 \$19,300 \$839,130 7,405 2,299 9 CARUSO PL 107.16-1-64 2002 \$20,400 \$886,956 5,663 2,540 11 CARUSO PL 107.16-1-65 2002 \$19,000 \$826,086 6,098 2,716 15 CARUSO PL 107.16-1-66 2002 \$21,500 \$934,782 5,227 2,661 17 CARUSO PL 107.16-1-67 2002 \$19,000 \$826,086 5,227 2,661 17 CARUSO PL 107.16-1-67 2002 \$19,000 \$826,086 5,227 2,299 19 CARUSO PL 107.16-1-68 2002 \$17,440 \$758,260 5,227 2,319 49 AGNEW FARM RD 107.16-1-70 2002 \$17,900 \$778,260 13,504 2,794 51 AGNEW FARM RD 107.16-1-73	24 AGNEW FARM RD	107.16-1-21	2000	\$19,700	\$856,521	7,405	2,540
5 CARUSO PL 107.16-1-40 2002 \$20,000 \$869,565 10,890 2,299 7 CARUSO PL 107.16-1-63 2003 \$19,300 \$839,130 7,405 2,299 9 CARUSO PL 107.16-1-64 2002 \$20,400 \$886,956 5,663 2,540 11 CARUSO PL 107.16-1-65 2002 \$19,000 \$826,086 6,098 2,716 15 CARUSO PL 107.16-1-66 2002 \$21,500 \$934,782 5,227 2,661 17 CARUSO PL 107.16-1-67 2002 \$19,000 \$826,086 5,227 2,299 19 CARUSO PL 107.16-1-67 2002 \$19,000 \$826,086 5,227 2,299 19 CARUSO PL 107.16-1-68 2002 \$17,440 \$758,260 5,227 2,319 49 AGNEW FARM RD 107.16-1-70 2002 \$17,900 \$778,260 13,504 2,794 51 AGNEW FARM RD 107.16-1-71 1999 \$17,900 \$778,260 11,326 2,794 57 AGNEW FARM RD 107.16-3-21	22 AGNEW FARM RD	107.16-1-22	1999	\$19,600	\$852,173	7,405	2,319
7 CARUSO PL 107.16-1-63 2003 \$19,300 \$839,130 7,405 2,299 9 CARUSO PL 107.16-1-64 2002 \$20,400 \$886,956 5,663 2,540 11 CARUSO PL 107.16-1-65 2002 \$19,000 \$826,086 6,098 2,716 15 CARUSO PL 107.16-1-66 2002 \$21,500 \$934,782 5,227 2,661 17 CARUSO PL 107.16-1-67 2002 \$19,000 \$826,086 5,227 2,299 19 CARUSO PL 107.16-1-67 2002 \$19,000 \$826,086 5,227 2,299 19 CARUSO PL 107.16-1-67 2002 \$19,000 \$826,086 5,227 2,299 19 CARUSO PL 107.16-1-68 2002 \$17,440 \$758,260 5,227 2,319 49 AGNEW FARM RD 107.16-1-70 2002 \$17,900 \$778,260 13,504 2,794 51 AGNEW FARM RD 107.16-1-73 2002 \$21,700 \$943,478 7,841 2,540 57 AGNEW FARM RD 107.16-3-21.	3 CARUSO PL	107.16-1-39	2002	\$21,300	\$926,086	6,534	2,540
9 CARUSO PL 107.16-1-64 2002 \$20,400 \$886,956 5,663 2,540 11 CARUSO PL 107.16-1-65 2002 \$19,000 \$826,086 6,098 2,716 15 CARUSO PL 107.16-1-66 2002 \$21,500 \$934,782 5,227 2,661 17 CARUSO PL 107.16-1-67 2002 \$19,000 \$826,086 5,227 2,299 19 CARUSO PL 107.16-1-68 2002 \$17,440 \$758,260 5,227 2,319 49 AGNEW FARM RD 107.16-1-70 2002 \$17,900 \$778,260 13,504 2,794 51 AGNEW FARM RD 107.16-1-71 1999 \$17,900 \$778,260 11,326 2,794 55 AGNEW FARM RD 107.16-1-73 2002 \$21,700 \$943,478 7,841 2,540 57 AGNEW FARM RD 107.16-1-74 2000 \$20,500 \$891,304 7,841 2,319 3 CIDER MILL CIR 107.16-3-21.17 2004 \$23,000 \$1,000,000 3,049 2,398 5 CIDER MILL CIR 107.16-3-21.18 2004 \$22,000 \$956,521 3,049 2,404 9 CIDER MILL CIR 107.16-3-21.20 2004 \$22,000 \$956,521 3,049 2,404 9 CIDER MILL CIR 107.16-3-21.20 2004 \$21,700 \$943,478 29,185 2,398	5 CARUSO PL	107.16-1-40	2002	\$20,000	\$869,565	10,890	2,299
11 CARUSO PL 107.16-1-65 2002 \$19,000 \$826,086 6,098 2,716 15 CARUSO PL 107.16-1-66 2002 \$21,500 \$934,782 5,227 2,661 17 CARUSO PL 107.16-1-67 2002 \$19,000 \$826,086 5,227 2,299 19 CARUSO PL 107.16-1-68 2002 \$17,440 \$758,260 5,227 2,319 49 AGNEW FARM RD 107.16-1-70 2002 \$17,900 \$778,260 13,504 2,794 51 AGNEW FARM RD 107.16-1-71 1999 \$17,900 \$778,260 11,326 2,794 55 AGNEW FARM RD 107.16-1-73 2002 \$21,700 \$943,478 7,841 2,540 57 AGNEW FARM RD 107.16-1-74 2000 \$20,500 \$891,304 7,841 2,319 3 CIDER MILL CIR 107.16-3-21.17 2004 \$23,000 \$1,000,000 3,049 2,398 5 CIDER MILL CIR 107.16-3-21.18 2004 \$22,000 \$956,521 3,049 2,404 9 CIDER MILL CIR <td>7 CARUSO PL</td> <td>107.16-1-63</td> <td>2003</td> <td>\$19,300</td> <td>\$839,130</td> <td>7,405</td> <td>2,299</td>	7 CARUSO PL	107.16-1-63	2003	\$19,300	\$839,130	7,405	2,299
15 CARUSO PL 107.16-1-66 2002 \$21,500 \$934,782 5,227 2,661 17 CARUSO PL 107.16-1-67 2002 \$19,000 \$826,086 5,227 2,299 19 CARUSO PL 107.16-1-68 2002 \$17,440 \$758,260 5,227 2,319 49 AGNEW FARM RD 107.16-1-70 2002 \$17,900 \$778,260 13,504 2,794 51 AGNEW FARM RD 107.16-1-71 1999 \$17,900 \$778,260 11,326 2,794 55 AGNEW FARM RD 107.16-1-73 2002 \$21,700 \$943,478 7,841 2,540 57 AGNEW FARM RD 107.16-1-74 2000 \$20,500 \$891,304 7,841 2,319 3 CIDER MILL CIR 107.16-3-21.17 2004 \$23,000 \$1,000,000 3,049 2,398 5 CIDER MILL CIR 107.16-3-21.18 2004 \$22,000 \$956,521 3,049 2,404 9 CIDER MILL CIR 107.16-3-21.20 2004 \$21,700 \$943,478 29,185 2,398	9 CARUSO PL	107.16-1-64	2002	\$20,400	\$886,956	5,663	2,540
17 CARUSO PL 107.16-1-67 2002 \$19,000 \$826,086 5,227 2,299 19 CARUSO PL 107.16-1-68 2002 \$17,440 \$758,260 5,227 2,319 49 AGNEW FARM RD 107.16-1-70 2002 \$17,900 \$778,260 13,504 2,794 51 AGNEW FARM RD 107.16-1-71 1999 \$17,900 \$778,260 11,326 2,794 55 AGNEW FARM RD 107.16-1-73 2002 \$21,700 \$943,478 7,841 2,540 57 AGNEW FARM RD 107.16-1-74 2000 \$20,500 \$891,304 7,841 2,319 3 CIDER MILL CIR 107.16-3-21.17 2004 \$23,000 \$1,000,000 3,049 2,398 5 CIDER MILL CIR 107.16-3-21.18 2004 \$22,000 \$956,521 3,049 2,404 7 CIDER MILL CIR 107.16-3-21.19 2004 \$21,700 \$943,478 29,185 2,398	11 CARUSO PL	107.16-1-65	2002	\$19,000	\$826,086	6,098	2,716
19 CARUSO PL 107.16-1-68 2002 \$17,440 \$758,260 5,227 2,319 49 AGNEW FARM RD 107.16-1-70 2002 \$17,900 \$778,260 13,504 2,794 51 AGNEW FARM RD 107.16-1-71 1999 \$17,900 \$778,260 11,326 2,794 55 AGNEW FARM RD 107.16-1-73 2002 \$21,700 \$943,478 7,841 2,540 57 AGNEW FARM RD 107.16-1-74 2000 \$20,500 \$891,304 7,841 2,319 3 CIDER MILL CIR 107.16-3-21.17 2004 \$23,000 \$1,000,000 3,049 2,398 5 CIDER MILL CIR 107.16-3-21.18 2004 \$22,000 \$956,521 3,049 2,404 7 CIDER MILL CIR 107.16-3-21.19 2004 \$22,000 \$956,521 3,049 2,404 9 CIDER MILL CIR 107.16-3-21.20 2004 \$21,700 \$943,478 29,185 2,398	15 CARUSO PL	107.16-1-66	2002	\$21,500	\$934,782	5,227	2,661
49 AGNEW FARM RD 107.16-1-70 2002 \$17,900 \$778,260 13,504 2,794 51 AGNEW FARM RD 107.16-1-71 1999 \$17,900 \$778,260 11,326 2,794 55 AGNEW FARM RD 107.16-1-73 2002 \$21,700 \$943,478 7,841 2,540 57 AGNEW FARM RD 107.16-1-74 2000 \$20,500 \$891,304 7,841 2,319 3 CIDER MILL CIR 107.16-3-21.17 2004 \$23,000 \$1,000,000 3,049 2,398 5 CIDER MILL CIR 107.16-3-21.18 2004 \$22,000 \$956,521 3,049 2,404 7 CIDER MILL CIR 107.16-3-21.19 2004 \$22,000 \$956,521 3,049 2,404 9 CIDER MILL CIR 107.16-3-21.20 2004 \$21,700 \$943,478 29,185 2,398	17 CARUSO PL		2002	\$19,000	\$826,086	5,227	2,299
51 AGNEW FARM RD 107.16-1-71 1999 \$17,900 \$778,260 11,326 2,794 55 AGNEW FARM RD 107.16-1-73 2002 \$21,700 \$943,478 7,841 2,540 57 AGNEW FARM RD 107.16-1-74 2000 \$20,500 \$891,304 7,841 2,319 3 CIDER MILL CIR 107.16-3-21.17 2004 \$23,000 \$1,000,000 3,049 2,398 5 CIDER MILL CIR 107.16-3-21.18 2004 \$22,000 \$956,521 3,049 2,404 7 CIDER MILL CIR 107.16-3-21.19 2004 \$22,000 \$956,521 3,049 2,404 9 CIDER MILL CIR 107.16-3-21.20 2004 \$21,700 \$943,478 29,185 2,398	19 CARUSO PL			\$17,440	\$758,260	5,227	2,319
55 AGNEW FARM RD 107.16-1-73 2002 \$21,700 \$943,478 7,841 2,540 57 AGNEW FARM RD 107.16-1-74 2000 \$20,500 \$891,304 7,841 2,319 3 CIDER MILL CIR 107.16-3-21.17 2004 \$23,000 \$1,000,000 3,049 2,398 5 CIDER MILL CIR 107.16-3-21.18 2004 \$22,000 \$956,521 3,049 2,404 7 CIDER MILL CIR 107.16-3-21.19 2004 \$22,000 \$956,521 3,049 2,404 9 CIDER MILL CIR 107.16-3-21.20 2004 \$21,700 \$943,478 29,185 2,398	49 AGNEW FARM RD	107.16-1-70	2002	\$17,900	\$778,260	13,504	2,794
57 AGNEW FARM RD 107.16-1-74 2000 \$20,500 \$891,304 7,841 2,319 3 CIDER MILL CIR 107.16-3-21.17 2004 \$23,000 \$1,000,000 3,049 2,398 5 CIDER MILL CIR 107.16-3-21.18 2004 \$22,000 \$956,521 3,049 2,404 7 CIDER MILL CIR 107.16-3-21.19 2004 \$22,000 \$956,521 3,049 2,404 9 CIDER MILL CIR 107.16-3-21.20 2004 \$21,700 \$943,478 29,185 2,398	51 AGNEW FARM RD	107.16-1-71			\$778,260	11,326	2,794
3 CIDER MILL CIR 107.16-3-21.17 2004 \$23,000 \$1,000,000 3,049 2,398 5 CIDER MILL CIR 107.16-3-21.18 2004 \$22,000 \$956,521 3,049 2,404 7 CIDER MILL CIR 107.16-3-21.19 2004 \$22,000 \$956,521 3,049 2,404 9 CIDER MILL CIR 107.16-3-21.20 2004 \$21,700 \$943,478 29,185 2,398	55 AGNEW FARM RD	107.16-1-73			\$943,478	,	,
5 CIDER MILL CIR 107.16-3-21.18 2004 \$22,000 \$956,521 3,049 2,404 7 CIDER MILL CIR 107.16-3-21.19 2004 \$22,000 \$956,521 3,049 2,404 9 CIDER MILL CIR 107.16-3-21.20 2004 \$21,700 \$943,478 29,185 2,398	57 AGNEW FARM RD	107.16-1-74		\$20,500		7,841	2,319
7 CIDER MILL CIR 107.16-3-21.19 2004 \$22,000 \$956,521 3,049 2,404 9 CIDER MILL CIR 107.16-3-21.20 2004 \$21,700 \$943,478 29,185 2,398	3 CIDER MILL CIR	107.16-3-21.17	2004		\$1,000,000	3,049	2,398
9 CIDER MILL CIR 107.16-3-21.20 2004 \$21,700 \$943,478 29,185 2,398	5 CIDER MILL CIR	107.16-3-21.18	2004	\$22,000	\$956,521	3,049	2,404
	7 CIDER MILL CIR	107.16-3-21.19	2004	\$22,000	\$956,521	3,049	2,404
11 CIDER MILL CIR 107.16-3-21.21 2005 \$21,700 \$943,478 4,356 2,404	9 CIDER MILL CIR	107.16-3-21.20	2004		\$943,478	29,185	,
	11 CIDER MILL CIR	107.16-3-21.21	2005	\$21,700	\$943,478	4,356	2,404

	T (0= 10 0 0 1 == 1		401 -05			
1 SCHULTZ WAY	107.16-3-21.27	2005	\$21,700	\$943,478	2,614	2,404
3 SCHULTZ WAY	107.16-3-21.26	2005	\$21,700	\$943,478	2,614	2,404
5 SCHULTZ WAY	107.16-3-21.25	2005	\$19,100	\$830,434	2,614	2,404
7 SCHULTZ WAY	107.16-3-21.24	2007	\$19,100	\$830,434	2,614	2,404
9 SCHULTZ WAY	107.16-3-21.23	2005	\$20,200	\$878,260	2,614	2,404
15 SCHULTZ WAY	107.16-3-21.22	2005	\$21,700	\$943,478	3,049	2,404
7 BEECHWOOD LN	107.16-3-22	1996	\$17,000	\$739,130	6,970	2,137
5 BEECHWOOD LN	107.16-3-23	1997	\$16,000	\$695,652	5,663	2,137
3 BEECHWOOD LN	107.16-3-24	1996	\$17,100	\$743,478	5,227	2,137
1 BEECHWOOD LN	107.16-3-25	1996	\$16,000	\$695,652	5,663	2,137
1 ALDER WAY	107.16-3-26	1995	\$14,500	\$630,434	5,227	1,852
3 ALDER WAY	107.16-3-27	1995	\$14,900	\$647,826	5,227	1,852
5 ALDER WAY	107.16-3-28	1995	\$14,000	\$608,695	5,227	1,929
7 ALDER WAY	107.16-3-29	1995	\$15,400	\$669,565	5,227	1,852
9 ALDER WAY	107.16-3-30	1995	\$15,200	\$660,869	5,227	1,929
11 ALDER WAY	107.16-3-31	1995	\$15,100	\$656,521	5,227	1,852
13 ALDER WAY	107.16-3-32	1995	\$14,500	\$630,434	5,227	1,852
15 ALDER WAY	107.16-3-33	1995	\$15,000	\$652,173	5,227	1,852
2 ALDER WAY	107.16-3-39	1995	\$15,000	\$652,173	5,227	2,034
4 ALDER WAY	107.16-3-38	1995	\$14,300	\$621,739	4,792	2,034
6 ALDER WAY	107.16-3-37	1995	\$14,400	\$626,086	5,227	2,034
8 ALDER WAY	107.16-3-36	1995	\$14,100	\$613,043	5,663	2,034
10 ALDER WAY	107.16-3-35	1995	\$14,500	\$630,434	5,663	2,034
12 ALDER WAY	107.16-3-34	1995	\$14,400	\$626,086	5,227	2,034
6 HOLLY KNL	107.16-3-19	1996	\$17,000	\$739,130	5,663	2,137
4 HOLLY KNL	107.16-3-18	1996	\$17,100	\$743,478	5,227	2,137
1 HOLLY KNL	107.16-3-16	1996	\$15,000	\$652,173	5,663	2,034
3 HOLLY KNL	107.16-3-15	1996	\$14,900	\$647,826	5,227	2,034
12 JUNIPER CT	107.16-3-56	1995	\$21,950	\$954,347	9,583	2,588
10 JUNIPER CT	107.16-3-55	1995	\$20,500	\$891,304	7,405	2,588
6 JUNIPER CT	107.16-3-53	1996	\$23,900	\$1,039,130	8,276	2,588
4 JUNIPER CT	107.16-3-52	1996	\$20,400	\$886,956	6,970	2,588
Sources: Realtor.com, Zillow			+ -, -	, ,	-,-	,

Appendix I-2 Regional Westchester STR Hotel Report

<u>s</u>tr

Trend Report - Regional Westchester Hotels Selected Properties

January 2013 to September 2019 Currency : USD - US Dollar

Table of Contents	1
Data by Measure	2
Percent Change by Measure	3
Percent Change by Year	4
Twelve Month Moving Average	5
Twelve Month Moving Average with Percent Change	6
Day of Week Analysis	7
Raw Data	8
Classic	9
Response Report	10
Terms and Conditions	11
Help	12

735 East Main Street, Hendersonville, TN 37075
T: +1 615 824 8664
trends@str.com www.str.com

Blue Fin Building, 110 Southwark Street, London SE1 OTA
T: +44 (0)20 7922 1930
hoteltrends@str.com www.str.com

Tab 2 - Data by Measure

Regional Westchester Hotels Selected Properties

Job Number: 1145451_SADIM Staff: LG Created: November 14, 2019

	January	February	March	April	May	June	July	August	September	October	November	December	Total Year	Sep YTD
2013	58.1	61.9	63.0	65.9	67.8	75.9	71.4	68.4	75.0	80.4	69.0	57.2	67.8	67.5
2014	56.7	59.7	61.5	73.8	73.6	76.5	68.8	70.2	75.8	76.5	65.7	56.9	68.0	68.6
2015	53.0	62.2	68.1	72.7	77.8	84.4	75.9	73.9	80.0	83.9	72.1	59.9	72.0	72.0
2016	56.2	59.4	63.6	78.4	76.7	80.4	76.4	74.0	81.5	79.0	70.7	61.0	71.5	71.9
2017	58.9	57.5	63.9	73.1	77.0	81.7	75.6	69.9	77.5	77.0	69.4	65.2	70.6	70.7
2018	60.9	58.7	74.8	73.0	73.4	80.7	72.5	74.2	81.3	81.0	77.5	67.3	73.0	72.3
2019	61.9	61.0	65.6	76.6	74.7	79.0	74.0	71.0	74.5					71.0
Avg	58.0	60.1	65.9	73.4	74.5	79.9	73.6	71.7	78.0	79.6	70.8	61.3	70.5	70.6

ADR (\$)														
	January	February	March	April	May	June	July	August	September	October	November	December	Total Year	Sep YTD
2013	159.48	163.40	161.24	169.22	167.43	170.08	160.62	153.66	170.75	171.40	161.63	160.08	164.37	164.14
2014	164.86	158.37	158.58	161.60	165.96	170.88	163.00	161.61	176.32	176.67	164.29	157.00	165.52	165.01
2015	155.31	158.29	158.90	160.23	167.89	178.05	164.11	162.57	171.75	168.88	162.62	154.47	164.36	164.88
2016	152.52	152.62	152.15	157.44	167.02	172.51	159.79	161.67	172.85	171.68	162.20	147.27	161.69	161.77
2017	153.02	153.76	157.24	160.62	170.93	172.62	160.54	160.97	173.37	172.74	160.30	148.42	162.80	163.35
2018	155.14	158.07	168.87	167.15	176.56	178.65	163.21	161.31	172.76	176.28	162.86	152.04	166.73	167.53
2019	154.88	157.68	161.15	164.84	170.62	174.63	162.92	162.24	170.85					164.89
Avg	156.34	157.46	159.96	162.85	169.55	174.06	162.02	160.68	172.68	172.91	162.32	152.96	164.24	164.52

RevPAR (\$	5)													
	January	February	March	April	May	June	July	August	September	October	November	December	Total Year	Sep YTD
2013	92.68	101.14	101.66	111.56	113.55	129.03	114.61	105.12	128.09	137.77	111.56	91.49	111.51	110.80
2014	93.46	94.57	97.51	119.29	122.14	130.65	112.16	113.37	133.62	135.16	107.86	89.32	112.53	113.14
2015	82.29	98.47	108.26	116.51	130.57	150.31	124.57	120.17	137.40	141.68	117.23	92.46	118.36	118.78
2016	85.67	90.69	96.75	123.38	128.05	138.74	122.11	119.56	140.83	135.54	114.63	89.88	115.54	116.28
2017	90.18	88.47	100.47	117.45	131.59	141.06	121.42	112.51	134.41	132.93	111.23	96.84	114.97	115.41
2018	94.45	92.84	126.37	122.03	129.66	144.15	118.29	119.71	140.45	142.73	126.25	102.31	121.76	121.09
2019	95.94	96.13	105.68	126.28	127.47	138.02	120.56	115.13	127.27					117.02
Avg	90.64	94.57	105.33	119.57	126.28	139.00	119.19	115.18	134.63	137.65	114.84	93.75	115.85	116.14

Supply														
	January	February	March	April	May	June	July	August	September	October	November	December	Total Year	Sep YTD
2013	70,680	63,840	70,680	68,400	70,680	68,400	70,711	70,711	68,460	70,742	68,460	70,742	832,506	622,562
2014	70,587	63,756	70,587	68,310	70,587	68,310	70,587	70,587	72,210	74,617	72,210	74,617	846,965	625,521
2015	74,617	67,396	74,617	72,210	74,617	72,210	74,617	74,617	72,210	74,617	72,210	74,617	878,555	657,111
2016	74,617	67,396	74,617	72,240	74,648	72,240	74,648	74,648	72,240	74,648	72,240	74,648	878,830	657,294
2017	74,648	67,424	74,648	72,240	74,648	72,240	74,648	74,648	72,240	74,648	72,240	74,648	878,920	657,384
2018	74,648	67,424	74,648	72,240	75,516	73,080	75,516	75,516	73,080	75,516	73,080	75,516	885,780	661,668
2019	75,516	68,208	75,516	73,080	75,516	73,080	75,516	75,516	73,080					665,028
Avg	73,616	66,492	73,616	71,246	73,745	71,366	73,749	73,749	71,931	74,131	71,740	74,131	866,926	649,510

Demand														
	January	February	March	April	May	June	July	August	September	October	November	December	Total Year	Sep YTD
2013	41,076	39,516	44,563	45,093	47,934	51,891	50,457	48,371	51,356	56,861	47,252	40,431	564,801	420,257
2014	40,015	38,072	43,405	50,427	51,948	52,229	48,572	49,519	54,722	57,088	47,408	42,451	575,856	428,909
2015	39,533	41,928	50,839	52,504	58,027	60,961	56,641	55,154	57,770	62,599	52,053	44,661	632,670	473,357
2016	41,910	40,047	47,450	56,611	57,232	58,098	57,044	55,208	58,858	58,935	51,056	45,558	628,007	472,458
2017	43,994	38,793	47,697	52,821	57,470	59,035	56,458	52,173	56,006	57,445	50,129	48,705	620,726	464,447
2018	45,446	39,599	55,862	52,742	55,457	58,968	54,734	56,038	59,412	61,142	56,651	50,815	646,866	478,258
2019	46,779	41,584	49,520	55,984	56,417	57,758	55,879	53,590	54,438					471,949
Avg	42,679	39,934	48,477	52,312	54,926	56,991	54,255	52,865	56,080	59,012	50,758	45,437	611,488	458,519

Revenue ((\$)													
	January	February	March	April	May	June	July	August	September	October	November	December	Total Year	Sep YTD
2013	6,550,847	6,456,971	7,185,421	7,630,635	8,025,448	8,825,853	8,104,456	7,432,799	8,768,808	9,746,199	7,637,131	6,472,249	92,836,817	68,981,238
2014	6,596,812	6,029,645	6,882,960	8,148,931	8,621,370	8,925,041	7,917,327	8,002,707	9,648,806	10,085,562	7,788,742	6,665,002	95,312,905	70,773,599
2015	6,140,023	6,636,768	8,078,406	8,412,957	9,742,439	10,853,917	9,295,347	8,966,535	9,921,990	10,571,758	8,465,068	6,898,753	103,983,961	78,048,382
2016	6,392,105	6,112,074	7,219,281	8,912,680	9,559,029	10,022,678	9,115,208	8,925,277	10,173,377	10,117,922	8,281,128	6,709,333	101,540,092	76,431,709
2017	6,731,817	5,964,998	7,499,710	8,484,291	9,823,201	10,190,388	9,063,689	8,398,310	9,709,626	9,923,221	8,035,547	7,228,925	101,053,723	75,866,030
2018	7,050,485	6,259,507	9,433,459	8,815,650	9,791,226	10,534,835	8,932,997	9,039,753	10,264,173	10,778,358	9,226,002	7,726,124	107,852,569	80,122,085
2019	7,244,954	6,556,997	7,980,285	9,228,555	9,625,700	10,086,172	9,104,032	8,694,326	9,300,893					77,821,914
Avg	6,672,435	6,288,137	7,754,217	8,519,100	9,312,630	9,919,841	8,790,437	8,494,244	9,683,953	10,203,837	8,238,936	6,950,064	100,430,011	75,434,994

Tab 3 - Percent Change from Previous Year - Detail by Measure

Regional Westchester Hotels Selected Properties

Job Number: 1145451_SADIM Staff: LG Created: November 14, 2019

Occupancy	,													
	January	February	March	April	May	June	July	August	September	October	November	December	Total Year	Sep YTD
2014	- 2.5	-3.5	- 2.5	12.0	8.5	0.8	-3.6	2.6	1.0	-4.8	-4.9	-0.5	0.2	1.6
2015	- 6.5	4.2	10.8	-1.5	5.7	10.4	10.3	5.4	5.6	9.7	9.8	5.2	5.9	5.1
2016	6.0	-4.5	-6.7	7.8	-1.4	-4.7	0.7	0.1	1.8	-5.9	-2.0	2.0	-0.8	-0.2
2017	4.9	-3.2	0.5	-6.7	0.4	1.6	-1.0	-5.5	-4.8	-2.5	-1.8	6.9	-1.2	-1.7
2018	3.3	2.1	17.1	-0.1	-4.6	-1.3	-4.2	6.2	4.9	5.2	11.7	3.1	3.4	2.3
2019	1.8	3.8	-12.4	4.9	1.7	- 2.1	2.1	-4.4	-8.4					-1.8
Avg	1.2	-0.2	1.1	2.7	1.7	0.8	0.7	0.7	0.0	0.3	2.6	3.4	1.5	0.9

ADR														
	January	February	March	April	May	June	July	August	September	October	November	December	Total Year	Sep YTD
2014	3.4	-3.1	-1.7	- 4.5	-0.9	0.5	1.5	5.2	3.3	3.1	1.6	-1.9	0.7	0.5
2015	-5.8	-0.1	0.2	-0.8	1.2	4.2	0.7	0.6	- 2.6	-4.4	-1.0	-1.6	-0.7	-0.1
2016	-1.8	-3.6	-4.3	-1.7	-0.5	-3.1	- 2.6	-0.6	0.6	1.7	-0.3	-4.7	-1.6	-1.9
2017	0.3	0.7	3.3	2.0	2.3	0.1	0.5	-0.4	0.3	0.6	-1.2	0.8	0.7	1.0
2018	1.4	2.8	7.4	4.1	3.3	3.5	1.7	0.2	-0.3	2.0	1.6	2.4	2.4	2.6
2019	-0.2	-0.2	-4.6	-1.4	-3.4	-2.3	-0.2	0.6	-1.1					-1.6
Avg	-0.4	-0.6	0.1	-0.4	0.3	0.5	0.2	0.9	0.0	0.6	0.2	-1.0	0.3	0.1

RevPAR														
	January	February	March	April	May	June	July	August	September	October	November	December	Total Year	Sep YTD
2014	0.8	-6.5	-4.1	6.9	7.6	1.3	- 2.1	7.9	4.3	-1.9	-3.3	-2.4	0.9	2.1
2015	-12.0	4.1	11.0	-2.3	6.9	15.0	11.1	6.0	2.8	4.8	8.7	3.5	5.2	5.0
2016	4.1	-7.9	-10.6	5.9	-1.9	- 7.7	-2.0	-0.5	2.5	-4.3	-2.2	-2.8	-2.4	-2.1
2017	5.3	-2.4	3.8	-4.8	2.8	1.7	-0.6	- 5.9	-4.6	-1.9	-3.0	7.7	-0.5	-0.8
2018	4.7	4.9	25.8	3.9	-1.5	2.2	-2.6	6.4	4.5	7.4	13.5	5.6	5.9	4.9
2019	1.6	3.5	-16.4	3.5	-1.7	-4.3	1.9	-3.8	-9.4					-3.4
Avg	0.8	-0.7	1.6	2.2	2.0	1.4	1.0	1.7	0.0	0.8	2.7	2.3	1.8	1.0

Supply														
	January	February	March	April	May	June	July	August	September	October	November	December	Total Year	Sep YTD
2014	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.2	-0.2	5.5	5.5	5.5	5.5	1.7	0.5
2015	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	0.0	0.0	0.0	0.0	3.7	5.1
2016	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2017	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2018	0.0	0.0	0.0	0.0	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	0.8	0.7
2019	1.2	1.2	1.2	1.2	0.0	0.0	0.0	0.0	0.0					0.5
Avg	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.3	1.3	1.3	1.3	1.1

Demand														
	January	February	March	April	May	June	July	August	September	October	November	December	Total Year	Sep YTD
2014	-2.6	-3.7	-2.6	11.8	8.4	0.7	-3.7	2.4	6.6	0.4	0.3	5.0	2.0	2.1
2015	-1.2	10.1	17.1	4.1	11.7	16.7	16.6	11.4	5.6	9.7	9.8	5.2	9.9	10.4
2016	6.0	-4.5	-6.7	7.8	-1.4	-4.7	0.7	0.1	1.9	-5.9	-1.9	2.0	-0.7	-0.2
2017	5.0	-3.1	0.5	-6.7	0.4	1.6	-1.0	-5.5	-4.8	-2.5	-1.8	6.9	-1.2	-1.7
2018	3.3	2.1	17.1	-0.1	-3.5	-0.1	-3.1	7.4	6.1	6.4	13.0	4.3	4.2	3.0
2019	2.9	5.0	-11.4	6.1	1.7	- 2.1	2.1	-4.4	-8.4					-1.3
Avg	2.2	1.0	2.4	3.8	2.9	2.0	1.9	1.9	1.1	1.6	3.9	4.7	2.8	2.0

Revenue														
	January	February	March	April	May	June	July	August	September	October	November	December	Total Year	Sep YTD
2014	0.7	-6.6	-4.2	6.8	7.4	1.1	-2.3	7.7	10.0	3.5	2.0	3.0	2.7	2.6
2015	-6.9	10.1	17.4	3.2	13.0	21.6	17.4	12.0	2.8	4.8	8.7	3.5	9.1	10.3
2016	4.1	- 7.9	-10.6	5.9	-1.9	- 7.7	-1.9	-0.5	2.5	-4.3	-2.2	-2.7	-2.4	-2.1
2017	5.3	-2.4	3.9	-4.8	2.8	1.7	-0.6	-5.9	-4.6	-1.9	-3.0	7.7	- 0.5	-0.7
2018	4.7	4.9	25.8	3.9	-0.3	3.4	-1.4	7.6	5.7	8.6	14.8	6.9	6.7	5.6
2019	2.8	4.8	-15.4	4.7	-1.7	-4.3	1.9	-3.8	-9.4					-2.9
Avg	1.8	0.5	2.8	3.3	3.2	2.6	2.2	2.9	1.2	2.1	4.1	3.7	3.1	2.1

Tab 4 - Percent Change from Previous Year - Detail by Year

Regional Westchester Hotels Selected Properties

Job Number: 1145451_SADIM Staff: LG Created: November 14, 2019

	Jan 14	Feb 14	Mar 14	Apr 14	May 14	Jun 14	Jul 14	Aug 14	Sep 14	Oct 14	Nov 14	Dec 14	Total Year	Sep YTD
Occ	-2.5	-3.5	-2.5	12.0	8.5	0.8	-3.6	2.6	1.0	-4.8	-4.9	-0.5	0.2	1.6
ADR	3.4	-3.1	-1.7	-4.5	-0.9	0.5	1.5	5.2	3.3	3.1	1.6	-1.9	0.7	0.5
RevPAR	0.8	-6.5	- 4.1	6.9	7.6	1.3	-2.1	7.9	4.3	- 1.9	-3.3	-2.4	0.9	2.1
Supply	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.2	-0.2	5.5	5.5	5.5	5.5	1.7	0.5
Demand	- 2.6	-3.7	- 2.6	11.8	8.4	0.7	-3.7	2.4	6.6	0.4	0.3	5.0	2.0	2.1
Revenue	0.7	-6.6	-4.2	6.8	7.4	1.1	-2.3	7.7	10.0	3.5	2.0	3.0	2.7	2.6

	Jan 15	Feb 15	Mar 15	Apr 15	May 15	Jun 15	Jul 15	Aug 15	Sep 15	Oct 15	Nov 15	Dec 15	Total Year	Sep YTD
Осс	-6.5	4.2	10.8	-1.5	5.7	10.4	10.3	5.4	5.6	9.7	9.8	5.2	5.9	5.1
ADR	-5.8	-0.1	0.2	-0.8	1.2	4.2	0.7	0.6	-2.6	-4.4	-1.0	-1.6	-0.7	-0.1
RevPAR	- 12.0	4.1	11.0	-2.3	6.9	15.0	11.1	6.0	2.8	4.8	8.7	3.5	5.2	5.0
Supply	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	0.0	0.0	0.0	0.0	3.7	5.1
Demand	-1.2	10.1	17.1	4.1	11.7	16.7	16.6	11.4	5.6	9.7	9.8	5.2	9.9	10.4
Revenue	-6.9	10.1	17.4	3.2	13.0	21.6	17.4	12.0	2.8	4.8	8.7	3.5	9.1	10.3

	Jan 16	Feb 16	Mar 16	Apr 16	May 16	Jun 16	Jul 16	Aug 16	Sep 16	Oct 16	Nov 16	Dec 16	Total Year	Sep YTD
Осс	6.0	-4.5	-6.7	7.8	-1.4	-4.7	0.7	0.1	1.8	-5.9	-2.0	2.0	-0.8	-0.2
ADR	-1.8	-3.6	-4.3	-1.7	-0.5	-3.1	-2.6	-0.6	0.6	1.7	-0.3	-4.7	-1.6	-1.9
RevPAR	4.1	-7.9	-10.6	5.9	-1.9	-7.7	-2.0	-0.5	2.5	-4.3	-2.2	-2.8	-2.4	-2.1
Supply	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Demand	6.0	-4.5	-6.7	7.8	-1.4	-4.7	0.7	0.1	1.9	-5.9	-1.9	2.0	-0.7	-0.2
Revenue	4.1	-7.9	-10.6	5.9	-1.9	-7.7	-1.9	-0.5	2.5	-4.3	-2.2	-2.7	-2.4	-2.1

	Jan 17	Feb 17	Mar 17	Apr 17	May 17	Jun 17	Jul 17	Aug 17	Sep 17	Oct 17	Nov 17	Dec 17	Total Year	Sep YTD
Осс	4.9	-3.2	0.5	-6.7	0.4	1.6	-1.0	-5.5	-4.8	-2.5	-1.8	6.9	-1.2	-1.7
ADR	0.3	0.7	3.3	2.0	2.3	0.1	0.5	-0.4	0.3	0.6	-1.2	8.0	0.7	1.0
RevPAR	5.3	-2.4	3.8	-4.8	2.8	1.7	-0.6	- 5.9	-4.6	- 1.9	-3.0	7.7	-0.5	-0.8
Supply	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Demand	5.0	-3.1	0.5	-6.7	0.4	1.6	-1.0	- 5.5	-4.8	- 2.5	-1.8	6.9	-1.2	-1.7
Revenue	5.3	-2.4	3.9	-4.8	2.8	1.7	-0.6	- 5.9	-4.6	-1.9	-3.0	7.7	-0.5	-0.7

	Jan 18	Feb 18	Mar 18	Apr 18	May 18	Jun 18	Jul 18	Aug 18	Sep 18	Oct 18	Nov 18	Dec 18	Total Year	Sep YTD
Occ	3.3	2.1	17.1	-0.1	-4.6	-1.3	-4.2	6.2	4.9	5.2	11.7	3.1	3.4	2.3
ADR	1.4	2.8	7.4	4.1	3.3	3.5	1.7	0.2	-0.3	2.0	1.6	2.4	2.4	2.6
RevPAR	4.7	4.9	25.8	3.9	-1.5	2.2	- 2.6	6.4	4.5	7.4	13.5	5.6	5.9	4.9
Supply	0.0	0.0	0.0	0.0	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	0.8	0.7
Demand	3.3	2.1	17.1	-0.1	-3.5	-0.1	-3.1	7.4	6.1	6.4	13.0	4.3	4.2	3.0
Revenue	4.7	4.9	25.8	3.9	-0.3	3.4	-1.4	7.6	5.7	8.6	14.8	6.9	6.7	5.6

	Jan 19	Feb 19	Mar 19	Apr 19	May 19	Jun 19	Jul 19	Aug 19	Sep 19	Oct 19	Nov 19	Dec 19	Total Year	Sep YTD
Осс	1.8	3.8	-12.4	4.9	1.7	-2.1	2.1	-4.4	-8.4					-1.8
ADR	-0.2	-0.2	-4.6	-1.4	-3.4	-2.3	-0.2	0.6	-1.1					-1.6
RevPAR	1.6	3.5	-16.4	3.5	-1.7	-4.3	1.9	-3.8	-9.4					-3.4
Supply	1.2	1.2	1.2	1.2	0.0	0.0	0.0	0.0	0.0					0.5
Demand	2.9	5.0	-11.4	6.1	1.7	-2.1	2.1	-4.4	-8.4					-1.3
Revenue	2.8	4.8	-15.4	4.7	-1.7	-4.3	1.9	-3.8	-9.4					-2.9

Tab 5 - Twelve Month Moving Average

Regional Westchester Hotels Selected Properties

Job Number: 1145451_SADIM Staff: LG Created: November 14, 2019

Occupancy (%)												
	January	February	March	April	May	June	July	August	September	October	November	December
2014	67.7	67.6	67.4	68.1	68.6	68.6	68.4	68.5	68.6	68.3	68.1	68.0
2015	67.6	67.8	68.3	68.3	68.6	69.3	69.9	70.3	70.6	71.2	71.8	72.0
2016	72.3	72.1	71.7	72.1	72.1	71.7	71.8	71.8	71.9	71.5	71.4	71.5
2017	71.7	71.5	71.6	71.1	71.2	71.3	71.2	70.9	70.5	70.4	70.3	70.6
2018	70.8	70.9	71.8	71.8	71.5	71.4	71.2	71.5	71.8	72.2	72.9	73.0
2019	73.1	73.3	72.5	72.8	72.9	72.7	72.9	72.6	72.0			

ADR (\$)												
	January	February	March	April	May	June	July	August	September	October	November	December
2014	164.76	164.42	164.23	163.59	163.49	163.56	163.78	164.45	165.02	165.54	165.76	165.52
2015	164.86	164.81	164.76	164.63	164.83	165.64	165.71	165.76	165.38	164.70	164.56	164.36
2016	164.14	163.80	163.32	163.05	162.96	162.38	161.99	161.91	162.03	162.25	162.22	161.69
2017	161.69	161.78	162.16	162.46	162.82	162.84	162.91	162.86	162.86	162.94	162.79	162.80
2018	162.93	163.19	164.15	164.69	165.17	165.73	165.98	165.98	165.96	166.34	166.51	166.73
2019	166.69	166.64	166.02	165.83	165.33	164.94	164.91	165.00	164.78			

RevPAR (\$)												
	January	February	March	April	May	June	July	August	September	October	November	December
2014	111.58	111.08	110.73	111.36	112.09	112.22	112.02	112.72	113.27	113.15	112.82	112.53
2015	111.46	111.70	112.57	112.37	113.14	114.85	115.89	116.46	116.77	117.32	118.09	118.36
2016	118.64	118.05	117.07	117.63	117.42	116.47	116.26	116.21	116.49	115.97	115.76	115.54
2017	115.92	115.75	116.07	115.58	115.88	116.07	116.01	115.41	114.88	114.66	114.38	114.97
2018	115.34	115.67	117.87	118.25	118.10	118.38	118.11	118.72	119.24	120.09	121.32	121.76
2019	121.86	122.09	120.33	120.68	120.50	119.99	120.18	119.80	118.71			

Supply												
	January	February	March	April	May	June	July	August	September	October	November	December
2014	832,413	832,329	832,236	832,146	832,053	831,963	831,839	831,715	835,465	839,340	843,090	846,965
2015	850,995	854,635	858,665	862,565	866,595	870,495	874,525	878,555	878,555	878,555	878,555	878,555
2016	878,555	878,555	878,555	878,585	878,616	878,646	878,677	878,708	878,738	878,769	878,799	878,830
2017	878,861	878,889	878,920	878,920	878,920	878,920	878,920	878,920	878,920	878,920	878,920	878,920
2018	878,920	878,920	878,920	878,920	879,788	880,628	881,496	882,364	883,204	884,072	884,912	885,780
2019	886,648	887,432	888,300	889,140	889,140	889,140	889,140	889,140	889,140			

Demand												
	January	February	March	April	May	June	July	August	September	October	November	December
2014	563,740	562,296	561,138	566,472	570,486	570,824	568,939	570,087	573,453	573,680	573,836	575,856
2015	575,374	579,230	586,664	588,741	594,820	603,552	611,621	617,256	620,304	625,815	630,460	632,670
2016	635,047	633,166	629,777	633,884	633,089	630,226	630,629	630,683	631,771	628,107	627,110	628,007
2017	630,091	628,837	629,084	625,294	625,532	626,469	625,883	622,848	619,996	618,506	617,579	620,726
2018	622,178	622,984	631,149	631,070	629,057	628,990	627,266	631,131	634,537	638,234	644,756	646,866
2019	648,199	650,184	643,842	647,084	648,044	646,834	647,979	645,531	640,557			

Revenue (\$)												
	January	February	March	April	May	June	July	August	September	October	November	December
2014	92,882,782	92,455,456	92,152,995	92,671,291	93,267,213	93,366,401	93,179,272	93,749,180	94,629,178	94,968,541	95,120,152	95,312,905
2015	94,856,116	95,463,239	96,658,685	96,922,711	98,043,780	99,972,656	101,350,676	102,314,504	102,587,688	103,073,884	103,750,210	103,983,961
2016	104,236,043	103,711,349	102,852,224	103,351,947	103,168,537	102,337,298	102,157,159	102,115,901	102,367,288	101,913,452	101,729,512	101,540,092
2017	101,879,804	101,732,728	102,013,157	101,584,768	101,848,940	102,016,650	101,965,131	101,438,164	100,974,413	100,779,712	100,534,131	101,053,723
2018	101,372,391	101,666,900	103,600,649	103,932,008	103,900,033	104,244,480	104,113,788	104,755,231	105,309,778	106,164,915	107,355,370	107,852,569
2019	108,047,038	108,344,528	106,891,354	107,304,259	107,138,733	106,690,070	106,861,105	106,515,678	105,552,398			

High value is boxed.

Low value is boxed and italicized.

Tab 6 - Twelve Month Moving Average with Percent Change

Date	Occup	ancy	AD	R	Rev	Par	Supply		Demand		Revenu	е
	This Year	% Chg	This Year	% Chg	This Year	% Chg	This Year	% Chg	This Year	% Chg	This Year	% Chg
Jan 14	67.7		164.76		111.58		832,413		563,740	_	92,882,782	
Feb 14	67.6		164.42		111.08		832,329		562,296		92,455,456	
Mar 14	67.4		164.23		110.73		832,236		561,138		92,152,995	
Apr 14	68.1		163.59		111.36		832,146		566,472		92,671,291	
May 14 Jun 14	68.6 68.6		163.49 163.56		112.09 112.22		832,053 831,963		570,486 570,824		93,267,213 93,366,401	
Jul 14	68.4		163.56		112.22		831,839		568,939		93,179,272	
Aug 14	68.5		164.45		112.72		831,715		570,087		93,749,180	
Sep 14	68.6		165.02		113.27		835,465		573,453		94,629,178	
Oct 14	68.3		165.54		113.15		839,340		573,680		94,968,541	
Nov 14	68.1		165.76		112.82		843,090		573,836		95,120,152	
Dec 14	68.0	0.2	165.52	0.7	112.53	0.9	846,965	1.7	575,856	2.0	95,312,905	2.7
Jan 15	67.6	-0.2	164.86	0.1	111.46	-0.1	850,995	2.2	575,374	2.1	94,856,116	2.1
Feb 15	67.8	0.3	164.81	0.2	111.70	0.6	854,635	2.7	579,230	3.0	95,463,239	3.3
Mar 15	68.3	1.3	164.76	0.3	112.57	1.7	858,665	3.2	586,664	4.5	96,658,685	4.9
Apr 15	68.3	0.3	164.63	0.6	112.37	0.9	862,565	3.7	588,741	3.9	96,922,711	4.6
May 15	68.6	0.1	164.83	0.8	113.14	0.9	866,595	4.2	594,820	4.3	98,043,780	5.1
Jun 15	69.3	1.1	165.64	1.3	114.85	2.3	870,495	4.6	603,552	5.7	99,972,656	7.1
Jul 15	69.9	2.3	165.71	1.2	115.89	3.5	874,525	5.1	611,621	7.5	101,350,676	8.8
Aug 15	70.3	2.5	165.76 165.38	0.8	116.46	3.3 3.1	878,555 878,555	5.6 5.2	617,256 620,304	8.3	102,314,504	9.1 8.4
Sep 15 Oct 15	70.6 71.2	2.9 4.2	165.38 164.70	0.2 -0.5	116.77 117.32	3.1	878,555 878,555	5.2 4.7	620,304	8.2 9.1	102,587,688 103,073,884	8.4 8.5
Nov 15	71.2	5.4	164.70	-0.5 -0.7	117.32	4.7	878,555 878,555	4.7	630,460	9.1	103,073,884	8.5 9.1
Dec 15	71.0	5.4	164.36	-0.7	118.36	5.2	878,555	3.7	632,670	9.9	103,730,210	9.1
Jan 16	72.3	6.9	164.14	-0.4	118.64	6.4	878,555	3.2	635,047	10.4	104,236,043	9.9
Feb 16	72.1	6.3	163.80	-0.6	118.05	5.7	878,555	2.8	633,166	9.3	103,711,349	8.6
Mar 16	71.7	4.9	163.32	-0.9	117.07	4.0	878,555	2.3	629,777	7.3	102,852,224	6.4
Apr 16	72.1	5.7	163.05	-1.0	117.63	4.7	878,585	1.9	633,884	7.7	103,351,947	6.6
May 16	72.1	5.0	162.96	-1.1	117.42	3.8	878,616	1.4	633,089	6.4	103,168,537	5.2
Jun 16	71.7	3.5	162.38	-2.0	116.47	1.4	878,646	0.9	630,226	4.4	102,337,298	2.4
Jul 16	71.8	2.6	161.99	-2.2	116.26	0.3	878,677	0.5	630,629	3.1	102,157,159	0.8
Aug 16	71.8	2.2	161.91	-2.3	116.21	-0.2	878,708	0.0	630,683	2.2	102,115,901	-0.2
Sep 16	71.9	1.8	162.03	-2.0	116.49	-0.2	878,738	0.0	631,771	1.8	102,367,288	-0.2
Oct 16	71.5	0.3	162.25	-1.5	115.97	-1.1	878,769	0.0	628,107	0.4	101,913,452	-1.1
Nov 16	71.4	-0.6	162.22	-1.4	115.76	-2.0	878,799	0.0	627,110	-0.5	101,729,512	-1.9
Dec 16	71.5	-0.8	161.69	-1.6	115.54	-2.4	878,830	0.0	628,007	-0.7	101,540,092	-2.4
Jan 17	71.7	-0.8	161.69	-1.5	115.92	-2.3	878,861	0.0	630,091	-0.8	101,879,804	-2.3
Feb 17	71.5	-0.7	161.78	-1.2	115.75	-1.9	878,889	0.0	628,837	-0.7	101,732,728	-1.9
Mar 17	71.6 71.1	-0.2 -1.4	162.16 162.46	-0.7	116.07 115.58	-0.9 -1.7	878,920 878,920	0.0	629,084 625,294	-0.1 -1.4	102,013,157 101,584,768	-0.8 -1.7
Apr 17	71.1	-1.4	162.40	-0.4 -0.1	115.88	-1.7	878,920	0.0	625,532	-1.4	101,848,940	-1.7
May 17 Jun 17	71.2	-0.6	162.84	0.3	116.07	-0.3	878,920	0.0	626,469	-0.6	102,016,650	-0.3
Jul 17	71.2	-0.8	162.91	0.6	116.01	-0.2	878,920	0.0	625,883	-0.8	101,965,131	-0.2
Aug 17	70.9	-1.3	162.86	0.6	115.41	-0.7	878,920	0.0	622,848	-1.2	101,438,164	-0.7
Sep 17	70.5	-1.9	162.86	0.5	114.88	-1.4	878,920	0.0	619.996	-1.9	100,974,413	-1.4
Oct 17	70.4	-1.5	162.94	0.4	114.66	-1.1	878,920	0.0	618,506	-1.5	100,779,712	-1.1
Nov 17	70.3	-1.5	162.79	0.4	114.38	-1.2	878,920	0.0	617,579	-1.5	100,534,131	-1.2
Dec 17	70.6	-1.2	162.80	0.7	114.97	-0.5	878,920	0.0	620,726	-1.2	101,053,723	-0.5
Jan 18	70.8	-1.3	162.93	0.8	115.34	-0.5	878,920	0.0	622,178	-1.3	101,372,391	-0.5
Feb 18	70.9	-0.9	163.19	0.9	115.67	-0.1	878,920	0.0	622,984	-0.9	101,666,900	-0.1
Mar 18	71.8	0.3	164.15	1.2	117.87	1.6	878,920	0.0	631,149	0.3	103,600,649	1.6
Apr 18	71.8	0.9	164.69	1.4	118.25	2.3	878,920	0.0	631,070	0.9	103,932,008	2.3
May 18	71.5	0.5	165.17	1.4	118.10	1.9	879,788	0.1	629,057	0.6	103,900,033	2.0
Jun 18	71.4	0.2	165.73	1.8	118.38	2.0	880,628	0.2	628,990	0.4	104,244,480	2.2
Jul 18	71.2	-0.1	165.98	1.9	118.11	1.8	881,496	0.3	627,266	0.2	104,113,788	2.1
Aug 18	71.5	0.9	165.98	1.9	118.72	2.9	882,364	0.4	631,131 634,537	1.3	104,755,231	3.3 4.3
Sep 18 Oct 18	71.8 72.2	1.8 2.6	165.96 166.34	1.9	119.24 120.09	3.8 4.7	883,204 884,072	0.5	634,537	2.3 3.2	105,309,778 106,164,915	
Nov 18	72.2	3.7	166.54	2.1	120.09	6.1	884,912	0.6 0.7	644,756	4.4	105,164,915	5.3 6.8
Dec 18	73.0	3.4	166.73	2.3	121.32	5.9	885,780	0.7	646,866	4.4	107,852,569	6.7
Jan 19	73.1	3.3	166.69	2.3	121.86	5.7	886,648	0.9	648,199	4.2	108,047,038	6.6
Feb 19	73.1	3.4	166.64	2.1	121.00	5.5	887,432	1.0	650,184	4.4	108,344,528	6.6
Mar 19	73.5	0.9	166.02	1.1	120.33	2.1	888,300	1.1	643,842	2.0	106,891,354	3.2
Apr 19	72.8	1.4	165.83	0.7	120.68	2.1	889,140	1.2	647,084	2.5	107,304,259	3.2
May 19	72.9	1.9	165.33	0.1	120.50	2.0	889,140	1.1	648,044	3.0	107,138,733	3.1
Jun 19	72.7	1.9	164.94	-0.5	119.99	1.4	889,140	1.0	646,834	2.8	106,690,070	2.3
Jul 19	72.9	2.4	164.91	-0.6	120.18	1.8	889,140	0.9	647,979	3.3	106,861,105	2.6
Aug 19	72.6	1.5	165.00	-0.6	119.80	0.9	889,140	0.8	645,531	2.3	106,515,678	1.7
Sep 19	72.0	0.3	164.78	-0.7	118.71	-0.4	889,140	0.7	640,557	0.9	105,552,398	0.2

Tab 7 - Day of Week Analysis

Regional Westchester Hotels Selected Properties

Job Number: 1145451 SADIM Staff: LG Created: November 14, 2019

Occupancy (%	%)							
	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Total Month
Oct - 18	62.2	81.0	85.8	83.1	72.9	84.7	95.2	81.0
Nov - 18	53.6	74.6	82.9	84.9	78.9	81.6	84.8	77.5
Dec - 18	52.7	72.1	77.8	72.8	58.3	64.1	74.0	67.3
Jan - 19	45.7	66.7	69.3	70.6	56.5	57.2	65.1	61.9
Feb - 19	41.9	66.4	73.9	72.0	58.2	51.9	62.4	61.0
Mar - 19	50.1	72.4	76.3	72.2	56.2	63.1	71.6	65.6
Apr - 19	58.1	75.3	84.8	77.7	68.4	82.1	88.1	76.6
May - 19	60.1	73.2	84.1	80.8	68.7	72.7	83.7	74.7
Jun - 19	60.3	82.5	91.6	85.4	71.9	77.1	87.1	79.0
Jul - 19	61.4	75.5	79.3	75.9	69.2	72.4	82.0	74.0
Aug - 19	55.1	69.6	75.9	73.4	62.2	73.1	85.5	71.0
Sep - 19	59.6	67.8	81.9	79.6	70.3	77.4	90.1	74.5
Total Year	55.1	73.2	80.3	77.4	66.0	71.5	80.7	72.0

Three Year Occupancy (%)												
	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Total Year				
Oct 16 - Sep 17	52.3	70.4	79.4	77.7	65.0	69.5	79.4	70.5				
Oct 17 - Sep 18	55.4	72.7	80.4	78.8	66.3	70.3	79.4	71.8				
Oct 18 - Sep 19	55.1	73.2	80.3	77.4	66.0	71.5	80.7	72.0				
Total 3 Yr	54.3	72.1	80.0	78.0	65.8	70.5	79.8	71.5				

ADR								
	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Total Month
Oct - 18	160.39	180.18	187.97	185.35	169.33	166.00	173.95	176.28
Nov - 18	150.80	170.91	176.79	173.91	160.38	153.60	152.74	162.86
Dec - 18	142.46	167.12	164.80	165.25	146.14	135.11	138.51	152.04
Jan - 19	145.80	165.75	165.44	163.85	152.89	137.97	140.90	154.88
Feb - 19	149.81	169.56	172.66	170.78	156.70	134.35	137.84	157.68
Mar - 19	155.80	171.71	173.17	174.81	161.18	146.53	147.98	161.15
Apr - 19	154.02	171.69	181.57	170.98	157.65	153.33	155.46	164.84
May - 19	157.23	177.73	184.97	181.61	167.25	159.52	161.83	170.62
Jun - 19	159.64	180.16	189.81	190.22	171.79	161.22	167.18	174.63
Jul - 19	151.30	171.78	175.47	176.15	156.44	148.06	149.56	162.92
Aug - 19	154.71	170.87	173.29	171.45	158.44	152.80	157.17	162.24
Sep - 19	158.87	175.49	184.48	181.14	164.81	161.43	167.72	170.85
Total Year	153.84	172.99	178.06	175.96	160.65	152.15	155.32	164.78

Three Year ADR								
	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Total Year
Oct 16 - Sep 17	154.39	170.47	174.60	173.28	160.13	149.34	154.01	162.86
Oct 17 - Sep 18	157.26	173.86	178.93	176.54	162.51	152.77	155.87	165.96
Oct 18 - Sep 19	153.84	172.99	178.06	175.96	160.65	152.15	155.32	164.78
Total 3 Yr	155.19	172.47	177.21	175.27	161.10	151.44	155.06	164.55

RevPAR								
	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Total Month
Oct - 18	99.75	146.00	161.35	153.99	123.42	140.62	165.68	142.73
Nov - 18	80.85	127.44	146.55	147.68	126.56	125.28	129.53	126.25
Dec - 18	75.02	120.54	128.29	120.28	85.14	86.60	102.53	102.31
Jan - 19	66.64	110.49	114.59	115.72	86.34	78.87	91.71	95.94
Feb - 19	62.76	112.61	127.54	122.88	91.27	69.79	86.07	96.13
Mar - 19	78.07	124.30	132.13	126.26	90.58	92.49	106.02	105.68
Apr - 19	89.54	129.21	153.96	132.89	107.85	125.91	136.95	126.28
May - 19	94.53	130.15	155.58	146.74	114.97	116.04	135.42	127.47
Jun - 19	96.23	148.67	173.89	162.44	123.48	124.30	145.63	138.02
Jul - 19	92.93	129.76	139.22	133.65	108.29	107.18	122.63	120.56
Aug - 19	85.19	118.90	131.48	125.77	98.59	111.76	134.40	115.13
Sep - 19	94.72	119.07	151.13	144.22	115.82	124.95	151.17	127.27
Total Year	84.79	126.66	142.92	136.16	106.07	108.86	125.38	118.71

Three Year RevPA	R							
	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Total Year
Oct 16 - Sep 17	80.72	119.94	138.56	134.70	104.07	103.80	122.26	114.88
Oct 17 - Sep 18	87.11	126.37	143.79	139.15	107.77	107.38	123.70	119.24
Oct 18 - Sep 19	84.79	126.66	142.92	136.16	106.07	108.86	125.38	118.71
Total 3 Yr	84.23	124.35	141.76	136.67	105.97	106.69	123.78	117.62

Tab 8 - Raw Data

Regional Westchester Hotels Selected Properties Job Number: 1145451_SADIM Staff: LG Created: November 14, 2019

Date		pancy	AI	JK	Rev	Par	Suppl	У	Demar	id	Revenue	9		Census & Samp	
	This	0/ Cha	This	0/ Cha	This	0/ Cha	This Voor	0/ Cha	This Voor	0/ Cha	Thio Voor	0/ Cha	Canaua Brana	Canaua Baama	% Rooms ST
lan 12	Year	% Chg	Year	% Chg	Year 92.68	% Chg	This Year	% Chg	This Year	% Chg	This Year 6,550,847	% Chg	Census Props		Participants
Jan 13 Feb 13	58.1 61.9		159.48 163.40		101.14		70,680 63,840		41,076 39,516		6,456,971		10	2,280 2,280	9
Mar 13	63.0		161.24		101.14		70,680		44,563		7,185,421		10	2,280	9
Apr 13	65.9		169.22		111.56		68,400		45,093		7,630,635		10	2,280	9
lay 13	67.8		167.43		113.55		70,680		47,934		8,025,448		10	2,280	9
un 13	75.9		170.08		129.03		68,400		51,891		8,825,853		10	2,280	9
Jul 13	71.4		160.62		114.61		70,711		50,457		8,104,456		10	2,281	9
ug 13	68.4		153.66		105.12		70,711		48,371		7,432,799		10	2,281	9
ep 13	75.0		170.75		128.09		68,460		51,356		8,768,808		10	2,282	
Oct 13	80.4		171.40		137.77		70,742		56,861		9,746,199		10	2,282	
ov 13	69.0		161.63		111.56								10	2,282	
							68,460		47,252		7,637,131				
ec 13	57.2	0.5	160.08	0.4	91.49	0.0	70,742	0.4	40,431	0.0	6,472,249	0.7	10	2,282	
an 14	56.7	-2.5	164.86	3.4	93.46	0.8	70,587	-0.1	40,015	-2.6	6,596,812	0.7	10	2,277	
eb 14	59.7	-3.5	158.37	-3.1	94.57	-6.5	63,756	-0.1	38,072	-3.7	6,029,645	-6.6	10	2,277	
lar 14	61.5	-2.5	158.58	-1.7	97.51	-4.1	70,587	-0.1	43,405	-2.6	6,882,960	-4.2	10	2,277	
pr 14	73.8	12.0	161.60	-4.5	119.29	6.9	68,310	-0.1	50,427	11.8	8,148,931	6.8	10	2,277	
ay 14	73.6	8.5	165.96	-0.9	122.14	7.6	70,587	-0.1	51,948	8.4	8,621,370	7.4	10	2,277	
un 14	76.5	0.8	170.88	0.5	130.65	1.3	68,310	-0.1	52,229	0.7	8,925,041	1.1	10	2,277	
Jul 14	68.8	-3.6	163.00	1.5	112.16	-2.1	70,587	-0.2	48,572	-3.7	7,917,327	-2.3	10	2,277	
ug 14	70.2	2.6	161.61	5.2	113.37	7.9	70,587	-0.2	49,519	2.4	8,002,707	7.7	10	2,277	
ep 14	75.8	1.0	176.32	3.3	133.62	4.3	72,210	5.5	54,722	6.6	9,648,806	10.0	11	2,407	
ct 14	76.5	-4.8	176.67	3.1	135.16	-1.9	74,617	5.5	57,088	0.4	10,085,562	3.5	11	2,407	
ov 14	65.7	-4.9	164.29	1.6	107.86	-3.3	72,210	5.5	47,408	0.3	7,788,742	2.0	11	2,407	
ec 14	56.9	-0.5	157.00	-1.9	89.32	-2.4	74,617	5.5	42,451	5.0	6,665,002	3.0	11	2,407	
an 15	53.0	-6.5	155.31	-5.8	82.29	-12.0	74,617	5.7	39,533	-1.2	6,140,023	-6.9	11	2,407	
eb 15	62.2	4.2	158.29	-0.1	98.47	4.1	67,396	5.7	41,928	10.1	6,636,768	10.1	11	2,407	
ar 15	68.1	10.8	158.90	0.2	108.26	11.0	74,617	5.7	50,839	17.1	8,078,406	17.4	11	2,407	
pr 15	72.7	-1.5	160.23	-0.8	116.51	-2.3	72,210	5.7	52,504	4.1	8,412,957	3.2	11	2,407	
ay 15	77.8	5.7	167.89	1.2	130.57	6.9	74,617	5.7	58,027	11.7	9,742,439	13.0	11	2,407	
un 15	84.4	10.4	178.05	4.2	150.31	15.0	72,210	5.7	60,961	16.7	10,853,917	21.6	11	2,407	
lul 15	75.9	10.3	164.11	0.7	124.57	11.1	74,617	5.7	56,641	16.6	9,295,347	17.4	11	2,407	
ug 15	73.9	5.4	162.57	0.6	120.17	6.0	74,617	5.7	55,154	11.4	8,966,535	12.0	11	2,407	
ep 15	80.0	5.6	171.75	-2.6	137.40	2.8	72,210	0.0	57,770	5.6	9,921,990	2.8	11	2,407	
ct 15	83.9	9.7	168.88	-4.4	141.68	4.8	74,617	0.0	62,599	9.7	10,571,758	4.8	11	2,407	
ov 15	72.1	9.8	162.62	-1.0	117.23	8.7	72,210	0.0	52,053	9.8	8,465,068	8.7	11	2,407	
ec 15	59.9	5.2	154.47	-1.6	92.46	3.5	74,617	0.0	44,661	5.2	6,898,753	3.5	11	2,407	
an 16	56.2	6.0	152.52	-1.8	85.67	4.1	74,617	0.0	41,910	6.0	6,392,105	4.1	11	2,407	
eb 16	59.4	-4.5	152.62	-3.6	90.69	-7.9	67,396	0.0	40,047	-4.5	6,112,074	-7.9	11	2,407	
ar 16	63.6	-6.7	152.02	-4.3	96.75	-10.6	74,617	0.0	47,450	-6.7	7,219,281	-10.6	11	2,407	
pr 16	78.4	7.8	157.44	-1.7	123.38	5.9	72,240	0.0	56,611	7.8	8,912,680	5.9	11	2,408	
ay 16	76.7	-1.4	167.02	-0.5	128.05	-1.9	74,648	0.0	57,232	-1.4	9,559,029	-1.9	11	2,408	
un 16	80.4	-4.7	172.51	-3.1	138.74	-7.7	72,240	0.0	58,098	-4.7	10,022,678	-7.7	11	2,408	
Jul 16	76.4	0.7	159.79	-2.6	122.11	-2.0	74,648	0.0	57,044	0.7	9,115,208	-1.9	11	2,408	
ug 16	74.0	0.1	161.67	-0.6	119.56	-0.5	74,648	0.0	55,208	0.1	8,925,277	-0.5	11	2,408	
ep 16	81.5	1.8	172.85	0.6	140.83	2.5	72,240	0.0	58,858	1.9	10,173,377	2.5	11	2,408	
ct 16	79.0	-5.9	171.68	1.7	135.54	-4.3	74,648	0.0	58,935	-5.9	10,117,922	-4.3	11	2,408	
ov 16	70.7	-2.0	162.20	-0.3	114.63	-2.2	72,240	0.0	51,056	-1.9	8,281,128	-2.2	11	2,408	
ec 16	61.0	2.0	147.27	-4.7	89.88	-2.8	74,648	0.0	45,558	2.0	6,709,333	-2.7	11	2,408	
an 17	58.9	4.9	153.02	0.3	90.18	5.3	74,648	0.0	43,994	5.0	6,731,817	5.3	11	2,408	
eb 17	57.5	-3.2	153.76	0.7	88.47	-2.4	67,424	0.0	38,793	-3.1	5,964,998	-2.4	11	2,408	
ar 17	63.9	0.5	157.24	3.3	100.47	3.8	74,648	0.0	47,697	0.5	7,499,710	3.9	11	2,408	
pr 17	73.1	-6.7	160.62	2.0	117.45	-4.8	72,240	0.0	52,821	-6.7	8,484,291	-4.8	11	2,408	
ay 17	77.0	0.4	170.93	2.3	131.59	2.8	74,648	0.0	57,470	0.4	9,823,201	2.8	11	2,408	
un 17	81.7	1.6	172.62	0.1	141.06	1.7	72,240	0.0	59,035	1.6	10,190,388	1.7	11	2,408	
lul 17	75.6	-1.0	160.54	0.5	121.42	-0.6	74,648	0.0	56,458	-1.0	9,063,689	-0.6	11	2,408	
ug 17	69.9	-5.5	160.97	-0.4	112.51	-5.9	74,648	0.0	52,173	-5.5	8,398,310	-5.9	11	2,408	
ep 17	77.5	-4.8	173.37	0.3	134.41	-4.6	72,240	0.0	56,006	-4.8	9,709,626	-4.6	11	2,408	
ct 17	77.0	-2.5	172.74	0.6	132.93	-1.9	74,648	0.0	57,445	-2.5	9,923,221	-1.9	11	2,408	
ov 17	69.4	-1.8	160.30	-1.2	111.23	-3.0	72,240	0.0	50,129	-1.8	8,035,547	-3.0	11	2,408	
ec 17	65.2	6.9	148.42	8.0	96.84	7.7	74,648	0.0	48,705	6.9	7,228,925	7.7	11	2,408	
an 18	60.9	3.3	155.14	1.4	94.45	4.7	74,648	0.0	45,446	3.3	7,050,485	4.7	11	2,408	
eb 18	58.7	2.1	158.07	2.8	92.84	4.9	67,424	0.0	39,599	2.1	6,259,507	4.9	11	2,408	
ar 18	74.8	17.1	168.87	7.4	126.37	25.8	74,648	0.0	55,862	17.1	9,433,459	25.8	11	2,408	
pr 18	73.0	-0.1	167.15	4.1	122.03	3.9	72,240	0.0	52,742	-0.1	8,815,650	3.9	11	2,408	
ay 18	73.4	-4.6	176.56	3.3	129.66	-1.5	75,516	1.2	55,457	-3.5	9,791,226	-0.3	11	2,436	
un 18	80.7	-1.3	178.65	3.5	144.15	2.2	73,080	1.2	58,968	-0.1	10,534,835	3.4	11	2,436	
ul 18	72.5	-4.2	163.21	1.7	118.29	-2.6	75,516	1.2	54,734	-3.1	8,932,997	-1.4	11	2,436	
ıg 18	74.2	6.2	161.31	0.2	119.71	6.4	75,516	1.2	56,038	7.4	9,039,753	7.6	11	2,436	
ep 18	81.3	4.9	172.76	-0.3	140.45	4.5	73,080	1.2	59,412	6.1	10,264,173	5.7	11	2,436	
ct 18	81.0	5.2	176.28	2.0	142.73	7.4	75,516	1.2	61,142	6.4	10,778,358	8.6	11	2,436	
ov 18	77.5	11.7	162.86	1.6	126.25	13.5	73,080	1.2	56,651	13.0	9,226,002	14.8	11	2,436	
ec 18	67.3	3.1	152.04	2.4	102.31	5.6	75,516	1.2	50,815	4.3	7,726,124	6.9	11	2,436	
an 19	61.9	1.8	154.88	-0.2	95.94	1.6	75,516	1.2	46,779	2.9	7,726,124	2.8	11	2,436	
eb 19	61.0	3.8	157.68	-0.2	96.13	3.5	68,208	1.2	41,584	5.0	6,556,997	4.8	11	2,436	
ar 19	65.6	-12.4	161.15	-4.6	105.68	-16.4	75,516	1.2	49,520	-11.4	7,980,285	-15.4	11	2,436	
pr 19	76.6	4.9	164.84	-1.4	126.28	3.5	73,080	1.2	55,984	6.1	9,228,555	4.7	11	2,436	
ay 19	74.7	1.7	170.62	-3.4	127.47	-1.7	75,516	0.0	56,417	1.7	9,625,700	-1.7	11	2,436	
un 19	79.0	-2.1	174.63	-2.3	138.02	-4.3	73,080	0.0	57,758	-2.1	10,086,172	-4.3	11	2,436	
Jul 19	74.0	2.1	162.92	-0.2	120.56	1.9	75,516	0.0	55,879	2.1	9,104,032	1.9	11	2,436	
ug 19	71.0	-4.4	162.24	0.6	115.13	-3.8	75,516	0.0	53,590	-4.4	8,694,326	-3.8	11	2,436	
Sep 19	74.5	-8.4	170.85	-1.1	127.27	-9.4	73,080	0.0	54,438	-8.4	9,300,893	-9.4	11	2,436	

Tab 9 - Classic

Regional Westchester Hotels Selected Properties Job Number: 1145451_SADIM Staff: LG Created: November 14, 2019

	Occupa	incy	AD	R	Revi	ar	Supply		Demano	1	Revenue	•		Census & Samp	
	This Year	% Chg	This Year	o/ Cha	This Year	% Chg	This Year	% Chg	This Year	% Chg	This Year	% Cha	Concus Brons	Census Rooms	% Rooms ST Participant
Jan 13	58.1	% Cng	159.48	% Chg	92.68	% Cng	70,680	% Cng	41,076	% Cng	6,550,847	% Cng	10	2,280	Participant
Feb 13	61.9		163.40		101.14		63,840		39,516		6,456,971		10	2,280	g
Mar 13	63.0		161.24		101.66		70,680		44,563		7,185,421		10	2,280	9
Apr 13	65.9		169.22		111.56		68,400		45,093		7,630,635		10	2,280	9
May 13	67.8		167.43		113.55		70,680		47,934		8,025,448		10	2,280	9
Jun 13	75.9		170.08		129.03		68,400		51,891		8,825,853		10	2,280	9
Jul 13	71.4 68.4		160.62 153.66		114.61 105.12		70,711 70,711		50,457 48,371		8,104,456 7,432,799		10 10	2,281 2,281	9
Aug 13 Sep 13	75.0		170.75		128.09		68,460		51,356		8,768,808		10	2,282	
Oct 13	80.4		171.40		137.77		70,742		56,861		9,746,199		10	2,282	
Nov 13	69.0		161.63		111.56		68,460		47,252		7,637,131		10	2,282	
Dec 13	57.2		160.08		91.49		70,742		40,431		6,472,249		10	2,282	
YTD 2013 Total 2013			164.14 164.37		110.80 111.51		622,562 832,506		420,257 564,801		68,981,238 92,836,817				
Jan 14	56.7	-2.5	164.86	3.4	93.46	0.8	70,587	-0.1	40,015	-2.6	6,596,812	0.7	10	2,277	
Feb 14	59.7	-3.5	158.37	-3.1	94.57	-6.5	63,756	-0.1	38,072	-3.7	6,029,645	-6.6	10	2,277	
Mar 14	61.5	-2.5	158.58	-1.7	97.51	-4.1	70,587	-0.1	43,405	-2.6	6,882,960	-4.2	10	2,277	
Apr 14	73.8	12.0	161.60	-4.5	119.29	6.9	68,310	-0.1	50,427	11.8	8,148,931	6.8	10	2,277	
May 14	73.6	8.5	165.96	-0.9	122.14	7.6	70,587	-0.1	51,948	8.4	8,621,370	7.4	10	2,277	
Jun 14	76.5	0.8	170.88	0.5	130.65	1.3	68,310	-0.1	52,229	0.7	8,925,041	1.1	10	2,277	
Jul 14	68.8 70.2	-3.6 2.6	163.00 161.61	1.5 5.2	112.16 113.37	-2.1 7.9	70,587	-0.2	48,572	-3.7 2.4	7,917,327 8,002,707	-2.3 7.7	10 10	2,277	
Aug 14 Sep 14	75.8	1.0	176.32	3.3	133.62	4.3	70,587 72,210	-0.2 5.5	49,519 54,722	6.6	9,648,806	10.0	11	2,277 2,407	
Oct 14	76.5	-4.8	176.67	3.1	135.16	-1.9	74,617	5.5	57,088	0.4	10,085,562	3.5	11	2,407	
Nov 14	65.7	-4.9	164.29	1.6	107.86	-3.3	72,210	5.5	47,408	0.3	7,788,742	2.0	11	2,407	
Dec 14	56.9	-0.5	157.00	-1.9	89.32	-2.4	74,617	5.5	42,451	5.0	6,665,002	3.0	11	2,407	
YTD 2014	68.6	1.6	165.01	0.5	113.14	2.1	625,521	0.5	428,909	2.1	70,773,599	2.6			
otal 2014	68.0	0.2	165.52	0.7	112.53	0.9	846,965	1.7	575,856	2.0	95,312,905	2.7			
Jan 15	53.0	-6.5	155.31	-5.8	82.29	-12.0	74,617	5.7	39,533	-1.2	6,140,023	-6.9	11	2,407	
Feb 15	62.2	4.2	158.29	-0.1	98.47	4.1	67,396	5.7	41,928	10.1	6,636,768	10.1	11	2,407	
Mar 15	68.1	10.8	158.90	0.2	108.26	11.0	74,617	5.7	50,839	17.1	8,078,406	17.4	11	2,407	
Apr 15	72.7	-1.5	160.23	-0.8	116.51	-2.3	72,210	5.7	52,504	4.1	8,412,957	3.2	11	2,407	
May 15	77.8	5.7	167.89	1.2	130.57	6.9	74,617	5.7	58,027	11.7	9,742,439	13.0	11	2,407	
Jun 15	84.4 75.9	10.4	178.05 164.11	4.2 0.7	150.31	15.0	72,210 74,617	5.7 5.7	60,961 56,641	16.7 16.6	10,853,917	21.6 17.4	11	2,407 2,407	
Jul 15 Aug 15	75.9 73.9	10.3 5.4	164.11 162.57	0.7	124.57 120.17	11.1 6.0	74,617 74,617	5.7 5.7	56,641 55,154	11.4	9,295,347 8,966,535	12.0	11	2,407	
Sep 15	80.0	5.6	171.75	-2.6	137.40	2.8	72,210	0.0	57,770	5.6	9,921,990	2.8	11	2,407	
Oct 15	83.9	9.7	168.88	-4.4	141.68	4.8	74,617	0.0	62,599	9.7	10,571,758	4.8	11	2,407	
Nov 15	72.1	9.8	162.62	-1.0	117.23	8.7	72,210	0.0	52,053	9.8	8,465,068	8.7	11	2,407	
Dec 15	59.9	5.2	154.47	-1.6	92.46	3.5	74,617	0.0	44,661	5.2	6,898,753	3.5	11	2,407	
YTD 2015	72.0	5.1	164.88	-0.1	118.78	5.0	657,111	5.1	473,357	10.4	78,048,382	10.3			
otal 2015			164.36		118.36	5.2	878,555		632,670	9.9	103,983,961				
Jan 16	56.2	6.0	152.52	-1.8	85.67	4.1	74,617	0.0	41,910	6.0	6,392,105	4.1	11	2,407	
Feb 16	59.4	-4.5	152.62	-3.6	90.69	-7.9	67,396	0.0	40,047	-4.5	6,112,074	-7.9	11	2,407	
Mar 16	63.6	-6.7	152.15	-4.3	96.75	-10.6	74,617	0.0	47,450	-6.7	7,219,281	-10.6	11	2,407	
Apr 16	78.4	7.8	157.44	-1.7	123.38	5.9	72,240	0.0	56,611	7.8	8,912,680	5.9	11	2,408	
May 16	76.7	-1.4	167.02	-0.5	128.05	-1.9	74,648	0.0	57,232	-1.4	9,559,029	-1.9	11	2,408	
Jun 16	80.4	-4.7	172.51 159.79	-3.1	138.74 122.11	-7.7 -2.0	72,240 74,648	0.0	58,098 57,044	-4.7 0.7	10,022,678 9,115,208	-7.7	11	2,408 2,408	
Jul 16 Aug 16	76.4 74.0	0.7	161.67	-2.6 -0.6	119.56	-0.5	74,648	0.0	55,208	0.7	8,925,277	-1.9 -0.5	11	2,408	
Sep 16	81.5	1.8	172.85	0.6	140.83	2.5	72,240	0.0	58,858	1.9	10,173,377	2.5	11	2,408	
Oct 16	79.0	-5.9	171.68	1.7	135.54	-4.3	74,648	0.0	58,935	-5.9	10,117,922	-4.3	11	2,408	
Nov 16	70.7	-2.0	162.20	-0.3	114.63	-2.2	72,240	0.0	51,056	-1.9	8,281,128	-2.2	11	2,408	
Dec 16	61.0	2.0	147.27	-4.7	89.88	-2.8	74,648	0.0	45,558	2.0	6,709,333	-2.7	11	2,408	
					116.28										
otal 2016	71.5	-0.8	161.69	-1.6	115.54	-2.4	878,830	0.0	628,007	-0.7	101,540,092	-2.4	- 44	0.400	
Jan 17	58.9	4.9	153.02	0.3	90.18	5.3	74,648	0.0	43,994	5.0	6,731,817	5.3	11	2,408	
Feb 17 Mar 17	57.5 63.9	-3.2 0.5	153.76 157.24	0.7 3.3	88.47 100.47	-2.4 3.8	67,424 74,648	0.0	38,793 47,697	-3.1 0.5	5,964,998 7,499,710	-2.4 3.9	11	2,408 2,408	
Apr 17	73.1	-6.7	160.62	2.0	117.45	-4.8	72,240	0.0	52,821	-6.7	8,484,291	-4.8	11	2,408	
May 17	77.0	0.4	170.93	2.3	131.59	2.8	74,648	0.0	57,470	0.4	9,823,201	2.8	11	2,408	
Jun 17	81.7	1.6	172.62	0.1	141.06	1.7	72,240	0.0	59,035	1.6	10,190,388	1.7	11	2,408	
Jul 17	75.6	-1.0	160.54	0.5	121.42	-0.6	74,648	0.0	56,458	-1.0	9,063,689	-0.6	11	2,408	
Aug 17	69.9	-5.5	160.97	-0.4	112.51	-5.9	74,648	0.0	52,173	-5.5	8,398,310	-5.9	11	2,408	
Sep 17	77.5	-4.8	173.37	0.3	134.41	-4.6	72,240	0.0	56,006	-4.8	9,709,626	-4.6	11	2,408	
Oct 17	77.0	-2.5	172.74	0.6	132.93	-1.9	74,648	0.0	57,445	-2.5	9,923,221	-1.9	11	2,408	
Nov 17	69.4	-1.8	160.30	-1.2	111.23	-3.0	72,240	0.0	50,129	-1.8	8,035,547	-3.0	11	2,408	
Dec 17	65.2	6.9	148.42	0.8	96.84	7.7	74,648	0.0	48,705	6.9	7,228,925	7.7	11	2,408	
YTD 2017	70.7 70.6	-1.7 -1.2	163.35 162.80	1.0 0.7	115.41 114.97	-0.8 -0.5	657,384 878,920		464,447 620,726		75,866,030 101,053,723	-0.7 -0.5			
otal 2017 Jan 18	70.6 60.9	3.3	162.80 155.14	1.4	114.97 94.45	4.7	878,920 74,648	0.0	620,726 45,446	-1.2 3.3	7,050,485	4.7	11	2,408	
Feb 18	58.7	2.1	158.07	2.8	92.84	4.9	67,424	0.0	39,599	2.1	6,259,507	4.9	11	2,408	
Mar 18	74.8	17.1	168.87	7.4	126.37	25.8	74,648	0.0	55,862	17.1	9,433,459	25.8	11	2,408	
Apr 18	73.0	-0.1	167.15	4.1	122.03	3.9	72,240	0.0	52,742	-0.1	8,815,650	3.9	11	2,408	
May 18	73.4	-4.6	176.56	3.3	129.66	-1.5	75,516	1.2	55,457	-3.5	9,791,226	-0.3	11	2,436	
Jun 18	80.7	-1.3	178.65	3.5	144.15	2.2	73,080	1.2	58,968	-0.1	10,534,835	3.4	11	2,436	
Jul 18	72.5	-4.2	163.21	1.7	118.29	-2.6	75,516	1.2	54,734	-3.1	8,932,997	-1.4	11	2,436	
Aug 18	74.2	6.2	161.31	0.2	119.71	6.4	75,516	1.2	56,038	7.4	9,039,753	7.6	11	2,436	
Sep 18	81.3	4.9	172.76	-0.3	140.45	4.5	73,080	1.2	59,412	6.1	10,264,173	5.7	11	2,436	
Oct 18	81.0	5.2	176.28	2.0	142.73	7.4	75,516	1.2	61,142	6.4	10,778,358	8.6	11	2,436	
Nov 18	77.5	11.7	162.86	1.6	126.25	13.5	73,080	1.2	56,651	13.0	9,226,002	14.8	11	2,436	
Dec 18	67.3	3.1	152.04	2.4	102.31	5.6	75,516	1.2	50,815	4.3	7,726,124	6.9	11	2,436	
YTD 2018	72.3 73.0		167.53 166.73	2.6	121.09	4.9	661,668 885 780	0.7	478,258 646,866	3.0 4.2	80,122,085 107,852,569	5.6 6.7			
otal 2018	73.0 61.0		166.73	2.4	121.76	5.9	885,780 75,516	0.8	646,866 46,770			6.7	11	2.426	
Jan 19 Feb 19	61.9 61.0	1.8 3.8	154.88 157.68	-0.2 -0.2	95.94 96.13	1.6 3.5	75,516 68,208	1.2 1.2	46,779 41,584	2.9 5.0	7,244,954 6,556,997	2.8 4.8	11	2,436 2,436	
Mar 19	65.6	-12.4	161.15	-4.6	105.68	-16.4	75,516	1.2	49,520	-11.4	7,980,285	-15.4	11	2,436	
Apr 19	76.6	4.9	164.84	-1.4	126.28	3.5	73,080	1.2	55,984	6.1	9,228,555	4.7	11	2,436	
May 19	74.7	1.7	170.62	-3.4	127.47	-1.7	75,516	0.0	56,417	1.7	9,625,700	-1.7	11	2,436	
Jun 19	79.0	-2.1	174.63	-2.3	138.02	-4.3	73,080	0.0	57,758	-2.1	10,086,172	-4.3	11	2,436	
Jul 19	74.0	2.1	162.92	-0.2	120.56	1.9	75,516	0.0	55,879	2.1	9,104,032	1.9	11	2,436	
	71.0	-4.4	162.24	0.6	115.13	-3.8	75,516	0.0	53,590	-4.4	8,694,326	-3.8	11	2,436	
Aug 19 Sep 19	74.5	-8.4	170.85	-1.1	127.27	-9.4	73,080	0.0	54,438	-8.4	9,300,893	-9.4	11	2,436	

Tab 10 - Response Report

Regional Westchester Hotels Selected Properties

Job Number: 1145451_SADIM Staff: LG Created: November 14, 2019

												2	2017								20	18								20)19			
						Open	1 _ 1	Chg in																										
STR Code	Name of Establishment	City & State	Zip Code	Class	Aff Date	Date	Rooms	Rms	J I	F M	A I	M J	J	A	8 0	N I	D J	F	M	A M	J	J	\ S	0	N E) J	F	M A	A M	J	J F	A S	1 0 6	N D
7842	La Quinta Inns & Suites White Plains Elmsford	Elmsford, NY	10523	Upper Midscale Class	Mar 2007	Jan 1975	101		•	• •	•	•	•	•	• •	•	•	•	•	• •	•	•	•	•	•	• •	•	•	• •	•	•	•	•	
20514	Doral Arrowwood	Rye Brook, NY	10573	Upper Upscale Class	May 2002	Jun 1983	369	Υ	•	• •	• •	• •	•	•	• •	•	•	•	•	• •	•	•	• •	• •	•	• •	•	•	• •	•	•	•	•	
9852	Hilton Westchester	Rye Brook, NY	10573	Upper Upscale Class	Apr 1973	Apr 1973	445		•	• •	• •	•	•	•	• •	•	•	•	•	• •	•	•	•	•	•	• •	•	•	• •	•	•	•	•	
16187	Courtyard Rye	Rye, NY	10580	Upscale Class	Mar 1988	Mar 1988	145		•	• •	• •	•	•	•	• •	•	•	•	•	• •	•	•	• •	• •	•	• •	•	•	• •	•	•	•	•	
62409	Cambria hotel & suites White Plains Downtown	White Plains, NY	10601	Upscale Class	Sep 2014	Sep 2014	130	Υ	•	• •	• •	•	•	•	• •	•	•	•	•	• •	•	•	•	•	•	• •	•	•	• •	•	•	•	•	
56793	Ritz-Carlton The New York Westchester	White Plains, NY	10601	Luxury Class	Dec 2007	Dec 2007	146		•	• •	• •	• •	•	•	• •	•	•	•	•	• •	•	•	• •	• •	•	• •	•	•	• •	•	•	•	•	
15402	Residence Inn White Plains Westchester County	White Plains, NY	10601	Upscale Class	Jun 1996	Jun 1982	135	Υ	•	• •	• •	•	•	•	• •	•	•	•	•	• •	•	•	•	•	•	• •	•	•	• •	•	•	•	•	
3881	Crowne Plaza White Plains Downtown	White Plains, NY	10601	Upscale Class	Dec 1985	Dec 1985	402		•	• •	• •	• •	•	•	• •	•	•	•	•	• •	•	•	• •	• •	•	• •	•	•	• •	•	•	•	•	
10344	Renaissance Westchester Hotel	West Harrison, NY	10604	Upper Upscale Class	May 1995	Apr 1981	348	Υ	•	• •	•	•	•	•	• •	•	•	•	•	• •	•	•	•	•	•	• •	•	•	• •	•	•	•	•	
38312	Hyatt House White Plains	White Plains, NY	10604	Upscale Class	Jan 2012	Jan 2000	187	Υ	•	• •	•	•	•	•	• •	•	•	•	•	• •	•	•	•	•	•	• •	•	•	• •	•	•	•	•	
46800	Central Motel Court	White Plains, NY	10606	Economy Class	Apr 1977	Apr 1977	28																											
				T	otal Properties	11	2436		0 -	- Month	ılv data	receiv	ed by	STR																				

The STR Trend Report is a publication of STR, Inc. and STR Global, Ltd., and is intended solely for use by paid subscribers. Reproduction or distribution of the STR Trend Report, in whole or part, without written permission is prohibited and subject to legal action. If you have received this report and are NOT a subscriber to the STR Trend Report, in whole or part, without written permission is prohibited and subject to legal action. If you have received this report and are NOT a subscriber to the STR Trend Report, in whole or part, without written permission is prohibited and subject to legal action. If you have received this report and are NOT a subscriber to the STR Trend Report, in whole or part, without written permission is prohibited and subject to legal action. If you have received this report and are NOT a subscriber to the STR Trend Report, in whole or part, without written permission is prohibited and subject to legal action. If you have received this report and are NOT a subscriber to the STR Trend Report, in whole or part, without written permission is prohibited and subject to legal action. If you have received this report and are NOT as under the STR Trend Report, in whole or part, without written permission is prohibited and subject to legal action. If you have received this report and are NOT as under the STR Trend Report and are NOT as under the STR Trend Report and are NOT as under the STR Trend Report and are NOT as under the STR Trend Report and are NOT as under the STR Trend Report and are NOT as under the STR Trend Report and are NOT as under the STR Trend Report and are NOT as under the STR Trend Report and are NOT as under the STR Trend Report and are NOT as under the STR Trend Report and are NOT as under the STR Trend Report and are NOT as under the STR Trend Report and are NOT as under the STR Trend Report and are NOT as under the STR Trend Report and are NOT as under the STR Trend Report and are NOT as under the STR Trend Report and are NOT as under the STR Trend Report and are NOT a

 ⁻ Monthly data received by STR
 - Monthly and daily data received by STR

Blank - No data received by STR

Y - (Chg in Rms) Property has experienced a room addition or drop during the time period of the report.

Tab 11 - Terms and Conditions

Before purchasing this product you agreed to the following terms and conditions.

In consideration of the mutual promises contained herein and for other good and valuable consideration, the receipt and sufficiency of which are hereby acknowledged, STR, Inc. ("STR"), STR Global, Ltd. ("STRG"), and the licensee identified elsewhere in this Agreement ("Licensee") agree as follows:

1. LICENSE

1.1 Definitions.

- (a) "Agreement" means these Standard Terms and Conditions are attached or in which they are incorporated by reference, and, if applicable, any additional terms specifically set out in writing in any Schedule attached hereto.
- (b) "Licensed Materials" means the newsletters, reports, databases or other information resources, and all lodging industry data contained therein, provided to Licensee hereunder.
- 1.2 Grant of License. Subject to the terms and conditions of this Agreement, and except as may be expressly permitted elsewhere in this Agreement, STR hereby grants to Licensee a non-exclusive, non-transferable, indivisible, non-sublicensable license to use, copy, manipulate and extract data from the Licensed Materials for its own INTERNAL business purposes only.
- 1.3 Copies. Except as expressly permitted elsewhere in this Agreement, Licensee may make and maintain no more than two (2) copies of any Licensed Materials.
- 1.4 No Service Bureau Use. Licensee is prohibited from using the Licensed Materials in any way in connection with any service bureau or similar services. "Service bureau" means the processing of input data that is supplied by one or more third parties and the generation of output data (in the form of reports, charts, graphs or other pictorial representations, or the like) that is sold or licensed to any third parties.
- 1.5 No Distribution to Third Parties. Except as expressly permitted in this Agreement, Licensee is prohibited from distributing, republishing or otherwise making the Licensed Materials or any part thereof (including any excerpts of the data and any manipulations of the data) available in any form whatsoever to any third party, other than Licensee's accountants, attorneys, marketing professionals or other professional advisors who are bound by a duty of confidentiality not to disclose such information.
- 1.6 Security. Licensee shall use commercially reasonable efforts to protect against unauthorized access to the Licensed Materials.
- 1.7 Reservation of Rights. Licensee has no rights in connection with the Licensed Materials other than those rights expressly enumerated herein. All rights to the Licensed Materials not expressly enumerated herein are reserved to STR.

2. DISCLAIMERS AND LIMITATIONS OF LIABILITY

- 2.1 Disclaimer of Warranties. The licensed materials are provided to the licensee on an "as is" and "as available" basis. STR makes no representations or warranties of any kind, express or implied, with respect to the licensed materials, the services provided or the results of use thereof. Without limiting the foregoing, STR does not warrant that the licensed materials, the services provided or the use thereof are or will be accurate, error-free or uninterrupted. STR makes no implied warranties, including without limitation, any implied warranty of merchantability, noninfringement or fitness for any particular purpose or arising by usage of trade, course of dealing, course of performance or otherwise.
- 2.2 Disclaimers. STR shall have no liability with respect to its obligations under this agreement or otherwise for consequential, exemplary, special, incidental, or punitive damages even if STR has been advised of the possibility of such damages. Furthermore, STR shall have no liability whatsoever for any claim relating in any way to any decision made or action taken by licensee in reliance upon the licensed materials.
- 2.3 Limitation of Liability. STR's total liability to licensee for any reason and upon any cause of action including without limitation, infringement, breach of contract, negligence, strict liability, misrepresentations, and other torts, shall be limited to all fees paid to STR by the licensee during the twelve month period preceding the date on which such cause of action first arose.

3. MISCELLANEOUS

- 3.1 Liquidated Damages. In the event of a violation of Section 1.5 of these Standard Terms and Conditions, Licensee shall be required to pay STR an amount equal to the sum of (i) the highest aggregate price that STR, in accordance with its then-current published prices, could have charged the unauthorized recipients for the Licensed Materials that are the subject of the violation, and (ii) the full price of the lowest level of republishing rights that Licensee would have been required to purchase from STR in order to have the right to make the unauthorized distribution, regardless of whether Licensee has previously paid for any lower level of republishing rights, and (iii) fifteen percent (15%) of the total of the previous two items. This provision shall survive indefinitely the expiration or termination of this Agreement for any reason.
- **3.2 Obligations on Termination.** Within thirty (30) days of the termination or expiration of this Agreement for any reason, Licensee shall cease all use of the Licensed Materials and shall return or destroy, at STR's option, all copies of the Licensed Materials and all other information relating thereto in Licensee's possession or control as of the such date. This provision shall survive indefinitely the expiration or termination of this Agreement for any reason.
- **3.3 Governing Law; Jurisdiction and Venue.** This Agreement shall be governed by the substantive laws of the State of Tennessee, without regard to its or any other jurisdiction's laws governing conflicts of law. Any claims or actions regarding or arising out of this Agreement shall be brought exclusively in a court of competent jurisdiction located in Nashville, Tennessee, and the parties expressly consent to personal jurisdiction thereof. The parties also expressly waive any objections to venue.
- 3.4 Assignment. Licensee is prohibited from assigning this Agreement or delegating any of its duties under this Agreement without the prior written consent of STR.
- 3.5 Independent Relationship. The relationship between the parties is that of an independent contractor. Nothing in this Agreement shall be deemed to create an employer/employee, principal/agent, partnership or joint venture relationship.
- 3.6 Notices. All notices required or permitted to be given hereunder shall be in writing and shall be deemed given i) when delivered by facsimile transmission or e-mail, at the time of transmission (provided, however, that notice delivered by facsimile transmission shall only be effective if such notice is also delivered by hand or deposited in the United States mail, postage prepaid, registered, certified or express mail or by courier service within two (2) business days after its delivery by facsimile transmission); iii) when delivered by a courier service or by express mail, at the time of receipt; or iv) five (5) business days after being deposited in the United States mail, postage prepaid, registered or certified mail, addressed (in any such case) to the addresses listed on the first page of this Agreement or to such other address as either party may notify the other in writing.
- 3.7 Waiver. No waiver of any breach of this Agreement will be deemed to constitute a waiver of any subsequent breach of the same or any other provision.
- 3.8 Entire Agreement. This Agreement constitutes the entire agreement of the parties with respect to the matters described herein, superseding in all prior proposals, negotiations, understandings and other agreements, oral or written, between the parties.
- 3.9 Amendment. This Agreement may be amended only by the written agreement of both parties.
- 3.10 Recovery of Litigation Costs. If any legal action or other proceeding is brought for the enforcement of this Agreement, or because of an alleged dispute, breach, default or misrepresentation in connection with any of the provisions of this Agreement, the successful or prevailing party or parties shall be entitled to recover reasonable attorneys' fees and other costs incurred in that action or proceeding, in addition to any other relief to which it or they may be entitled.
- 3.11 Injunctive Relief. The parties agree that, in addition to any other rights or remedies which the other or STR may have, any party alleging breach or threatened breach of this Agreement will be entitled to such equitable and injunctive relief as may be available from any court of competent jurisdiction to restrain the other from breaching or threatening to breach any of the provisions of this Section, without posting bond or other surety.
- 3.12 Notice of Unauthorized Access. Licensee shall notify STR immediately upon Licensee's becoming aware of any facts indicating that a third party may have obtained or may be about to obtain unauthorized access to the Licensed Materials, and shall fully cooperate with STR in its efforts to mitigate the damages caused by any such breach or potential breach.
- 3.13 Conflicting Provisions. In the event that any provision of these Standard Terms and Conditions directly conflicts with any other provision of the Agreement, the conflicting terms of such other provision shall control.
- 3.14 Remedies. In addition to any other rights or remedies that STR may have, in the event of any termination by STR on account of a breach by Licensee, STR may, without refund, immediately terminate and discontinue any right of Licensee to receive additional Licensed Materials from STR.

How can we assist you?

Glossary:

For all STR definitions, please visit www.str.com/resources/glossary

Frequently Asked Questions (FAQ):

For all STR FAQs, please click here or visit www.str.com/resources/faq

Please visit our website at www.str.com, or if you need additional assistance please reach out to our Customer Support team.

North America:

735 East Main Street, Hendersonville, TN 37075 USA

T: +1 615 824 8664 trends@str.com International:

Blue Fin Building, 110 Southwark Street, London SE1 0TA

T: +44 (0)20 7922 1930 hoteltrends@str.com

Asia Pacific:

Thong Teck Building, 15 Scotts Road #08-12, 228 218 Singapore

T: +64 6800 7850 hoteltrends@str.com

For the latest in industry news, visit <u>HotelNewsNow.com</u>.

To learn more about the Hotel Data Conference, visit HotelDataConference.com.

Appendix I-3 Westchester STR Hotel Report

Trend # 1139134_SADIM / Created October 25, 2019

Trend Report - Westchester Hotels

January 2013 to September 2019 Currency: USD - US Dollar

735 East Main Street, Hendersonville, TN 37075
T: +1 615 824 8664
trends@str.com www.str.com

Blue Fin Building, 110 Southwark Street, London SE1 OTA
T: +44 (0)20 7922 1930
hoteltrends@str.com www.str.com

The STR Trend Report is a publication of STR, Inc. and STR Global, Ltd., and is intended solely for use by paid subscribers. Reproduction or distribution of the STR Trend Report, in whole or part, without written permission is prohibited and subject to legal action. If you have received this report and are NOT a subscriber to the STR Trend report, please contact us immediately. Source: 2019 STR, Inc. / STR Global, Ltd. trading as "STR".

Tab 2 - Data by Measure

Westchester Hotels

Job Number:	: 1139134_SADIM	Staff: KK Cre	eated: October 25,	2019										
Occupancy	y (%)													
	January	February	March	April	May	June	July	August	September	October	November	December	Total Year	Sep YTI
2013	54.0	60.5	54.3	63.2	65.2	72.3	67.6	64.2	70.6	77.3	65.2	51.6	63.8	63.5
2014	53.2	58.8	59.4	69.3	75.3	80.1	73.2	71.9	77.1	78.0	63.6	55.3	68.0	68.7
2015	50.7	59.9	66.2	70.5	75.0	82.6	73.3	72.3	75.5	81.4	68.4	55.8	69.3	69.6
2016	56.5	57.3	59.5	73.0	71.9	77.7	71.2	69.0	79.2	71.1	62.4	56.0	67.1	68.4
2017	54.7	52.6	59.6	69.4	75.1	81.2	73.0	66.8	75.7	74.3	66.5	62.1	67.7	67.7
2018	53.7	51.6	71.7	70.5	69.5	75.1	68.2	65.7	77.3	77.3	74.4	62.6	68.3	67.2
2019	53.7	54.3	55.2	71.8	67.9	72.0	65.6	62.0	62.8					62.8
Avg	53.8	56.4	60.8	69.7	71.4	77.3	70.3	67.4	74.0	76.6	66.8	57.3	67.4	66.8
ADR (\$)														
	January	February	March	April	May	June	July	August	September	October	November	December	Total Year	Sep YTI
2013	150.64	161.70	150.53	160.64	152.49	156.98	147.54	145.90	165.75	166.82	153.88	148.01	155.45	154.74
2014	163.73	151.37	156.71	153.54	159.16	159.89	151.03	152.70	169.20	169.36	156.98	151.23	158.25	157.60

ADR (\$)														
	January	February	March	April	May	June	July	August	September	October	November	December	Total Year	Sep YTD
2013	150.64	161.70	150.53	160.64	152.49	156.98	147.54	145.90	165.75	166.82	153.88	148.01	155.45	154.74
2014	163.73	151.37	156.71	153.54	159.16	159.89	151.03	152.70	169.20	169.36	156.98	151.23	158.25	157.60
2015	150.94	153.63	155.67	149.64	157.65	170.94	159.14	156.34	156.40	154.47	147.77	140.90	155.08	157.24
2016	138.82	137.72	142.75	147.63	153.85	163.53	154.30	152.57	162.72	157.10	147.87	133.51	150.43	151.47
2017	143.65	141.89	149.44	147.66	162.27	160.83	148.58	148.36	159.19	161.33	145.94	135.69	151.26	152.20
2018	145.34	144.98	154.23	152.14	162.98	160.98	146.23	143.95	155.43	164.91	143.47	134.49	151.42	152.43
2019	141.08	148.18	145.36	150.32	156.45	158.21	146.78	146.78	155.74					150.26
Avg	147.60	148.79	150.88	151.50	157.94	161.76	150.60	149.67	160.69	162.36	149.12	140.29	153.64	153.74

RevPAR (\$)														
	January	February	March	April	May	June	July	August	September	October	November	December	Total Year	Sep YTD
2013	81.30	97.89	81.77	101.50	99.47	113.50	99.70	93.68	116.99	129.00	100.35	76.32	99.20	98.29
2014	87.15	88.96	93.08	106.48	119.90	128.03	110.54	109.86	130.40	132.03	99.92	83.63	107.55	108.33
2015	76.54	91.96	103.00	105.55	118.20	141.12	116.58	113.05	118.01	125.80	101.07	78.68	107.49	109.39
2016	78.43	78.87	84.95	107.84	110.67	127.11	109.80	105.28	128.96	111.68	92.31	74.74	100.92	103.62
2017	78.58	74.70	89.14	102.46	121.91	130.65	108.49	99.16	120.45	119.92	97.08	84.32	102.35	102.98
2018	77.98	74.78	110.59	107.26	113.31	120.92	99.80	94.50	120.22	127.55	106.71	84.15	103.36	102.41
2019	75.74	80.40	80.30	107.95	106.26	113.96	96.33	90.96	97.79					94.43
Avg	79.37	83.93	91.78	105.58	112.79	124.98	105.83	100.86	118.90	124.35	99.61	80.32	103.48	102.74

Supply														
	January	February	March	April	May	June	July	August	September	October	November	December	Total Year	Sep YTD
2013	31,620	28,560	31,620	30,600	31,620	30,600	31,651	31,651	30,630	31,651	30,630	31,651	372,484	278,552
2014	31,496	28,448	31,496	30,480	31,496	30,480	31,496	31,496	30,480	31,496	30,480	31,496	370,840	277,368
2015	31,496	28,448	31,496	30,480	31,496	30,480	31,496	31,496	30,480	31,496	30,480	31,496	370,840	277,368
2016	31,496	28,448	31,496	30,480	31,496	30,480	31,496	31,496	30,480	31,496	30,480	31,496	370,840	277,368
2017	31,496	28,448	31,496	30,480	31,496	30,480	31,496	31,496	30,480	31,496	30,480	31,496	370,840	277,368
2018	31,496	28,448	31,496	30,480	32,364	31,320	32,364	32,364	31,320	32,364	31,320	32,364	377,700	281,652
2019	32,364	29,232	32,364	31,320	32,364	31,320	32,364	32,364	31,320					285,012
Avg	31,638	28,576	31,638	30,617	31,762	30,737	31,766	31,766	30,741	31,667	30,645	31,667	372,257	279,241

Demand														
	January	February	March	April	May	June	July	August	September	October	November	December	Total Year	Sep YTD
2013	17,065	17,289	17,176	19,335	20,625	22,124	21,388	20,323	21,618	24,476	19,974	16,320	237,713	176,943
2014	16,764	16,720	18,706	21,137	23,726	24,407	23,052	22,661	23,491	24,554	19,400	17,417	252,035	190,664
2015	15,970	17,029	20,838	21,499	23,615	25,164	23,073	22,776	22,998	25,651	20,846	17,586	257,045	192,962
2016	17,794	16,291	18,743	22,264	22,657	23,691	22,413	21,734	24,155	22,390	19,027	17,633	248,792	189,742
2017	17,230	14,977	18,786	21,149	23,662	24,759	22,999	21,051	23,063	23,411	20,276	19,571	250,934	187,676
2018	16,898	14,673	22,583	21,489	22,501	23,527	22,088	21,247	24,226	25,033	23,295	20,250	257,810	189,232
2019	17,375	15,862	17,878	22,493	21,981	22,560	21,240	20,056	19,667					179,112
Avg	17,014	16,120	19,244	21,338	22,681	23,747	22,322	21,407	22,745	24,253	20,470	18,130	250,722	186,619

Revenue	(\$)													
	January	February	March	April	May	June	July	August	September	October	November	December	Total Year	Sep YTD
2013	2,570,590	2,795,676	2,585,515	3,106,033	3,145,103	3,473,053	3,155,530	2,965,143	3,583,265	4,082,974	3,073,627	2,415,596	36,952,105	27,379,908
2014	2,744,788	2,530,851	2,931,493	3,245,365	3,776,246	3,902,364	3,481,602	3,460,247	3,974,741	4,158,385	3,045,443	2,633,974	39,885,499	30,047,697
2015	2,410,565	2,616,158	3,243,947	3,217,125	3,722,809	4,301,449	3,671,749	3,560,780	3,596,960	3,962,247	3,080,496	2,477,953	39,862,238	30,341,542
2016	2,470,177	2,243,677	2,675,470	3,286,811	3,485,819	3,874,276	3,458,317	3,315,922	3,930,621	3,517,516	2,813,610	2,354,106	37,426,322	28,741,090
2017	2,475,091	2,125,125	2,807,425	3,122,916	3,839,599	3,982,099	3,417,094	3,123,073	3,671,399	3,776,858	2,959,143	2,655,685	37,955,507	28,563,821
2018	2,455,998	2,127,308	3,483,047	3,269,432	3,667,218	3,787,356	3,230,020	3,058,538	3,765,382	4,128,085	3,342,230	2,723,426	39,038,040	28,844,299
2019	2,451,255	2,350,355	2,598,706	3,381,067	3,438,975	3,569,308	3,117,661	2,943,760	3,062,884					26,913,971
Avg	2,511,209	2,398,450	2,903,658	3,232,678	3,582,253	3,841,415	3,361,710	3,203,923	3,655,036	3,937,678	3,052,425	2,543,457	38,519,952	28,690,333

Tab 3 - Percent Change from Previous Year - Detail by Measure

Westchester Hotels

Job Number: 1139134_SADIM Staff: KK Created: October 25, 2019

Occupancy	,													
	January	February	March	April	May	June	July	August	September	October	November	December	Total Year	Sep YTD
2014	-1.4	-2.9	9.3	9.8	15.5	10.8	8.3	12.1	9.2	0.8	-2.4	7.2	6.5	8.2
2015	-4.7	1.8	11.4	1.7	-0.5	3.1	0.1	0.5	-2.1	4.5	7.5	1.0	2.0	1.2
2016	11.4	-4.3	-10.1	3.6	-4.1	-5.9	-2.9	-4.6	5.0	-12.7	-8.7	0.3	-3.2	-1.7
2017	-3.2	-8.1	0.2	-5.0	4.4	4.5	2.6	-3.1	-4.5	4.6	6.6	11.0	0.9	-1.1
2018	-1.9	-2.0	20.2	1.6	- 7.5	- 7.5	-6.5	-1.8	2.2	4.1	11.8	0.7	0.9	-0.7
2019	0.1	5.2	-23.0	1.9	-2.3	-4.1	-3.8	-5.6	-18.8					-6.5
Avg	0.0	-1.7	1.4	2.2	0.9	0.1	-0.4	-0.4	- 1.5	0.2	2.9	4.0	1.4	-0.1

ADR														
	January	February	March	April	May	June	July	August	September	October	November	December	Total Year	Sep YTD
2014	8.7	-6.4	4.1	-4.4	4.4	1.9	2.4	4.7	2.1	1.5	2.0	2.2	1.8	1.8
2015	-7.8	1.5	-0.7	- 2.5	-1.0	6.9	5.4	2.4	- 7.6	-8.8	-5.9	-6.8	- 2.0	-0.2
2016	- 8.0	-10.4	-8.3	-1.3	-2.4	-4.3	-3.0	-2.4	4.0	1.7	0.1	-5.3	- 3.0	-3.7
2017	3.5	3.0	4.7	0.0	5.5	-1.7	-3.7	-2.8	-2.2	2.7	-1.3	1.6	0.5	0.5
2018	1.2	2.2	3.2	3.0	0.4	0.1	-1.6	-3.0	-2.4	2.2	-1.7	-0.9	0.1	0.2
2019	- 2.9	2.2	-5.8	-1.2	-4.0	-1.7	0.4	2.0	0.2					-1.4
Avg	-0.9	-1.3	-0.5	-1.1	0.5	0.2	-0.0	0.1	-1.0	-0.1	-1.4	-1.8	-0.5	-0.5

RevPAR														
	January	February	March	April	May	June	July	August	September	October	November	December	Total Year	Sep YTD
2014	7.2	-9.1	13.8	4.9	20.5	12.8	10.9	17.3	11.5	2.3	-0.4	9.6	8.4	10.2
2015	-12.2	3.4	10.7	-0.9	-1.4	10.2	5.5	2.9	- 9.5	-4.7	1.2	-5.9	-0.1	1.0
2016	2.5	-14.2	-17.5	2.2	-6.4	-9.9	-5.8	-6.9	9.3	-11.2	-8.7	-5.0	-6.1	-5.3
2017	0.2	-5.3	4.9	-5.0	10.1	2.8	-1.2	-5.8	-6.6	7.4	5.2	12.8	1.4	-0.6
2018	-0.8	0.1	24.1	4.7	-7.1	-7.4	-8.0	-4.7	-0.2	6.4	9.9	-0.2	1.0	-0.6
2019	-2.9	7.5	-27.4	0.6	-6.2	-5.8	-3.5	-3.8	-18.7					-7.8
Avg	-1.0	-2.9	1.4	1.1	1.6	0.4	-0.4	-0.2	-2.4	0.0	1.4	2.3	0.9	-0.5

Supply														
	January	February	March	April	May	June	July	August	September	October	November	December	Total Year	Sep YTD
2014	-0.4	-0.4	-0.4	-0.4	-0.4	-0.4	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.4	-0.4
2015	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2016	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2017	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2018	0.0	0.0	0.0	0.0	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	1.8	1.5
2019	2.8	2.8	2.8	2.8	0.0	0.0	0.0	0.0	0.0					1.2
Avg	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.5	0.5	0.3	0.4

Demand														
	January	February	March	April	May	June	July	August	September	October	November	December	Total Year	Sep YTD
2014	-1.8	-3.3	8.9	9.3	15.0	10.3	7.8	11.5	8.7	0.3	-2.9	6.7	6.0	7.8
2015	-4.7	1.8	11.4	1.7	-0.5	3.1	0.1	0.5	-2.1	4.5	7.5	1.0	2.0	1.2
2016	11.4	-4.3	-10.1	3.6	-4.1	- 5.9	- 2.9	-4.6	5.0	-12.7	-8.7	0.3	-3.2	-1.7
2017	-3.2	-8.1	0.2	- 5.0	4.4	4.5	2.6	-3.1	-4.5	4.6	6.6	11.0	0.9	-1.1
2018	-1.9	-2.0	20.2	1.6	-4.9	- 5.0	-4.0	0.9	5.0	6.9	14.9	3.5	2.7	0.8
2019	2.8	8.1	-20.8	4.7	-2.3	-4.1	-3.8	-5.6	-18.8					-5.3
Avg	0.4	-1.3	1.6	2.6	1.3	0.5	-0.0	-0.1	-1.1	0.7	3.5	4.5	1.7	0.3

Revenue														
	January	February	March	April	May	June	July	August	September	October	November	December	Total Year	Sep YTD
2014	6.8	-9.5	13.4	4.5	20.1	12.4	10.3	16.7	10.9	1.8	-0.9	9.0	7.9	9.7
2015	-12.2	3.4	10.7	-0.9	-1.4	10.2	5.5	2.9	- 9.5	-4.7	1.2	-5.9	-0.1	1.0
2016	2.5	-14.2	-17.5	2.2	-6.4	-9.9	-5.8	-6.9	9.3	-11.2	-8.7	-5.0	-6.1	-5.3
2017	0.2	-5.3	4.9	-5.0	10.1	2.8	-1.2	-5.8	-6.6	7.4	5.2	12.8	1.4	-0.6
2018	-0.8	0.1	24.1	4.7	-4.5	-4.9	-5.5	-2.1	2.6	9.3	12.9	2.6	2.9	1.0
2019	-0.2	10.5	-25.4	3.4	-6.2	-5.8	-3.5	-3.8	-18.7					-6.7
Avg	-0.6	-2.5	1.7	1.5	2.0	8.0	-0.0	0.2	- 2.0	0.5	1.9	2.7	1.2	-0.1

Tab 4 - Percent Change from Previous Year - Detail by Year

Westchester Hotels

Job Number: 1139134_SADIM Staff: KK Created: October 25, 2019

	Jan 14	Feb 14	Mar 14	Apr 14	May 14	Jun 14	Jul 14	Aug 14	Sep 14	Oct 14	Nov 14	Dec 14	Total Year	Sep YTD
Occ	-1.4	-2.9	9.3	9.8	15.5	10.8	8.3	12.1	9.2	0.8	-2.4	7.2	6.5	8.2
ADR	8.7	-6.4	4.1	-4.4	4.4	1.9	2.4	4.7	2.1	1.5	2.0	2.2	1.8	1.8
RevPAR	7.2	-9.1	13.8	4.9	20.5	12.8	10.9	17.3	11.5	2.3	-0.4	9.6	8.4	10.2
Supply	-0.4	-0.4	-0.4	-0.4	-0.4	-0.4	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.4	-0.4
Demand	-1.8	-3.3	8.9	9.3	15.0	10.3	7.8	11.5	8.7	0.3	- 2.9	6.7	6.0	7.8
Revenue	6.8	-9.5	13.4	4.5	20.1	12.4	10.3	16.7	10.9	1.8	-0.9	9.0	7.9	9.7

	Jan 15	Feb 15	Mar 15	Apr 15	May 15	Jun 15	Jul 15	Aug 15	Sep 15	Oct 15	Nov 15	Dec 15	Total Year	Sep YTD
Осс	-4.7	1.8	11.4	1.7	-0.5	3.1	0.1	0.5	-2.1	4.5	7.5	1.0	2.0	1.2
ADR	-7.8	1.5	-0.7	-2.5	-1.0	6.9	5.4	2.4	-7.6	-8.8	-5.9	-6.8	-2.0	-0.2
RevPAR	-12.2	3.4	10.7	-0.9	-1.4	10.2	5.5	2.9	-9.5	-4.7	1.2	-5.9	-0.1	1.0
Supply	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Demand	-4.7	1.8	11.4	1.7	-0.5	3.1	0.1	0.5	-2.1	4.5	7.5	1.0	2.0	1.2
Revenue	-12.2	3.4	10.7	-0.9	-1.4	10.2	5.5	2.9	-9.5	-4.7	1.2	-5.9	-0.1	1.0

	Jan 16	Feb 16	Mar 16	Apr 16	May 16	Jun 16	Jul 16	Aug 16	Sep 16	Oct 16	Nov 16	Dec 16	Total Year	Sep YTD
Осс	11.4	-4.3	-10.1	3.6	-4.1	-5.9	-2.9	-4.6	5.0	-12.7	-8.7	0.3	-3.2	-1.7
ADR	-8.0	-10.4	-8.3	-1.3	-2.4	-4.3	-3.0	-2.4	4.0	1.7	0.1	-5.3	-3.0	-3.7
RevPAR	2.5	-14.2	-17.5	2.2	-6.4	-9.9	-5.8	-6.9	9.3	-11.2	-8.7	-5.0	-6.1	-5.3
Supply	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Demand	11.4	-4.3	-10.1	3.6	-4.1	-5.9	-2.9	-4.6	5.0	-12.7	-8.7	0.3	-3.2	-1.7
Revenue	2.5	-14.2	-17.5	2.2	-6.4	-9.9	-5.8	-6.9	9.3	-11.2	-8.7	-5.0	-6.1	-5.3

	Jan 17	Feb 17	Mar 17	Apr 17	May 17	Jun 17	Jul 17	Aug 17	Sep 17	Oct 17	Nov 17	Dec 17	Total Year	Sep YTD
Осс	-3.2	-8.1	0.2	-5.0	4.4	4.5	2.6	-3.1	-4.5	4.6	6.6	11.0	0.9	-1.1
ADR	3.5	3.0	4.7	0.0	5.5	-1.7	-3.7	-2.8	-2.2	2.7	-1.3	1.6	0.5	0.5
RevPAR	0.2	-5.3	4.9	- 5.0	10.1	2.8	-1.2	- 5.8	-6.6	7.4	5.2	12.8	1.4	-0.6
Supply	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Demand	-3.2	-8.1	0.2	- 5.0	4.4	4.5	2.6	-3.1	-4.5	4.6	6.6	11.0	0.9	-1.1
Revenue	0.2	-5.3	4.9	-5.0	10.1	2.8	-1.2	-5.8	-6.6	7.4	5.2	12.8	1.4	-0.6

	Jan 18	Feb 18	Mar 18	Apr 18	May 18	Jun 18	Jul 18	Aug 18	Sep 18	Oct 18	Nov 18	Dec 18	Total Year	Sep YTD
Осс	-1.9	-2.0	20.2	1.6	-7.5	-7.5	-6.5	-1.8	2.2	4.1	11.8	0.7	0.9	-0.7
ADR	1.2	2.2	3.2	3.0	0.4	0.1	-1.6	-3.0	-2.4	2.2	-1.7	-0.9	0.1	0.2
RevPAR	-0.8	0.1	24.1	4.7	-7.1	-7.4	-8.0	-4.7	-0.2	6.4	9.9	-0.2	1.0	-0.6
Supply	0.0	0.0	0.0	0.0	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	1.8	1.5
Demand	-1.9	-2.0	20.2	1.6	-4.9	-5.0	-4.0	0.9	5.0	6.9	14.9	3.5	2.7	8.0
Revenue	-0.8	0.1	24.1	4.7	-4.5	-4.9	-5.5	- 2.1	2.6	9.3	12.9	2.6	2.9	1.0

	Jan 19	Feb 19	Mar 19	Apr 19	May 19	Jun 19	Jul 19	Aug 19	Sep 19	Oct 19	Nov 19	Dec 19	Total Year	Sep YTD
Осс	0.1	5.2	-23.0	1.9	-2.3	-4.1	-3.8	-5.6	-18.8					-6.5
ADR	- 2.9	2.2	-5.8	-1.2	-4.0	-1.7	0.4	2.0	0.2					-1.4
RevPAR	- 2.9	7.5	-27.4	0.6	-6.2	-5.8	-3.5	-3.8	-18.7					-7.8
Supply	2.8	2.8	2.8	2.8	0.0	0.0	0.0	0.0	0.0					1.2
Demand	2.8	8.1	- 20.8	4.7	-2.3	-4.1	-3.8	-5.6	-18.8					-5.3
Revenue	-0.2	10.5	-25.4	3.4	-6.2	-5.8	-3.5	-3.8	-18.7					-6.7

Tab 5 - Twelve Month Moving Average

Westchester Hotels

Job Number: 1139134_SADIM Staff: KK Created: October 25, 2019

Occupancy (%)												
	January	February	March	April	May	June	July	August	September	October	November	December
2014	63.8	63.6	64.1	64.6	65.4	66.1	66.5	67.2	67.7	67.8	67.6	68.0
2015	67.7	67.8	68.4	68.5	68.5	68.7	68.7	68.7	68.6	68.9	69.3	69.3
2016	69.8	69.6	69.0	69.2	69.0	68.6	68.4	68.1	68.4	67.6	67.1	67.1
2017	66.9	66.6	66.6	66.3	66.6	66.9	67.0	66.8	66.5	66.8	67.1	67.7
2018	67.6	67.5	68.5	68.6	68.1	67.7	67.3	67.1	67.3	67.6	68.2	68.3
2019	68.2	68.4	67.0	67.1	67.0	66.7	66.5	66.2	65.0			

ADR (\$)												
	January	February	March	April	May	June	July	August	September	October	November	December
2014	156.38	155.64	156.09	155.50	156.11	156.41	156.67	157.19	157.58	157.83	158.08	158.25
2015	157.42	157.57	157.48	157.14	157.00	158.10	158.83	159.16	157.98	156.53	155.79	155.08
2016	154.22	153.21	152.25	152.07	151.71	150.91	150.46	150.11	150.74	150.93	150.96	150.43
2017	150.79	151.12	151.62	151.65	152.46	152.24	151.71	151.35	150.97	151.40	151.22	151.26
2018	151.38	151.57	151.97	152.34	152.36	152.33	152.14	151.76	151.44	151.85	151.56	151.42
2019	151.12	151.29	150.61	150.46	149.87	149.58	149.64	149.89	149.82			

RevPAR (\$)												
	January	February	March	April	May	June	July	August	September	October	November	December
2014	99.71	99.02	99.99	100.39	102.12	103.31	104.23	105.61	106.71	106.95	106.92	107.55
2015	106.65	106.88	107.73	107.65	107.51	108.58	109.09	109.37	108.35	107.82	107.91	107.49
2016	107.65	106.65	105.12	105.30	104.66	103.51	102.94	102.28	103.18	101.98	101.26	100.92
2017	100.94	100.62	100.97	100.53	101.48	101.78	101.66	101.14	100.45	101.14	101.54	102.35
2018	102.30	102.30	104.13	104.52	103.81	103.06	102.32	101.91	101.93	102.63	103.42	103.36
2019	103.11	103.48	100.92	100.99	100.39	99.82	99.52	99.22	97.38			

Supply												
	January	February	March	April	May	June	July	August	September	October	November	December
2014	372,360	372,248	372,124	372,004	371,880	371,760	371,605	371,450	371,300	371,145	370,995	370,840
2015	370,840	370,840	370,840	370,840	370,840	370,840	370,840	370,840	370,840	370,840	370,840	370,840
2016	370,840	370,840	370,840	370,840	370,840	370,840	370,840	370,840	370,840	370,840	370,840	370,840
2017	370,840	370,840	370,840	370,840	370,840	370,840	370,840	370,840	370,840	370,840	370,840	370,840
2018	370,840	370,840	370,840	370,840	371,708	372,548	373,416	374,284	375,124	375,992	376,832	377,700
2019	378,568	379,352	380,220	381,060	381,060	381,060	381,060	381,060	381,060			

Demand												
	January	February	March	April	May	June	July	August	September	October	November	December
2014	237,412	236,843	238,373	240,175	243,276	245,559	247,223	249,561	251,434	251,512	250,938	252,035
2015	251,241	251,550	253,682	254,044	253,933	254,690	254,711	254,826	254,333	255,430	256,876	257,045
2016	258,869	258,131	256,036	256,801	255,843	254,370	253,710	252,668	253,825	250,564	248,745	248,792
2017	248,228	246,914	246,957	245,842	246,847	247,915	248,501	247,818	246,726	247,747	248,996	250,934
2018	250,602	250,298	254,095	254,435	253,274	252,042	251,131	251,327	252,490	254,112	257,131	257,810
2019	258,287	259,476	254,771	255,775	255,255	254,288	253,440	252,249	247,690			

Revenue (\$)												
	January	February	March	April	May	June	July	August	September	October	November	December
2014	37,126,303	36,861,478	37,207,456	37,346,788	37,977,931	38,407,242	38,733,314	39,228,418	39,619,894	39,695,305	39,667,121	39,885,499
2015	39,551,276	39,636,583	39,949,037	39,920,797	39,867,360	40,266,445	40,456,592	40,557,125	40,179,344	39,983,206	40,018,259	39,862,238
2016	39,921,850	39,549,369	38,980,892	39,050,578	38,813,588	38,386,415	38,172,983	37,928,125	38,261,786	37,817,055	37,550,169	37,426,322
2017	37,431,236	37,312,684	37,444,639	37,280,744	37,634,524	37,742,347	37,701,124	37,508,275	37,249,053	37,508,395	37,653,928	37,955,507
2018	37,936,414	37,938,597	38,614,219	38,760,735	38,588,354	38,393,611	38,206,537	38,142,002	38,235,985	38,587,212	38,970,299	39,038,040
2019	39,033,297	39,256,344	38,372,003	38,483,638	38,255,395	38,037,347	37,924,988	37,810,210	37,107,712			

High value is boxed.

Low value is boxed and italicized.

Tab 6 - Twelve Month Moving Average with Percent Change

Westchester Hotels
Job Number: 1139134_SADIM Staff: KK Created: October 25, 2019

Date	Occup	ancy	AD	R	Revi	Par	Supply		Demand	b	Revenu	е
	This Year	% Chg	This Year	% Chg	This Year	% Chg	This Year	% Chg	This Year	% Chg	This Year	% Chg
Jan 14	63.8		156.38		99.71		372,360		237,412		37,126,303	
Feb 14	63.6		155.64		99.02		372,248		236,843		36,861,478	
Mar 14	64.1		156.09		99.99		372,124		238,373		37,207,456	
\pr 14	64.6		155.50		100.39		372,004		240,175		37,346,788	
lay 14	65.4		156.11		102.12		371,880		243,276		37,977,931	
lun 14 Jul 14	66.1 66.5		156.41 156.67		103.31 104.23		371,760 371,605		245,559 247,223		38,407,242 38,733,314	
ug 14	67.2		157.19		104.23		371,450		249,561		39,228,418	
Sep 14	67.7		157.58		106.71		371,300		251,434		39,619,894	
Oct 14	67.8		157.83		106.95		371,145		251,512		39,695,305	
Nov 14	67.6		158.08		106.92		370,995		250,938		39,667,121	
Dec 14	68.0	6.5	158.25	1.8	107.55	8.4	370,840	-0.4	252,035	6.0	39,885,499	7.9
Jan 15	67.7	6.3	157.42	0.7	106.65	7.0	370,840	-0.4	251,241	5.8	39,551,276	6.5
eb 15	67.8	6.6	157.57	1.2	106.88	7.9	370,840	-0.4	251,550	6.2	39,636,583	7.
Mar 15	68.4	6.8	157.48	0.9	107.73	7.7	370,840	-0.3	253,682	6.4	39,949,037	7.4
Apr 15	68.5	6.1	157.14	1.1	107.65	7.2	370,840	-0.3	254,044	5.8	39,920,797	6.9
May 15	68.5	4.7	157.00	0.6	107.51	5.3	370,840	-0.3	253,933	4.4	39,867,360	5.0
lun 15	68.7	4.0	158.10	1.1	108.58	5.1	370,840	-0.2	254,690	3.7	40,266,445	4.8
Jul 15	68.7	3.2	158.83	1.4	109.09	4.7	370,840	-0.2	254,711	3.0	40,456,592	4.4 3.4
ug 15	68.7 68.6	2.3 1.3	159.16 157.98	1.3	109.37 108.35	3.6 1.5	370,840 370,840	-0.2 -0.1	254,826 254,333	2.1 1.2	40,557,125	1.
ep 15 Oct 15	68.9	1.6	157.98	0.3 -0.8	108.35	0.8	370,840 370,840	-0.1	254,333 255,430	1.6	40,179,344 39,983,206	0.
lov 15	69.3	2.4	155.79	-1.4	107.62	0.8	370,840	-0.1	256,876	2.4	40,018,259	0.9
Dec 15	69.3	2.4	155.08	-2.0	107.91	-0.1	370,840	0.0	257,045	2.4	39,862,238	-0.
lan 16	69.8	3.0	154.22	-2.0	107.65	0.9	370,840	0.0	258,869	3.0	39,921,850	0.9
eb 16	69.6	2.6	153.21	-2.8	106.65	-0.2	370,840	0.0	258,131	2.6	39,549,369	-0.2
Mar 16	69.0	0.9	152.25	-3.3	105.12	-2.4	370,840	0.0	256,036	0.9	38,980,892	-2.4
Apr 16	69.2	1.1	152.07	-3.2	105.30	-2.2	370,840	0.0	256,801	1.1	39,050,578	-2.2
lay 16	69.0	0.8	151.71	-3.4	104.66	-2.6	370,840	0.0	255,843	0.8	38,813,588	-2.6
Jun 16	68.6	-0.1	150.91	-4.5	103.51	-4.7	370,840	0.0	254,370	-0.1	38,386,415	-4.7
Jul 16	68.4	-0.4	150.46	-5.3	102.94	-5.6	370,840	0.0	253,710	-0.4	38,172,983	- 5.6
ug 16	68.1	-0.8	150.11	-5.7	102.28	-6.5	370,840	0.0	252,668	-0.8	37,928,125	-6.5
ep 16	68.4	-0.2	150.74	-4.6	103.18	-4.8	370,840	0.0	253,825	-0.2	38,261,786	-4.8
Oct 16	67.6	-1.9	150.93	-3.6	101.98	-5.4	370,840	0.0	250,564	-1.9	37,817,055	-5.4
lov 16	67.1	-3.2	150.96	-3.1	101.26	-6.2	370,840	0.0	248,745	-3.2	37,550,169	-6.2
Dec 16	67.1	-3.2	150.43	-3.0	100.92	-6.1	370,840	0.0	248,792	-3.2	37,426,322	-6.1
Jan 17 eb 17	66.9	-4.1	150.79	-2.2	100.94	-6.2	370,840 370,840	0.0	248,228 246,914	-4.1	37,431,236 37,312,684	-6.2 -5.7
Mar 17	66.6 66.6	-4.3 -3.5	151.12 151.62	-1.4 -0.4	100.62 100.97	-5.7 -3.9	370,840	0.0	246,914	-4.3 -3.5	37,444,639	-3.9
Apr 17	66.3	-4.3	151.65	-0.4	100.57	-4.5	370,840	0.0	245,842	-4.3	37,280,744	-4.
lay 17	66.6	-3.5	152.46	0.5	101.48	-3.0	370,840	0.0	246,847	-3.5	37,634,524	-3.0
lun 17	66.9	-2.5	152.24	0.9	101.78	-1.7	370,840	0.0	247,915	-2.5	37,742,347	-1.7
Jul 17	67.0	-2.1	151.71	0.8	101.66	-1.2	370,840	0.0	248,501	-2.1	37,701,124	-1.2
lug 17	66.8	-1.9	151.35	0.8	101.14	-1.1	370,840	0.0	247,818	-1.9	37,508,275	-1.1
Sep 17	66.5	-2.8	150.97	0.2	100.45	-2.6	370,840	0.0	246,726	-2.8	37,249,053	-2.6
Oct 17	66.8	-1.1	151.40	0.3	101.14	-0.8	370,840	0.0	247,747	-1.1	37,508,395	-0.8
lov 17	67.1	0.1	151.22	0.2	101.54	0.3	370,840	0.0	248,996	0.1	37,653,928	0.3
Dec 17	67.7	0.9	151.26	0.5	102.35	1.4	370,840	0.0	250,934	0.9	37,955,507	1.4
lan 18	67.6	1.0	151.38	0.4	102.30	1.3	370,840	0.0	250,602	1.0	37,936,414	1.3
eb 18	67.5	1.4	151.57	0.3	102.30	1.7	370,840	0.0	250,298	1.4	37,938,597	1.
Mar 18	68.5	2.9	151.97	0.2	104.13	3.1	370,840	0.0	254,095	2.9	38,614,219	3.
Apr 18	68.6	3.5	152.34	0.5	104.52	4.0	370,840	0.0	254,435	3.5	38,760,735	4.
lay 18 lun 18	68.1 67.7	2.4 1.2	152.36 152.33	-0.1	103.81 103.06	2.3 1.3	371,708 372,548	0.2 0.5	253,274 252,042	2.6 1.7	38,588,354 38,393,611	2. 1.
Jul 18	67.7	0.4	152.33	0.1	103.06	0.6	372,548 373,416	0.5	252,042	1.7	38,206,537	1.
ug 18	67.3	0.4	152.14	0.3	102.32	0.8	373,416	0.7	251,131	1.1	38,142,002	1.
Sep 18	67.1	1.2	151.76	0.3	101.91	1.5	375,124	1.2	252,490	2.3	38,235,985	2.0
Oct 18	67.6	1.2	151.85	0.3	102.63	1.5	375,992	1.4	254,112	2.6	38,587,212	2.
lov 18	68.2	1.6	151.56	0.2	103.42	1.9	376,832	1.6	257,131	3.3	38,970,299	3.
Dec 18	68.3	0.9	151.42	0.1	103.36	1.0	377,700	1.8	257,810	2.7	39,038,040	2.9
lan 19	68.2	1.0	151.12	-0.2	103.11	0.8	378,568	2.1	258,287	3.1	39,033,297	2.9
eb 19	68.4	1.3	151.29	-0.2	103.48	1.2	379,352	2.3	259,476	3.7	39,256,344	3.
Vlar 19	67.0	-2.2	150.61	-0.9	100.92	-3.1	380,220	2.5	254,771	0.3	38,372,003	-0.0
Apr 19	67.1	-2.2	150.46	-1.2	100.99	-3.4	381,060	2.8	255,775	0.5	38,483,638	-0.
lay 19	67.0	-1.7	149.87	-1.6	100.39	-3.3	381,060	2.5	255,255	0.8	38,255,395	-0.
Jun 19	66.7	-1.4	149.58	-1.8	99.82	-3.1	381,060	2.3	254,288	0.9	38,037,347	-0.
Jul 19	66.5	-1.1	149.64	-1.6	99.52	-2.7	381,060	2.0	253,440	0.9	37,924,988	-0.
Aug 19	66.2	-1.4	149.89	-1.2	99.22	-2.6	381,060	1.8	252,249	0.4	37,810,210	-0.9
Sep 19	65.0	-3.4	149.82	-1.1	97.38	-4.5	381,060	1.6	247,690	-1.9	37,107,712	-3.0

Tab 7 - Day of Week Analysis

Westchester Hotels

Job Number: 1139134 SADIM Staff: KK Created: October 25, 2019

Occupancy (%	%)							
	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Total Month
Oct - 18	58.4	76.4	81.9	75.3	72.2	84.7	92.2	77.3
Nov - 18	54.2	69.4	79.6	79.4	75.1	79.1	82.5	74.4
Dec - 18	47.9	64.5	73.0	68.3	57.2	61.1	68.0	62.6
Jan - 19	37.2	56.6	56.1	60.6	53.0	52.3	57.8	53.7
Feb - 19	36.7	62.0	69.7	68.3	49.6	43.7	49.9	54.3
Mar - 19	40.8	65.8	69.1	65.2	43.8	50.5	56.1	55.2
Apr - 19	53.5	70.4	80.7	72.2	61.7	78.4	84.0	71.8
May - 19	50.2	69.5	79.3	72.2	60.5	67.2	77.6	67.9
Jun - 19	52.6	77.8	86.1	76.9	60.6	69.6	82.9	72.0
Jul - 19	49.8	64.0	70.1	68.1	58.6	66.7	80.8	65.6
Aug - 19	46.7	57.2	62.3	63.6	52.8	67.1	80.5	62.0
Sep - 19	45.2	54.7	68.9	68.6	60.5	65.8	82.3	62.8
Total Year	47.7	65.7	73.0	69.8	58.9	65.5	74.3	65.0

Three Year Occupa	ıncy (%)							
	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Total Year
Oct 16 - Sep 17	46.1	64.9	74.7	72.8	60.6	68.9	77.5	66.5
Oct 17 - Sep 18	49.5	66.8	75.0	73.8	61.5	68.5	76.4	67.3
Oct 18 - Sep 19	47.7	65.7	73.0	69.8	58.9	65.5	74.3	65.0
Total 3 Yr	47.8	65.8	74.2	72.1	60.3	67.6	76.1	66.3

ADR								
	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Total Month
Oct - 18	149.55	171.98	179.46	176.88	156.19	153.45	156.27	164.91
Nov - 18	138.31	155.64	161.43	152.09	137.26	133.26	130.34	143.47
Dec - 18	126.03	143.48	146.69	147.49	133.34	119.08	122.84	134.49
Jan - 19	132.53	152.82	151.85	153.67	138.51	124.31	123.66	141.08
Feb - 19	136.04	161.67	164.91	162.44	146.83	123.62	120.27	148.18
Mar - 19	135.59	161.13	161.46	159.47	142.13	127.51	126.74	145.36
Apr - 19	142.18	156.90	175.74	154.53	141.29	136.38	134.09	150.32
May - 19	143.13	168.64	175.88	166.27	153.65	140.42	142.95	156.45
Jun - 19	147.60	167.18	174.00	174.85	153.13	142.93	145.98	158.21
Jul - 19	140.79	155.51	158.73	157.18	139.71	133.15	134.31	146.78
Aug - 19	141.75	156.15	159.01	157.61	143.35	138.11	138.84	146.78
Sep - 19	139.89	160.70	174.28	170.67	154.86	141.74	146.36	155.74
Total Year	139.79	159.58	166.18	161.56	145.06	135.69	136.57	149.82

Three Year ADR								
	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Total Year
Oct 16 - Sep 17	140.57	160.75	166.08	163.60	148.55	135.83	138.18	150.97
Oct 17 - Sep 18	142.01	162.79	166.04	164.63	148.75	135.84	136.82	151.44
Oct 18 - Sep 19	139.79	159.58	166.18	161.56	145.06	135.69	136.57	149.82
Total 3 Yr	140.81	161.04	166.10	163.28	147.46	135.79	137.20	150.75

RevPAR								
	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Total Month
Oct - 18	87.36	131.44	146.96	133.18	112.69	129.92	144.08	127.55
Nov - 18	74.99	107.98	128.50	120.70	103.13	105.41	107.50	106.71
Dec - 18	60.31	92.48	107.06	100.76	76.28	72.72	83.48	84.15
Jan - 19	49.32	86.49	85.15	93.11	73.42	65.06	71.53	75.74
Feb - 19	49.91	100.16	115.02	110.89	72.80	54.01	60.03	80.40
Mar - 19	55.34	106.05	111.52	103.96	62.31	64.35	71.08	80.30
Apr - 19	76.12	110.45	141.78	111.52	87.15	106.92	112.65	107.95
May - 19	71.81	117.16	139.55	120.06	92.88	94.35	110.87	106.26
Jun - 19	77.67	130.02	149.73	134.52	92.74	99.42	120.96	113.96
Jul - 19	70.14	99.46	111.31	107.00	81.84	88.80	108.57	96.33
Aug - 19	66.24	89.30	99.04	100.17	75.65	92.72	111.76	90.96
Sep - 19	63.17	87.93	119.99	117.10	93.74	93.24	120.52	97.79
Total Year	66.65	104.86	121.30	112.79	85.46	88.93	101.53	97.38

Three Year RevPA	R							
	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Total Year
Oct 16 - Sep 17	64.83	104.31	124.01	119.05	90.06	93.61	107.13	100.45
Oct 17 - Sep 18	70.32	108.72	124.46	121.51	91.51	93.02	104.57	101.93
Oct 18 - Sep 19	66.65	104.86	121.30	112.79	85.46	88.93	101.53	97.38
Total 3 Yr	67.29	105.95	123.24	117.75	88.98	91.83	104.40	99.90

Tab 8 - Raw Data

Westchester Hotels
Job Number: 1139134_SADIM Staff: KK Created: October 25, 2019

Date		pancy	AD)R	Rev	Par	Suppl	y	Deman	id	Revenu	е		Census & Samp	
	This	0/ Cha	This	0/ Cha	This	0/ Cha	This Voor	0/ Cha	This Voor	0/ Cha	This Year	% Cha	Canaua Brana	Canaua Baama	% Rooms STAR
lon 12	Year	% Chg	Year	% Chg	Year	% Chg	This Year	% Chg	This Year	% Chg	This Year	% Chg	Census Props		Participants
Jan 13	54.0		150.64		81.30 97.89		31,620		17,065		2,570,590		4	1,020	100.
Feb 13 Mar 13	60.5		161.70		81.77		28,560		17,289 17,176		2,795,676		4	1,020	100. 100.
	54.3		150.53				31,620				2,585,515 3,106,033			1,020	
Apr 13	63.2		160.64		101.50		30,600		19,335		3,145,103		4	1,020	100.
May 13	65.2		152.49		99.47		31,620		20,625				4	1,020	100.
Jun 13	72.3		156.98		113.50		30,600		22,124		3,473,053		4	1,020	100.
Jul 13	67.6		147.54		99.70		31,651		21,388		3,155,530		4	1,021	100.
Aug 13	64.2		145.90		93.68		31,651		20,323		2,965,143		4	1,021	100.
Sep 13	70.6		165.75		116.99		30,630		21,618		3,583,265		4	1,021	100.
Oct 13	77.3		166.82		129.00		31,651		24,476		4,082,974		4	1,021	100.
Nov 13	65.2		153.88		100.35		30,630		19,974		3,073,627		4	1,021	100.
Dec 13	51.6		148.01		76.32		31,651		16,320		2,415,596		4	1,021	100.
Jan 14	53.2	-1.4	163.73	8.7	87.15	7.2	31,496	-0.4	16,764	-1.8	2,744,788	6.8	4	1,016	100.0
Feb 14	58.8	-2.9	151.37	-6.4	88.96	-9.1	28,448	-0.4	16,720	-3.3	2,530,851	-9.5	4	1,016	100.
Mar 14	59.4	9.3	156.71	4.1	93.08	13.8	31,496	-0.4	18,706	8.9	2,931,493	13.4	4	1,016	100.
Apr 14	69.3	9.8	153.54	-4.4	106.48	4.9	30,480	-0.4	21,137	9.3	3,245,365	4.5	4	1,016	100.
May 14	75.3	15.5	159.16	4.4	119.90	20.5	31,496	-0.4	23,726	15.0	3,776,246	20.1	4	1,016	100.
Jun 14	80.1	10.8	159.89	1.9	128.03	12.8	30,480	-0.4	24,407	10.3	3,902,364	12.4	4	1,016	100.
Jul 14	73.2	8.3	151.03	2.4	110.54	10.9	31,496	-0.5	23,052	7.8	3,481,602	10.3	4	1,016	100.
Aug 14	71.9	12.1	152.70	4.7	109.86	17.3	31,496	-0.5	22,661	11.5	3,460,247	16.7	4	1,016	100.
Sep 14	77.1	9.2	169.20	2.1	130.40	11.5	30,480	-0.5	23,491	8.7	3,974,741	10.9	4	1,016	100.
Oct 14	78.0	0.8	169.36	1.5	132.03	2.3	31,496	-0.5	24,554	0.3	4,158,385	1.8	4	1,016	100.
Nov 14	63.6	-2.4	156.98	2.0	99.92	-0.4	30,480	-0.5	19,400	-2.9	3,045,443	-0.9	4	1,016	100.
Dec 14	55.3	7.2	151.23	2.2	83.63	9.6	31,496	-0.5	17,417	6.7	2,633,974	9.0	4	1,016	100.
Jan 15	50.7	-4.7	150.94	-7.8	76.54	-12.2	31,496	0.0	15,970	-4.7	2,410,565	-12.2	4	1,016	100.
Feb 15	59.9	1.8	153.63	1.5	91.96	3.4	28,448	0.0	17,029	1.8	2,616,158	3.4	4	1,016	100.
Mar 15	66.2	11.4	155.67	-0.7	103.00	10.7	31,496	0.0	20,838	11.4	3,243,947	10.7	4	1,016	100.
Apr 15	70.5	1.7	149.64	-2.5	105.55	-0.9	30,480	0.0	21,499	1.7	3,217,125	-0.9	4	1,016	100
May 15	75.0	-0.5	157.65	-1.0	118.20	-1.4	31,496	0.0	23,615	-0.5	3,722,809	-1.4	4	1,016	100.
Jun 15	82.6	3.1	170.94	6.9	141.12	10.2	30,480	0.0	25,164	3.1	4,301,449	10.2	4	1,016	100.
													4		100.
Jul 15	73.3	0.1	159.14	5.4	116.58	5.5	31,496	0.0	23,073	0.1	3,671,749	5.5		1,016	
Aug 15	72.3	0.5	156.34	2.4	113.05	2.9	31,496	0.0	22,776	0.5	3,560,780	2.9	4	1,016	100
Sep 15	75.5	-2.1	156.40	-7.6	118.01	-9.5	30,480	0.0	22,998	-2.1	3,596,960	-9.5	4	1,016	100
Oct 15	81.4	4.5	154.47	-8.8	125.80	-4.7	31,496	0.0	25,651	4.5	3,962,247	-4.7	4	1,016	100
Nov 15	68.4	7.5	147.77	-5.9	101.07	1.2	30,480	0.0	20,846	7.5	3,080,496	1.2	4	1,016	100
Dec 15	55.8	1.0	140.90	-6.8	78.68	-5.9	31,496	0.0	17,586	1.0	2,477,953	- 5.9	4	1,016	100
Jan 16	56.5	11.4	138.82	-8.0	78.43	2.5	31,496	0.0	17,794	11.4	2,470,177	2.5	4	1,016	100.
Feb 16	57.3	-4.3	137.72	-10.4	78.87	-14.2	28,448	0.0	16,291	-4.3	2,243,677	-14.2	4	1,016	100.
Mar 16	59.5	-10.1	142.75	-8.3	84.95	-17.5	31,496	0.0	18,743	-10.1	2,675,470	-17.5	4	1,016	100.
Apr 16	73.0	3.6	147.63	-1.3	107.84	2.2	30,480	0.0	22,264	3.6	3,286,811	2.2	4	1,016	100.
May 16	71.9	-4.1	153.85	-2.4	110.67	-6.4	31,496	0.0	22,657	-4.1	3,485,819	-6.4	4	1,016	100.
Jun 16	77.7	-5.9	163.53	-4.3	127.11	-9.9	30,480	0.0	23,691	-5.9	3,874,276	-9.9	4	1,016	100.
Jul 16	71.2	-2.9	154.30	-3.0	109.80	-5.8	31,496	0.0	22,413	-2.9	3,458,317	-5.8	4	1,016	100.
Aug 16	69.0	-4.6	152.57	-2.4	105.28	-6.9	31,496	0.0	21,734	-4.6	3,315,922	-6.9	4	1,016	100.
		5.0	162.72	4.0	128.96	9.3	30,480	0.0	24,155	5.0	3,930,621	9.3	4		100.
Sep 16	79.2													1,016	
Oct 16	71.1	-12.7	157.10	1.7	111.68	-11.2	31,496	0.0	22,390	-12.7	3,517,516	-11.2	4	1,016	100
Nov 16	62.4	-8.7	147.87	0.1	92.31	-8.7	30,480	0.0	19,027	-8.7	2,813,610	-8.7	4	1,016	100
Dec 16	56.0	0.3	133.51	-5.3	74.74	-5.0	31,496	0.0	17,633	0.3	2,354,106	- 5.0	4	1,016	100
Jan 17	54.7	-3.2	143.65	3.5	78.58	0.2	31,496	0.0	17,230	-3.2	2,475,091	0.2	4	1,016	100
Feb 17	52.6	-8.1	141.89	3.0	74.70	-5.3	28,448	0.0	14,977	-8.1	2,125,125	-5.3	4	1,016	100
Mar 17	59.6	0.2	149.44	4.7	89.14	4.9	31,496	0.0	18,786	0.2	2,807,425	4.9	4	1,016	100
Apr 17	69.4	-5.0	147.66	0.0	102.46	-5.0	30,480	0.0	21,149	-5.0	3,122,916	- 5.0	4	1,016	100
May 17	75.1	4.4	162.27	5.5	121.91	10.1	31,496	0.0	23,662	4.4	3,839,599	10.1	4	1,016	100
Jun 17	81.2	4.5	160.83	-1.7	130.65	2.8	30,480	0.0	24,759	4.5	3,982,099	2.8	4	1,016	100
Jul 17	73.0	2.6	148.58	-3.7	108.49	-1.2	31,496	0.0	22,999	2.6	3,417,094	-1.2	4	1,016	100
Aug 17	66.8	-3.1	148.36	-2.8	99.16	-5.8	31,496	0.0	21,051	-3.1	3,123,073	-5.8	4	1,016	100
Sep 17	75.7	-4.5	159.19	-2.2	120.45	-6.6	30,480	0.0	23,063	-4.5	3,671,399	-6.6	4	1,016	100
	74.3			2.7	119.92								4		
Oct 17		4.6	161.33			7.4	31,496	0.0	23,411	4.6	3,776,858	7.4	4	1,016	100
Nov 17	66.5	6.6	145.94	-1.3	97.08	5.2	30,480	0.0	20,276	6.6	2,959,143	5.2	4	1,016	100
Dec 17	62.1	11.0	135.69	1.6	84.32	12.8	31,496	0.0	19,571	11.0	2,655,685	12.8	4	1,016	100
Jan 18	53.7	-1.9	145.34	1.2	77.98	-0.8	31,496	0.0	16,898	-1.9	2,455,998	-0.8	4	1,016	100
eb 18	51.6	-2.0	144.98	2.2	74.78	0.1	28,448	0.0	14,673	-2.0	2,127,308	0.1	4	1,016	100
Mar 18	71.7	20.2	154.23	3.2	110.59	24.1	31,496	0.0	22,583	20.2	3,483,047	24.1	4	1,016	100
Apr 18	70.5	1.6	152.14	3.0	107.26	4.7	30,480	0.0	21,489	1.6	3,269,432	4.7	4	1,016	100
lay 18	69.5	-7.5	162.98	0.4	113.31	-7.1	32,364	2.8	22,501	-4.9	3,667,218	-4.5	4	1,044	100
Jun 18	75.1	-7.5	160.98	0.1	120.92	-7.4	31,320	2.8	23,527	-5.0	3,787,356	-4.9	4	1,044	10
Jul 18	68.2	-6.5	146.23	-1.6	99.80	-8.0	32,364	2.8	22,088	-4.0	3,230,020	-5.5	4	1,044	100
ug 18	65.7	-1.8	143.95	-3.0	94.50	-4.7	32,364	2.8	21,247	0.9	3,058,538	-2.1	4	1,044	10
ep 18	77.3	2.2	155.43	-2.4	120.22	-0.2	31,320	2.8	24,226	5.0	3,765,382	2.6	4	1,044	10
Oct 18	77.3	4.1	164.91	2.2	127.55	6.4	32,364	2.8	25,033	6.9	4,128,085	9.3	4	1,044	10
lov 18	74.4	11.8	143.47	-1.7	106.71	9.9	31,320	2.8	23,295	14.9	3,342,230	12.9	4	1,044	10
ec 18	62.6	0.7	134.49	-0.9	84.15	-0.2	32,364	2.8	20,250	3.5	2,723,426	2.6	4	1,044	10
Jan 19	53.7	0.1	141.08	-2.9	75.74	-2.9	32,364	2.8	17,375	2.8	2,451,255	-0.2	4	1,044	10
eb 19	54.3	5.2	148.18	2.2	80.40	7.5	29,232	2.8	15,862	8.1	2,350,355	10.5	4	1,044	10
Var 19	55.2	-23.0	145.36	-5.8	80.30	-27.4	32,364	2.8	17,878	-20.8	2,598,706	-25.4	4	1,044	10
Apr 19	71.8	1.9	150.32	-1.2	107.95	0.6	31,320	2.8	22,493	4.7	3,381,067	3.4	4	1,044	100
	67.9	-2.3	156.45	-4.0	106.26	-6.2	32,364	0.0	21,981	-2.3	3,438,975	-6.2	4	1,044	
May 19															100
Jun 19	72.0	-4.1	158.21	-1.7	113.96	-5.8	31,320	0.0	22,560	-4.1	3,569,308	-5.8	4	1,044	100
Jul 19	65.6	-3.8	146.78	0.4	96.33	-3.5	32,364	0.0	21,240	-3.8	3,117,661	-3.5	4	1,044	100
Aug 19	62.0	-5.6	146.78	2.0	90.96	-3.8	32,364	0.0	20,056	-5.6	2,943,760	-3.8	4	1,044	100
Sep 19	62.8	-18.8	155.74	0.2	97.79	-18.7	31,320	0.0	19,667	-18.8	3,062,884	-18.7	4	1,044	100

Tab 9 - Classic

Westchester Hotels
Job Number: 1139134_SADIM Staff: KK Created: October 25, 2019

Date	Occup	oancy	AD	R	Revi	ar	Supply		Demano		Revenue	•		Census & Samp	1
	This	0/ Ch-	This	0/ Ch-	This	0/ Ch-	This Vee	0/ Ch-	This Year	0/ Ch-	This Year	0/ Ch-	Camana Baana	Camania Baama	% Rooms ST
Jan 13	Year 54.0	% Chg	Year 150.64	% Chg	Year 81.30	% Chg	This Year 31,620	% Chg	This Year 17,065	% Chg	This Year 2,570,590	% Cng	Census Props	Census Rooms 1,020	Participants 10
Feb 13	60.5		161.70		97.89		28,560		17,289		2,795,676		4	1,020	10
Mar 13	54.3		150.53		81.77		31,620		17,176		2,585,515		4		10
Apr 13	63.2		160.64		101.50		30,600		19,335		3,106,033		4	1,020	10
May 13	65.2		152.49		99.47		31,620		20,625		3,145,103		4		10
Jun 13	72.3		156.98		113.50		30,600		22,124		3,473,053		4	1,020	10
Jul 13	67.6		147.54		99.70		31,651		21,388		3,155,530		4		10
Aug 13	64.2		145.90		93.68		31,651		20,323		2,965,143		4		10
Sep 13	70.6		165.75		116.99		30,630		21,618		3,583,265		4		10
Oct 13	77.3		166.82		129.00		31,651		24,476		4,082,974		4		10
Nov 13	65.2		153.88		100.35		30,630		19,974		3,073,627		4		10
Dec 13	51.6		148.01		76.32		31,651		16,320		2,415,596		4	1,021	10
YTD 2013	63.5		154.74		98.29 99.20		278,552		176,943		27,379,908 36,952,105				
Total 2013 Jan 14	63.8 53.2	-1.4	155.45 163.73	8.7	87.15	7.2	372,484 31,496	-0.4	237,713 16,764	-1.8	2,744,788	6.8	4	1,016	10
Feb 14	58.8	-2.9	151.37	-6.4	88.96	-9.1	28,448	-0.4	16,720	-3.3	2,530,851	-9.5	4	1,016	10
Mar 14	59.4	9.3	156.71	4.1	93.08	13.8	31,496	-0.4	18,706	8.9	2,931,493	13.4	4		10
Apr 14	69.3	9.8	153.54	-4.4	106.48	4.9	30,480	-0.4	21,137	9.3	3,245,365	4.5	4	1,016	10
May 14	75.3	15.5	159.16	4.4	119.90	20.5	31,496	-0.4	23,726	15.0	3,776,246	20.1	4		10
Jun 14	80.1	10.8	159.89	1.9	128.03	12.8	30,480	-0.4	24,407	10.3	3,902,364	12.4	4	1,016	10
Jul 14	73.2	8.3	151.03	2.4	110.54	10.9	31,496	-0.5	23,052	7.8	3,481,602	10.3	4	1,016	10
Aug 14	71.9	12.1	152.70	4.7	109.86	17.3	31,496	-0.5	22,661	11.5	3,460,247	16.7	4	1,016	10
Sep 14	77.1	9.2	169.20	2.1	130.40	11.5	30,480	-0.5	23,491	8.7	3,974,741	10.9	4	1,016	10
Oct 14	78.0	0.8	169.36	1.5	132.03	2.3	31,496	-0.5	24,554	0.3	4,158,385	1.8	4	1,016	10
Nov 14	63.6	-2.4	156.98	2.0	99.92	-0.4	30,480	-0.5	19,400	-2.9	3,045,443	-0.9	4	1,016	10
Dec 14	55.3	7.2	151.23	2.2	83.63	9.6	31,496	-0.5	17,417	6.7	2,633,974	9.0	4		10
YTD 2014		8.2 6.5	157.60	1.8	108.33	10.2	277,368 370,840	-0.4		7.8	30,047,697 39,885,499	9.7			
otal 2014	68.0		158.25	1.8	107.55	8.4		-0.4	252,035	6.0		7.9			
Jan 15	50.7	-4.7	150.94	-7.8	76.54	-12.2	31,496	0.0	15,970	-4.7	2,410,565	-12.2	4		10
Feb 15	59.9	1.8	153.63	1.5	91.96	3.4	28,448	0.0	17,029	1.8	2,616,158	3.4	4		10
Mar 15	66.2	11.4	155.67	-0.7	103.00	10.7	31,496	0.0	20,838	11.4	3,243,947	10.7	4		10
Apr 15	70.5	1.7	149.64	-2.5	105.55	-0.9	30,480	0.0	21,499	1.7	3,217,125	-0.9	4		10
May 15	75.0	-0.5	157.65	-1.0	118.20	-1.4	31,496	0.0	23,615	-0.5	3,722,809	-1.4	4		10
Jun 15	82.6	3.1	170.94	6.9	141.12	10.2	30,480	0.0	25,164	3.1	4,301,449	10.2	4		10
Jul 15	73.3	0.1	159.14	5.4	116.58	5.5	31,496	0.0	23,073	0.1	3,671,749	5.5	4		10
Aug 15	72.3	0.5	156.34	2.4	113.05	2.9	31,496	0.0	22,776	0.5	3,560,780	2.9	4	1,016	10
Sep 15	75.5	-2.1	156.40	-7.6	118.01	-9.5	30,480	0.0	22,998	-2.1	3,596,960	-9.5	4		10
Oct 15	81.4	4.5	154.47	-8.8	125.80	-4.7	31,496	0.0	25,651	4.5	3,962,247	-4.7	4	1,016	10
Nov 15	68.4	7.5	147.77	-5.9	101.07	1.2	30,480	0.0	20,846	7.5	3,080,496	1.2	4		10
Dec 15	55.8	1.0	140.90	-6.8	78.68	-5.9	31,496	0.0	17,586	1.0	2,477,953	-5.9	4	1,016	10
/TD 2015	69.6		157.24	-0.2	109.39		277,368	0.0	192,962		30,341,542	1.0			
otal 2015	69.3	2.0	155.08	-2.0	107.49	-0.1	370,840	0.0	257,045	2.0	39,862,238	-0.1	4	1,016	4/
Jan 16	56.5 57.3	11.4	138.82 137.72	-8.0 -10.4	78.43 78.87	2.5	31,496 28,448	0.0	17,794	11.4 -4.3	2,470,177 2,243,677	2.5 -14.2	4		10
Feb 16 Mar 16	59.5	-4.3 -10.1	142.75	-8.3	84.95	-14.2 -17.5	31,496	0.0	16,291 18,743	-10.1	2,675,470	-17.5	4		10
Apr 16	73.0	3.6	147.63	-1.3	107.84	2.2	30,480	0.0	22,264	3.6	3,286,811	2.2	4		10
May 16	71.9	-4.1	153.85	-2.4	110.67	-6.4	31,496	0.0	22,657	-4.1	3,485,819	-6.4	4		10
Jun 16	77.7	-5.9	163.53	-4.3	127.11	-9.9	30,480	0.0	23,691	-5.9	3,874,276	-9.9	4		10
Jul 16	71.2	-2.9	154.30	-3.0	109.80	-5.8	31,496	0.0	22,413	-2.9	3,458,317	-5.8	4		10
Aug 16	69.0	-4.6	152.57	-2.4	105.28	-6.9	31,496	0.0	21,734	-4.6	3,315,922	-6.9	4	1,016	10
Sep 16	79.2	5.0	162.72	4.0	128.96	9.3	30,480	0.0	24,155	5.0	3,930,621	9.3	4		10
Oct 16	71.1	-12.7	157.10	1.7	111.68	-11.2	31,496	0.0	22,390	-12.7	3,517,516	-11.2	4	1,016	10
Nov 16	62.4	-8.7	147.87	0.1	92.31	-8.7	30,480	0.0	19,027	-8.7	2,813,610	-8.7	4		10
Dec 16	56.0	0.3	133.51	-5.3	74.74	-5.0	31,496	0.0	17,633	0.3	2,354,106	-5.0	4		10
YTD 2016	68.4	-1.7	151.47	-3.7	103.62	-5.3	277,368	0.0	189,742	-1.7	28,741,090	-5.3			
otal 2016		-3.2		-3.0			370,840	0.0	248,792	-3.2	37,426,322				
Jan 17	54.7	-3.2	143.65	3.5	78.58	0.2	31,496	0.0	17,230	-3.2	2,475,091	0.2	4	1,016	10
Feb 17	52.6	-8.1	141.89	3.0	74.70	-5.3	28,448	0.0	14,977	-8.1	2,125,125	-5.3	4	1,016	10
Mar 17	59.6	0.2	149.44	4.7	89.14	4.9	31,496	0.0	18,786	0.2	2,807,425	4.9	4		10
Apr 17	69.4	-5.0	147.66	0.0	102.46	-5.0	30,480	0.0	21,149	-5.0	3,122,916	-5.0	4	1,016	10
May 17	75.1	4.4	162.27	5.5	121.91	10.1	31,496	0.0	23,662	4.4	3,839,599	10.1	4	1,016	1
Jun 17	81.2	4.5	160.83	-1.7	130.65	2.8	30,480	0.0	24,759	4.5	3,982,099	2.8	4	1,016	10
Jul 17	73.0	2.6	148.58	-3.7	108.49	-1.2	31,496	0.0	22,999	2.6	3,417,094	-1.2	4		10
Aug 17	66.8	-3.1	148.36	-2.8	99.16	-5.8	31,496	0.0	21,051	-3.1	3,123,073	-5.8	4	1,016	10
Sep 17	75.7	-4.5	159.19	-2.2	120.45	-6.6	30,480	0.0	23,063	-4.5	3,671,399	-6.6	4		10
Oct 17	74.3	4.6	161.33	2.7	119.92	7.4	31,496	0.0	23,411	4.6	3,776,858	7.4	4	1,016	10
Nov 17	66.5	6.6	145.94	-1.3	97.08	5.2	30,480	0.0	20,276	6.6	2,959,143	5.2	4		10
Dec 17	62.1	11.0	135.69	1.6	84.32	12.8	31,496	0.0	19,571	11.0	2,655,685	12.8	4	1,016	10
YTD 2017	67.7 67.7		152.20 151.26	0.5	102.98 102.35		277,368 370,840		187,676 250,934	-1.1	28,563,821 37,955,507				
otal 2017 Jan 18	67.7 53.7	0.9 -1.9	151.26	0.5 1.2	77.98	-0.8	370,840	0.0	250,934 16,898	0.9 -1.9	2,455,998	-0.8	4	1,016	10
Feb 18	53.7	-1.9	145.34	2.2	74.78	0.1	28,448	0.0	14,673	-1.9	2,455,998	-0.8	4		10
Mar 18	71.7	20.2	154.23	3.2	110.59	24.1	31,496	0.0	22,583	20.2	3,483,047	24.1	4		10
Apr 18	71.7	1.6	152.14	3.2	107.26	4.7	30,480	0.0	21,489	1.6	3,269,432	4.7	4		10
May 18	69.5	-7.5	162.98	0.4	113.31	-7.1	32,364	2.8	22,501	-4.9	3,667,218	-4.5	4		10
Jun 18	75.1	-7.5	160.98	0.4	120.92	-7.4	31,320	2.8	23,527	-5.0	3,787,356	-4.9	4		10
Jul 18	68.2	-6.5	146.23	-1.6	99.80	-8.0	32,364	2.8	22,088	-4.0	3,230,020	-5.5	4		10
Aug 18	65.7	-1.8	143.95	-3.0	94.50	-4.7	32,364	2.8	21,247	0.9	3,058,538	-2.1	4		10
Sep 18	77.3	2.2	155.43	-2.4	120.22	-0.2	31,320	2.8	24,226	5.0	3,765,382	2.6	4		10
Oct 18	77.3	4.1	164.91	2.2	127.55	6.4	32,364	2.8	25,033	6.9	4,128,085	9.3	4		10
Nov 18	74.4	11.8	143.47	-1.7	106.71	9.9	31,320	2.8	23,295	14.9	3,342,230	12.9	4		10
Dec 18	62.6	0.7	134.49	-0.9	84.15	-0.2	32,364	2.8	20,250	3.5	2,723,426	2.6	4		10
YTD 2018	67.2	-0.7	152.43	0.9	102.41	-0.2	281,652	1.5	189,232	0.8	28,844,299	1.0	4	1,044	10
otal 2018	68.3	0.9	151.42	0.2	102.41		377,700		257,810		39,038,040	2.9			
Jan 19	53.7	0.9	141.08	-2.9	75.74	-2.9	32,364	2.8	17,375	2.8	2,451,255	-0.2	4	1,044	10
Feb 19	54.3	5.2	148.18	2.2	80.40	7.5	29,232	2.8	15,862	8.1	2,350,355	10.5	4		10
Mar 19	55.2	-23.0	145.36	-5.8	80.30	-27.4	32,364	2.8	17,878	-20.8	2,598,706	-25.4	4		10
Apr 19	71.8	1.9	150.32	-1.2	107.95	0.6	32,364	2.8	22,493	4.7	3,381,067	3.4	4	1,044	10
May 19	67.9	-2.3	156.45	-4.0	106.26	-6.2	32,364	0.0	21,981	-2.3	3,438,975	-6.2	4		10
Jun 19	72.0	-2.3 -4.1	158.21	-1.7	113.96	-5.8	31,320	0.0	22,560	-2.3 -4.1	3,569,308	-5.8	4		10
Jul 19	65.6	-4.1	146.78	0.4	96.33	-3.5	31,320	0.0	21,240	-4.1	3,569,308	-3.5	4		10
							32,364				2,943,760				
Aug 19	62.0 62.8	-5.6 -18.8	146.78 155.74	2.0 0.2	90.96 97.79	-3.8 -18.7		0.0	20,056	-5.6 -18.8		-3.8	4		10
Sep 19				U.Z	91.19	-10./	31,320	0.0	19,667	-18.8	3,062,884	-18.7	4	1.044	

Tab 10 - Response Report

Westchester Hotels
Job Number: 1139134_SADIM Staff: KK Created: October 25, 2019

									2017				2018								2019												
						Open		Chg in																									Т
STR Code	Name of Establishment	City & State	Zip Code	Class	Aff Date	Date	Rooms	Rms	JF	= М	A M	J	J A	S	О И	D	J F	M A	M	J J	J A	S	0 1	ı D	J	F I	ΛA	M	J J	Α	s o	N	D
7838	La Quinta Inns & Suites Armonk Westchester County Airpo	Armonk, NY	10504	Upper Midscale Class	Feb 2007	Jan 1973	140		•	• •	• •	•	• •	•	• •	•	• •	•	• •	•	• •	•	•	• •	•	•	• •	•	•	• •	•		
20514	Doral Arrowwood	Rye Brook, NY	10573	Upper Upscale Class	May 2002	Jun 1983	369	Υ	•	• •	•	• •	• •	• •	• •	• •	• •	•	• •	•	• •	•	•	• •	•	•	• •	•	. • •	• •	•		
38312	Hyatt House White Plains	White Plains, NY	10604	Upscale Class	Jan 2012	Jan 2000	187	Υ	•	• •	•	• •	• •	• •	• •	• •	• •	•	• •	•	• •	•	•	• •		•	• •		•	• •/	•		
10344	Renaissance Westchester Hotel	West Harrison, NY	10604	Upper Upscale Class	May 1995	Apr 1981	348	Υ	•	• •	•	• •	• •	• •	• •	• •	• •	•	• •	•	• •	•	•	• •	•	•	• •	•	. • •	• •	•		
				Tota	l Properties:	4	1044		0 -	Monthl	y data re	eceived	by STF	₹																			

- Monthly data received by STR
 - Monthly and daily data received by STR
Blank - No data received by STR

Y - (Chg in Rms) Property has experienced a room addition or drop during the time period of the report.

The STR Trend Report is a publication of STR, Inc. and STR Global, Ltd., and is intended solely for use by paid subscribers. Reproduction or distribution of the STR Trend Report, in whole or part, without written permission is prohibited and subject to legal action. If you have received this report and are NOT a subscriber to the STR Trend report, please contact us immediately. Source: 2019 STR, Inc. / STR Global, Ltd., trading as "STR".

Tab 11 - Terms and Conditions

Before purchasing this product you agreed to the following terms and conditions.

In consideration of the mutual promises contained herein and for other good and valuable consideration, the receipt and sufficiency of which are hereby acknowledged, STR, Inc. ("STR"), STR Global, Ltd. ("STRG"), and the licensee identified elsewhere in this Agreement ("Licensee") agree as follows:

1. LICENSE

1.1 Definitions.

- (a) "Agreement" means these Standard Terms and Conditions are attached or in which they are incorporated by reference, and, if applicable, any additional terms specifically set out in writing in any Schedule attached hereto.
- (b) "Licensed Materials" means the newsletters, reports, databases or other information resources, and all lodging industry data contained therein, provided to Licensee hereunder.
- 1.2 Grant of License. Subject to the terms and conditions of this Agreement, and except as may be expressly permitted elsewhere in this Agreement, STR hereby grants to Licensee a non-exclusive, non-transferable, indivisible, non-sublicensable license to use, copy, manipulate and extract data from the Licensed Materials for its own INTERNAL business purposes only.
- 1.3 Copies. Except as expressly permitted elsewhere in this Agreement, Licensee may make and maintain no more than two (2) copies of any Licensed Materials.
- 1.4 No Service Bureau Use. Licensee is prohibited from using the Licensed Materials in any way in connection with any service bureau or similar services. "Service bureau" means the processing of input data that is supplied by one or more third parties and the generation of output data (in the form of reports, charts, graphs or other pictorial representations, or the like) that is sold or licensed to any third parties.
- 1.5 No Distribution to Third Parties. Except as expressly permitted in this Agreement, Licensee is prohibited from distributing, republishing or otherwise making the Licensed Materials or any part thereof (including any excerpts of the data and any manipulations of the data) available in any form whatsoever to any third party, other than Licensee's accountants, attorneys, marketing professionals or other professional advisors who are bound by a duty of confidentiality not to disclose such information.
- 1.6 Security. Licensee shall use commercially reasonable efforts to protect against unauthorized access to the Licensed Materials.
- 1.7 Reservation of Rights. Licensee has no rights in connection with the Licensed Materials other than those rights expressly enumerated herein. All rights to the Licensed Materials not expressly enumerated herein are reserved to STR.

2. DISCLAIMERS AND LIMITATIONS OF LIABILITY

- 2.1 Disclaimer of Warranties. The licensed materials are provided to the licensee on an "as is" and "as available" basis. STR makes no representations or warranties of any kind, express or implied, with respect to the licensed materials, the services provided or the results of use thereof. Without limiting the foregoing, STR does not warrant that the licensed materials, the services provided or the use thereof are or will be accurate, error-free or uninterrupted. STR makes no implied warranties, including without limitation, any implied warranty of merchantability, noninfringement or fitness for any particular purpose or arising by usage of trade, course of dealing, course of performance or otherwise.
- 2.2 Disclaimers. STR shall have no liability with respect to its obligations under this agreement or otherwise for consequential, exemplary, special, incidental, or punitive damages even if STR has been advised of the possibility of such damages. Furthermore, STR shall have no liability whatsoever for any claim relating in any way to any decision made or action taken by licensee in reliance upon the licensed materials.
- 2.3 Limitation of Liability. STR's total liability to licensee for any reason and upon any cause of action including without limitation, infringement, breach of contract, negligence, strict liability, misrepresentations, and other torts, shall be limited to all fees paid to STR by the licensee during the twelve month period preceding the date on which such cause of action first arose.

3. MISCELLANEOUS

- 3.1 Liquidated Damages. In the event of a violation of Section 1.5 of these Standard Terms and Conditions, Licensee shall be required to pay STR an amount equal to the sum of (i) the highest aggregate price that STR, in accordance with its then-current published prices, could have charged the unauthorized recipients for the Licensed Materials that are the subject of the violation, and (ii) the full price of the lowest level of republishing rights that Licensee would have been required to purchase from STR in order to have the right to make the unauthorized distribution, regardless of whether Licensee has previously paid for any lower level of republishing rights, and (iii) fifteen percent (15%) of the total of the previous two items. This provision shall survive indefinitely the expiration or termination of this Agreement for any reason.
- **3.2 Obligations on Termination.** Within thirty (30) days of the termination or expiration of this Agreement for any reason, Licensee shall cease all use of the Licensed Materials and shall return or destroy, at STR's option, all copies of the Licensed Materials and all other information relating thereto in Licensee's possession or control as of the such date. This provision shall survive indefinitely the expiration or termination of this Agreement for any reason.
- 3.3 Governing Law; Jurisdiction and Venue. This Agreement shall be governed by the substantive laws of the State of Tennessee, without regard to its or any other jurisdiction's laws governing conflicts of law. Any claims or actions regarding or arising out of this Agreement shall be brought exclusively in a court of competent jurisdiction located in Nashville, Tennessee, and the parties expressly consent to personal jurisdiction thereof. The parties also expressly waive any objections to venue.
- 3.4 Assignment. Licensee is prohibited from assigning this Agreement or delegating any of its duties under this Agreement without the prior written consent of STR.
- 3.5 Independent Relationship. The relationship between the parties is that of an independent contractor. Nothing in this Agreement shall be deemed to create an employer/employee, principal/agent, partnership or joint venture relationship.
- 3.6 Notices. All notices required or permitted to be given hereunder shall be in writing and shall be deemed given i) when delivered by facsimile transmission or e-mail, at the time of transmission (provided, however, that notice delivered by facsimile transmission shall only be effective if such notice is also delivered by hand or deposited in the United States mail, postage prepaid, registered, certified or express mail or by courier service within two (2) business days after its delivery by facsimile transmission); iii) when delivered by a courier service or by express mail, at the time of receipt; or iv) five (5) business days after being deposited in the United States mail, postage prepaid, registered or certified mail, addressed (in any such case) to the addresses listed on the first page of this Agreement or to such other address as either party may notify the other in writing.
- 3.7 Waiver. No waiver of any breach of this Agreement will be deemed to constitute a waiver of any subsequent breach of the same or any other provision.
- 3.8 Entire Agreement. This Agreement constitutes the entire agreement of the parties with respect to the matters described herein, superseding in all prior proposals, negotiations, understandings and other agreements, oral or written, between the parties.
- 3.9 Amendment. This Agreement may be amended only by the written agreement of both parties.
- 3.10 Recovery of Litigation Costs. If any legal action or other proceeding is brought for the enforcement of this Agreement, or because of an alleged dispute, breach, default or misrepresentation in connection with any of the provisions of this Agreement, the successful or prevailing party or parties shall be entitled to recover reasonable attorneys' fees and other costs incurred in that action or proceeding, in addition to any other relief to which it or they may be entitled.
- 3.11 Injunctive Relief. The parties agree that, in addition to any other rights or remedies which the other or STR may have, any party alleging breach or threatened breach of this Agreement will be entitled to such equitable and injunctive relief as may be available from any court of competent jurisdiction to restrain the other from breaching or threatening to breach any of the provisions of this Section, without posting bond or other surety.
- 3.12 Notice of Unauthorized Access. Licensee shall notify STR immediately upon Licensee's becoming aware of any facts indicating that a third party may have obtained or may be about to obtain unauthorized access to the Licensed Materials, and shall fully cooperate with STR in its efforts to mitigate the damages caused by any such breach or potential breach.
- 3.13 Conflicting Provisions. In the event that any provision of these Standard Terms and Conditions directly conflicts with any other provision of the Agreement, the conflicting terms of such other provision shall control.
- 3.14 Remedies. In addition to any other rights or remedies that STR may have, in the event of any termination by STR on account of a breach by Licensee, STR may, without refund, immediately terminate and discontinue any right of Licensee to receive additional Licensed Materials from STR.

How can we assist you?

Glossary:

For all STR definitions, please visit www.str.com/resources/glossary

Frequently Asked Questions (FAQ):

For all STR FAQs, please click here or visit www.str.com/resources/faq

Please visit our website at www.str.com, or if you need additional assistance please reach out to our Customer Support team.

North America:

735 East Main Street, Hendersonville, TN 37075 USA

T: +1 615 824 8664 trends@str.com International:

Blue Fin Building, 110 Southwark Street, London SE1 0TA

T: +44 (0)20 7922 1930 hoteltrends@str.com

Asia Pacific:

Thong Teck Building, 15 Scotts Road #08-12, 228 218 Singapore

T: +64 6800 7850 hoteltrends@str.com

For the latest in industry news, visit <u>HotelNewsNow.com</u>.

To learn more about the Hotel Data Conference, visit HotelDataConference.com.

Appendix J-1 Phase 1A Archaeological Documentary Study

Proposed Redevelopment of 113 King Street

Tax Map Parcels 118.02-1-1, 113.04-1-13, and 113.04-1-14

TOWN OF NORTH CASTLE, WESTCHESTER COUNTY, NEW YORK

Phase 1A Archaeological Documentary Study

OPRHP Project Review Number 18PR06232

Prepared for:

Airport Campus II LLC, Airport Campus III LLC, Airport Campus IV LLC and Airport Campus V LLC
46 Westchester Avenue
Pound Ridge, NY 10576

Prepared by:

AKRF, Inc.

34 South Broadway, Suite 401 White Plains, NY 10601 914-949-7336

MANAGEMENT SUMMARY

SHPO Project Review Number: 18PR06232

Involved State Agencies: New York State Department of Environmental Conservation

New York State Department of Transportation

Phase of Survey: Phase 1A Archaeological Documentary Study

Location Information

Location: Tax Map Parcels 118.02-1-1, 113.04-1-13, and 113.04-1-14

Minor Civil Division: 11910 – North Castle

County: Westchester

Survey Area

Length: Approximately 840 to 2,100 feet Width: Approximately 800 to 1,200 feet Area: 37.87 acres (1,649,791 square feet)

USGS 7.5 Minute Quadrangle Map: Glenville

Report Author: Elizabeth D. Meade, MA, MPhil

Registered Professional Archaeologist #16353

Date of Report: August 2019 (Revised)

Table of Contents

Figure 1: Project Location

Figure 2: Aerial Photograph

Figure 3: Proposed Site Plan

Figure 4: 1892 USGS Map

Figure 5: 1851 Sidney and Neff Map

Figure 6: 1872 Beers Atlas

Figure 7: 1911 Bromley Atlas

Figure 8: 1930 Hopkins Atlas

Figure 9: Areas of Archaeological Sensitivity

List of Photographs

- **Photograph 1:** Looking southwest at the stone wall lining the northern side of the Project Site at the intersection of King Street and Cooney Hill Road.
- **Photograph 2**: View south from Cooney Hill Road at former driveway leading to former residential structures in the northwestern portion of the Project Site.
- **Photograph 3**: View from the driveway leading to the former MBIA campus, showing grade changes and the 19th century farmhouse at left.
- **Photograph 4**: Showing the northern façades of the 19th century farmhouse and the adjacent garage, constructed in the late 20th century.
- **Photograph 5**: The front façade of the 19th century farmhouse.
- **Photograph 6**: The decorative pond and an office building on the former MBIA campus.

A. PROJECT DESCRIPTION

Airport Campus I LLC, Airport Campus II LLC, Airport Camus III LLC, Airport Campus IV LLC, and Airport Campus V LLC ("Airport Campus I-V LLC" or "the Applicant") is seeking discretionary approvals (the "Proposed Actions") from the Town Board of the Town of North Castle (the "Town Board") in order to repurpose and redevelop approximately 38 acres of contiguous property known as 113 King Street (see **Figure 1** and **Figure 2**) in the Town of North Castle (the "Town"), Westchester County (the "County"), New York (the "Project Site"). The Project Site is generally bounded by Cooney Hill Road to the north, King Street to the east, and undeveloped forested areas bordering the Kensico Reservoir (owned by the City of New York) to the west and south. The Project Site consists of the following tax parcels and associated addresses:

- 118.02-1-1 (113 King Street): Approximately 36 acres generally located on the west side of King Street between American Lane and Cooney Hill Road (includes the majority of the Project Site);
- 113.04-1-13 (3 Weber Place): Approximately 1 acre on the south side of Cooney Hill Road (northwest corner of the Project Site); and
- 113.04-1-14 (1 Weber Place): Approximately 1 acre on the south side of Cooney Hill Road (northwest corner of the Project Site).

The Project Site is the former location of the Municipal Bond Insurance Association's (MBIA) corporate headquarters, and is currently improved with approximately 261,000 square feet (sf) of office space within two currently vacant three-story buildings; an early 19th century farmhouse and accessory shed/barn (used for storage and maintenance purposes); surface parking lots; a three-story parking structure; outdoor amenities (including paved tennis courts and walking paths); and landscaping. As part of the Proposed Project, Airport Campus I-V LLC proposes to re-occupy the southernmost existing office building for office uses, adaptively re-use the northernmost existing office building as a hotel, and construct new residential uses to the north of these existing buildings in the form of a five-story multifamily building and approximately 22 townhouses (the "Proposed Project," see **Figure 3**). In addition, an existing 43-space parking lot at the southern end of the project site will be expanded to include 137 spaces and will involve new concrete curbs, asphalt pavement, lighting, concrete sidewalks, and landscaping. The existing pavement would be removed and the majority of the pavement-related disturbance is expected to be within 1.5 feet (18 inches) of the existing ground surface. Two subsurface infiltration systems will be installed at depths ranging between 8 and 10 feet of the ground surface, one to the northwest of the existing farmhouse and one to the northwest.

The construction of the Proposed Project would require permits and approvals from Town, County, and State agencies, including the Town Board; the North Castle Planning Board; the Town of North Castle Engineering Consultant; the Town of North Castle Water and Sewer, Highway, and Buildings Departments; the Westchester County Departments of Health and Environmental Facilities; the New York State Department of Environmental Conservation (NYSDEC), including a State Pollution Discharge Elimination System (SPDES) General Permit for Stormwater Discharges; the New York City Department of Environmental Protection (DEP) for approval of a stormwater pollution prevention plan; and, the New

York State Department of Transportation (NYSDOT). The Proposed Actions are therefore subject to the State Environmental Quality Review Act (SEQRA) and Section 14.09 of the New York State Historic Preservation Act pursuant to the rules and regulations of SEQRA (Article 8 of the Environmental Conservation Law and its implementing regulations at 6 NYCRR 617). The Town Board, acting as SEQRA Lead Agency, has determined that the Proposed Actions have the potential to result in one or more significant environmental impacts. To identify appropriate measures to mitigate potential impacts and allow the public the greatest opportunity to comment on the potential impacts of the Proposed Actions, the Town Board adopted a Positive Declaration on September 12, 2018, requiring the preparation of an Environmental Impact Statement (EIS).

Pursuant to Section 14.09 of the New York State Historic Preservation Act, consultation was initiated with the New York State Office of Parks, Recreation, and Historic Preservation (OPRHP). In a comment letter dated September 26, 2018, OPRHP determined that a Phase 1 Archaeological Survey be completed for those portions of the Project Site that would experience ground disturbance as a result of the Proposed Actions unless prior disturbance could be documented within the Project Site. This Phase 1A Archaeological Documentary Study ("Phase 1A Study") has been prepared pursuant to OPRHP's request. While a Phase 1 Archaeological Survey typically includes a combination of documentary research (i.e., "Phase 1A") and field testing (i.e., "Phase 1B"), this report summarizes the results of extensive documentary research designed to identify areas of potential archaeological sensitivity where Phase 1B Archaeological Testing will be necessary to confirm the presence or absence of archaeological resources and the need for additional phases of analysis as necessary.

B. SUMMARY OF PREVIOUS ENVIRONMENTAL REVIEW

Previous environmental reviews were completed as part of the construction and expansion of the MBIA campus between the 1980s and the early 2000s, however, it does not appear that a comprehensive review of archaeological resources was completed at that time. MBIA originally acquired an approximately 93,000-sf office building developed on the Project Site in the early 1980s. As part of that acquisition, MBIA secured and transferred 60,000 sf of additional development rights from what is now the Swiss Re parcel to the north and constructed a 60,000-sf expansion. After approvals were issued by the Town, construction of the expansion commenced in 1991 and occupancy commenced in 1993. Following a period of rapid corporate growth, MBIA recognized the need to expand its headquarters. Toward that end, and following completion of a review under SEQRA, MBIA received approval to construct an additional 100,000 sf of space in 1996, including approximately 75,000 sf of additional office space and 26,000 sf of amenity space. This brought the total development to approximately 261,000 sf of office and amenity space, which is the current development found on the Project Site. In 2002, MBIA determined that it needed additional space to accommodate its growing business. Accordingly, a Petition was submitted to the Town Board seeking certain zoning amendments that would permit an additional expansion of MBIA's corporate headquarters.

On October 8, 2003, the Town Board adopted a SEQRA Findings Statement and approved the necessary zoning amendments, including an amended Preliminary Development Concept Plan (PDCP) to permit the additional expansion. Subsequently, the Town Board granted a special permit approval and the Planning Board granted amended site plan approval to permit MBIA to develop an additional 165,000 sf of office space, together with 53,000 sf of additional amenity space, and a 20,000 sf meeting house. These approvals would increase the size of the MBIA corporate headquarters from approximately 261,000 sf of office and amenity space to approximately 400,000 sf of office space and 99,000 sf of amenity space, including the proposed meeting house. This approval also provided for the construction of a parking structure containing approximately 1,000 parking spaces. While the most recent approvals for the

additional expansion have been granted extensions by the Town and remain in full force and effect today, the additional development contemplated by those approvals has not occurred.

C. RESEARCH GOALS AND METHODOLOGY

The following Phase 1A Study of the Project Site has been designed to satisfy the requirements of OPRHP, issued in 2005, and it follows the guidelines of the New York Archaeological Council (NYAC), issued in 1994 and adopted by OPRHP in 1995. The study documents the development history of the Project Site as well as its potential to yield archaeological resources, including both precontact and historic cultural resources. In addition, this report documents the current conditions of the Project Site and previous cultural resource investigations that have taken place on the Project Site and in the vicinity.

This Phase 1A Study has four major goals: (1) to determine the likelihood that the Project Site was occupied during the precontact (i.e., Native American) and/or historic periods; (2) to determine the effect of subsequent development and landscape alteration on any potential archaeological resources that may have been located at the Project Site; (3) to make a determination of the Project Site's potential archaeological sensitivity; and (4) to make recommendations for further archaeological analysis, if necessary. The steps taken to fulfill these goals are explained in greater detail below.

The first goal of this documentary study is to determine the likelihood that the Project Site was inhabited during the precontact or historic periods and identify any activities that may have taken place on the Project Site that would have resulted in the deposition of archaeological resources. In order to determine the likelihood of the Project Site's occupation during the precontact and historic periods, documentary research was completed to establish a chronology of the Project Site's development and landscape alteration, and to identify any individuals who may have owned the land or worked and/or resided there and to determine if buildings were present on the project locations in the past. Data were gathered from various published and unpublished primary and secondary resources, such as historic maps, topographical analyses (both modern and historic), historic photographs, newspaper articles, local histories, and previously conducted archaeological surveys. Maps and property information were accessed through the office of the Westchester County Clerk. Information regarding previous archaeological sites and cultural resources investigations from the files of OPRHP and New York State Museum (NYSM) were accessed through the New York State Cultural Resources Information System (CRIS). Online textual archives, such as Google Books and the Internet Archive Open Access Texts, were also accessed.

The second goal of this Phase 1A study is to determine the likelihood that archaeological resources could have survived intact on the Project Site after development and landscape alteration (e.g., erosion, grading, filling). Potential disturbance associated with the construction and demolition of buildings, paving, and utility installation was also considered. Historic maps documenting structures on the project location were analyzed and historic and current topographical maps were compared to determine the extent to which the project locations have been disturbed. After identifying the likelihood that archaeological resources were deposited on the Project Site and the likelihood that they could remain intact given subsequent development and landscape alteration, a sensitivity determination was made for the project locations for both precontact and historic period resources. As described by NYAC in their *Standards for Cultural Resource Investigations and the Curation of Archaeological Collections in New York State*, published in 1994 and subsequently adopted by OPRHP (see page 2):

An estimate of the archaeological sensitivity of a given area provides the archaeologist with a tool with which to design appropriate field procedures for the investigation of that area. These sensitivity projections are generally based upon the following factors: statements of

¹ CRIS can be accessed at: https://cris.parks.ny.gov/.

locational preferences or tendencies for particular settlement systems, characteristics of the local environment which provide essential or desirable resources (e.g., proximity to perennial water sources, well-drained soils, floral and faunal resources, raw materials, and/or trade and transportation routes), the density of known archaeological and historical resources within the general area, and the extent of known disturbances which can potentially affect the integrity of sites and the recovery of material from them.

As stipulated by NYAC standards, sensitivity assessments should be categorized as low, moderate, or high to reflect "the likelihood that cultural resources are present within the project area" (NYAC 1994: 10). For the purposes of this study, those terms are defined as follows:

- Low: Areas of low sensitivity are those where the original topography would suggest that Native American sites would not be present (i.e., locations at great distances from fresh and salt water resources), locations where no historic activity occurred before the installation of municipal water and sewer networks, or those locations determined to be sufficiently disturbed so that archaeological resources are not likely to remain intact.
- Moderate: Areas with topographical features that would suggest Native American occupation, documented historic period activity, and with some disturbance, but not sufficient disturbance to eliminate the possibility that archaeological resources are intact on the Project Site.
- **High:** Areas with topographical features that would suggest Native American occupation, documented historic period activity, and minimal or no documented disturbance.

According to NYAC standards, Phase 1B testing is generally warranted for areas determined to have moderate sensitivity or higher. Archaeological testing is designed to determine the presence or absence of archaeological resources that could be impacted by a proposed project. Should they exist on the Project Site, such archaeological resources could provide new insight into the precontact occupation of Westchester County, the transition from Native American to European settlement, or the historic period occupation of the Project Site.

D. PREVIOUS ARCHAEOLOGICAL ASSESSMENTS IN THE VICINITY

PROPOSED FIBER OPTIC CABLE LINE BETWEEN RENSSELAER AND WESTCHESTER COUNTIES

In 2000, PanAmerican Consultants, Inc. completed a Phase 1 cultural resources investigation of a 130-mile-long fiber optic cable route extending between Rensselaer County and Westchester County along the eastern boundary of New York State (OPRHP Survey number 00SR50583). A portion of the extensive study area ran to the east of the Project Site within the streetbed of King Street. The study did not identify archaeological sensitivity within King Street in the immediate area of the Project Site and archaeological testing was not completed in that area, though areas of sensitivity were identified to the east and south.

DELAWARE AQUEDUCT SHAFT 17 SITE

Three phases of work were completed by archaeologist Eugene Boesch, PhD, in association with facility improvements completed by the New York City Department of Environmental Protection (NYCDEP) at the site of Delaware Aqueduct Shaft 17, located immediately northwest of the Project Site along Cooney Hill Road. A Phase 1A study of the site was completed in 2004 (OPRHP Survey Number 04SR54373) but the final report summarizing that investigation is not posted in CRIS and was therefore not reviewed as part of this study. A Phase 1B Archaeological Investigation was completed by Dr. Boesch in June 2004 (OPRHP Survey Number 04SR54726). The Phase 1B study area included the streetbed of Cooney Hill Road west of Weber Place. Test pits excavated along the road—including within and adjacent to Parcel

113.04-1-14 (a portion of the Project Site) did not identify intact archaeological resources dating to either the precontact or historic periods. Within some of the test pits in close proximity to the Project Site, groundwater was encountered within 4 to 8 inches of the ground surface while bedrock was encountered between 5 and 6 inches of the ground surface in some pits. No further archaeological analysis was recommended for the Cooney Hill Road portion of the study area. A Native American archaeological site and a historic period midden were observed in the upland areas of the Shaft 17 site. A Phase 2 Survey of the historic midden was completed by Dr. Boesch in November 2004 and additional mitigation or avoidance of the site was recommended.

A. CURRENT CONDITIONS

118.02-1-1 (113 KING STREET)

At approximately 36 acres in size, parcel 118.02-1-1 is the largest parcel included within the Project Site. The parcel is located on the west side of King Street between American Lane and Cooney Hill Road. The southern portion of the parcel is developed with the former MBIA campus. This area is developed with two vacant, interconnected three-story office buildings; an early 19th century farmhouse with an accessory shed/barn constructed in the late 20th century; surface parking lots; a three-story parking structure; outdoor amenities (including paved tennis courts, a large pond, walking paths); and landscaping. The northern two-thirds of the site is currently undeveloped, but was previously divided into 15 smaller lots, each of which was developed with a number of mid-20th century houses and associated outbuildings (e.g., sheds, garages) that were demolished in the late 2000s. Former access roads/driveways that led to these homes are still present within the Project Site and a map of the parcel produced by John Meyer Consulting Corp. in 2002 (revised 2005) during the previous lot consolidation indicates that one or more abandoned wells is still situated on each of the formerly developed residential lots now included within parcel 118.02-1-1. The map also identifies the presence of wells, water tanks, and water vaults on the MBIA property, as well as a 20-foot-wide sewer easement that runs parallel to King Street at the eastern side of the MBIA campus that connects to existing utility lines within King Street.

113.04-1-13 (3 WEBER PLACE) AND 113.04-1-14 (1 WEBER PLACE)

Parcels 113.04-1-13 and 113.04-1-14 each measures approximately 1 acre and are located on the south side of Cooney Hill Road at the northwest corner of the Project Site. As with the property in the northern portion of parcels 118.01-1-1, both parcels were previously developed with mid-20th century residential structures that were demolished in the early 2000s. Both properties are vacant but contain relics of the former residential development, including former driveways, landscaping elements, and abandoned wells.

B. GEOLOGY AND TOPOGRAPHY

Westchester County is found within a geographic bedrock region known as the Hudson Highlands Physiographic Province. This region represents some of the oldest bedrock in the area that was formed as sedimentary and volcanic rock 1.3 billion years ago and later transformed into metamorphic rock (Isachsen, et al. 2000). The bedrock in the vicinity of the Project Site is characterized by Fordham Gneiss and Yonkers Gneiss, both of which date to the Upper Proterozoic Eon, which extended between 2,500 and 650 million years ago (Fisher, et al. 1970; Isachsen et al. 2000). The surficial soils in the immediate area of the Project Site are identified as exposed bedrock but throughout the majority of the region, the bedrock is covered with glacial till known as the Atlantic Coastal Plain deposits (Schuberth 1968; Cadwell 1989). These deposits were left behind by massive glaciers of up to 1,000 feet thick that retreated from the area towards the end of the Pleistocene. There were four major glaciations that affected the region until approximately 12,000 years ago when the Wisconsin period—the last glacial period—came to an end (Schuberth 1968).

The historical topography of the Project Site was recorded on historical maps, such as the 1892 United States Geological Survey (USGS) map (see **Figure 4**). That map indicates that the original elevation of the Project Site was situated at approximately 400 feet above sea level along its northwestern side and then it sloped up to an elevation of approximately 460 feet at the northeastern corner. The southern portion of the Project Site featured downward slopes leading to the location of the former MBIA campus, which was located at an elevation of approximately 420 feet. The Project Site's current topography is generally similar, with the northern half ranging from approximately 410 to 470 feet from west to east. The southern portion of the Project Site appears to have undergone landscape modification, presumably as a result of the construction of the MBIA campus. Elevations at the extreme southern end of the Project Site vary slightly but are consistently around 410 feet above sea level.

C. HYDROGRAPHY

The Project Site is currently situated east of the Kensico Reservoir, which was constructed in the early 20th century as part of an effort to bring fresh drinking water from upstate New York to New York City. The reservoir incorporated two adjacent bodies of water that were historically south and west of the Project Site: Rye Pond and Little Rye Pond (see **Figure 4**). Rye Pond was originally more than 210 acres in size and was an important source of fish and fresh water to the local communities that resided near it during both the precontact and historic periods (Bolton 1848). A smaller pool at its western end was known as "Little Rye Pond" and both bodies of water drained into the Bronx River (ibid). At its closest point, the pond was 2,900 feet south of the Project Site. A network of streams extended west from Little Rye Pond and ran to the north and east, coming within 300 to 600 feet west of the Project Site.

D. SOILS

The soil survey of Westchester County published by the National Resource Conservation Service (United States Department of Agriculture) indicates that the Project Site is located in the vicinity of seven soil complexes that vary based on soil composition and slope: three complexes associated with Charlton Fine Sandy Loam (ChB, ChC, and ChD); the Charlton-Chatfield complex (Crc and CsD); and two complexes associated with Paxton Fine Sandy Loam (PnB and PnC). The Charlton series typically well-drained soils found on hills and ridges in areas with varying slopes that range between 3 to 8 percent (ChB), 8 to 15 percent (ChC), and 15 to 25 percent (ChD). Charlton soils are mixed with Chatfield soils in the Charlton-Chatfield complex, which is typically found in rocky areas on ridges and hills with slopes ranging from 0 to 15 percent (Crd) or 15 to 35 percent (CsD). The Paxton fine sandy loam complex is also typically found in hilly areas and is typified by layers of well-drained sandy loam. These soil complexes and/or their component soil types are summarized in **Table 2-1**.

Table 2-1 **Study Area Soils**

Series Name (Map Symbol)	Soil Horizon Depth (in)	Soil Type	Slope (%)	Drainage	Landform
Chatfield Complex	Oi: 0 to 1	Slightly decomposed plant material	CrC: 0 to 15 CsD: 15 to 15	Well drained	Ridges and hills
	A: 1 to 2	Fine sandy loam			
	Bw: 2 to 30	Gravelly fine sandy loam			
	C: 30 to 40	Bedrock			
Charlton Complex	Oe: 0 to 2	Moderately decomposed plant material	ChB: 3 to 8 ChC: 8 to 15 ChD: 15 to 25	Well drained	Ridges and hills
	A: 2 to 4	Fine sandy loam			
	Bw: 4 to 27	Gravelly fine sandy loam			
	C: 27 to 65	Gravelly fine sandy loam			
Paxton Complex	Ap: 0 to 8	Fine sandy loam	PnB: 3 to 8 PnC: 8 to 15	Well drained	Hills, drumlins, and ground moraines
	Bw1: 8 to 15	Fine sandy loam			
	Bw2: 15 to 26	Fine sandy loam			
	Cd: 26 to 65	Gravelly fine sandy loam			

Sources:
Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Web Soil Survey. Available online at http://websoilsurvey.nrcs.usda.gov/. Accessed June 11, 2019.

In general, Native American habitation sites are most often located in coastal areas with access to marine resources, near fresh water sources and areas of high elevation (NYAC 1994). Further indication of the potential presence of Native American activity near a project site is indicated by the number of precontact archaeological sites that have been previously identified within 1 mile of the project site. Information regarding such previously identified archaeological sites was obtained from various locations, including the site files of OPRHP and the NYSM—accessed through CRIS² and from published accounts. These sites are summarized in **Table 3-1**.

Table 3-1
Precontact Archaeological Sites within 1 Mile of the Study Area

	Trecontact Archaeological Sites within 1 wine of the Study Arca					
Site Name/Number	Site Type	Approximate Distance from Project Site at Closest Point				
Parker 1920: Westchester Site 43						
NYSM Site 5179	Village near Rye Lake	150 feet	Parker (1920)			
Parker 1920 Westchester Site 45						
NYSM Site 5181	Camp near Rye Lake	4,000 feet	Parker (1920)			
Unnamed Site						
NYSM Site 5233	Camp near Rye Lake	4,400 feet	Parker (1920)			
Rye Lake Site	•					
NYSM Site 6807	Late Archaic site of unknown type	2,250 feet	N/A			
IBM Headquarters Office Building	Camp with lithic points associated with					
Site, Armonk	the LeCroy phase of the Early Archaic					
OPRHP Site 11910.000041	Period (8,500 to 7,800 BP)	5,300 feet	Boesch 1995			
Source: The files of NYSM and OPRHP (accessed through CRIS).						

Grumet (1981) suggests that the general vicinity of the Project Site was occupied by the Wiechquasegeck, an Upper Delawaran group that occupied much of the area now occupied by the Bronx and Westchester County. The majority of the known information regarding the precontact occupation in the area was recorded in historic accounts published by archaeologists and avocational archaeologists in the early 20th century. Parker (1920) noted the presence of a village site (NYSM Site 5179) and two camps (NYSM Sites 5181 and 5233) in the vicinity of Rye Lake to the south of the Project Site. One additional site (NYSM Site 6807) was also identified in the vicinity of Rye Lake, but little information is available regarding the type of site although it is believed to have dated to the Late Archaic period. All of these sites were likely related to the larger Rye Pond site, described as a large village, identified in the early 20th century by M.R. Harrington and later reported by R.P. Bolton (Bolton 1975). Harrington (1909) identified a village and at least three camp sites surrounding the original shores of Rye Pond.

Only one site, the IBM Headquarters Office Building precontact site located more than 1 mile northeast of the Project Site, was identified through a modern professional archaeological investigation. The site was determined to be a campsite dating to the Early Archaic period and contained a number of lithic points associated with the LeCroy phase of lithic technology.

² https://cris.parks.ny.gov/

A. EARLY HISTORY OF NORTH CASTLE

Most or all of the land within North Castle was purchased from the local indigenous population—property records indicate that land was granted by sachems Ponus and Wascussue—by Nathaniel Turner, a Connecticut resident, in 1640, although later transactions for the same land were made between Native Americas and European settlers (Bolton 1848). The last Native American legal claim to the land—as determined by colonial settlers—was released in 1705 and thereafter, no indigenous groups are mentioned in property records (ibid). Early settlers in the area originally lived in the vicinity of Rye, New York and included members of the Brundage, Griffen, Lockhard, Quinby, and Clapp families, among others (ibid). Many of the early settlers in the vicinity of western North Castle and the town of Armonk were Quakers who relocated to the area from Rye, New York—hence the naming of Rye Pond—and Long Island (Watson n.d. a).

The Town was one of several townships within Westchester County that was formally designated in March 1788, and at that time the modern township of New Castle was also included within the Town's boundaries (Bolton 1848). The hills of the North Castle area made the location attractive to armies fighting on both sides of the Revolutionary War (Miller 1975). French troops are known to have set up encampments on the northern shore of Rye Pond and in the vicinity of Cooney Hill during the war (ibid). By the 19th century, North Castle was predominantly agricultural, with its landscape lined with large farms, although niche industries such as shoemaking were prominent in the area (Watson n.d. b). With the construction of rail lines connecting North Castle to urban areas to the north and south, development began to increase in the region and its pastoral nature was slowly altered (ibid).

B. 19TH CENTURY OCCUPATION OF THE PROJECT SITE

By the mid-19th century, North Castle was a largely agricultural community and its crops were sold to the increasingly dense population of New York City to the south (Tomback, et al. 2017). Three farmers occupied the lands surrounding Rye Pond, including Ezra Carpenter to the south, Thomas Clapp to the east, and Oliver Matthews to the north (Bolton 1848). John Griffen was the owner of an extensive estate in North Castle in the late 18th and early 19th centuries and his land holdings appear to have included the Project Site by the early 19th century (Tomback 2012). A map of the town produced by William Adams in 1797 depicts a house and general store owned by Griffin on the east side of King Street to the north of the Project Site (ibid). The elder John Griffen lived between 1755 and 1826 and he married Esther Cromwell (1760-1832) in 1777 (Ross 1902). A previous archaeological investigation documented historic period resources on the site of John Griffen's farm to the north of the current Project Site (Sopko 2000). Griffen appears to have owned vast amounts of land in the area, including a 175-acre estate located at the northwest corner of Cooney Hill Road and King Street, and he appears to have acquired land to the south, including the Project Site (Tomback 2012).

The first map to clearly document the names of property owners in the North Castle area is the 1851 Sidney and Neff map, which identifies "G. Griffin" as the owner of the property on the west side of King Street (see **Figure 5**). The Griffin home is shown in the approximate location of the existing historic house near the southern end of the Project Site. The 1858 Merry map depicts the property in a similar

manner and continues to identify the property as part of the Griffin family's land holdings. Prior to George Griffen's acquisition of the land, it had been owned by his father, John J. Griffen. John J. Griffen's other heirs, including Mary Quinby (nee Griffen), Mary's husband, Isaiah, and Elizabeth Griffen, sold their shares of the estate to George Griffen in two land transactions in 1846, after their father's death (Westchester Liber 113, Pages 419 and 421). The property described in these transactions is identical to that described when John J. Griffen was granted property by his parents John and Ester Griffen in 1813 (Westchester Liber 51, Page 201; Tomback 2012). It therefore appears that the Griffen family likely owned the Project Site as well as some of the surrounding farmland for many years before the publication of the first maps depicting their home.

In the 1850 census, George Griffen (born circa 1823) was recorded as a farmer who resided alone on a property valued at \$9,000. Two similar entries in the 1860 federal census appear to indicate that Griffen was recorded twice. The first entry in a ledger entry dated June 28, 1860 (census page 63), 37-year-old Griffen (birth year 1823) was recorded as a farmer who was born in New York and owned \$5,000 in real estate and had a personal estate valued at \$1,000. Griffen lived with his wife, Sarah (age 28), daughter Adelaide (age 1), Frances Adams (female, age 13), and Stephen Farington. Each of these individuals was born in New York with the exception of Sarah Griffen, who was born in Connecticut. The second entry, recorded on June 14, 1860 (census page 19), identifies the following individuals living within a shared home with many other families: George Griffen (age 27, real estate valued at \$5,000 and personal estate valued at \$1,000; Sarah J. Griffen (age 27, born in Connecticut); Samantha Griffen (age 1, born in Connecticut); and Francis Adams (age 13, male, born in Connecticut). While the first record is likely correct, the second record may be a duplicate with several inaccuracies or may represent a second Griffen family with a number of unlikely similarities.

In 1865, George and Sarah Jane Griffen sold their 80 acre farm to John S. Antrim for \$6,500 (Westchester Liber 557, Page 135).³ The deeds identifies Antrim as a resident of Brooklyn at the time of the initial sale. The 1870 Federal census describes Antrim as a 53-year-old farmer and builder who was a native of New Jersey and who owned \$10,000 in real estate. Antrim lived with his wife, Hannah C. Antrim, who is identified in the 1870 census only as Mrs. J. Antrim, their three children, and a 12-year-old domestic servant named Mary A. Diwan. John S. and Hannah C. Antrim sold a 20-acre area in the western portion of their farm to Edward Middleton in 1868 (Westchester Liber 700, Page 61).⁴ The Middleton property is not depicted on Beers atlases of North Castle published in 1867, 1868, and 1872 (see **Figure 6**). All three maps depict only the home of "J.S. Antram [sic]" along the western side of King Street.

John S. and Hannah C. Antrim sold the remaining portion of their farm, now measuring 60 acres, to Jacob Story (also spelled Storey) in 1874 (Westchester Liber 872, Page 52) and the Story family would occupy the property for the next several decades. In 1888, Jacob and Maria Story sold the property to Charles H Story (Westchester Liber 1288, Page 394). The 1881 Beers map identifies "Storey" as the occupant of the home along the western side of King Street and continues to indicate that no other developed properties were located in the vicinity. Similarly, the 1891 USGS map (see **Figure 4**) depicts only the Story home within the Project Site and the 1893 Bien atlas identifies the 60-acre parcel as the property of "Chas. Story." Only one household occupied by members of the Story family in North Castle was recorded in the 1880 census, that of Charles H. Story, who is identified as a farmer. Charles lived with his wife, Sarah A. Story, and their three children.

Charles Story died in 1894 and 3 years later his heirs, including Sarah A. Story and her children, sold the 60-acre farm to Thomas D. Penfield of Manhattan for the price of "one dollar (and other good and

11

³ A second deed dated 1869 (Westchester Liber 842, Page 184) appears to indicate that Anna B. Howard granted the same property to Hanna C. Antrim.

⁴ The deed that recorded the 1868 sale references an 1867 map of the property made by Oliver A. Hyatt, but such a map could not be located.

valuable consideration)" (Westchester Liber 1453, Pages 468 and 472) and Penfield is identified as the owner on the 1900 Hyde atlas of Westchester. The Penfield home was included within the 1900 Federal census. At that time, the home was occupied by Thomas Penfield, a 52-year-old farmer, his 25-year-old wife, Mabel, and their infant son. The family shared their home with two laborers who may have worked on the farm: Theodore Robinson, who was of African descent, and John Powers, who was Irish, as well as an American servant named Phebe Bennett.

C. EARLY 20TH CENTURY OCCUPATION OF THE PROJECT SITE

Thomas Penfield sold the 60 acre estate to William W. Penfield in 1902, again for one dollar, (Westchester Liber 1730, Page 430) and William W. and Jean N. Penfield immediately sold it to Emil and Marie Weber of the Town of Bedford 3 years later for \$100 and "other considerations" (Westchester Liber 1731, Page 355). The Weber family would continue to reside on the property for decades in the first half of the 20th century and were responsible for the subdivision of the larger 60-acre farm. The Weber family was recorded as residents of North Castle in the 1900 census, at which time the house was occupied by Emil, a German farmer; Marie, who is identified as a German native who ran a boarding house for summer boarders (possibly farm laborers); their three children, two of whom worked on the farm; and James Terry, a "hired man" who worked as a farm laborer. The same individuals, minus the Weber's daughter, are identified as the home's residents in the 1920 census, which is the first to indicate that the home was on King Street.

The 1908 Hyde atlas depicts the Project Site across two different plates and the site does not appear to be depicted in its entirety. The northern portion is shown as the property of Emil Weber, which is depicted to the south of a smaller parcel owned by Otto A. Hartmann. Hartmann was the president of the North Castle Real Estate Company and owned numerous large tracts of land in the area (*The Sun* 1919). No buildings are shown on the Weber property, but the connecting page depicts what may be the former Griffen/Story/Penfield home although the map labels it with the name "Meyer."

D. THE CONSTRUCTION OF RESERVOIRS AND WATERWORKS

The landscape of the Kensico and North Castle area was greatly changed as a result of the construction of the Kensico Reservoir and associated waterworks in the late 19th and early 20th centuries. The first dam near the village of Kensico was constructed in 1885 as part of early attempts to bring fresh water from upstate New York to New York City via a vast network of aqueducts and reservoirs (Miller 1975). This resulted in the creation of a lake in areas formerly occupied by a portion of the village (ibid). A USGS map published in 1899 reflects the inundation of the areas immediately to the west and south of the Project Site. Between 1909 and 1917, a larger dam with associated infrastructure and access routes was constructed that reached heights of 128 feet above ground and extended to below-ground depths of 180 feet, dramatically changing the landscape of the area and flooding formerly habitable land, creating the network of lakes and waterways that is seen in the area to this day (ibid). Following the construction of the dam, the water levels rose by more than 100 feet (Martin 1983). The Project Site was located immediately east of the land acquired by the City of New York for reservoir-related construction efforts.

The 1911 Bromley atlas (see **Figure 7**) similarly does not depict any buildings within the Project Site and identifies Hartmann as the owner of the Project Site, which is depicted as a separate property for the first time. A dashed line on the map appears to depict a road near the northern end of the Project Site, although his was likely an older road as Cooney Hill Road was relocated at some point in the early 20th century (Miller 1975). On July 13, 1912, the *Eastern State Journal* reported that Emil Weber had been granted a mortgage for a 24.620-acre parcel at the corner of Cony [sic] Hill Road and King Street by Hartmann and one week later on July 20, the paper reported that Hartmann conveyed to Weber a parcel at the southwest corner of Coney [sic] Hill Road and King Street. It therefore appears that the two families passed land in

the vicinity of the Project Site back and forth as census records do not indicate that Hartmann was a resident of North Castle in either 1910 or 1920.

The 1930 Hopkins atlas is the first to clearly depict both property boundaries and show building footprints in the vicinity of the Project Site (see Figure 8). The Project Site is shown within a 39-acre parcel owned by Emil Weber. Six buildings were constructed on the property at that time: two wood-frame buildings along the western side of King Street near the southern side of the Project Site and four buildings that are identified in the map's key as garages, barns, or sheds, three of which were located in close proximity to the farmhouse and one of which was located on the western side of King Street near the northern end of the Project Site. The 1930 census includes an entry for the Weber home on King Street. The "head" of the house as identified in the census was Edwin Weber, who appears to have taken over his father's farm. Edwin lives with his wife, Mildred, his two daughters, his parents Emil and Marie Weber, and James Terry, the farm laborer who had resided with the family for several decades. Emil Weber continued to own the property at that time. Adjacent to the family in the census ledger were homes inhabited by other families and individuals who worked as farm hands, gardeners, herders, or other agricultural professions and who may have resided on the Weber property, perhaps in the summer boarding house previously referenced. The 1940 census does not identify street names, but continues to identify Edwin Weber as the head of house and a farmer and indicates that he resided with his wife, Mildred, and their four children. A 1942 map of North Castle by Dolph and Stewart continues to depict Edwin Weber as the property's owner.

E. REDEVELOPMENT OF THE SITE IN THE SECOND HALF OF THE 20TH CENTURY

Few maps were published in the second half of the 20th century that clearly depict conditions on the Project Site, however, a number of aerial photographs were taken during this time period that are posted on the "Mapping Westchester" database maintained by Westchester County. The earliest photo, taken in 1947, continues to depict the site as farmland. The extreme northwestern end was wooded and sloped down to the west towards the reservoir. The remainder of the northern portion of the Project Site was divided into parcels, some of which were planted with what appears to have been an orchard. Several structures were present along the western side of King Street in the northern half of the site. The southern portion of the site was similarly divided into farm parcels and was developed with a series of buildings in locations similar to those seen on the 1930 Hopkins atlas. USGS maps of the area published in 1944 and 1951 depicts orchard in the same location as those seen on the 1947 aerial photograph and the 1944 map appears to depict some of the internal divisions between different portions of the farm as stone walls. The 1951 USGS map also identifies one of the buildings in the southern portion of the property as "Associated Press Radio Sta." An aerial photograph taken in 1960 depicts the southern portion of the site in a similar manner. However, the northern portion had been subdivided and developed with a number of houses. These houses are also shown on a 1960 USGS map.

By the time the 1990 aerial photograph was taken, a portion of the MBIA campus, including the northern office building and its adjacent parking lot and the large pond located at the southwest corner of the site, had been constructed at the southern end of the Project Site. The farmhouse located at the southeastern corner of the site was still present. By the time another photograph was taken in 2000, the existing garage to the west of the former farmhouse was constructed, as were the parking garage and southern building on the MBIA campus. No changes are depicted on an aerial taken in 2004, but by 2007, tennis courts had been constructed at the northern end of the MBIA campus and the majority of the houses in the northern portion of the Project Site had been demolished, leaving the Project Site in the condition in which it is seen today.

⁵ https://giswww.westchestergov.com/gismap/

A. CONCLUSIONS

As part of the background research for this Phase 1A Study, various primary and secondary resources were analyzed, including historic maps and atlases, building records, and other historical documents. The information provided by these sources was analyzed to reach the following conclusions described below.

SITE DISTURBANCE CHARACTERIZATION

The southern portion of the Project Site, the former MBIA campus, has experienced the most extensive disturbance as a result of the construction of the existing office buildings, parking garage, decorative pond, tennis courts, and utilities/subsurface infrastructure. While utilities, paved driveways, and a parking garage surround the early 19th century farmhouse located within the MBIA campus, the full extent to which the area surrounding the house has been disturbed is unknown. Additional disturbance would also have occurred in the northern portion of the site as a result of the construction and demolition of more than one dozen houses between the mid-20th century and the early 21st century. However, some areas within the residential properties may not have been fully disturbed.

PRECONTACT ARCHAEOLOGICAL SENSITIVITY ASSESSMENT

In general, Native American habitation sites in the northeastern United States are correlated with level topography (typically less than 12 to 15 percent slopes), access to natural resources such as fresh water and lithic source material, and well-drained soils (NYAC 1994). The potential presence of Native American activity near a project site can also be predicted by the presence of previously identified resources in the vicinity. However, precontact archaeological sites tend to be relatively shallow, often within 5 feet of the original ground surface. Multiple Native American sites used for short- and long-term occupation were previously reported in the vicinity of Rye Pond, which was located a short distance to the south of the Project Site. It is therefore highly likely that some Native American activity occurred in the more level portions of the Project Site (i.e., those areas with slopes less than 12 percent). In the vicinity of the former MBIA campus, the original ground surface appears to have been extensively disturbed as a result of the construction of the existing office buildings, the large decorative pond, infrastructure, and other features such as tennis courts. That portion of the site is determined to have no sensitivity for precontact archaeological resources. However, portions of the ground surface in the northern portion of the site have been disturbed as a result of the construction and demolition of homes. The extent to which these level areas has been disturbed as a result of the construction and demolition of homes is not yet known. Therefore the northern portion of the Project Site (see Figure 9) is determined to have low to moderate sensitivity for precontact archaeological resources.

HISTORIC ARCHAEOLOGICAL SENSITIVITY ASSESSMENT

The earliest map-documented structure on the Project Site was located at its southern end and may be the same farmhouse that is currently located on the former MBIA campus. Several outbuildings (identified on the 1911 Bromley atlas as garages, sheds, or barns) are known to have been situated in the vicinity of the

house in the late 19th and early 20th centuries. Other farm-related structures were located along the western side of King Street in the northern portion of the Project Site. Prior to the construction of residential homes on the property in the late-20th century, the northern portion of the Project Site was occupied almost entirely by farmland and orchards. The areas of highest historic period archaeological sensitivity, in the vicinity of the former MBIA campus, are also the most disturbed. The area surrounding the historic farmhouse on the property is determined to have low to moderate sensitivity for 18th or 19th century shaft features (e.g., privies, cisterns, or wells) that would have been used by the residents of the home before the advent of indoor plumbing and septic systems. Such features were often filled with domestic refuse following the period of their active use. The remainder of the site is determined to have low sensitivity for historic period archaeological resources.

While historic period archaeological sensitivity has been identified in the vicinity of the farmhouse, project-related impacts in that area are not expected to impact the types of features that are thought to potentially be in that area (e.g., shaft features). The majority of disturbance in this area is expected to be associated with the construction of the expanded parking lot, for which proposed disturbance is expected to be within 1.5 feet of the existing ground surface. Disturbance associated with the installation of new lighting and associated feeder lines will be located more than 50 feet from the farmhouse. Also, as shown in the proposed project plans included as **Appendix B**, the areas of deeper disturbance where subsurface infiltration systems will be constructed to the northeast of the historic farmhouse (in what was historically the home's front yard) and the other would be located more than 100 feet to the northwest of the farmhouse. Shaft features are not expected to have been located in the front yard of the home, adjacent to a major road, nor are they expected to have been located at distances of more than 100 feet from the home.

B. RECOMMENDATIONS

Phase 1B archaeological testing is recommended in the northern portion of the Project Site as indicated on **Figure 9**. The testing should be designed to confirm the presence or absence of precontact archaeological resources within the Project Site. Testing is not recommended in areas that have been graded or paved or in areas with slopes greater than 12 percent. It is recommended that the Phase 1B testing be implemented in the northern portion of the Project Site once the Applicant is prepared to seek site plan approval from the Town, the project design is finalized, and the limits of disturbance associated with the Proposed Project are known. This would allow testing locations to be determined based on the location of project impacts as compared to areas of known disturbance.

No testing is currently proposed in the vicinity of the historical farmhouse, however, if project plans change that would result in more substantial disturbance (e.g., greater than 1.5 to 2 feet below the existing ground surface) to the areas in immediate proximity of the home, archaeological testing might be needed in consultation with OPRHP.

Beers, F.W.

1867 Atlas of New York and Vicinity. New York: F.W. Beers, A.D. Ellis, and G.G. Soule.

Beers, J.B.

1872 County Atlas of Westchester, New York. New York: J.B. Beers & Co.

Bien, Joseph R.

1893 Atlas of Westchester County, New York. New York: Julius Bien & Co.

Boesch, Eugene, PhD

1995 "New York State Prehistoric Archaeological Site Inventory Form: Site A11910.000041; IBM Headquarters Office Buildings, Armonk." Accessed through the New York State

Cultural Resource Information System (CRIS).

2004a Phase Ib Archaeological Investigation of the Delaware Aqueduct Shaft 17 Project Area;

Town of North Castle, Westchester, County, New York. Prepared for: New York City

Department of Environmental Protection; New York, NY.

2004b Phase II Archaeological Investigation of the Historic Period Cooney Hill Midden Site; Delaware Aqueduct Shaft 17 Project Area; Town of North Castle, Westchester, County,

New York. Prepared for: New York City Department of Environmental Protection; New

York, NY.

Bolton, Robert, Jr.

1848 A History of the County of Westchester from its First Settlement to the Present Time.

Volume I. New York: Alexander S. Gould.

Bolton, Reginald P.

1975 New York City in Indian Possession. Museum of the American Indian, Heye Foundation,

New York.

Bromley, G.W. and Company

1881 Atlas of Westchester County, New York. New York: George W. Bromley.

Bromley, George W. and Walter S.

1901 Atlas of Westchester County, New York. Philadelphia: G.W. Bromley & Co.

1910 Atlas of Westchester County, New York. Philadelphia: G.W. Bromley & Co.

Caldwell, Daniel, compiler/editor

1989 Surficial Geologic Map of New York: Lower Hudson Sheet. New York State Museum-

Geological Survey, Map and Chart Series #40. Albany: New York State Museum.

Dolph and Stewart

1942 "Map of North Castle." In the collection of the North Castle Historical Society:

https://www.northcastleny.com/sites/northcastleny/files/uploads/1942 map.pdf

Proposed Redevelopment at 113 King Street—Phase 1A Archaeological Documentary Study

Eastern State Journal

"Mortgages: North Castle." *Eastern State Journal* July 13, 1912: 2. White Plains, NY.

1912b "Register's Docket, Deeds: North Castle." *Eastern State Journal* July 13, 1912: 2. White Plains, NY.

Fisher, Donald W., Yngvar W. Isachsen, and Lawrence V. Rickard, compilers/editors

1995 Geologic Map of New York: Lower Hudson Sheet. Originally published 1970, reprinted 1995. New York State Museum and Science Service Map and Chart Series No. 15.

Albany: New York State Museum.

Harrington, M.R.

1909 "The Rock-Shelters of Armonk, New York." Anthropological Papers of the American Museum of Natural History, Volume III: The Indians of Greater New York and the Lower Hudson. Edited by Clark Wissler: pages 125-138. New York: American Museum of

Natural History Trustees.

Hopkins, G.M.

1929 Atlas of Westchester County, New York. Philadelphia: G.M. Hopkins Co.

Hyde and Company

1900 Map of the Greater Portion of Westchester County, New York and the Towns of Greenwich and Stamford, Conn. Brooklyn, NY: Hyde & Company.

Isachsen, Y.W., E. Landing, J.M. Lauber, L.V. Rickard, W.B. Rogers, editors.

2000 Geology of New York: A Simplified Account. Second Edition. New York: New York State Museum Educational Leaflet 28.

John Meyer Consulting Group

2002 Parcel Compilation Survey depicting land of MBIA Insurance Corp. Westchester County Clerk File Map 27645.

Martin, Neil

1983 "The Lost Village: The History of Kensico and its Inundation." *North Castle History* 10: 3-16.

Merry, F.C.

1858 *Map of Westchester County, New York.* New York: M. Dripps.

Miller, Joseph

"Historical Kensico and the Hills of North Castle." *North Castle History* 2(1): 13-18.

New York Archaeological Council

1994 Standards for Cultural Resource Investigations and the Curation of Archaeological Collections in New York State. The New York Archaeological Council.

PanAmerican Consultants, Inc.

2000 Phase I Cultural Resources Investigation for the Proposed Telergy Fiber Optic Line and Alternate Route from Stephentown, Rensselaer County, to White Plains, Westchester County, New York. Prepared for: Telergy, Inc.; North Syracuse, NY.

Parker, Arthur C.

1920 The Archaeological History of New York. Albany: The University of the State of New

York.

Ross, Peter

1902 A History of Long Island from its Earliest Settlement to the Present Time. Vol 2. New

York and Chicago: the Lewis Publishing Co.

Schuberth, Christopher J.

1968 The Geology of New York City and Environs. Garden City, New York: The American

Museum of Natural History, the Natural History Press.

Sidney and Neff

1851 *Map of Westchester County, New* York. White Plains and Philadelphia: Newell S. Brown.

Sopko, Joseph

2000 "Farmstead Archaeology and the Impact of Agrarian Change at Three Sites in Eastern

New York State." *Nineteenth and Twentieth-Century Domestic Site Archaeology in New York* State. John P. Hart and Charles L. Fisher, editors: pages 149-175. Albany, NY: New

York State Museum.

The Sun

"Sale of the Chesterfield." *The Sun* May 20, 1919: page 11. New York, NY.

Tomback, Sharon

2012 "John Griffen." *North Castle History* 39:27-32.

Tomback, Sharon and the North Castle Historical Society

2017 Images of America: North Castle. Charleston, SC: Arcadia Publishing.

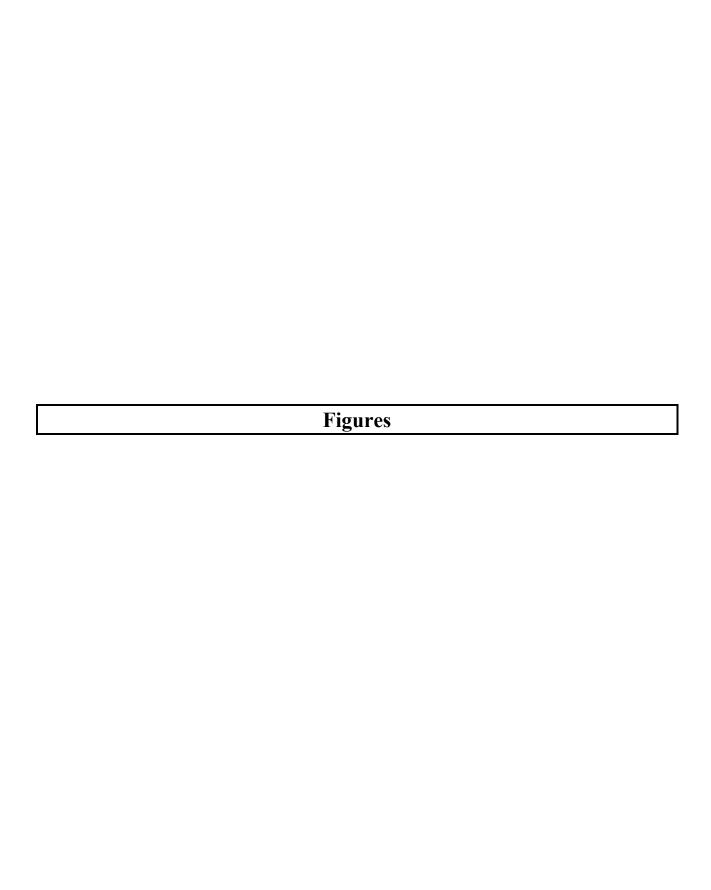
United States Geological Survey

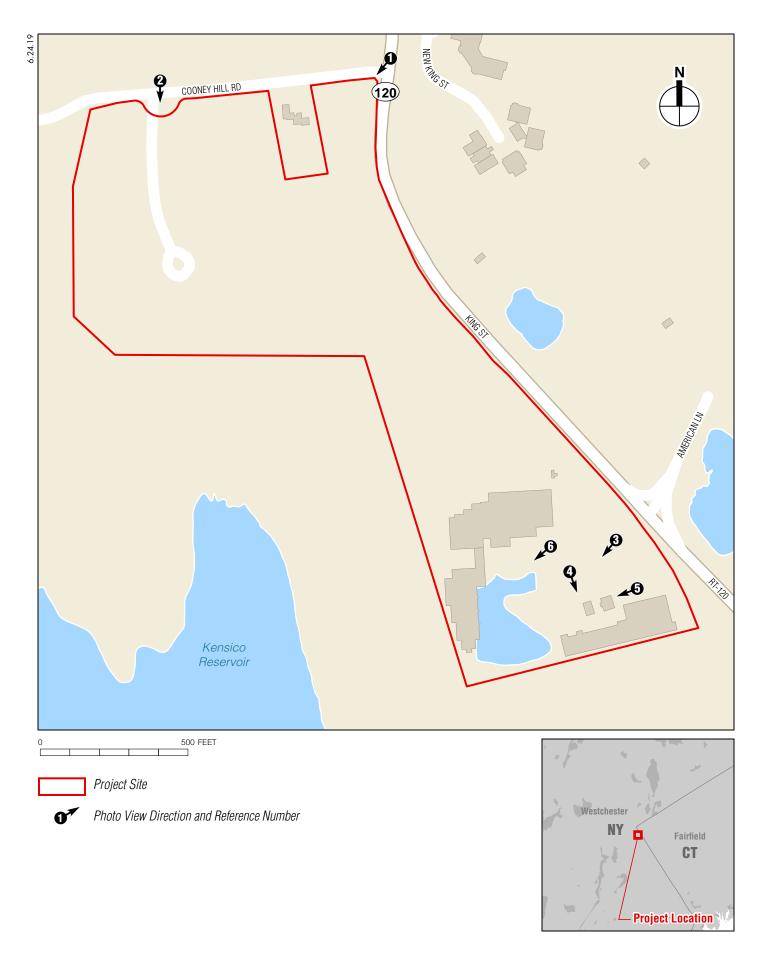
1892 New York-Connecticut: Stamford Sheet. Washington, DC: United States Geological

Survey.

1899 New York-Connecticut: Stamford Quadrangle. Washington, DC: United States

Geological Survey.


Watson, Doris Finch


n.d. a "The Early Days." Accessed June 21, 2019:

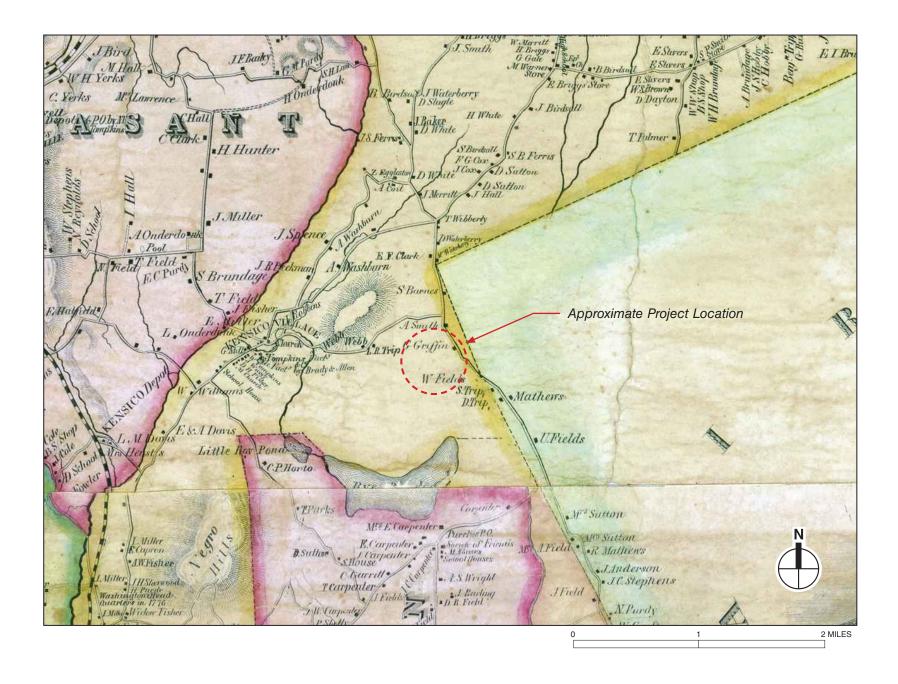
https://www.northcastleny.com/residents/pages/the-early-days.

n.d. b "The Nineteenth Century." Accessed June 21, 2019:

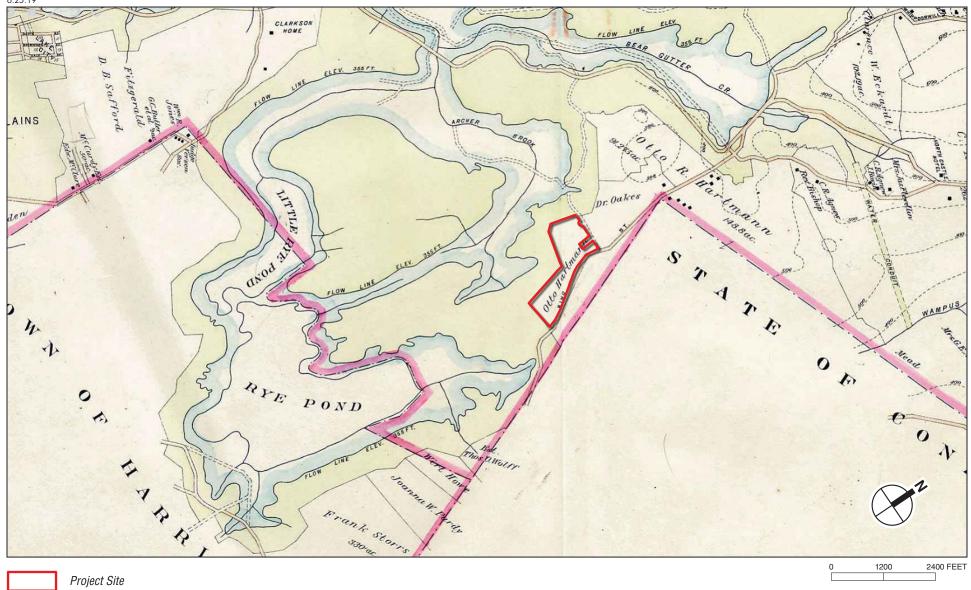
https://www.northcastleny.com/residents/pages/nineteenth-century

Project Location

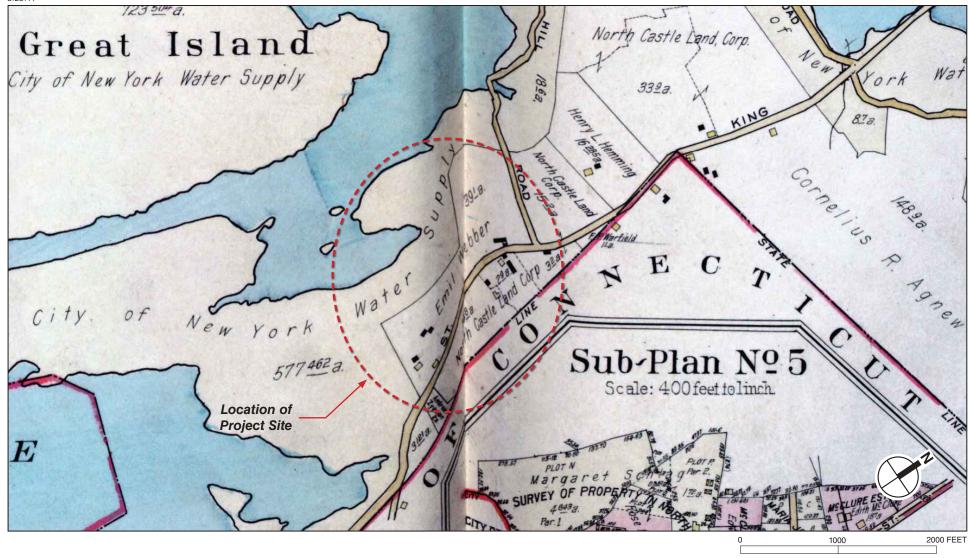
113 KING STREET Figure 1

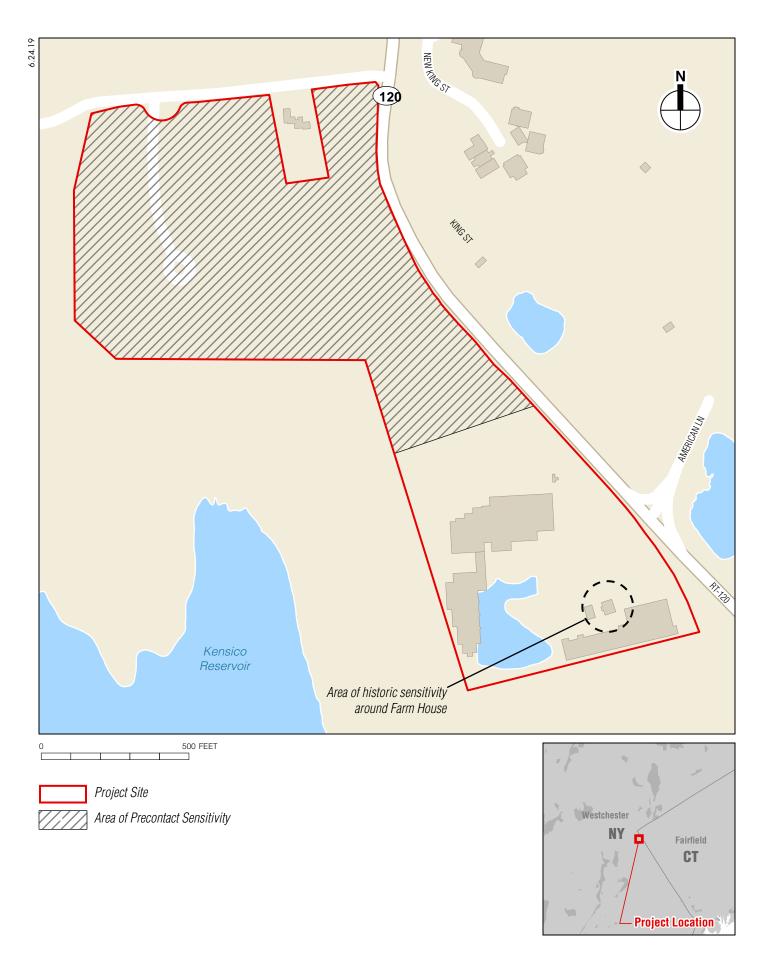

Aerial Map


113 KING STREET Figure 2

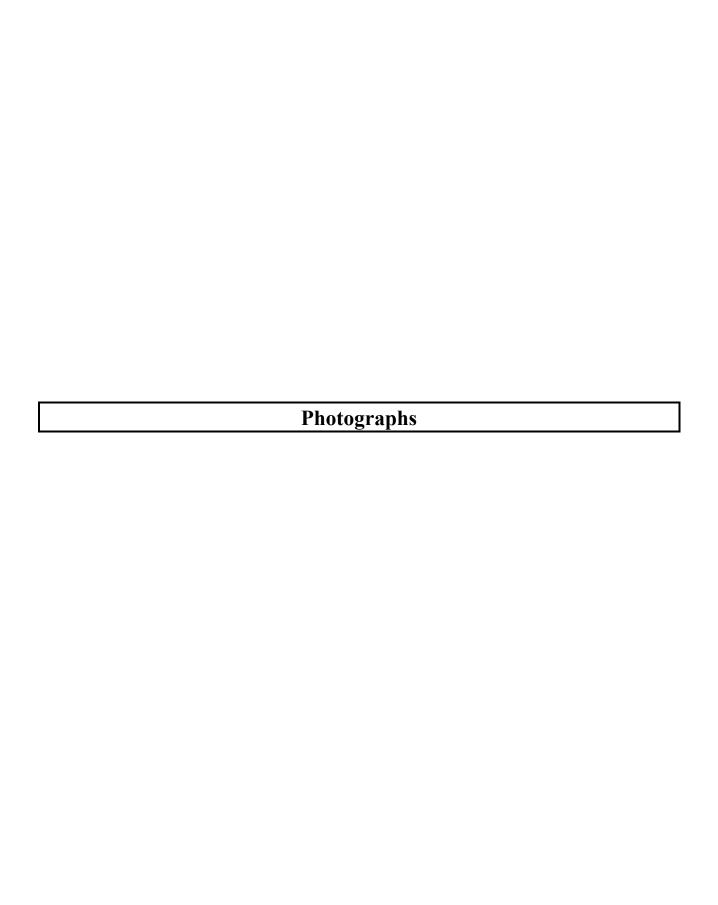


1892 USGS Map 113 KING STREET Figure 4





NOT TO SCALE


1911 Bromley Atlas Figure 7

Area of Archeological Sensitivity

113 KING STREET Figure 9

Looking southwest at the stone wall lining the northern side of the project site at the intersection of King Street and Cooney Hill Road

View south from Cooney Hill Road at former driveway leading to former residential structures in the northwestern portion of the project site

113 KING STREET Photographs

View from the driveway leading to the former MBIA campus, showing grade changes and the 19th century farmhouse at left

Showing the northern facades of the 19th century farmhouse and the adjacent garage, constructed in the late 20th century

113 KING STREET Photographs

The front façade of the 19th century farmhouse

The decorative pond and an office building on the former MBIA campus

113 KING STREET Photographs

ì

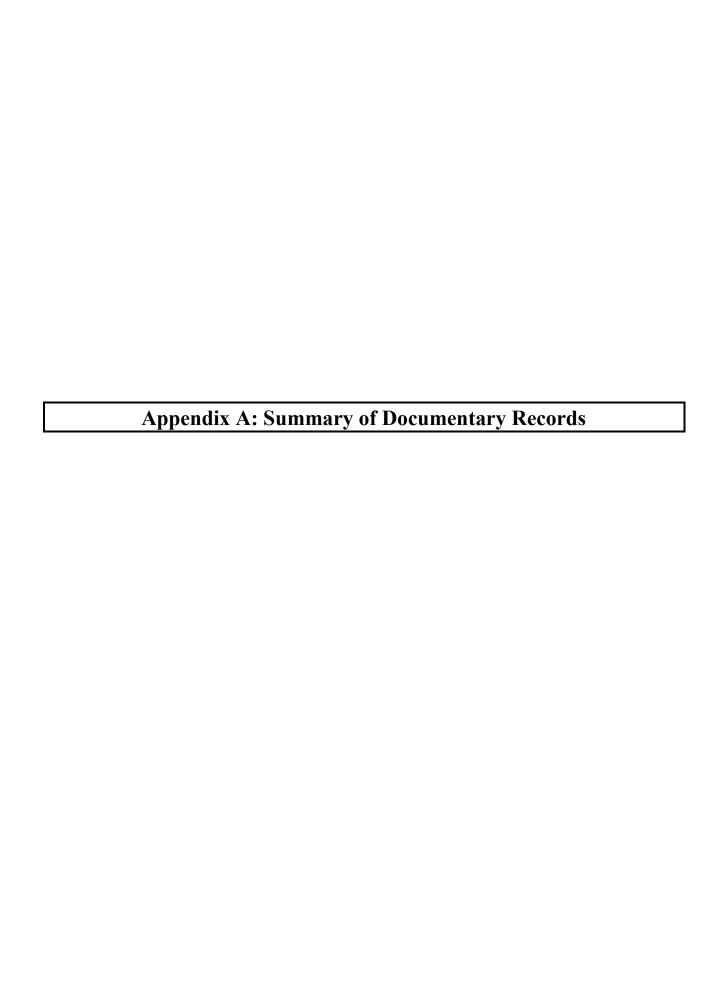


Table A-1
Summary of Historical Conveyance Records

Date of Document	Grantor	Grantee	Liber	Page	Size of Property
3/9/1813	John and Ester Griffen	John J. Griffen	51	201	Not indicated in deed
3/19/1846	Isaiah and Mary Quinby and Eliza Griffen (heirs of John J. Griffen)	George Griffen	113	419, 421	80 acres
4/1/1865	George and Sarah Griffen	John S. Antrim	557	135	80 acres
9/2/1868	John S. Antrim	Edward Middleton	700	61	20 acres
9/23/1869	Anna B. Howard	Hannah C. Antrim	842	184	60 acres
8/27/1874	Hannah C. and John Antrim	Jacob Story	872	52	60 acres
9/8/1888	Jacob and Maria Story	Charles H. Story	1288	394	60 acres
3/12/1897	Heirs of Charles H. Story	Thomas D. Penfield	1453	468, 472	60 acres
9/7/1902	Thomas D. and Mabel Penfield	William W. Penfield	1730	430	Not indicated in deed
12/26/1905	William W. and Jean Nelson Penfield	Emil Weber	1731	355	60 acres

Sources:

Conveyance records and Liber books accessed through the Westchester County Clerk's Records Online system (https://wro.westchesterclerk.com).

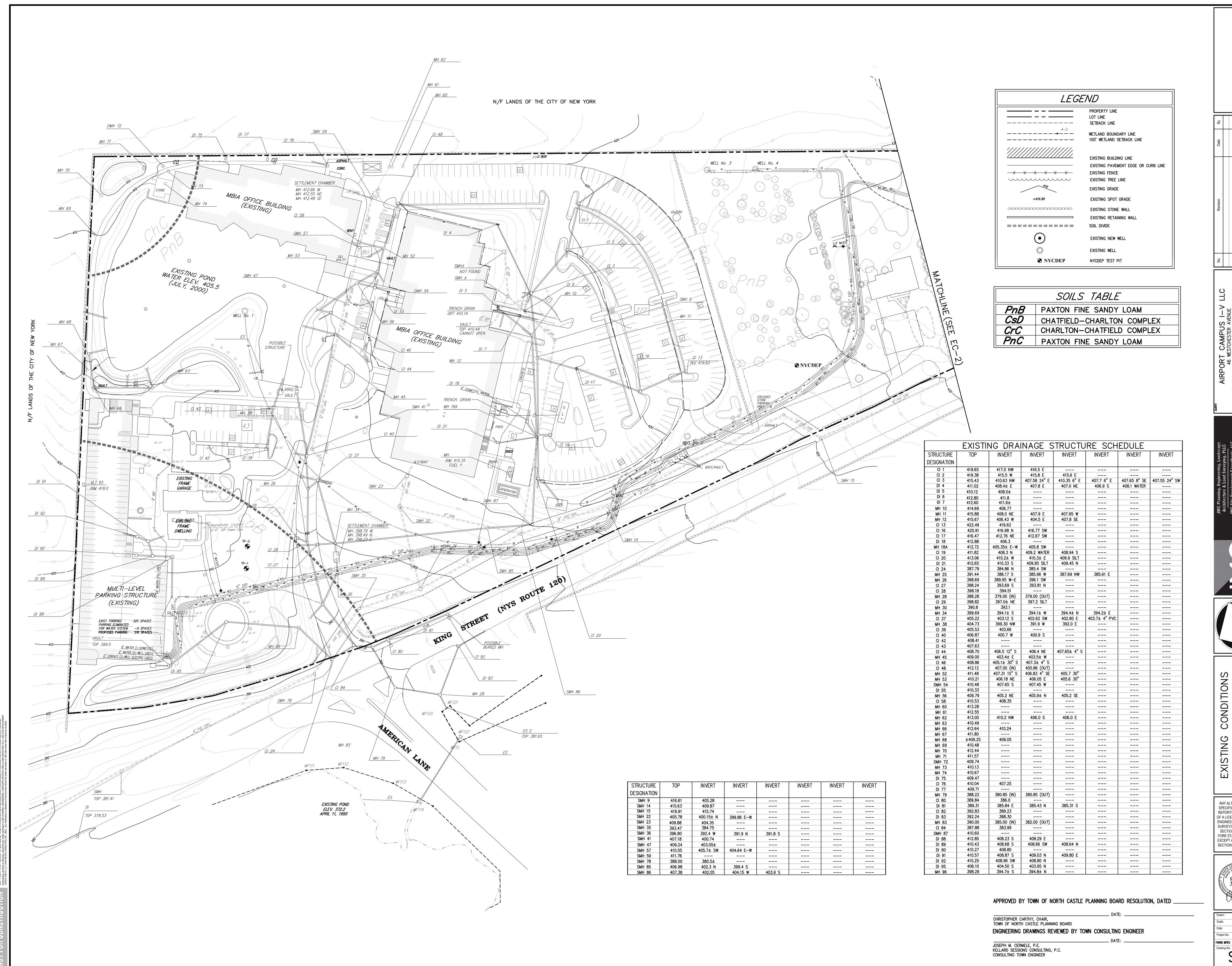
Table A-2 Summary of Census Records, 1850-1940

Year	Address	First Name	Last Name	Age	Gender	Race**	Occupation	Place of Birth	Other
	North Castle,								Real Estate value =
1850	NY	George	Griffen	27	M		Farmer	America	\$9,000
		Sylvanus	Curry	33	М				
		Elizabeth	Curry	23	F				
		Mary E.	Curry	9	F				
		Infant	Curry	1 mo.	F				
	North Castle.	George	Griffen	27	М				Real Estate value = \$5,000, Personal Estate = \$1.000
	NY (House	Sarah J.	Griffen	28	F			СТ	
	137, Family	Samantha	Griffen	1	F			CT	
	147)*	Francis	Adams	13	M			CT	
	,								Real Estate value = \$5,000, Personal
		George	Griffen	37	М		Farmer	NY	Estate = \$1,000
	North Castle.	Sarah G.	Griffen	28	F			CT	
	NY (House	Adelaide	Griffen	1	F			NY	
	455, Family	Frances	Adams	13	F			NY	
1860	485)*	Stephen	Farington	14	М			NY	
							Farmer &		Real Estate value = \$10,000, Personal
		John S.	Antrim	53	M	White	Builder	NJ	Estate = \$860
		Mrs. J.	Antrim	53	F	White		PA	
		Mary B.	Antrim	20	F	White	A (() C)	PA	
		Carrin	Antrim	11	F	White	Attd School	NY	
	North Castle,	Ella	Antrim	17	F	White	Attd School	NY	
1870	NY	Mary A.	Diwan	12	F	White	Servant Girl	NY	

Table A-2 (continued) Summary of Census Records, 1850-1940

								Place of	1030-1740
Year	Address	First Name	Last Name	Age	Gender	Race	Occupation	Birth	Other
		Charles H.	Story	30	M	White	Farmer	NY	
		Sarah A.	Story	28	F	White	Keeping House	NY	
							Attending		
		Eva M.	Story	8	F	White	School	NY	
							Attending		
	North Castle,	Nellie M.	Story	6	F	White	School	NY	
1880	NY	Mattie B.	Story	4	F	White		NY	
		Thomas D.	Penfield	52	M	White	Farmer	NY	Owns property
		Mabel	Penfield	25	F	White		NY	
		George J.	Penfield	5 mo.	M	White		NY	
		Theodore	Robinson	22	М	Black	Farm Laborer	NY	
	North Castle,	Phebe	Bennett	42	F	White	Servant	NY	Cannot read or write
1900	NY	John	Powers	35	М	White	Farm Laborer	Ireland	Cannot read or write
							Farmer-General	_	
		Emil	Weber	56	M	White	Farm	Germany	Owns farm
							Boarding		
					_		House-Summer	_	
		Marie	Weber	54	F	White	Boarders	Germany	
		-	14/ - I	00		\ \ / I - ! + -	Laborer-Home	NDZ	
		Emil	Weber	26	M	White	Farm	NY	
			\//=b==	40		\	Laborer-Home	NIX	
		Edward Anna	Weber Weber	18 16	M F	White White	Farm None	NY NY	
	North Castle.	Anna	vvebei	10	Г	vvriite	Hired Man/	IN Y	
1910	NOTH Casile,	James	Terry	53	М	White	Farm laborer	NY	
1310	INI	Emil	Weber	67	M	White	Farmer	Germany	Owns farm
		Marie	Weber	62	F	White	None	Germany	Owns failii
	Ганна - на I/in н	Emil	Weber	37	M	White	Farm Laborer	NY	
	Farm on King Street, North	Edward	Weber	28	M	White	Farm Laborer	NY	
1920	Castle, NY	James	Terry	62	M	White	Farm Laborer	NY	
1320	Oddic, N	Edwin	Weber	38	M	White	Farmer	NY	Rents home
		Mildred	Weber	23	F	White	None	NY	Terits nome
		Marie	Weber	4	F	White	None	NY	
		Claire	Weber	2	F	White	None	NY	
		Emil	Weber	77	M	White	Farmer	Germany	Owns home
	King Street,	Marie	Weber	75	F	White	None	Germany	Owns nome
	North Castle,	IVIGITO	VVCDCI	7.0	'	VVIIIC	None	Ocimany	Lived in same
1930	NY	James	Terry	75	М	White	Farm Hand	NY	house in 1935
1000	141	Janics	TOTTY	7.0	IVI	VVIIIG	Farmer on own	111	110030 111 1000
		Emil	Weber	48	М	White	farm	NY	
		Mildred	Weber	33	F	White	Housewife	NY	
		Marie	Weber	14	F	White		NY	
		Claire	Weber	12	F	White		NY	
	North Castle.	Edwin Jr.	Weber	8	M	White		NY	
1940	NY	Shirley	Weber	4	F	White		NY	


Notes:


Sources:

Federal census records accessed through Ancestry.com

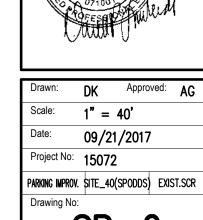
^{*}The Griffen family appears to be listed twice in 1860 census records, with minor differences in the two entries; the second listing, in which the family occupies their own home, appears to be correct while the first listing, in which the family resided with the family of Stephen Curry (other Curry family members living in the same home but a different census household have been omitted from this summary) appears to be inaccurate.

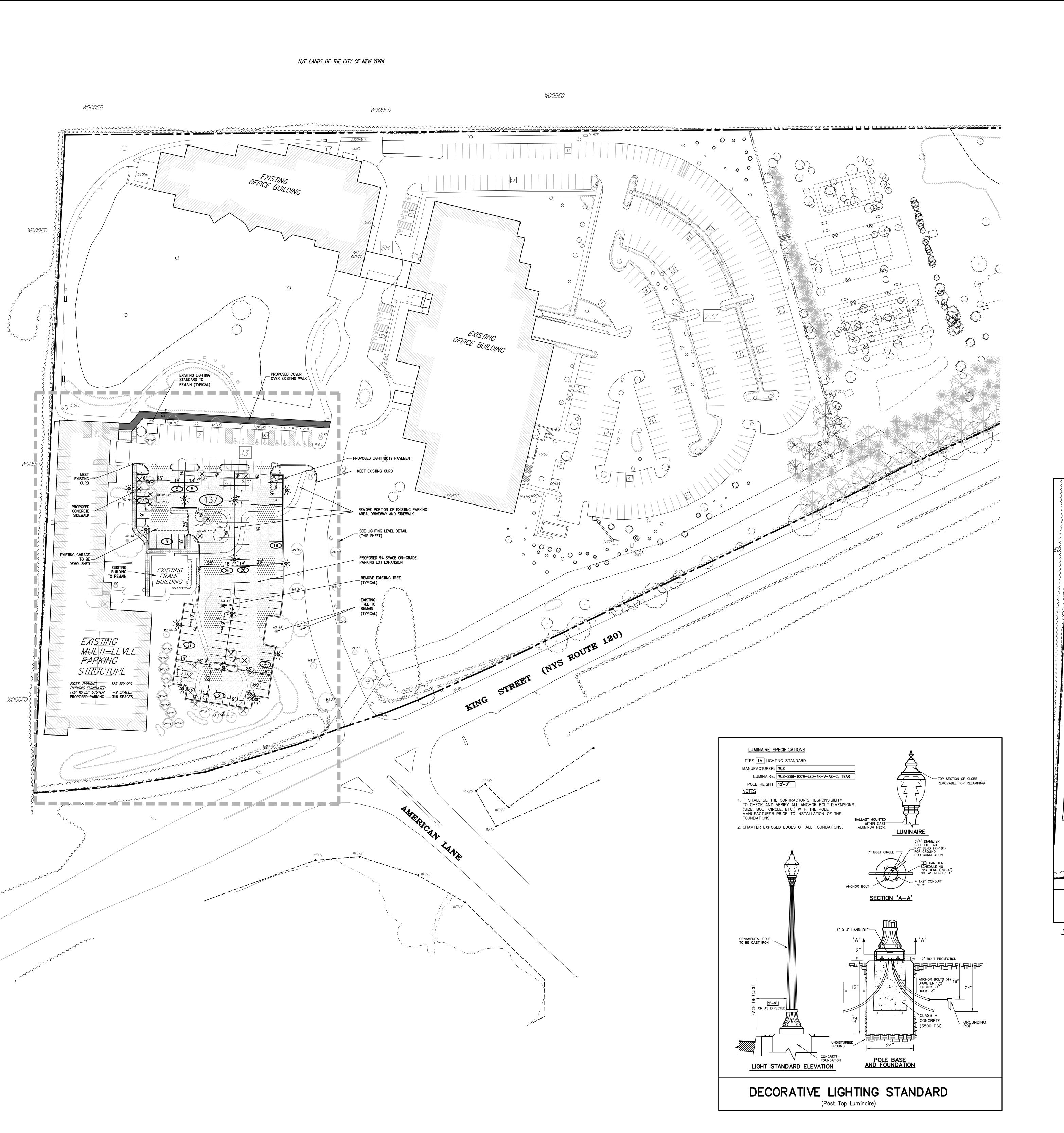
^{**}Racial categories are represented using terms defined in the census.

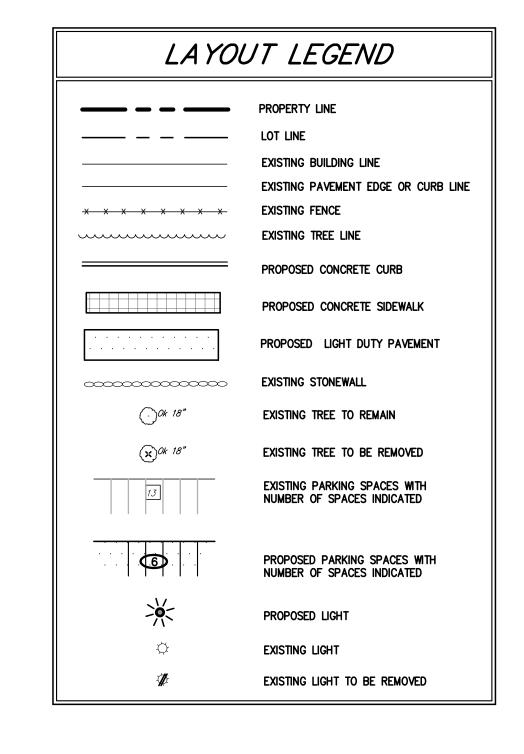
Date By

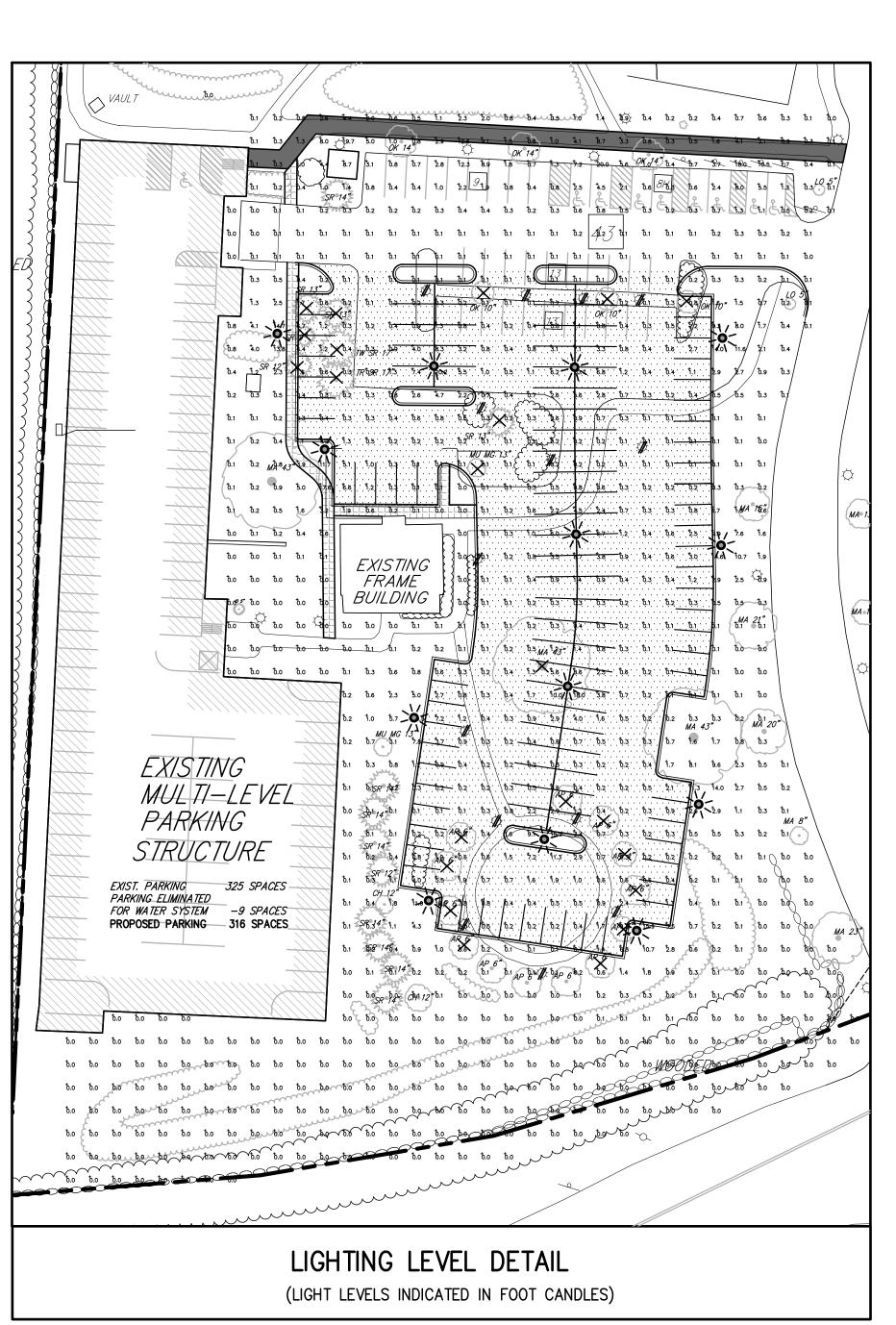
Previous Editions Obsolete

46 WESTCHESTER AVENUE
POUND RIDGE, NEW YORK 10576

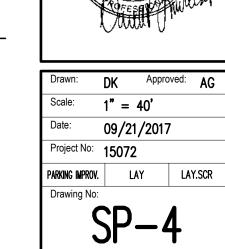

VENEZIANO & ASSOCIATES
84 BUSINESS PARK DRIVE, SUITE 200
ARMONK, NEW YORK 10504


JMC Site Development Consultants,
John Meyer Consulting, Inc.
120 BEDFORD ROAD • ARMONK, NY 1
voice 914.273.5225 • fax 914.273.2
www.jmcpllc.com


ORT CAMPUS
G IMPROVEMENT


ANY ALTERATION OF PLANS,
SPECIFICATIONS, PLATS AND
REPORTS BEARING THE SEAL
OF A LICENSED PROFESSIONAL
ENGINEER OR LICENSED LAND
CURPLY FOR A MICHAELER

ENGINEER OR LICENSED LAND SURVEYOR IS A VIOLATION OF SECTION 7209 OF THE NEW YORK STATE EDUCATION LAW, EXCEPT AS PROVIDED FOR BY SECTION 7209, SUBSECTION 2.


TE: LIGHTING DESIGN BY WLS LIGHTING ON 07/27/2017.

APPROVED BY TOWN OF NORTH CASTLE PLANNING BOARD RESOLUTION, DATED

CHRISTOPHER CARTHY, CHAIR,
TOWN OF NORTH CASTLE PLANNING BOARD

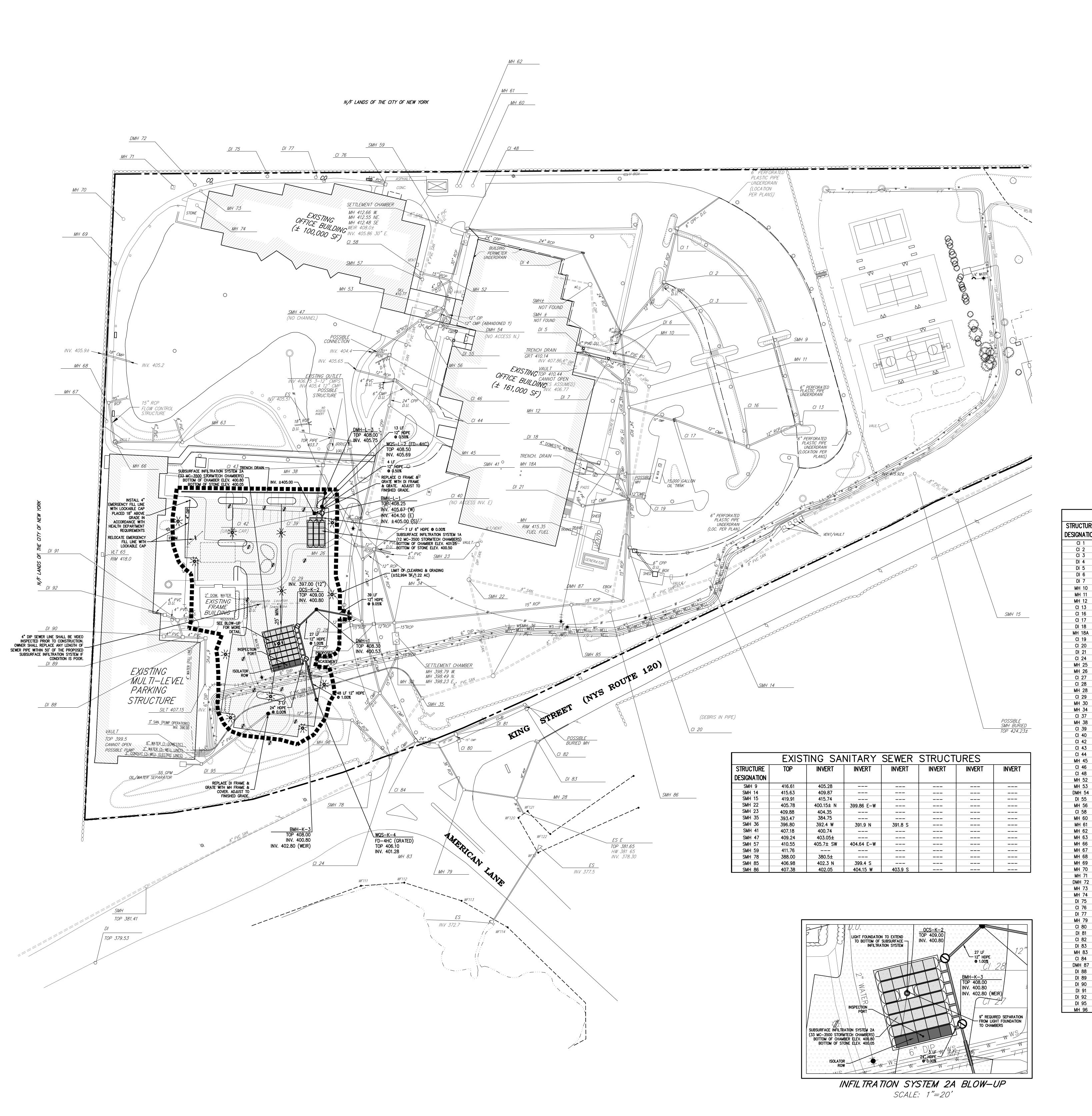
ENGINEERING DRAWINGS REVIEWED BY TOWN CONSULTING ENGINEER

JOSEPH M. CERMELE, P.E. KELLARD SESSIONS CONSULTING, P.C. CONSULTING TOWN ENGINEER

ANY ALTERATION OF PLANS, SPECIFICATIONS, PLATS AND REPORTS BEARING THE SEAL OF A LICENSED PROFESSIONAL ENGINEER OR LICENSED LAND

SURVEYOR IS A VIOLATION OF SECTION 7209 OF THE NEW YORK STATE EDUCATION LAW,

EXCEPT AS PROVIDED FOR BY SECTION 7209, SUBSECTION 2.



ANY ALTERATION OF PLANS, SPECIFICATIONS, PLATS AND REPORTS BEARING THE SEAL

OF A LICENSED PROFESSIONAL ENGINEER OR LICENSED LAND SURVEYOR IS A VIOLATION OF SECTION 7209 OF THE NEW YORK STATE EDUCATION LAW, EXCEPT AS PROVIDED FOR BY SECTION 7209, SUBSECTION 2.

Drawn: **DK** Approved: **AG** Scale: 1" = 40' Date: 09/21/2017 Project No: 15072 PARKING IMPROV. GRAD PHASE 1A GRAD .SCR

UTILITY LEGEND EXISTING DRAINAGE INLET = <u>24" CMP</u> = EXISTING SANITARY PIPES EXISTING WATER LINE & SIZE EXISTING GAS LINE & SIZE EXISTING UTILITY POLE EXISTING 2" CONDUIT AND QUANTITY

PROPOSED OUTLET CONTROL STRUCTURE

PROPOSED WATER QUALITY STRUCTURE PROPOSED STORM LINE & SIZE

---- EXISTING BUILDING TO BE REMOVED

UTILITY NOTES

- UNLESS OTHERWISE SPECIFIED, PIPE FOR STORM DRAINS SHALL BE SMOOTH WALL CORRUGATED POLYETHYLENE DRAIN PIPE (HDPE) WITH CORRUGATED POLYETHYLENE COUPLING BANDS IN ACCORDANCE WITH AASHTO M-294.
- 2. UNLESS OTHERWISE SPECIFIED, PIPE FOR SANITARY SEWER GRAVITY LINES SHALL BE POLYVINYL CHLORIDE PIPE (PVCP), SDR-35, WITH PUSH-ON JOINTS IN ACCORDANCE WITH ASTM D-3034 AND D-3212.
- UNLESS OTHERWISE SPECIFIED, PIPE FOR WATER LINES SHALL BE CEMENT LINED DUCTILE IRON PIPE (DIP), CLASS 52, WITH PUSH-ON JOINTS IN ACCORDANCE WITH AWWA C-150, C-151, C-104 AND C-111.
- 4. ELECTRIC AND TELEPHONE, LINES SHALL BE INSTALLED UNDERGROUND IN CONDUIT IN ACCORDANCE WITH THE REQUIREMENTS OF THE UTILITY COMPANY HAVING JURISDICTION.
- 5. ALL SITE LIGHTING CABLES AND WIRING SHALL BE INSTALLED UNDERGROUND IN CONDUIT. CONDUIT SHALL BE SCHEDULE 40 PVC CONDUIT INSTALLED WITH TWO (2) FEET OF COVER. MINIMUM SIZE OF CONDUIT SHALL BE TWO (2) INCH DIAMETER.

STRUCTURE	EXI2 III	NG DRAI	NAGE S	IKUCIU	KE SCH	LUULL	
DESIGNATION	TOP	INVERT	INVERT	INVERT	INVERT	INVERT	INVERT
Cl 1	419.65	417.0 NW	416.5 E				
CI 2	419.38	415.5 W	415.8 E	415.6 E			
CI 3	415.43	410.63 NW	407.58 24" E	410.35 6" E	407.7 6" E	407.65 8" SE	407.55 24" SW
DI 4	411.02	408.4± E	407.8 E	407.0 NE	406.9 S	408.1 WATER	
DI 5	410.12	408.0±					
DI 6	412.80	411.8					
DI 7	412.60	411.6±					
MH 10	414.69	406.77					
MH 11	415.88	408.0 NE	407.9 E	407.95 W			
MH 12	415.67	406.43 W	404.5 E	407.8 SE			
CI 13	422.49	419.62					
CI 16	420.91	416.98 N	416.77 SW				
CI 17	416.47	412.76 NE	412.67 SW				
DI 18	412.88	406.3	40E 0 CW				
MH 18A	412.72	405.35± E-W	405.8 SW	408.04.0			
CI 19	411.82	408.3 N	409.2 WATER	408.94 S			
CI 20	413.06	410.2± W	410.3± E	409.9 SILT			
DI 21	412.65	410.33 S	409.95 SILT	409.45 N			
Cl 24	387.79	384.86 N	385.4 SW	797 60 NW	705 61 F		
MH 25	391.44	386.17 S	385.96 W	387.69 NW	385.61 E		
MH 26	398.69	389.95 W-E	396.1 SW				
CI 27	398.24	393.69 S	393.81 N				
Cl 28	398.18	394.51 379.00 (IN)	770 00 (OUT)				
MH 28	388.28 398.82	397.00 (IN) 397.0± NE	379.00 (OUT) 397.2 SILT				
Cl 29	390.8	393.1					
MH 30	399.69	394.1± S	394.1± W	394.4± N	394.2± E		
MH 34 Cl 37	405.22	403.12 S	402.62 SW	402.80 E	403.7± 4" PVC		
MH 38	404.73	399.30 NW	391.9 W	392.0 E			
Cl 39	405.53	403.66					
CI 40	406.87	400.7 W	400.9 S				
Cl 42	408.41						
Cl 43	407.63						
CI 44	408.70	406.5 12" S	406.4 NE	407.65± 4" S			
MH 45	409.00	403.4± E	403.5± W				
Cl 46	408.86	405.1± 30" S	407.3± 4" S				
CI 48	412.12	407.00 (IN)	405.86 (OUT)				
MH 52	411.48	407.31 15" S	406.83 4" SE	405.7 30"			
MH 53	410.21	406.18 NE	406.05 E	405.6 30"			
DMH 54	410.48	407.65 S	407.45 W				
DI 55	410.33						
MH 56	409.79	405.2 NE	405.9± N	405.2 SE			
CI 58	410.53	408.35					
MH 60	413.28						
MH 61	412.55						
MH 62	413.05	410.2 NW	406.0 S	406.0 E			
MH 63	410.49						
MH 66	412.64	410.24					
MH 67	411.80						
MH 68	±409.25	409.05					
MH 69	410.48						
MH 70	412.44						
MH 71	411.57						
DMH 72	409.74						
MH 73	410.13						
MH 74	410.67						
i	410.67 409.47						
MH 74		 407.25					
MH 74 DI 75	409.47			 	 		
MH 74 DI 75 CI 76	409.47 410.04		 380.85 (OUT)	 	 	 	
MH 74 DI 75 CI 76 DI 77	409.47 410.04 409.71	407.25 		 		 	
MH 74 DI 75 CI 76 DI 77 MH 79	409.47 410.04 409.71 388.22	407.25 380.85 (IN)		 	 	 	
MH 74 DI 75 CI 76 DI 77 MH 79 CI 80	409.47 410.04 409.71 388.22 389.84 389.31 392.83	407.25 380.85 (IN) 386.0 385.84 E 389.23	 380.85 (OUT) 	 	 		
MH 74 DI 75 CI 76 DI 77 MH 79 CI 80 DI 81	409.47 410.04 409.71 388.22 389.84 389.31	407.25 380.85 (IN) 386.0 385.84 E	 380.85 (OUT) 385.43 N 	 385.31 S	 		
MH 74 DI 75 CI 76 DI 77 MH 79 CI 80 DI 81 CI 82	409.47 410.04 409.71 388.22 389.84 389.31 392.83	407.25 380.85 (IN) 386.0 385.84 E 389.23	 380.85 (OUT) 385.43 N	 385.31 S	 		
MH 74 DI 75 CI 76 DI 77 MH 79 CI 80 DI 81 CI 82 DI 83	409.47 410.04 409.71 388.22 389.84 389.31 392.83 392.24	407.25 380.85 (IN) 386.0 385.84 E 389.23 388.30	 380.85 (OUT) 385.43 N 	 385.31 S	 		
MH 74 DI 75 CI 76 DI 77 MH 79 CI 80 DI 81 CI 82 DI 83 MH 83	409.47 410.04 409.71 388.22 389.84 389.31 392.83 392.24 390.00	407.25 380.85 (IN) 386.0 385.84 E 389.23 388.30 385.00 (IN)	 380.85 (OUT) 385.43 N 382.00 (OUT)	 385.31 S 	 	 	
MH 74 DI 75 CI 76 DI 77 MH 79 CI 80 DI 81 CI 82 DI 83 MH 83 CI 84	409.47 410.04 409.71 388.22 389.84 389.31 392.83 392.24 390.00 387.88	407.25 380.85 (IN) 386.0 385.84 E 389.23 388.30 385.00 (IN) 383.99	 380.85 (OUT) 385.43 N 382.00 (OUT)	 385.31 S 	 	 	
MH 74 DI 75 CI 76 DI 77 MH 79 CI 80 DI 81 CI 82 DI 83 MH 83 CI 84 DMH 87	409.47 410.04 409.71 388.22 389.84 389.31 392.83 392.24 390.00 387.88 410.60	407.25 380.85 (IN) 386.0 385.84 E 389.23 388.30 385.00 (IN) 383.99 	 380.85 (OUT) 385.43 N 382.00 (OUT) 	 385.31 S 	 	 	
MH 74 DI 75 CI 76 DI 77 MH 79 CI 80 DI 81 CI 82 DI 83 MH 83 CI 84 DMH 87 DI 88	409.47 410.04 409.71 388.22 389.84 389.31 392.83 392.24 390.00 387.88 410.60 412.85	407.25 380.85 (IN) 386.0 385.84 E 389.23 388.30 385.00 (IN) 383.99 408.23 S	 380.85 (OUT) 385.43 N 382.00 (OUT) 408.29 E	 385.31 S 		 	
MH 74 DI 75 CI 76 DI 77 MH 79 CI 80 DI 81 CI 82 DI 83 MH 83 CI 84 DMH 87 DI 88 DI 89	409.47 410.04 409.71 388.22 389.84 389.31 392.83 392.24 390.00 387.88 410.60 412.85 410.43	407.25 380.85 (IN) 386.0 385.84 E 389.23 388.30 385.00 (IN) 383.99 408.23 S 408.68 S	 380.85 (OUT) 385.43 N 382.00 (OUT) 408.29 E 408.66 SW	 385.31 S 408.64 N		 	
MH 74 DI 75 CI 76 DI 77 MH 79 CI 80 DI 81 CI 82 DI 83 MH 83 CI 84 DMH 87 DI 88 DI 89 DI 90	409.47 410.04 409.71 388.22 389.84 389.31 392.83 392.24 390.00 387.88 410.60 412.85 410.43 410.27	407.25 380.85 (IN) 386.0 385.84 E 389.23 388.30 385.00 (IN) 383.99 408.23 S 408.68 S 408.80	380.85 (OUT) 385.43 N 382.00 (OUT) 408.29 E 408.66 SW	 385.31 S 408.64 N		 	
MH 74 DI 75 CI 76 DI 77 MH 79 CI 80 DI 81 CI 82 DI 83 MH 83 CI 84 DMH 87 DI 88 DI 89 DI 90 DI 91	409.47 410.04 409.71 388.22 389.84 389.31 392.83 392.24 390.00 387.88 410.60 412.85 410.43 410.27 410.57	407.25 380.85 (IN) 386.0 385.84 E 389.23 388.30 385.00 (IN) 383.99 408.23 S 408.68 S 408.80 408.87 S	 380.85 (OUT) 385.43 N 382.00 (OUT) 408.29 E 408.66 SW 409.03 N	 385.31 S 408.64 N 409.80 E		 	

APPROVED BY TOWN OF NORTH CASTLE PLANNING BOARD RESOLUTION, DATED .

CHRISTOPHER CARTHY, CHAIR, TOWN OF NORTH CASTLE PLANNING BOARD

ENGINEERING DRAWINGS REVIEWED BY TOWN CONSULTING ENGINEER

JOSEPH M. CERMELE, P.E. KELLARD SESSIONS CONSULTING, P.C. CONSULTING TOWN ENGINEER

Scale: 1" = 40' 09/21/2017 Project No: 15072 PARKING IMPROV. UTIL

Drawn: **DK** Approved: **AG**

ANY ALTERATION OF PLANS, SPECIFICATIONS, PLATS AND REPORTS BEARING THE SEAL

OF A LICENSED PROFESSIONAL ENGINEER OR LICENSED LAND SURVEYOR IS A VIOLATION OF SECTION 7209 OF THE NEW YORK STATE EDUCATION LAW, EXCEPT AS PROVIDED FOR BY SECTION 7209, SUBSECTION 2.

Appendix J-2 SHPO Correspondence

ROSE HARVEY

ANDREW M. CUOMO

Governor Commissioner

September 26, 2018

Ms. Alison Simon Town Clerk Town of North Castle 15 Bedford Rd Armonk, NY 10504

Re: DEC

Airport Campus Redevelopment 113 King St, North Castle, NY

18PR06232

Dear Ms. Simon:

Thank you for requesting the comments of the Division for Historic Preservation of the Office of Parks, Recreation and Historic Preservation (OPRHP). We have reviewed the submitted materials in accordance with the New York State Historic Preservation Act of 1980 (section 14.09 of the New York Parks, Recreation and Historic Preservation Law). These comments are those of the Division for Historic Preservation and relate only to Historic/Cultural resources.

Based on available information, this project is in an archaeologically sensitive area. Therefore, OPRHP recommends that a Phase I archaeological survey is warranted for all portions of the project that will involve ground disturbance, unless substantial prior ground disturbance can be documented. If you consider the project area to be disturbed, documentation of the disturbance will need to be reviewed by OPRHP. Examples of disturbance include mining activities and multiple episodes of building construction and demolition.

Documentation of ground disturbance should include a description of the disturbance with confirming evidence. Confirmation can include current photographs and/or older photographs of the project area which illustrate the disturbance (approximately keyed to a project area map), past maps or site plans that accurately record previous disturbances, or current soil borings that verify past disruptions to the land. Agricultural activity is not considered to be substantial ground disturbance and many significant sites have been identified in previously cultivated land.

Please note that in areas with alluvial soils or fill archaeological deposits may exist below the depth of superficial disturbances, such as pavement or even deeper disturbances, depending on the thickness of the alluvium or fill. Evaluation of the possible impact of prior disturbance on archaeological sites must consider the depth of potentially culture-bearing deposits and the depth of planned disturbance by the proposed project.

Also, please note that wetlands may have areas of higher elevation that were suitable for

Simon, 26 September 2018, page 2

habitation and/or the staging of temporary resource procurement camps. In addition, past climatic variations or modern changes in hydrology may have inundated areas formerly available for occupation.

A Phase I survey is designed to determine the presence or absence of archaeological sites or other cultural resources in the project's area of potential effect. The OPRHP can provide standards for conducting cultural resource investigations upon request. Cultural resource surveys and survey reports that meet these standards will be accepted and approved by the OPRHP.

Our office does not conduct cultural resources surveys. A 36 CFR 61 qualified archaeologist should be retained to undertake the Phase I survey. Many archaeological consulting firms advertise their availability on the internet. The services of qualified archaeologists can also be obtained by contacting local, regional, or statewide professional archaeological organizations. Phase I surveys can be expected to vary in cost per mile of right-of-way or by the number of acres impacted. We encourage you to contact a number of consulting firms and compare examples of each firm's work to obtain the best product.

Please also be aware that a Section 233 permit from the New York State Education Department (SED) may be necessary before any archaeological survey activities are conducted on State-owned land. If any portion of the project includes the lands of New York State you should contact the SED before initiating survey activities. The SED contact is Christina B. Rieth and she can be reached at (518) 402-5975. Section 233 permits are not required for projects on private land.

If you have any questions, please don't hesitate to contact me.

Sincerely,

Philip A. Perazio, Historic Preservation Program Analyst - Archaeology Unit

Phone: 518-268-2175

e-mail: philip.perazio@parks.ny.gov via email only

ANDREW M. CUOMO Governor **ERIK KULLESEID**Commissioner

August 07, 2019

Ms. Alison Simon Town Clerk Town of North Castle 15 Bedford Rd Armonk, NY 10504

Re: DEC

Airport Campus Redevelopment 113 King St, North Castle, NY

18PR06232

Dear Ms. Simon:

Thank you for requesting the comments of the Division for Historic Preservation of the Office of Parks, Recreation and Historic Preservation (OPRHP). We have reviewed the submitted materials in accordance with the New York State Historic Preservation Act of 1980 (section 14.09 of the New York Parks, Recreation and Historic Preservation Law). These comments are those of the Division for Historic Preservation and relate only to Historic/Cultural resources.

OPRHP has reviewed *Proposed Redevelopment of 113 King Street, Tax Map Parcels 118.02-1-1, 113.04-1-13, and 113.04-1-14, Town of North Castle, Westchester County, New York, Phase 1A Archaeological Documentary Study* (AKRF, August 2019).

The above-referenced investigation has resulted in the identification of a previously unrecorded archaeological site, the Griffin Farmhouse Site, which has been given the Unique Site Number (USN 11910.000117). We request that the report be revised to specifically assess the proposed project's potential to affect any archaeological deposits or features associated with this site. Also, we request that the electronic site record in CRIS be updated.

Daniel Bagrow of the Survey & Evaluation Unit has reviewed the submitted information for the 19th century farmhouse that is within the project's Area of Potential Effect (11910.000116). The building has been determined as not eligible for the National Register of Historic Places due to a significant loss of integrity, most notably the setting, design, feeling, and association. The house was formerly part of a complex that included outbuildings and fields which would've conveyed the historic agricultural context of the property. In its present state the remaining farmhouse is simply a fragment of a larger resource and does not on its own possess the significance required to be considered eligible for the National Register. Any additional questions about the review of above ground project impacts or resources can be directed to Mr. Bagrow at 518-268-2160 or dan.bagrow@parks.ny.gov.

If you have any questions regarding archaeology, please don't hesitate to contact me.

Simon, 7 August 2019, page 2

Sincerely,

Philip A. Perazio, Historic Preservation Program Analyst - Archaeology Unit

Phone: 518-268-2175

e-mail: philip.perazio@parks.ny.gov via email only

cc: Claudia Cooney and Elizabeth Meade, AKRF

ANDREW M. CUOMO Governor ERIK KULLESEID
Commissioner

August 28, 2019

Ms. Alison Simon Town Clerk Town of North Castle 15 Bedford Rd Armonk, NY 10504

Re: DEC

Airport Campus Redevelopment 113 King St, North Castle, NY

18PR06232

Dear Ms. Simon:

Thank you for requesting the comments of the Division for Historic Preservation of the Office of Parks, Recreation and Historic Preservation (OPRHP). We have reviewed the submitted materials in accordance with the New York State Historic Preservation Act of 1980 (section 14.09 of the New York Parks, Recreation and Historic Preservation Law). These comments are those of the Division for Historic Preservation and relate only to Historic/Cultural resources.

OPRHP has reviewed *Proposed Redevelopment of 113 King Street, Tax Map Parcels 118.02-1-1, 113.04-1-13, and 113.04-1-14, Town of North Castle, Westchester County, New York, Phase 1A Archaeological Documentary Study* (AKRF, August 2019 REVISED). We concur with its conclusions and recommendations. We recommend Phase IB testing of the northern portion of the project property. Should the project design in the vicinity of the historic farmhouse be changed, we recommend further consultation with this office.

If you have any questions, please don't hesitate to contact me.

Sincerely,

Philip A. Perazio, Historic Preservation Program Analyst - Archaeology Unit

Phone: 518-268-2175

e-mail: philip.perazio@parks.ny.gov via email only

cc: Claudia Cooney and Elizabeth Meade, AKRF